text
stringlengths 145
7.65M
|
---|
=============================================================================================================================================
SOURCE CODE FILE: modeling_modernbert.py
LINES: 1
SIZE: 59.72 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\modernbert\modeling_modernbert.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/modernbert/modular_modernbert.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_modernbert.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from contextlib import nullcontext
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
logging,
)
from ...utils.import_utils import is_triton_available
from .configuration_modernbert import ModernBertConfig
if is_flash_attn_2_available():
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
from flash_attn.layers.rotary import RotaryEmbedding
from flash_attn.ops.triton.rotary import apply_rotary
else:
RotaryEmbedding = object
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "answerdotai/ModernBERT-base"
_CONFIG_FOR_DOC = "ModernBertConfig"
class ApplyRotaryEmbUnpad(torch.autograd.Function):
@staticmethod
def forward(
ctx,
qkv,
cos,
sin,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
# (total_nnz, 3, nheads, headdim)
qkv = qkv.contiguous()
total_nnz, _three, _nheads, headdim = qkv.shape
# We need qkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
# we get the same tensor
# qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
qk = qkv[:, :2].view(total_nnz, -1, headdim)
apply_rotary(
qk,
cos,
sin,
seqlen_offsets=0,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
interleaved=False,
inplace=True,
)
ctx.save_for_backward(cos, sin, cu_seqlens)
ctx.max_seqlen = max_seqlen
return qkv
@staticmethod
def backward(ctx, do):
cos, sin, cu_seqlens = ctx.saved_tensors
do = do.contiguous()
total_nnz, _three, _nheads, headdim = do.shape
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
# we get the same tensor
dqk = do[:, :2].view(total_nnz, -1, headdim)
apply_rotary(
dqk,
cos,
sin,
seqlen_offsets=0,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
interleaved=False,
inplace=True,
conjugate=True,
)
return do, None, None, None, None, None, None
def apply_rotary_unpadded(
qkv,
cos,
sin,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
"""
Arguments:
qkv: (total_nnz, 3, nheads, headdim) - input tensor for packed QKV.
cos, sin: (seqlen_rotary, rotary_dim / 2)
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
of 1st half and 2nd half (GPT-NeoX style).
inplace: if True, apply rotary embedding in-place.
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: (batch + 1,) or None
max_seqlen: int
Return:
out: (total_nnz, dim)
rotary_dim must be <= headdim
Apply rotary embedding to the first rotary_dim of x.
"""
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)
class ModernBertUnpaddedRotaryEmbedding(RotaryEmbedding):
"""
The rotary position embeddings applied directly to unpadded sequences.
"""
def __init__(
self,
dim: int,
base: float = 10000.0,
max_seqlen: Optional[int] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
"""
max_seqlen: if max_seqlen, device, and dtype are provided, we precompute the cos_sin_cache
up to max_seqlen. If the max_seqlen, device, or dtype during training/inference differ,
the cos_sin_cache wll be recomputed during the forward pass.
"""
super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=device, interleaved=False)
self.max_seqlen = max_seqlen
if max_seqlen is not None and device is not None and dtype is not None:
self._update_cos_sin_cache(max_seqlen, device=device, dtype=dtype)
def forward(
self,
qkv: torch.Tensor,
cu_seqlens: torch.Tensor,
max_seqlen: Optional[int] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Apply rotary embedding *inplace* to qkv.
qkv: (total_nnz, 3, nheads, headdim)
cu_seqlens: (batch + 1,) cumulative sequence lengths
max_seqlen: int max seq length in the batch
"""
if max_seqlen is not None:
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
qkv = apply_rotary_unpadded(
qkv,
self._cos_cached,
self._sin_cached,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
return qkv
def extra_repr(self) -> str:
return f"dim={self.dim}, base={self.base}, scale_base={self.scale_base}"
class ModernBertEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config: ModernBertConfig):
super().__init__()
self.config = config
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
self.drop = nn.Dropout(config.embedding_dropout)
@torch.compile(dynamic=True)
def compiled_embeddings(self, input_ids: torch.LongTensor) -> torch.Tensor:
return self.drop(self.norm(self.tok_embeddings(input_ids)))
def forward(
self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.Tensor] = None
) -> torch.Tensor:
if inputs_embeds is not None:
hidden_states = self.drop(self.norm(inputs_embeds))
else:
hidden_states = (
self.compiled_embeddings(input_ids)
if self.config.reference_compile
else self.drop(self.norm(self.tok_embeddings(input_ids)))
)
return hidden_states
class ModernBertMLP(nn.Module):
"""Applies the GLU at the end of each ModernBERT layer.
Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality.
"""
def __init__(self, config: ModernBertConfig):
super().__init__()
self.config = config
self.Wi = nn.Linear(config.hidden_size, int(config.intermediate_size) * 2, bias=config.mlp_bias)
self.act = ACT2FN[config.hidden_activation]
self.drop = nn.Dropout(config.mlp_dropout)
self.Wo = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input, gate = self.Wi(hidden_states).chunk(2, dim=-1)
return self.Wo(self.drop(self.act(input) * gate))
class ModernBertRotaryEmbedding(nn.Module):
def __init__(self, config: ModernBertConfig, dim: int, base: float, device: Optional[torch.device] = None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(None, device, dim=dim, base=base)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def eager_attention_forward(
module: "ModernBertAttention",
qkv: torch.Tensor,
attention_mask: torch.Tensor,
sliding_window_mask: torch.Tensor,
position_ids: Optional[torch.LongTensor],
local_attention: Tuple[int, int],
bs: int,
dim: int,
output_attentions: Optional[bool] = False,
**_kwargs,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
# qkv: [batch_size, seqlen, 3, nheads, headdim]
cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
query, key, value = qkv.transpose(3, 1).unbind(dim=2)
# query, key, value: [batch_size, heads, seq_len, head_dim]
query, key = apply_rotary_pos_emb(query, key, cos, sin)
scale = module.head_dim**-0.5
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scale
if local_attention != (-1, -1):
attention_mask = sliding_window_mask
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=module.attention_dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bs, -1, dim)
if output_attentions:
return (attn_output, attn_weights)
return (attn_output,)
def flash_attention_forward(
module: "ModernBertAttention",
qkv: torch.Tensor,
rotary_emb: ModernBertUnpaddedRotaryEmbedding,
cu_seqlens: torch.Tensor,
max_seqlen: int,
local_attention: Tuple[int, int],
bs: int,
dim: int,
target_dtype: torch.dtype = torch.bfloat16,
**_kwargs,
) -> Tuple[torch.Tensor]:
# (total_seqlen, 3, nheads, headdim)
qkv = rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
if convert_dtype:
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
orig_dtype = qkv.dtype
qkv = qkv.to(target_dtype)
attn = flash_attn_varlen_qkvpacked_func(
qkv,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
dropout_p=module.attention_dropout if module.training else 0.0,
deterministic=module.deterministic_flash_attn,
window_size=local_attention,
)
attn = attn.to(orig_dtype) # type: ignore
else:
attn = flash_attn_varlen_qkvpacked_func(
qkv,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
dropout_p=module.attention_dropout if module.training else 0.0,
deterministic=module.deterministic_flash_attn,
window_size=local_attention,
)
return (attn.view(bs, dim),)
def sdpa_attention_forward(
module: "ModernBertAttention",
qkv: torch.Tensor,
attention_mask: torch.Tensor,
sliding_window_mask: torch.Tensor,
position_ids: Optional[torch.LongTensor],
local_attention: Tuple[int, int],
bs: int,
dim: int,
**_kwargs,
) -> Tuple[torch.Tensor]:
# qkv: [batch_size, seqlen, 3, nheads, headdim]
cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
query, key, value = qkv.transpose(3, 1).unbind(dim=2)
# query, key, value: [batch_size, heads, seq_len, head_dim]
query, key = apply_rotary_pos_emb(query, key, cos, sin)
if local_attention != (-1, -1):
attention_mask = sliding_window_mask
attn_output = (
F.scaled_dot_product_attention(
query,
key,
value,
dropout_p=module.attention_dropout if module.training else 0.0,
attn_mask=attention_mask,
)
.transpose(1, 2)
.contiguous()
)
attn_output = attn_output.view(bs, -1, dim)
return (attn_output,)
MODERNBERT_ATTENTION_FUNCTION = {
"flash_attention_2": flash_attention_forward,
"eager": eager_attention_forward,
"sdpa": sdpa_attention_forward,
}
class ModernBertAttention(nn.Module):
"""Performs multi-headed self attention on a batch of unpadded sequences.
If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput.
If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel,
which requires padding and unpadding inputs, adding some overhead.
See `forward` method for additional details.
"""
def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None):
super().__init__()
self.config = config
self.layer_id = layer_id
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})"
)
self.attention_dropout = config.attention_dropout
self.deterministic_flash_attn = config.deterministic_flash_attn
self.num_heads = config.num_attention_heads
self.head_dim = config.hidden_size // config.num_attention_heads
self.all_head_size = self.head_dim * self.num_heads
self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attention_bias)
if layer_id % config.global_attn_every_n_layers != 0:
self.local_attention = (config.local_attention // 2, config.local_attention // 2)
else:
self.local_attention = (-1, -1)
rope_theta = config.global_rope_theta
max_position_embeddings = config.max_position_embeddings
if self.local_attention != (-1, -1):
if config.local_rope_theta is not None:
rope_theta = config.local_rope_theta
max_position_embeddings = config.local_attention
if config._attn_implementation == "flash_attention_2":
self.rotary_emb = ModernBertUnpaddedRotaryEmbedding(
dim=self.head_dim, max_seqlen=max_position_embeddings, base=rope_theta
)
else:
self.rotary_emb = ModernBertRotaryEmbedding(config=config, dim=self.head_dim, base=rope_theta)
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
self.out_drop = nn.Dropout(config.attention_dropout) if config.attention_dropout > 0.0 else nn.Identity()
self.pruned_heads = set()
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
**kwargs,
) -> torch.Tensor:
qkv = self.Wqkv(hidden_states)
bs = hidden_states.shape[0]
if self.config._attn_implementation == "flash_attention_2":
qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
else:
qkv = qkv.view(bs, -1, 3, self.num_heads, self.head_dim)
attn_outputs = MODERNBERT_ATTENTION_FUNCTION[self.config._attn_implementation](
self,
qkv=qkv,
rotary_emb=self.rotary_emb,
local_attention=self.local_attention,
bs=bs,
dim=self.all_head_size,
output_attentions=output_attentions,
**kwargs,
)
hidden_states = attn_outputs[0]
hidden_states = self.out_drop(self.Wo(hidden_states))
return (hidden_states,) + attn_outputs[1:] # add attentions if outputted
class ModernBertEncoderLayer(nn.Module):
def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None):
super().__init__()
self.config = config
if layer_id == 0:
self.attn_norm = nn.Identity()
else:
self.attn_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
self.attn = ModernBertAttention(config=config, layer_id=layer_id)
self.mlp_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
self.mlp = ModernBertMLP(config)
@torch.compile(dynamic=True)
def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor:
return self.mlp(self.mlp_norm(hidden_states))
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
output_attentions: Optional[bool] = False,
) -> torch.Tensor:
attn_outputs = self.attn(
self.attn_norm(hidden_states),
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
output_attentions=output_attentions,
)
hidden_states = hidden_states + attn_outputs[0]
mlp_output = (
self.compiled_mlp(hidden_states)
if self.config.reference_compile
else self.mlp(self.mlp_norm(hidden_states))
)
hidden_states = hidden_states + mlp_output
return (hidden_states,) + attn_outputs[1:] # add attentions if outputted
MODERNBERT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ModernBertConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare ModernBert Model outputting raw hidden-states without any specific head on top.",
MODERNBERT_START_DOCSTRING,
)
class ModernBertPreTrainedModel(PreTrainedModel):
config_class = ModernBertConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["ModernBertEmbeddings", "ModernBertEncoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = False
def _init_weights(self, module: nn.Module):
cutoff_factor = self.config.initializer_cutoff_factor
if cutoff_factor is None:
cutoff_factor = 3
def init_weight(module: nn.Module, std: float):
nn.init.trunc_normal_(
module.weight,
mean=0.0,
std=std,
a=-cutoff_factor * std,
b=cutoff_factor * std,
)
if isinstance(module, nn.Linear):
if module.bias is not None:
nn.init.zeros_(module.bias)
stds = {
"in": self.config.initializer_range,
"out": self.config.initializer_range / math.sqrt(2.0 * self.config.num_hidden_layers),
"embedding": self.config.initializer_range,
"final_out": self.config.hidden_size**-0.5,
}
if isinstance(module, ModernBertEmbeddings):
init_weight(module.tok_embeddings, stds["embedding"])
elif isinstance(module, ModernBertMLP):
init_weight(module.Wi, stds["in"])
init_weight(module.Wo, stds["out"])
elif isinstance(module, ModernBertAttention):
init_weight(module.Wqkv, stds["in"])
init_weight(module.Wo, stds["out"])
elif isinstance(module, ModernBertPredictionHead):
init_weight(module.dense, stds["out"])
elif isinstance(module, ModernBertForMaskedLM):
init_weight(module.decoder, stds["out"])
elif isinstance(
module,
(ModernBertForSequenceClassification, ModernBertForTokenClassification, ModernBertForQuestionAnswering),
):
init_weight(module.classifier, stds["final_out"])
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
if module.bias is not None:
module.bias.data.zero_()
@classmethod
def _autoset_attn_implementation(
cls,
config,
use_flash_attention_2: bool = False,
torch_dtype: Optional[torch.dtype] = None,
device_map: Optional[Union[str, Dict[str, int]]] = None,
check_device_map: bool = True,
):
# If the user didn't specify anything, try to use flash_attention_2 if available.
# Otherwise we fall back to the default SDPA -> Eager from the super() method.
# ModernBert's FA2 implementation correctly handles non-fp16/bf16 dtypes, we don't
# need the FA2 warning for non-fp16/bf16 dtypes so we set fp16 for the FA2 check.
if config._attn_implementation_internal is None:
config._attn_implementation_internal = "flash_attention_2"
try:
return cls._check_and_enable_flash_attn_2(
config,
torch_dtype=torch.float16,
device_map=device_map,
hard_check_only=False,
check_device_map=check_device_map,
)
except (ValueError, ImportError):
config._attn_implementation_internal = None
return super()._autoset_attn_implementation(
config,
use_flash_attention_2=use_flash_attention_2,
torch_dtype=torch.float16,
device_map=device_map,
check_device_map=check_device_map,
)
def _maybe_set_compile(self):
if self.config.reference_compile is False:
return
if hasattr(self, "hf_device_map") and len(self.hf_device_map) > 1:
if self.config.reference_compile:
logger.warning_once(
"If `accelerate` split the model across devices, `torch.compile` will not work. "
"Falling back to non-compiled mode."
)
self.config.reference_compile = False
if self.device.type == "mps":
if self.config.reference_compile:
logger.warning_once(
"Compiling the model with `torch.compile` and using a `torch.mps` device is not supported. "
"Falling back to non-compiled mode."
)
self.config.reference_compile = False
if self.device.type == "cpu":
if self.config.reference_compile:
logger.warning_once(
"Compiling the model with `torch.compile` and using a `torch.cpu` device is not supported. "
"Falling back to non-compiled mode."
)
self.config.reference_compile = False
if self.config.reference_compile is None:
self.config.reference_compile = is_triton_available()
def resize_token_embeddings(self, *args, **kwargs):
model_embeds = super().resize_token_embeddings(*args, **kwargs)
if self.config.reference_compile in {True, None}:
if self.config.reference_compile:
logger.warning_once(
"Resizing token embeddings with `torch.compile` is not supported. Falling back to non-compiled mode."
)
self.config.reference_compile = False
return model_embeds
def _unpad_modernbert_input(
inputs: torch.Tensor,
attention_mask: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Remove padding from input sequences.
Args:
inputs: (batch, seqlen, ...) or (batch, seqlen)
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
position_ids: (batch, seqlen), int, position ids
labels: (batch, seqlen), int, labels
Returns:
unpadded_inputs: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask.
indices: (total_nnz)
cu_seqlens: (batch + 1), the cumulative sequence lengths
max_seqlen_in_batch: int
unpadded_position_ids: (total_nnz) or None
unpadded_labels: (total_nnz) or None
"""
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
cu_seqlens = torch.nn.functional.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
if inputs.dim() == 2:
unpadded_inputs = inputs.flatten()[indices]
else:
batch, seqlen, *rest = inputs.shape
shape = batch * seqlen
unpadded_inputs = inputs.view(shape, *rest)[indices]
unpadded_position_ids = position_ids.flatten()[indices] if position_ids is not None else None
unpadded_labels = labels.flatten()[indices] if labels is not None else None
return unpadded_inputs, indices, cu_seqlens, max_seqlen_in_batch, unpadded_position_ids, unpadded_labels
def _pad_modernbert_output(
inputs: torch.Tensor,
indices: torch.Tensor,
batch: int,
seqlen: int,
) -> torch.Tensor:
"""
Add padding to sequences.
Args:
inputs: (total_nnz, ...) or (total_nnz,), where total_nnz = number of tokens selected in attention_mask.
indices: (total_nnz)
batch: int, batch size
seqlen: int, max sequence length
Returns:
padded_inputs: (batch, seqlen, ...) or (batch, seqlen)
"""
if inputs.dim() == 1:
output = torch.zeros(batch * seqlen, dtype=inputs.dtype, device=inputs.device)
output[indices] = inputs
padded_inputs = output.view(batch, seqlen)
else:
_, *rest = inputs.shape
output = torch.zeros(batch * seqlen, *rest, dtype=inputs.dtype, device=inputs.device)
output[indices] = inputs
padded_inputs = output.view(batch, seqlen, *rest)
return padded_inputs
MODERNBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. With Flash Attention 2.0, padding will be ignored
by default should you provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
far-away tokens in the local attention layers when not using Flash Attention.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
max_seqlen (`int`, *optional*):
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
batch_size (`int`, *optional*):
Batch size of the input sequences. Used to pad the output tensors.
seq_len (`int`, *optional*):
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare ModernBert Model outputting raw hidden-states without any specific head on top.",
MODERNBERT_START_DOCSTRING,
)
class ModernBertModel(ModernBertPreTrainedModel):
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.config = config
self.embeddings = ModernBertEmbeddings(config)
self.layers = nn.ModuleList(
[ModernBertEncoderLayer(config, layer_id) for layer_id in range(config.num_hidden_layers)]
)
self.final_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings.tok_embeddings
def set_input_embeddings(self, value):
self.embeddings.tok_embeddings = value
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
self._maybe_set_compile()
if input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
if batch_size is None and seq_len is None:
if inputs_embeds is not None:
batch_size, seq_len = inputs_embeds.shape[:2]
else:
batch_size, seq_len = input_ids.shape[:2]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool)
repad = False
if self.config._attn_implementation == "flash_attention_2":
if indices is None and cu_seqlens is None and max_seqlen is None:
repad = True
if inputs_embeds is None:
with torch.no_grad():
input_ids, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
inputs=input_ids, attention_mask=attention_mask
)
else:
inputs_embeds, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
inputs=inputs_embeds, attention_mask=attention_mask
)
else:
if position_ids is None:
position_ids = torch.arange(seq_len, device=device).unsqueeze(0)
attention_mask, sliding_window_mask = self._update_attention_mask(
attention_mask, output_attentions=output_attentions
)
hidden_states = self.embeddings(input_ids=input_ids, inputs_embeds=inputs_embeds)
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
sliding_window_mask,
position_ids,
cu_seqlens,
max_seqlen,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions and len(layer_outputs) > 1:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.final_norm(hidden_states)
if repad:
hidden_states = _pad_modernbert_output(
inputs=hidden_states, indices=indices, batch=batch_size, seqlen=seq_len
)
if all_hidden_states is not None:
all_hidden_states = tuple(
_pad_modernbert_output(inputs=hs, indices=indices, batch=batch_size, seqlen=seq_len)
for hs in all_hidden_states
)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def _update_attention_mask(self, attention_mask: torch.Tensor, output_attentions: bool) -> torch.Tensor:
if output_attentions:
if self.config._attn_implementation == "sdpa":
logger.warning_once(
"Outputting attentions is only supported with the 'eager' attention implementation, "
'not with "sdpa". Falling back to `attn_implementation="eager"`.'
)
self.config._attn_implementation = "eager"
elif self.config._attn_implementation != "eager":
logger.warning_once(
"Outputting attentions is only supported with the eager attention implementation, "
f'not with {self.config._attn_implementation}. Consider setting `attn_implementation="eager"`.'
" Setting `output_attentions=False`."
)
global_attention_mask = _prepare_4d_attention_mask(attention_mask, self.dtype)
# Create position indices
rows = torch.arange(global_attention_mask.shape[2]).unsqueeze(0)
# Calculate distance between positions
distance = torch.abs(rows - rows.T)
# Create sliding window mask (1 for positions within window, 0 outside)
window_mask = (
(distance <= self.config.local_attention // 2).unsqueeze(0).unsqueeze(0).to(attention_mask.device)
)
# Combine with existing mask
sliding_window_mask = global_attention_mask.masked_fill(window_mask.logical_not(), torch.finfo(self.dtype).min)
return global_attention_mask, sliding_window_mask
class ModernBertPredictionHead(nn.Module):
def __init__(self, config: ModernBertConfig):
super().__init__()
self.config = config
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.classifier_bias)
self.act = ACT2FN[config.classifier_activation]
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return self.norm(self.act(self.dense(hidden_states)))
@add_start_docstrings(
"The ModernBert Model with a decoder head on top that is used for masked language modeling.",
MODERNBERT_START_DOCSTRING,
)
class ModernBertForMaskedLM(ModernBertPreTrainedModel):
_tied_weights_keys = ["decoder.weight"]
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.config = config
self.model = ModernBertModel(config)
self.head = ModernBertPredictionHead(config)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=config.decoder_bias)
self.sparse_prediction = self.config.sparse_prediction
self.sparse_pred_ignore_index = self.config.sparse_pred_ignore_index
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.decoder
def set_output_embeddings(self, new_embeddings: nn.Linear):
self.decoder = new_embeddings
@torch.compile(dynamic=True)
def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
return self.decoder(self.head(output))
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
if self.config._attn_implementation == "flash_attention_2":
if indices is None and cu_seqlens is None and max_seqlen is None:
if batch_size is None and seq_len is None:
if inputs_embeds is not None:
batch_size, seq_len = inputs_embeds.shape[:2]
else:
batch_size, seq_len = input_ids.shape[:2]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool)
if inputs_embeds is None:
with torch.no_grad():
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
inputs=input_ids, attention_mask=attention_mask, position_ids=position_ids, labels=labels
)
else:
inputs_embeds, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
inputs=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, labels=labels
)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
if self.sparse_prediction and labels is not None:
# flatten labels and output first
labels = labels.view(-1)
last_hidden_state = last_hidden_state.view(labels.shape[0], -1)
# then filter out the non-masked tokens
mask_tokens = labels != self.sparse_pred_ignore_index
last_hidden_state = last_hidden_state[mask_tokens]
labels = labels[mask_tokens]
logits = (
self.compiled_head(last_hidden_state)
if self.config.reference_compile
else self.decoder(self.head(last_hidden_state))
)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, vocab_size=self.config.vocab_size)
if self.config._attn_implementation == "flash_attention_2":
with nullcontext() if self.config.repad_logits_with_grad or labels is None else torch.no_grad():
logits = _pad_modernbert_output(inputs=logits, indices=indices, batch=batch_size, seqlen=seq_len)
if not return_dict:
output = (logits,)
return ((loss,) + output) if loss is not None else output
return MaskedLMOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"The ModernBert Model with a sequence classification head on top that performs pooling.",
MODERNBERT_START_DOCSTRING,
)
class ModernBertForSequenceClassification(ModernBertPreTrainedModel):
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.model = ModernBertModel(config)
self.head = ModernBertPredictionHead(config)
self.drop = torch.nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
if self.config.classifier_pooling == "cls":
last_hidden_state = last_hidden_state[:, 0]
elif self.config.classifier_pooling == "mean":
last_hidden_state = (last_hidden_state * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(
dim=1, keepdim=True
)
pooled_output = self.head(last_hidden_state)
pooled_output = self.drop(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,)
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"The ModernBert Model with a token classification head on top, e.g. for Named Entity Recognition (NER) tasks.",
MODERNBERT_START_DOCSTRING,
)
class ModernBertForTokenClassification(ModernBertPreTrainedModel):
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.model = ModernBertModel(config)
self.head = ModernBertPredictionHead(config)
self.drop = torch.nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.head(last_hidden_state)
last_hidden_state = self.drop(last_hidden_state)
logits = self.classifier(last_hidden_state)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The ModernBert Model with a span classification head on top for extractive question-answering tasks like SQuAD
(a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MODERNBERT_START_DOCSTRING,
)
class ModernBertForQuestionAnswering(ModernBertPreTrainedModel):
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.model = ModernBertModel(config)
self.head = ModernBertPredictionHead(config)
self.drop = torch.nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.post_init()
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
outputs = self.model(
input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.head(last_hidden_state)
last_hidden_state = self.drop(last_hidden_state)
logits = self.classifier(last_hidden_state)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"ModernBertModel",
"ModernBertPreTrainedModel",
"ModernBertForMaskedLM",
"ModernBertForSequenceClassification",
"ModernBertForTokenClassification",
"ModernBertForQuestionAnswering",
]
```
|
============================================================================================================================================
SOURCE CODE FILE: modular_modernbert.py
LINES: 1
SIZE: 65.51 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\modernbert\modular_modernbert.py
ENCODING: utf-8
```py
# Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from contextlib import nullcontext
from typing import Dict, Literal, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...configuration_utils import PretrainedConfig
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
logging,
)
from ...utils.import_utils import is_triton_available
from ..gemma.modeling_gemma import GemmaRotaryEmbedding, apply_rotary_pos_emb
if is_flash_attn_2_available():
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
from flash_attn.layers.rotary import RotaryEmbedding
from flash_attn.ops.triton.rotary import apply_rotary
else:
RotaryEmbedding = object
_CHECKPOINT_FOR_DOC = "answerdotai/ModernBERT-base"
_CONFIG_FOR_DOC = "ModernBertConfig"
logger = logging.get_logger(__name__)
class ModernBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ModernBertModel`]. It is used to instantiate an ModernBert
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the ModernBERT-base.
e.g. [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50368):
Vocabulary size of the ModernBert model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ModernBertModel`]
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 1152):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 22):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer decoder.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu"`
if not specified.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_cutoff_factor (`float`, *optional*, defaults to 2.0):
The cutoff factor for the truncated_normal_initializer for initializing all weight matrices.
norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
norm_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in the normalization layers.
pad_token_id (`int`, *optional*, defaults to 50283):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 50282):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 50281):
Beginning of stream token id.
cls_token_id (`int`, *optional*, defaults to 50281):
Classification token id.
sep_token_id (`int`, *optional*, defaults to 50282):
Separation token id.
global_rope_theta (`float`, *optional*, defaults to 160000.0):
The base period of the global RoPE embeddings.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
global_attn_every_n_layers (`int`, *optional*, defaults to 3):
The number of layers between global attention layers.
local_attention (`int`, *optional*, defaults to 128):
The window size for local attention.
local_rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the local RoPE embeddings.
embedding_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in the MLP layers.
mlp_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the MLP layers.
decoder_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the decoder layers.
classifier_pooling (`str`, *optional*, defaults to `"cls"`):
The pooling method for the classifier. Should be either `"cls"` or `"mean"`. In local attention layers, the
CLS token doesn't attend to all tokens on long sequences.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the classifier.
classifier_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in the classifier.
classifier_activation (`str`, *optional*, defaults to `"gelu"`):
The activation function for the classifier.
deterministic_flash_attn (`bool`, *optional*, defaults to `False`):
Whether to use deterministic flash attention. If `False`, inference will be faster but not deterministic.
sparse_prediction (`bool`, *optional*, defaults to `False`):
Whether to use sparse prediction for the masked language model instead of returning the full dense logits.
sparse_pred_ignore_index (`int`, *optional*, defaults to -100):
The index to ignore for the sparse prediction.
reference_compile (`bool`, *optional*):
Whether to compile the layers of the model which were compiled during pretraining. If `None`, then parts of
the model will be compiled if 1) `triton` is installed, 2) the model is not on MPS, 3) the model is not
shared between devices, and 4) the model is not resized after initialization. If `True`, then the model may
be faster in some scenarios.
repad_logits_with_grad (`bool`, *optional*, defaults to `False`):
When True, ModernBertForMaskedLM keeps track of the logits' gradient when repadding for output. This only
applies when using Flash Attention 2 with passed labels. Otherwise output logits always have a gradient.
Examples:
```python
>>> from transformers import ModernBertModel, ModernBertConfig
>>> # Initializing a ModernBert style configuration
>>> configuration = ModernBertConfig()
>>> # Initializing a model from the modernbert-base style configuration
>>> model = ModernBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "modernbert"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50368,
hidden_size=768,
intermediate_size=1152,
num_hidden_layers=22,
num_attention_heads=12,
hidden_activation="gelu",
max_position_embeddings=8192,
initializer_range=0.02,
initializer_cutoff_factor=2.0,
norm_eps=1e-5,
norm_bias=False,
pad_token_id=50283,
eos_token_id=50282,
bos_token_id=50281,
cls_token_id=50281,
sep_token_id=50282,
global_rope_theta=160000.0,
attention_bias=False,
attention_dropout=0.0,
global_attn_every_n_layers=3,
local_attention=128,
local_rope_theta=10000.0,
embedding_dropout=0.0,
mlp_bias=False,
mlp_dropout=0.0,
decoder_bias=True,
classifier_pooling: Literal["cls", "mean"] = "cls",
classifier_dropout=0.0,
classifier_bias=False,
classifier_activation="gelu",
deterministic_flash_attn=False,
sparse_prediction=False,
sparse_pred_ignore_index=-100,
reference_compile=None,
repad_logits_with_grad=False,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
cls_token_id=cls_token_id,
sep_token_id=sep_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.initializer_range = initializer_range
self.initializer_cutoff_factor = initializer_cutoff_factor
self.norm_eps = norm_eps
self.norm_bias = norm_bias
self.global_rope_theta = global_rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.global_attn_every_n_layers = global_attn_every_n_layers
self.local_attention = local_attention
self.local_rope_theta = local_rope_theta
self.embedding_dropout = embedding_dropout
self.mlp_bias = mlp_bias
self.mlp_dropout = mlp_dropout
self.decoder_bias = decoder_bias
self.classifier_pooling = classifier_pooling
self.classifier_dropout = classifier_dropout
self.classifier_bias = classifier_bias
self.classifier_activation = classifier_activation
self.deterministic_flash_attn = deterministic_flash_attn
self.sparse_prediction = sparse_prediction
self.sparse_pred_ignore_index = sparse_pred_ignore_index
self.reference_compile = reference_compile
self.repad_logits_with_grad = repad_logits_with_grad
if self.classifier_pooling not in ["cls", "mean"]:
raise ValueError(
f'Invalid value for `classifier_pooling`, should be either "cls" or "mean", but is {self.classifier_pooling}.'
)
def to_dict(self):
output = super().to_dict()
output.pop("reference_compile", None)
return output
def _unpad_modernbert_input(
inputs: torch.Tensor,
attention_mask: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Remove padding from input sequences.
Args:
inputs: (batch, seqlen, ...) or (batch, seqlen)
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
position_ids: (batch, seqlen), int, position ids
labels: (batch, seqlen), int, labels
Returns:
unpadded_inputs: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask.
indices: (total_nnz)
cu_seqlens: (batch + 1), the cumulative sequence lengths
max_seqlen_in_batch: int
unpadded_position_ids: (total_nnz) or None
unpadded_labels: (total_nnz) or None
"""
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
cu_seqlens = torch.nn.functional.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
if inputs.dim() == 2:
unpadded_inputs = inputs.flatten()[indices]
else:
batch, seqlen, *rest = inputs.shape
shape = batch * seqlen
unpadded_inputs = inputs.view(shape, *rest)[indices]
unpadded_position_ids = position_ids.flatten()[indices] if position_ids is not None else None
unpadded_labels = labels.flatten()[indices] if labels is not None else None
return unpadded_inputs, indices, cu_seqlens, max_seqlen_in_batch, unpadded_position_ids, unpadded_labels
def _pad_modernbert_output(
inputs: torch.Tensor,
indices: torch.Tensor,
batch: int,
seqlen: int,
) -> torch.Tensor:
"""
Add padding to sequences.
Args:
inputs: (total_nnz, ...) or (total_nnz,), where total_nnz = number of tokens selected in attention_mask.
indices: (total_nnz)
batch: int, batch size
seqlen: int, max sequence length
Returns:
padded_inputs: (batch, seqlen, ...) or (batch, seqlen)
"""
if inputs.dim() == 1:
output = torch.zeros(batch * seqlen, dtype=inputs.dtype, device=inputs.device)
output[indices] = inputs
padded_inputs = output.view(batch, seqlen)
else:
_, *rest = inputs.shape
output = torch.zeros(batch * seqlen, *rest, dtype=inputs.dtype, device=inputs.device)
output[indices] = inputs
padded_inputs = output.view(batch, seqlen, *rest)
return padded_inputs
class ApplyRotaryEmbUnpad(torch.autograd.Function):
@staticmethod
def forward(
ctx,
qkv,
cos,
sin,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
# (total_nnz, 3, nheads, headdim)
qkv = qkv.contiguous()
total_nnz, _three, _nheads, headdim = qkv.shape
# We need qkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
# we get the same tensor
# qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
qk = qkv[:, :2].view(total_nnz, -1, headdim)
apply_rotary(
qk,
cos,
sin,
seqlen_offsets=0,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
interleaved=False,
inplace=True,
)
ctx.save_for_backward(cos, sin, cu_seqlens)
ctx.max_seqlen = max_seqlen
return qkv
@staticmethod
def backward(ctx, do):
cos, sin, cu_seqlens = ctx.saved_tensors
do = do.contiguous()
total_nnz, _three, _nheads, headdim = do.shape
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
# we get the same tensor
dqk = do[:, :2].view(total_nnz, -1, headdim)
apply_rotary(
dqk,
cos,
sin,
seqlen_offsets=0,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
interleaved=False,
inplace=True,
conjugate=True,
)
return do, None, None, None, None, None, None
def apply_rotary_unpadded(
qkv,
cos,
sin,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
"""
Arguments:
qkv: (total_nnz, 3, nheads, headdim) - input tensor for packed QKV.
cos, sin: (seqlen_rotary, rotary_dim / 2)
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
of 1st half and 2nd half (GPT-NeoX style).
inplace: if True, apply rotary embedding in-place.
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: (batch + 1,) or None
max_seqlen: int
Return:
out: (total_nnz, dim)
rotary_dim must be <= headdim
Apply rotary embedding to the first rotary_dim of x.
"""
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)
class ModernBertUnpaddedRotaryEmbedding(RotaryEmbedding):
"""
The rotary position embeddings applied directly to unpadded sequences.
"""
def __init__(
self,
dim: int,
base: float = 10000.0,
max_seqlen: Optional[int] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
"""
max_seqlen: if max_seqlen, device, and dtype are provided, we precompute the cos_sin_cache
up to max_seqlen. If the max_seqlen, device, or dtype during training/inference differ,
the cos_sin_cache wll be recomputed during the forward pass.
"""
super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=device, interleaved=False)
self.max_seqlen = max_seqlen
if max_seqlen is not None and device is not None and dtype is not None:
self._update_cos_sin_cache(max_seqlen, device=device, dtype=dtype)
def forward(
self,
qkv: torch.Tensor,
cu_seqlens: torch.Tensor,
max_seqlen: Optional[int] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Apply rotary embedding *inplace* to qkv.
qkv: (total_nnz, 3, nheads, headdim)
cu_seqlens: (batch + 1,) cumulative sequence lengths
max_seqlen: int max seq length in the batch
"""
if max_seqlen is not None:
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
qkv = apply_rotary_unpadded(
qkv,
self._cos_cached,
self._sin_cached,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
return qkv
def extra_repr(self) -> str:
return f"dim={self.dim}, base={self.base}, scale_base={self.scale_base}"
class ModernBertEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config: ModernBertConfig):
super().__init__()
self.config = config
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
self.drop = nn.Dropout(config.embedding_dropout)
@torch.compile(dynamic=True)
def compiled_embeddings(self, input_ids: torch.LongTensor) -> torch.Tensor:
return self.drop(self.norm(self.tok_embeddings(input_ids)))
def forward(
self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.Tensor] = None
) -> torch.Tensor:
if inputs_embeds is not None:
hidden_states = self.drop(self.norm(inputs_embeds))
else:
hidden_states = (
self.compiled_embeddings(input_ids)
if self.config.reference_compile
else self.drop(self.norm(self.tok_embeddings(input_ids)))
)
return hidden_states
class ModernBertMLP(nn.Module):
"""Applies the GLU at the end of each ModernBERT layer.
Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality.
"""
def __init__(self, config: ModernBertConfig):
super().__init__()
self.config = config
self.Wi = nn.Linear(config.hidden_size, int(config.intermediate_size) * 2, bias=config.mlp_bias)
self.act = ACT2FN[config.hidden_activation]
self.drop = nn.Dropout(config.mlp_dropout)
self.Wo = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input, gate = self.Wi(hidden_states).chunk(2, dim=-1)
return self.Wo(self.drop(self.act(input) * gate))
class ModernBertRotaryEmbedding(GemmaRotaryEmbedding):
def __init__(self, config: ModernBertConfig, dim: int, base: float, device: Optional[torch.device] = None):
super().__init__(self, config=config, device=device)
inv_freq, self.attention_scaling = self.rope_init_fn(None, device, dim=dim, base=base)
def eager_attention_forward(
module: "ModernBertAttention",
qkv: torch.Tensor,
attention_mask: torch.Tensor,
sliding_window_mask: torch.Tensor,
position_ids: Optional[torch.LongTensor],
local_attention: Tuple[int, int],
bs: int,
dim: int,
output_attentions: Optional[bool] = False,
**_kwargs,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
# qkv: [batch_size, seqlen, 3, nheads, headdim]
cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
query, key, value = qkv.transpose(3, 1).unbind(dim=2)
# query, key, value: [batch_size, heads, seq_len, head_dim]
query, key = apply_rotary_pos_emb(query, key, cos, sin)
scale = module.head_dim**-0.5
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scale
if local_attention != (-1, -1):
attention_mask = sliding_window_mask
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=module.attention_dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bs, -1, dim)
if output_attentions:
return (attn_output, attn_weights)
return (attn_output,)
def flash_attention_forward(
module: "ModernBertAttention",
qkv: torch.Tensor,
rotary_emb: ModernBertUnpaddedRotaryEmbedding,
cu_seqlens: torch.Tensor,
max_seqlen: int,
local_attention: Tuple[int, int],
bs: int,
dim: int,
target_dtype: torch.dtype = torch.bfloat16,
**_kwargs,
) -> Tuple[torch.Tensor]:
# (total_seqlen, 3, nheads, headdim)
qkv = rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
if convert_dtype:
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
orig_dtype = qkv.dtype
qkv = qkv.to(target_dtype)
attn = flash_attn_varlen_qkvpacked_func(
qkv,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
dropout_p=module.attention_dropout if module.training else 0.0,
deterministic=module.deterministic_flash_attn,
window_size=local_attention,
)
attn = attn.to(orig_dtype) # type: ignore
else:
attn = flash_attn_varlen_qkvpacked_func(
qkv,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
dropout_p=module.attention_dropout if module.training else 0.0,
deterministic=module.deterministic_flash_attn,
window_size=local_attention,
)
return (attn.view(bs, dim),)
def sdpa_attention_forward(
module: "ModernBertAttention",
qkv: torch.Tensor,
attention_mask: torch.Tensor,
sliding_window_mask: torch.Tensor,
position_ids: Optional[torch.LongTensor],
local_attention: Tuple[int, int],
bs: int,
dim: int,
**_kwargs,
) -> Tuple[torch.Tensor]:
# qkv: [batch_size, seqlen, 3, nheads, headdim]
cos, sin = module.rotary_emb(qkv, position_ids=position_ids)
query, key, value = qkv.transpose(3, 1).unbind(dim=2)
# query, key, value: [batch_size, heads, seq_len, head_dim]
query, key = apply_rotary_pos_emb(query, key, cos, sin)
if local_attention != (-1, -1):
attention_mask = sliding_window_mask
attn_output = (
F.scaled_dot_product_attention(
query,
key,
value,
dropout_p=module.attention_dropout if module.training else 0.0,
attn_mask=attention_mask,
)
.transpose(1, 2)
.contiguous()
)
attn_output = attn_output.view(bs, -1, dim)
return (attn_output,)
MODERNBERT_ATTENTION_FUNCTION = {
"flash_attention_2": flash_attention_forward,
"eager": eager_attention_forward,
"sdpa": sdpa_attention_forward,
}
class ModernBertAttention(nn.Module):
"""Performs multi-headed self attention on a batch of unpadded sequences.
If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput.
If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel,
which requires padding and unpadding inputs, adding some overhead.
See `forward` method for additional details.
"""
def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None):
super().__init__()
self.config = config
self.layer_id = layer_id
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})"
)
self.attention_dropout = config.attention_dropout
self.deterministic_flash_attn = config.deterministic_flash_attn
self.num_heads = config.num_attention_heads
self.head_dim = config.hidden_size // config.num_attention_heads
self.all_head_size = self.head_dim * self.num_heads
self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attention_bias)
if layer_id % config.global_attn_every_n_layers != 0:
self.local_attention = (config.local_attention // 2, config.local_attention // 2)
else:
self.local_attention = (-1, -1)
rope_theta = config.global_rope_theta
max_position_embeddings = config.max_position_embeddings
if self.local_attention != (-1, -1):
if config.local_rope_theta is not None:
rope_theta = config.local_rope_theta
max_position_embeddings = config.local_attention
if config._attn_implementation == "flash_attention_2":
self.rotary_emb = ModernBertUnpaddedRotaryEmbedding(
dim=self.head_dim, max_seqlen=max_position_embeddings, base=rope_theta
)
else:
self.rotary_emb = ModernBertRotaryEmbedding(config=config, dim=self.head_dim, base=rope_theta)
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
self.out_drop = nn.Dropout(config.attention_dropout) if config.attention_dropout > 0.0 else nn.Identity()
self.pruned_heads = set()
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
**kwargs,
) -> torch.Tensor:
qkv = self.Wqkv(hidden_states)
bs = hidden_states.shape[0]
if self.config._attn_implementation == "flash_attention_2":
qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
else:
qkv = qkv.view(bs, -1, 3, self.num_heads, self.head_dim)
attn_outputs = MODERNBERT_ATTENTION_FUNCTION[self.config._attn_implementation](
self,
qkv=qkv,
rotary_emb=self.rotary_emb,
local_attention=self.local_attention,
bs=bs,
dim=self.all_head_size,
output_attentions=output_attentions,
**kwargs,
)
hidden_states = attn_outputs[0]
hidden_states = self.out_drop(self.Wo(hidden_states))
return (hidden_states,) + attn_outputs[1:] # add attentions if outputted
class ModernBertEncoderLayer(nn.Module):
def __init__(self, config: ModernBertConfig, layer_id: Optional[int] = None):
super().__init__()
self.config = config
if layer_id == 0:
self.attn_norm = nn.Identity()
else:
self.attn_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
self.attn = ModernBertAttention(config=config, layer_id=layer_id)
self.mlp_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
self.mlp = ModernBertMLP(config)
@torch.compile(dynamic=True)
def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor:
return self.mlp(self.mlp_norm(hidden_states))
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
output_attentions: Optional[bool] = False,
) -> torch.Tensor:
attn_outputs = self.attn(
self.attn_norm(hidden_states),
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
output_attentions=output_attentions,
)
hidden_states = hidden_states + attn_outputs[0]
mlp_output = (
self.compiled_mlp(hidden_states)
if self.config.reference_compile
else self.mlp(self.mlp_norm(hidden_states))
)
hidden_states = hidden_states + mlp_output
return (hidden_states,) + attn_outputs[1:] # add attentions if outputted
MODERNBERT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ModernBertConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare ModernBert Model outputting raw hidden-states without any specific head on top.",
MODERNBERT_START_DOCSTRING,
)
class ModernBertPreTrainedModel(PreTrainedModel):
config_class = ModernBertConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["ModernBertEmbeddings", "ModernBertEncoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = False
def _init_weights(self, module: nn.Module):
cutoff_factor = self.config.initializer_cutoff_factor
if cutoff_factor is None:
cutoff_factor = 3
def init_weight(module: nn.Module, std: float):
nn.init.trunc_normal_(
module.weight,
mean=0.0,
std=std,
a=-cutoff_factor * std,
b=cutoff_factor * std,
)
if isinstance(module, nn.Linear):
if module.bias is not None:
nn.init.zeros_(module.bias)
stds = {
"in": self.config.initializer_range,
"out": self.config.initializer_range / math.sqrt(2.0 * self.config.num_hidden_layers),
"embedding": self.config.initializer_range,
"final_out": self.config.hidden_size**-0.5,
}
if isinstance(module, ModernBertEmbeddings):
init_weight(module.tok_embeddings, stds["embedding"])
elif isinstance(module, ModernBertMLP):
init_weight(module.Wi, stds["in"])
init_weight(module.Wo, stds["out"])
elif isinstance(module, ModernBertAttention):
init_weight(module.Wqkv, stds["in"])
init_weight(module.Wo, stds["out"])
elif isinstance(module, ModernBertPredictionHead):
init_weight(module.dense, stds["out"])
elif isinstance(module, ModernBertForMaskedLM):
init_weight(module.decoder, stds["out"])
elif isinstance(
module,
(ModernBertForSequenceClassification, ModernBertForTokenClassification, ModernBertForQuestionAnswering),
):
init_weight(module.classifier, stds["final_out"])
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
if module.bias is not None:
module.bias.data.zero_()
@classmethod
def _autoset_attn_implementation(
cls,
config,
use_flash_attention_2: bool = False,
torch_dtype: Optional[torch.dtype] = None,
device_map: Optional[Union[str, Dict[str, int]]] = None,
check_device_map: bool = True,
):
# If the user didn't specify anything, try to use flash_attention_2 if available.
# Otherwise we fall back to the default SDPA -> Eager from the super() method.
# ModernBert's FA2 implementation correctly handles non-fp16/bf16 dtypes, we don't
# need the FA2 warning for non-fp16/bf16 dtypes so we set fp16 for the FA2 check.
if config._attn_implementation_internal is None:
config._attn_implementation_internal = "flash_attention_2"
try:
return cls._check_and_enable_flash_attn_2(
config,
torch_dtype=torch.float16,
device_map=device_map,
hard_check_only=False,
check_device_map=check_device_map,
)
except (ValueError, ImportError):
config._attn_implementation_internal = None
return super()._autoset_attn_implementation(
config,
use_flash_attention_2=use_flash_attention_2,
torch_dtype=torch.float16,
device_map=device_map,
check_device_map=check_device_map,
)
def _maybe_set_compile(self):
if self.config.reference_compile is False:
return
if hasattr(self, "hf_device_map") and len(self.hf_device_map) > 1:
if self.config.reference_compile:
logger.warning_once(
"If `accelerate` split the model across devices, `torch.compile` will not work. "
"Falling back to non-compiled mode."
)
self.config.reference_compile = False
if self.device.type == "mps":
if self.config.reference_compile:
logger.warning_once(
"Compiling the model with `torch.compile` and using a `torch.mps` device is not supported. "
"Falling back to non-compiled mode."
)
self.config.reference_compile = False
if self.device.type == "cpu":
if self.config.reference_compile:
logger.warning_once(
"Compiling the model with `torch.compile` and using a `torch.cpu` device is not supported. "
"Falling back to non-compiled mode."
)
self.config.reference_compile = False
if self.config.reference_compile is None:
self.config.reference_compile = is_triton_available()
def resize_token_embeddings(self, *args, **kwargs):
model_embeds = super().resize_token_embeddings(*args, **kwargs)
if self.config.reference_compile in {True, None}:
if self.config.reference_compile:
logger.warning_once(
"Resizing token embeddings with `torch.compile` is not supported. Falling back to non-compiled mode."
)
self.config.reference_compile = False
return model_embeds
MODERNBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. With Flash Attention 2.0, padding will be ignored
by default should you provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
perform global attention, while the rest perform local attention. This mask is used to avoid attending to
far-away tokens in the local attention layers when not using Flash Attention.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
max_seqlen (`int`, *optional*):
Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids and pad output tensors.
batch_size (`int`, *optional*):
Batch size of the input sequences. Used to pad the output tensors.
seq_len (`int`, *optional*):
Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare ModernBert Model outputting raw hidden-states without any specific head on top.",
MODERNBERT_START_DOCSTRING,
)
class ModernBertModel(ModernBertPreTrainedModel):
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.config = config
self.embeddings = ModernBertEmbeddings(config)
self.layers = nn.ModuleList(
[ModernBertEncoderLayer(config, layer_id) for layer_id in range(config.num_hidden_layers)]
)
self.final_norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings.tok_embeddings
def set_input_embeddings(self, value):
self.embeddings.tok_embeddings = value
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
self._maybe_set_compile()
if input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
if batch_size is None and seq_len is None:
if inputs_embeds is not None:
batch_size, seq_len = inputs_embeds.shape[:2]
else:
batch_size, seq_len = input_ids.shape[:2]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool)
repad = False
if self.config._attn_implementation == "flash_attention_2":
if indices is None and cu_seqlens is None and max_seqlen is None:
repad = True
if inputs_embeds is None:
with torch.no_grad():
input_ids, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
inputs=input_ids, attention_mask=attention_mask
)
else:
inputs_embeds, indices, cu_seqlens, max_seqlen, *_ = _unpad_modernbert_input(
inputs=inputs_embeds, attention_mask=attention_mask
)
else:
if position_ids is None:
position_ids = torch.arange(seq_len, device=device).unsqueeze(0)
attention_mask, sliding_window_mask = self._update_attention_mask(
attention_mask, output_attentions=output_attentions
)
hidden_states = self.embeddings(input_ids=input_ids, inputs_embeds=inputs_embeds)
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
sliding_window_mask,
position_ids,
cu_seqlens,
max_seqlen,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions and len(layer_outputs) > 1:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.final_norm(hidden_states)
if repad:
hidden_states = _pad_modernbert_output(
inputs=hidden_states, indices=indices, batch=batch_size, seqlen=seq_len
)
if all_hidden_states is not None:
all_hidden_states = tuple(
_pad_modernbert_output(inputs=hs, indices=indices, batch=batch_size, seqlen=seq_len)
for hs in all_hidden_states
)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def _update_attention_mask(self, attention_mask: torch.Tensor, output_attentions: bool) -> torch.Tensor:
if output_attentions:
if self.config._attn_implementation == "sdpa":
logger.warning_once(
"Outputting attentions is only supported with the 'eager' attention implementation, "
'not with "sdpa". Falling back to `attn_implementation="eager"`.'
)
self.config._attn_implementation = "eager"
elif self.config._attn_implementation != "eager":
logger.warning_once(
"Outputting attentions is only supported with the eager attention implementation, "
f'not with {self.config._attn_implementation}. Consider setting `attn_implementation="eager"`.'
" Setting `output_attentions=False`."
)
global_attention_mask = _prepare_4d_attention_mask(attention_mask, self.dtype)
# Create position indices
rows = torch.arange(global_attention_mask.shape[2]).unsqueeze(0)
# Calculate distance between positions
distance = torch.abs(rows - rows.T)
# Create sliding window mask (1 for positions within window, 0 outside)
window_mask = (
(distance <= self.config.local_attention // 2).unsqueeze(0).unsqueeze(0).to(attention_mask.device)
)
# Combine with existing mask
sliding_window_mask = global_attention_mask.masked_fill(window_mask.logical_not(), torch.finfo(self.dtype).min)
return global_attention_mask, sliding_window_mask
class ModernBertPredictionHead(nn.Module):
def __init__(self, config: ModernBertConfig):
super().__init__()
self.config = config
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.classifier_bias)
self.act = ACT2FN[config.classifier_activation]
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps, bias=config.norm_bias)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return self.norm(self.act(self.dense(hidden_states)))
@add_start_docstrings(
"The ModernBert Model with a decoder head on top that is used for masked language modeling.",
MODERNBERT_START_DOCSTRING,
)
class ModernBertForMaskedLM(ModernBertPreTrainedModel):
_tied_weights_keys = ["decoder.weight"]
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.config = config
self.model = ModernBertModel(config)
self.head = ModernBertPredictionHead(config)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=config.decoder_bias)
self.sparse_prediction = self.config.sparse_prediction
self.sparse_pred_ignore_index = self.config.sparse_pred_ignore_index
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.decoder
def set_output_embeddings(self, new_embeddings: nn.Linear):
self.decoder = new_embeddings
@torch.compile(dynamic=True)
def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
return self.decoder(self.head(output))
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
if self.config._attn_implementation == "flash_attention_2":
if indices is None and cu_seqlens is None and max_seqlen is None:
if batch_size is None and seq_len is None:
if inputs_embeds is not None:
batch_size, seq_len = inputs_embeds.shape[:2]
else:
batch_size, seq_len = input_ids.shape[:2]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool)
if inputs_embeds is None:
with torch.no_grad():
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
inputs=input_ids, attention_mask=attention_mask, position_ids=position_ids, labels=labels
)
else:
inputs_embeds, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
inputs=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, labels=labels
)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
if self.sparse_prediction and labels is not None:
# flatten labels and output first
labels = labels.view(-1)
last_hidden_state = last_hidden_state.view(labels.shape[0], -1)
# then filter out the non-masked tokens
mask_tokens = labels != self.sparse_pred_ignore_index
last_hidden_state = last_hidden_state[mask_tokens]
labels = labels[mask_tokens]
logits = (
self.compiled_head(last_hidden_state)
if self.config.reference_compile
else self.decoder(self.head(last_hidden_state))
)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, vocab_size=self.config.vocab_size)
if self.config._attn_implementation == "flash_attention_2":
with nullcontext() if self.config.repad_logits_with_grad or labels is None else torch.no_grad():
logits = _pad_modernbert_output(inputs=logits, indices=indices, batch=batch_size, seqlen=seq_len)
if not return_dict:
output = (logits,)
return ((loss,) + output) if loss is not None else output
return MaskedLMOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"The ModernBert Model with a sequence classification head on top that performs pooling.",
MODERNBERT_START_DOCSTRING,
)
class ModernBertForSequenceClassification(ModernBertPreTrainedModel):
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.model = ModernBertModel(config)
self.head = ModernBertPredictionHead(config)
self.drop = torch.nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
if self.config.classifier_pooling == "cls":
last_hidden_state = last_hidden_state[:, 0]
elif self.config.classifier_pooling == "mean":
last_hidden_state = (last_hidden_state * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(
dim=1, keepdim=True
)
pooled_output = self.head(last_hidden_state)
pooled_output = self.drop(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,)
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"The ModernBert Model with a token classification head on top, e.g. for Named Entity Recognition (NER) tasks.",
MODERNBERT_START_DOCSTRING,
)
class ModernBertForTokenClassification(ModernBertPreTrainedModel):
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.model = ModernBertModel(config)
self.head = ModernBertPredictionHead(config)
self.drop = torch.nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.head(last_hidden_state)
last_hidden_state = self.drop(last_hidden_state)
logits = self.classifier(last_hidden_state)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The ModernBert Model with a span classification head on top for extractive question-answering tasks like SQuAD
(a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MODERNBERT_START_DOCSTRING,
)
class ModernBertForQuestionAnswering(ModernBertPreTrainedModel):
def __init__(self, config: ModernBertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.model = ModernBertModel(config)
self.head = ModernBertPredictionHead(config)
self.drop = torch.nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.post_init()
@add_start_docstrings_to_model_forward(MODERNBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
sliding_window_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
batch_size: Optional[int] = None,
seq_len: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self._maybe_set_compile()
outputs = self.model(
input_ids,
attention_mask=attention_mask,
sliding_window_mask=sliding_window_mask,
position_ids=position_ids,
indices=indices,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
batch_size=batch_size,
seq_len=seq_len,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.head(last_hidden_state)
last_hidden_state = self.drop(last_hidden_state)
logits = self.classifier(last_hidden_state)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"ModernBertConfig",
"ModernBertModel",
"ModernBertPreTrainedModel",
"ModernBertForMaskedLM",
"ModernBertForSequenceClassification",
"ModernBertForTokenClassification",
"ModernBertForQuestionAnswering",
]
```
|
=================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\moonshine\__init__.py
ENCODING: utf-8
```py
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_moonshine import *
from .modeling_moonshine import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
================================================================================================================================================
SOURCE CODE FILE: configuration_moonshine.py
LINES: 1
SIZE: 13.20 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\moonshine\configuration_moonshine.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/moonshine/modular_moonshine.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_moonshine.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class MoonshineConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MoonshineModel`]. It is used to instantiate a Moonshine
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Moonshine
[UsefulSensors/moonshine-tiny](https://huggingface.co/UsefulSensors/moonshine-tiny).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32768):
Vocabulary size of the Moonshine model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MoonshineModel`].
hidden_size (`int`, *optional*, defaults to 288):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 1152):
Dimension of the MLP representations.
encoder_num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
decoder_num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer decoder.
encoder_num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`encoder_num_key_value_heads=encoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
`encoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
decoder_num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`decoder_num_key_value_heads=decoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
`decoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`decoder_num_attention_heads`.
pad_head_dim_to_multiple_of (`int`, *optional*):
Pad head dimension in encoder and decoder to the next multiple of this value. Necessary for using certain
optimized attention implementations.
encoder_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder.
decoder_hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
decoder_start_token_id (`int`, *optional*, defaults to 1):
Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
are provided to the `generate` function. It is used to guide the model`s generation process depending on
the task.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
partial_rotary_factor (`float`, *optional*, defaults to 0.9):
Percentage of the query and keys which will have rotary embedding.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
bos_token_id (`int`, *optional*, defaults to 1):
Denotes beginning of sequences token id.
eos_token_id (`int`, *optional*, defaults to 2):
Denotes end of sequences token id.
Example:
```python
>>> from transformers import MoonshineModel, MoonshineConfig
>>> # Initializing a Moonshine style configuration
>>> configuration = MoonshineConfig().from_pretrained("UsefulSensors/moonshine-tiny")
>>> # Initializing a model from the configuration
>>> model = MoonshineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "moonshine"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_key_value_heads": "encoder_num_key_value_heads",
"num_attention_heads": "encoder_num_attention_heads",
"num_hidden_layers": "encoder_num_hidden_layers",
}
def __init__(
self,
vocab_size=32768,
hidden_size=288,
intermediate_size=1152,
encoder_num_hidden_layers=6,
decoder_num_hidden_layers=6,
encoder_num_attention_heads=8,
decoder_num_attention_heads=8,
encoder_num_key_value_heads=None,
decoder_num_key_value_heads=None,
pad_head_dim_to_multiple_of=None,
encoder_hidden_act="gelu",
decoder_hidden_act="silu",
max_position_embeddings=512,
initializer_range=0.02,
decoder_start_token_id=1,
use_cache=True,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.9,
is_encoder_decoder=True,
attention_bias=False,
attention_dropout=0.0,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.encoder_num_hidden_layers = encoder_num_hidden_layers
self.decoder_num_hidden_layers = decoder_num_hidden_layers
self.encoder_num_attention_heads = encoder_num_attention_heads
self.decoder_num_attention_heads = decoder_num_attention_heads
if encoder_num_key_value_heads is None:
encoder_num_key_value_heads = encoder_num_attention_heads
self.encoder_num_key_value_heads = encoder_num_key_value_heads
if decoder_num_key_value_heads is None:
decoder_num_key_value_heads = decoder_num_attention_heads
self.decoder_num_key_value_heads = decoder_num_key_value_heads
self.pad_head_dim_to_multiple_of = pad_head_dim_to_multiple_of
self.encoder_hidden_act = encoder_hidden_act
self.decoder_hidden_act = decoder_hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.is_encoder_decoder = is_encoder_decoder
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
rope_config_validation(self)
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
__all__ = ["MoonshineConfig"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: modeling_moonshine.py
LINES: 1
SIZE: 71.91 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\moonshine\modeling_moonshine.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/moonshine/modular_moonshine.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_moonshine.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Callable, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
AttentionMaskConverter,
_prepare_4d_attention_mask,
_prepare_4d_attention_mask_for_sdpa,
)
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from .configuration_moonshine import MoonshineConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MoonshineConfig"
class MoonshineEncoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class MoonshineDecoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size * 2)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states, gate = hidden_states.chunk(2, dim=-1)
hidden_states = self.activation_fn(gate) * hidden_states
hidden_states = self.fc2(hidden_states)
return hidden_states
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., 0::2]
x2 = x[..., 1::2]
return torch.stack((-x2, x1), dim=-1).flatten(-2)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Interleave them instead of usual shape
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
class MoonshineAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: MoonshineConfig,
layer_idx: int,
is_causal: bool,
num_attention_heads: int,
num_key_value_heads: int,
):
super().__init__()
config.update({"num_attention_heads": num_attention_heads, "num_key_value_heads": num_key_value_heads})
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = is_causal
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
# Pad head dimension to the next specified multiple.
if self.config.pad_head_dim_to_multiple_of is not None:
target_multiple = self.config.pad_head_dim_to_multiple_of
target_head_dim = target_multiple * ((self.head_dim + target_multiple - 1) // target_multiple)
self.head_dim_padding = target_head_dim - self.head_dim
else:
self.head_dim_padding = 0
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
key_value_states: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len = hidden_states.shape[:-1]
query_states = (
self.q_proj(hidden_states).view(bsz, q_len, self.config.num_key_value_heads, self.head_dim).transpose(1, 2)
)
is_cross_attention = key_value_states is not None
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
past_key_value.is_updated[self.layer_idx] = True
past_key_value = past_key_value.cross_attention_cache
else:
past_key_value = past_key_value.self_attention_cache
# use key_value_states if cross attention
current_states = key_value_states if key_value_states is not None else hidden_states
if is_cross_attention and past_key_value and is_updated:
key_states = past_key_value.key_cache[self.layer_idx]
value_states = past_key_value.value_cache[self.layer_idx]
else:
key_states = (
self.k_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
if is_cross_attention and past_key_value is not None:
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
if not is_cross_attention:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False
if self.head_dim_padding > 0:
query_states = torch.nn.functional.pad(query_states, (0, self.head_dim_padding))
key_states = torch.nn.functional.pad(key_states, (0, self.head_dim_padding))
value_states = torch.nn.functional.pad(value_states, (0, self.head_dim_padding))
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
is_causal=is_causal,
**kwargs,
)
if self.head_dim_padding > 0:
attn_output = attn_output[..., : -self.head_dim_padding]
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class MoonshineRotaryEmbedding(nn.Module):
def __init__(self, config: MoonshineConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class MoonshineEncoderLayer(nn.Module):
def __init__(self, config: MoonshineConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.encoder_num_attention_heads,
num_key_value_heads=config.encoder_num_key_value_heads,
)
self.mlp = MoonshineEncoderMLP(config, config.encoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class MoonshineDecoderLayer(nn.Module):
def __init__(self, config: MoonshineConfig, layer_idx: Optional[int] = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=True,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.encoder_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.mlp = MoonshineDecoderMLP(config, config.decoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.final_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
encoder_position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
encoder_position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
MOONSHINE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MoonshineConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Moonshine Model outputting raw hidden-states without any specific head on top.",
MOONSHINE_START_DOCSTRING,
)
class MoonshinePreTrainedModel(PreTrainedModel):
config_class = MoonshineConfig
base_model_prefix = "model"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_no_split_modules = ["MoonshineEncoderLayer", "MoonshineDecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
output_conv1_length = int((input_lengths - 127) / 64 + 1)
output_conv2_length = int((output_conv1_length - 7) / 3 + 1)
output_conv3_length = int((output_conv2_length - 3) / 2 + 1)
return output_conv3_length
class MoonshineEncoder(MoonshinePreTrainedModel):
"""
Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineEncoderLayer`]
Args:
config: MoonshineConfig
"""
main_input_name = "input_values"
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.conv1 = nn.Conv1d(1, embed_dim, kernel_size=127, stride=64, bias=False)
self.conv2 = nn.Conv1d(embed_dim, 2 * embed_dim, kernel_size=7, stride=3)
self.conv3 = nn.Conv1d(2 * embed_dim, embed_dim, kernel_size=3, stride=2)
self.groupnorm = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=1e-5)
self.rotary_emb = MoonshineRotaryEmbedding(config=config)
self.layers = nn.ModuleList(
[MoonshineEncoderLayer(config, idx) for idx in range(config.encoder_num_hidden_layers)]
)
self.layer_norm = nn.LayerNorm(embed_dim, bias=False)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.conv1
def set_input_embeddings(self, value: nn.Module):
self.conv1 = value
@can_return_tuple
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if input_values is None:
raise ValueError("You must specify input_values.")
# conv downsampling
input_values = input_values.unsqueeze(1)
hidden_states = nn.functional.tanh(self.conv1(input_values))
hidden_states = self.groupnorm(hidden_states)
hidden_states = nn.functional.gelu(self.conv2(hidden_states))
hidden_states = nn.functional.gelu(self.conv3(hidden_states))
hidden_states = hidden_states.permute(0, 2, 1)
# attention mask downsampling
if attention_mask is not None:
mask_len = self._get_feat_extract_output_lengths(attention_mask.shape[-1])
downsample_stride = 64 * 3 * 2 # conv strides
attention_mask = attention_mask[..., ::downsample_stride][..., :mask_len]
if self.config._attn_implementation == "flash_attention_2":
attention_mask = attention_mask if (attention_mask == 0.0).any() else None
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
elif self.config._attn_implementation == "sdpa" and not output_attentions:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, hidden_states.dtype)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
position_ids = torch.arange(0, hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# encoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
None,
output_attentions,
False,
None,
position_embeddings,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last encoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
MOONSHINE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Moonshine Model outputting raw hidden-states without any specific head on top.",
MOONSHINE_START_DOCSTRING,
)
class MoonshineDecoder(MoonshinePreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineDecoderLayer`]
Args:
config: MoonshineConfig
"""
main_input_name = "input_ids"
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[MoonshineDecoderLayer(config, idx) for idx in range(config.decoder_num_hidden_layers)]
)
self.norm = nn.LayerNorm(config.hidden_size, bias=False)
self.rotary_emb = MoonshineRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(MOONSHINE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Args:
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `encoder_hidden_states`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
self_attention_cache = DynamicCache()
cross_attention_cache = DynamicCache()
past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# attention mask downsampling
if encoder_attention_mask is not None:
mask_len = encoder_hidden_states.shape[-2]
downsample_stride = 64 * 3 * 2 # conv strides
encoder_attention_mask = encoder_attention_mask[..., ::downsample_stride][..., :mask_len]
if self.config._attn_implementation == "flash_attention_2":
encoder_attention_mask = encoder_attention_mask if (encoder_attention_mask == 0.0).any() else None
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
elif self.config._attn_implementation == "sdpa" and not output_attentions:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask, hidden_states.dtype, hidden_states.shape[-2]
)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, hidden_states.dtype, hidden_states.shape[-2]
)
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
encoder_hidden_states,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.detach().sum(-1).tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
MOONSHINE_MODEL_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
decoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids`
of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `decoder_position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Moonshine Model outputting raw hidden-states without any specific head on top.",
MOONSHINE_START_DOCSTRING,
)
class MoonshineModel(MoonshinePreTrainedModel):
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.encoder = MoonshineEncoder(config)
self.decoder = MoonshineDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_encoder(self):
"""
Calling this function will disable the gradient computation for the Moonshine encoder so that its parameters will
not be updated during training.
"""
self.encoder._freeze_parameters()
def _mask_input_features(
self,
input_features: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return input_features
# generate indices & apply SpecAugment along time axis
batch_size, hidden_size, sequence_length = input_features.size()
if self.config.mask_time_prob > 0 and self.training:
# generate indices & apply SpecAugment along time axis
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool)
mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1)
input_features[mask_time_indices] = 0
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool)
input_features[mask_feature_indices] = 0
return input_features
@can_return_tuple
@add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Seq2SeqModelOutput:
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, MoonshineModel
>>> from datasets import load_dataset
>>> model = MoonshineModel.from_pretrained("UsefulSensors/moonshine-tiny")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_values, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 288]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if encoder_outputs is None:
encoder_outputs: BaseModelOutput = self.encoder(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs: BaseModelOutputWithPastAndCrossAttentions = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_attention_mask=attention_mask,
encoder_hidden_states=encoder_outputs.last_hidden_state,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
)
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
@add_start_docstrings(
"The Moonshine Model with a language modeling head. Can be used for automatic speech recognition.",
MOONSHINE_START_DOCSTRING,
)
class MoonshineForConditionalGeneration(MoonshinePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["proj_out.weight"]
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.model = MoonshineModel(config)
self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.proj_out
def set_output_embeddings(self, new_embeddings):
self.proj_out = new_embeddings
def get_input_embeddings(self) -> nn.Module:
return self.model.get_input_embeddings()
@can_return_tuple
@add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
) -> Seq2SeqLMOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoProcessor, MoonshineForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> generated_ids = model.generate(input_values, max_new_tokens=100)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
'Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs: Seq2SeqModelOutput = self.model(
input_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
decoder_position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
)
logits = self.proj_out(outputs.last_hidden_state)
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
return Seq2SeqLMOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
__all__ = ["MoonshineModel", "MoonshinePreTrainedModel", "MoonshineForConditionalGeneration"]
```
|
==========================================================================================================================================
SOURCE CODE FILE: modular_moonshine.py
LINES: 1
SIZE: 55.68 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\moonshine\modular_moonshine.py
ENCODING: utf-8
```py
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...configuration_utils import PretrainedConfig
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
_prepare_4d_attention_mask,
_prepare_4d_attention_mask_for_sdpa,
)
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_rope_utils import rope_config_validation
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
from ..glm.modeling_glm import GlmAttention, GlmRotaryEmbedding, apply_rotary_pos_emb
from ..llama.modeling_llama import LlamaDecoderLayer, LlamaModel, eager_attention_forward
from ..whisper.modeling_whisper import WhisperModel, shift_tokens_right
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "UsefulSensors/moonshine-tiny"
_CONFIG_FOR_DOC = "MoonshineConfig"
class MoonshineConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MoonshineModel`]. It is used to instantiate a Moonshine
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Moonshine
[UsefulSensors/moonshine-tiny](https://huggingface.co/UsefulSensors/moonshine-tiny).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32768):
Vocabulary size of the Moonshine model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MoonshineModel`].
hidden_size (`int`, *optional*, defaults to 288):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 1152):
Dimension of the MLP representations.
encoder_num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
decoder_num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer decoder.
encoder_num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`encoder_num_key_value_heads=encoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
`encoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
decoder_num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`decoder_num_key_value_heads=decoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
`decoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`decoder_num_attention_heads`.
pad_head_dim_to_multiple_of (`int`, *optional*):
Pad head dimension in encoder and decoder to the next multiple of this value. Necessary for using certain
optimized attention implementations.
encoder_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder.
decoder_hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
decoder_start_token_id (`int`, *optional*, defaults to 1):
Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
are provided to the `generate` function. It is used to guide the model`s generation process depending on
the task.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
partial_rotary_factor (`float`, *optional*, defaults to 0.9):
Percentage of the query and keys which will have rotary embedding.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
bos_token_id (`int`, *optional*, defaults to 1):
Denotes beginning of sequences token id.
eos_token_id (`int`, *optional*, defaults to 2):
Denotes end of sequences token id.
Example:
```python
>>> from transformers import MoonshineModel, MoonshineConfig
>>> # Initializing a Moonshine style configuration
>>> configuration = MoonshineConfig().from_pretrained("UsefulSensors/moonshine-tiny")
>>> # Initializing a model from the configuration
>>> model = MoonshineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "moonshine"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_key_value_heads": "encoder_num_key_value_heads",
"num_attention_heads": "encoder_num_attention_heads",
"num_hidden_layers": "encoder_num_hidden_layers",
}
def __init__(
self,
vocab_size=32768,
hidden_size=288,
intermediate_size=1152,
encoder_num_hidden_layers=6,
decoder_num_hidden_layers=6,
encoder_num_attention_heads=8,
decoder_num_attention_heads=8,
encoder_num_key_value_heads=None,
decoder_num_key_value_heads=None,
pad_head_dim_to_multiple_of=None,
encoder_hidden_act="gelu",
decoder_hidden_act="silu",
max_position_embeddings=512,
initializer_range=0.02,
decoder_start_token_id=1,
use_cache=True,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.9,
is_encoder_decoder=True,
attention_bias=False,
attention_dropout=0.0,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.encoder_num_hidden_layers = encoder_num_hidden_layers
self.decoder_num_hidden_layers = decoder_num_hidden_layers
self.encoder_num_attention_heads = encoder_num_attention_heads
self.decoder_num_attention_heads = decoder_num_attention_heads
if encoder_num_key_value_heads is None:
encoder_num_key_value_heads = encoder_num_attention_heads
self.encoder_num_key_value_heads = encoder_num_key_value_heads
if decoder_num_key_value_heads is None:
decoder_num_key_value_heads = decoder_num_attention_heads
self.decoder_num_key_value_heads = decoder_num_key_value_heads
self.pad_head_dim_to_multiple_of = pad_head_dim_to_multiple_of
self.encoder_hidden_act = encoder_hidden_act
self.decoder_hidden_act = decoder_hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.is_encoder_decoder = is_encoder_decoder
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
rope_config_validation(self)
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
class MoonshineEncoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class MoonshineDecoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size * 2)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states, gate = hidden_states.chunk(2, dim=-1)
hidden_states = self.activation_fn(gate) * hidden_states
hidden_states = self.fc2(hidden_states)
return hidden_states
class MoonshineAttention(GlmAttention):
def __init__(
self,
config: MoonshineConfig,
layer_idx: int,
is_causal: bool,
num_attention_heads: int,
num_key_value_heads: int,
):
config.update({"num_attention_heads": num_attention_heads, "num_key_value_heads": num_key_value_heads})
super().__init__(config, layer_idx)
self.is_causal = is_causal
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
# Pad head dimension to the next specified multiple.
if self.config.pad_head_dim_to_multiple_of is not None:
target_multiple = self.config.pad_head_dim_to_multiple_of
target_head_dim = target_multiple * ((self.head_dim + target_multiple - 1) // target_multiple)
self.head_dim_padding = target_head_dim - self.head_dim
else:
self.head_dim_padding = 0
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
key_value_states: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len = hidden_states.shape[:-1]
query_states = (
self.q_proj(hidden_states).view(bsz, q_len, self.config.num_key_value_heads, self.head_dim).transpose(1, 2)
)
is_cross_attention = key_value_states is not None
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
past_key_value.is_updated[self.layer_idx] = True
past_key_value = past_key_value.cross_attention_cache
else:
past_key_value = past_key_value.self_attention_cache
# use key_value_states if cross attention
current_states = key_value_states if key_value_states is not None else hidden_states
if is_cross_attention and past_key_value and is_updated:
key_states = past_key_value.key_cache[self.layer_idx]
value_states = past_key_value.value_cache[self.layer_idx]
else:
key_states = (
self.k_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
if is_cross_attention and past_key_value is not None:
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
if not is_cross_attention:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False
if self.head_dim_padding > 0:
query_states = torch.nn.functional.pad(query_states, (0, self.head_dim_padding))
key_states = torch.nn.functional.pad(key_states, (0, self.head_dim_padding))
value_states = torch.nn.functional.pad(value_states, (0, self.head_dim_padding))
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
is_causal=is_causal,
**kwargs,
)
if self.head_dim_padding > 0:
attn_output = attn_output[..., : -self.head_dim_padding]
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class MoonshineRotaryEmbedding(GlmRotaryEmbedding):
pass
class MoonshineEncoderLayer(LlamaDecoderLayer):
def __init__(self, config: MoonshineConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.encoder_num_attention_heads,
num_key_value_heads=config.encoder_num_key_value_heads,
)
self.mlp = MoonshineEncoderMLP(config, config.encoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
class MoonshineDecoderLayer(nn.Module):
def __init__(self, config: MoonshineConfig, layer_idx: Optional[int] = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=True,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.encoder_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.mlp = MoonshineDecoderMLP(config, config.decoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.final_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
encoder_position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
encoder_position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
MOONSHINE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MoonshineConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Moonshine Model outputting raw hidden-states without any specific head on top.",
MOONSHINE_START_DOCSTRING,
)
class MoonshinePreTrainedModel(PreTrainedModel):
config_class = MoonshineConfig
base_model_prefix = "model"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_no_split_modules = ["MoonshineEncoderLayer", "MoonshineDecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
output_conv1_length = int((input_lengths - 127) / 64 + 1)
output_conv2_length = int((output_conv1_length - 7) / 3 + 1)
output_conv3_length = int((output_conv2_length - 3) / 2 + 1)
return output_conv3_length
class MoonshineEncoder(MoonshinePreTrainedModel):
"""
Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineEncoderLayer`]
Args:
config: MoonshineConfig
"""
main_input_name = "input_values"
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.conv1 = nn.Conv1d(1, embed_dim, kernel_size=127, stride=64, bias=False)
self.conv2 = nn.Conv1d(embed_dim, 2 * embed_dim, kernel_size=7, stride=3)
self.conv3 = nn.Conv1d(2 * embed_dim, embed_dim, kernel_size=3, stride=2)
self.groupnorm = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=1e-5)
self.rotary_emb = MoonshineRotaryEmbedding(config=config)
self.layers = nn.ModuleList(
[MoonshineEncoderLayer(config, idx) for idx in range(config.encoder_num_hidden_layers)]
)
self.layer_norm = nn.LayerNorm(embed_dim, bias=False)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.conv1
def set_input_embeddings(self, value: nn.Module):
self.conv1 = value
@can_return_tuple
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if input_values is None:
raise ValueError("You must specify input_values.")
# conv downsampling
input_values = input_values.unsqueeze(1)
hidden_states = nn.functional.tanh(self.conv1(input_values))
hidden_states = self.groupnorm(hidden_states)
hidden_states = nn.functional.gelu(self.conv2(hidden_states))
hidden_states = nn.functional.gelu(self.conv3(hidden_states))
hidden_states = hidden_states.permute(0, 2, 1)
# attention mask downsampling
if attention_mask is not None:
mask_len = self._get_feat_extract_output_lengths(attention_mask.shape[-1])
downsample_stride = 64 * 3 * 2 # conv strides
attention_mask = attention_mask[..., ::downsample_stride][..., :mask_len]
if self.config._attn_implementation == "flash_attention_2":
attention_mask = attention_mask if (attention_mask == 0.0).any() else None
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
elif self.config._attn_implementation == "sdpa" and not output_attentions:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, hidden_states.dtype)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
position_ids = torch.arange(0, hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# encoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
None,
output_attentions,
False,
None,
position_embeddings,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last encoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class MoonshineDecoder(LlamaModel):
main_input_name = "input_ids"
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.norm = nn.LayerNorm(config.hidden_size, bias=False)
self.layers = nn.ModuleList(
[MoonshineDecoderLayer(config, idx) for idx in range(config.decoder_num_hidden_layers)]
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Args:
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `encoder_hidden_states`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
self_attention_cache = DynamicCache()
cross_attention_cache = DynamicCache()
past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# attention mask downsampling
if encoder_attention_mask is not None:
mask_len = encoder_hidden_states.shape[-2]
downsample_stride = 64 * 3 * 2 # conv strides
encoder_attention_mask = encoder_attention_mask[..., ::downsample_stride][..., :mask_len]
if self.config._attn_implementation == "flash_attention_2":
encoder_attention_mask = encoder_attention_mask if (encoder_attention_mask == 0.0).any() else None
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
elif self.config._attn_implementation == "sdpa" and not output_attentions:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask, hidden_states.dtype, hidden_states.shape[-2]
)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, hidden_states.dtype, hidden_states.shape[-2]
)
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
encoder_hidden_states,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
MOONSHINE_MODEL_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
decoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids`
of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `decoder_position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Moonshine Model outputting raw hidden-states without any specific head on top.",
MOONSHINE_START_DOCSTRING,
)
class MoonshineModel(WhisperModel):
@can_return_tuple
@add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Seq2SeqModelOutput:
r"""
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, MoonshineModel
>>> from datasets import load_dataset
>>> model = MoonshineModel.from_pretrained("UsefulSensors/moonshine-tiny")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_values, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 288]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if encoder_outputs is None:
encoder_outputs: BaseModelOutput = self.encoder(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs: BaseModelOutputWithPastAndCrossAttentions = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_attention_mask=attention_mask,
encoder_hidden_states=encoder_outputs.last_hidden_state,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
)
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The Moonshine Model with a language modeling head. Can be used for automatic speech recognition.",
MOONSHINE_START_DOCSTRING,
)
class MoonshineForConditionalGeneration(MoonshinePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["proj_out.weight"]
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.model = MoonshineModel(config)
self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.proj_out
def set_output_embeddings(self, new_embeddings):
self.proj_out = new_embeddings
def get_input_embeddings(self) -> nn.Module:
return self.model.get_input_embeddings()
@can_return_tuple
@add_start_docstrings_to_model_forward(MOONSHINE_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
) -> Seq2SeqLMOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoProcessor, MoonshineForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> generated_ids = model.generate(input_values, max_new_tokens=100)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
'Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs: Seq2SeqModelOutput = self.model(
input_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
decoder_position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
)
logits = self.proj_out(outputs.last_hidden_state)
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
return Seq2SeqLMOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
__all__ = [
"MoonshineConfig",
"MoonshineModel",
"MoonshinePreTrainedModel",
"MoonshineForConditionalGeneration",
]
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\moshi\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_moshi import *
from .modeling_moshi import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================
SOURCE CODE FILE: configuration_moshi.py
LINES: 1
SIZE: 15.67 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\moshi\configuration_moshi.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Moshi model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
logger = logging.get_logger(__name__)
class MoshiDepthConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MoshiDepthDecoder`]. It is used to instantiate a
Moshi depth decoder model according to the specified arguments, defining the Moshi depth decoder config.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the MoshiDepthDecoder model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`MoshiDepthDecoder`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer of the depth decoder.
input_size (`int`, *optional*, defaults to 4096):
Dimensionality of the input hidden states. Used to connect the main decoder to the depth decoder.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of depth decoder layers.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the depth decoder block.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`.
audio_vocab_size (`int`, *optional*, defaults to 2048):
Vocabulary size of the audio part of model. Defines the number of different tokens that can be
represented by the `audio_codes` passed when calling the Moshi models.
max_position_embeddings (`int`, *optional*, defaults to 9):
The maximum sequence length that this model might ever be used with. Typically, set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the depth decoder.
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
The attention head dimension.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
sliding_window (`int`, *optional*, defaults to 8):
Sliding window attention window size. If not specified, will default to `8`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
ffn_dim (`int`, *optional*, defaults to 5632):
Dimensionality of the "intermediate" (often named feed-forward) layer in the depth decoder block. Must be even.
rms_norm_eps (`float`, *optional*, defaults to 1e-08):
The epsilon used by the rms normalization layers.
num_codebooks (`int`, *optional*, defaults to 8):
The number of audio codebooks for each audio channels.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
kwargs (*optional*):
Dictionary of keyword arguments. Notably:
- **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the audio encoder config.
Example:
```python
>>> from transformers import (
... MoshiDepthConfig,
... MoshiDepthDecoder,
... )
>>> configuration = MoshiDepthConfig()
>>> # Initializing a MoshiDepthDecoder (with random weights) from the kmhf/hf-moshiko style configuration
>>> model = MoshiDepthDecoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "moshi_depth"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=1024,
input_size=4096,
num_hidden_layers=6,
num_attention_heads=16,
num_key_value_heads=None,
audio_vocab_size=2048,
max_position_embeddings=9,
hidden_act="silu",
head_dim=None,
initializer_range=0.02,
use_cache=True,
sliding_window=8,
attention_dropout=0.0,
ffn_dim=5632,
rms_norm_eps=1e-8,
num_codebooks=8,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.input_size = input_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.hidden_act = hidden_act
self.head_dim = head_dim or hidden_size // num_attention_heads
self.initializer_range = initializer_range
self.use_cache = use_cache
self.sliding_window = sliding_window
self.attention_dropout = attention_dropout
if ffn_dim % 2 == 1:
raise ValueError(f"`ffn_dim={ffn_dim}` must be even.")
self.ffn_dim = ffn_dim
self.rms_norm_eps = rms_norm_eps
self.num_codebooks = num_codebooks
self.audio_vocab_size = audio_vocab_size
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class MoshiConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MoshiModel`]. It is used to instantiate a
Moshi model according to the specified arguments, defining the audio encoder, Moshi depth decoder and Moshi decoder
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Moshiko model,
e.g. [kmhf/hf-moshiko](https://huggingface.co/kmhf/hf-moshiko)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the MoshiDecoder model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`MoshiDecoder`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the layers and the pooler layer of the main decoder.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of decoder layers.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the main decoder block.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`.
audio_vocab_size (`int`, *optional*):
Vocabulary size of the audio part of model. Defines the number of different tokens that can be
represented by the `audio_codes` passed when calling the Moshi models.
max_position_embeddings (`int`, *optional*, defaults to 3000):
The maximum sequence length that this model might ever be used with. Typically, set this to something large
just in case (e.g., 512 or 1024 or 2048).
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
The attention head dimension.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
sliding_window (`int`, *optional*, defaults to 3000):
Sliding window attention window size. If not specified, will default to `3000`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
ffn_dim (`int`, *optional*, defaults to 22528):
Dimensionality of the "intermediate" (often named feed-forward) layer in the main decoder block. Must be even.
rms_norm_eps (`float`, *optional*, defaults to 1e-08):
The epsilon used by the rms normalization layers.
num_codebooks (`int`, *optional*, defaults to 8):
The number of audio codebooks for each audio channels.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
kwargs (*optional*):
Dictionary of keyword arguments. Notably:
- **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the audio encoder config.
- **depth__config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the depth decoder config.
Example:
```python
>>> from transformers import (
... MoshiConfig,
... MoshiForConditionalGeneration,
... )
>>> configuration = MoshiConfig()
>>> # Initializing a MoshiForConditionalGeneration (with random weights) from the kmhf/hf-moshiko style configuration
>>> model = MoshiForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # Saving the model, including its configuration
>>> model.save_pretrained("kmhf/hf-moshiko")
>>> # loading model and config from pretrained folder
>>> moshi_config = MoshiConfig.from_pretrained("kmhf/hf-moshiko")
>>> model = MoshiForConditionalGeneration.from_pretrained("kmhf/hf-moshiko", config=moshi_config)
```"""
model_type = "moshi"
keys_to_ignore_at_inference = ["past_key_values"]
sub_configs = {"audio_encoder_config": AutoConfig}
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
audio_vocab_size=None,
max_position_embeddings=3000,
rope_theta=10000.0,
hidden_act="silu",
head_dim=None,
initializer_range=0.02,
use_cache=True,
sliding_window=3000,
attention_dropout=0.0,
ffn_dim=22528,
rms_norm_eps=1e-8,
num_codebooks=8,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.rope_theta = rope_theta
self.hidden_act = hidden_act
self.head_dim = head_dim or hidden_size // num_attention_heads
self.initializer_range = initializer_range
self.use_cache = use_cache
self.sliding_window = sliding_window
self.attention_dropout = attention_dropout
if ffn_dim % 2 == 1:
raise ValueError(f"`ffn_dim={ffn_dim}` must be even.")
self.ffn_dim = ffn_dim
self.rms_norm_eps = rms_norm_eps
self.num_codebooks = num_codebooks
audio_encoder_config = kwargs.pop("audio_encoder_config", {})
audio_encoder_model_type = audio_encoder_config.pop("model_type", "mimi")
self.audio_encoder_config = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
if self.num_codebooks > self.audio_encoder_config.num_codebooks:
raise ValueError(
f"`num_codebooks={num_codebooks}` is greater than the maximum number of codebooks that the audio encoder can deal with ({self.audio_encoder_config.num_codebooks}). Please lower it."
)
self.audio_vocab_size = (
self.audio_encoder_config.codebook_size if audio_vocab_size is None else audio_vocab_size
)
depth_decoder_config = kwargs.pop("depth_decoder_config", {})
depth_decoder_config.update(
{
"audio_vocab_size": self.audio_vocab_size,
"input_size": hidden_size,
"vocab_size": vocab_size,
"num_codebooks": num_codebooks,
}
)
self.depth_decoder_config = MoshiDepthConfig(**depth_decoder_config)
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
@property
def sampling_rate(self):
return self.audio_encoder_config.sampling_rate
@classmethod
def from_audio_encoder_config(
cls,
audio_encoder_config: PretrainedConfig,
**kwargs,
):
r"""
Instantiate a [`MoshiConfig`] (or a derived class) from an audio encoder configuration.
Returns:
[`MoshiConfig`]: An instance of a configuration object
"""
return cls(
audio_encoder_config=audio_encoder_config.to_dict(),
**kwargs,
)
__all__ = ["MoshiConfig", "MoshiDepthConfig"]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_moshi.py
LINES: 1
SIZE: 136.94 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\moshi\modeling_moshi.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Kyutai and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Moshi model."""
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
from ...generation import (
GenerationConfig,
GenerationMixin,
)
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
ModelOutput,
Seq2SeqLMOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ..auto.modeling_auto import AutoModel
from .configuration_moshi import MoshiConfig, MoshiDepthConfig
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MoshiConfig"
_CHECKPOINT_FOR_DOC = "kmhf/hf-moshiko"
@dataclass
class MoshiConditionalGenerationGenerateOutput(ModelOutput):
"""
Outputs of [`MoshiForConditionalConditionalGeneration.generate`].
Args:
audio_sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, 1, sequence_length)`, *optional*):
The generated audio waveforms.
sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated text sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`):
Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True`):
Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
`(batch_size*num_return_sequences, sequence_length)`.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`):
Returns the model cache, used to speed up decoding. Different models have a different cache format, check
the model's documentation. Usually, a [`~cache_utils.Cache`] instance.
audio_codes (`torch.LongTensor` of shape `(batch_size*num_return_sequences, num_codeooks, sequence_length)`, *optional*):
The generated audio codes. Returned if `return_audio_codes=True`. Intermediate audio "tokens" which transforms to `audio_sequences` once passed through the audio decoder.
"""
audio_sequences: Optional[torch.Tensor] = None
sequences: Optional[torch.LongTensor] = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
beam_indices: Optional[torch.LongTensor] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
audio_codes: Optional[torch.LongTensor] = None
@dataclass
class MoshiCausalLMOutputWithPast(ModelOutput):
"""
`MoshiForCausalLM` outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class MoshiConditionalGenerationOutputWithPast(ModelOutput):
"""
`MoshiForConditionalGeneration` outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `text_labels` is provided):
Text language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the text language modeling head (scores for each vocabulary token before SoftMax).
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
depth_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `audio_labels` is provided):
Audio language modeling loss (for next-token prediction).
audio_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the audio language modeling heads.
depth_past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Past key-values of the depth decoder.
depth_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Hidden states of the depth decoder
depth_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Depth decoder's Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
depth_loss: Optional[torch.FloatTensor] = None
audio_logits: Optional[torch.FloatTensor] = None
depth_past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
depth_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
depth_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class MoshiUnconditionalInput(ModelOutput):
"""
Args:
input_ids (`torch.Tensor `of shape `(batch_size, sequence_length), *optional*):
The sequence used as a text prompt for the generation.
user_audio_codes (`torch.Tensor `of shape `(batch_size, num_codebooks, sequence_length), *optional*):
The audio codes used as audio user prompt for the generation. Has priority over `user_input_values` and represents the audio "tokens" of `user_input_values` once passed through the audio encoder.
moshi_audio_codes (`torch.Tensor `of shape `(batch_size, num_codebooks, sequence_length), *optional*):
The audio codes used as audio Moshi prompt for the generation. Has priority over `moshi_input_values` and represents the audio "tokens" of `moshi_input_values` once passed through the audio encoder.
attention_mask (`torch.LongTensor`) of shape `(batch_size, sequence_length)`, *optional*):
Attention mask to avoid performing attention on padding token indices. Mask values selected in `[0,
1]`: 1 for tokens that are **not masked**, 0 for tokens that are **masked**.
"""
input_ids: Optional[torch.LongTensor] = None
user_audio_codes: Optional[torch.Tensor] = None
moshi_audio_codes: Optional[torch.Tensor] = None
attention_mask: Optional[torch.LongTensor] = None
# Copied from transformers.models.gemma.modeling_gemma.GemmaRMSNorm with Gemma->Moshi
class MoshiRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim)) # Ignore copy
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
# Ignore copy
def forward(self, x):
output = self._norm(x.float())
output = output * self.weight.float()
return output.type_as(x)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
ALL_LAYERNORM_LAYERS.append(MoshiRMSNorm)
class MoshiFlexibleLinear(nn.Module):
def __init__(self, input_size, output_size, num_layers):
super().__init__()
# Stack the weights for N layers into a single tensor (num_layers, output_size, input_size)
self.weight = nn.Parameter(torch.randn(num_layers, output_size, input_size))
def forward(self, x, layer_idx=None):
"""
`MoshiFlexibleLinear` creates one linear layer per codebook. There's multiple ways to use it.
In the default case, `sequence_length=num_layers`, so each element of the sequence will be matmul to the weights corresponding to its index on the sequence.
For more advanced cases, one can specify which codebook's layer(s) to use with `layer_idx`.
If `layer_idx` indicates a single integer, all of the element of the sequence will be matmul to this single codebook's layer.
But if `layer_idx` is a tensor of shape `(seq_length,)`, it will matmul each i-th element of the input sequence to the corresponding layer `weight[i]`.
Args:
x (`torch.FloatTensor): input to the layer of shape `(batch, num_layers, embed_dim)` or of shape `(batch, seq_length, embed_dim)`
layer_idx (`torch.Tensor`, *optional*):
Can be used to specify which codebook's layers(s) to use.
If it's a tensor of shape `(seq_length,)`, will matmul each element of the sequence to the corresponding weights.
But if `layer_idx` is a tensor of shape `(seq_length,)`, it will matmul each i-th element of the input sequence to the corresponding layer `weight[i]`.
"""
# Use torch.gather to select the corresponding weights for each sample
# (codebooks, output_size, hidden_size)
selected_weights = torch.index_select(self.weight, 0, layer_idx) if layer_idx is not None else self.weight
# (1, codebooks, hidden_size, output_size)
selected_weights = selected_weights.transpose(1, 2)[None, :, :, :]
# (batch_size, codebooks, 1, hidden_size) x (1, codebooks, hidden_size, output_size)
# -> (batch_size, codebooks, 1, output_size)
x = torch.matmul(x[:, :, None, :], selected_weights)
# (batch_size, codebooks, output_size)
return x.squeeze(2)
class MoshiLinear(nn.Module):
def __init__(self, input_dim, output_dim, num_codebooks, use_flexible_linear=False):
super().__init__()
self.use_flexible_linear = use_flexible_linear
if not use_flexible_linear:
self.linear = nn.Linear(input_dim, output_dim, bias=False)
else:
self.linear = MoshiFlexibleLinear(input_dim, output_dim, num_layers=num_codebooks)
def forward(self, x, layer_idx=None):
if self.use_flexible_linear:
return self.linear(x, layer_idx)
else:
return self.linear(x)
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Moshi
class MoshiRotaryEmbedding(nn.Module):
def __init__(self, config: MoshiConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class MoshiGatingMLP(nn.Module):
def __init__(self, config, use_flexible_linear=False):
super().__init__()
self.activation_fn = ACT2FN[config.hidden_act]
ffn_dim = config.ffn_dim
hidden_size = config.hidden_size
num_layers = config.num_codebooks if use_flexible_linear else 1
if num_layers == 1:
self.fc1 = nn.Linear(hidden_size, ffn_dim, bias=False)
self.fc2 = nn.Linear(ffn_dim // 2, hidden_size, bias=False)
else:
self.fc1 = MoshiFlexibleLinear(hidden_size, ffn_dim, num_layers)
self.fc2 = MoshiFlexibleLinear(ffn_dim // 2, hidden_size, num_layers)
def forward(self, hidden_states: torch.Tensor, layer_idx: Optional[int] = None) -> torch.Tensor:
hidden_states = self.fc1(hidden_states) if layer_idx is None else self.fc1(hidden_states, layer_idx)
batch_size, sequence_length, _ = hidden_states.shape
hidden_states = hidden_states.view(batch_size, sequence_length, 2, -1)
hidden_states = self.activation_fn(hidden_states[..., 0, :]) * hidden_states[..., 1, :]
hidden_states = self.fc2(hidden_states) if layer_idx is None else self.fc2(hidden_states, layer_idx)
return hidden_states
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class MoshiAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: MoshiConfig, layer_idx: Optional[int] = None, use_flexible_linear=False, use_rope=True):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.is_causal = True
self.scaling = 1 / math.sqrt(self.head_dim)
if self.hidden_size % self.num_heads != 0:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = MoshiLinear(
self.hidden_size, self.num_heads * self.head_dim, config.num_codebooks, use_flexible_linear
)
self.k_proj = MoshiLinear(
self.hidden_size, self.num_key_value_heads * self.head_dim, config.num_codebooks, use_flexible_linear
)
self.v_proj = MoshiLinear(
self.hidden_size, self.num_key_value_heads * self.head_dim, config.num_codebooks, use_flexible_linear
)
self.o_proj = MoshiLinear(
self.num_heads * self.head_dim, self.hidden_size, config.num_codebooks, use_flexible_linear
)
# rotary embeddings are not used in the depth decoder
self.rotary_emb = None
if use_rope:
self.rope_theta = config.rope_theta
self.rotary_emb = MoshiRotaryEmbedding(config)
# copied from transformers.models.gemma.modeling_gemma.GemmaAttention.forward
# no longer copied after attention refactors
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states, cache_position) # Ignore copy
key_states = self.k_proj(hidden_states, cache_position) # Ignore copy
value_states = self.v_proj(hidden_states, cache_position) # Ignore copy
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if self.rotary_emb is not None: # Ignore copy
cos, sin = self.rotary_emb(value_states, position_ids) # Ignore copy
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) # Ignore copy
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = (
{"sin": sin, "cos": cos, "cache_position": cache_position}
if self.rotary_emb is not None
else {"cache_position": cache_position}
) # Ignore copy
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output, cache_position) # Ignore copy
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# NO LONGER EXIST Copied from transformers.models.gemma.modeling_gemma.GemmaFlashAttention2 with Gemma->Moshi
# TODO cyril: modular
class MoshiFlashAttention2(MoshiAttention):
"""
Moshi flash attention module. This module inherits from `MoshiAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states, cache_position) # Ignore copy
key_states = self.k_proj(hidden_states, cache_position) # Ignore copy
value_states = self.v_proj(hidden_states, cache_position) # Ignore copy
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if self.rotary_emb is not None: # Ignore copy
cos, sin = self.rotary_emb(value_states, position_ids) # Ignore copy
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) # Ignore copy
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = (
{"sin": sin, "cos": cos, "cache_position": cache_position}
if self.rotary_emb is not None
else {"cache_position": cache_position}
) # Ignore copy
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (MoshiRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output, cache_position) # Ignore copy
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# NO LONGER EXIST Copied from transformers.models.gemma.modeling_gemma.GemmaSdpaAttention with Gemma->Moshi
# TODO cyril: modular
class MoshiSdpaAttention(MoshiAttention):
"""
Moshi attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`MoshiAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from MoshiAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"MoshiModel is using MoshiSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states, cache_position) # Ignore copy
key_states = self.k_proj(hidden_states, cache_position) # Ignore copy
value_states = self.v_proj(hidden_states, cache_position) # Ignore copy
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if self.rotary_emb is not None: # Ignore copy
cos, sin = self.rotary_emb(value_states, position_ids) # Ignore copy
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) # Ignore copy
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = (
{"sin": sin, "cos": cos, "cache_position": cache_position}
if self.rotary_emb is not None
else {"cache_position": cache_position}
) # Ignore copy
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output, cache_position) # Ignore copy
return attn_output, None, past_key_value
MOSHI_ATTENTION_CLASSES = {
"eager": MoshiAttention,
"flash_attention_2": MoshiFlashAttention2,
"sdpa": MoshiSdpaAttention,
}
class MoshiDecoderLayer(nn.Module):
def __init__(self, config: MoshiConfig, layer_idx: int, use_flexible_linear: bool, use_rope=True):
super().__init__()
self.hidden_size = config.hidden_size
self.use_flexible_linear = use_flexible_linear
self.self_attn = MOSHI_ATTENTION_CLASSES[config._attn_implementation](
config=config, layer_idx=layer_idx, use_flexible_linear=use_flexible_linear, use_rope=use_rope
)
self.mlp = MoshiGatingMLP(config, use_flexible_linear)
self.input_layernorm = MoshiRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MoshiRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.sliding_window = config.sliding_window
self._attn_implementation = config._attn_implementation
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = (
self.mlp(hidden_states) if not self.use_flexible_linear else self.mlp(hidden_states, cache_position)
)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class MoshiPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MoshiConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MoshiDecoderLayer", "MimiTransformerLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
main_input_name = "input_ids"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
MOSHI_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MoshiConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MOSHI_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence text tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
user_input_values (`torch.Tensor `of shape `(batch_size, 1, audio_sequence_length), *optional*):
The audio waveforms used as audio user prompt for the generation.
user_audio_codes (`torch.Tensor `of shape `(batch_size, num_codebooks, sequence_length), *optional*):
The audio codes used as audio user prompt for the generation. Has priority over `user_input_values` and represents the audio "tokens" of `user_input_values` once passed through the audio encoder.
moshi_input_values (`torch.Tensor `of shape `(batch_size, 1, audio_sequence_length), *optional*):
The audio waveforms used as audio Moshi prompt for the generation.
moshi_audio_codes (`torch.Tensor `of shape `(batch_size, num_codebooks, sequence_length), *optional*):
The audio codes used as audio Moshi prompt for the generation. Has priority over `moshi_input_values` and represents the audio "tokens" of `moshi_input_values` once passed through the audio encoder.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `input_ids` and `inputs_embeds` are both unset, `inputs_embeds` takes the value
of `inputs_embeds`.
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
text_labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for text language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
audio_labels (`torch.LongTensor` of shape `(batch_size, num_codebooks, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.audio_vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
MOSHI_DECODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
class MoshiDepthDecoder(MoshiPreTrainedModel, GenerationMixin):
"""
Transformer depth decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoshiTransformerLayer`]
Args:
config: MoshiConfig
"""
config_class = MoshiDepthConfig
def __init__(self, config: MoshiDepthConfig):
super().__init__(config)
self.text_embed_tokens = nn.Embedding(config.vocab_size + 1, config.hidden_size)
# the last codebook is never used as input
self.embed_tokens = nn.ModuleList(
[nn.Embedding(config.audio_vocab_size + 1, config.hidden_size) for _ in range(config.num_codebooks - 1)]
)
self.input_projections = MoshiFlexibleLinear(config.input_size, config.hidden_size, config.num_codebooks)
self.layers = nn.ModuleList(
[
MoshiDecoderLayer(config, layer_idx, use_flexible_linear=True, use_rope=False)
for layer_idx in range(config.num_hidden_layers)
]
)
self.lm_heads = MoshiFlexibleLinear(config.hidden_size, config.audio_vocab_size, config.num_codebooks)
self._attn_implementation = config._attn_implementation
self.gradient_checkpointing = False
self.config = config
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
last_hidden_state: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens. The first element of the sequence must the text token associated to the audio codebooks.
The rest of the elements must be flatten audio codebooks. The `cache_position` argument can be used to indicate to which index is associated each token.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the main decoder. Used to contextualize `input_ids`
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert the inputs into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if use_cache and past_key_values is None and not self.training:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = 0 if past_key_values is None else past_key_values.get_seq_length()
if cache_position is None:
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + input_ids.shape[1], device=input_ids.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# If inputs_embeds is provided, it has the priority over input_ids, which won't be used
if inputs_embeds is None:
inputs_embeds = []
for position_idx in cache_position:
position_idx = position_idx.item()
if position_idx == 0:
inputs_embeds.append(self.text_embed_tokens(input_ids[:, [position_idx]]))
else:
inputs_embeds.append(
self.embed_tokens[(position_idx - 1)](input_ids[:, [position_idx - past_seen_tokens]])
)
inputs_embeds = torch.cat(inputs_embeds, dim=1)
inputs_embeds += self.input_projections(last_hidden_state, cache_position)
causal_mask = None
if attention_mask is not None:
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
hidden_states = inputs_embeds
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
logits = self.lm_heads(hidden_states, cache_position)
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
loss_fct = CrossEntropyLoss()
labels = labels.masked_fill(labels == self.config.audio_vocab_size, -100).reshape(-1)
# Enable model parallelism
labels = labels.to(logits.device)
loss = loss_fct(logits.reshape(-1, self.config.audio_vocab_size), labels)
if not return_dict:
return tuple(v for v in [loss, logits, next_cache, all_hidden_states, all_self_attns] if v is not None)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Copied from transformers.models.phi3.modeling_phi3.Phi3Model._update_causal_mask with Phi3->Moshi
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Moshi. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.mistral.modeling_mistral.MistralModel._prepare_4d_causal_attention_mask_with_cache_position with Mistral->MoshiDepth
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: MoshiDepthConfig,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`MoshiDepthConfig`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
@add_start_docstrings(
"The bare Moshi Model outputting raw hidden-states without any specific head on top.",
MOSHI_START_DOCSTRING,
)
class MoshiModel(MoshiPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoshiDecoderLayer`]
Args:
config: MoshiConfig
"""
def __init__(self, config: MoshiConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size + 1, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[
MoshiDecoderLayer(config, layer_idx, use_flexible_linear=False)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = MoshiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MOSHI_DECODER_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
return_legacy_cache = False # noqa: F841
if (
use_cache and not isinstance(past_key_values, Cache) and not self.training
): # kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = True # noqa: F841
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = None
if attention_mask is not None:
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
if (
use_cache and not isinstance(past_key_values, Cache) and not self.training
): # kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = True
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/internal/generation_utils#transformers.Cache)"
)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Copied from transformers.models.phi3.modeling_phi3.Phi3Model._update_causal_mask with Phi3->Moshi
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Moshi. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.mistral.modeling_mistral.MistralModel._prepare_4d_causal_attention_mask_with_cache_position with Mistral->Moshi
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: MoshiConfig,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`MoshiConfig`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
@add_start_docstrings(
"The Moshi decoder model with a text language modelling head on top. Only usable for text.",
MOSHI_START_DOCSTRING,
)
class MoshiForCausalLM(MoshiPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["model.embed_tokens.weight", "lm_head.weight"]
# Copied from transformers.models.gemma.modeling_gemma.GemmaForCausalLM.__init__ with Gemma->Moshi
def __init__(self, config):
super().__init__(config)
self.model = MoshiModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(MOSHI_DECODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MoshiCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> Union[Tuple, MoshiCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MoshiForCausalLM
>>> model = MoshiForCausalLM.from_pretrained("kmhf/hf-moshiko")
>>> tokenizer = AutoTokenizer.from_pretrained("kmhf/hf-moshiko")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
if labels is None and not is_torchdynamo_compiling():
logger.warning_once(
"Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)"
)
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = self.loss_function(
shift_logits,
shift_labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (
logits,
hidden_states,
) + outputs[1:]
return (loss,) + output if loss is not None else output
return MoshiCausalLMOutputWithPast(
loss=loss,
logits=logits,
last_hidden_state=hidden_states, # Ignore copy
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"The original Moshi model with an audio encoder, a Moshi depth decoder and a Moshi decoder, for speech-to-speech.",
MOSHI_START_DOCSTRING,
)
class MoshiForConditionalGeneration(MoshiPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["decoder.model.embed_tokens.weight", "decoder.lm_head.weight"]
config_class = MoshiConfig
main_input_name = "input_ids"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(self, config: MoshiConfig):
super().__init__(config)
# We have 2 * num_codebooks audio embedding layers because we have the user input channel and the model output channel.
self.embed_tokens = nn.ModuleList(
[nn.Embedding(config.audio_vocab_size + 1, config.hidden_size) for _ in range(2 * config.num_codebooks)]
)
self.audio_encoder = AutoModel.from_config(config.audio_encoder_config)
self.decoder = MoshiForCausalLM(config)
self.depth_decoder = MoshiDepthDecoder(config.depth_decoder_config)
self.num_codebooks = config.num_codebooks
self.post_init()
def get_audio_encoder(self):
return self.audio_encoder
def get_depth_decoder(self):
return self.depth_decoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MOSHI_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
user_input_values: Optional[torch.FloatTensor] = None,
user_audio_codes: Optional[torch.Tensor] = None,
moshi_input_values: Optional[torch.FloatTensor] = None,
moshi_audio_codes: Optional[torch.Tensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
text_labels: Optional[torch.LongTensor] = None,
audio_labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import MoshiForConditionalGeneration
>>> import torch
>>> model = MoshiForConditionalGeneration.from_pretrained("kmhf/hf-moshiko")
>>> inputs = moshi.get_unconditional_inputs()
>>> logits = model(**inputs, ).logits
>>> logits.shape # (bsz, seq_len, text_vocab_size)
torch.Size([1, 1, 32000])
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_audio_encoder = {
argument[len("audio_encoder_")]: value
for argument, value in kwargs.items()
if argument.startswith("audio_encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
kwargs_depth_decoder = {
argument[len("depth_decoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("depth_decoder_")
}
# If inputs_embeds is provided, it has the priority over input_ids and audio_codes, which won't be used
if inputs_embeds is None:
if user_input_values is not None and user_audio_codes is None:
user_audio_codes = self.audio_encoder.encode(
user_input_values, num_quantizers=self.num_codebooks, **kwargs_audio_encoder
)[0]
if moshi_input_values is not None and moshi_audio_codes is None:
moshi_audio_codes = self.audio_encoder.encode(
moshi_input_values, num_quantizers=self.num_codebooks, **kwargs_audio_encoder
)[0]
audio_codes = torch.cat([moshi_audio_codes, user_audio_codes], dim=1)
if input_ids is None and audio_codes is None:
raise ValueError(
"You must provide at least one of `input_ids`, `inputs_embeds`, `input_values` and `audio_codes`."
)
if input_ids is not None:
inputs_embeds = self.decoder.model.embed_tokens(input_ids)
if audio_codes is not None:
audio_inputs_embeds = sum(
[self.embed_tokens[codebook](audio_codes[:, codebook]) for codebook in range(audio_codes.shape[1])]
)
inputs_embeds = (
audio_inputs_embeds
if inputs_embeds is None
else audio_inputs_embeds + inputs_embeds.to(audio_inputs_embeds.device)
)
# Decode
decoder_outputs = self.decoder(
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=True,
labels=text_labels,
**kwargs_decoder,
)
decoder_last_hidden_state = decoder_outputs.last_hidden_state
depth_decoder_outputs = None
final_loss = decoder_outputs.loss
if text_labels is not None and audio_labels is not None:
# To use depth decoder forward here, we actually need oracle input ids since we're supposed to pass the true input ids
audio_labels = self.build_delay_pattern_mask(
audio_labels,
bos_token_id=self.config.audio_vocab_size,
pad_token_id=self.config.audio_vocab_size,
max_length=audio_labels.shape[-1] + 1,
)[0]
# (batch_size, sequence_length) -> (batch_size * sequence_length, 1)
text_labels = text_labels.view(-1, 1)
# (batch_size, num_codebooks, sequence_length) -> (batch_size * sequence_length, num_codebooks)
audio_labels = audio_labels.transpose(1, 2).reshape(-1, audio_labels.shape[1])
depth_input_ids = torch.cat([text_labels, audio_labels], dim=1)
# keep the last codebook out of input_ids
depth_input_ids = depth_input_ids[:, :-1]
# (batch_size, sequence_length, dim) -> (batch_size * sequence_length, 1, dim)
decoder_last_hidden_state = decoder_last_hidden_state.view(-1, 1, decoder_last_hidden_state.shape[-1])
depth_decoder_outputs = self.depth_decoder(
last_hidden_state=decoder_last_hidden_state,
input_ids=depth_input_ids,
attention_mask=attention_mask,
labels=audio_labels,
**kwargs_depth_decoder,
)
final_loss += depth_decoder_outputs.loss
if not return_dict:
outputs = decoder_outputs.to_tuple()
if depth_decoder_outputs is not None:
outputs += depth_decoder_outputs.to_tuple()
return outputs
return MoshiConditionalGenerationOutputWithPast(
loss=decoder_outputs.loss,
logits=decoder_outputs.logits,
last_hidden_state=decoder_last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
depth_loss=None if depth_decoder_outputs is None else depth_decoder_outputs.loss,
audio_logits=None if depth_decoder_outputs is None else depth_decoder_outputs.logits,
depth_past_key_values=None if decoder_outputs is None else decoder_outputs.past_key_values,
depth_hidden_states=None if decoder_outputs is None else decoder_outputs.hidden_states,
depth_attentions=None if decoder_outputs is None else decoder_outputs.attentions,
)
def _prepare_attention_mask_for_generation(
self,
input_ids: torch.LongTensor,
generation_config: GenerationConfig,
kwargs: Dict[str, Any],
) -> torch.LongTensor:
pad_token_id = generation_config.pad_token_id
eos_token_id = generation_config.eos_token_id
default_attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
if pad_token_id is None:
return default_attention_mask
is_pad_token_in_inputs = (pad_token_id is not None) and torch.isin(input_ids, pad_token_id).any()
is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ~torch.isin(
eos_token_id, pad_token_id
).any()
can_infer_attention_mask = is_pad_token_in_inputs * is_pad_token_not_equal_to_eos_token_id
attention_mask_from_padding = input_ids.ne(pad_token_id).long()
attention_mask = (
attention_mask_from_padding * can_infer_attention_mask + default_attention_mask * ~can_infer_attention_mask
)
return attention_mask
def _prepare_inputs_embeds_for_generation(
self,
input_ids: Optional[torch.LongTensor] = None,
user_input_values: Optional[torch.FloatTensor] = None,
user_audio_codes: Optional[torch.Tensor] = None,
moshi_input_values: Optional[torch.FloatTensor] = None,
moshi_audio_codes: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
apply_delay_pattern_mask: bool = False,
concat_unconditional_inputs: bool = False,
):
user_delay_pattern_mask = None
moshi_delay_pattern_mask = None
if (
inputs_embeds is None
and input_ids is None
and user_input_values is None
and user_audio_codes is None
and moshi_input_values is None
and moshi_audio_codes is None
):
raise ValueError(
"You must provide at least one of `input_ids`, `user_input_values`, `moshi_input_values`, `user_audio_codes`, `moshi_audio_codes` or `inputs_embeds`."
)
# in case inputs_embeds is passed, we might still need to create delay pattern masks
if inputs_embeds is None or apply_delay_pattern_mask:
if user_input_values is not None and user_audio_codes is None:
user_audio_codes = self.audio_encoder.encode(user_input_values, num_quantizers=self.num_codebooks)[0]
if moshi_input_values is not None and moshi_audio_codes is None:
moshi_audio_codes = self.audio_encoder.encode(moshi_input_values, num_quantizers=self.num_codebooks)[0]
if inputs_embeds is None and concat_unconditional_inputs:
unconditional_inputs = self.get_unconditional_inputs(num_samples=user_audio_codes.shape[0])
moshi_audio_codes = torch.cat([unconditional_inputs.moshi_audio_codes, moshi_audio_codes], dim=2)
user_audio_codes = torch.cat([unconditional_inputs.user_audio_codes, user_audio_codes], dim=2)
input_ids = torch.cat([unconditional_inputs.input_ids, input_ids], dim=1)
if attention_mask is not None:
attention_mask = torch.cat([unconditional_inputs.attention_mask, attention_mask], dim=1)
if inputs_embeds is None or apply_delay_pattern_mask:
if apply_delay_pattern_mask and user_audio_codes is not None:
user_audio_codes, user_delay_pattern_mask = self.build_delay_pattern_mask(
user_audio_codes,
bos_token_id=self.config.audio_vocab_size,
pad_token_id=self.config.audio_vocab_size,
max_length=generation_config.max_length,
)
if apply_delay_pattern_mask and moshi_audio_codes is not None:
moshi_audio_codes, moshi_delay_pattern_mask = self.build_delay_pattern_mask(
moshi_audio_codes,
bos_token_id=self.config.audio_vocab_size,
pad_token_id=self.config.audio_vocab_size,
max_length=generation_config.max_length,
)
# If inputs_embeds is provided, it has the priority over input_ids and audio_codes, which won't be used
if inputs_embeds is None:
audio_inputs_embeds = None
if user_audio_codes is not None and moshi_audio_codes is not None:
audio_codes = torch.cat([moshi_audio_codes, user_audio_codes], dim=1)
audio_inputs_embeds = sum(
[self.embed_tokens[codebook](audio_codes[:, codebook]) for codebook in range(audio_codes.shape[1])]
)
elif moshi_audio_codes is not None:
audio_codes = moshi_audio_codes
audio_inputs_embeds = sum(
[self.embed_tokens[codebook](audio_codes[:, codebook]) for codebook in range(audio_codes.shape[1])]
)
elif user_audio_codes is not None:
audio_codes = user_audio_codes
audio_inputs_embeds = sum(
[
self.embed_tokens[codebook](audio_codes[:, codebook + self.num_codebooks])
for codebook in range(audio_codes.shape[1])
]
)
if input_ids is not None:
inputs_embeds = self.decoder.model.embed_tokens(input_ids)
if audio_inputs_embeds is not None:
inputs_embeds = (
audio_inputs_embeds
if inputs_embeds is None
else audio_inputs_embeds + inputs_embeds.to(audio_inputs_embeds.device)
)
return (
inputs_embeds,
input_ids,
user_audio_codes,
moshi_audio_codes,
user_delay_pattern_mask,
moshi_delay_pattern_mask,
attention_mask,
)
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.LongTensor] = None,
user_input_values: Optional[torch.FloatTensor] = None,
user_audio_codes: Optional[torch.Tensor] = None,
moshi_input_values: Optional[torch.FloatTensor] = None,
moshi_audio_codes: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
return_audio_waveforms: Optional[bool] = True,
return_audio_codes: Optional[bool] = None,
concat_unconditional_inputs: Optional[bool] = True,
**kwargs,
) -> torch.LongTensor:
"""
Generates sequences of text token ids and audio tokens ids.
Parameters:
input_ids (`torch.Tensor `of shape `(batch_size, sequence_length), *optional*):
The sequence used as a text prompt for the generation.
user_input_values (`torch.Tensor `of shape `(batch_size, 1, audio_sequence_length), *optional*):
The audio waveforms used as audio user prompt for the generation.
user_audio_codes (`torch.Tensor `of shape `(batch_size, num_codebooks, sequence_length), *optional*):
The audio codes used as audio user prompt for the generation. Has priority over `user_input_values` and represents the audio "tokens" of `user_input_values` once passed through the audio encoder.
moshi_input_values (`torch.Tensor `of shape `(batch_size, 1, audio_sequence_length), *optional*):
The audio waveforms used as audio Moshi prompt for the generation.
moshi_audio_codes (`torch.Tensor `of shape `(batch_size, num_codebooks, sequence_length), *optional*):
The audio codes used as audio Moshi prompt for the generation. Has priority over `moshi_input_values` and represents the audio "tokens" of `moshi_input_values` once passed through the audio encoder.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` and the audio inputs you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert the inputs into associated vectors than the
model's internal embedding lookup matrix.
return_audio_waveforms (`bool`, *optional*, defaults to `True`):
If `False`, won't generate the audio waveforms.
return_audio_codes (`bool`, *optional*):
If `True`, will also returns the generated audio codes, i.e the intermediate audio "tokens" which transforms to `audio_sequences` once passed through the audio decoder.
concat_unconditional_inputs (`bool`, *optional*, defaults to `True`):
If `False`, won't concatenate initial audio and text tokens.
kwargs (`Dict[str, Any]`, *optional*):
Remaining dictionary of keyword arguments that are passed to the `generate` method. Refers to the
original [`generate` docstrings](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate)
for more information on how to use them.
Note that keywords with a *depth_* prefix will be input for the `generate` method of the
depth decoder. Otherwise, the latter will use its default generation config.
Return:
[`MoshiConditionalGenerationGenerateOutput`]
"""
# multiple generate -> need to create/update device map
if hasattr(self, "hf_device_map") and not hasattr(self.depth_decoder, "hf_device_map"):
self.depth_decoder.hf_device_map = {}
if "" in self.hf_device_map:
self.depth_decoder.hf_device_map = self.hf_device_map
else:
main_device = [d for d in self.hf_device_map.values() if d not in ["cpu", "disk"]][0]
self.depth_decoder.hf_device_map = {
key[len("depth_decoder") :]: main_device if value in ["cpu", "disk"] else value
for key, value in self.hf_device_map.items()
if key.startswith("depth_decoder")
}
# need to remove depth_decoder from the top device_map so that we assign correctly the device for each layer idx in the cache
self.hf_device_map = {
key: value for key, value in self.hf_device_map.items() if not key.startswith("depth_decoder")
}
# retrieve depth decoder kwargs
depth_decoder_kwargs_keys = {argument for argument in kwargs if argument.startswith("depth_decoder_")}
kwargs_depth_decoder = {
argument[len("depth_decoder_") :]: kwargs.pop(argument) for argument in depth_decoder_kwargs_keys
}
# needs to prepare generation config, even though it'll be done again in `generate`
generation_config, kwargs = self._prepare_generation_config(kwargs.pop("generation_config", None), **kwargs)
input_ids, user_audio_codes, moshi_audio_codes, concat_unconditional_inputs = (
self._check_and_maybe_initalize_inputs(
input_ids=input_ids,
user_input_values=user_input_values,
user_audio_codes=user_audio_codes,
moshi_input_values=moshi_input_values,
moshi_audio_codes=moshi_audio_codes,
inputs_embeds=inputs_embeds,
concat_unconditional_inputs=concat_unconditional_inputs,
)
)
inputs = inputs_embeds if input_ids is None else input_ids
input_ids_length = inputs.shape[-1] + 1 if concat_unconditional_inputs else inputs.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name="inputs_embeds" if input_ids is None else "input_ids",
inputs_tensor=inputs,
input_ids_length=input_ids_length,
)
# retrieve depth decoder generation config if it exists
if hasattr(generation_config, "depth_decoder_config"):
depth_decoder_generation_config = generation_config.depth_decoder_config
else:
# we need to control the number of tokens generated by the depth decoder
depth_decoder_generation_config = {
"min_length": self.num_codebooks + 1,
"max_length": self.num_codebooks + 1,
"cache_implementation": "sliding_window",
}
# update kwargs_depth_decoder: kwargs_depth_decoder have priority over depth_decoder_generation_config
depth_decoder_generation_config.update(kwargs_depth_decoder)
kwargs_depth_decoder = depth_decoder_generation_config
attention_mask = kwargs.pop("attention_mask", None)
if attention_mask is None:
attention_mask = self._prepare_attention_mask_for_generation(
input_ids=input_ids,
generation_config=generation_config,
kwargs=kwargs,
)
(
inputs_embeds,
input_ids,
user_audio_codes,
moshi_audio_codes,
user_delay_pattern_mask,
moshi_delay_pattern_mask,
attention_mask,
) = self._prepare_inputs_embeds_for_generation(
input_ids=input_ids,
user_input_values=user_input_values,
user_audio_codes=user_audio_codes,
moshi_input_values=moshi_input_values,
moshi_audio_codes=moshi_audio_codes,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
apply_delay_pattern_mask=True,
concat_unconditional_inputs=concat_unconditional_inputs,
)
# create blank user inputs - moshi needs a constant stream of user inputs
blank_input_values = torch.zeros(
(inputs_embeds.shape[0], 1, int(self.config.sampling_rate / self.config.audio_encoder_config.frame_rate)),
dtype=self.dtype,
device=self.device,
)
blank_user_audio_codes = self.audio_encoder.encode(blank_input_values, num_quantizers=self.num_codebooks)[0]
# set delay pattern mask for the rest of the generation
kwargs["user_delay_pattern_mask"] = (
user_delay_pattern_mask if user_delay_pattern_mask is not None else kwargs.get("user_delay_pattern_mask")
)
kwargs["moshi_delay_pattern_mask"] = (
moshi_delay_pattern_mask
if moshi_delay_pattern_mask is not None
else kwargs.get("moshi_delay_pattern_mask")
)
self.generated_audio_codes = torch.repeat_interleave(
moshi_audio_codes, max(generation_config.num_beams, generation_config.num_return_sequences), dim=0
)
return_dict_in_generate = generation_config.num_beams > 1 or generation_config.return_dict_in_generate
output_scores = generation_config.num_beams > 1 or generation_config.output_scores
outputs = super().generate(
inputs_embeds=inputs_embeds,
input_ids=input_ids,
generation_config=generation_config,
blank_user_audio_codes=blank_user_audio_codes,
kwargs_depth_decoder=kwargs_depth_decoder,
return_dict_in_generate=return_dict_in_generate,
output_scores=output_scores,
attention_mask=attention_mask,
**kwargs,
)
if not return_audio_waveforms and not return_audio_codes:
if return_dict_in_generate and not generation_config.return_dict_in_generate:
return outputs.sequences
return outputs
# check if outputs is a dict or tokens
if not return_dict_in_generate:
output_text_ids = outputs
else:
output_text_ids = outputs.sequences
if generation_config.num_return_sequences > 1:
moshi_delay_pattern_mask = torch.repeat_interleave(
moshi_delay_pattern_mask, generation_config.num_return_sequences, dim=0
)
if generation_config.num_beams > 1:
# we need to reorganize self.last_hidden_states and generated audio codes according to the beam_indices
# Beam indices are of shape `input_length + number_generated_tokens` but actually starts
# indexing indices at index 0 instead of index `input_length-1`.
# We thus discard the last `input_length` indices that are never used.
beam_indices = outputs.beam_indices[:, : -moshi_audio_codes.shape[-1]]
generated_audio_codes = self.generated_audio_codes[:, :, moshi_audio_codes.shape[-1] :]
# we've generated audio tokens `number_generated_tokens-1` times, so we use the corresponding beam indices to
# retrieve the right audio tokens
expanded_beam_indices = beam_indices[:, :-1].unsqueeze(1).expand(-1, self.num_codebooks, -1)
generated_audio_codes = torch.gather(generated_audio_codes, dim=0, index=expanded_beam_indices)
# now, rebuild generated audio codes, this time with the right beam tracking
moshi_audio_codes = torch.repeat_interleave(
moshi_audio_codes, generation_config.num_return_sequences, dim=0
)
self.generated_audio_codes = torch.cat((moshi_audio_codes, generated_audio_codes), dim=2)
# use the last beam indice to retrieve the right self.last_hidden_state
self.last_hidden_state = torch.index_select(self.last_hidden_state, dim=0, index=beam_indices[:, -1])
# we need to make a last generation with the latest generated tokens
last_hidden_state = self.last_hidden_state.view(-1, 1, self.last_hidden_state.shape[-1])
last_generated_audio_codes = self.depth_decoder.generate(
last_hidden_state=last_hidden_state,
input_ids=output_text_ids[:, -1:].view(-1, 1),
**kwargs_depth_decoder,
)
last_generated_audio_codes = last_generated_audio_codes[:, 1:].unsqueeze(2)
self.generated_audio_codes = torch.cat([self.generated_audio_codes, last_generated_audio_codes], dim=2)
# apply the pattern mask to the final audio ids
output_audio_codes = self.apply_delay_pattern_mask(self.generated_audio_codes, moshi_delay_pattern_mask)
# revert the pattern delay mask by filtering the pad token id and bos token ids
mask = moshi_delay_pattern_mask != self.config.audio_vocab_size
output_audio_codes = output_audio_codes[mask].reshape(mask.shape[0], self.num_codebooks, -1)
output_values = None
if return_audio_waveforms:
output_values = self.audio_encoder.decode(
output_audio_codes,
).audio_values
output_audio_codes = output_audio_codes if return_audio_codes else None
if generation_config.return_dict_in_generate:
return MoshiConditionalGenerationGenerateOutput(
audio_sequences=output_values, audio_codes=output_audio_codes, **outputs
)
return MoshiConditionalGenerationGenerateOutput(
audio_sequences=output_values, sequences=output_text_ids, audio_codes=output_audio_codes
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=None,
user_delay_pattern_mask=None,
moshi_delay_pattern_mask=None,
kwargs_depth_decoder=None,
blank_user_audio_codes: Optional[torch.FloatTensor] = None,
**kwargs,
):
# Overwritten -- Moshi has custom post-processing on the prepared inputs.
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
# (we can't check exception 3 while compiling)
if past_key_values is not None:
if (
inputs_embeds is not None # Exception 1
or cache_position[-1] >= input_ids.shape[1] # Exception 3
):
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
model_inputs = {"input_ids": input_ids, "inputs_embeds": None}
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = inputs_embeds.shape
device = inputs_embeds.device
else:
batch_size, sequence_length = input_ids.shape
device = input_ids.device
attention_mask = self.decoder.model._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_cache_shape(),
dtype=self.decoder.lm_head.weight.dtype,
device=device,
cache_position=cache_position,
batch_size=batch_size,
config=self.config,
past_key_values=past_key_values,
)
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"cache_position": cache_position,
}
)
# 2. Now that everything is prepared, generate audio_codes using the depth decoder
# we want to do it after a first token has been generated
if model_inputs["input_ids"] is not None:
last_hidden_state = kwargs.get("last_hidden_state")
# (batch_size, sequence_length, dim) -> (batch_size * sequence_length, 1, dim)
last_hidden_state = last_hidden_state.view(-1, 1, last_hidden_state.shape[-1])
input_ids = model_inputs.pop("input_ids")
generated_audio_codes = self.depth_decoder.generate(
last_hidden_state=last_hidden_state,
input_ids=input_ids.view(-1, 1),
**kwargs_depth_decoder,
)
# the first tokens are text tokens
generated_audio_codes = generated_audio_codes[:, 1:].unsqueeze(2)
user_audio_codes = self.apply_delay_pattern_mask(
torch.cat(
[self.generated_audio_codes, blank_user_audio_codes.to(self.generated_audio_codes.device)], dim=2
),
user_delay_pattern_mask,
)[:, :, -1:]
self.generated_audio_codes = self.apply_delay_pattern_mask(
torch.cat([self.generated_audio_codes, generated_audio_codes], dim=2), moshi_delay_pattern_mask
)
inputs_embeds, _, _, _, _, _, _ = self._prepare_inputs_embeds_for_generation(
input_ids, moshi_audio_codes=self.generated_audio_codes[:, :, -1:], user_audio_codes=user_audio_codes
)
model_inputs["input_ids"] = None
model_inputs["inputs_embeds"] = inputs_embeds
return model_inputs
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
num_new_tokens: int = 1,
) -> Dict[str, Any]:
model_kwargs = super()._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder, num_new_tokens
)
# update last_hidden_state that'll be used in the depth decoder
model_kwargs["last_hidden_state"] = outputs.get("last_hidden_state")[:, -1:]
# dirty, but we need to make a last depth_decoder.generate
self.last_hidden_state = outputs.get("last_hidden_state")[:, -1:]
return model_kwargs
def get_input_embeddings(self):
return self.decoder.get_input_embeddings()
def set_input_embeddings(self, value):
self.decoder.set_input_embeddings(value)
def get_output_embeddings(self):
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.decoder.set_output_embeddings(new_embeddings)
def freeze_audio_encoder(self):
"""
Freeze the audio encoder weights.
"""
for param in self.audio_encoder.parameters():
param.requires_grad = False
self.audio_encoder._requires_grad = False
def freeze_depth_decoder(self):
"""
Freeze the depth encoder weights.
"""
for param in self.depth_decoder.parameters():
param.requires_grad = False
self.depth_decoder._requires_grad = False
@staticmethod
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForCausalLM.apply_delay_pattern_mask
def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask):
"""Apply a delay pattern mask to the decoder input ids, only preserving predictions where
the mask is set to -1, and otherwise setting to the value detailed in the mask."""
seq_len = input_ids.shape[-1]
decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len]
input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask)
return input_ids
def build_delay_pattern_mask(
self, input_ids: torch.LongTensor, bos_token_id: int, pad_token_id: int, max_length: Optional[int] = None
):
"""Build a delayed pattern mask to the input_ids. Each codebook, except the first one, is offset by
one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there
are 4 codebooks and a max sequence length of 6, we have the delayed pattern mask of shape `(codebooks,
seq_len)`:
- [-1, -1, -1, -1, -1, P]
- [ B, -1, -1, -1, -1, -1]
- [ B, -1, -1, -1, -1, -1]
- [ B, -1, -1, -1, -1, -1]
where B is the beginning-of-sentence token, P is the special padding token id and -1 indicates that the token is valid for prediction. If we include
a prompt (input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the
mask is set to the value in the prompt:
- [ a0, a1, -1, -1, -1, P]
- [ B, b0, b1, -1, -1, -1]
- [ B, c0, c1, -1, -1, -1]
- [ B, d0, d1, -1, -1, -1]
where a-d indicate the codebook channel and 0/1 indicates the temporality. Now, we only override the -1
tokens in our prediction.
"""
bsz, num_codebooks, seq_len = input_ids.shape
max_length = max_length if max_length is not None else self.generation_config.max_length
input_ids_shifted = (
torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1
)
# the first codebook channel is not shifted
seq_len_to_keep = min(seq_len, max_length - 1)
input_ids_shifted[:, 0, :seq_len_to_keep] = input_ids[:, 0, :seq_len_to_keep]
# fill the shifted ids with the prompt entries
input_ids_shifted[:, 1:, 1 : seq_len_to_keep + 1] = input_ids[:, 1:, :seq_len_to_keep]
# fill with BOS and PAD
input_ids_shifted[:, 1:, 0] = bos_token_id
input_ids_shifted[:, 0, -1] = pad_token_id
# construct a pattern mask that indicates the positions of BOS and PAD tokens for each codebook
pattern_mask = input_ids_shifted
input_ids = input_ids_shifted[..., :seq_len_to_keep]
return input_ids, pattern_mask
def get_unconditional_inputs(self, num_samples=1):
"""
Helper function to get null inputs for unconditional generation, enabling the model to be used without the
feature extractor or tokenizer.
Args:
num_samples (int, *optional*):
Number of audio samples to unconditionally generate.
max_new_tokens (int, *optional*):
Number of tokens to generate for each sample. More tokens means longer audio samples, at the expense of
longer inference (since more audio tokens need to be generated per sample).
Example:
```python
>>> from transformers import MoshiForConditionalGeneration
>>> model = MoshiForConditionalGeneration.from_pretrained("kmhf/hf-moshiko-pytorch-bf16")
>>> # get the unconditional (or 'null') inputs for the model
>>> unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
>>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256)
```"""
input_ids = torch.ones((num_samples, 1), device=self.device, dtype=torch.int64) * self.config.vocab_size
user_audio_codes = (
torch.ones((num_samples, self.num_codebooks, 1), device=self.device, dtype=torch.int64)
* self.config.audio_vocab_size
)
moshi_audio_codes = (
torch.ones((num_samples, self.num_codebooks, 1), device=self.device, dtype=torch.int64)
* self.config.audio_vocab_size
)
attention_mask = torch.ones((num_samples, 1), device=self.device, dtype=torch.long)
return MoshiUnconditionalInput(
input_ids=input_ids,
user_audio_codes=user_audio_codes,
moshi_audio_codes=moshi_audio_codes,
attention_mask=attention_mask,
)
def _check_and_maybe_initalize_inputs(
self,
input_ids=None,
user_input_values=None,
user_audio_codes=None,
moshi_input_values=None,
moshi_audio_codes=None,
inputs_embeds=None,
concat_unconditional_inputs=None,
):
inputs = input_ids if inputs_embeds is None else inputs_embeds
user_input = user_audio_codes if user_input_values is None else user_input_values
moshi_input = moshi_audio_codes if moshi_input_values is None else moshi_input_values
one_input_has_been_passed = (user_input is not None) or (moshi_input is not None) or (inputs is not None)
# concat_unconditional_inputs will be False if inputs_embeds is used
concat_unconditional_inputs = concat_unconditional_inputs and not (
inputs_embeds is not None and input_ids is None
)
# if one or two of the three required inputs have been passed, throws an error
if one_input_has_been_passed and (user_input is None):
raise ValueError(
"No user audio inputs have been passed alongside the other inputs. Make sure either `user_input_values` or `user_audio_codes` is passed or use `MoshiForConditionalGeneration.get_unconditional_inputs`. Check the `MoshiForConditionalGeneration` docstrings for more information."
)
elif one_input_has_been_passed and (moshi_input is None):
raise ValueError(
"No Moshi audio inputs have been passed alongside the other inputs. Make sure either `moshi_input_values` or `moshi_audio_codes` is passed or use `MoshiForConditionalGeneration.get_unconditional_inputs`. Check the `MoshiForConditionalGeneration` docstrings for more information."
)
elif one_input_has_been_passed and (inputs is None):
raise ValueError(
"No `input_ids` or `inputs_embeds` have been passed alongside the other inputs. Make sure `input_ids` is passed or use `MoshiForConditionalGeneration.get_unconditional_inputs`. Check the `MoshiForConditionalGeneration` docstrings for more information."
)
elif not one_input_has_been_passed:
# if no inputs have been passed, use default values
unconditional_inputs = self.get_unconditional_inputs()
input_ids = unconditional_inputs.input_ids
user_audio_codes = unconditional_inputs.user_audio_codes
moshi_audio_codes = unconditional_inputs.moshi_audio_codes
# in that case, no need to concat unconditional inputs
concat_unconditional_inputs = False
else:
# check if same sequence length
user_seq_length = user_input.shape[-1]
moshi_seq_length = moshi_input.shape[-1]
tokens_seq_length = inputs.shape[1]
ratio = self.config.audio_encoder_config.frame_rate / self.config.sampling_rate
moshi_seq_length = math.ceil(moshi_seq_length * ratio) if moshi_audio_codes is None else moshi_seq_length
user_seq_length = math.ceil(user_seq_length * ratio) if user_audio_codes is None else user_seq_length
if tokens_seq_length != moshi_seq_length or tokens_seq_length != user_seq_length:
raise ValueError(
"At least one of the 3 inputs of `MoshiForConditionalGeneration` doesn't have the same sequence length as the others."
"Make sure that they all have the same sequence length. Check the `MoshiForConditionalGeneration` docstrings for more information."
)
return input_ids, user_audio_codes, moshi_audio_codes, concat_unconditional_inputs
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past_key_values
)
__all__ = ["MoshiForCausalLM", "MoshiForConditionalGeneration", "MoshiModel", "MoshiPreTrainedModel"]
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.08 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mpnet\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_mpnet import *
from .modeling_mpnet import *
from .modeling_tf_mpnet import *
from .tokenization_mpnet import *
from .tokenization_mpnet_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================
SOURCE CODE FILE: configuration_mpnet.py
LINES: 1
SIZE: 5.20 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mpnet\configuration_mpnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MPNet model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MPNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MPNetModel`] or a [`TFMPNetModel`]. It is used to
instantiate a MPNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MPNet
[microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30527):
Vocabulary size of the MPNet model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MPNetModel`] or [`TFMPNetModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
Examples:
```python
>>> from transformers import MPNetModel, MPNetConfig
>>> # Initializing a MPNet mpnet-base style configuration
>>> configuration = MPNetConfig()
>>> # Initializing a model from the mpnet-base style configuration
>>> model = MPNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mpnet"
def __init__(
self,
vocab_size=30527,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
layer_norm_eps=1e-12,
relative_attention_num_buckets=32,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.relative_attention_num_buckets = relative_attention_num_buckets
__all__ = ["MPNetConfig"]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_mpnet.py
LINES: 1
SIZE: 41.92 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mpnet\modeling_mpnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MPNet model."""
import math
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN, gelu
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mpnet import MPNetConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/mpnet-base"
_CONFIG_FOR_DOC = "MPNetConfig"
class MPNetPreTrainedModel(PreTrainedModel):
config_class = MPNetConfig
base_model_prefix = "mpnet"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, MPNetLMHead):
module.bias.data.zero_()
class MPNetEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.padding_idx = 1
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, **kwargs):
if position_ids is None:
if input_ids is not None:
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
class MPNetSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.q = nn.Linear(config.hidden_size, self.all_head_size)
self.k = nn.Linear(config.hidden_size, self.all_head_size)
self.v = nn.Linear(config.hidden_size, self.all_head_size)
self.o = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
position_bias=None,
output_attentions=False,
**kwargs,
):
q = self.q(hidden_states)
k = self.k(hidden_states)
v = self.v(hidden_states)
q = self.transpose_for_scores(q)
k = self.transpose_for_scores(k)
v = self.transpose_for_scores(v)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(q, k.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply relative position embedding (precomputed in MPNetEncoder) if provided.
if position_bias is not None:
attention_scores += position_bias
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
attention_probs = self.dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
c = torch.matmul(attention_probs, v)
c = c.permute(0, 2, 1, 3).contiguous()
new_c_shape = c.size()[:-2] + (self.all_head_size,)
c = c.view(*new_c_shape)
o = self.o(c)
outputs = (o, attention_probs) if output_attentions else (o,)
return outputs
class MPNetAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = MPNetSelfAttention(config)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attn.num_attention_heads, self.attn.attention_head_size, self.pruned_heads
)
self.attn.q = prune_linear_layer(self.attn.q, index)
self.attn.k = prune_linear_layer(self.attn.k, index)
self.attn.v = prune_linear_layer(self.attn.v, index)
self.attn.o = prune_linear_layer(self.attn.o, index, dim=1)
self.attn.num_attention_heads = self.attn.num_attention_heads - len(heads)
self.attn.all_head_size = self.attn.attention_head_size * self.attn.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
position_bias=None,
output_attentions=False,
**kwargs,
):
self_outputs = self.attn(
hidden_states,
attention_mask,
head_mask,
position_bias,
output_attentions=output_attentions,
)
attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class MPNetIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class MPNetOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class MPNetLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = MPNetAttention(config)
self.intermediate = MPNetIntermediate(config)
self.output = MPNetOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
position_bias=None,
output_attentions=False,
**kwargs,
):
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
position_bias=position_bias,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + outputs
return outputs
class MPNetEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.n_heads = config.num_attention_heads
self.layer = nn.ModuleList([MPNetLayer(config) for _ in range(config.num_hidden_layers)])
self.relative_attention_bias = nn.Embedding(config.relative_attention_num_buckets, self.n_heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
**kwargs,
):
position_bias = self.compute_position_bias(hidden_states)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
attention_mask,
head_mask[i],
position_bias,
output_attentions=output_attentions,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
def compute_position_bias(self, x, position_ids=None, num_buckets=32):
bsz, qlen, klen = x.size(0), x.size(1), x.size(1)
if position_ids is not None:
context_position = position_ids[:, :, None]
memory_position = position_ids[:, None, :]
else:
context_position = torch.arange(qlen, dtype=torch.long)[:, None]
memory_position = torch.arange(klen, dtype=torch.long)[None, :]
relative_position = memory_position - context_position
rp_bucket = self.relative_position_bucket(relative_position, num_buckets=num_buckets)
rp_bucket = rp_bucket.to(x.device)
values = self.relative_attention_bias(rp_bucket)
values = values.permute([2, 0, 1]).unsqueeze(0)
values = values.expand((bsz, -1, qlen, klen)).contiguous()
return values
@staticmethod
def relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
ret = 0
n = -relative_position
num_buckets //= 2
ret += (n < 0).to(torch.long) * num_buckets
n = torch.abs(n)
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).to(torch.long)
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
# Copied from transformers.models.bert.modeling_bert.BertPooler
class MPNetPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
MPNET_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MPNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MPNET_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MPNet Model transformer outputting raw hidden-states without any specific head on top.",
MPNET_START_DOCSTRING,
)
class MPNetModel(MPNetPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = MPNetEmbeddings(config)
self.encoder = MPNetEncoder(config)
self.pooler = MPNetPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class MPNetForMaskedLM(MPNetPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder"]
def __init__(self, config):
super().__init__(config)
self.mpnet = MPNetModel(config, add_pooling_layer=False)
self.lm_head = MPNetLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
self.lm_head.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mpnet(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class MPNetLMHead(nn.Module):
"""MPNet Head for masked and permuted language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
return x
@add_start_docstrings(
"""
MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
MPNET_START_DOCSTRING,
)
class MPNetForSequenceClassification(MPNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mpnet = MPNetModel(config, add_pooling_layer=False)
self.classifier = MPNetClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mpnet(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
MPNET_START_DOCSTRING,
)
class MPNetForMultipleChoice(MPNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.mpnet = MPNetModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.mpnet(
flat_input_ids,
position_ids=flat_position_ids,
attention_mask=flat_attention_mask,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
MPNET_START_DOCSTRING,
)
class MPNetForTokenClassification(MPNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mpnet = MPNetModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mpnet(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class MPNetClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to BERT's [CLS] token)
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MPNET_START_DOCSTRING,
)
class MPNetForQuestionAnswering(MPNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mpnet = MPNetModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mpnet(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def create_position_ids_from_input_ids(input_ids, padding_idx):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`. :param torch.Tensor x: :return torch.Tensor:
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask
return incremental_indices.long() + padding_idx
__all__ = [
"MPNetForMaskedLM",
"MPNetForMultipleChoice",
"MPNetForQuestionAnswering",
"MPNetForSequenceClassification",
"MPNetForTokenClassification",
"MPNetLayer",
"MPNetModel",
"MPNetPreTrainedModel",
]
```
|
======================================================================================================================================
SOURCE CODE FILE: modeling_tf_mpnet.py
LINES: 1
SIZE: 54.44 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mpnet\modeling_tf_mpnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 MPNet model."""
from __future__ import annotations
import math
import warnings
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPooling,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_mpnet import MPNetConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/mpnet-base"
_CONFIG_FOR_DOC = "MPNetConfig"
class TFMPNetPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MPNetConfig
base_model_prefix = "mpnet"
class TFMPNetEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position embeddings."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.padding_idx = 1
self.config = config
self.hidden_size = config.hidden_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.hidden_size],
initializer=get_initializer(initializer_range=self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.hidden_size],
initializer=get_initializer(initializer_range=self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
def create_position_ids_from_input_ids(self, input_ids):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
input_ids: tf.Tensor
Returns: tf.Tensor
"""
mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype)
incremental_indices = tf.math.cumsum(mask, axis=1) * mask
return incremental_indices + self.padding_idx
def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False):
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = self.create_position_ids_from_input_ids(input_ids=input_ids)
else:
position_ids = tf.expand_dims(
tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0
)
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
final_embeddings = inputs_embeds + position_embeds
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->MPNet
class TFMPNetPooler(keras.layers.Layer):
def __init__(self, config: MPNetConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFMPNetSelfAttention(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads}"
)
self.num_attention_heads = config.num_attention_heads
assert config.hidden_size % config.num_attention_heads == 0
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.q = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="q"
)
self.k = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="k"
)
self.v = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="v"
)
self.o = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="o"
)
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, x, batch_size):
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
batch_size = shape_list(hidden_states)[0]
q = self.q(hidden_states)
k = self.k(hidden_states)
v = self.v(hidden_states)
q = self.transpose_for_scores(q, batch_size)
k = self.transpose_for_scores(k, batch_size)
v = self.transpose_for_scores(v, batch_size)
attention_scores = tf.matmul(q, k, transpose_b=True)
dk = tf.cast(shape_list(k)[-1], attention_scores.dtype)
attention_scores = attention_scores / tf.math.sqrt(dk)
# Apply relative position embedding (precomputed in MPNetEncoder) if provided.
if position_bias is not None:
attention_scores += position_bias
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = stable_softmax(attention_scores, axis=-1)
attention_probs = self.dropout(attention_probs, training=training)
if head_mask is not None:
attention_probs = attention_probs * head_mask
c = tf.matmul(attention_probs, v)
c = tf.transpose(c, perm=[0, 2, 1, 3])
c = tf.reshape(c, (batch_size, -1, self.all_head_size))
o = self.o(c)
outputs = (o, attention_probs) if output_attentions else (o,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q", None) is not None:
with tf.name_scope(self.q.name):
self.q.build([None, None, self.config.hidden_size])
if getattr(self, "k", None) is not None:
with tf.name_scope(self.k.name):
self.k.build([None, None, self.config.hidden_size])
if getattr(self, "v", None) is not None:
with tf.name_scope(self.v.name):
self.v.build([None, None, self.config.hidden_size])
if getattr(self, "o", None) is not None:
with tf.name_scope(self.o.name):
self.o.build([None, None, self.config.hidden_size])
class TFMPNetAttention(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.attn = TFMPNetSelfAttention(config, name="attn")
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.config = config
def prune_heads(self, heads):
raise NotImplementedError
def call(self, input_tensor, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
self_outputs = self.attn(
input_tensor, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training
)
attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + input_tensor)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attn", None) is not None:
with tf.name_scope(self.attn.name):
self.attn.build(None)
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->MPNet
class TFMPNetIntermediate(keras.layers.Layer):
def __init__(self, config: MPNetConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->MPNet
class TFMPNetOutput(keras.layers.Layer):
def __init__(self, config: MPNetConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
class TFMPNetLayer(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.attention = TFMPNetAttention(config, name="attention")
self.intermediate = TFMPNetIntermediate(config, name="intermediate")
self.out = TFMPNetOutput(config, name="output")
def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False):
self_attention_outputs = self.attention(
hidden_states, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
intermediate_output = self.intermediate(attention_output)
layer_output = self.out(intermediate_output, attention_output, training=training)
outputs = (layer_output,) + outputs # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "out", None) is not None:
with tf.name_scope(self.out.name):
self.out.build(None)
class TFMPNetEncoder(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.n_heads = config.num_attention_heads
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.initializer_range = config.initializer_range
self.layer = [TFMPNetLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
self.relative_attention_num_buckets = config.relative_attention_num_buckets
def build(self, input_shape=None):
if self.built:
return
self.built = True
with tf.name_scope("relative_attention_bias"):
self.relative_attention_bias = self.add_weight(
name="embeddings",
shape=[self.relative_attention_num_buckets, self.n_heads],
initializer=get_initializer(self.initializer_range),
)
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
def call(
self,
hidden_states,
attention_mask,
head_mask,
output_attentions,
output_hidden_states,
return_dict,
training=False,
):
position_bias = self.compute_position_bias(hidden_states)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
attention_mask,
head_mask[i],
output_attentions,
position_bias=position_bias,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
@staticmethod
def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
ret = 0
n = -relative_position
num_buckets //= 2
ret += tf.cast(tf.math.less(n, 0), dtype=relative_position.dtype) * num_buckets
n = tf.math.abs(n)
# now n is in the range [0, inf)
max_exact = num_buckets // 2
is_small = tf.math.less(n, max_exact)
val_if_large = max_exact + tf.cast(
tf.math.log(n / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact),
dtype=relative_position.dtype,
)
val_if_large = tf.math.minimum(val_if_large, num_buckets - 1)
ret += tf.where(is_small, n, val_if_large)
return ret
def compute_position_bias(self, x, position_ids=None):
"""Compute binned relative position bias"""
input_shape = shape_list(x)
qlen, klen = input_shape[1], input_shape[1]
if position_ids is not None:
context_position = position_ids[:, :, None]
memory_position = position_ids[:, None, :]
else:
context_position = tf.range(qlen)[:, None]
memory_position = tf.range(klen)[None, :]
relative_position = memory_position - context_position # shape (qlen, klen)
rp_bucket = self._relative_position_bucket(
relative_position,
num_buckets=self.relative_attention_num_buckets,
)
values = tf.gather(self.relative_attention_bias, rp_bucket) # shape (qlen, klen, num_heads)
values = tf.expand_dims(tf.transpose(values, [2, 0, 1]), axis=0) # shape (1, num_heads, qlen, klen)
return values
@keras_serializable
class TFMPNetMainLayer(keras.layers.Layer):
config_class = MPNetConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.num_hidden_layers = config.num_hidden_layers
self.initializer_range = config.initializer_range
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.encoder = TFMPNetEncoder(config, name="encoder")
self.pooler = TFMPNetPooler(config, name="pooler")
# The embeddings must be the last declaration in order to follow the weights order
self.embeddings = TFMPNetEmbeddings(config, name="embeddings")
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(input_shape, 1)
embedding_output = self.embeddings(
input_ids,
position_ids,
inputs_embeds,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.num_hidden_layers
encoder_outputs = self.encoder(
embedding_output,
extended_attention_mask,
head_mask,
output_attentions,
output_hidden_states,
return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
MPNET_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`MPNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MPNET_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare MPNet Model transformer outputting raw hidden-states without any specific head on top.",
MPNET_START_DOCSTRING,
)
class TFMPNetModel(TFMPNetPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
position_ids: Optional[Union[np.array, tf.Tensor]] = None,
head_mask: Optional[Union[np.array, tf.Tensor]] = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.mpnet(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
class TFMPNetLMHead(keras.layers.Layer):
"""MPNet head for masked and permuted language modeling"""
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.act = get_tf_activation("gelu")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = input_embeddings
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
def get_output_embeddings(self):
return self.decoder
def set_output_embeddings(self, value):
self.decoder.weight = value
self.decoder.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.layer_norm(hidden_states)
# project back to size of vocabulary with bias
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
@add_start_docstrings("""MPNet Model with a `language modeling` head on top.""", MPNET_START_DOCSTRING)
class TFMPNetForMaskedLM(TFMPNetPreTrainedModel, TFMaskedLanguageModelingLoss):
_keys_to_ignore_on_load_missing = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
self.lm_head = TFMPNetLMHead(config, self.mpnet.embeddings, name="lm_head")
def get_lm_head(self):
return self.lm_head
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.lm_head.name
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: bool = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.mpnet(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
class TFMPNetClassificationHead(keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.out_proj = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
)
self.config = config
def call(self, features, training=False):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, training=training)
x = self.dense(x)
x = self.dropout(x, training=training)
x = self.out_proj(x)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
MPNET_START_DOCSTRING,
)
class TFMPNetForSequenceClassification(TFMPNetPreTrainedModel, TFSequenceClassificationLoss):
_keys_to_ignore_on_load_missing = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
self.classifier = TFMPNetClassificationHead(config, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
position_ids: Optional[Union[np.array, tf.Tensor]] = None,
head_mask: Optional[Union[np.array, tf.Tensor]] = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.mpnet(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
MPNET_START_DOCSTRING,
)
class TFMPNetForMultipleChoice(TFMPNetPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: bool = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.mpnet(
flat_input_ids,
flat_attention_mask,
flat_position_ids,
head_mask,
flat_inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
MPNET_START_DOCSTRING,
)
class TFMPNetForTokenClassification(TFMPNetPreTrainedModel, TFTokenClassificationLoss):
_keys_to_ignore_on_load_missing = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: bool = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.mpnet(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MPNET_START_DOCSTRING,
)
class TFMPNetForQuestionAnswering(TFMPNetPreTrainedModel, TFQuestionAnsweringLoss):
_keys_to_ignore_on_load_missing = [r"pooler"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.mpnet = TFMPNetMainLayer(config, name="mpnet")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: Optional[Union[np.array, tf.Tensor]] = None,
position_ids: Optional[Union[np.array, tf.Tensor]] = None,
head_mask: Optional[Union[np.array, tf.Tensor]] = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: tf.Tensor | None = None,
end_positions: tf.Tensor | None = None,
training: bool = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.mpnet(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions, "end_position": end_positions}
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "mpnet", None) is not None:
with tf.name_scope(self.mpnet.name):
self.mpnet.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
__all__ = [
"TFMPNetEmbeddings",
"TFMPNetForMaskedLM",
"TFMPNetForMultipleChoice",
"TFMPNetForQuestionAnswering",
"TFMPNetForSequenceClassification",
"TFMPNetForTokenClassification",
"TFMPNetMainLayer",
"TFMPNetModel",
"TFMPNetPreTrainedModel",
]
```
|
=======================================================================================================================================
SOURCE CODE FILE: tokenization_mpnet.py
LINES: 3
SIZE: 21.95 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mpnet\tokenization_mpnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for MPNet."""
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class MPNetTokenizer(PreTrainedTokenizer):
"""
This tokenizer inherits from [`BertTokenizer`] which contains most of the methods. Users should refer to the
superclass for more information regarding methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="[UNK]",
pad_token="<pad>",
mask_token="<mask>",
tokenize_chinese_chars=True,
strip_accents=None,
clean_up_tokenization_spaces=True,
**kwargs,
):
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
# "<mask>" is part of the vocab, but was wrongfully added at a wrong index in the fast saved version
vocab = self.added_tokens_encoder.copy()
vocab.update(self.vocab)
return vocab
def _tokenize(self, text):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A MPNet sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` methods.
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Set to True if the token list is already formatted with special tokens for the model
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
__all__ = ["MPNetTokenizer"]
```
|
============================================================================================================================================
SOURCE CODE FILE: tokenization_mpnet_fast.py
LINES: 1
SIZE: 8.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mpnet\tokenization_mpnet_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Tokenization classes for MPNet."""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mpnet import MPNetTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
class MPNetTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" MPNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = MPNetTokenizer
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="[UNK]",
pad_token="<pad>",
mask_token="<mask>",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
pre_tok_state.get("lowercase", do_lower_case) != do_lower_case
or pre_tok_state.get("strip_accents", strip_accents) != strip_accents
):
pre_tok_class = getattr(normalizers, pre_tok_state.pop("type"))
pre_tok_state["lowercase"] = do_lower_case
pre_tok_state["strip_accents"] = strip_accents
self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state)
self.do_lower_case = do_lower_case
@property
def mask_token(self) -> str:
"""
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
having been set.
MPNet tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
comprise the space before the *<mask>*.
"""
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet.")
return None
return str(self._mask_token)
@mask_token.setter
def mask_token(self, value):
"""
Overriding the default behavior of the mask token to have it eat the space before it.
This is needed to preserve backward compatibility with all the previously used models based on MPNet.
"""
# Mask token behave like a normal word, i.e. include the space before it
# So we set lstrip to True
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
self._mask_token = value
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
if token_ids_1 is None:
return output
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not
make use of token type ids, therefore a list of zeros is returned
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["MPNetTokenizerFast"]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.96 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mpt\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_mpt import *
from .modeling_mpt import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_mpt.py
LINES: 1
SIZE: 10.30 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mpt\configuration_mpt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mpt configuration"""
from typing import TYPE_CHECKING, Optional, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MptAttentionConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`MptAttention`] class. It is used to instantiate
attention layers according to the specified arguments, defining the layers architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MPT
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward
compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
attn_type (`str`, *optional*, defaults to `"multihead_attention"`):
type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`.
attn_pdrop (`float`, *optional*, defaults to `0.0`):
The dropout probability for the attention layers.
attn_impl (`str`, *optional*, defaults to `"torch"`):
The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`.
clip_qkv (`float`, *optional*):
If not `None`, clip the queries, keys, and values in the attention layer to this value.
softmax_scale (`float`, *optional*):
If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to
`1/sqrt(hidden_size)`.
prefix_lm (`bool`, *optional*, defaults to `False`):
Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument
which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another
bi-directionally. Tokens outside the prefix use causal attention.
qk_ln (`bool`, *optional*, defaults to `False`):
Whether to apply layer normalization to the queries and keys in the attention layer.
attn_uses_sequence_id (`bool`, *optional*, defaults to `False`):
Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train`
mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each
token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored.
alibi (`bool`, *optional*, defaults to `True`):
Whether or not to use the alibi bias instead of positional embedding.
alibi_bias_max (`int`, *optional*, defaults to 8):
The maximum value of the alibi bias.
"""
base_config_key = "attn_config"
def __init__(
self,
attn_type="multihead_attention",
attn_pdrop=0,
attn_impl="torch",
clip_qkv=None,
softmax_scale=None,
prefix_lm=False,
qk_ln=False,
attn_uses_sequence_id=False,
alibi=True,
alibi_bias_max=8,
**kwargs,
):
super().__init__()
self.attn_type = attn_type
self.attn_pdrop = attn_pdrop
self.attn_impl = attn_impl
self.clip_qkv = clip_qkv
self.softmax_scale = softmax_scale
self.prefix_lm = prefix_lm
self.attn_uses_sequence_id = attn_uses_sequence_id
self.alibi = alibi
self.qk_ln = qk_ln
self.alibi_bias_max = alibi_bias_max
if attn_type not in ["multihead_attention", "multiquery_attention"]:
raise ValueError(
f"`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: {attn_type}"
)
class MptConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to the Mpt-7b architecture
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
d_model (`int`, *optional*, defaults to 2048):
Dimensionality of the embeddings and hidden states.
n_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
n_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
expansion_ratio (`int`, *optional*, defaults to 4):
The ratio of the up/down scale in the MLP.
max_seq_len (`int`, *optional*, defaults to 2048):
The maximum sequence length of the model.
vocab_size (`int`, *optional*, defaults to 50368):
Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by
the `inputs_ids` passed when calling [`MptModel`]. Check [this
discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the
`vocab_size` has been defined.
resid_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability applied to the attention output before combining with residual.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers.
emb_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability for the embedding layer.
learned_pos_emb (`bool`, *optional*, defaults to `True`):
Whether to use learned positional embeddings.
attn_config (`dict`, *optional*):
A dictionary used to configure the model's attention module.
init_device (`str`, *optional*, defaults to `"cpu"`):
The device to use for parameter initialization. Defined for backward compatibility
logit_scale (`float`, *optional*):
If not None, scale the logits by this value.
no_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in all linear layers.
verbose (`int`, *optional*, defaults to 0):
The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This
argument is deprecated.
embedding_fraction (`float`, *optional*, defaults to 1.0):
The fraction to scale the gradients of the embedding layer by.
norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`):
Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward
compatibility.
use_cache (`bool`, *optional*, defaults to `False`):
Whether or not the model should return the last key/values attentions (not used by all models).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import MptConfig, MptModel
>>> # Initializing a Mpt configuration
>>> configuration = MptConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = MptModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "mpt"
sub_configs = {"attn_config": MptAttentionConfig}
attribute_map = {
"num_attention_heads": "n_heads",
"hidden_size": "d_model",
"num_hidden_layers": "n_layers",
}
def __init__(
self,
d_model: int = 2048,
n_heads: int = 16,
n_layers: int = 24,
expansion_ratio: int = 4,
max_seq_len: int = 2048,
vocab_size: int = 50368,
resid_pdrop: float = 0.0,
layer_norm_epsilon: float = 1e-5,
emb_pdrop: float = 0.0,
learned_pos_emb: bool = True,
attn_config: MptAttentionConfig = None,
init_device: str = "cpu",
logit_scale: Optional[Union[float, str]] = None,
no_bias: bool = True,
verbose: int = 0,
embedding_fraction: float = 1.0,
norm_type: str = "low_precision_layernorm",
use_cache: bool = False,
initializer_range=0.02,
**kwargs,
):
if attn_config is None:
self.attn_config = MptAttentionConfig()
elif isinstance(attn_config, dict):
self.attn_config = MptAttentionConfig(**attn_config)
else:
self.attn_config = attn_config
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.expansion_ratio = expansion_ratio
self.max_seq_len = max_seq_len
self.vocab_size = vocab_size
self.resid_pdrop = resid_pdrop
self.emb_pdrop = emb_pdrop
self.learned_pos_emb = learned_pos_emb
self.init_device = init_device
self.logit_scale = logit_scale
self.no_bias = no_bias
self.verbose = verbose
self.embedding_fraction = embedding_fraction
self.norm_type = norm_type
self.layer_norm_epsilon = layer_norm_epsilon
self.use_cache = use_cache
self.initializer_range = initializer_range
super().__init__(**kwargs)
__all__ = ["MptConfig"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_mpt.py
LINES: 1
SIZE: 38.56 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mpt\modeling_mpt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MPT model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from torch.nn import functional as F
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_mpt import MptConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "mosaicml/mpt-7b"
_CONFIG_FOR_DOC = "MptConfig"
def build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max=8, device=None):
r"""
Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it
relies on a translation invariance of softmax for quick implementation. This implementation has been copied from
the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi:
https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292
"""
alibi = torch.arange(1 - sequence_length, 1, dtype=torch.int32, device=device).view(1, 1, 1, sequence_length)
num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads))
base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.int64, device=device).float()
base = base * (alibi_bias_max / num_heads_power_of_2)
slopes = 1.0 / torch.pow(2, base)
slopes = slopes.view(1, num_heads_power_of_2, 1, 1)
if num_heads_power_of_2 != num_heads:
slopes = torch.concat([slopes[:, 1::2, ...], slopes[:, ::2, ...]], dim=1)[:, :num_heads, ...]
alibi = alibi * slopes
return alibi.squeeze(0)
class MptAttention(nn.Module):
"""Multi-head self attention.
Using torch or triton attention implemetation enables user to also use additive bias.
"""
def __init__(self, config: MptConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.n_heads = config.n_heads
self.max_seq_length = config.max_seq_len
self.head_dim = self.hidden_size // self.n_heads
self.softmax_scale = config.attn_config.softmax_scale
if self.softmax_scale is None:
self.softmax_scale = 1 / math.sqrt(self.hidden_size / self.n_heads)
self.attn_dropout_p = config.attn_config.attn_pdrop
self.clip_qkv = config.attn_config.clip_qkv
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_bias: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
):
batch_size, seq_length = hidden_states.shape[:2]
mixed_qkv = self.Wqkv(hidden_states)
if self.clip_qkv:
mixed_qkv = mixed_qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
query_states, key_states, value_states = mixed_qkv.chunk(3, dim=2)
query_states = query_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2)
key_states = key_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2)
value_states = value_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
if len(past_key_value) != 0:
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states)
else:
past_key_value = (key_states, value_states)
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) * self.softmax_scale
query_length = seq_length if past_key_value is None else seq_length + past_key_value[0].shape[2]
if position_bias is not None:
if len(position_bias.shape) != 3:
raise ValueError(f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias.shape)}")
key_length = key_states.shape[-2]
position_bias_query_index = max(0, position_bias.size(1) - query_length)
position_bias_key_index = max(0, position_bias.size(2) - key_length)
position_bias = position_bias[:, position_bias_query_index:, position_bias_key_index:]
attention_scores = attention_scores + position_bias
if attention_mask is not None:
attention_scores = attention_scores.masked_fill(attention_mask, torch.finfo(query_states.dtype).min)
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).to(value_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attn_dropout_p, training=self.training)
context_states = torch.matmul(attn_weights, value_states)
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
attn_output = self.out_proj(context_states)
return attn_output, attn_weights, past_key_value
class MptMLP(nn.Module):
def __init__(self, config: MptConfig):
super().__init__()
hidden_size = config.hidden_size
self.up_proj = nn.Linear(hidden_size, 4 * hidden_size, bias=False)
self.act = nn.GELU(approximate="none")
self.down_proj = nn.Linear(4 * hidden_size, hidden_size, bias=False)
self.hidden_dropout = config.attn_config.attn_pdrop
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
hidden_states = self.act(self.up_proj(hidden_states))
intermediate_output = self.down_proj(hidden_states)
output = F.dropout(intermediate_output, p=self.hidden_dropout, training=self.training)
output = output + residual
return output
class MptBlock(nn.Module):
def __init__(self, config: MptConfig):
super().__init__()
hidden_size = config.hidden_size
self.norm_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
# backward compatibility with weights on the Hub
self.norm_1.bias = None
self.num_heads = config.n_heads
self.attn = MptAttention(config)
self.norm_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
# backward compatibility with weights on the Hub
self.norm_2.bias = None
self.ffn = MptMLP(config)
self.dropout_rate = config.attn_config.attn_pdrop
self.resid_attn_dropout = nn.Dropout(self.dropout_rate)
def forward(
self,
hidden_states: torch.Tensor,
position_bias: torch.Tensor,
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
output_attentions: bool = False,
):
# hidden_states: [batch_size, seq_length, hidden_size]
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.norm_1(hidden_states)
residual = hidden_states
# Self attention.
attn_outputs, attn_weights, past_key_value = self.attn(
layernorm_output,
position_bias=position_bias,
attention_mask=attention_mask,
past_key_value=layer_past,
)
hidden_states = self.resid_attn_dropout(attn_outputs) + residual
layernorm_output = self.norm_2(hidden_states)
# Get residual
residual = hidden_states
# MLP.
output = self.ffn(layernorm_output, residual)
outputs = (output,)
if use_cache:
outputs += (past_key_value,)
if output_attentions:
outputs += (attn_weights,)
return outputs # hidden_states, present, attentions
class MptPreTrainedModel(PreTrainedModel):
config_class = MptConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["MptBlock"]
_keys_to_ignore_on_load_missing = [r"lm_head.*."]
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, LayerNorm):
if module.bias is not None:
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@staticmethod
def _convert_to_mpt_cache(
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
"""
Converts the cache to the format expected by Mpt, i.e. to tuple(tuple([batch_size * num_heads, ...]))
"""
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
batch_size_times_num_heads = batch_size * num_heads
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
return tuple(
(
layer_past[0].reshape(batch_size_times_num_heads, head_dim, seq_length),
layer_past[1].reshape(batch_size_times_num_heads, seq_length, head_dim),
)
for layer_past in past_key_value
)
MPT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MptConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
Each element of `past_key_values` is a tuple (past_key, past_value):
- past_key: [batch_size * num_heads, head_dim, kv_length]
- past_value: [batch_size * num_heads, kv_length, head_dim]
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
`past_key_values`).
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Mpt Model transformer outputting raw hidden-states without any specific head on top.",
MPT_START_DOCSTRING,
)
class MptModel(MptPreTrainedModel):
def __init__(self, config: MptConfig):
super().__init__(config)
self.hidden_size = config.hidden_size
self.num_heads = config.n_heads
# Embedding + LN Embedding
self.wte = nn.Embedding(config.vocab_size, self.hidden_size)
# Transformer blocks
self.blocks = nn.ModuleList([MptBlock(config) for _ in range(config.n_layers)])
# Final Layer Norm
self.norm_f = LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
# backward compatibility with weights on the Hub
self.norm_f.bias = None
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.wte
def build_mpt_alibi_tensor(self, num_heads, sequence_length, alibi_bias_max=8, device=None):
return build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max, device)
def set_input_embeddings(self, new_embeddings: torch.Tensor):
self.wte = new_embeddings
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # NOOP kwargs, for now
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past_key_values is None:
past_key_values = tuple([None] * len(self.blocks))
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
hidden_states = inputs_embeds
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# Compute alibi tensor: check build_alibi_tensor documentation
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values[0] is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
else:
attention_mask = attention_mask.to(hidden_states.device)
alibi = self.build_mpt_alibi_tensor(self.num_heads, self.config.max_seq_len, device=hidden_states.device)
causal_mask = _prepare_4d_causal_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
causal_mask = causal_mask.bool()
for block, layer_past in zip(self.blocks, past_key_values):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
alibi,
causal_mask,
layer_past,
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=causal_mask,
use_cache=use_cache,
output_attentions=output_attentions,
position_bias=alibi,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
# Add last hidden state
hidden_states = self.norm_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
@add_start_docstrings(
"""
The MPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
MPT_START_DOCSTRING,
)
class MptForCausalLM(MptPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: MptConfig):
super().__init__(config)
self.transformer = MptModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings: torch.Tensor):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Flatten the tokens
loss = self.loss_function(
lm_logits,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def _reorder_cache(
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
Output shares the same memory storage as `past`.
"""
# Get a copy of `beam_idx` on all the devices where we need those indices.
device_to_beam_idx = {
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
}
reordered_past = tuple(
(
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
)
for layer_past in past
)
return reordered_past
@add_start_docstrings(
"""
The MPT Model transformer with a sequence classification head on top (linear layer).
[`MptForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
MPT_START_DOCSTRING,
)
class MptForSequenceClassification(MptPreTrainedModel):
def __init__(self, config: MptConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = MptModel(config)
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
MPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
MPT_START_DOCSTRING,
)
class MptForTokenClassification(MptPreTrainedModel):
def __init__(self, config: MptConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = MptModel(config)
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
classifier_dropout = config.classifier_dropout
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
batch_size, seq_length = labels.shape
loss_fct = CrossEntropyLoss()
loss = loss_fct(
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
)
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The MPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD
(a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MPT_START_DOCSTRING,
)
class MptForQuestionAnswering(MptPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = MptModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"MptForCausalLM",
"MptModel",
"MptPreTrainedModel",
"MptForSequenceClassification",
"MptForTokenClassification",
"MptForQuestionAnswering",
]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.96 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mra\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_mra import *
from .modeling_mra import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_mra.py
LINES: 1
SIZE: 6.38 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mra\configuration_mra.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MRA model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MraConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Mra
[uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MraModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 1):
The vocabulary size of the `token_type_ids` passed when calling [`MraModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
block_per_row (`int`, *optional*, defaults to 4):
Used to set the budget for the high resolution scale.
approx_mode (`str`, *optional*, defaults to `"full"`):
Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and
high resolution and `"sparse"` for only low resolution.
initial_prior_first_n_blocks (`int`, *optional*, defaults to 0):
The initial number of blocks for which high resolution is used.
initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0):
The number of diagonal blocks for which high resolution is used.
Example:
```python
>>> from transformers import MraConfig, MraModel
>>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration
>>> configuration = MraConfig()
>>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration
>>> model = MraModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mra"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=1,
initializer_range=0.02,
layer_norm_eps=1e-5,
position_embedding_type="absolute",
block_per_row=4,
approx_mode="full",
initial_prior_first_n_blocks=0,
initial_prior_diagonal_n_blocks=0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.block_per_row = block_per_row
self.approx_mode = approx_mode
self.initial_prior_first_n_blocks = initial_prior_first_n_blocks
self.initial_prior_diagonal_n_blocks = initial_prior_diagonal_n_blocks
__all__ = ["MraConfig"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_mra.py
LINES: 1
SIZE: 60.74 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mra\modeling_mra.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MRA model."""
import math
from pathlib import Path
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.utils.cpp_extension import load
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_ninja_available,
is_torch_cuda_available,
logging,
)
from .configuration_mra import MraConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "uw-madison/mra-base-512-4"
_CONFIG_FOR_DOC = "MraConfig"
_TOKENIZER_FOR_DOC = "AutoTokenizer"
mra_cuda_kernel = None
def load_cuda_kernels():
global mra_cuda_kernel
src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "mra"
def append_root(files):
return [src_folder / file for file in files]
src_files = append_root(["cuda_kernel.cu", "cuda_launch.cu", "torch_extension.cpp"])
mra_cuda_kernel = load("cuda_kernel", src_files, verbose=True)
def sparse_max(sparse_qk_prod, indices, query_num_block, key_num_block):
"""
Computes maximum values for softmax stability.
"""
if len(sparse_qk_prod.size()) != 4:
raise ValueError("sparse_qk_prod must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if sparse_qk_prod.size(2) != 32:
raise ValueError("The size of the second dimension of sparse_qk_prod must be 32.")
if sparse_qk_prod.size(3) != 32:
raise ValueError("The size of the third dimension of sparse_qk_prod must be 32.")
index_vals = sparse_qk_prod.max(dim=-2).values.transpose(-1, -2)
index_vals = index_vals.contiguous()
indices = indices.int()
indices = indices.contiguous()
max_vals, max_vals_scatter = mra_cuda_kernel.index_max(index_vals, indices, query_num_block, key_num_block)
max_vals_scatter = max_vals_scatter.transpose(-1, -2)[:, :, None, :]
return max_vals, max_vals_scatter
def sparse_mask(mask, indices, block_size=32):
"""
Converts attention mask to a sparse mask for high resolution logits.
"""
if len(mask.size()) != 2:
raise ValueError("mask must be a 2-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if mask.shape[0] != indices.shape[0]:
raise ValueError("mask and indices must have the same size in the zero-th dimension.")
batch_size, seq_len = mask.shape
num_block = seq_len // block_size
batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device)
mask = mask.reshape(batch_size, num_block, block_size)
mask = mask[batch_idx[:, None], (indices % num_block).long(), :]
return mask
def mm_to_sparse(dense_query, dense_key, indices, block_size=32):
"""
Performs Sampled Dense Matrix Multiplication.
"""
batch_size, query_size, dim = dense_query.size()
_, key_size, dim = dense_key.size()
if query_size % block_size != 0:
raise ValueError("query_size (size of first dimension of dense_query) must be divisible by block_size.")
if key_size % block_size != 0:
raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.")
dense_query = dense_query.reshape(batch_size, query_size // block_size, block_size, dim).transpose(-1, -2)
dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2)
if len(dense_query.size()) != 4:
raise ValueError("dense_query must be a 4-dimensional tensor.")
if len(dense_key.size()) != 4:
raise ValueError("dense_key must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if dense_query.size(3) != 32:
raise ValueError("The third dimension of dense_query must be 32.")
if dense_key.size(3) != 32:
raise ValueError("The third dimension of dense_key must be 32.")
dense_query = dense_query.contiguous()
dense_key = dense_key.contiguous()
indices = indices.int()
indices = indices.contiguous()
return mra_cuda_kernel.mm_to_sparse(dense_query, dense_key, indices.int())
def sparse_dense_mm(sparse_query, indices, dense_key, query_num_block, block_size=32):
"""
Performs matrix multiplication of a sparse matrix with a dense matrix.
"""
batch_size, key_size, dim = dense_key.size()
if key_size % block_size != 0:
raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.")
if sparse_query.size(2) != block_size:
raise ValueError("The size of the second dimension of sparse_query must be equal to the block_size.")
if sparse_query.size(3) != block_size:
raise ValueError("The size of the third dimension of sparse_query must be equal to the block_size.")
dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2)
if len(sparse_query.size()) != 4:
raise ValueError("sparse_query must be a 4-dimensional tensor.")
if len(dense_key.size()) != 4:
raise ValueError("dense_key must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if dense_key.size(3) != 32:
raise ValueError("The size of the third dimension of dense_key must be 32.")
sparse_query = sparse_query.contiguous()
indices = indices.int()
indices = indices.contiguous()
dense_key = dense_key.contiguous()
dense_qk_prod = mra_cuda_kernel.sparse_dense_mm(sparse_query, indices, dense_key, query_num_block)
dense_qk_prod = dense_qk_prod.transpose(-1, -2).reshape(batch_size, query_num_block * block_size, dim)
return dense_qk_prod
def transpose_indices(indices, dim_1_block, dim_2_block):
return ((indices % dim_2_block) * dim_1_block + torch.div(indices, dim_2_block, rounding_mode="floor")).long()
class MraSampledDenseMatMul(torch.autograd.Function):
@staticmethod
def forward(ctx, dense_query, dense_key, indices, block_size):
sparse_qk_prod = mm_to_sparse(dense_query, dense_key, indices, block_size)
ctx.save_for_backward(dense_query, dense_key, indices)
ctx.block_size = block_size
return sparse_qk_prod
@staticmethod
def backward(ctx, grad):
dense_query, dense_key, indices = ctx.saved_tensors
block_size = ctx.block_size
query_num_block = dense_query.size(1) // block_size
key_num_block = dense_key.size(1) // block_size
indices_T = transpose_indices(indices, query_num_block, key_num_block)
grad_key = sparse_dense_mm(grad.transpose(-1, -2), indices_T, dense_query, key_num_block)
grad_query = sparse_dense_mm(grad, indices, dense_key, query_num_block)
return grad_query, grad_key, None, None
@staticmethod
def operator_call(dense_query, dense_key, indices, block_size=32):
return MraSampledDenseMatMul.apply(dense_query, dense_key, indices, block_size)
class MraSparseDenseMatMul(torch.autograd.Function):
@staticmethod
def forward(ctx, sparse_query, indices, dense_key, query_num_block):
sparse_qk_prod = sparse_dense_mm(sparse_query, indices, dense_key, query_num_block)
ctx.save_for_backward(sparse_query, indices, dense_key)
ctx.query_num_block = query_num_block
return sparse_qk_prod
@staticmethod
def backward(ctx, grad):
sparse_query, indices, dense_key = ctx.saved_tensors
query_num_block = ctx.query_num_block
key_num_block = dense_key.size(1) // sparse_query.size(-1)
indices_T = transpose_indices(indices, query_num_block, key_num_block)
grad_key = sparse_dense_mm(sparse_query.transpose(-1, -2), indices_T, grad, key_num_block)
grad_query = mm_to_sparse(grad, dense_key, indices)
return grad_query, None, grad_key, None
@staticmethod
def operator_call(sparse_query, indices, dense_key, query_num_block):
return MraSparseDenseMatMul.apply(sparse_query, indices, dense_key, query_num_block)
class MraReduceSum:
@staticmethod
def operator_call(sparse_query, indices, query_num_block, key_num_block):
batch_size, num_block, block_size, _ = sparse_query.size()
if len(sparse_query.size()) != 4:
raise ValueError("sparse_query must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
_, _, block_size, _ = sparse_query.size()
batch_size, num_block = indices.size()
sparse_query = sparse_query.sum(dim=2).reshape(batch_size * num_block, block_size)
batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device)
global_idxes = (
torch.div(indices, key_num_block, rounding_mode="floor").long() + batch_idx[:, None] * query_num_block
).reshape(batch_size * num_block)
temp = torch.zeros(
(batch_size * query_num_block, block_size), dtype=sparse_query.dtype, device=sparse_query.device
)
output = temp.index_add(0, global_idxes, sparse_query).reshape(batch_size, query_num_block, block_size)
output = output.reshape(batch_size, query_num_block * block_size)
return output
def get_low_resolution_logit(query, key, block_size, mask=None, value=None):
"""
Compute low resolution approximation.
"""
batch_size, seq_len, head_dim = query.size()
num_block_per_row = seq_len // block_size
value_hat = None
if mask is not None:
token_count = mask.reshape(batch_size, num_block_per_row, block_size).sum(dim=-1)
query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / (
token_count[:, :, None] + 1e-6
)
key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / (
token_count[:, :, None] + 1e-6
)
if value is not None:
value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / (
token_count[:, :, None] + 1e-6
)
else:
token_count = block_size * torch.ones(batch_size, num_block_per_row, dtype=torch.float, device=query.device)
query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2)
key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2)
if value is not None:
value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2)
low_resolution_logit = torch.matmul(query_hat, key_hat.transpose(-1, -2)) / math.sqrt(head_dim)
low_resolution_logit_row_max = low_resolution_logit.max(dim=-1, keepdims=True).values
if mask is not None:
low_resolution_logit = (
low_resolution_logit - 1e4 * ((token_count[:, None, :] * token_count[:, :, None]) < 0.5).float()
)
return low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat
def get_block_idxes(
low_resolution_logit, num_blocks, approx_mode, initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks
):
"""
Compute the indices of the subset of components to be used in the approximation.
"""
batch_size, total_blocks_per_row, _ = low_resolution_logit.shape
if initial_prior_diagonal_n_blocks > 0:
offset = initial_prior_diagonal_n_blocks // 2
temp_mask = torch.ones(total_blocks_per_row, total_blocks_per_row, device=low_resolution_logit.device)
diagonal_mask = torch.tril(torch.triu(temp_mask, diagonal=-offset), diagonal=offset)
low_resolution_logit = low_resolution_logit + diagonal_mask[None, :, :] * 5e3
if initial_prior_first_n_blocks > 0:
low_resolution_logit[:, :initial_prior_first_n_blocks, :] = (
low_resolution_logit[:, :initial_prior_first_n_blocks, :] + 5e3
)
low_resolution_logit[:, :, :initial_prior_first_n_blocks] = (
low_resolution_logit[:, :, :initial_prior_first_n_blocks] + 5e3
)
top_k_vals = torch.topk(
low_resolution_logit.reshape(batch_size, -1), num_blocks, dim=-1, largest=True, sorted=False
)
indices = top_k_vals.indices
if approx_mode == "full":
threshold = top_k_vals.values.min(dim=-1).values
high_resolution_mask = (low_resolution_logit >= threshold[:, None, None]).float()
elif approx_mode == "sparse":
high_resolution_mask = None
else:
raise ValueError(f"{approx_mode} is not a valid approx_model value.")
return indices, high_resolution_mask
def mra2_attention(
query,
key,
value,
mask,
num_blocks,
approx_mode,
block_size=32,
initial_prior_first_n_blocks=0,
initial_prior_diagonal_n_blocks=0,
):
"""
Use Mra to approximate self-attention.
"""
if mra_cuda_kernel is None:
return torch.zeros_like(query).requires_grad_()
batch_size, num_head, seq_len, head_dim = query.size()
meta_batch = batch_size * num_head
if seq_len % block_size != 0:
raise ValueError("sequence length must be divisible by the block_size.")
num_block_per_row = seq_len // block_size
query = query.reshape(meta_batch, seq_len, head_dim)
key = key.reshape(meta_batch, seq_len, head_dim)
value = value.reshape(meta_batch, seq_len, head_dim)
if mask is not None:
query = query * mask[:, :, None]
key = key * mask[:, :, None]
value = value * mask[:, :, None]
if approx_mode == "full":
low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat = get_low_resolution_logit(
query, key, block_size, mask, value
)
elif approx_mode == "sparse":
with torch.no_grad():
low_resolution_logit, token_count, low_resolution_logit_row_max, _ = get_low_resolution_logit(
query, key, block_size, mask
)
else:
raise Exception('approx_mode must be "full" or "sparse"')
with torch.no_grad():
low_resolution_logit_normalized = low_resolution_logit - low_resolution_logit_row_max
indices, high_resolution_mask = get_block_idxes(
low_resolution_logit_normalized,
num_blocks,
approx_mode,
initial_prior_first_n_blocks,
initial_prior_diagonal_n_blocks,
)
high_resolution_logit = MraSampledDenseMatMul.operator_call(
query, key, indices, block_size=block_size
) / math.sqrt(head_dim)
max_vals, max_vals_scatter = sparse_max(high_resolution_logit, indices, num_block_per_row, num_block_per_row)
high_resolution_logit = high_resolution_logit - max_vals_scatter
if mask is not None:
high_resolution_logit = high_resolution_logit - 1e4 * (1 - sparse_mask(mask, indices)[:, :, :, None])
high_resolution_attn = torch.exp(high_resolution_logit)
high_resolution_attn_out = MraSparseDenseMatMul.operator_call(
high_resolution_attn, indices, value, num_block_per_row
)
high_resolution_normalizer = MraReduceSum.operator_call(
high_resolution_attn, indices, num_block_per_row, num_block_per_row
)
if approx_mode == "full":
low_resolution_attn = (
torch.exp(low_resolution_logit - low_resolution_logit_row_max - 1e4 * high_resolution_mask)
* token_count[:, None, :]
)
low_resolution_attn_out = (
torch.matmul(low_resolution_attn, value_hat)[:, :, None, :]
.repeat(1, 1, block_size, 1)
.reshape(meta_batch, seq_len, head_dim)
)
low_resolution_normalizer = (
low_resolution_attn.sum(dim=-1)[:, :, None].repeat(1, 1, block_size).reshape(meta_batch, seq_len)
)
log_correction = low_resolution_logit_row_max.repeat(1, 1, block_size).reshape(meta_batch, seq_len) - max_vals
if mask is not None:
log_correction = log_correction * mask
low_resolution_corr = torch.exp(log_correction * (log_correction <= 0).float())
low_resolution_attn_out = low_resolution_attn_out * low_resolution_corr[:, :, None]
low_resolution_normalizer = low_resolution_normalizer * low_resolution_corr
high_resolution_corr = torch.exp(-log_correction * (log_correction > 0).float())
high_resolution_attn_out = high_resolution_attn_out * high_resolution_corr[:, :, None]
high_resolution_normalizer = high_resolution_normalizer * high_resolution_corr
context_layer = (high_resolution_attn_out + low_resolution_attn_out) / (
high_resolution_normalizer[:, :, None] + low_resolution_normalizer[:, :, None] + 1e-6
)
elif approx_mode == "sparse":
context_layer = high_resolution_attn_out / (high_resolution_normalizer[:, :, None] + 1e-6)
else:
raise Exception('config.approx_mode must be "full" or "sparse"')
if mask is not None:
context_layer = context_layer * mask[:, :, None]
context_layer = context_layer.reshape(batch_size, num_head, seq_len, head_dim)
return context_layer
class MraEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MraSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
kernel_loaded = mra_cuda_kernel is not None
if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
try:
load_cuda_kernels()
except Exception as e:
logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = (
position_embedding_type if position_embedding_type is not None else config.position_embedding_type
)
self.num_block = (config.max_position_embeddings // 32) * config.block_per_row
self.num_block = min(self.num_block, int((config.max_position_embeddings // 32) ** 2))
self.approx_mode = config.approx_mode
self.initial_prior_first_n_blocks = config.initial_prior_first_n_blocks
self.initial_prior_diagonal_n_blocks = config.initial_prior_diagonal_n_blocks
def transpose_for_scores(self, layer):
new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
layer = layer.view(*new_layer_shape)
return layer.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None):
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
batch_size, num_heads, seq_len, head_dim = query_layer.size()
# revert changes made by get_extended_attention_mask
attention_mask = 1.0 + attention_mask / 10000.0
attention_mask = (
attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int()
)
# The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs
# smaller than this are padded with zeros.
gpu_warp_size = 32
if head_dim < gpu_warp_size:
pad_size = batch_size, num_heads, seq_len, gpu_warp_size - head_dim
query_layer = torch.cat([query_layer, torch.zeros(pad_size, device=query_layer.device)], dim=-1)
key_layer = torch.cat([key_layer, torch.zeros(pad_size, device=key_layer.device)], dim=-1)
value_layer = torch.cat([value_layer, torch.zeros(pad_size, device=value_layer.device)], dim=-1)
context_layer = mra2_attention(
query_layer.float(),
key_layer.float(),
value_layer.float(),
attention_mask.float(),
self.num_block,
approx_mode=self.approx_mode,
initial_prior_first_n_blocks=self.initial_prior_first_n_blocks,
initial_prior_diagonal_n_blocks=self.initial_prior_diagonal_n_blocks,
)
if head_dim < gpu_warp_size:
context_layer = context_layer[:, :, :, :head_dim]
context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class MraSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class MraAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = MraSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = MraSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, attention_mask=None):
self_outputs = self.self(hidden_states, attention_mask)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class MraIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class MraOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class MraLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = MraAttention(config)
self.add_cross_attention = config.add_cross_attention
self.intermediate = MraIntermediate(config)
self.output = MraOutput(config)
def forward(self, hidden_states, attention_mask=None):
self_attention_outputs = self.attention(hidden_states, attention_mask)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class MraEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([MraLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask)
hidden_states = layer_outputs[0]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform
class MraPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Mra
class MraLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = MraPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Mra
class MraOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = MraLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Copied from transformers.models.yoso.modeling_yoso.YosoPreTrainedModel with Yoso->Mra,yoso->mra
class MraPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MraConfig
base_model_prefix = "mra"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
MRA_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MRA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MRA Model transformer outputting raw hidden-states without any specific head on top.",
MRA_START_DOCSTRING,
)
class MraModel(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = MraEmbeddings(config)
self.encoder = MraEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""MRA Model with a `language modeling` head on top.""", MRA_START_DOCSTRING)
class MraForMaskedLM(MraPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.mra = MraModel(config)
self.cls = MraOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.yoso.modeling_yoso.YosoClassificationHead with Yoso->Mra
class MraClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""MRA Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks.""",
MRA_START_DOCSTRING,
)
class MraForSequenceClassification(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mra = MraModel(config)
self.classifier = MraClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""MRA Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""",
MRA_START_DOCSTRING,
)
class MraForMultipleChoice(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.mra = MraModel(config)
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""MRA Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""",
MRA_START_DOCSTRING,
)
class MraForTokenClassification(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mra = MraModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""MRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""",
MRA_START_DOCSTRING,
)
class MraForQuestionAnswering(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.mra = MraModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"MraForMaskedLM",
"MraForMultipleChoice",
"MraForQuestionAnswering",
"MraForSequenceClassification",
"MraForTokenClassification",
"MraLayer",
"MraModel",
"MraPreTrainedModel",
]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.07 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mt5\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_mt5 import *
from .modeling_flax_mt5 import *
from .modeling_mt5 import *
from .modeling_tf_mt5 import *
from .tokenization_mt5 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_mt5.py
LINES: 1
SIZE: 7.81 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mt5\configuration_mt5.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""mT5 model configuration"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeq2SeqConfigWithPast
from ...utils import logging
logger = logging.get_logger(__name__)
class MT5Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MT5Model`] or a [`TFMT5Model`]. It is used to
instantiate a mT5 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the mT5
[google/mt5-small](https://huggingface.co/google/mt5-small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 250112):
Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`].
d_model (`int`, *optional*, defaults to 512):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. In the conventional context, it is typically expected that `d_kv` has to be equal to `d_model // num_heads`.
But in the architecture of mt5-small, `d_kv` is not equal to `d_model //num_heads`. The `inner_dim` of the projection layer will be defined as `num_heads * d_kv`.
d_ff (`int`, *optional*, defaults to 1024):
Size of the intermediate feed forward layer in each `T5Block`.
num_layers (`int`, *optional*, defaults to 8):
Number of hidden layers in the Transformer encoder.
num_decoder_layers (`int`, *optional*):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_heads (`int`, *optional*, defaults to 6):
Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The ratio for all dropout layers.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
model_type = "mt5"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
"head_dim": "d_kv",
}
def __init__(
self,
vocab_size=250112,
d_model=512,
d_kv=64,
d_ff=1024,
num_layers=8,
num_decoder_layers=None,
num_heads=6,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="gated-gelu",
is_encoder_decoder=True,
use_cache=True,
tokenizer_class="T5Tokenizer",
tie_word_embeddings=False,
pad_token_id=0,
eos_token_id=1,
decoder_start_token_id=0,
classifier_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.classifier_dropout = classifier_dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.use_cache = use_cache
act_info = self.feed_forward_proj.split("-")
self.dense_act_fn = act_info[-1]
self.is_gated_act = act_info[0] == "gated"
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. "
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'"
)
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
self.dense_act_fn = "gelu_new"
super().__init__(
is_encoder_decoder=is_encoder_decoder,
tokenizer_class=tokenizer_class,
tie_word_embeddings=tie_word_embeddings,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
class MT5OnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence"
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def default_onnx_opset(self) -> int:
return 13
@property
def atol_for_validation(self) -> float:
return 5e-4
__all__ = ["MT5Config", "MT5OnnxConfig"]
```
|
====================================================================================================================================
SOURCE CODE FILE: modeling_flax_mt5.py
LINES: 1
SIZE: 4.23 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mt5\modeling_flax_mt5.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax mT5 model."""
import jax.numpy as jnp
from ...utils import logging
from ..t5.modeling_flax_t5 import FlaxT5EncoderModel, FlaxT5ForConditionalGeneration, FlaxT5Model
from .configuration_mt5 import MT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "T5Config"
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = jnp.zeros_like(input_ids)
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
class FlaxMT5Model(FlaxT5Model):
r"""
This class overrides [`FlaxT5Model`]. Please check the superclass for the appropriate documentation alongside usage
examples.
Examples:
```python
>>> from transformers import FlaxMT5Model, AutoTokenizer
>>> model = FlaxMT5Model.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")
>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=decoder_input_ids)
>>> hidden_states = outputs.last_hidden_state
```"""
model_type = "mt5"
config_class = MT5Config
class FlaxMT5EncoderModel(FlaxT5EncoderModel):
r"""
This class overrides [`FlaxT5EncoderModel`]. Please check the superclass for the appropriate documentation
alongside usage examples.
Examples:
```python
>>> from transformers import FlaxT5EncoderModel, AutoTokenizer
>>> model = FlaxT5EncoderModel.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")
>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids
>>> outputs = model(input_ids=inputs["input_ids"])
>>> hidden_states = outputs.last_hidden_state
```"""
model_type = "mt5"
config_class = MT5Config
class FlaxMT5ForConditionalGeneration(FlaxT5ForConditionalGeneration):
r"""
This class overrides [`FlaxT5ForConditionalGeneration`]. Please check the superclass for the appropriate
documentation alongside usage examples.
Examples:
```python
>>> from transformers import FlaxMT5ForConditionalGeneration, AutoTokenizer
>>> model = FlaxMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")
>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids
>>> outputs = model(**inputs, decoder_input_ids=decoder_input_ids)
>>> logits = outputs.logits
```"""
model_type = "mt5"
config_class = MT5Config
__all__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_mt5.py
LINES: 1
SIZE: 117.26 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mt5\modeling_mt5.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch mT5 model."""
import copy
import math
import os
import warnings
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_flex_attn_available,
is_torch_fx_proxy,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from ...utils.model_parallel_utils import assert_device_map, get_device_map
from .configuration_mt5 import MT5Config
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MT5Config"
_CHECKPOINT_FOR_DOC = "mt5-small"
####################################################
# This dict contains ids and associated url
# for the pretrained weights provided with the models
####################################################
PARALLELIZE_DOCSTRING = r"""
This is an experimental feature and is a subject to change at a moment's notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
it will evenly distribute blocks across all devices.
Args:
device_map (`Dict[int, list]`, *optional*):
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
automatically mapped to the first device (for esoteric reasons). That means that the first device should
have fewer attention modules mapped to it than other devices. For reference, the mt5 models have the
following number of attention modules:
- mt5-small: 6
- mt5-base: 12
- mt5-large: 24
- mt5-xl: 24
- mt5-xxl: 24
Example:
```python
# Here is an example of a device map on a machine with 4 GPUs using mt5-xl, which has a total of 24 attention modules:
model = MT5ForConditionalGeneration.from_pretrained("mt5-xl")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)
```
"""
DEPARALLELIZE_DOCSTRING = r"""
Moves the model to cpu from a model parallel state.
Example:
```python
# On a 4 GPU machine with mt5-xl:
model = MT5ForConditionalGeneration.from_pretrained("Mt5-xl")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map) # Splits the model across several devices
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
```
"""
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->MT5
class MT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the MT5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# MT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->MT5
class MT5DenseActDense(nn.Module):
def __init__(self, config: MT5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->MT5
class MT5DenseGatedActDense(nn.Module):
def __init__(self, config: MT5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->MT5
class MT5LayerFF(nn.Module):
def __init__(self, config: MT5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = MT5DenseGatedActDense(config)
else:
self.DenseReluDense = MT5DenseActDense(config)
self.layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->MT5
class MT5Attention(nn.Module):
def __init__(
self,
config: MT5Config,
has_relative_attention_bias=False,
layer_idx: Optional[int] = None,
):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.layer_idx = layer_idx
if layer_idx is None and self.is_decoder:
logger.warning_once(
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None, cache_position=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
if cache_position is None:
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
else:
context_position = cache_position[:, None].to(device)
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder)
batch_size, seq_length = hidden_states.shape[:2]
# if key_value_states are provided this layer is used as a cross-attention layer for the decoder
is_cross_attention = key_value_states is not None
query_states = self.q(hidden_states)
query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
else:
curr_past_key_value = past_key_value.self_attention_cache
current_states = key_value_states if is_cross_attention else hidden_states
if is_cross_attention and past_key_value is not None and is_updated:
# reuse k,v, cross_attentions
key_states = curr_past_key_value.key_cache[self.layer_idx]
value_states = curr_past_key_value.value_cache[self.layer_idx]
else:
key_states = self.k(current_states)
value_states = self.v(current_states)
key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
# compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
key_length = key_states.shape[-2]
# cache position is 0-indexed so we add 1 to get the real length of queries (aka with past)
real_seq_length = query_length if query_length is not None else cache_position[-1] + 1
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(
real_seq_length, key_length, device=scores.device, cache_position=cache_position
)
position_bias = position_bias[:, :, -seq_length:, :]
if mask is not None:
causal_mask = mask[:, :, :, : key_states.shape[-2]]
position_bias = position_bias + causal_mask
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, -1, self.inner_dim)
attn_output = self.o(attn_output)
outputs = (attn_output, past_key_value, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->MT5
class MT5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.SelfAttention = MT5Attention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
self.layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->MT5
class MT5LayerCrossAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.EncDecAttention = MT5Attention(config, has_relative_attention_bias=False, layer_idx=layer_idx)
self.layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
cache_position=cache_position,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5Block with T5->MT5
class MT5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(
MT5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx)
)
if self.is_decoder:
self.layer.append(MT5LayerCrossAttention(config, layer_idx=layer_idx))
self.layer.append(MT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
cache_position=None,
):
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states, past_key_value = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
query_length=cache_position[-1] + 1,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, past_key_value = cross_attention_outputs[:2]
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (past_key_value,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, past_key_value, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
def load_tf_weights_in_mt5(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
tf_weights = {}
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
tf_weights[name] = array
for txt_name in names:
name = txt_name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
tf_weights.pop(txt_name, None)
continue
if "_slot_" in name[-1]:
logger.info(f"Skipping {'/'.join(name)}")
tf_weights.pop(txt_name, None)
continue
pointer = model
array = tf_weights[txt_name]
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] in ["kernel", "scale", "embedding"]:
pointer = getattr(pointer, "weight")
elif scope_names[0] == "self_attention":
pointer = getattr(pointer, "layer")
pointer = pointer[0]
elif scope_names[0] == "enc_dec_attention":
pointer = getattr(pointer, "layer")
pointer = pointer[1]
elif scope_names[0] == "dense_relu_dense":
pointer = getattr(pointer, "layer")
pointer = pointer[2]
elif scope_names[0] == "rms_norm":
if hasattr(pointer, "layer_norm"):
pointer = getattr(pointer, "layer_norm")
elif hasattr(pointer, "final_layer_norm"):
pointer = getattr(pointer, "final_layer_norm")
elif scope_names[0] == "scale":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
elif scope_names[0] == "decoder" and name[1] == "logits":
continue
elif scope_names[0] == "logits":
pointer = getattr(pointer, "lm_head")
elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit():
pointer = getattr(pointer, f"wi_{scope_names[1]}")
continue
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if scope_names[0] not in ["kernel", "scale", "embedding"]:
pointer = getattr(pointer, "weight")
if scope_names[0] != "embedding":
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
array = np.transpose(array)
try:
assert pointer.shape == array.shape, (
f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
)
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array.astype(np.float32))
tf_weights.pop(txt_name, None)
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
return model
# Copied from transformers.models.t5.modeling_t5.T5ClassificationHead with T5->MT5
class MT5ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config: MT5Config):
super().__init__()
self.dense = nn.Linear(config.d_model, config.d_model)
self.dropout = nn.Dropout(p=config.classifier_dropout)
self.out_proj = nn.Linear(config.d_model, config.num_labels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel with T5->MT5, t5->mt5
class MT5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MT5Config
load_tf_weights = load_tf_weights_in_mt5
base_model_prefix = "transformer"
is_parallelizable = True
supports_gradient_checkpointing = True
_supports_quantized_cache = False # enc-dec models don't support yet
_supports_static_cache = True
_supports_cache_class = True
_no_split_modules = ["MT5Block"]
_keep_in_fp32_modules = ["wo"]
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, MT5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(
module,
(MT5Model, MT5ForConditionalGeneration, MT5EncoderModel, MT5ForQuestionAnswering),
):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "qa_outputs"):
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
module.qa_outputs.bias.data.zero_()
elif isinstance(module, MT5ForTokenClassification):
if hasattr(module, "classifier"):
module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0)
module.classifier.bias.data.zero_()
elif isinstance(module, MT5ClassificationHead):
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.dense, "bias") and module.dense.bias is not None:
module.dense.bias.data.zero_()
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
module.out_proj.bias.data.zero_()
elif isinstance(module, MT5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, MT5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, MT5Attention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In MT5 it is usually set to the pad_token_id. "
"See MT5 docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.t5.modeling_t5.T5Stack with T5->MT5
class MT5Stack(MT5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList(
[MT5Block(config, has_relative_attention_bias=bool(i == 0), layer_idx=i) for i in range(config.num_layers)]
)
self.final_layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`MT5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
" 'block.1': 1, ...}",
FutureWarning,
)
# Check validity of device_map
self.device_map = (
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
)
assert_device_map(self.device_map, len(self.block))
self.model_parallel = True
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
self.last_device = "cuda:" + str(max(self.device_map.keys()))
# Load onto devices
for k, v in self.device_map.items():
for layer in v:
cuda_device = "cuda:" + str(k)
self.block[layer] = self.block[layer].to(cuda_device)
# Set embed_tokens to first layer
self.embed_tokens = self.embed_tokens.to(self.first_device)
# Set final layer norm to last device
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.model_parallel = False
self.device_map = None
self.first_device = "cpu"
self.last_device = "cpu"
for i in range(len(self.block)):
self.block[i] = self.block[i].to("cpu")
self.embed_tokens = self.embed_tokens.to("cpu")
self.final_layer_norm = self.final_layer_norm.to("cpu")
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
cache_position=None,
):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(self.first_device)
self.embed_tokens = self.embed_tokens.to(self.first_device)
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
if self.embed_tokens is None:
raise ValueError("You have to initialize the model with valid token embeddings")
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
if use_cache is True:
if not self.is_decoder:
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
# initialize past_key_values
return_legacy_cache = False
return_self_attention_cache = False
if self.is_decoder and (use_cache or past_key_values is not None):
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
return_self_attention_cache = True
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
elif not isinstance(past_key_values, EncoderDecoderCache):
return_legacy_cache = True
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. "
"You should pass an instance of `EncoderDecoderCache` instead, e.g. "
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
)
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
elif past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
elif not self.is_decoder:
# do not pass cache object down the line for encoder stack
# it messes indexing later in decoder-stack because cache object is modified in-place
past_key_values = None
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if attention_mask is None and not is_torchdynamo_compiling():
# required mask seq length can be calculated via length of past cache
mask_seq_length = past_key_values_length + seq_length
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.config.is_decoder:
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values.self_attention_cache if past_key_values is not None else None,
output_attentions,
)
elif attention_mask is not None:
causal_mask = attention_mask[:, None, None, :]
causal_mask = causal_mask.to(dtype=inputs_embeds.dtype)
causal_mask = (1.0 - causal_mask) * torch.finfo(inputs_embeds.dtype).min
else:
causal_mask = None
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, layer_module in enumerate(self.block):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure that attention_mask is always on the same device as hidden_states
if causal_mask is not None:
causal_mask = causal_mask.to(hidden_states.device)
if position_bias is not None:
position_bias = position_bias.to(hidden_states.device)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
if encoder_extended_attention_mask is not None:
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
if encoder_decoder_position_bias is not None:
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
if layer_head_mask is not None:
layer_head_mask = layer_head_mask.to(hidden_states.device)
if cross_attn_layer_head_mask is not None:
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
causal_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
return_dict,
cache_position,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=causal_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
return_dict=return_dict,
cache_position=cache_position,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, next_decoder_cache = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_self_attention_cache:
next_cache = past_key_values.self_attention_cache
if return_legacy_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
MT5_START_DOCSTRING = r"""
The MT5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
text-to-text denoising generative setting.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MT5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MT5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you
should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [MT5 Training](./mt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
MT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [MT5
Training](./mt5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
MT5_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you
should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [MT5 Training](./mt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""
@add_start_docstrings(
"The bare MT5 Model transformer outputting raw hidden-states without any specific head on top.",
MT5_START_DOCSTRING,
)
class MT5Model(MT5PreTrainedModel):
r"""
Examples:
```python
>>> from transformers import MT5Model, AutoTokenizer
>>> model = MT5Model.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="pt")
>>> labels = tokenizer(text_target=summary, return_tensors="pt")
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
>>> hidden_states = outputs.last_hidden_state
```"""
model_type = "mt5"
config_class = MT5Config
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5Model.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = MT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = MT5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5Model.parallelize
def parallelize(self, device_map=None):
warnings.warn(
"`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':"
" 0, 'encoder.block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5Model.deparallelize
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
# Copied from transformers.models.t5.modeling_t5.T5Model.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5Model.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5Model.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5Model.get_decoder
def get_decoder(self):
return self.decoder
# Copied from transformers.models.t5.modeling_t5.T5Model._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5Model.forward with google-t5/->google/, T5->MT5, t5->mt5
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5Model.from_pretrained("google/mt5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for MT5Model.
>>> # This is not needed for torch's MT5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""MT5 Model with a `language modeling` head on top.""", MT5_START_DOCSTRING)
class MT5ForConditionalGeneration(MT5PreTrainedModel, GenerationMixin):
r"""
Examples:
```python
>>> from transformers import MT5ForConditionalGeneration, AutoTokenizer
>>> model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, text_target=summary, return_tensors="pt")
>>> outputs = model(**inputs)
>>> loss = outputs.loss
```"""
model_type = "mt5"
config_class = MT5Config
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = MT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = MT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.parallelize
def parallelize(self, device_map=None):
warnings.warn(
"`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you"
" should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also"
" provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance"
" {'encoder.block.0': 0, 'encoder.block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.decoder.first_device)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.deparallelize
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_decoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.forward with google-t5/->google/, T5->MT5, t5->mt5
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, MT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
>>> # inference
>>> input_ids = tokenizer(
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you.
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
sequence_output = decoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.encoder.first_device)
self.lm_head = self.lm_head.to(self.encoder.first_device)
sequence_output = sequence_output.to(self.lm_head.weight.device)
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
# move labels to correct device to enable PP
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_decoder_input_ids_from_labels
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
@add_start_docstrings(
"The bare MT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
MT5_START_DOCSTRING,
)
class MT5EncoderModel(MT5PreTrainedModel):
r"""
Examples:
```python
>>> from transformers import MT5EncoderModel, AutoTokenizer
>>> model = MT5EncoderModel.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> input_ids = tokenizer(article, return_tensors="pt").input_ids
>>> outputs = model(input_ids)
>>> hidden_state = outputs.last_hidden_state
```"""
model_type = "mt5"
config_class = MT5Config
_tied_weights_keys = ["encoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = MT5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.parallelize
def parallelize(self, device_map=None):
warnings.warn(
"`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
" 'block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.deparallelize
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MT5_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.forward with google-t5/->google/, T5->MT5, t5->mt5
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MT5EncoderModel
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5EncoderModel.from_pretrained("google/mt5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
@add_start_docstrings(
"""
MT5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
MT5_START_DOCSTRING,
)
class MT5ForSequenceClassification(MT5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5ForSequenceClassification.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.transformer = MT5Model(config)
self.classification_head = MT5ClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
self.model_parallel = False
@add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5ForSequenceClassification.forward
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
# Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates
# decoder_input_ids from input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
batch_size, _, hidden_size = sequence_output.shape
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
MT5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output)
e.g. for Named-Entity-Recognition (NER) tasks.
""",
MT5_START_DOCSTRING,
)
class MT5ForTokenClassification(MT5PreTrainedModel):
_tied_weights_keys = ["transformer.encoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5ForTokenClassification.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = MT5EncoderModel(config)
self.dropout = nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5ForTokenClassification.forward with T5->MT5
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits, outputs[2:-1])
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MT5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers
on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MT5_START_DOCSTRING,
)
class MT5ForQuestionAnswering(MT5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = MT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = MT5Stack(decoder_config, self.shared)
self.num_labels = config.num_labels
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
self.model_parallel = False
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_decoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.forward
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if start_positions is not None and end_positions is not None:
use_cache = False
# Copied from models.bart.modeling_bart.BartModel.forward
# different to other models, T5 automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=None,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1).to(start_logits.device)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1).to(end_logits.device)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
__all__ = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5ForSequenceClassification",
"MT5ForTokenClassification",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
```
|
==================================================================================================================================
SOURCE CODE FILE: modeling_tf_mt5.py
LINES: 1
SIZE: 3.33 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mt5\modeling_tf_mt5.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tensorflow mT5 model."""
from ...utils import logging
from ..t5.modeling_tf_t5 import TFT5EncoderModel, TFT5ForConditionalGeneration, TFT5Model
from .configuration_mt5 import MT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "T5Config"
class TFMT5Model(TFT5Model):
r"""
This class overrides [`TFT5Model`]. Please check the superclass for the appropriate documentation alongside usage
examples.
Examples:
```python
>>> from transformers import TFMT5Model, AutoTokenizer
>>> model = TFMT5Model.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="tf")
>>> labels = tokenizer(text_target=summary, return_tensors="tf")
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
>>> hidden_states = outputs.last_hidden_state
```"""
model_type = "mt5"
config_class = MT5Config
class TFMT5ForConditionalGeneration(TFT5ForConditionalGeneration):
r"""
This class overrides [`TFT5ForConditionalGeneration`]. Please check the superclass for the appropriate
documentation alongside usage examples.
Examples:
```python
>>> from transformers import TFMT5ForConditionalGeneration, AutoTokenizer
>>> model = TFMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, text_target=summary, return_tensors="tf")
>>> outputs = model(**inputs)
>>> loss = outputs.loss
```"""
model_type = "mt5"
config_class = MT5Config
class TFMT5EncoderModel(TFT5EncoderModel):
r"""
This class overrides [`TFT5EncoderModel`]. Please check the superclass for the appropriate documentation alongside
usage examples.
Examples:
```python
>>> from transformers import TFMT5EncoderModel, AutoTokenizer
>>> model = TFMT5EncoderModel.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> input_ids = tokenizer(article, return_tensors="tf").input_ids
>>> outputs = model(input_ids)
>>> hidden_state = outputs.last_hidden_state
```"""
model_type = "mt5"
config_class = MT5Config
__all__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
```
|
===================================================================================================================================
SOURCE CODE FILE: tokenization_mt5.py
LINES: 1
SIZE: 0.73 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mt5\tokenization_mt5.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""mT5 tokenization file"""
from ..t5 import T5Tokenizer
class MT5Tokenizer(T5Tokenizer):
pass
__all__ = ["MT5Tokenizer"]
```
|
========================================================================================================================================
SOURCE CODE FILE: tokenization_mt5_fast.py
LINES: 1
SIZE: 0.74 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mt5\tokenization_mt5_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""mT5 tokenization file"""
from ..t5 import T5TokenizerFast
class MT5TokenizerFast(T5TokenizerFast):
pass
__all__ = ["MT5TokenizerFast"]
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.01 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\musicgen\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_musicgen import *
from .modeling_musicgen import *
from .processing_musicgen import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==============================================================================================================================================
SOURCE CODE FILE: configuration_musicgen.py
LINES: 1
SIZE: 10.62 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\musicgen\configuration_musicgen.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MusicGen model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
logger = logging.get_logger(__name__)
class MusicgenDecoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`MusicgenDecoder`]. It is used to instantiate a
MusicGen decoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MusicGen
[facebook/musicgen-small](https://huggingface.co/facebook/musicgen-small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 2048):
Vocabulary size of the MusicgenDecoder model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`MusicgenDecoder`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of decoder layers.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer block.
ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically, set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_factor (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(hidden_size).
use_cache (`bool`, *optional*, defaults to `True`):
Whether the model should return the last key/values attentions (not used by all models)
num_codebooks (`int`, *optional*, defaults to 4):
The number of parallel codebooks forwarded to the model.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether input and output word embeddings should be tied.
audio_channels (`int`, *optional*, defaults to 1
Number of channels in the audio data. Either 1 for mono or 2 for stereo. Stereo models generate a separate
audio stream for the left/right output channels. Mono models generate a single audio stream output.
"""
model_type = "musicgen_decoder"
base_config_key = "decoder_config"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=2048,
max_position_embeddings=2048,
num_hidden_layers=24,
ffn_dim=4096,
num_attention_heads=16,
layerdrop=0.0,
use_cache=True,
activation_function="gelu",
hidden_size=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
initializer_factor=0.02,
scale_embedding=False,
num_codebooks=4,
audio_channels=1,
pad_token_id=2048,
bos_token_id=2048,
eos_token_id=None,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.ffn_dim = ffn_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.initializer_factor = initializer_factor
self.layerdrop = layerdrop
self.use_cache = use_cache
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.num_codebooks = num_codebooks
if audio_channels not in [1, 2]:
raise ValueError(f"Expected 1 (mono) or 2 (stereo) audio channels, got {audio_channels} channels.")
self.audio_channels = audio_channels
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class MusicgenConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MusicgenModel`]. It is used to instantiate a
MusicGen model according to the specified arguments, defining the text encoder, audio encoder and MusicGen decoder
configs.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
kwargs (*optional*):
Dictionary of keyword arguments. Notably:
- **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the text encoder config.
- **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the audio encoder config.
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
the decoder config.
Example:
```python
>>> from transformers import (
... MusicgenConfig,
... MusicgenDecoderConfig,
... T5Config,
... EncodecConfig,
... MusicgenForConditionalGeneration,
... )
>>> # Initializing text encoder, audio encoder, and decoder model configurations
>>> text_encoder_config = T5Config()
>>> audio_encoder_config = EncodecConfig()
>>> decoder_config = MusicgenDecoderConfig()
>>> configuration = MusicgenConfig.from_sub_models_config(
... text_encoder_config, audio_encoder_config, decoder_config
... )
>>> # Initializing a MusicgenForConditionalGeneration (with random weights) from the facebook/musicgen-small style configuration
>>> model = MusicgenForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> config_text_encoder = model.config.text_encoder
>>> config_audio_encoder = model.config.audio_encoder
>>> config_decoder = model.config.decoder
>>> # Saving the model, including its configuration
>>> model.save_pretrained("musicgen-model")
>>> # loading model and config from pretrained folder
>>> musicgen_config = MusicgenConfig.from_pretrained("musicgen-model")
>>> model = MusicgenForConditionalGeneration.from_pretrained("musicgen-model", config=musicgen_config)
```"""
model_type = "musicgen"
sub_configs = {
"text_encoder": AutoConfig,
"audio_encoder": AutoConfig,
"decoder": MusicgenDecoderConfig,
}
is_composition = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")
text_encoder_config = kwargs.pop("text_encoder")
text_encoder_model_type = text_encoder_config.pop("model_type")
audio_encoder_config = kwargs.pop("audio_encoder")
audio_encoder_model_type = audio_encoder_config.pop("model_type")
decoder_config = kwargs.pop("decoder")
self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
self.decoder = MusicgenDecoderConfig(**decoder_config)
self.is_encoder_decoder = True
@classmethod
def from_sub_models_config(
cls,
text_encoder_config: PretrainedConfig,
audio_encoder_config: PretrainedConfig,
decoder_config: MusicgenDecoderConfig,
**kwargs,
):
r"""
Instantiate a [`MusicgenConfig`] (or a derived class) from text encoder, audio encoder and decoder
configurations.
Returns:
[`MusicgenConfig`]: An instance of a configuration object
"""
return cls(
text_encoder=text_encoder_config.to_dict(),
audio_encoder=audio_encoder_config.to_dict(),
decoder=decoder_config.to_dict(),
**kwargs,
)
@property
# This is a property because you might want to change the codec model on the fly
def sampling_rate(self):
return self.audio_encoder.sampling_rate
__all__ = ["MusicgenConfig", "MusicgenDecoderConfig"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 2.53 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\musicgen_melody\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
is_torchaudio_available,
)
_import_structure = {
"configuration_musicgen_melody": [
"MusicgenMelodyConfig",
"MusicgenMelodyDecoderConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_musicgen_melody"] = [
"MusicgenMelodyForConditionalGeneration",
"MusicgenMelodyForCausalLM",
"MusicgenMelodyModel",
"MusicgenMelodyPreTrainedModel",
]
try:
if not is_torchaudio_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_musicgen_melody"] = ["MusicgenMelodyFeatureExtractor"]
_import_structure["processing_musicgen_melody"] = ["MusicgenMelodyProcessor"]
if TYPE_CHECKING:
from .configuration_musicgen_melody import (
MusicgenMelodyConfig,
MusicgenMelodyDecoderConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_musicgen_melody import (
MusicgenMelodyForCausalLM,
MusicgenMelodyForConditionalGeneration,
MusicgenMelodyModel,
MusicgenMelodyPreTrainedModel,
)
try:
if not is_torchaudio_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_musicgen_melody import MusicgenMelodyFeatureExtractor
from .processing_musicgen_melody import MusicgenMelodyProcessor
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
```
|
============================================================================================================================================================
SOURCE CODE FILE: configuration_musicgen_melody.py
LINES: 1
SIZE: 11.65 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\musicgen_melody\configuration_musicgen_melody.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Musicgen Melody model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
logger = logging.get_logger(__name__)
class MusicgenMelodyDecoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`MusicgenMelodyDecoder`]. It is used to instantiate a
Musicgen Melody decoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Musicgen Melody
[facebook/musicgen-melody](https://huggingface.co/facebook/musicgen-melody) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 2048):
Vocabulary size of the MusicgenMelodyDecoder model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`MusicgenMelodyDecoder`].
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically, set this to something large
just in case (e.g., 512 or 1024 or 2048).
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of decoder layers.
ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer block.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether the model should return the last key/values attentions (not used by all models)
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
initializer_factor (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(hidden_size).
num_codebooks (`int`, *optional*, defaults to 4):
The number of parallel codebooks forwarded to the model.
audio_channels (`int`, *optional*, defaults to 1):
Number of audio channels used by the model (either mono or stereo). Stereo models generate a separate
audio stream for the left/right output channels. Mono models generate a single audio stream output.
pad_token_id (`int`, *optional*, defaults to 2048): The id of the *padding* token.
bos_token_id (`int`, *optional*, defaults to 2048): The id of the *beginning-of-sequence* token.
eos_token_id (`int`, *optional*): The id of the *end-of-sequence* token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie word embeddings with the text encoder.
"""
model_type = "musicgen_melody_decoder"
base_config_key = "decoder_config"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=2048,
max_position_embeddings=2048,
num_hidden_layers=24,
ffn_dim=4096,
num_attention_heads=16,
layerdrop=0.0,
use_cache=True,
activation_function="gelu",
hidden_size=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
initializer_factor=0.02,
scale_embedding=False,
num_codebooks=4,
audio_channels=1,
pad_token_id=2048,
bos_token_id=2048,
eos_token_id=None,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.ffn_dim = ffn_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.initializer_factor = initializer_factor
self.layerdrop = layerdrop
self.use_cache = use_cache
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.num_codebooks = num_codebooks
if audio_channels not in [1, 2]:
raise ValueError(f"Expected 1 (mono) or 2 (stereo) audio channels, got {audio_channels} channels.")
self.audio_channels = audio_channels
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class MusicgenMelodyConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MusicgenMelodyModel`]. It is used to instantiate a
Musicgen Melody model according to the specified arguments, defining the text encoder, audio encoder and Musicgen Melody decoder
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Musicgen Melody
[facebook/musicgen-melody](https://huggingface.co/facebook/musicgen-melody) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_chroma (`int`, *optional*, defaults to 12): Number of chroma bins to use.
chroma_length (`int`, *optional*, defaults to 235):
Maximum chroma duration if audio is used to condition the model. Corresponds to the maximum duration used during training.
kwargs (*optional*):
Dictionary of keyword arguments. Notably:
- **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the text encoder config.
- **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the audio encoder config.
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
the decoder config.
Example:
```python
>>> from transformers import (
... MusicgenMelodyConfig,
... MusicgenMelodyDecoderConfig,
... T5Config,
... EncodecConfig,
... MusicgenMelodyForConditionalGeneration,
... )
>>> # Initializing text encoder, audio encoder, and decoder model configurations
>>> text_encoder_config = T5Config()
>>> audio_encoder_config = EncodecConfig()
>>> decoder_config = MusicgenMelodyDecoderConfig()
>>> configuration = MusicgenMelodyConfig.from_sub_models_config(
... text_encoder_config, audio_encoder_config, decoder_config
... )
>>> # Initializing a MusicgenMelodyForConditionalGeneration (with random weights) from the facebook/musicgen-melody style configuration
>>> model = MusicgenMelodyForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> config_text_encoder = model.config.text_encoder
>>> config_audio_encoder = model.config.audio_encoder
>>> config_decoder = model.config.decoder
>>> # Saving the model, including its configuration
>>> model.save_pretrained("musicgen_melody-model")
>>> # loading model and config from pretrained folder
>>> musicgen_melody_config = MusicgenMelodyConfig.from_pretrained("musicgen_melody-model")
>>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("musicgen_melody-model", config=musicgen_melody_config)
```"""
model_type = "musicgen_melody"
sub_configs = {
"text_encoder": AutoConfig,
"audio_encoder": AutoConfig,
"decoder": MusicgenMelodyDecoderConfig,
}
is_composition = True
def __init__(
self,
num_chroma=12,
chroma_length=235,
**kwargs,
):
super().__init__(**kwargs)
if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")
text_encoder_config = kwargs.pop("text_encoder")
text_encoder_model_type = text_encoder_config.pop("model_type")
audio_encoder_config = kwargs.pop("audio_encoder")
audio_encoder_model_type = audio_encoder_config.pop("model_type")
decoder_config = kwargs.pop("decoder")
self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
self.decoder = MusicgenMelodyDecoderConfig(**decoder_config)
self.is_encoder_decoder = False
self.num_chroma = num_chroma
self.chroma_length = chroma_length
@classmethod
def from_sub_models_config(
cls,
text_encoder_config: PretrainedConfig,
audio_encoder_config: PretrainedConfig,
decoder_config: MusicgenMelodyDecoderConfig,
**kwargs,
):
r"""
Instantiate a [`MusicgenMelodyConfig`] (or a derived class) from text encoder, audio encoder and decoder
configurations.
Returns:
[`MusicgenMelodyConfig`]: An instance of a configuration object
"""
return cls(
text_encoder=text_encoder_config.to_dict(),
audio_encoder=audio_encoder_config.to_dict(),
decoder=decoder_config.to_dict(),
**kwargs,
)
@property
# This is a property because you might want to change the codec model on the fly
def sampling_rate(self):
return self.audio_encoder.sampling_rate
```
|
=================================================================================================================================================================
SOURCE CODE FILE: feature_extraction_musicgen_melody.py
LINES: 1
SIZE: 14.89 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\musicgen_melody\feature_extraction_musicgen_melody.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for Musicgen Melody
"""
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import chroma_filter_bank
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, is_torch_available, is_torchaudio_available, logging
if is_torch_available():
import torch
if is_torchaudio_available():
import torchaudio
logger = logging.get_logger(__name__)
class MusicgenMelodyFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a MusicgenMelody feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
This class extracts chroma features from audio processed by [Demucs](https://github.com/adefossez/demucs/tree/main) or
directly from raw audio waveform.
Args:
feature_size (`int`, *optional*, defaults to 12):
The feature dimension of the extracted features.
sampling_rate (`int`, *optional*, defaults to 32000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
hop_length (`int`, *optional*, defaults to 4096):
Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
chunk_length (`int`, *optional*, defaults to 30):
The maximum number of chunks of `sampling_rate` samples used to trim and pad longer or shorter audio
sequences.
n_fft (`int`, *optional*, defaults to 16384):
Size of the Fourier transform.
num_chroma (`int`, *optional*, defaults to 12):
Number of chroma bins to use.
padding_value (`float`, *optional*, defaults to 0.0):
Padding value used to pad the audio.
return_attention_mask (`bool`, *optional*, defaults to `False`):
Whether to return the attention mask. Can be overwritten when calling the feature extractor.
[What are attention masks?](../glossary#attention-mask)
<Tip>
For Whisper models, `attention_mask` should always be passed for batched inference, to avoid subtle
bugs.
</Tip>
stem_indices (`List[int]`, *optional*, defaults to `[3, 2]`):
Stem channels to extract if demucs outputs are passed.
"""
model_input_names = ["input_features"]
def __init__(
self,
feature_size=12,
sampling_rate=32000,
hop_length=4096,
chunk_length=30,
n_fft=16384,
num_chroma=12,
padding_value=0.0,
return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
stem_indices=[3, 2],
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
return_attention_mask=return_attention_mask,
**kwargs,
)
self.n_fft = n_fft
self.hop_length = hop_length
self.chunk_length = chunk_length
self.n_samples = chunk_length * sampling_rate
self.sampling_rate = sampling_rate
self.chroma_filters = torch.from_numpy(
chroma_filter_bank(sampling_rate=sampling_rate, num_frequency_bins=n_fft, tuning=0, num_chroma=num_chroma)
).float()
self.spectrogram = torchaudio.transforms.Spectrogram(
n_fft=n_fft, win_length=n_fft, hop_length=hop_length, power=2, center=True, pad=0, normalized=True
)
self.stem_indices = stem_indices
def _torch_extract_fbank_features(self, waveform: torch.Tensor) -> torch.Tensor:
"""
Compute the chroma spectrogram of the provided audio using the torchaudio spectrogram implementation and the librosa chroma features.
"""
# if wav length is not long enough, pad it
wav_length = waveform.shape[-1]
if wav_length < self.n_fft:
pad = self.n_fft - wav_length
rest = 0 if pad % 2 == 0 else 1
waveform = torch.nn.functional.pad(waveform, (pad // 2, pad // 2 + rest), "constant", 0)
# squeeze alongside channel dimension
spec = self.spectrogram(waveform).squeeze(1)
# sum along the frequency dimension
raw_chroma = torch.einsum("cf, ...ft->...ct", self.chroma_filters, spec)
# normalise with max value
norm_chroma = torch.nn.functional.normalize(raw_chroma, p=float("inf"), dim=-2, eps=1e-6)
# transpose time and chroma dimension -> (batch, time, chroma)
norm_chroma = norm_chroma.transpose(1, 2)
# replace max value alongside chroma dimension with 1 and replace the rest with 0
idx = norm_chroma.argmax(-1, keepdim=True)
norm_chroma[:] = 0
norm_chroma.scatter_(dim=-1, index=idx, value=1)
return norm_chroma
def _extract_stem_indices(self, audio, sampling_rate=None):
"""
Extracts stems from the output of the [Demucs](https://github.com/adefossez/demucs/tree/main) audio separation model,
then converts to mono-channel and resample to the feature extractor sampling rate.
Args:
audio (`torch.Tensor` of shape `(batch_size, num_stems, channel_size, audio_length)`):
The output of the Demucs model to be processed.
sampling_rate (`int`, *optional*):
Demucs sampling rate. If not specified, defaults to `44000`.
"""
sampling_rate = 44000 if sampling_rate is None else sampling_rate
# extract "vocals" and "others" sources from audio encoder (demucs) output
# [batch_size, num_stems, channel_size, audio_length]
wav = audio[:, torch.tensor(self.stem_indices)]
# merge extracted stems to single waveform
wav = wav.sum(1)
# convert to mono-channel waveform
wav = wav.mean(dim=1, keepdim=True)
# resample to model sampling rate
# not equivalent to julius.resample
if sampling_rate != self.sampling_rate:
wav = torchaudio.functional.resample(
wav, sampling_rate, self.sampling_rate, rolloff=0.945, lowpass_filter_width=24
)
# [batch_size, 1, audio_length] -> [batch_size, audio_length]
wav = wav.squeeze(1)
return wav
def __call__(
self,
audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
truncation: bool = True,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = None,
padding: Optional[str] = True,
max_length: Optional[int] = None,
sampling_rate: Optional[int] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s).
Args:
audio (`torch.Tensor`, `np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a torch tensor, a numpy array, a list of float
values, a list of numpy arrays, a list of torch tensors, or a list of list of float values.
If `audio` is the output of Demucs, it has to be a torch tensor of shape `(batch_size, num_stems, channel_size, audio_length)`.
Otherwise, it must be mono or stereo channel audio.
truncation (`bool`, *optional*, default to `True`):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
pad_to_multiple_of (`int`, *optional*, defaults to None):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default.
[What are attention masks?](../glossary#attention-mask)
<Tip>
For Musicgen Melody models, audio `attention_mask` is not necessary.
</Tip>
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
sampling_rate (`int`, *optional*):
The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
Note that if `audio` is the output of Demucs, `sampling_rate` must be the sampling rate at which Demucs operates.
"""
if sampling_rate is None:
logger.warning_once(
f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. "
"Failing to do so can result in silent errors that might be hard to debug."
)
if isinstance(audio, torch.Tensor) and len(audio.shape) == 4:
logger.warning_once(
"`audio` is a 4-dimensional torch tensor and has thus been recognized as the output of `Demucs`. "
"If this is not the case, make sure to read Musicgen Melody docstrings and "
"to correct `audio` to get the right behaviour."
"Link to the docstrings: https://huggingface.co/docs/transformers/main/en/model_doc/musicgen_melody"
)
audio = self._extract_stem_indices(audio, sampling_rate=sampling_rate)
elif sampling_rate is not None and sampling_rate != self.sampling_rate:
audio = torchaudio.functional.resample(
audio, sampling_rate, self.sampling_rate, rolloff=0.945, lowpass_filter_width=24
)
is_batched = isinstance(audio, (np.ndarray, torch.Tensor)) and len(audio.shape) > 1
is_batched = is_batched or (
isinstance(audio, (list, tuple)) and (isinstance(audio[0], (torch.Tensor, np.ndarray, tuple, list)))
)
if is_batched and not isinstance(audio[0], torch.Tensor):
audio = [torch.tensor(speech, dtype=torch.float32).unsqueeze(-1) for speech in audio]
elif is_batched:
audio = [speech.unsqueeze(-1) for speech in audio]
elif not is_batched and not isinstance(audio, torch.Tensor):
audio = torch.tensor(audio, dtype=torch.float32).unsqueeze(-1)
if isinstance(audio[0], torch.Tensor) and audio[0].dtype is torch.float64:
audio = [speech.to(torch.float32) for speech in audio]
# always return batch
if not is_batched:
audio = [audio]
if len(audio[0].shape) == 3:
logger.warning_once(
"`audio` has been detected as a batch of stereo signals. Will be convert to mono signals. "
"If this is an undesired behaviour, make sure to read Musicgen Melody docstrings and "
"to correct `audio` to get the right behaviour."
"Link to the docstrings: https://huggingface.co/docs/transformers/main/en/model_doc/musicgen_melody"
)
# convert to mono-channel waveform
audio = [stereo.mean(dim=0) for stereo in audio]
batched_speech = BatchFeature({"input_features": audio})
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length if max_length else self.n_samples,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_tensors="pt",
)
input_features = self._torch_extract_fbank_features(padded_inputs["input_features"].squeeze(-1))
padded_inputs["input_features"] = input_features
if return_attention_mask:
# rescale from raw audio length to spectrogram length
padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length]
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary. Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
output["feature_extractor_type"] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "window" in output:
del output["window"]
if "chroma_filters" in output:
del output["chroma_filters"]
if "spectrogram" in output:
del output["spectrogram"]
return output
```
|
=======================================================================================================================================================
SOURCE CODE FILE: modeling_musicgen_melody.py
LINES: 1
SIZE: 125.69 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\musicgen_melody\modeling_musicgen_melody.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Musicgen Melody model."""
import copy
import inspect
import math
import random
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import (
ClassifierFreeGuidanceLogitsProcessor,
GenerationConfig,
GenerationMixin,
GenerationMode,
LogitsProcessorList,
StoppingCriteriaList,
)
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
BaseModelOutputWithPast,
ModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_auto import AutoModel, AutoModelForTextEncoding
from .configuration_musicgen_melody import MusicgenMelodyConfig, MusicgenMelodyDecoderConfig
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
if TYPE_CHECKING:
from ...generation.streamers import BaseStreamer
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MusicgenMelodyConfig"
_CHECKPOINT_FOR_DOC = "facebook/musicgen-melody"
@dataclass
class MusicgenMelodyOutputWithPast(ModelOutput):
"""
Base class for Musicgen Melody autoregressive outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of conditional hidden-states representing the concatenation of the projeted text encoder output and the projeted audio encoder output.
Used as a conditional signal.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[torch.FloatTensor] = None
# Copied from transformers.models.musicgen.modeling_musicgen.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
# transpose to get (bsz, num_codebooks, seq_len)
input_ids = input_ids.transpose(1, 2)
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
if decoder_start_token_id is None:
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenSinusoidalPositionalEmbedding with Musicgen->MusicgenMelody
class MusicgenMelodySinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int):
super().__init__()
self.embedding_dim = embedding_dim
self.make_weights(num_positions, embedding_dim)
def make_weights(self, num_embeddings: int, embedding_dim: int):
emb_weights = self.get_embedding(num_embeddings, embedding_dim)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.weights = nn.Parameter(emb_weights)
self.weights.requires_grad = False
self.weights.detach_()
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int):
"""
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
return emb.to(torch.get_default_dtype())
@torch.no_grad()
# Ignore copy
def forward(self, inputs_embeds: torch.Tensor, past_key_values_length: int = 0):
bsz, seq_len, _ = inputs_embeds.size()
# Create the position ids from the input token ids.
position_ids = (torch.arange(seq_len) + past_key_values_length).to(inputs_embeds.device)
# expand embeddings if needed
if seq_len > self.weights.size(0):
self.make_weights(seq_len + self.offset, self.embedding_dim)
return self.weights.index_select(0, position_ids.view(-1)).detach()
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MusicgenMelody
class MusicgenMelodyAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[MusicgenMelodyConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->MusicgenMelody
class MusicgenMelodyFlashAttention2(MusicgenMelodyAttention):
"""
MusicgenMelody flash attention module. This module inherits from `MusicgenMelodyAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# MusicgenMelodyFlashAttention2 attention does not support output_attentions
if output_attentions:
raise ValueError("MusicgenMelodyFlashAttention2 attention does not support output_attentions")
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, q_len, _ = hidden_states.size()
# get query proj
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0].transpose(1, 2)
value_states = past_key_value[1].transpose(1, 2)
elif is_cross_attention:
# cross_attentions
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
else:
# self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=self.dropout if self.training else 0.0,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartSdpaAttention with Bart->MusicgenMelody
class MusicgenMelodySdpaAttention(MusicgenMelodyAttention):
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions or layer_head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"MusicgenMelodyModel is using MusicgenMelodySdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states,
key_value_states=key_value_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz)
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
MUSICGEN_MELODY_ATTENTION_CLASSES = {
"eager": MusicgenMelodyAttention,
"sdpa": MusicgenMelodySdpaAttention,
"flash_attention_2": MusicgenMelodyFlashAttention2,
}
class MusicgenMelodyDecoderLayer(nn.Module):
def __init__(self, config: MusicgenMelodyDecoderConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = MUSICGEN_MELODY_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=False,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False)
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenPreTrainedModel with Musicgen->MusicgenMelody
class MusicgenMelodyPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MusicgenMelodyDecoderConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MusicgenMelodyDecoderLayer", "MusicgenMelodyAttention"]
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
std = self.config.initializer_factor
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, MusicgenMelodySinusoidalPositionalEmbedding):
weights = module.get_embedding(*module.weights.shape)
weights = nn.Parameter(weights, requires_grad=False)
weights.detach_()
module.weights = weights
MUSICGEN_MELODY_START_DOCSTRING = r"""
The Musicgen Melody model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by
Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is a
decoder-only transformer trained on the task of conditional music generation.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MusicgenMelodyConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MUSICGEN_MELODY_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
input_features (`torch.FloatTensor` of shape `(batch_size, audio_sequence_length, num_chroma)`):
Input audio features.
This should be returned by the [`MusicgenMelodyFeatureExtractor`] class that you can also
retrieve from [`AutoFeatureExtractor`]. See [`MusicgenMelodyFeatureExtractor.__call__`] for details.
decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes.
Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes,
such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
<Tip warning={true}>
The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks,
target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If
you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of
frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks,
target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as
`decoder_input_ids`.
</Tip>
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, encoder_sequence_length + sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of conditional hidden-states representing the concatenation of the projeted text encoder output and the projeted audio encoder output.
Used as a conditional signal and will thus be concatenated to the projeted `decoder_input_ids`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`):
Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes.
Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes,
such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details.
[What are input IDs?](../glossary#input-ids)
<Tip warning={true}>
The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks,
target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If
you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of
frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks,
target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as
`input_ids`.
</Tip>
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states representing the concatenation of the text encoder output and the processed audio encoder output.
Used as a conditional signal and will thus be concatenated to the projeted `decoder_input_ids`.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing attention on conditional hidden states. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenDecoder with MUSICGEN->MUSICGEN_MELODY,Musicgen->MusicgenMelody
class MusicgenMelodyDecoder(MusicgenMelodyPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MusicgenMelodyDecoderLayer`]
"""
def __init__(self, config: MusicgenMelodyDecoderConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.max_target_positions = config.max_position_embeddings
self.d_model = config.hidden_size
self.num_codebooks = config.num_codebooks
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
embed_dim = config.vocab_size + 1
self.embed_tokens = nn.ModuleList(
[nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)]
)
self.embed_positions = MusicgenMelodySinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.hidden_size,
)
self.layers = nn.ModuleList([MusicgenMelodyDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.attn_implementation = config._attn_implementation
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING)
# Ignore copy
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
# (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len)
input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1])
bsz, num_codebooks, seq_len = input.shape
input_shape = (bsz, seq_len)
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1:]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)])
if encoder_hidden_states is not None:
# take care of attention masks
if encoder_attention_mask is not None and attention_mask is None:
attention_mask = torch.ones(inputs_embeds.shape[:2], device=inputs_embeds.device)
if attention_mask is not None:
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_states.shape[:2], device=attention_mask.device)
attention_mask = torch.cat([encoder_attention_mask, attention_mask], dim=1)
# fuse encoder_hidden_states and inputs_embeds
inputs_embeds = torch.cat([encoder_hidden_states, inputs_embeds], dim=1)
input_shape = inputs_embeds.size()[:-1]
if self.attn_implementation == "flash_attention_2":
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self.attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
input_shape,
inputs_embeds,
past_key_values_length,
)
else:
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# embed positions
positions = self.embed_positions(inputs_embeds, past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
next_decoder_cache = () if use_cache else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `head_mask` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.forward,
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_attentions += (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
@add_start_docstrings(
"The bare MusicgenMelody decoder model outputting raw hidden-states without any specific head on top.",
MUSICGEN_MELODY_START_DOCSTRING,
)
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenModel with MUSICGEN->MUSICGEN_MELODY,Musicgen->MusicgenMelody
class MusicgenMelodyModel(MusicgenMelodyPreTrainedModel):
def __init__(self, config: MusicgenMelodyDecoderConfig):
super().__init__(config)
self.decoder = MusicgenMelodyDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING)
# Ignore copy
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs
return BaseModelOutputWithPast(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
)
@add_start_docstrings(
"The Musicgen Melody decoder model with a language modelling head on top.",
MUSICGEN_MELODY_START_DOCSTRING,
)
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForCausalLM with MUSICGEN->MUSICGEN_MELODY,Musicgen->MusicgenMelody,MusicGen->Musicgen Melody
class MusicgenMelodyForCausalLM(MusicgenMelodyPreTrainedModel, GenerationMixin):
def __init__(self, config: MusicgenMelodyDecoderConfig):
super().__init__(config)
self.model = MusicgenMelodyModel(config)
self.num_codebooks = config.num_codebooks
self.lm_heads = nn.ModuleList(
[nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)]
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_heads
def set_output_embeddings(self, new_embeddings):
self.lm_heads = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MusicgenMelodyOutputWithPast, config_class=_CONFIG_FOR_DOC)
# Ignore copy
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MusicgenMelodyOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (labels is not None) and (input_ids is None and inputs_embeds is None):
input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.bos_token_id)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1)
loss = None
if labels is not None:
# since encoder hidden states have been concatenated to the decoder hidden states,
# we take the last timestamps corresponding to labels
logits = lm_logits[:, :, -labels.shape[1] :]
loss_fct = CrossEntropyLoss()
loss = torch.zeros([], device=self.device)
# per codebook cross-entropy
# ref: https://github.com/facebookresearch/audiocraft/blob/69fea8b290ad1b4b40d28f92d1dfc0ab01dbab85/audiocraft/solvers/musicgen.py#L242-L243
# -100 labels are ignored
labels = labels.masked_fill(labels == self.config.pad_token_id, -100)
# per codebook cross-entropy
for codebook in range(self.config.num_codebooks):
codebook_logits = logits[:, codebook].contiguous().view(-1, logits.shape[-1])
codebook_labels = labels[..., codebook].contiguous().view(-1)
loss += loss_fct(codebook_logits, codebook_labels)
loss = loss / self.config.num_codebooks
# (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size)
lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:])
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MusicgenMelodyOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Ignore copy
def prepare_inputs_for_generation(
self,
input_ids,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
past_key_values=None,
use_cache=True,
delay_pattern_mask=None,
guidance_scale=None,
**kwargs,
):
# Overwritten -- MusicGen has custom processing
if delay_pattern_mask is None:
input_ids, delay_pattern_mask = self.build_delay_pattern_mask(
input_ids,
pad_token_id=self.generation_config.pad_token_id,
max_length=self.generation_config.max_length,
)
# apply the delay pattern mask
input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
if guidance_scale is not None and guidance_scale > 1:
# for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these
# before sampling)
input_ids = input_ids.repeat((2, 1))
if attention_mask is not None:
attention_mask = attention_mask.repeat((2, 1))
if encoder_hidden_states is not None:
encoder_hidden_states = torch.concatenate(
[encoder_hidden_states, torch.zeros_like(encoder_hidden_states)], dim=0
)
if encoder_attention_mask is not None:
encoder_attention_mask = torch.concatenate(
encoder_attention_mask, torch.zeros_like(encoder_attention_mask), dim=0
)
if past_key_values is not None:
input_ids = input_ids[:, -1:]
# we only want to use conditional signal in the 1st generation step but keeping the attention mask
encoder_hidden_states = None
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
"head_mask": head_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
def build_delay_pattern_mask(
self, input_ids: torch.LongTensor, pad_token_id: int, max_length: Optional[int] = None
):
"""Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by
one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there
are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks,
seq_len)`:
- [P, -1, -1, -1, -1, P, P, P]
- [P, P, -1, -1, -1, -1, P, P]
- [P, P, P, -1, -1, -1, -1, P]
- [P, P, P, P, -1, -1, -1, -1]
where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include
a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the
mask is set to the value in the prompt:
- [P, a, b, -1, -1, P, P, P]
- [P, P, c, d, -1, -1, P, P]
- [P, P, P, e, f, -1, -1, P]
- [P, P, P, P, g, h, -1, -1]
where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1
tokens in our prediction.
"""
# (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len)
input_ids = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1])
bsz, num_codebooks, seq_len = input_ids.shape
max_length = max_length if max_length is not None else self.generation_config.max_length
input_ids_shifted = (
torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1
)
channel_codebooks = num_codebooks // 2 if self.config.audio_channels == 2 else num_codebooks
# we only apply the mask if we have a large enough seq len - otherwise we return as is
if max_length < 2 * channel_codebooks - 1:
return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1)
# fill the shifted ids with the prompt entries, offset by the codebook idx
for codebook in range(channel_codebooks):
if self.config.audio_channels == 1:
# mono channel - loop over the codebooks one-by-one
input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook]
else:
# left/right channels are interleaved in the generated codebooks, so handle one then the other
input_ids_shifted[:, 2 * codebook, codebook : seq_len + codebook] = input_ids[:, 2 * codebook]
input_ids_shifted[:, 2 * codebook + 1, codebook : seq_len + codebook] = input_ids[:, 2 * codebook + 1]
# construct a pattern mask that indicates the positions of padding tokens for each codebook
# first fill the upper triangular part (the EOS padding)
delay_pattern = torch.triu(
torch.ones((channel_codebooks, max_length), dtype=torch.bool), diagonal=max_length - channel_codebooks + 1
)
# then fill the lower triangular part (the BOS padding)
delay_pattern = delay_pattern + torch.tril(torch.ones((channel_codebooks, max_length), dtype=torch.bool))
if self.config.audio_channels == 2:
# for left/right channel we need to duplicate every row of the pattern mask in an interleaved fashion
delay_pattern = delay_pattern.repeat_interleave(2, dim=0)
mask = ~delay_pattern.to(input_ids.device)
input_ids = mask * input_ids_shifted + ~mask * pad_token_id
# find the first position to start generating - this is the first place we have the -1 token
# and will always be in the first codebook (since it has no codebook offset)
first_codebook_ids = input_ids[:, 0, :]
start_ids = (first_codebook_ids == -1).nonzero()[:, 1]
if len(start_ids) > 0:
first_start_id = min(start_ids)
else:
# we have no tokens that need to be filled - return entire matrix of input ids
first_start_id = seq_len
# (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len)
pattern_mask = input_ids.reshape(bsz * num_codebooks, -1)
input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1)
return input_ids, pattern_mask
@staticmethod
def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask):
"""Apply a delay pattern mask to the decoder input ids, only preserving predictions where
the mask is set to -1, and otherwise setting to the value detailed in the mask."""
seq_len = input_ids.shape[-1]
decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len]
input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask)
return input_ids
@torch.no_grad()
# Ignore copy
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
synced_gpus: Optional[bool] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
requires_attention_mask = "encoder_outputs" not in model_kwargs
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
# 3. Define model inputs`
input_ids, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = input_ids.shape[0] // self.num_codebooks
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=input_ids.device)
# 4. Define other model kwargs
model_kwargs["use_cache"] = generation_config.use_cache
model_kwargs["guidance_scale"] = generation_config.guidance_scale
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
input_ids, generation_config, model_kwargs
)
# 5. Prepare `max_length` depending on other stopping criteria.
input_ids_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=model_input_name,
inputs_tensor=input_ids,
input_ids_length=input_ids_length,
)
# 6. Prepare `input_ids` which will be used for auto-regressive generation
# Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Musicgen)
input_ids, delay_pattern_mask = self.build_delay_pattern_mask(
input_ids,
pad_token_id=generation_config._decoder_start_token_tensor,
max_length=generation_config.max_length,
)
if streamer is not None:
streamer.put(input_ids.cpu())
# stash the delay mask so that we don't have to recompute it in each forward pass
model_kwargs["delay_pattern_mask"] = delay_pattern_mask
# 7. determine generation mode
generation_mode = generation_config.get_generation_mode()
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG)
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1:
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
generation_config.guidance_scale = None
# 9. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
device=input_ids.device,
)
# 10. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
# expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
**model_kwargs,
)
# 11. run sample
outputs = self._sample(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
else:
raise ValueError(
"Got incompatible mode for generation, should be one of greedy or sampling. "
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
)
if generation_config.return_dict_in_generate:
output_ids = outputs.sequences
else:
output_ids = outputs
# apply the pattern mask to the final ids
output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"])
# revert the pattern delay mask by filtering the pad token id
output_ids = output_ids[output_ids != generation_config._pad_token_tensor].reshape(
batch_size, self.num_codebooks, -1
)
if generation_config.return_dict_in_generate:
outputs.sequences = output_ids
return outputs
else:
return output_ids
@add_start_docstrings(
"The composite Musicgen Melody model with a text and audio conditional models, a MusicgenMelody decoder and an audio encoder, "
"for music generation tasks with one or both of text and audio prompts.",
MUSICGEN_MELODY_START_DOCSTRING,
"""
text_encoder (`Optional[PreTrainedModel]`, *optional*): Text encoder.
audio_encoder (`Optional[PreTrainedModel]`, *optional*): Audio code decoder.
decoder (`Optional[MusicgenMelodyForCausalLM]`, *optional*): MusicGen Melody decoder used to generate audio codes.
""",
)
class MusicgenMelodyForConditionalGeneration(PreTrainedModel, GenerationMixin):
config_class = MusicgenMelodyConfig
main_input_name = "input_ids"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(
self,
config: MusicgenMelodyConfig = None,
text_encoder: Optional[PreTrainedModel] = None,
audio_encoder: Optional[PreTrainedModel] = None,
decoder: Optional[MusicgenMelodyForCausalLM] = None,
):
if config is None and None in (text_encoder, audio_encoder, decoder):
raise ValueError(
"Either a configuration has to be provided, or all three of text encoder, audio encoder and Musicgen Melody decoder."
)
if config is None:
config = MusicgenMelodyConfig.from_sub_models_config(
text_encoder.config, audio_encoder.config, decoder.config
)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
# initialize with config
super().__init__(config)
if text_encoder is None:
text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder)
if audio_encoder is None:
audio_encoder = AutoModel.from_config(config.audio_encoder)
if decoder is None:
decoder = MusicgenMelodyForCausalLM._from_config(config.decoder)
self.text_encoder = text_encoder
self.audio_encoder = audio_encoder
self.decoder = decoder
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.config.text_encoder._attn_implementation = self.text_encoder.config._attn_implementation
self.config.audio_encoder._attn_implementation = self.audio_encoder.config._attn_implementation
self.config.decoder._attn_implementation = self.decoder.config._attn_implementation
self.text_encoder.config = self.config.text_encoder
self.audio_encoder.config = self.config.audio_encoder
self.decoder.config = self.config.decoder
# text encoder outputs might need to be projected to different dimension for decoder
if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size:
self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size)
# audio encoder outputs after chroma extraction might need to be projected to different dimension for decoder
if self.config.num_chroma != self.decoder.config.hidden_size:
self.audio_enc_to_dec_proj = nn.Linear(self.config.num_chroma, self.decoder.config.hidden_size)
if self.text_encoder.get_output_embeddings() is not None:
raise ValueError(
f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head"
)
# Initialize projection layers weights and tie text encoder and decoder weights if set accordingly
self.post_init()
def _init_weights(self, module):
# MusicgenMelodyForConditionalGeneration is made of PreTrainedModels that have already been initialized
# Projection layers still need to be initialized.
std = self.decoder.config.initializer_factor
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
def tie_weights(self):
# tie text encoder & decoder if needed
if self.config.tie_encoder_decoder:
# tie text encoder and decoder base model
decoder_base_model_prefix = self.decoder.base_model_prefix
tied_weights = self._tie_encoder_decoder_weights(
self.text_encoder,
self.decoder._modules[decoder_base_model_prefix],
self.decoder.base_model_prefix,
"text_encoder",
)
# Setting a dynamic variable instead of `_tied_weights_keys` because it's a class
# attributed not an instance member, therefore modifying it will modify the entire class
# Leading to issues on subsequent calls by different tests or subsequent calls.
self._dynamic_tied_weights_keys = tied_weights
def get_text_encoder(self):
return self.text_encoder
def get_encoder(self):
# get the text encoder to compute the conditionning hidden-states for generation
return self.get_text_encoder()
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
return self.text_encoder.get_input_embeddings()
def get_output_embeddings(self):
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
return self.decoder.set_output_embeddings(new_embeddings)
@classmethod
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration.from_sub_models_pretrained with Musicgen->MusicgenMelody, musicgen-small->musicgen-melody
def from_sub_models_pretrained(
cls,
text_encoder_pretrained_model_name_or_path: Optional[str] = None,
audio_encoder_pretrained_model_name_or_path: Optional[str] = None,
decoder_pretrained_model_name_or_path: Optional[str] = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
r"""
Instantiate a text encoder, an audio encoder, and a MusicGen decoder from one, two or three base classes of the
library from pretrained model checkpoints.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you need to first set it back in training mode with `model.train()`.
Params:
text_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the text encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
audio_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the audio encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
model_args (remaining positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the text encoder configuration, use the prefix *text_encoder_* for each configuration
parameter.
- To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration
parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import MusicgenMelodyForConditionalGeneration
>>> # initialize a musicgen model from a t5 text encoder, encodec audio encoder, and musicgen decoder
>>> model = MusicgenMelodyForConditionalGeneration.from_sub_models_pretrained(
... text_encoder_pretrained_model_name_or_path="google-t5/t5-base",
... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz",
... decoder_pretrained_model_name_or_path="facebook/musicgen-melody",
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./musicgen-ft")
>>> # load fine-tuned model
>>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("./musicgen-ft")
```"""
kwargs_text_encoder = {
argument[len("text_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("text_encoder_")
}
kwargs_audio_encoder = {
argument[len("audio_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("audio_encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove text encoder, audio encoder and decoder kwargs from kwargs
for key in kwargs_text_encoder.keys():
del kwargs["text_encoder_" + key]
for key in kwargs_audio_encoder.keys():
del kwargs["audio_encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
text_encoder = kwargs_text_encoder.pop("model", None)
if text_encoder is None:
if text_encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_text_encoder:
encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained(
text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_text_encoder["config"] = encoder_config
text_encoder = AutoModel.from_pretrained(
text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder
)
audio_encoder = kwargs_audio_encoder.pop("model", None)
if audio_encoder is None:
if audio_encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_audio_encoder:
encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained(
audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_audio_encoder["config"] = encoder_config
audio_encoder = AutoModel.from_pretrained(
audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder
)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
)
if isinstance(decoder_config, MusicgenMelodyConfig):
decoder_config = decoder_config.decoder
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_sub_models_pretrained(...)`"
)
decoder = MusicgenMelodyForCausalLM.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder
)
# instantiate config with corresponding kwargs
config = MusicgenMelodyConfig.from_sub_models_config(
text_encoder.config, audio_encoder.config, decoder.config, **kwargs
)
return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config)
@add_start_docstrings_to_model_forward(MUSICGEN_MELODY_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MusicgenMelodyOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
input_features: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, MusicgenMelodyOutputWithPast]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, MusicgenMelodyForConditionalGeneration
>>> import torch
>>> processor = AutoProcessor.from_pretrained("facebook/musicgen-melody")
>>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody")
>>> inputs = processor(
... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
... padding=True,
... return_tensors="pt",
... )
>>> pad_token_id = model.generation_config.pad_token_id
>>> decoder_input_ids = (
... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long)
... * pad_token_id
... )
>>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits
>>> logits.shape # (bsz * num_codebooks, encoder_len + tgt_len, vocab_size)
torch.Size([8, 249, 2048])
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_text_encoder = {
argument[len("text_encoder_")]: value
for argument, value in kwargs.items()
if argument.startswith("text_encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_hidden_states is None:
if inputs_embeds is not None or input_ids is not None:
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_text_encoder,
)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size:
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
if attention_mask is not None and encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states * attention_mask[..., None]
# set a default audio conditional hidden states if text is not None
if encoder_hidden_states is not None and input_features is None:
input_features = torch.zeros(
(encoder_hidden_states.shape[0], 1, self.config.num_chroma),
device=self.device,
dtype=self.dtype,
)
input_features[:, :, 0] = 1
if input_features is not None:
audio_hidden_states = input_features
# optionally project audio_hidden_states ->
# (batch_size, seq_len, num_chroma) -> (batch_size, seq_len, hidden_size)
if self.config.num_chroma != self.decoder.config.hidden_size:
audio_hidden_states = self.audio_enc_to_dec_proj(audio_hidden_states)
# pad or truncate to config.chroma_length
if audio_hidden_states.shape[1] < self.config.chroma_length:
n_repeat = int(math.ceil(self.config.chroma_length / audio_hidden_states.shape[1]))
audio_hidden_states = audio_hidden_states.repeat(1, n_repeat, 1)
else:
logger.warning(
f"The conditional audio signal is of length {audio_hidden_states.shape[1]}, which exceeds"
f"the maximum chroma duration of {self.config.chroma_length}."
f"The audio will be truncated to {self.config.chroma_length} frames."
)
audio_hidden_states = audio_hidden_states[:, : self.config.chroma_length]
if encoder_hidden_states is not None:
encoder_hidden_states = torch.cat([audio_hidden_states, encoder_hidden_states], dim=1)
else:
encoder_hidden_states = audio_hidden_states
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
labels=labels,
**kwargs_decoder,
)
if not return_dict:
return decoder_outputs + (encoder_hidden_states,)
return MusicgenMelodyOutputWithPast(
loss=decoder_outputs.loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
encoder_hidden_states=encoder_hidden_states,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
encoder_hidden_states=None,
past_key_values=None,
attention_mask=None,
decoder_attention_mask=None,
decoder_head_mask=None,
use_cache=None,
decoder_delay_pattern_mask=None,
guidance_scale=None,
**kwargs,
):
# Overwritten -- MusicGen has custom processing
if decoder_delay_pattern_mask is None:
decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
decoder_input_ids,
self.generation_config.pad_token_id,
max_length=self.generation_config.max_length,
)
# apply the delay pattern mask
decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask)
if guidance_scale is not None and guidance_scale > 1:
# for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these
# before sampling)
decoder_input_ids = decoder_input_ids.repeat((2, 1))
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.repeat((2, 1))
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if decoder_input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = decoder_input_ids.shape[1] - 1
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
# we only want to use conditional signal in the 1st generation step but keeping the attention mask
encoder_hidden_states = None
# we also have to update the attention mask
return {
"input_ids": None, # encoder_hidden_states is defined. input_ids not needed
"encoder_hidden_states": encoder_hidden_states,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_head_mask": decoder_head_mask,
"use_cache": use_cache,
}
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration._prepare_decoder_input_ids_for_generation
def _prepare_decoder_input_ids_for_generation(
self,
batch_size: int,
model_input_name: str,
model_kwargs: Dict[str, torch.Tensor],
decoder_start_token_id: Optional[int] = None,
bos_token_id: Optional[int] = None,
device: torch.device = None,
) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
"""Prepares `decoder_input_ids` for generation with encoder-decoder models"""
# 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
# we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
decoder_input_ids = model_kwargs.pop("decoder_input_ids")
elif "input_ids" in model_kwargs and model_input_name != "input_ids":
decoder_input_ids = model_kwargs.pop("input_ids")
else:
decoder_input_ids = None
# 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
if device is None:
device = self.device
decoder_input_ids_start = (
torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device)
* decoder_start_token_id
)
# no user input -> use decoder_start_token_id as decoder_input_ids
if decoder_input_ids is None:
decoder_input_ids = decoder_input_ids_start
# user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
# decoder_attention_mask if provided)
elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item():
decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1)
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
decoder_attention_mask = torch.cat(
(torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
dim=-1,
)
model_kwargs["decoder_attention_mask"] = decoder_attention_mask
return decoder_input_ids, model_kwargs
def _prepare_encoder_hidden_states_kwargs_for_generation(
self,
inputs_tensor: torch.Tensor,
model_kwargs,
model_input_name: Optional[str],
generation_config: GenerationConfig,
) -> Dict[str, Any]:
encoder_hidden_states = None
# attention mask is consumed once to produce text conditional hidden states through the text encoder
encoder_attention_mask = model_kwargs.pop("attention_mask")
guidance_scale = generation_config.guidance_scale
# 1. condition on text
if inputs_tensor is not None:
encoder = self.get_text_encoder()
# Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
# as the inputs.
if hasattr(encoder, "_hf_hook"):
encoder._hf_hook.io_same_device = True
# Prepare args and kwargs from model kwargs.
irrelevant_prefix = ["decoder_", "use_cache"]
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not any(argument.startswith(p) for p in irrelevant_prefix)
}
encoder_signature = set(inspect.signature(encoder.forward).parameters)
encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
if not encoder_accepts_wildcard:
encoder_kwargs = {
argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
}
encoder_kwargs["output_attentions"] = generation_config.output_attentions
encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states
# make sure that encoder returns `ModelOutput`
model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name
encoder_kwargs["return_dict"] = True
encoder_kwargs[model_input_name] = inputs_tensor
if encoder_attention_mask is not None:
encoder_kwargs["attention_mask"] = encoder_attention_mask
encoder_hidden_states = encoder(**encoder_kwargs).last_hidden_state
# optionally project encoder_hidden_states
if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size:
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
# for classifier free guidance we need to add a 'null' input to our encoder hidden states
if guidance_scale is not None and guidance_scale > 1:
encoder_hidden_states = torch.concatenate(
[encoder_hidden_states, torch.zeros_like(encoder_hidden_states)], dim=0
)
if encoder_attention_mask is not None:
encoder_attention_mask = torch.concatenate(
[encoder_attention_mask, torch.zeros_like(encoder_attention_mask)], dim=0
)
if encoder_attention_mask is not None:
encoder_hidden_states = encoder_hidden_states * encoder_attention_mask[..., None]
# 2. condition on audio
audio_hidden_states = model_kwargs.get("input_features", None)
if inputs_tensor is not None:
if audio_hidden_states is not None:
null_audio_hidden_states = torch.zeros_like(audio_hidden_states)
else:
null_audio_hidden_states = torch.zeros(
(inputs_tensor.shape[0], 1, self.config.num_chroma), device=self.device, dtype=self.dtype
)
null_audio_hidden_states[:, :, 0] = 1
if audio_hidden_states is None:
audio_hidden_states = null_audio_hidden_states
if audio_hidden_states is not None:
# for classifier free guidance we need to add a 'null' input to our audio hidden states
if guidance_scale is not None and guidance_scale > 1:
audio_hidden_states = torch.concatenate([audio_hidden_states, null_audio_hidden_states], dim=0)
# optionally project audio_hidden_states ->
# (batch_size, seq_len, num_chroma) -> (batch_size, seq_len, hidden_size)
if self.config.num_chroma != self.decoder.config.hidden_size:
audio_hidden_states = self.audio_enc_to_dec_proj(audio_hidden_states)
# pad or truncate to config.chroma_length
if audio_hidden_states.shape[1] < self.config.chroma_length:
n_repeat = int(math.ceil(self.config.chroma_length / audio_hidden_states.shape[1]))
audio_hidden_states = audio_hidden_states.repeat(1, n_repeat, 1)
audio_hidden_states = audio_hidden_states[:, : self.config.chroma_length]
if encoder_hidden_states is not None:
encoder_hidden_states = torch.cat([audio_hidden_states, encoder_hidden_states], dim=1)
else:
encoder_hidden_states = audio_hidden_states
model_kwargs["encoder_hidden_states"] = encoder_hidden_states
return model_kwargs
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id)
def resize_token_embeddings(self, *args, **kwargs):
raise NotImplementedError(
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the"
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
" model.decoder.resize_token_embeddings(...))"
)
def _maybe_initialize_input_ids_for_generation(
self,
inputs: Optional[torch.Tensor] = None,
bos_token_id: Optional[int] = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.LongTensor:
"""Initializes input ids for generation, if necessary."""
if inputs is not None:
return inputs
if bos_token_id is None:
raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
# If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
# soft-prompting or in multimodal implementations built on top of decoder-only language models.
batch_size = 1
for value in model_kwargs.values():
if isinstance(value, torch.Tensor):
batch_size = value.shape[0]
break
return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
def freeze_audio_encoder(self):
"""
Freeze the audio encoder weights.
"""
for param in self.audio_encoder.parameters():
param.requires_grad = False
self.audio_encoder._requires_grad = False
def freeze_text_encoder(self):
"""
Freeze the text encoder weights.
"""
for param in self.text_encoder.parameters():
param.requires_grad = False
self.text_encoder._requires_grad = False
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration._get_decoder_start_token_id
def _get_decoder_start_token_id(
self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: Optional[int] = None
) -> int:
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.generation_config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
synced_gpus: Optional[bool] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
requires_attention_mask = "encoder_outputs" not in model_kwargs
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
# 3. Define model inputs
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=inputs_tensor.device)
# 4. Define other model kwargs
model_kwargs["use_cache"] = generation_config.use_cache
model_kwargs["guidance_scale"] = generation_config.guidance_scale
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config, model_kwargs
)
if "encoder_hidden_states" not in model_kwargs:
# encoder_hidden_states are created and added to `model_kwargs`
model_kwargs = self._prepare_encoder_hidden_states_kwargs_for_generation(
inputs_tensor, model_kwargs, model_input_name, generation_config
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config._decoder_start_token_tensor,
bos_token_id=generation_config._bos_token_tensor,
device=inputs_tensor.device,
)
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=model_input_name,
inputs_tensor=inputs_tensor,
input_ids_length=input_ids_length,
)
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
input_ids,
pad_token_id=generation_config._decoder_start_token_tensor,
max_length=generation_config.max_length,
)
# stash the delay mask so that we don't have to recompute in each forward pass
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask
# input_ids are ready to be placed on the streamer (if used)
if streamer is not None:
streamer.put(input_ids.cpu())
# 7. determine generation mode
generation_mode = generation_config.get_generation_mode()
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG)
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1:
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
generation_config.guidance_scale = None
# 9. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
device=input_ids.device,
)
# 10. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
# expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 11. run sample
outputs = self._sample(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
else:
raise ValueError(
"Got incompatible mode for generation, should be one of greedy or sampling. "
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
)
if generation_config.return_dict_in_generate:
output_ids = outputs.sequences
else:
output_ids = outputs
# apply the pattern mask to the final ids
output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"])
# revert the pattern delay mask by filtering the pad token id
output_ids = output_ids[output_ids != generation_config._pad_token_tensor].reshape(
batch_size, self.decoder.num_codebooks, -1
)
# append the frame dimension back to the audio codes
output_ids = output_ids[None, ...]
audio_scales = model_kwargs.get("audio_scales")
if audio_scales is None:
audio_scales = [None] * batch_size
if self.decoder.config.audio_channels == 1:
output_values = self.audio_encoder.decode(
output_ids,
audio_scales=audio_scales,
).audio_values
else:
codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales)
output_values_left = codec_outputs_left.audio_values
codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales)
output_values_right = codec_outputs_right.audio_values
output_values = torch.cat([output_values_left, output_values_right], dim=1)
if generation_config.return_dict_in_generate:
outputs.sequences = output_values
return outputs
else:
return output_values
```
|
=========================================================================================================================================================
SOURCE CODE FILE: processing_musicgen_melody.py
LINES: 1
SIZE: 8.43 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\musicgen_melody\processing_musicgen_melody.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Text/audio processor class for MusicGen Melody
"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class MusicgenMelodyProcessor(ProcessorMixin):
r"""
Constructs a MusicGen Melody processor which wraps a Wav2Vec2 feature extractor - for raw audio waveform processing - and a T5 tokenizer into a single processor
class.
[`MusicgenProcessor`] offers all the functionalities of [`MusicgenMelodyFeatureExtractor`] and [`T5Tokenizer`]. See
[`~MusicgenProcessor.__call__`] and [`~MusicgenProcessor.decode`] for more information.
Args:
feature_extractor (`MusicgenMelodyFeatureExtractor`):
An instance of [`MusicgenMelodyFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`T5Tokenizer`):
An instance of [`T5Tokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "MusicgenMelodyFeatureExtractor"
tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
# Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor.get_decoder_prompt_ids
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
def __call__(self, audio=None, text=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `audio`
and `kwargs` arguments to MusicgenMelodyFeatureExtractor's [`~MusicgenMelodyFeatureExtractor.__call__`] if `audio` is not
`None` to pre-process the audio. It also forwards the `text` and `kwargs` arguments to
PreTrainedTokenizer's [`~PreTrainedTokenizer.__call__`] if `text` is not `None`. Please refer to the docstring of the above two methods for more information.
Args:
audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
of a NumPy array/PyTorch tensor, each audio should be a mono-stereo signal of shape (T), where T is the sample length of the audio.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the
tokenizer.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **input_features** -- Audio input features to be fed to a model. Returned when `audio` is not `None`.
- **attention_mask** -- List of token indices specifying which tokens should be attended to by the model when `text` is not `None`.
When only `audio` is specified, returns the timestamps attention mask.
"""
sampling_rate = kwargs.pop("sampling_rate", None)
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if text is not None:
inputs = self.tokenizer(text, **kwargs)
if audio is not None:
audio_inputs = self.feature_extractor(audio, sampling_rate=sampling_rate, **kwargs)
if text is None:
return audio_inputs
elif audio is None:
return inputs
else:
inputs["input_features"] = audio_inputs["input_features"]
return inputs
# Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor.batch_decode with padding_mask->attention_mask
def batch_decode(self, *args, **kwargs):
"""
This method is used to decode either batches of audio outputs from the MusicGen model, or batches of token ids
from the tokenizer. In the case of decoding token ids, this method forwards all its arguments to T5Tokenizer's
[`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information.
"""
audio_values = kwargs.pop("audio", None)
attention_mask = kwargs.pop("attention_mask", None)
if len(args) > 0:
audio_values = args[0]
args = args[1:]
if audio_values is not None:
return self._decode_audio(audio_values, attention_mask=attention_mask)
else:
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor.decode
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
# Copied from transformers.models.musicgen.processing_musicgen.MusicgenProcessor._decode_audio with padding_mask->attention_mask
def _decode_audio(self, audio_values, attention_mask: Optional = None) -> List[np.ndarray]:
"""
This method strips any padding from the audio values to return a list of numpy audio arrays.
"""
audio_values = to_numpy(audio_values)
bsz, channels, seq_len = audio_values.shape
if attention_mask is None:
return list(audio_values)
attention_mask = to_numpy(attention_mask)
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
difference = seq_len - attention_mask.shape[-1]
padding_value = 1 - self.feature_extractor.padding_value
attention_mask = np.pad(attention_mask, ((0, 0), (0, difference)), "constant", constant_values=padding_value)
audio_values = audio_values.tolist()
for i in range(bsz):
sliced_audio = np.asarray(audio_values[i])[
attention_mask[i][None, :] != self.feature_extractor.padding_value
]
audio_values[i] = sliced_audio.reshape(channels, -1)
return audio_values
def get_unconditional_inputs(self, num_samples=1, return_tensors="pt"):
"""
Helper function to get null inputs for unconditional generation, enabling the model to be used without the
feature extractor or tokenizer.
Args:
num_samples (int, *optional*):
Number of audio samples to unconditionally generate.
Example:
```python
>>> from transformers import MusicgenMelodyForConditionalGeneration, MusicgenMelodyProcessor
>>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody")
>>> # get the unconditional (or 'null') inputs for the model
>>> processor = MusicgenMelodyProcessor.from_pretrained("facebook/musicgen-melody")
>>> unconditional_inputs = processor.get_unconditional_inputs(num_samples=1)
>>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256)
```"""
inputs = self.tokenizer([""] * num_samples, return_tensors=return_tensors, return_attention_mask=True)
inputs["attention_mask"][:] = 0
return inputs
```
|
=========================================================================================================================================
SOURCE CODE FILE: modeling_musicgen.py
LINES: 1
SIZE: 132.44 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\musicgen\modeling_musicgen.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Musicgen model."""
import copy
import inspect
import math
import random
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import (
ClassifierFreeGuidanceLogitsProcessor,
GenerationConfig,
GenerationMixin,
GenerationMode,
LogitsProcessorList,
StoppingCriteriaList,
)
from ...modeling_attn_mask_utils import (
_prepare_4d_attention_mask,
_prepare_4d_attention_mask_for_sdpa,
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
ModelOutput,
Seq2SeqLMOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_auto import AutoModel
from .configuration_musicgen import MusicgenConfig, MusicgenDecoderConfig
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
if TYPE_CHECKING:
from ...generation.streamers import BaseStreamer
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MusicgenConfig"
_CHECKPOINT_FOR_DOC = "facebook/musicgen-small"
@dataclass
class MusicgenUnconditionalInput(ModelOutput):
"""
Args:
encoder_outputs (`Tuple[torch.FloatTensor]` of length 1, with tensor shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the text encoder model.
attention_mask (`torch.LongTensor`) of shape `(batch_size, sequence_length)`, *optional*):
Encoder attention mask to avoid performing attention on padding token indices. Mask values selected in `[0,
1]`: 1 for tokens that are **not masked**, 0 for tokens that are **masked**.
guidance_scale (`float`, *optional*):
Guidance scale for classifier free guidance, setting the balance between the conditional logits (predicted
from the prompts) and the unconditional logits (predicted without prompts).
"""
encoder_outputs: Tuple[torch.FloatTensor] = None
attention_mask: Optional[torch.LongTensor] = None
guidance_scale: Optional[float] = None
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
# transpose to get (bsz, num_codebooks, seq_len)
input_ids = input_ids.transpose(1, 2)
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
if decoder_start_token_id is None:
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class MusicgenSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int):
super().__init__()
self.embedding_dim = embedding_dim
self.make_weights(num_positions, embedding_dim)
def make_weights(self, num_embeddings: int, embedding_dim: int):
emb_weights = self.get_embedding(num_embeddings, embedding_dim)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.weights = nn.Parameter(emb_weights)
self.weights.requires_grad = False
self.weights.detach_()
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int):
"""
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
bsz, codebooks, seq_len = input_ids.size()
# Create the position ids from the input token ids.
position_ids = (torch.arange(seq_len) + past_key_values_length).to(input_ids.device)
# expand embeddings if needed
if seq_len > self.weights.size(0):
self.make_weights(seq_len + self.offset, self.embedding_dim)
return self.weights.index_select(0, position_ids.view(-1)).detach()
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Musicgen
class MusicgenAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[MusicgenConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->Musicgen
class MusicgenFlashAttention2(MusicgenAttention):
"""
Musicgen flash attention module. This module inherits from `MusicgenAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# MusicgenFlashAttention2 attention does not support output_attentions
if output_attentions:
raise ValueError("MusicgenFlashAttention2 attention does not support output_attentions")
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, q_len, _ = hidden_states.size()
# get query proj
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0].transpose(1, 2)
value_states = past_key_value[1].transpose(1, 2)
elif is_cross_attention:
# cross_attentions
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
else:
# self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=self.dropout if self.training else 0.0,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class MusicgenSdpaAttention(MusicgenAttention):
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions or layer_head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"MusicgenModel is using MusicgenSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states,
key_value_states=key_value_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
if (
attention_mask is not None
and (attention_mask.mean(dim=[1, 2, 3]) <= torch.finfo(attention_mask.dtype).min).any()
):
logger.warning_once(
'`torch.nn.functional.scaled_dot_product_attention` does not support having an empty attention mask. Falling back to the manual attention implementation. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
"Note that this probably happens because `guidance_scale>1` or because you used `get_unconditional_inputs`. See https://github.com/huggingface/transformers/issues/31189 for more information."
)
return super().forward(
hidden_states,
key_value_states=key_value_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz)
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
MUSICGEN_ATTENTION_CLASSES = {
"eager": MusicgenAttention,
"sdpa": MusicgenSdpaAttention,
"flash_attention_2": MusicgenFlashAttention2,
}
class MusicgenDecoderLayer(nn.Module):
def __init__(self, config: MusicgenDecoderConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = MUSICGEN_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=False,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = MUSICGEN_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=False,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False)
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class MusicgenPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MusicgenDecoderConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MusicgenDecoderLayer", "MusicgenAttention"]
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
std = self.config.initializer_factor
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, MusicgenSinusoidalPositionalEmbedding):
weights = module.get_embedding(*module.weights.shape)
weights = nn.Parameter(weights, requires_grad=False)
weights.detach_()
module.weights = weights
MUSICGEN_START_DOCSTRING = r"""
The Musicgen model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by
Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is an
encoder decoder transformer trained on the task of conditional music generation
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MusicgenConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MUSICGEN_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes.
Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes,
such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
<Tip warning={true}>
The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks,
target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If
you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of
frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks,
target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as
`decoder_input_ids`.
</Tip>
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
MUSICGEN_DECODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`):
Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes.
Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes,
such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details.
[What are input IDs?](../glossary#input-ids)
<Tip warning={true}>
The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks,
target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If
you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of
frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks,
target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as
`input_ids`.
</Tip>
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of
the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class MusicgenDecoder(MusicgenPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MusicgenDecoderLayer`]
"""
def __init__(self, config: MusicgenDecoderConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.max_target_positions = config.max_position_embeddings
self.d_model = config.hidden_size
self.num_codebooks = config.num_codebooks
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
embed_dim = config.vocab_size + 1
self.embed_tokens = nn.ModuleList(
[nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)]
)
self.embed_positions = MusicgenSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.hidden_size,
)
self.layers = nn.ModuleList([MusicgenDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.attn_implementation = config._attn_implementation
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
# (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len)
input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1])
bsz, num_codebooks, seq_len = input.shape
input_shape = (bsz, seq_len)
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1:]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)])
if self.attn_implementation == "flash_attention_2":
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self.attn_implementation == "sdpa" and head_mask is None and not output_attentions:
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
input_shape,
inputs_embeds,
past_key_values_length,
)
else:
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
if self.attn_implementation == "flash_attention_2":
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
elif self.attn_implementation == "sdpa" and cross_attn_head_mask is None and not output_attentions:
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask,
inputs_embeds.dtype,
tgt_len=input_shape[-1],
)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {attn_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.forward,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Musicgen decoder model outputting raw hidden-states without any specific head on top.",
MUSICGEN_START_DOCSTRING,
)
class MusicgenModel(MusicgenPreTrainedModel):
def __init__(self, config: MusicgenDecoderConfig):
super().__init__(config)
self.decoder = MusicgenDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
@add_start_docstrings(
"The MusicGen decoder model with a language modelling head on top.",
MUSICGEN_START_DOCSTRING,
)
class MusicgenForCausalLM(MusicgenPreTrainedModel, GenerationMixin):
def __init__(self, config: MusicgenDecoderConfig):
super().__init__(config)
self.model = MusicgenModel(config)
self.num_codebooks = config.num_codebooks
self.lm_heads = nn.ModuleList(
[nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)]
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_heads
def set_output_embeddings(self, new_embeddings):
self.lm_heads = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (labels is not None) and (input_ids is None and inputs_embeds is None):
input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.bos_token_id)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1)
loss = None
if labels is not None:
# since encoder hidden states have been concatenated to the decoder hidden states,
# we take the last timestamps corresponding to labels
logits = lm_logits[:, :, -labels.shape[1] :]
loss_fct = CrossEntropyLoss()
loss = torch.zeros([], device=self.device)
# per codebook cross-entropy
# -100 labels are ignored
labels = labels.masked_fill(labels == self.config.pad_token_id, -100)
# per codebook cross-entropy
# ref: https://github.com/facebookresearch/audiocraft/blob/69fea8b290ad1b4b40d28f92d1dfc0ab01dbab85/audiocraft/solvers/musicgen.py#L242-L243
for codebook in range(self.config.num_codebooks):
codebook_logits = logits[:, codebook].contiguous().view(-1, logits.shape[-1])
codebook_labels = labels[..., codebook].contiguous().view(-1)
loss += loss_fct(codebook_logits, codebook_labels)
loss = loss / self.config.num_codebooks
# (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size)
lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:])
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=True,
delay_pattern_mask=None,
guidance_scale=None,
**kwargs,
):
# Overwritten -- MusicGen has custom processing
if delay_pattern_mask is None:
input_ids, delay_pattern_mask = self.build_delay_pattern_mask(
input_ids,
pad_token_id=self.generation_config.pad_token_id,
max_length=self.generation_config.max_length,
)
# apply the delay pattern mask
input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
if guidance_scale is not None and guidance_scale > 1:
# for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these
# before sampling)
input_ids = input_ids.repeat((2, 1))
if attention_mask is not None:
attention_mask = attention_mask.repeat((2, 1))
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
"head_mask": head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
def build_delay_pattern_mask(
self, input_ids: torch.LongTensor, pad_token_id: int, max_length: Optional[int] = None
):
"""Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by
one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there
are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks,
seq_len)`:
- [P, -1, -1, -1, -1, P, P, P]
- [P, P, -1, -1, -1, -1, P, P]
- [P, P, P, -1, -1, -1, -1, P]
- [P, P, P, P, -1, -1, -1, -1]
where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include
a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the
mask is set to the value in the prompt:
- [P, a, b, -1, -1, P, P, P]
- [P, P, c, d, -1, -1, P, P]
- [P, P, P, e, f, -1, -1, P]
- [P, P, P, P, g, h, -1, -1]
where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1
tokens in our prediction.
"""
# (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len)
input_ids = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1])
bsz, num_codebooks, seq_len = input_ids.shape
max_length = max_length if max_length is not None else self.generation_config.max_length
input_ids_shifted = (
torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1
)
channel_codebooks = num_codebooks // 2 if self.config.audio_channels == 2 else num_codebooks
# we only apply the mask if we have a large enough seq len - otherwise we return as is
if max_length < 2 * channel_codebooks - 1:
return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1)
# fill the shifted ids with the prompt entries, offset by the codebook idx
for codebook in range(channel_codebooks):
if self.config.audio_channels == 1:
# mono channel - loop over the codebooks one-by-one
input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook]
else:
# left/right channels are interleaved in the generated codebooks, so handle one then the other
input_ids_shifted[:, 2 * codebook, codebook : seq_len + codebook] = input_ids[:, 2 * codebook]
input_ids_shifted[:, 2 * codebook + 1, codebook : seq_len + codebook] = input_ids[:, 2 * codebook + 1]
# construct a pattern mask that indicates the positions of padding tokens for each codebook
# first fill the upper triangular part (the EOS padding)
delay_pattern = torch.triu(
torch.ones((channel_codebooks, max_length), dtype=torch.bool), diagonal=max_length - channel_codebooks + 1
)
# then fill the lower triangular part (the BOS padding)
delay_pattern = delay_pattern + torch.tril(torch.ones((channel_codebooks, max_length), dtype=torch.bool))
if self.config.audio_channels == 2:
# for left/right channel we need to duplicate every row of the pattern mask in an interleaved fashion
delay_pattern = delay_pattern.repeat_interleave(2, dim=0)
mask = ~delay_pattern.to(input_ids.device)
input_ids = mask * input_ids_shifted + ~mask * pad_token_id
# find the first position to start generating - this is the first place we have the -1 token
# and will always be in the first codebook (since it has no codebook offset)
first_codebook_ids = input_ids[:, 0, :]
start_ids = (first_codebook_ids == -1).nonzero()[:, 1]
if len(start_ids) > 0:
first_start_id = min(start_ids)
else:
# we have no tokens that need to be filled - return entire matrix of input ids
first_start_id = seq_len
# (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len)
pattern_mask = input_ids.reshape(bsz * num_codebooks, -1)
input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1)
return input_ids, pattern_mask
@staticmethod
def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask):
"""Apply a delay pattern mask to the decoder input ids, only preserving predictions where
the mask is set to -1, and otherwise setting to the value detailed in the mask."""
seq_len = input_ids.shape[-1]
decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len]
input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask)
return input_ids
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
synced_gpus: Optional[bool] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
requires_attention_mask = "encoder_outputs" not in model_kwargs
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
# 3. Define model inputs`
input_ids, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = input_ids.shape[0] // self.num_codebooks
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=input_ids.device)
# 4. Define other model kwargs
model_kwargs["use_cache"] = generation_config.use_cache
model_kwargs["guidance_scale"] = generation_config.guidance_scale
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
input_ids, generation_config, model_kwargs
)
# 5. Prepare `max_length` depending on other stopping criteria.
input_ids_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=model_input_name,
inputs_tensor=input_ids,
input_ids_length=input_ids_length,
)
# 6. Prepare `input_ids` which will be used for auto-regressive generation
# Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
input_ids, delay_pattern_mask = self.build_delay_pattern_mask(
input_ids,
pad_token_id=generation_config._decoder_start_token_tensor,
max_length=generation_config.max_length,
)
if streamer is not None:
streamer.put(input_ids.cpu())
# stash the delay mask so that we don't have to recompute it in each forward pass
model_kwargs["delay_pattern_mask"] = delay_pattern_mask
# 7. determine generation mode
generation_mode = generation_config.get_generation_mode()
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG)
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1:
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
generation_config.guidance_scale = None
# 9. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
device=input_ids.device,
)
# 10. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
# expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
**model_kwargs,
)
# 11. run sample
outputs = self._sample(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
else:
raise ValueError(
"Got incompatible mode for generation, should be one of greedy or sampling. "
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
)
if generation_config.return_dict_in_generate:
output_ids = outputs.sequences
else:
output_ids = outputs
# apply the pattern mask to the final ids
output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"])
# revert the pattern delay mask by filtering the pad token id
output_ids = output_ids[output_ids != generation_config._pad_token_tensor].reshape(
batch_size, self.num_codebooks, -1
)
if generation_config.return_dict_in_generate:
outputs.sequences = output_ids
return outputs
else:
return output_ids
@add_start_docstrings(
"The composite MusicGen model with a text encoder, audio encoder and Musicgen decoder, "
"for music generation tasks with one or both of text and audio prompts.",
MUSICGEN_START_DOCSTRING,
)
class MusicgenForConditionalGeneration(PreTrainedModel, GenerationMixin):
config_class = MusicgenConfig
base_model_prefix = "encoder_decoder"
main_input_name = "input_ids"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(
self,
config: Optional[MusicgenConfig] = None,
text_encoder: Optional[PreTrainedModel] = None,
audio_encoder: Optional[PreTrainedModel] = None,
decoder: Optional[MusicgenForCausalLM] = None,
):
if config is None and (text_encoder is None or audio_encoder is None or decoder is None):
raise ValueError(
"Either a configuration has to be provided, or all three of text encoder, audio encoder and MusicGen decoder."
)
if config is None:
config = MusicgenConfig.from_sub_models_config(text_encoder.config, audio_encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
if config.decoder.cross_attention_hidden_size is not None:
if config.decoder.cross_attention_hidden_size != config.text_encoder.hidden_size:
raise ValueError(
"If `cross_attention_hidden_size` is specified in the MusicGen decoder's configuration, it has to be equal"
f" to the text encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
f" `config.decoder.cross_attention_hidden_size` and {config.text_encoder.hidden_size} for"
" `config.text_encoder.hidden_size`."
)
# initialize with config
super().__init__(config)
if text_encoder is None:
from ..auto.modeling_auto import AutoModelForTextEncoding
text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder)
if audio_encoder is None:
from ..auto.modeling_auto import AutoModel
audio_encoder = AutoModel.from_config(config.audio_encoder)
if decoder is None:
decoder = MusicgenForCausalLM._from_config(config.decoder)
self.text_encoder = text_encoder
self.audio_encoder = audio_encoder
self.decoder = decoder
if self.text_encoder.config.to_dict() != self.config.text_encoder.to_dict():
logger.warning(
f"Config of the text_encoder: {self.text_encoder.__class__} is overwritten by shared text_encoder config:"
f" {self.config.text_encoder}"
)
if self.audio_encoder.config.to_dict() != self.config.audio_encoder.to_dict():
logger.warning(
f"Config of the audio_encoder: {self.audio_encoder.__class__} is overwritten by shared audio_encoder config:"
f" {self.config.audio_encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.config.text_encoder._attn_implementation = self.text_encoder.config._attn_implementation
self.config.audio_encoder._attn_implementation = self.audio_encoder.config._attn_implementation
self.config.decoder._attn_implementation = self.decoder.config._attn_implementation
self.text_encoder.config = self.config.text_encoder
self.audio_encoder.config = self.config.audio_encoder
self.decoder.config = self.config.decoder
# text encoder outputs might need to be projected to different dimension for decoder
if (
self.text_encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size)
if self.text_encoder.get_output_embeddings() is not None:
raise ValueError(
f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head"
)
decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys())
if "encoder_hidden_states" not in decoder_signature:
raise ValueError(
"The selected decoder is not prepared for the encoder hidden states to be passed. Please see the "
"following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350"
)
# tie text encoder, decoder weights if config set accordingly
self.tie_weights()
def tie_weights(self):
# tie text encoder & decoder if needed
if self.config.tie_encoder_decoder:
# tie text encoder and decoder base model
decoder_base_model_prefix = self.decoder.base_model_prefix
tied_weights = self._tie_encoder_decoder_weights(
self.text_encoder,
self.decoder._modules[decoder_base_model_prefix],
self.decoder.base_model_prefix,
"text_encoder",
)
# Setting a dynamic variable instead of `_tied_weights_keys` because it's a class
# attributed not an instance member, therefore modifying it will modify the entire class
# Leading to issues on subsequent calls by different tests or subsequent calls.
self._dynamic_tied_weights_keys = tied_weights
def get_audio_encoder(self):
return self.audio_encoder
def get_text_encoder(self):
return self.text_encoder
def get_encoder(self):
# get the text encoder to compute the encoder hidden-states for generation
return self.get_text_encoder()
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
return self.text_encoder.get_input_embeddings()
def get_output_embeddings(self):
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
return self.decoder.set_output_embeddings(new_embeddings)
@classmethod
def from_sub_models_pretrained(
cls,
text_encoder_pretrained_model_name_or_path: Optional[str] = None,
audio_encoder_pretrained_model_name_or_path: Optional[str] = None,
decoder_pretrained_model_name_or_path: Optional[str] = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
r"""
Instantiate a text encoder, an audio encoder, and a MusicGen decoder from one, two or three base classes of the
library from pretrained model checkpoints.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you need to first set it back in training mode with `model.train()`.
Params:
text_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the text encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
audio_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the audio encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
model_args (remaining positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the text encoder configuration, use the prefix *text_encoder_* for each configuration
parameter.
- To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration
parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import MusicgenForConditionalGeneration
>>> # initialize a musicgen model from a t5 text encoder, encodec audio encoder, and musicgen decoder
>>> model = MusicgenForConditionalGeneration.from_sub_models_pretrained(
... text_encoder_pretrained_model_name_or_path="google-t5/t5-base",
... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz",
... decoder_pretrained_model_name_or_path="facebook/musicgen-small",
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./musicgen-ft")
>>> # load fine-tuned model
>>> model = MusicgenForConditionalGeneration.from_pretrained("./musicgen-ft")
```"""
kwargs_text_encoder = {
argument[len("text_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("text_encoder_")
}
kwargs_audio_encoder = {
argument[len("audio_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("audio_encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove text encoder, audio encoder and decoder kwargs from kwargs
for key in kwargs_text_encoder.keys():
del kwargs["text_encoder_" + key]
for key in kwargs_audio_encoder.keys():
del kwargs["audio_encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
text_encoder = kwargs_text_encoder.pop("model", None)
if text_encoder is None:
if text_encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_text_encoder:
encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained(
text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_text_encoder["config"] = encoder_config
text_encoder = AutoModel.from_pretrained(
text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder
)
audio_encoder = kwargs_audio_encoder.pop("model", None)
if audio_encoder is None:
if audio_encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_audio_encoder:
encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained(
audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_audio_encoder["config"] = encoder_config
audio_encoder = AutoModel.from_pretrained(
audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder
)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
)
if isinstance(decoder_config, MusicgenConfig):
decoder_config = decoder_config.decoder
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_sub_models_pretrained(...)`"
)
decoder = MusicgenForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
# instantiate config with corresponding kwargs
config = MusicgenConfig.from_sub_models_config(
text_encoder.config, audio_encoder.config, decoder.config, **kwargs
)
return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config)
@add_start_docstrings_to_model_forward(MUSICGEN_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
input_values: Optional[torch.FloatTensor] = None,
padding_mask: Optional[torch.BoolTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, MusicgenForConditionalGeneration
>>> import torch
>>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> inputs = processor(
... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
... padding=True,
... return_tensors="pt",
... )
>>> pad_token_id = model.generation_config.pad_token_id
>>> decoder_input_ids = (
... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long)
... * pad_token_id
... )
>>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits
>>> logits.shape # (bsz * num_codebooks, tgt_len, vocab_size)
torch.Size([8, 1, 2048])
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_text_encoder = {
argument[len("text_encoder_")]: value
for argument, value in kwargs.items()
if argument.startswith("text_encoder_")
}
kwargs_audio_encoder = {
argument[len("audio_encoder_")]: value
for argument, value in kwargs.items()
if argument.startswith("audio_encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_outputs is None:
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_text_encoder,
)
elif isinstance(encoder_outputs, tuple):
encoder_outputs = BaseModelOutput(*encoder_outputs)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if (
self.text_encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
if attention_mask is not None:
encoder_hidden_states = encoder_hidden_states * attention_mask[..., None]
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.decoder.pad_token_id, self.config.decoder.decoder_start_token_id
)
elif decoder_input_ids is None and decoder_inputs_embeds is None:
audio_encoder_outputs = self.audio_encoder(
input_values=input_values,
padding_mask=padding_mask,
**kwargs_audio_encoder,
)
audio_codes = audio_encoder_outputs.audio_codes
frames, bsz, codebooks, seq_len = audio_codes.shape
if frames != 1:
raise ValueError(
f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is "
"disabled by setting `chunk_length=None` in the audio encoder."
)
if self.config.decoder.audio_channels == 2 and audio_codes.shape[2] == self.decoder.num_codebooks // 2:
# mono input through encodec that we convert to stereo
audio_codes = audio_codes.repeat_interleave(2, dim=2)
decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
labels=labels,
**kwargs_decoder,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=decoder_outputs.loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_attention_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
decoder_delay_pattern_mask=None,
guidance_scale=None,
**kwargs,
):
# Overwritten -- MusicGen has custom processing
if decoder_delay_pattern_mask is None:
decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
decoder_input_ids,
self.generation_config.pad_token_id,
max_length=self.generation_config.max_length,
)
# apply the delay pattern mask
decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask)
if guidance_scale is not None and guidance_scale > 1:
# for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these
# before sampling)
decoder_input_ids = decoder_input_ids.repeat((2, 1))
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.repeat((2, 1))
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if decoder_input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = decoder_input_ids.shape[1] - 1
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def _prepare_decoder_input_ids_for_generation(
self,
batch_size: int,
model_input_name: str,
model_kwargs: Dict[str, torch.Tensor],
decoder_start_token_id: Optional[int] = None,
bos_token_id: Optional[int] = None,
device: torch.device = None,
) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
"""Prepares `decoder_input_ids` for generation with encoder-decoder models"""
# 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
# we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
decoder_input_ids = model_kwargs.pop("decoder_input_ids")
elif "input_ids" in model_kwargs and model_input_name != "input_ids":
decoder_input_ids = model_kwargs.pop("input_ids")
else:
decoder_input_ids = None
# 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
if device is None:
device = self.device
decoder_input_ids_start = (
torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device)
* decoder_start_token_id
)
# no user input -> use decoder_start_token_id as decoder_input_ids
if decoder_input_ids is None:
decoder_input_ids = decoder_input_ids_start
# user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
# decoder_attention_mask if provided)
elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item():
decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1)
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
decoder_attention_mask = torch.cat(
(torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
dim=-1,
)
model_kwargs["decoder_attention_mask"] = decoder_attention_mask
return decoder_input_ids, model_kwargs
def _prepare_text_encoder_kwargs_for_generation(
self,
inputs_tensor: torch.Tensor,
model_kwargs,
model_input_name: Optional[str],
generation_config: GenerationConfig,
) -> Dict[str, Any]:
# 1. get text encoder
encoder = self.get_text_encoder()
# Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
# as the inputs.
if hasattr(encoder, "_hf_hook"):
encoder._hf_hook.io_same_device = True
# 2. Prepare encoder args and encoder kwargs from model kwargs.
irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not any(argument.startswith(p) for p in irrelevant_prefix)
}
encoder_signature = set(inspect.signature(encoder.forward).parameters)
encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
if not encoder_accepts_wildcard:
encoder_kwargs = {
argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
}
encoder_kwargs["output_attentions"] = generation_config.output_attentions
encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states
guidance_scale = generation_config.guidance_scale
# 3. make sure that encoder returns `ModelOutput`
model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name
encoder_kwargs["return_dict"] = True
encoder_kwargs[model_input_name] = inputs_tensor
last_hidden_state = encoder(**encoder_kwargs).last_hidden_state
# for classifier free guidance we need to add a 'null' input to our encoder hidden states
if guidance_scale is not None and guidance_scale > 1:
last_hidden_state = torch.concatenate([last_hidden_state, torch.zeros_like(last_hidden_state)], dim=0)
if "attention_mask" in model_kwargs:
model_kwargs["attention_mask"] = torch.concatenate(
[model_kwargs["attention_mask"], torch.zeros_like(model_kwargs["attention_mask"])], dim=0
)
model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=last_hidden_state)
return model_kwargs
def _prepare_audio_encoder_kwargs_for_generation(
self, input_values, model_kwargs, model_input_name: Optional[str] = None
):
# 1. get audio encoder
encoder = self.get_audio_encoder()
# Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
# as the inputs.
if hasattr(encoder, "_hf_hook"):
encoder._hf_hook.io_same_device = True
# 2. Prepare encoder args and encoder kwargs from model kwargs.
irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not any(argument.startswith(p) for p in irrelevant_prefix)
}
encoder_signature = set(inspect.signature(encoder.forward).parameters)
encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
if not encoder_accepts_wildcard:
encoder_kwargs = {
argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
}
# 3. make sure that encoder returns `ModelOutput`
model_input_name = model_input_name if model_input_name is not None else self.audio_encoder.main_input_name
encoder_kwargs["return_dict"] = True
if self.decoder.config.audio_channels == 1:
encoder_kwargs[model_input_name] = input_values
audio_encoder_outputs = encoder.encode(**encoder_kwargs)
audio_codes = audio_encoder_outputs.audio_codes
audio_scales = audio_encoder_outputs.audio_scales
frames, bsz, codebooks, seq_len = audio_codes.shape
else:
if input_values.shape[1] != 2:
raise ValueError(
f"Expected stereo audio (2-channels) but example has {input_values.shape[1]} channel."
)
encoder_kwargs[model_input_name] = input_values[:, :1, :]
audio_encoder_outputs_left = encoder.encode(**encoder_kwargs)
audio_codes_left = audio_encoder_outputs_left.audio_codes
audio_scales_left = audio_encoder_outputs_left.audio_scales
encoder_kwargs[model_input_name] = input_values[:, 1:, :]
audio_encoder_outputs_right = encoder.encode(**encoder_kwargs)
audio_codes_right = audio_encoder_outputs_right.audio_codes
audio_scales_right = audio_encoder_outputs_right.audio_scales
frames, bsz, codebooks, seq_len = audio_codes_left.shape
# copy alternating left/right channel codes into stereo codebook
audio_codes = audio_codes_left.new_ones((frames, bsz, 2 * codebooks, seq_len))
audio_codes[:, :, ::2, :] = audio_codes_left
audio_codes[:, :, 1::2, :] = audio_codes_right
if audio_scales_left != [None] or audio_scales_right != [None]:
audio_scales = torch.stack([audio_scales_left, audio_scales_right], dim=1)
else:
audio_scales = [None] * bsz
if frames != 1:
raise ValueError(
f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is "
"disabled by setting `chunk_length=None` in the audio encoder."
)
decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len)
model_kwargs["decoder_input_ids"] = decoder_input_ids
model_kwargs["audio_scales"] = audio_scales
return model_kwargs
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id)
def resize_token_embeddings(self, *args, **kwargs):
raise NotImplementedError(
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the"
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
" model.decoder.resize_token_embeddings(...))"
)
def freeze_audio_encoder(self):
"""
Freeze the audio encoder weights.
"""
for param in self.audio_encoder.parameters():
param.requires_grad = False
self.audio_encoder._requires_grad = False
def freeze_text_encoder(self):
"""
Freeze the text encoder weights.
"""
for param in self.text_encoder.parameters():
param.requires_grad = False
self.text_encoder._requires_grad = False
def _maybe_initialize_input_ids_for_generation(
self,
inputs: Optional[torch.Tensor] = None,
bos_token_id: Optional[int] = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.LongTensor:
"""Initializes input ids for generation, if necessary."""
if inputs is not None:
return inputs
encoder_outputs = model_kwargs.get("encoder_outputs")
if encoder_outputs is not None:
# make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
shape = encoder_outputs[0].size()[:-1]
return torch.ones(shape, dtype=torch.long, device=self.device) * -100
if bos_token_id is None:
raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
# If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
# soft-prompting or in multimodal implementations built on top of decoder-only language models.
batch_size = 1
for value in model_kwargs.values():
if isinstance(value, torch.Tensor):
batch_size = value.shape[0]
break
return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
def _get_decoder_start_token_id(
self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: Optional[int] = None
) -> int:
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.generation_config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
synced_gpus: Optional[bool] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
if model_kwargs.get("encoder_outputs") is not None and type(model_kwargs["encoder_outputs"]) is tuple:
# wrap the unconditional outputs as a BaseModelOutput for compatibility with the rest of generate
model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=model_kwargs["encoder_outputs"][0])
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
requires_attention_mask = "encoder_outputs" not in model_kwargs
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
# 3. Define model inputs
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=inputs_tensor.device)
# 4. Define other model kwargs
model_kwargs["use_cache"] = generation_config.use_cache
model_kwargs["guidance_scale"] = generation_config.guidance_scale
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config, model_kwargs
)
if "encoder_outputs" not in model_kwargs:
# encoder_outputs are created and added to `model_kwargs`
model_kwargs = self._prepare_text_encoder_kwargs_for_generation(
inputs_tensor, model_kwargs, model_input_name, generation_config
)
if "decoder_input_ids" not in model_kwargs and "input_values" in model_kwargs:
model_kwargs = self._prepare_audio_encoder_kwargs_for_generation(
model_kwargs["input_values"],
model_kwargs,
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config._decoder_start_token_tensor,
bos_token_id=generation_config._bos_token_tensor,
device=inputs_tensor.device,
)
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=model_input_name,
inputs_tensor=inputs_tensor,
input_ids_length=input_ids_length,
)
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
input_ids,
pad_token_id=generation_config._decoder_start_token_tensor,
max_length=generation_config.max_length,
)
# stash the delay mask so that we don't have to recompute in each forward pass
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask
# input_ids are ready to be placed on the streamer (if used)
if streamer is not None:
streamer.put(input_ids.cpu())
# 7. determine generation mode
generation_mode = generation_config.get_generation_mode()
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG)
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1:
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
generation_config.guidance_scale = None
# 9. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
device=input_ids.device,
)
# 10. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
# expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 11. run sample
outputs = self._sample(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
else:
raise ValueError(
"Got incompatible mode for generation, should be one of greedy or sampling. "
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
)
if generation_config.return_dict_in_generate:
output_ids = outputs.sequences
else:
output_ids = outputs
# apply the pattern mask to the final ids
output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"])
# revert the pattern delay mask by filtering the pad token id
output_ids = output_ids[output_ids != generation_config._pad_token_tensor].reshape(
batch_size, self.decoder.num_codebooks, -1
)
# append the frame dimension back to the audio codes
output_ids = output_ids[None, ...]
audio_scales = model_kwargs.get("audio_scales")
if audio_scales is None:
audio_scales = [None] * batch_size
if self.decoder.config.audio_channels == 1:
output_values = self.audio_encoder.decode(
output_ids,
audio_scales=audio_scales,
).audio_values
else:
codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales)
output_values_left = codec_outputs_left.audio_values
codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales)
output_values_right = codec_outputs_right.audio_values
output_values = torch.cat([output_values_left, output_values_right], dim=1)
if generation_config.return_dict_in_generate:
outputs.sequences = output_values
return outputs
else:
return output_values
def get_unconditional_inputs(self, num_samples=1):
"""
Helper function to get null inputs for unconditional generation, enabling the model to be used without the
feature extractor or tokenizer.
Args:
num_samples (int, *optional*):
Number of audio samples to unconditionally generate.
max_new_tokens (int, *optional*):
Number of tokens to generate for each sample. More tokens means longer audio samples, at the expense of
longer inference (since more audio tokens need to be generated per sample).
Example:
```python
>>> from transformers import MusicgenForConditionalGeneration
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> # get the unconditional (or 'null') inputs for the model
>>> unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
>>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256)
```"""
last_hidden_state = torch.zeros(
(num_samples, 1, self.config.text_encoder.hidden_size), device=self.device, dtype=self.dtype
)
attention_mask = torch.zeros((num_samples, 1), device=self.device, dtype=torch.long)
return MusicgenUnconditionalInput(
encoder_outputs=(last_hidden_state,),
attention_mask=attention_mask,
guidance_scale=1.0,
)
__all__ = ["MusicgenForConditionalGeneration", "MusicgenForCausalLM", "MusicgenModel", "MusicgenPreTrainedModel"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: processing_musicgen.py
LINES: 1
SIZE: 5.57 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\musicgen\processing_musicgen.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Text/audio processor class for MusicGen
"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class MusicgenProcessor(ProcessorMixin):
r"""
Constructs a MusicGen processor which wraps an EnCodec feature extractor and a T5 tokenizer into a single processor
class.
[`MusicgenProcessor`] offers all the functionalities of [`EncodecFeatureExtractor`] and [`TTokenizer`]. See
[`~MusicgenProcessor.__call__`] and [`~MusicgenProcessor.decode`] for more information.
Args:
feature_extractor (`EncodecFeatureExtractor`):
An instance of [`EncodecFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`T5Tokenizer`):
An instance of [`T5Tokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "EncodecFeatureExtractor"
tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
def __call__(self, *args, **kwargs):
"""
Forwards the `audio` argument to EncodecFeatureExtractor's [`~EncodecFeatureExtractor.__call__`] and the `text`
argument to [`~T5Tokenizer.__call__`]. Please refer to the docstring of the above two methods for more
information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
audio = kwargs.pop("audio", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if text is not None:
inputs = self.tokenizer(text, **kwargs)
if audio is not None:
audio_inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
inputs["input_values"] = audio_inputs["input_values"]
if "padding_mask" in audio_inputs:
inputs["padding_mask"] = audio_inputs["padding_mask"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method is used to decode either batches of audio outputs from the MusicGen model, or batches of token ids
from the tokenizer. In the case of decoding token ids, this method forwards all its arguments to T5Tokenizer's
[`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information.
"""
audio_values = kwargs.pop("audio", None)
padding_mask = kwargs.pop("padding_mask", None)
if len(args) > 0:
audio_values = args[0]
args = args[1:]
if audio_values is not None:
return self._decode_audio(audio_values, padding_mask=padding_mask)
else:
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to T5Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def _decode_audio(self, audio_values, padding_mask: Optional = None) -> List[np.ndarray]:
"""
This method strips any padding from the audio values to return a list of numpy audio arrays.
"""
audio_values = to_numpy(audio_values)
bsz, channels, seq_len = audio_values.shape
if padding_mask is None:
return list(audio_values)
padding_mask = to_numpy(padding_mask)
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
difference = seq_len - padding_mask.shape[-1]
padding_value = 1 - self.feature_extractor.padding_value
padding_mask = np.pad(padding_mask, ((0, 0), (0, difference)), "constant", constant_values=padding_value)
audio_values = audio_values.tolist()
for i in range(bsz):
sliced_audio = np.asarray(audio_values[i])[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
audio_values[i] = sliced_audio.reshape(channels, -1)
return audio_values
__all__ = ["MusicgenProcessor"]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.04 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mvp\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_mvp import *
from .modeling_mvp import *
from .tokenization_mvp import *
from .tokenization_mvp_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_mvp.py
LINES: 1
SIZE: 8.24 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mvp\configuration_mvp.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MVP model configuration"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MvpConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MvpModel`]. It is used to instantiate a MVP model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MVP [RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50267):
Vocabulary size of the MVP model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MvpModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
use_prompt (`bool`, *optional*, defaults to `False`):
Whether or not to use prompt.
prompt_length (`int`, *optional*, defaults to 100):
The length of prompt.
prompt_mid_dim (`int`, *optional*, defaults to 800):
Dimensionality of the "intermediate" layer in prompt.
Example:
```python
>>> from transformers import MvpConfig, MvpModel
>>> # Initializing a MVP RUCAIBox/mvp style configuration
>>> configuration = MvpConfig()
>>> # Initializing a model (with random weights) from the RUCAIBox/mvp style configuration
>>> model = MvpModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mvp"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=50267,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=False,
use_cache=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
is_encoder_decoder=True,
decoder_start_token_id=2,
forced_eos_token_id=2,
use_prompt=False,
prompt_length=100,
prompt_mid_dim=800,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.use_prompt = use_prompt
self.prompt_length = prompt_length
self.prompt_mid_dim = prompt_mid_dim
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
"The config can simply be saved and uploaded again to be fixed."
)
__all__ = ["MvpConfig"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_mvp.py
LINES: 1
SIZE: 88.44 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mvp\modeling_mvp.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MVP model."""
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mvp import MvpConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "RUCAIBox/mvp"
_CONFIG_FOR_DOC = "MvpConfig"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->MVP
class MvpLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# MVP is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
"""`input_ids' shape is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
).expand(bsz, -1)
return super().forward(positions + self.offset)
class MvpAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
attn_prompt: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
if attn_prompt is not None:
key_states = torch.cat([attn_prompt[0].expand(bsz, -1, -1, -1), key_states], dim=2)
value_states = torch.cat([attn_prompt[1].expand(bsz, -1, -1, -1), value_states], dim=2)
if attention_mask is not None:
prompt_mask = torch.zeros(bsz, 1, tgt_len, attn_prompt[0].size(1)).to(attention_mask.device)
attention_mask = torch.cat([prompt_mask, attention_mask], dim=(-1))
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class MvpEncoderLayer(nn.Module):
def __init__(self, config: MvpConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MvpAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
layer_head_mask: torch.FloatTensor,
self_attn_prompt: torch.FloatTensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
self_attn_prompt (`torch.FloatTensor`): prompt of self attention of shape
`(2, encoder_attention_heads, pro_len, head_dim)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
attn_prompt=self_attn_prompt,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class MvpDecoderLayer(nn.Module):
def __init__(self, config: MvpConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MvpAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = MvpAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
self_attn_prompt: Optional[torch.Tensor] = None,
cross_attn_prompt: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
self_attn_prompt (`torch.FloatTensor`): prompt of self attention of shape
`(2, decoder_attention_heads, pro_len, head_dim)`.
cross_attn_prompt (`torch.FloatTensor`): prompt of cross attention of shape
`(2, decoder_attention_heads, pro_len, head_dim)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
attn_prompt=self_attn_prompt,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
attn_prompt=cross_attn_prompt,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->MVP
class MvpClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class MvpPrompt(nn.Module):
"""Layer-wise prompt for encoder or decoder."""
def __init__(self, config, num_layers, num_heads):
super().__init__()
self.prompt_length = config.prompt_length
self.num_layers = num_layers
self.num_heads = num_heads
self.head_dim = config.d_model // num_heads
self.dropout = nn.Dropout(p=config.dropout)
self.prompt_embedding = nn.Embedding(config.prompt_length, config.d_model)
self.prompt_trans = nn.Sequential(
nn.Linear(config.d_model, config.prompt_mid_dim),
nn.GELU(),
nn.Linear(config.prompt_mid_dim, num_layers * 2 * config.d_model),
)
def forward(self, prompt_ids: torch.Tensor) -> Tuple[torch.Tensor]:
prompt = self.prompt_trans(self.prompt_embedding(prompt_ids))
prompt = prompt.view(self.prompt_length, self.num_layers * 2, self.num_heads, self.head_dim)
prompt = self.dropout(prompt)
prompt = prompt.permute([1, 2, 0, 3]).split(2)
return prompt
class MvpPreTrainedModel(PreTrainedModel):
config_class = MvpConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
MVP_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MvpConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MVP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Mvp uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read [`modeling_mvp._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
MVP_CONDITIONAL_GENERATION_EXAMPLE = r"""
Example of summarization:
Fine-tuning a model
```python
>>> import torch
>>> from transformers import AutoTokenizer, MvpForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp")
>>> inputs = tokenizer(
... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.",
... return_tensors="pt",
... )
>>> labels = tokenizer("Bad Reasons To Quit Your Job", return_tensors="pt")["input_ids"]
>>> loss = model(**inputs, labels=labels).loss
>>> loss.backward()
```
Inference after the model fine-tuned
```python
>>> with torch.no_grad():
... generated_ids = model.generate(**inputs)
>>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
```
"""
MVP_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
Example of single-label classification:
Fine-tuning a model on `num_labels` classes
```python
>>> import torch
>>> from transformers import AutoTokenizer, MvpForSequenceClassification
>>> num_labels = 2 # for example, this is a binary classification task
>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForSequenceClassification.from_pretrained("RUCAIBox/mvp", num_labels=num_labels)
>>> inputs = tokenizer("Classify: Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor(1) # the real label for inputs
>>> loss = model(**inputs, labels=labels).loss
>>> loss.backward()
```
Inference after the model fine-tuned
```python
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax()
```
"""
MVP_QUESTION_ANSWERING_SAMPLE = r"""
Example:
Fine-tuning a model for extrative question answering, and our model also supports generative question answering
using `BartForConditionalGeneration`
```python
>>> import torch
>>> from transformers import AutoTokenizer, MvpForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForQuestionAnswering.from_pretrained("RUCAIBox/mvp")
>>> inputs = tokenizer(
... "Answer the following question: Who was Jim Henson? [SEP] Jim Henson was a nice puppet",
... return_tensors="pt",
... )
>>> target_start_index = torch.tensor([18])
>>> target_end_index = torch.tensor([19])
>>> loss = model(**inputs, start_positions=target_start_index, end_positions=target_end_index).loss
>>> loss.backward()
```
Inference after the model fine-tuned
```python
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> predict_answer = tokenizer.decode(predict_answer_tokens)
```
"""
class MvpEncoder(MvpPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`MvpEncoderLayer`].
Args:
config: MvpConfig
embed_tokens (nn.Embedding): output embedding
use_prompt (bool): whether to use prompt
"""
def __init__(
self, config: MvpConfig, embed_tokens: Optional[nn.Embedding] = None, use_prompt: Optional[bool] = False
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = MvpLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([MvpEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.use_prompt = use_prompt
if use_prompt:
self.prompt_length = config.prompt_length
self.self_attn_prompt = MvpPrompt(
config,
config.encoder_layers,
config.encoder_attention_heads,
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# layer-wise prompt
if self.use_prompt:
prompt_ids = torch.arange(self.prompt_length).to(self.device)
self_attn_prompt = self.self_attn_prompt(prompt_ids)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
(self_attn_prompt[idx] if self.use_prompt else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
self_attn_prompt=(self_attn_prompt[idx] if self.use_prompt else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class MvpDecoder(MvpPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MvpDecoderLayer`]
Args:
config: MvpConfig
embed_tokens (nn.Embedding): output embedding
use_prompt (bool): whether to use prompt
"""
def __init__(
self, config: MvpConfig, embed_tokens: Optional[nn.Embedding] = None, use_prompt: Optional[bool] = False
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = MvpLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([MvpDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.use_prompt = use_prompt
if use_prompt:
self.prompt_length = config.prompt_length
self.self_attn_prompt = MvpPrompt(
config,
config.decoder_layers,
config.decoder_attention_heads,
)
self.cross_attn_prompt = MvpPrompt(
config,
config.decoder_layers,
config.decoder_attention_heads,
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input_ids.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# layer-wise prompt
if self.use_prompt:
prompt_ids = torch.arange(self.prompt_length).to(self.device)
self_attn_prompt = self.self_attn_prompt(prompt_ids)
cross_attn_prompt = self.cross_attn_prompt(prompt_ids)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
self_attn_prompt[idx] if self.use_prompt else None,
cross_attn_prompt[idx] if self.use_prompt else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
self_attn_prompt=(self_attn_prompt[idx] if self.use_prompt else None),
cross_attn_prompt=(cross_attn_prompt[idx] if self.use_prompt else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare MVP Model outputting raw hidden-states without any specific head on top.",
MVP_START_DOCSTRING,
)
class MvpModel(MvpPreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["final_logits_bias"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: MvpConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.use_prompt = config.use_prompt
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = MvpEncoder(config, self.shared, config.use_prompt)
self.decoder = MvpDecoder(config, self.shared, config.use_prompt)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def set_lightweight_tuning(self):
assert self.use_prompt, "If you want to use lightweight tuning, make sure that `use_prompt=True`."
self.requires_grad_(False)
self.encoder.self_attn_prompt.requires_grad_(True)
self.decoder.self_attn_prompt.requires_grad_(True)
self.decoder.cross_attn_prompt.requires_grad_(True)
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqModelOutput]:
# different to other models, Mvp automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The MVP Model with a language modeling head. Can be used for various text generation tasks.", MVP_START_DOCSTRING
)
class MvpForConditionalGeneration(MvpPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: MvpConfig):
super().__init__(config)
self.model = MvpModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(
self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True
) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
self._resize_final_logits_bias(new_num_tokens)
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_lightweight_tuning(self):
self.model.set_lightweight_tuning()
self.lm_head.requires_grad_(False)
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(MVP_CONDITIONAL_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"""
Mvp model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
MVP_START_DOCSTRING,
)
class MvpForSequenceClassification(MvpPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: MvpConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = MvpModel(config)
self.classification_head = MvpClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
# Initialize weights and apply final processing
self.post_init()
def set_lightweight_tuning(self):
self.model.set_lightweight_tuning()
self.classification_head.requires_grad_(False)
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
@add_end_docstrings(MVP_SEQUENCE_CLASSIFICATION_SAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
MVP Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer
on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MVP_START_DOCSTRING,
)
class MvpForQuestionAnswering(MvpPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = MvpModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def set_lightweight_tuning(self):
self.model.set_lightweight_tuning()
self.qa_outputs.requires_grad_(False)
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
@add_end_docstrings(MVP_QUESTION_ANSWERING_SAMPLE)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Mvp
class MvpDecoderWrapper(MvpPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = MvpDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
class MvpForCausalLM(MvpPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = MvpDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
def set_lightweight_tuning(self):
self.model.set_lightweight_tuning()
self.lm_head.requires_grad_(False)
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MvpForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForCausalLM.from_pretrained("RUCAIBox/mvp", add_cross_attention=False)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 8, 50267]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"MvpForCausalLM",
"MvpForConditionalGeneration",
"MvpForQuestionAnswering",
"MvpForSequenceClassification",
"MvpModel",
"MvpPreTrainedModel",
]
```
|
===================================================================================================================================
SOURCE CODE FILE: tokenization_mvp.py
LINES: 5
SIZE: 15.84 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mvp\tokenization_mvp.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all MVP models at https://huggingface.co/models?filter=mvp
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class MvpTokenizer(PreTrainedTokenizer):
"""
Constructs a MVP tokenizer, which is smilar to the RoBERTa tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import MvpTokenizer
>>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (MVP tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
**kwargs,
):
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
super().__init__(
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
vocab = self.encoder.copy()
vocab.update(self.added_tokens_encoder)
return vocab
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A MVP sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. MVP does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)
__all__ = ["MvpTokenizer"]
```
|
========================================================================================================================================
SOURCE CODE FILE: tokenization_mvp_fast.py
LINES: 1
SIZE: 11.55 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mvp\tokenization_mvp_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mvp import MvpTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all MVP models at https://huggingface.co/models?filter=mvp
class MvpTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" MVP tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 tokenizer,
using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import MvpTokenizerFast
>>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (MVP tokenizer detect beginning of words by the preceding space).
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether the post processing step should trim offsets to avoid including whitespaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = MvpTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
trim_offsets=True,
**kwargs,
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
trim_offsets=trim_offsets,
**kwargs,
)
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
tokenizer_component = "post_processor"
tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
if tokenizer_component_instance:
state = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
state["sep"] = tuple(state["sep"])
if "cls" in state:
state["cls"] = tuple(state["cls"])
changes_to_apply = False
if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
state["add_prefix_space"] = add_prefix_space
changes_to_apply = True
if state.get("trim_offsets", trim_offsets) != trim_offsets:
state["trim_offsets"] = trim_offsets
changes_to_apply = True
if changes_to_apply:
component_class = getattr(processors, state.pop("type"))
new_value = component_class(**state)
setattr(self.backend_tokenizer, tokenizer_component, new_value)
@property
def mask_token(self) -> str:
"""
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
having been set.
MVP tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
comprise the space before the *<mask>*.
"""
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet.")
return None
return str(self._mask_token)
@mask_token.setter
def mask_token(self, value):
"""
Overriding the default behavior of the mask token to have it eat the space before it.
This is needed to preserve backward compatibility with all the previously used models based on Mvp.
"""
# Mask token behave like a normal word, i.e. include the space before it
# So we set lstrip to True
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
self._mask_token = value
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
if token_ids_1 is None:
return output
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. MVP does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
__all__ = ["MvpTokenizerFast"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.93 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\myt5\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .tokenization_myt5 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
=====================================================================================================================================
SOURCE CODE FILE: tokenization_myt5.py
LINES: 1
SIZE: 15.19 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\myt5\tokenization_myt5.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for model MyT5."""
import json
import os
import warnings
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "byte_maps.json"}
class ByteRewriter:
"""
Byte rewriter class for MyT5 tokenizer.
This class is used to rewrite bytes using a hash tree. The hash tree is constructed from a set of rewriting rules.
Args:
rewriting_rules (`str` or `Dict[str, str]`):
A path to a json file containing the rewriting rules or a dictionary containing the rewriting rules.
"""
LEAF = "[LEAF]"
def __init__(self, rewriting_rules: Union[str, Dict[str, str]]):
if isinstance(rewriting_rules, str):
with open(rewriting_rules, "r") as f:
rewriting_rules = json.load(f)
elif not isinstance(rewriting_rules, dict):
raise ValueError(
f"rewriting_rules should be either a path to json file or a dict, got {type(rewriting_rules)}"
)
self.hash_tree = self.construct_hash_tree(rewriting_rules)
reverse_rewriting_rules = {v: k for k, v in rewriting_rules.items()}
self.reverse_hash_tree = self.construct_hash_tree(reverse_rewriting_rules)
def add_leaf(self, hash_tree: Dict[str, Union[dict, List[str]]], byte_in_sequence: str, byte_out_sequence: str):
"""
Add a leaf with the output byte sequence to the hash tree.
"""
byte_in_list = byte_in_sequence.split(" ")
byte_out_list = byte_out_sequence.split(" ")
tree_pointer = hash_tree
for b in byte_in_list:
if b not in tree_pointer:
tree_pointer[b] = {}
tree_pointer = tree_pointer[b]
tree_pointer[self.LEAF] = byte_out_list
def construct_hash_tree(self, rewriting_rules: Dict[str, str]) -> Dict[str, Union[dict, List[str]]]:
"""
Construct a hash tree for rewritten byte sequences.
"""
hash_tree = defaultdict(dict)
for b in (f"{x:02x}" for x in range(256)):
hash_tree[b][self.LEAF] = [b]
for in_sequence, out_sequence in rewriting_rules.items():
self.add_leaf(hash_tree, in_sequence, out_sequence)
return hash_tree
def search_hash_tree(self, byte_sequence: List[str]) -> Union[None, List[str]]:
"""
Search the hash tree and return the rewritten byte sequence if found.
"""
tree_pointer = self.hash_tree
for b in byte_sequence:
if b in tree_pointer:
tree_pointer = tree_pointer[b]
else:
return None
return tree_pointer[self.LEAF]
def rewrite_bytes(self, in_bytes: List[str], reverse=False) -> List[str]:
"""
Rewrite a sequence of bytes using the hash tree.
Args:
in_bytes (`List[str]`): A list of bytes to be rewritten.
reverse (`bool`): If True, decoding is performed with the reverse hash tree.
Returns:
`List[str]`: The rewritten byte sequence.
"""
out_bytes = []
b_start = 0
b_end = 0
while b_start < len(in_bytes):
tree_pointer = self.hash_tree if not reverse else self.reverse_hash_tree
for j in range(b_start, len(in_bytes)):
b = in_bytes[j]
if b in tree_pointer:
tree_pointer = tree_pointer[b]
elif j == b_start:
cur_leaf = [b]
b_end = j
break
else:
break
if self.LEAF in tree_pointer:
cur_leaf = tree_pointer[self.LEAF]
b_end = j
out_bytes.extend(cur_leaf)
b_start = b_end + 1
return out_bytes
class MyT5Tokenizer(PreTrainedTokenizer):
"""
Construct a MyT5 tokenizer.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`): The file containing the byte rewriting rules.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
extra_ids (`int`, *optional*, defaults to 125):
Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are
indexed from the end of the vocabulary up to beginning ("<extra_id_0>" is the last token in the vocabulary
like in ByT5 preprocessing see
[here](https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117)).
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
"""
model_input_names = ["input_ids", "attention_mask"]
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
extra_ids=125,
additional_special_tokens=None,
**kwargs,
) -> None:
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0:
# Check that we have the right number of extra_id special tokens
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
" provided to MyT5Tokenizer. In this case the additional_special_tokens must include the"
" extra_ids tokens"
)
pad_token = AddedToken(pad_token, lstrip=True, rstrip=True) if isinstance(pad_token, str) else pad_token
eos_token = AddedToken(eos_token, lstrip=True, rstrip=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=True, rstrip=True) if isinstance(unk_token, str) else unk_token
# unk token needs to be in the vocab with correct index
self._added_tokens_decoder = {0: pad_token, 1: eos_token, 2: unk_token}
self.offset = len(self._added_tokens_decoder)
self._utf_vocab_size = 2**8 # utf is 8 bits
# Load byte maps
self.byte_maps = json.load(open(vocab_file, "r"))
self.decompose_rewriter = ByteRewriter(self.byte_maps["decompose_map"])
self.merge_rewriter = ByteRewriter(self.byte_maps["merge_map"])
super().__init__(
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
extra_ids=0,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
@property
def vocab_size(self):
return self._utf_vocab_size
# Copied from transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.get_vocab
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
vocab.update(self.added_tokens_encoder)
return vocab
# Copied from transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# normal case: some special tokens
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + [1]
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
"""Do not add eos again if user already added it."""
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
" eos tokens being added."
)
return token_ids
else:
return token_ids + [self.eos_token_id]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. MyT5 does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
eos = [self.eos_token_id]
if token_ids_1 is None:
return len(token_ids_0 + eos) * [0]
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
# Copied from transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A sequence has the following format:
- single sequence: `X </s>`
- pair of sequences: `A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
if token_ids_1 is None:
return token_ids_0
else:
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
return token_ids_0 + token_ids_1
def _tokenize(self, text: str, **kwargs) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words.
Represents tokens in two character hex format"""
tokens = [f"{i:02x}" for i in text.encode("utf-8")]
tokens = self.morphological_encode(tokens)
return tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if len(token) != 2:
token_id = None
else:
token_id = int(token, 16) + self.offset
return token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = f"{index - self.offset:02x}"
return token
def morphological_encode(self, indices: List[str]) -> List[str]:
# Decompose and merge morphological sequences
indices = self.decompose_rewriter.rewrite_bytes(indices, reverse=False)
indices = self.merge_rewriter.rewrite_bytes(indices, reverse=False)
return indices
def morphological_decode(self, indices: List[str]) -> List[str]:
# Demerge and compose morphological sequences
indices = self.merge_rewriter.rewrite_bytes(indices, reverse=True)
indices = self.decompose_rewriter.rewrite_bytes(indices, reverse=True)
return indices
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
bstring = b""
out_tokens = []
for token in tokens:
if token in self.added_tokens_decoder:
out_tokens.append(self.added_tokens_decoder[token])
elif token in self.added_tokens_encoder:
out_tokens.append(token)
else:
out_tokens.append(token)
out_tokens = self.morphological_decode(out_tokens)
_added_tokens = set(self.added_tokens_decoder.values()) | set(self.added_tokens_encoder)
for token in out_tokens:
if token in _added_tokens:
bstring += bytes(token, "utf-8")
else:
bstring += bytes.fromhex(token)
string = bstring.decode("utf-8", errors="ignore")
return string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
writer.write(json.dumps(self.byte_maps, indent=2, ensure_ascii=False))
return (vocab_file,)
__all__ = ["MyT5Tokenizer"]
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nemotron\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_nemotron import *
from .modeling_nemotron import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==============================================================================================================================================
SOURCE CODE FILE: configuration_nemotron.py
LINES: 1
SIZE: 7.22 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nemotron\configuration_nemotron.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Nemotron model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class NemotronConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`NemotronModel`]. It is used to instantiate an Nemotron
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Nemotron-8B.
e.g. [nvidia/nemotron-3-8b-base-4k-hf](https://huggingface.co/nvidia/nemotron-3-8b-base-4k-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Nemotron model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`NemotronModel`]
hidden_size (`int`, *optional*, defaults to 6144):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 48):
Number of attention heads for each attention layer in the Transformer decoder.
head_dim (`int`, *optional*):
Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if None
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.0134):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 3):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj and down_proj layers in the MLP layers.
```python
>>> from transformers import NemotronModel, NemotronConfig
>>> # Initializing a Nemotron nemotron-15b style configuration
>>> configuration = NemotronConfig()
>>> # Initializing a model from the nemotron-15b style configuration
>>> model = NemotronModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "nemotron"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=256000,
hidden_size=6144,
intermediate_size=24576,
num_hidden_layers=32,
num_attention_heads=48,
head_dim=None,
num_key_value_heads=None,
hidden_act="relu2",
max_position_embeddings=4096,
initializer_range=0.0134,
norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=2,
eos_token_id=3,
tie_word_embeddings=False,
rope_theta=10000.0,
partial_rotary_factor=0.5,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim if head_dim is not None else hidden_size // num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.norm_eps = norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.partial_rotary_factor = partial_rotary_factor
rope_config_validation(self)
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["NemotronConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: modeling_nemotron.py
LINES: 2
SIZE: 61.46 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nemotron\modeling_nemotron.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Nemotron model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import Size, Tensor, nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_nemotron import NemotronConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "nvidia/nemotron-3-8b-base-4k-hf"
_CONFIG_FOR_DOC = "NemotronConfig"
def _cast_if_autocast_enabled(*args):
if not torch.is_autocast_enabled():
return args
else:
return torch.cuda.amp.autocast_mode._cast(args, torch.get_autocast_gpu_dtype())
class NemotronLayerNorm1P(nn.LayerNorm):
def __init__(
self,
normalized_shape: Union[int, List[int], Size],
eps: float = 1e-5,
elementwise_affine: bool = True,
bias: bool = True,
device=None,
dtype=None,
):
super().__init__(normalized_shape, eps, elementwise_affine, bias, device, dtype)
def forward(self, input: Tensor) -> Tensor:
args = _cast_if_autocast_enabled(input, self.normalized_shape, self.weight + 1, self.bias, self.eps)
with torch.amp.autocast(input.device.type, enabled=False):
return F.layer_norm(*args)
ALL_LAYERNORM_LAYERS.append(NemotronLayerNorm1P)
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with LLAMA->NEMOTRON,Llama->Nemotron,llama->nemotron
class NemotronRotaryEmbedding(nn.Module):
# Ignore copy
def __init__(
self,
config: NemotronConfig,
device=None,
):
super().__init__()
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
rot_dim = cos.shape[-1]
# If q_pass/k_pass is empty, rotary pos embedding is applied to all tensor q/k
q, q_pass = q[..., :rot_dim], q[..., rot_dim:]
k, k_pass = k[..., :rot_dim], k[..., rot_dim:]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return torch.cat((q_embed, q_pass), dim=-1), torch.cat((k_embed, k_pass), dim=-1)
class NemotronMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.up_proj(x)))
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class NemotronAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: NemotronConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.partial_rotary_factor = config.partial_rotary_factor
self.is_causal = True
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.head_dim * self.num_heads, self.hidden_size, bias=config.attention_bias)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is not None:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# NO LONGER EXIST Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with LLAMA->NEMOTRON,Llama->Nemotron,llama->nemotron
# TODO cyril: modular
class NemotronFlashAttention2(NemotronAttention):
"""
Nemotron flash attention module. This module inherits from `NemotronAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
# Ignore copy
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is not None:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (NemotronRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# NO LONGER EXIST Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with LLAMA->NEMOTRON,Llama->Nemotron,llama->nemotron
# TODO cyril: modular
class NemotronSdpaAttention(NemotronAttention):
"""
Nemotron attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`NemotronAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Ignore copy
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"NemotronModel is using NemotronSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is not None:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
NEMOTRON_ATTENTION_CLASSES = {
"eager": NemotronAttention,
"flash_attention_2": NemotronFlashAttention2,
"sdpa": NemotronSdpaAttention,
}
# copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with LLAMA->NEMOTRON,Llama->Nemotron,llama->nemotron
# no longer copied after attention refactors
class NemotronDecoderLayer(nn.Module):
# Ignore copy
def __init__(self, config: NemotronConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = NEMOTRON_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = NemotronMLP(config)
self.input_layernorm = NemotronLayerNorm1P(config.hidden_size, eps=config.norm_eps)
self.post_attention_layernorm = NemotronLayerNorm1P(config.hidden_size, eps=config.norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
NEMOTRON_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`NemotronConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Nemotron Model outputting raw hidden-states without any specific head on top.",
NEMOTRON_START_DOCSTRING,
)
class NemotronPreTrainedModel(PreTrainedModel):
config_class = NemotronConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["NemotronDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
NEMOTRON_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Nemotron Model outputting raw hidden-states without any specific head on top.",
NEMOTRON_START_DOCSTRING,
)
class NemotronModel(NemotronPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`NemotronDecoderLayer`]
Args:
config: NemotronConfig
"""
def __init__(self, config: NemotronConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[NemotronDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = NemotronLayerNorm1P(config.hidden_size, eps=config.norm_eps)
self.rotary_emb = NemotronRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(NEMOTRON_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask with LLAMA->NEMOTRON,Llama->Nemotron,llama->nemotron
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
# TODO: re-enable check: Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->NEMOTRON,Llama->Nemotron,llama->nemotron
class NemotronForCausalLM(NemotronPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = NemotronModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(NEMOTRON_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
# Ignore copy (doc string different)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, NemotronForCausalLM
>>> model = NemotronForCausalLM.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The Nemotron Model transformer with a sequence classification head on top (linear layer).
[`NemotronForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
NEMOTRON_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->NEMOTRON,Llama->Nemotron,llama->nemotron
class NemotronForSequenceClassification(NemotronPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = NemotronModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(NEMOTRON_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Nemotron Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
NEMOTRON_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with LLAMA->NEMOTRON,Llama->Nemotron,llama->nemotron
class NemotronForQuestionAnswering(NemotronPreTrainedModel):
base_model_prefix = "transformer"
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Nemotron
def __init__(self, config):
super().__init__(config)
self.transformer = NemotronModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.transformer.embed_tokens
def set_input_embeddings(self, value):
self.transformer.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(NEMOTRON_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs,
) -> QuestionAnsweringModelOutput:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs: BaseModelOutputWithPast = self.transformer(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The Nemotron Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
NEMOTRON_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with LLAMA->NEMOTRON,Llama->Nemotron,llama->nemotron
class NemotronForTokenClassification(NemotronPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = NemotronModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(NEMOTRON_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"NemotronForQuestionAnswering",
"NemotronForCausalLM",
"NemotronModel",
"NemotronPreTrainedModel",
"NemotronForSequenceClassification",
"NemotronForTokenClassification",
]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nllb\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .tokenization_nllb import *
from .tokenization_nllb_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nllb_moe\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_nllb_moe import *
from .modeling_nllb_moe import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==============================================================================================================================================
SOURCE CODE FILE: configuration_nllb_moe.py
LINES: 1
SIZE: 10.94 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nllb_moe\configuration_nllb_moe.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023, HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NLLB-MoE model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class NllbMoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`NllbMoeModel`]. It is used to instantiate an
NLLB-MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the NLLB-MoE
[facebook/nllb-moe-54b](https://huggingface.co/facebook/nllb-moe-54b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the NllbMoe model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`NllbMoeModel`] or
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
second_expert_policy ( `str`, *optional*, default to `"all"`):
The policy used for the sampling the probability of being sampled to a second expert for each token.
normalize_router_prob_before_dropping (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the router probabilities before applying a mask based on the experts capacity
(capacity dropping).
batch_prioritized_routing (`bool`, *optional*, defaults to `True`):
Whether or not to orders the tokens by their router probabilities before capacity dropping. This means that
the tokens that have the highest probabilities will be routed before other tokens that might be further in
the sequence.
moe_eval_capacity_token_fraction (`float`, *optional*, defaults to 1.0):
Fraction of tokens as capacity during validation, if set to negative, uses the same as training. Should be
in range: (0.0, 1.0].
num_experts (`int`, *optional*, defaults to 128):
Number of experts for each NllbMoeSparseMlp layer.
expert_capacity (`int`, *optional*, defaults to 64):
Number of tokens that can be stored in each expert.
encoder_sparse_step (`int`, *optional*, defaults to 4):
Frequency of the sparse layers in the encoder. 4 means that one out of 4 layers will be sparse.
decoder_sparse_step (`int`, *optional*, defaults to 4):
Frequency of the sparse layers in the decoder. 4 means that one out of 4 layers will be sparse.
router_dtype (`str`, *optional*, default to `"float32"`):
The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the
*selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961).
router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`):
Whether to ignore padding tokens when routing. if `False`, the padding tokens are not routed to any
experts.
router_bias (`bool`, *optional*, defaults to `False`):
Whether or not the classifier of the router should have a bias.
moe_token_dropout (`float`, *optional*, default to 0.2):
Masking rate for MoE expert output masking (EOM), which is implemented via a Dropout2d on the expert
outputs.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not to return the router logits. Only set to `True` to get the auxiliary loss when training.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import NllbMoeModel, NllbMoeConfig
>>> # Initializing a NllbMoe facebook/nllb-moe-54b style configuration
>>> configuration = NllbMoeConfig()
>>> # Initializing a model from the facebook/nllb-moe-54b style configuration
>>> model = NllbMoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "nllb-moe"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=128112,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.05,
decoder_layerdrop=0.05,
use_cache=True,
is_encoder_decoder=True,
activation_function="relu",
d_model=1024,
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=2,
scale_embedding=True,
router_bias=False,
router_dtype="float32",
router_ignore_padding_tokens=False,
num_experts=128,
expert_capacity=64,
encoder_sparse_step=4,
decoder_sparse_step=4,
router_z_loss_coef=0.001,
router_aux_loss_coef=0.001,
second_expert_policy="all",
normalize_router_prob_before_dropping=False,
batch_prioritized_routing=False,
moe_eval_capacity_token_fraction=1.0,
moe_token_dropout=0.2,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
output_router_logits=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.router_z_loss_coef = router_z_loss_coef
self.router_aux_loss_coef = router_aux_loss_coef
self.decoder_sparse_step = decoder_sparse_step
self.encoder_sparse_step = encoder_sparse_step
self.num_experts = num_experts
self.expert_capacity = expert_capacity
self.router_bias = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}")
self.router_dtype = router_dtype
self.router_ignore_padding_tokens = router_ignore_padding_tokens
self.batch_prioritized_routing = batch_prioritized_routing
self.second_expert_policy = second_expert_policy
self.normalize_router_prob_before_dropping = normalize_router_prob_before_dropping
self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction
self.moe_token_dropout = moe_token_dropout
self.output_router_logits = output_router_logits
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
__all__ = ["NllbMoeConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: modeling_nllb_moe.py
LINES: 1
SIZE: 82.65 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nllb_moe\modeling_nllb_moe.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 NllbMoe Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch NLLB-MoE model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...integrations.fsdp import is_fsdp_managed_module
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
MoEModelOutput,
MoEModelOutputWithPastAndCrossAttentions,
Seq2SeqMoEModelOutput,
Seq2SeqMoEOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_nllb_moe import NllbMoeConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "NllbMoeConfig"
_CHECKPOINT_FOR_DOC = "hf-internal-testing/dummy-nllb-moe-2-experts"
_REAL_CHECKPOINT_FOR_DOC = "facebook/nllb-moe-54b"
####################################################
# This dict contains ids and associated url
# for the pretrained weights provided with the models
####################################################
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
router_probs (`torch.Tensor`):
Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts].
expert_indices (`torch.Tensor`):
Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token.
Returns:
The auxiliary loss.
"""
if router_probs is None:
return 0
num_experts = router_probs.shape[-1]
# cast the expert indices to int64, otherwise one-hot encoding will fail
if expert_indices.dtype != torch.int64:
expert_indices = expert_indices.to(torch.int64)
if len(expert_indices.shape) == 2:
expert_indices = expert_indices.unsqueeze(2)
expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts)
# For a given token, determine if it was routed to a given expert.
expert_mask = torch.max(expert_mask, axis=-2).values
# cast to float32 otherwise mean will fail
expert_mask = expert_mask.to(torch.float32)
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2)
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2)
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ScaledWordEmbedding with M2M100->NllbMoe
class NllbMoeScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding
class NllbMoeSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values_length: int = 0,
):
if input_ids is not None:
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
else:
bsz, seq_len = inputs_embeds.size()[:-1]
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
class NllbMoeTop2Router(nn.Module):
"""
Router using tokens choose top-2 experts assignment.
This router uses the same mechanism as in NLLB-MoE from the fairseq repository. Items are sorted by router_probs
and then routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee
that each token is processed by an expert**, or that each expert receives at least one token.
The router combining weights are also returned to make sure that the states that are not updated will be masked.
"""
def __init__(self, config: NllbMoeConfig):
super().__init__()
self.num_experts = config.num_experts
self.expert_capacity = config.expert_capacity
self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias)
self.router_ignore_padding_tokens = config.router_ignore_padding_tokens
self.dtype = getattr(torch, config.router_dtype)
self.second_expert_policy = config.second_expert_policy
self.normalize_router_prob_before_dropping = config.normalize_router_prob_before_dropping
self.batch_prioritized_routing = config.batch_prioritized_routing
self.moe_eval_capacity_token_fraction = config.moe_eval_capacity_token_fraction
def _cast_classifier(self):
r"""
`bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an
instance of the `Linear8bitLt` class by checking special attributes.
"""
if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")):
self.classifier = self.classifier.to(self.dtype)
def normalize_router_probabilities(self, router_probs, top_1_mask, top_2_mask):
top_1_max_probs = (router_probs * top_1_mask).sum(dim=1)
top_2_max_probs = (router_probs * top_2_mask).sum(dim=1)
denom_s = torch.clamp(top_1_max_probs + top_2_max_probs, min=torch.finfo(router_probs.dtype).eps)
top_1_max_probs = top_1_max_probs / denom_s
top_2_max_probs = top_2_max_probs / denom_s
return top_1_max_probs, top_2_max_probs
def route_tokens(
self,
router_logits: torch.Tensor,
input_dtype: torch.dtype = torch.float32,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple:
"""
Computes the `dispatch_mask` and the `dispatch_weights` for each experts. The masks are adapted to the expert
capacity.
"""
nb_tokens = router_logits.shape[0]
# Apply Softmax and cast back to the original `dtype`
router_probs = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(input_dtype)
top_1_expert_index = torch.argmax(router_probs, dim=-1)
top_1_mask = torch.nn.functional.one_hot(top_1_expert_index, num_classes=self.num_experts)
if self.second_expert_policy == "sampling":
gumbel = torch.distributions.gumbel.Gumbel(0, 1).rsample
router_logits += gumbel(router_logits.shape).to(router_logits.device)
# replace top_1_expert_index with min values
logits_except_top_1 = router_logits.masked_fill(top_1_mask.bool(), float("-inf"))
top_2_expert_index = torch.argmax(logits_except_top_1, dim=-1)
top_2_mask = torch.nn.functional.one_hot(top_2_expert_index, num_classes=self.num_experts)
if self.normalize_router_prob_before_dropping:
top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities(
router_probs, top_1_mask, top_2_mask
)
if self.second_expert_policy == "random":
top_2_max_probs = (router_probs * top_2_mask).sum(dim=1)
sampled = (2 * top_2_max_probs) > torch.rand_like(top_2_max_probs.float())
top_2_mask = top_2_mask * sampled.repeat(self.num_experts, 1).transpose(1, 0)
if padding_mask is not None and not self.router_ignore_padding_tokens:
if len(padding_mask.shape) == 4:
# only get the last causal mask
padding_mask = padding_mask[:, :, -1, :].reshape(-1)[-nb_tokens:]
non_padding = ~padding_mask.bool()
top_1_mask = top_1_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype)
top_2_mask = top_2_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype)
if self.batch_prioritized_routing:
# sort tokens based on their routing probability
# to make sure important tokens are routed, first
importance_scores = -1 * router_probs.max(dim=1)[0]
sorted_top_1_mask = top_1_mask[importance_scores.argsort(dim=0)]
sorted_cumsum1 = (torch.cumsum(sorted_top_1_mask, dim=0) - 1) * sorted_top_1_mask
locations1 = sorted_cumsum1[importance_scores.argsort(dim=0).argsort(dim=0)]
sorted_top_2_mask = top_2_mask[importance_scores.argsort(dim=0)]
sorted_cumsum2 = (torch.cumsum(sorted_top_2_mask, dim=0) - 1) * sorted_top_2_mask
locations2 = sorted_cumsum2[importance_scores.argsort(dim=0).argsort(dim=0)]
# Update 2nd's location by accounting for locations of 1st
locations2 += torch.sum(top_1_mask, dim=0, keepdim=True)
else:
locations1 = torch.cumsum(top_1_mask, dim=0) - 1
locations2 = torch.cumsum(top_2_mask, dim=0) - 1
# Update 2nd's location by accounting for locations of 1st
locations2 += torch.sum(top_1_mask, dim=0, keepdim=True)
if not self.training and self.moe_eval_capacity_token_fraction > 0:
self.expert_capacity = math.ceil(self.moe_eval_capacity_token_fraction * nb_tokens)
else:
capacity = 2 * math.ceil(nb_tokens / self.num_experts)
self.expert_capacity = capacity if self.expert_capacity is None else self.expert_capacity
# Remove locations outside capacity from ( cumsum < capacity = False will not be routed)
top_1_mask = top_1_mask * torch.lt(locations1, self.expert_capacity)
top_2_mask = top_2_mask * torch.lt(locations2, self.expert_capacity)
if not self.normalize_router_prob_before_dropping:
top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities(
router_probs, top_1_mask, top_2_mask
)
# Calculate combine_weights and dispatch_mask
gates1 = top_1_max_probs[:, None] * top_1_mask
gates2 = top_2_max_probs[:, None] * top_2_mask
router_probs = gates1 + gates2
return top_1_mask, router_probs
def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.LongTensor] = None) -> Tuple:
r"""
The hidden states are reshaped to simplify the computation of the router probabilities (combining weights for
each experts.)
Args:
hidden_states (`torch.Tensor`):
(batch_size, sequence_length, hidden_dim) from which router probabilities are computed.
Returns:
top_1_mask (`torch.Tensor` of shape (batch_size, sequence_length)):
Index tensor of shape [batch_size, sequence_length] corresponding to the expert selected for each token
using the top1 probabilities of the router.
router_probabilities (`torch.Tensor` of shape (batch_size, sequence_length, nump_experts)):
Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each
token and expert. Used for routing tokens to experts.
router_logits (`torch.Tensor` of shape (batch_size, sequence_length))):
Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits.
This is used later for computing router z-loss.
"""
self.input_dtype = hidden_states.dtype
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim)
hidden_states = hidden_states.to(self.dtype)
self._cast_classifier()
router_logits = self.classifier(hidden_states)
top_1_mask, router_probs = self.route_tokens(router_logits, self.input_dtype, padding_mask)
return top_1_mask, router_probs
class NllbMoeDenseActDense(nn.Module):
def __init__(self, config: NllbMoeConfig, ffn_dim: int):
super().__init__()
self.fc1 = nn.Linear(config.d_model, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, config.d_model)
self.dropout = nn.Dropout(config.activation_dropout)
self.act = ACT2FN[config.activation_function]
def forward(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.fc2.weight, torch.Tensor)
and hidden_states.dtype != self.fc2.weight.dtype
and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8)
):
hidden_states = hidden_states.to(self.fc2.weight.dtype)
hidden_states = self.fc2(hidden_states)
return hidden_states
class NllbMoeSparseMLP(nn.Module):
r"""
Implementation of the NLLB-MoE sparse MLP module.
"""
def __init__(self, config: NllbMoeConfig, ffn_dim: int, expert_class: nn.Module = NllbMoeDenseActDense):
super().__init__()
self.router = NllbMoeTop2Router(config)
self.moe_token_dropout = config.moe_token_dropout
self.token_dropout = nn.Dropout(self.moe_token_dropout)
self.num_experts = config.num_experts
self.experts = nn.ModuleDict()
for idx in range(self.num_experts):
self.experts[f"expert_{idx}"] = expert_class(config, ffn_dim)
def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.Tensor] = False):
r"""
The goal of this forward pass is to have the same number of operation as the equivalent `NllbMoeDenseActDense`
(mlp) layer. This means that all of the hidden states should be processed at most twice ( since we are using a
top_2 gating mecanism). This means that we keep the complexity to O(batch_size x sequence_length x hidden_dim)
instead of O(num_experts x batch_size x sequence_length x hidden_dim).
1- Get the `router_probs` from the `router`. The shape of the `router_mask` is `(batch_size X sequence_length,
num_expert)` and corresponds to the boolean version of the `router_probs`. The inputs are masked using the
`router_mask`.
2- Dispatch the hidden_states to its associated experts. The router probabilities are used to weight the
contribution of each experts when updating the masked hidden states.
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`):
The hidden states
padding_mask (`torch.Tensor`, *optional*, defaults to `False`):
Attention mask. Can be in the causal form or not.
Returns:
hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`):
Updated hidden states
router_logits (`torch.Tensor` of shape `(batch_size, sequence_length, num_experts)`):
Needed for computing the loss
"""
batch_size, sequence_length, hidden_dim = hidden_states.shape
top_1_mask, router_probs = self.router(hidden_states, padding_mask)
router_mask = router_probs.bool()
hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim)
masked_hidden_states = torch.einsum("bm,be->ebm", hidden_states, router_mask)
for idx, expert in enumerate(self.experts.values()):
token_indices = router_mask[:, idx]
combining_weights = router_probs[token_indices, idx]
expert_output = expert(masked_hidden_states[idx, token_indices])
if self.moe_token_dropout > 0:
if self.training:
expert_output = self.token_dropout(expert_output)
else:
expert_output *= 1 - self.moe_token_dropout
masked_hidden_states[idx, token_indices] = torch.einsum("b,be->be", combining_weights, expert_output)
hidden_states = masked_hidden_states.sum(dim=0).reshape(batch_size, sequence_length, hidden_dim)
top_1_expert_index = torch.argmax(top_1_mask, dim=-1)
return hidden_states, (router_probs, top_1_expert_index)
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->NllbMoe,key_value_states->encoder_hidden_states
class NllbMoeAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[NllbMoeConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if encoder_hidden_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = encoder_hidden_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == encoder_hidden_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `encoder_hidden_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == encoder_hidden_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class NllbMoeEncoderLayer(nn.Module):
def __init__(self, config: NllbMoeConfig, is_sparse: bool = False):
super().__init__()
self.embed_dim = config.d_model
self.is_sparse = is_sparse
self.self_attn = NllbMoeAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.attn_dropout = nn.Dropout(config.dropout)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
if not self.is_sparse:
self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.encoder_ffn_dim)
else:
self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.encoder_ffn_dim)
self.ff_layer_norm = nn.LayerNorm(config.d_model)
self.ff_dropout = nn.Dropout(config.activation_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
output_router_logits: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.ff_layer_norm(hidden_states)
if self.is_sparse:
hidden_states, router_states = self.ffn(hidden_states, attention_mask)
else:
# router_states set to None to track which layers have None gradients.
hidden_states, router_states = self.ffn(hidden_states), None
hidden_states = self.ff_dropout(hidden_states)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
if output_router_logits:
outputs += (router_states,)
return outputs
class NllbMoeDecoderLayer(nn.Module):
def __init__(self, config: NllbMoeConfig, is_sparse: bool = False):
super().__init__()
self.embed_dim = config.d_model
self.is_sparse = is_sparse
self.self_attn = NllbMoeAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.attn_dropout = nn.Dropout(config.dropout)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.cross_attention = NllbMoeAttention(
self.embed_dim, config.decoder_attention_heads, config.attention_dropout, is_decoder=True
)
self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim)
if not self.is_sparse:
self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.decoder_ffn_dim)
else:
self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.decoder_ffn_dim)
self.ff_layer_norm = nn.LayerNorm(config.d_model)
self.ff_dropout = nn.Dropout(config.activation_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`):
encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by
very large negative values.
layer_head_mask (`torch.FloatTensor`):
mask for attention heads in a given layer of size `(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`):
mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`):
cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.cross_attention_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
past_key_value=cross_attn_past_key_value,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value += cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.ff_layer_norm(hidden_states)
if self.is_sparse:
hidden_states, router_states = self.ffn(hidden_states, attention_mask)
else:
hidden_states, router_states = self.ffn(hidden_states), None
hidden_states = self.ff_dropout(hidden_states)
hidden_states = residual + hidden_states
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states, present_key_value)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if output_router_logits:
outputs += (router_states,)
return outputs
class NllbMoePreTrainedModel(PreTrainedModel):
config_class = NllbMoeConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["NllbMoeEncoderLayer", "NllbMoeDecoderLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
NLLB_MOE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`NllbMoeConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
NLLB_MOE_GENERATION_EXAMPLE = r"""
Translation example:
```python
>>> from transformers import AutoTokenizer, NllbMoeForConditionalGeneration
>>> model = NllbMoeForConditionalGeneration.from_pretrained("facebook/nllb-moe-54b")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-moe-54b")
>>> text_to_translate = "Life is like a box of chocolates"
>>> model_inputs = tokenizer(text_to_translate, return_tensors="pt")
>>> # translate to French
>>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("eng_Latn"))
>>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
```
"""
NLLB_MOE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
NllbMoe uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class NllbMoeEncoder(NllbMoePreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`NllbMoeEncoderLayer`].
Args:
config:
NllbMoeConfig
embed_tokens (nn.Embedding):
output embedding
"""
def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = NllbMoeScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = NllbMoeSinusoidalPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
self.padding_idx,
)
sparse_step = config.encoder_sparse_step
self.layers = nn.ModuleList()
for i in range(config.encoder_layers):
is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False
self.layers.append(NllbMoeEncoderLayer(config, is_sparse))
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
and should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input_ids, inputs_embeds)
embed_pos = embed_pos.to(inputs_embeds.device)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_router_probs = () if output_router_logits else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
output_router_logits=output_router_logits,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_router_logits:
all_router_probs += (layer_outputs[-1],)
last_hidden_state = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states += (last_hidden_state,)
if not return_dict:
return tuple(
v for v in [last_hidden_state, encoder_states, all_attentions, all_router_probs] if v is not None
)
return MoEModelOutput(
last_hidden_state=last_hidden_state,
hidden_states=encoder_states,
attentions=all_attentions,
router_probs=all_router_probs,
)
class NllbMoeDecoder(NllbMoePreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`NllbMoeDecoderLayer`]
Args:
config:
NllbMoeConfig
embed_tokens (nn.Embedding):
output embedding
"""
def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = NllbMoeScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = NllbMoeSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
)
sparse_step = config.decoder_sparse_step
self.layers = nn.ModuleList()
for i in range(config.decoder_layers):
is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False
self.layers.append(NllbMoeDecoderLayer(config, is_sparse))
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
and should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_probs = () if output_router_logits else None
all_cross_attentions = () if output_attentions else None
present_key_value_states = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
if not skip_the_layer or synced_gpus:
layer_head_mask = head_mask[idx] if head_mask is not None else None
cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
past_key_value = past_key_values[idx] if past_key_values is not None else None
# under fsdp or deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.forward,
hidden_states,
combined_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
continue
if use_cache:
present_key_value_states += (layer_outputs[1],)
if output_attentions:
all_self_attns += (layer_outputs[2],)
all_cross_attentions += (layer_outputs[3],)
if output_router_logits:
all_router_probs += (layer_outputs[-1],)
hidden_states = self.layer_norm(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_self_attns,
all_cross_attentions,
all_router_probs,
]
if v is not None
)
return MoEModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
router_probs=all_router_probs,
)
@add_start_docstrings(
"The bare NllbMoe Model outputting raw hidden-states without any specific head on top.",
NLLB_MOE_START_DOCSTRING,
)
class NllbMoeModel(NllbMoePreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: NllbMoeConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.shared = NllbMoeScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale)
self.encoder = NllbMoeEncoder(config, self.shared)
self.decoder = NllbMoeDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqMoEModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqMoEModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, NllbMoeModel
>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")
>>> model = SwitchTransformersModel.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for NllbMoeModel
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, MoEModelOutput):
encoder_outputs = MoEModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqMoEModelOutput(
past_key_values=decoder_outputs.past_key_values,
cross_attentions=decoder_outputs.cross_attentions,
last_hidden_state=decoder_outputs.last_hidden_state,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
decoder_hidden_states=decoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
decoder_attentions=decoder_outputs.attentions,
encoder_router_logits=encoder_outputs.router_probs,
decoder_router_logits=decoder_outputs.router_probs,
)
@add_start_docstrings(
"The NllbMoe Model with a language modeling head. Can be used for summarization.", NLLB_MOE_START_DOCSTRING
)
class NllbMoeForConditionalGeneration(NllbMoePreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: NllbMoeConfig):
super().__init__(config)
self.model = NllbMoeModel(config)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.router_z_loss_coef = config.router_z_loss_coef
self.router_aux_loss_coef = config.router_aux_loss_coef
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqMoEOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(NLLB_MOE_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqMoEOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
loss = None
encoder_aux_loss = None
decoder_aux_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
# todo check in the config if router loss enables
if output_router_logits:
encoder_router_logits = outputs[-1]
decoder_router_logits = outputs[3 if output_attentions else 4]
# Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder
encoder_router_logits, encoder_expert_indexes = self._unpack_router_logits(encoder_router_logits)
encoder_aux_loss = load_balancing_loss_func(encoder_router_logits, encoder_expert_indexes)
decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(decoder_router_logits)
decoder_aux_loss = load_balancing_loss_func(decoder_router_logits, decoder_expert_indexes)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
if output_router_logits and labels is not None:
aux_loss = self.router_aux_loss_coef * (encoder_aux_loss + decoder_aux_loss)
loss = loss + aux_loss
output = (loss,) if loss is not None else ()
if not return_dict:
output += (lm_logits,)
if output_router_logits: # only return the loss if they are not None
output += (
encoder_aux_loss,
decoder_aux_loss,
*outputs[1:],
)
else:
output += outputs[1:]
return output
return Seq2SeqMoEOutput(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
cross_attentions=outputs.cross_attentions,
encoder_aux_loss=encoder_aux_loss,
decoder_aux_loss=decoder_aux_loss,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
decoder_hidden_states=outputs.decoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
decoder_attentions=outputs.decoder_attentions,
encoder_router_logits=outputs.encoder_router_logits,
decoder_router_logits=outputs.decoder_router_logits,
)
def _unpack_router_logits(self, router_outputs):
total_router_logits = []
total_expert_indexes = []
for router_output in router_outputs:
if router_output is not None:
router_logits, expert_indexes = router_output
total_router_logits.append(router_logits)
total_expert_indexes.append(expert_indexes)
total_router_logits = torch.cat(total_router_logits, dim=1) if len(total_router_logits) > 0 else None
total_expert_indexes = torch.stack(total_expert_indexes, dim=1) if len(total_expert_indexes) > 0 else None
return total_router_logits, total_expert_indexes
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
```
|
=====================================================================================================================================
SOURCE CODE FILE: tokenization_nllb.py
LINES: 1
SIZE: 18.65 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nllb\tokenization_nllb.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
FAIRSEQ_LANGUAGE_CODES = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] # fmt: skip
class NllbTokenizer(PreTrainedTokenizer):
"""
Construct an NLLB tokenizer.
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece).
The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code>
<tokens> <eos>` for target language documents.
Examples:
```python
>>> from transformers import NllbTokenizer
>>> tokenizer = NllbTokenizer.from_pretrained(
... "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
```
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenizer_file (`str`, *optional*):
The path to a tokenizer file to use instead of the vocab file.
src_lang (`str`, *optional*):
The language to use as source language for translation.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
sp_model_kwargs (`Dict[str, str]`):
Additional keyword arguments to pass to the model initialization.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
suffix_tokens: List[int] = []
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
tokenizer_file=None,
src_lang=None,
tgt_lang=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
additional_special_tokens=None,
legacy_behaviour=False,
**kwargs,
):
if additional_special_tokens is None:
additional_special_tokens = FAIRSEQ_LANGUAGE_CODES
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = (
AddedToken(mask_token, normalized=True, lstrip=True, special=True)
if isinstance(mask_token, str)
else mask_token
)
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.legacy_behaviour = legacy_behaviour
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# unk token needs to be in the vocab with correct index
self._added_tokens_decoder = {0: bos_token, 1: pad_token, 2: eos_token, 3: unk_token}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
self.fairseq_offset = 1
self.sp_model_size = len(self.sp_model)
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
tokenizer_file=tokenizer_file,
src_lang=src_lang,
tgt_lang=tgt_lang,
additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
legacy_behaviour=legacy_behaviour,
**kwargs,
)
self._src_lang = src_lang if src_lang is not None else "eng_Latn"
self.cur_lang_code_id = self.convert_tokens_to_ids(self._src_lang)
self.tgt_lang = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
def vocab_size(self):
return len(self.sp_model) + self.fairseq_offset
@property
def src_lang(self) -> str:
return self._src_lang
@src_lang.setter
def src_lang(self, new_src_lang: str) -> None:
self._src_lang = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
prefix_ones = [1] * len(self.prefix_tokens)
suffix_ones = [1] * len(self.suffix_tokens)
if token_ids_1 is None:
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An NLLB sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `X [eos, src_lang_code]`
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def _build_translation_inputs(
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
):
"""Used by translation pipeline, to prepare inputs for the generate function"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
self.src_lang = src_lang
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
inputs["forced_bos_token_id"] = tgt_lang_id
return inputs
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
spm_id = self.sp_model.PieceToId(token)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def prepare_seq2seq_batch(
self,
src_texts: List[str],
src_lang: str = "eng_Latn",
tgt_texts: Optional[List[str]] = None,
tgt_lang: str = "fra_Latn",
**kwargs,
) -> BatchEncoding:
self.src_lang = src_lang
self.tgt_lang = tgt_lang
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
def _switch_to_input_mode(self):
return self.set_src_lang_special_tokens(self.src_lang)
def _switch_to_target_mode(self):
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def set_src_lang_special_tokens(self, src_lang) -> None:
"""Reset the special tokens to the source lang setting.
- In legacy mode: No prefix and suffix=[eos, src_lang_code].
- In default mode: Prefix=[src_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
if self.legacy_behaviour:
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
else:
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
def set_tgt_lang_special_tokens(self, lang: str) -> None:
"""Reset the special tokens to the target lang setting.
- In legacy mode: No prefix and suffix=[eos, tgt_lang_code].
- In default mode: Prefix=[tgt_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.convert_tokens_to_ids(lang)
if self.legacy_behaviour:
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
else:
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
__all__ = ["NllbTokenizer"]
```
|
==========================================================================================================================================
SOURCE CODE FILE: tokenization_nllb_fast.py
LINES: 1
SIZE: 15.60 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nllb\tokenization_nllb_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
NllbTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
FAIRSEQ_LANGUAGE_CODES = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] # fmt: skip
class NllbTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" NLLB tokenizer (backed by HuggingFace's *tokenizers* library). Based on
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code>
<tokens> <eos>` for target language documents.
Examples:
```python
>>> from transformers import NllbTokenizerFast
>>> tokenizer = NllbTokenizerFast.from_pretrained(
... "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
```
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenizer_file (`str`, *optional*):
The path to a tokenizer file to use instead of the vocab file.
src_lang (`str`, *optional*):
The language to use as source language for translation.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = NllbTokenizer
prefix_tokens: List[int] = []
suffix_tokens: List[int] = []
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
src_lang=None,
tgt_lang=None,
additional_special_tokens=None,
legacy_behaviour=False,
**kwargs,
):
if additional_special_tokens is None:
additional_special_tokens = FAIRSEQ_LANGUAGE_CODES
self.vocab_file = vocab_file
# Mask token behave like a normal word, i.e. include the space before it
mask_token = (
AddedToken(mask_token, normalized=True, lstrip=True, special=True)
if isinstance(mask_token, str)
else mask_token
)
self.legacy_behaviour = legacy_behaviour
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
src_lang=src_lang,
tgt_lang=tgt_lang,
mask_token=mask_token,
additional_special_tokens=additional_special_tokens,
legacy_behaviour=legacy_behaviour,
**kwargs,
)
self._src_lang = src_lang if src_lang is not None else "eng_Latn"
self.cur_lang_code = self.convert_tokens_to_ids(self._src_lang)
self.tgt_lang = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
@property
def src_lang(self) -> str:
return self._src_lang
@src_lang.setter
def src_lang(self, new_src_lang: str) -> None:
self._src_lang = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. The special tokens depend on calling set_lang.
An NLLB sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `X [eos, src_lang_code]`
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def _build_translation_inputs(
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
):
"""Used by translation pipeline, to prepare inputs for the generate function"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
self.src_lang = src_lang
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
inputs["forced_bos_token_id"] = tgt_lang_id
return inputs
def prepare_seq2seq_batch(
self,
src_texts: List[str],
src_lang: str = "eng_Latn",
tgt_texts: Optional[List[str]] = None,
tgt_lang: str = "fra_Latn",
**kwargs,
) -> BatchEncoding:
self.src_lang = src_lang
self.tgt_lang = tgt_lang
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
def _switch_to_input_mode(self):
return self.set_src_lang_special_tokens(self.src_lang)
def _switch_to_target_mode(self):
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def set_src_lang_special_tokens(self, src_lang) -> None:
"""Reset the special tokens to the source lang setting.
- In legacy mode: No prefix and suffix=[eos, src_lang_code].
- In default mode: Prefix=[src_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
if self.legacy_behaviour:
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
else:
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
self._tokenizer.post_processor = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
)
def set_tgt_lang_special_tokens(self, lang: str) -> None:
"""Reset the special tokens to the target lang setting.
- In legacy mode: No prefix and suffix=[eos, tgt_lang_code].
- In default mode: Prefix=[tgt_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.convert_tokens_to_ids(lang)
if self.legacy_behaviour:
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
else:
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
self._tokenizer.post_processor = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
__all__ = ["NllbTokenizerFast"]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nougat\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .image_processing_nougat import *
from .processing_nougat import *
from .tokenization_nougat_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
=============================================================================================================================================
SOURCE CODE FILE: image_processing_nougat.py
LINES: 1
SIZE: 23.25 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nougat\image_processing_nougat.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Nougat."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
get_resize_output_image_size,
pad,
resize,
to_channel_dimension_format,
to_pil_image,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, logging
from ...utils.import_utils import is_cv2_available, is_vision_available
logger = logging.get_logger(__name__)
if is_cv2_available():
pass
if is_vision_available():
import PIL
class NougatImageProcessor(BaseImageProcessor):
r"""
Constructs a Nougat image processor.
Args:
do_crop_margin (`bool`, *optional*, defaults to `True`):
Whether to crop the image margins.
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 896, "width": 672}`):
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_thumbnail (`bool`, *optional*, defaults to `True`):
Whether to resize the image using thumbnail method.
do_align_long_axis (`bool`, *optional*, defaults to `False`):
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the images to the largest image size in the batch.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
Image standard deviation.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_crop_margin: bool = True,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_thumbnail: bool = True,
do_align_long_axis: bool = False,
do_pad: bool = True,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 896, "width": 672}
size = get_size_dict(size)
self.do_crop_margin = do_crop_margin
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_thumbnail = do_thumbnail
self.do_align_long_axis = do_align_long_axis
self.do_pad = do_pad
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def python_find_non_zero(self, image: np.array):
"""This is a reimplementation of a findNonZero function equivalent to cv2."""
non_zero_indices = np.column_stack(np.nonzero(image))
idxvec = non_zero_indices[:, [1, 0]]
idxvec = idxvec.reshape(-1, 1, 2)
return idxvec
def python_bounding_rect(self, coordinates):
"""This is a reimplementation of a BoundingRect function equivalent to cv2."""
min_values = np.min(coordinates, axis=(0, 1)).astype(int)
max_values = np.max(coordinates, axis=(0, 1)).astype(int)
x_min, y_min = min_values[0], min_values[1]
width = max_values[0] - x_min + 1
height = max_values[1] - y_min + 1
return x_min, y_min, width, height
def crop_margin(
self,
image: np.array,
gray_threshold: int = 200,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.array:
"""
Crops the margin of the image. Gray pixels are considered margin (i.e., pixels with a value below the
threshold).
Args:
image (`np.array`):
The image to be cropped.
gray_threshold (`int`, *optional*, defaults to `200`)
Value below which pixels are considered to be gray.
data_format (`ChannelDimension`, *optional*):
The channel dimension format of the output image. If unset, will use the inferred format from the
input.
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
"""
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
image = to_pil_image(image, input_data_format=input_data_format)
data = np.array(image.convert("L")).astype(np.uint8)
max_val = data.max()
min_val = data.min()
if max_val == min_val:
image = np.array(image)
image = (
to_channel_dimension_format(image, data_format, input_data_format)
if data_format is not None
else image
)
return image
data = (data - min_val) / (max_val - min_val) * 255
gray = data < gray_threshold
coords = self.python_find_non_zero(gray)
x_min, y_min, width, height = self.python_bounding_rect(coords)
image = image.crop((x_min, y_min, x_min + width, y_min + height))
image = np.array(image).astype(np.uint8)
image = to_channel_dimension_format(image, input_data_format, ChannelDimension.LAST)
image = (
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
)
return image
# Copied from transformers.models.donut.image_processing_donut.DonutImageProcessor.align_long_axis
def align_long_axis(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Align the long axis of the image to the longest axis of the specified size.
Args:
image (`np.ndarray`):
The image to be aligned.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to align the long axis to.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
Returns:
`np.ndarray`: The aligned image.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = size["height"], size["width"]
if (output_width < output_height and input_width > input_height) or (
output_width > output_height and input_width < input_height
):
image = np.rot90(image, 3)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def pad_image(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad the image to the specified size at the top, bottom, left and right.
Args:
image (`np.ndarray`):
The image to be padded.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to pad the image to.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
output_height, output_width = size["height"], size["width"]
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
delta_width = output_width - input_width
delta_height = output_height - input_height
pad_top = delta_height // 2
pad_left = delta_width // 2
pad_bottom = delta_height - pad_top
pad_right = delta_width - pad_left
padding = ((pad_top, pad_bottom), (pad_left, pad_right))
return pad(image, padding, data_format=data_format, input_data_format=input_data_format)
# Copied from transformers.models.donut.image_processing_donut.DonutImageProcessor.thumbnail
def thumbnail(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any
corresponding dimension of the specified size.
Args:
image (`np.ndarray`):
The image to be resized.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to resize the image to.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
The resampling filter to use.
data_format (`Optional[Union[str, ChannelDimension]]`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = size["height"], size["width"]
# We always resize to the smallest of either the input or output size.
height = min(input_height, output_height)
width = min(input_width, output_width)
if height == input_height and width == input_width:
return image
if input_height > input_width:
width = int(input_width * height / input_height)
elif input_width > input_height:
height = int(input_height * width / input_width)
return resize(
image,
size=(height, width),
resample=resample,
reducing_gap=2.0,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# Copied from transformers.models.donut.image_processing_donut.DonutImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size)
shortest_edge = min(size["height"], size["width"])
output_size = get_resize_output_image_size(
image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format
)
resized_image = resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return resized_image
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_crop_margin: Optional[bool] = None,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_thumbnail: Optional[bool] = None,
do_align_long_axis: Optional[bool] = None,
do_pad: Optional[bool] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Union[int, float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255.
do_crop_margin (`bool`, *optional*, defaults to `self.do_crop_margin`):
Whether to crop the image margins.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to min(size["height"],
size["width"]) with the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
Whether to resize the image using thumbnail method.
do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the images to the largest image size in the batch.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image by the specified scale `rescale_factor`.
rescale_factor (`int` or `float`, *optional*, defaults to `self.rescale_factor`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_crop_margin = do_crop_margin if do_crop_margin is not None else self.do_crop_margin
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_thumbnail = do_thumbnail if do_thumbnail is not None else self.do_thumbnail
do_align_long_axis = do_align_long_axis if do_align_long_axis is not None else self.do_align_long_axis
do_pad = do_pad if do_pad is not None else self.do_pad
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_pad=do_pad,
size_divisibility=size, # There is no pad divisibility in this processor, but pad requires the size arg.
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_crop_margin:
images = [self.crop_margin(image, input_data_format=input_data_format) for image in images]
if do_align_long_axis:
images = [self.align_long_axis(image, size=size, input_data_format=input_data_format) for image in images]
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_thumbnail:
images = [self.thumbnail(image=image, size=size, input_data_format=input_data_format) for image in images]
if do_pad:
images = [self.pad_image(image=image, size=size, input_data_format=input_data_format) for image in images]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["NougatImageProcessor"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: processing_nougat.py
LINES: 1
SIZE: 6.67 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nougat\processing_nougat.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Nougat.
"""
from typing import Dict, List, Optional, Union
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput, TruncationStrategy
from ...processing_utils import ProcessorMixin
from ...utils import PaddingStrategy, TensorType
class NougatProcessor(ProcessorMixin):
r"""
Constructs a Nougat processor which wraps a Nougat image processor and a Nougat tokenizer into a single processor.
[`NougatProcessor`] offers all the functionalities of [`NougatImageProcessor`] and [`NougatTokenizerFast`]. See the
[`~NougatProcessor.__call__`] and [`~NougatProcessor.decode`] for more information.
Args:
image_processor ([`NougatImageProcessor`]):
An instance of [`NougatImageProcessor`]. The image processor is a required input.
tokenizer ([`NougatTokenizerFast`]):
An instance of [`NougatTokenizerFast`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(
self,
images=None,
text=None,
do_crop_margin: Optional[bool] = None,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: "PILImageResampling" = None, # noqa: F821
do_thumbnail: Optional[bool] = None,
do_align_long_axis: Optional[bool] = None,
do_pad: Optional[bool] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Union[int, float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
input_data_format: Optional[Union[str, "ChannelDimension"]] = None, # noqa: F821
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair_target: Optional[
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
):
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process.")
if images is not None:
inputs = self.image_processor(
images,
do_crop_margin=do_crop_margin,
do_resize=do_resize,
size=size,
resample=resample,
do_thumbnail=do_thumbnail,
do_align_long_axis=do_align_long_axis,
do_pad=do_pad,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
return_tensors=return_tensors,
data_format=data_format,
input_data_format=input_data_format,
)
if text is not None:
encodings = self.tokenizer(
text,
text_pair=text_pair,
text_target=text_target,
text_pair_target=text_pair_target,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
is_split_into_words=is_split_into_words,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
)
if text is None:
return inputs
elif images is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_generation(self, *args, **kwargs):
"""
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.post_process_generation`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.post_process_generation(*args, **kwargs)
__all__ = ["NougatProcessor"]
```
|
==============================================================================================================================================
SOURCE CODE FILE: tokenization_nougat_fast.py
LINES: 52
SIZE: 23.90 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nougat\tokenization_nougat_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fast tokenizer class for Nougat.
"""
import re
from functools import partial
from multiprocessing import Pool
from typing import List, Optional, Union
import numpy as np
from transformers.tokenization_utils_base import INIT_TOKENIZER_DOCSTRING
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import add_end_docstrings
from ...utils import is_levenshtein_available, is_nltk_available, logging, requires_backends
if is_levenshtein_available():
from Levenshtein import ratio
if is_nltk_available():
import nltk
logger = logging.get_logger(__name__)
INIT_TOKENIZER_DOCSTRING += """
tokenizer_object ([`tokenizers.Tokenizer`]):
A [`tokenizers.Tokenizer`] object from 🤗 tokenizers to instantiate from. See [Using tokenizers from 🤗
tokenizers](../fast_tokenizers) for more information.
tokenizer_file ([`str`]):
A path to a local JSON file representing a previously serialized [`tokenizers.Tokenizer`] object from 🤗
tokenizers.
"""
VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}
def markdown_compatible(text: str) -> str:
"""
Make text compatible with Markdown formatting.
This function makes various text formatting adjustments to make it compatible with Markdown.
Args:
text (`str`):
The input text to be made Markdown-compatible.
Returns:
`str`: The Markdown-compatible text.
"""
# equation tag
# Replace lines that start with a pattern like (decimal) \[some text\] with \[[some text] \tag{decimal}\].
text = re.sub(r"^\(([\d.]+[a-zA-Z]?)\) \\\[(.+?)\\\]$", r"\[\2 \\tag{\1}\]", text, flags=re.M)
# Replace lines that start with a pattern like \[some text\] (decimal) with \[[some text] \tag{decimal}\].
text = re.sub(r"^\\\[(.+?)\\\] \(([\d.]+[a-zA-Z]?)\)$", r"\[\1 \\tag{\2}\]", text, flags=re.M)
# Replace lines that start with a pattern like \[some text\] (digits) \[another text\] with \[[some text] \tag{digits}\] [another text].
text = re.sub(
r"^\\\[(.+?)\\\] \(([\d.]+[a-zA-Z]?)\) (\\\[.+?\\\])$",
r"\[\1 \\tag{\2}\] \3",
text,
flags=re.M,
)
# multi line
text = text.replace(r"\. ", ". ")
# bold formatting
text = text.replace(r"\bm{", r"\mathbf{").replace(r"{\\bm ", r"\mathbf{")
text = re.sub(r"\\mbox{ ?\\boldmath\$(.*?)\$}", r"\\mathbf{\1}", text)
# Reformat urls (http, ftp and https only) to markdown [url](url) clickable format
text = re.sub(
r"((?:http|ftp|https):\/\/(?:[\w_-]+(?:(?:\.[\w_-]+)+))(?:[\w.,@?^=%&:\/~+#-]*[\w@?^=%&\/~+#-]))",
r"[\1](\1)",
text,
)
# algorithms
text = re.sub(r"```\s*(.+?)\s*```", r"```\n\1\n```", text, flags=re.S)
return text
def normalize_list_like_lines(generation):
"""
Normalize lines in the given text that resemble list items. The function looks for lines that start optionally with
'-' or '*', possibly followed by Roman numerals or digits indicating nesting levels. The function reformats such
lines to make them more structured.
Args:
generation (str): The input text containing lines that need to be normalized.
Returns:
str: The input text with the list-like lines normalized.
Note:
The function uses regular expressions to identify and reformat the list-like lines. The patterns capture
optional bullet points, nesting levels indicated by numerals, and the actual list item content. The
normalization adjusts the bullet point style and nesting levels based on the captured patterns.
"""
lines = generation.split("\n")
output_lines = []
for line_no, line in enumerate(lines):
match = re.search(r". ([-*]) ", line)
if not match or line[0] not in ("-", "*"):
output_lines.append(line)
continue # Doesn't fit the pattern we want, no changes
delim = match.group(1) + " "
splits = line.split(delim)[1:]
replacement = ""
delim1 = line[0] + " "
for i, item in enumerate(splits):
level = 0
potential_numeral, _, rest = item.strip().partition(" ")
if not rest:
continue
# Infer current nesting level based on detected numbering
if re.match(r"^[\dixv]+((?:\.[\dixv])?)+$", potential_numeral, flags=re.I | re.M):
level = potential_numeral.count(".")
replacement += (
("\n" if i > 0 else "") + ("\t" * level) + (delim if i > 0 or line_no == 0 else delim1) + item.strip()
)
if line_no == len(lines) - 1: # If this is the last line in the generation
replacement += "\n" # Add an empty line to the end of the generation
output_lines.append(replacement)
return "\n".join(output_lines)
def find_next_punctuation(text: str, start_idx=0):
"""
Find the index of the next punctuation mark.
Args:
text (`str`):
String to examine
start_idx (`int`, *optional*)
Index where to start
"""
for i in range(start_idx, len(text)):
if text[i] in [".", "?", "!", "\n"]:
return i
return None
def truncate_repetitions(text: str, min_len: int = 30) -> str:
"""
Attempt to truncate repeating segments in the input string.
This function looks for the longest repeating substring at the end of the input string and truncates it to appear
only once. To be considered for removal, repetitions need to be continuous.
Args:
text (`str`):
The input raw prediction to be truncated.
min_len (int):
The minimum length of the repeating segment.
Returns:
`str`: The input string with repeated segments truncated.
"""
text_lower = text.lower()
text_length = len(text_lower)
if text_length < 2 * min_len:
return text
# try to find a length at which the tail is repeating
max_repetition_length = None
for repetition_length in range(min_len, int(text_length / 2)):
# check if there is a repetition at the end
same = True
for i in range(0, repetition_length):
if text_lower[text_length - repetition_length - i - 1] != text_lower[text_length - i - 1]:
same = False
break
if same:
max_repetition_length = repetition_length
if max_repetition_length is None:
return text
lcs = text_lower[-max_repetition_length:]
# remove all but the last repetition
substituted_text = text
substituted_text_lower = text_lower
while substituted_text_lower.endswith(lcs):
substituted_text = substituted_text[:-max_repetition_length]
substituted_text_lower = substituted_text_lower[:-max_repetition_length]
# this is the tail with the repetitions
repeating_tail = text_lower[len(substituted_text_lower) :]
# add until next punctuation and make sure last sentence is not repeating
substituted_text_lower_out = substituted_text_lower
while True:
sentence_end = find_next_punctuation(text_lower, len(substituted_text_lower_out))
sentence_start = find_next_punctuation(text_lower[::-1], len(substituted_text_lower_out))
if sentence_end and sentence_start:
sentence = text_lower[sentence_start:sentence_end]
substituted_text_lower_out = text_lower[: sentence_end + 1]
if sentence in repeating_tail:
break
else:
break
text_out = text[: len(substituted_text_lower_out)]
return text_out
def remove_numbers(lines):
def _clean(s):
return re.sub(r"(?:[\d_]|\*\*)", "", s).strip()
if isinstance(lines, str):
return _clean(lines)
out = []
for l in lines:
out.append(_clean(l))
return out
def get_slices(lines, clean_lines):
"""
Get slices of text based on specific criteria within the lines.
This function identifies and returns slices of text from the input lines based on certain conditions.
These conditions were chosen by the Nougat authors:
- The slice is less than 200 characters long.
- The slice is more than 3 characters long.
- The slice does not start with "[MISSING_PAGE".
- The slice is either the same as the next slice or the ratio of the two in terms of Levensthein distance is
greater than 0.9.
Args:
lines (`List[str]`):
The list of lines containing the text.
clean_lines (`List[str]`):
A cleaned version of the text (without numbers).
Returns:
`List[tuple]`: A list of tuples representing the start and end indices of text slices.
"""
indices = np.zeros(len(lines))
for i in range(len(lines) - 1):
j = i + 1
while not clean_lines[j] and j < len(lines) - 1:
j += 1
if (
len(clean_lines[i]) < 200
and len(clean_lines[i]) > 3
and len(clean_lines[j]) < 200
and len(clean_lines[j]) > 3
and not clean_lines[i].startswith("[MISSING_PAGE")
and (clean_lines[i] == clean_lines[j] or ratio(clean_lines[i], clean_lines[j]) > 0.9)
):
indices[i:j] = 1
ids = np.where(indices)[0]
slices = []
if len(ids) == 0:
return slices
j0 = 0
for j, x in enumerate(np.diff(ids) > 3):
if x:
slices.append((ids[j0], ids[j] + 2))
j0 = j + 1
slices.append((ids[j0], ids[-1] + 2))
return [sli for sli in slices if sli[1] - sli[0] > 15]
def remove_slice_from_lines(lines, clean_text, slice) -> str:
"""
Remove a slice of text from the lines based on specific criteria.
This function identifies a slice of text within the lines and removes it based on certain conditions.
Args:
lines (list of str): The list of lines containing the text.
clean_text (list of str): A cleaned version of the text (without numbers).
slice (tuple): A tuple representing the start and end indices of the slice to be removed.
Returns:
str: The removed slice of text as a single string.
"""
base = clean_text[slice[0]]
section = list(slice)
check_start_flag = False
# backwards pass, at most 5 lines
for line_idx in range(max(0, slice[0] - 1), max(0, slice[0] - 5), -1):
if not lines[line_idx]:
continue
if lines[line_idx] == "## References":
section[0] = line_idx
break
elif ratio(base, remove_numbers(lines[line_idx])) < 0.9:
section[0] = line_idx + 1
potential_ref = remove_numbers(lines[max(0, line_idx - 1)].partition("* [")[-1])
if len(potential_ref) >= 0.75 * len(base) and ratio(base, potential_ref) < 0.9:
section[0] = line_idx
check_start_flag = True
break
# forward pass, at most 5 lines
for line_idx in range(min(len(lines), slice[1]), min(len(lines), slice[1] + 5)):
if ratio(base, remove_numbers(lines[line_idx])) < 0.9:
section[1] = line_idx
break
if len(lines) <= section[1]:
section[1] = len(lines) - 1
to_delete = "\n".join(lines[section[0] : section[1] + 1])
# cut off next page content
itera, iterb = enumerate(lines[section[1] - 1]), enumerate(lines[section[1]])
while True:
try:
(ia, a) = next(itera)
while a.isnumeric():
(ia, a) = next(itera)
(ib, b) = next(iterb)
while b.isnumeric():
(ib, b) = next(iterb)
if a != b:
break
except StopIteration:
break
if check_start_flag and "* [" in to_delete:
to_delete = "* [" + to_delete.partition("* [")[-1]
try:
delta = len(lines[section[1]]) - ib - 1
if delta > 0:
to_delete = to_delete[:-delta]
except UnboundLocalError:
pass
return to_delete.strip()
@add_end_docstrings(INIT_TOKENIZER_DOCSTRING)
class NougatTokenizerFast(PreTrainedTokenizerFast):
"""
Fast tokenizer for Nougat (backed by HuggingFace tokenizers library).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods. This class mainly adds Nougat-specific
methods for postprocessing the generated text.
Args:
vocab_file (`str`, *optional*):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
contains the vocabulary necessary to instantiate a tokenizer.
tokenizer_file (`str`, *optional*):
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
clean_up_tokenization_spaces (`str`, *optional*, defaults to `False`):
Wether to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra
spaces.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = None
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
clean_up_tokenization_spaces=False,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
**kwargs,
)
self.vocab_file = vocab_file
def remove_hallucinated_references(self, text: str) -> str:
"""
Remove hallucinated or missing references from the text.
This function identifies and removes references that are marked as missing or hallucinated from the input text.
Args:
text (`str`):
The input text containing references.
Returns:
`str`: The text with hallucinated references removed.
"""
lines = text.split("\n")
if len(lines) == 0:
return ""
clean_lines = remove_numbers(lines)
slices = get_slices(lines, clean_lines)
to_delete = []
for slice in slices:
to_delete.append(remove_slice_from_lines(lines, clean_lines, slice))
for to_delete in reversed(to_delete):
text = text.replace(to_delete, "\n\n[MISSING_PAGE_POST]\n\n")
text = re.sub(
r"## References\n+\[MISSING_PAGE_POST(:\d+)?\]",
"\n\n[MISSING_PAGE_POST\\1]",
text,
)
return text
def correct_tables(self, generation: str) -> str:
"""
Takes a generated string and fixes tables/tabulars to make them match the markdown format needed.
Args:
generation (str): The generated text to be postprocessed.
Returns:
str: The postprocessed text.
Example:
```python
correct_tables("\\begin{table} \\begin{tabular}{l l} & \\ \\end{tabular} \\end{table}")
"\\begin{table}\n\\begin{tabular}{l l} & \\ \\end{tabular}\n\\end{table}"
```
"""
# remove obvious wrong tables
for l in generation.split("\n"):
if l.count("\\begin{tabular}") > 15 or l.count("\\multicolumn") > 60 or l.count("&") > 400:
generation = generation.replace(l, "")
# whitespace corrections
generation = generation.replace("\\begin{table} \\begin{tabular}", "\\begin{table}\n\\begin{tabular}")
generation = generation.replace("\\end{tabular} \\end{table}", "\\end{tabular}\n\\end{table}")
generation = generation.replace("\\end{table} Tab", "\\end{table}\nTab")
generation = re.sub(r"(^.+)\\begin{tab", r"\1\n\\begin{tab", generation, flags=re.M)
# Remove left-aligned empty LaTeX tabular blocks.
generation = generation.replace(r"\begin{tabular}{l l} & \\ \end{tabular}", "")
# Remove tabulars with just 2 newline characters.
generation = generation.replace("\\begin{tabular}{}\n\n\\end{tabular}", "")
return generation
def post_process_single(self, generation: str, fix_markdown: bool = True) -> str:
"""
Postprocess a single generated text. Regular expressions used here are taken directly from the Nougat article
authors. These expressions are commented for clarity and tested end-to-end in most cases.
Args:
generation (str): The generated text to be postprocessed.
fix_markdown (bool, optional): Whether to perform Markdown formatting fixes. Default is True.
Returns:
str: The postprocessed text.
"""
generation = re.sub(
r"(?:\n|^)#+ \d*\W? ?(.{100,})", r"\n\1", generation
) # too long section titles probably are none
generation = generation.strip()
# Remove LaTeX left margin tag
generation = generation.replace("\n* [leftmargin=*]\n", "\n")
# Remove lines with markdown headings starting with #, with numerals,
# and possibly roman numerals with trailing spaces and newlines
generation = re.sub(r"^#+ (?:[\d+\.]+|[ixv\.]+)?\s*(?:$|\n\s*)", "", generation, flags=re.M)
# most likely hallucinated titles
lines = generation.split("\n")
if lines[-1].startswith("#") and lines[-1].lstrip("#").startswith(" ") and len(lines) > 1:
logger.info("Likely hallucinated title at the end of the page: " + lines[-1])
generation = "\n".join(lines[:-1])
# obvious repetition detection
generation = truncate_repetitions(generation)
# Reference corrections
generation = self.remove_hallucinated_references(generation)
# Remove lines starting with asterisks and numbers like "*[1]" and followed by capital letters and periods (ie too long references)
generation = re.sub(r"^\* \[\d+\](\s?[A-W]\.+\s?){10,}.*$", "", generation, flags=re.M)
# Remove empty brackets after a reference number in brackets. *[12][]ABC will become *[12]ABC
generation = re.sub(r"^(\* \[\d+\])\[\](.*)$", r"\1\2", generation, flags=re.M)
# Remove single characters before or after 2 new lines
generation = re.sub(r"(^\w\n\n|\n\n\w$)", "", generation)
# pmc math artifact correction
generation = re.sub(
r"([\s.,()])_([a-zA-Z0-9])__([a-zA-Z0-9]){1,3}_([\s.,:()])",
r"\1\(\2_{\3}\)\4",
generation,
)
generation = re.sub(r"([\s.,\d])_([a-zA-Z0-9])_([\s.,\d;])", r"\1\(\2\)\3", generation)
# footnote mistakes
generation = re.sub(
r"(\nFootnote .*?:) (?:footnotetext|thanks):\W*(.*(?:\n\n|$))",
r"\1 \2",
generation,
)
# TODO Come up with footnote formatting inside a table
generation = re.sub(r"\[FOOTNOTE:.+?\](.*?)\[ENDFOOTNOTE\]", "", generation)
# itemize post processing
generation = normalize_list_like_lines(generation)
if generation.endswith((".", "}")):
generation += "\n\n"
if re.match(r"[A-Z0-9,;:]$", generation):
# add space in case it there is a comma or word ending
generation += " "
elif generation.startswith(("#", "**", "\\begin")):
generation = "\n\n" + generation
elif generation.split("\n")[-1].startswith(("#", "Figure", "Table")):
generation = generation + "\n\n"
else:
try:
last_word = generation.split(" ")[-1]
if last_word in nltk.corpus.words.words():
generation += " "
except LookupError:
# add space just in case. Will split words but better than concatenating them
generation += " "
# table corrections
generation = self.correct_tables(generation)
# Remove optional, empty square brackets after begin{array}
generation = generation.replace("\\begin{array}[]{", "\\begin{array}{")
# Remove empty or malformed LaTeX tabular blocks with 2 or more columns specified, with spaces and ampersands.
generation = re.sub(
r"\\begin{tabular}{([clr ]){2,}}\s*[& ]*\s*(\\\\)? \\end{tabular}",
"",
generation,
)
# Remove lines containing "S.A.B." one or more times. Was included in Nougat's code.
generation = re.sub(r"(\*\*S\. A\. B\.\*\*\n+){2,}", "", generation)
# Remove markdown-style headers that are incomplete or empty on multiple lines.
generation = re.sub(r"^#+( [\[\d\w])?$", "", generation, flags=re.M)
# Remove lines with just one period.
generation = re.sub(r"^\.\s*$", "", generation, flags=re.M)
# Replace instances of three or more newlines with just two newlines.
generation = re.sub(r"\n{3,}", "\n\n", generation)
if fix_markdown:
return markdown_compatible(generation)
else:
return generation
def post_process_generation(
self,
generation: Union[str, List[str]],
fix_markdown: bool = True,
num_workers: Optional[int] = None,
) -> Union[str, List[str]]:
"""
Postprocess a generated text or a list of generated texts.
This function can be used to perform postprocessing on generated text, such as fixing Markdown formatting.
Postprocessing is quite slow so it is recommended to use multiprocessing to speed up the process.
Args:
generation (Union[str, List[str]]):
The generated text or a list of generated texts.
fix_markdown (`bool`, *optional*, defaults to `True`):
Whether to perform Markdown formatting fixes.
num_workers (`int`, *optional*):
Optional number of workers to pass to leverage multiprocessing (postprocessing several texts in
parallel).
Returns:
Union[str, List[str]]: The postprocessed text or list of postprocessed texts.
"""
requires_backends(self, ["nltk", "levenshtein"])
if isinstance(generation, list):
if num_workers is not None and isinstance(num_workers, int):
with Pool(num_workers) as p:
return p.map(partial(self.post_process_single, fix_markdown=fix_markdown), generation)
else:
return [self.post_process_single(s, fix_markdown=fix_markdown) for s in generation]
else:
return self.post_process_single(generation, fix_markdown=fix_markdown)
__all__ = ["NougatTokenizerFast"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nystromformer\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_nystromformer import *
from .modeling_nystromformer import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================================
SOURCE CODE FILE: configuration_nystromformer.py
LINES: 1
SIZE: 6.25 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nystromformer\configuration_nystromformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 UW-Madison and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Nystromformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class NystromformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`NystromformerModel`]. It is used to instantiate
an Nystromformer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Nystromformer
[uw-madison/nystromformer-512](https://huggingface.co/uw-madison/nystromformer-512) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30000):
Vocabulary size of the Nystromformer model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`NystromformerModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`NystromformerModel`].
segment_means_seq_len (`int`, *optional*, defaults to 64):
Sequence length used in segment-means.
num_landmarks (`int`, *optional*, defaults to 64):
The number of landmark (or Nystrom) points to use in Nystrom approximation of the softmax self-attention
matrix.
conv_kernel_size (`int`, *optional*, defaults to 65):
The kernel size of depthwise convolution used in Nystrom approximation.
inv_coeff_init_option (`bool`, *optional*, defaults to `False`):
Whether or not to use exact coefficient computation for the initial values for the iterative method of
calculating the Moore-Penrose inverse of a matrix.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import NystromformerModel, NystromformerConfig
>>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration
>>> configuration = NystromformerConfig()
>>> # Initializing a model from the uw-madison/nystromformer-512 style configuration
>>> model = NystromformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "nystromformer"
def __init__(
self,
vocab_size=30000,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=510,
type_vocab_size=2,
segment_means_seq_len=64,
num_landmarks=64,
conv_kernel_size=65,
inv_coeff_init_option=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.segment_means_seq_len = segment_means_seq_len
self.num_landmarks = num_landmarks
self.conv_kernel_size = conv_kernel_size
self.inv_coeff_init_option = inv_coeff_init_option
self.layer_norm_eps = layer_norm_eps
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
__all__ = ["NystromformerConfig"]
```
|
===================================================================================================================================================
SOURCE CODE FILE: modeling_nystromformer.py
LINES: 1
SIZE: 47.91 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\nystromformer\modeling_nystromformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 UW-Madison The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Nystromformer model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_nystromformer import NystromformerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "uw-madison/nystromformer-512"
_CONFIG_FOR_DOC = "NystromformerConfig"
class NystromformerEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class NystromformerSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.num_landmarks = config.num_landmarks
self.seq_len = config.segment_means_seq_len
self.conv_kernel_size = config.conv_kernel_size
if config.inv_coeff_init_option:
self.init_option = config["inv_init_coeff_option"]
else:
self.init_option = "original"
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.conv_kernel_size is not None:
self.conv = nn.Conv2d(
in_channels=self.num_attention_heads,
out_channels=self.num_attention_heads,
kernel_size=(self.conv_kernel_size, 1),
padding=(self.conv_kernel_size // 2, 0),
bias=False,
groups=self.num_attention_heads,
)
# Function to approximate Moore-Penrose inverse via the iterative method
def iterative_inv(self, mat, n_iter=6):
identity = torch.eye(mat.size(-1), device=mat.device)
key = mat
# The entries of key are positive and ||key||_{\infty} = 1 due to softmax
if self.init_option == "original":
# This original implementation is more conservative to compute coefficient of Z_0.
value = 1 / torch.max(torch.sum(key, dim=-2)) * key.transpose(-1, -2)
else:
# This is the exact coefficient computation, 1 / ||key||_1, of initialization of Z_0, leading to faster convergence.
value = 1 / torch.max(torch.sum(key, dim=-2), dim=-1).values[:, :, None, None] * key.transpose(-1, -2)
for _ in range(n_iter):
key_value = torch.matmul(key, value)
value = torch.matmul(
0.25 * value,
13 * identity
- torch.matmul(key_value, 15 * identity - torch.matmul(key_value, 7 * identity - key_value)),
)
return value
def transpose_for_scores(self, layer):
new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
layer = layer.view(*new_layer_shape)
return layer.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
query_layer = query_layer / math.sqrt(math.sqrt(self.attention_head_size))
key_layer = key_layer / math.sqrt(math.sqrt(self.attention_head_size))
if self.num_landmarks == self.seq_len:
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in NystromformerModel forward() function)
attention_scores = attention_scores + attention_mask
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
context_layer = torch.matmul(attention_probs, value_layer)
else:
q_landmarks = query_layer.reshape(
-1,
self.num_attention_heads,
self.num_landmarks,
self.seq_len // self.num_landmarks,
self.attention_head_size,
).mean(dim=-2)
k_landmarks = key_layer.reshape(
-1,
self.num_attention_heads,
self.num_landmarks,
self.seq_len // self.num_landmarks,
self.attention_head_size,
).mean(dim=-2)
kernel_1 = torch.nn.functional.softmax(torch.matmul(query_layer, k_landmarks.transpose(-1, -2)), dim=-1)
kernel_2 = torch.nn.functional.softmax(torch.matmul(q_landmarks, k_landmarks.transpose(-1, -2)), dim=-1)
attention_scores = torch.matmul(q_landmarks, key_layer.transpose(-1, -2))
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in NystromformerModel forward() function)
attention_scores = attention_scores + attention_mask
kernel_3 = nn.functional.softmax(attention_scores, dim=-1)
attention_probs = torch.matmul(kernel_1, self.iterative_inv(kernel_2))
new_value_layer = torch.matmul(kernel_3, value_layer)
context_layer = torch.matmul(attention_probs, new_value_layer)
if self.conv_kernel_size is not None:
context_layer += self.conv(value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class NystromformerSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class NystromformerAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = NystromformerSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = NystromformerSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
self_outputs = self.self(hidden_states, attention_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Nystromformer
class NystromformerIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Nystromformer
class NystromformerOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class NystromformerLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = NystromformerAttention(config)
self.add_cross_attention = config.add_cross_attention
self.intermediate = NystromformerIntermediate(config)
self.output = NystromformerOutput(config)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class NystromformerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([NystromformerLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Nystromformer
class NystromformerPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Nystromformer
class NystromformerLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = NystromformerPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Nystromformer
class NystromformerOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = NystromformerLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class NystromformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = NystromformerConfig
base_model_prefix = "nystromformer"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
NYSTROMFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`NystromformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
NYSTROMFORMER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Nyströmformer Model transformer outputting raw hidden-states without any specific head on top.",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerModel(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = NystromformerEmbeddings(config)
self.encoder = NystromformerEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""Nyströmformer Model with a `language modeling` head on top.""", NYSTROMFORMER_START_DOCSTRING)
class NystromformerForMaskedLM(NystromformerPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder"]
def __init__(self, config):
super().__init__(config)
self.nystromformer = NystromformerModel(config)
self.cls = NystromformerOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NystromformerClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
Nyströmformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForSequenceClassification(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.nystromformer = NystromformerModel(config)
self.classifier = NystromformerClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Nyströmformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output
and a softmax) e.g. for RocStories/SWAG tasks.
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForMultipleChoice(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.nystromformer = NystromformerModel(config)
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Nyströmformer Model with a token classification head on top (a linear layer on top of the hidden-states output)
e.g. for Named-Entity-Recognition (NER) tasks.
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForTokenClassification(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.nystromformer = NystromformerModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Nyströmformer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
NYSTROMFORMER_START_DOCSTRING,
)
class NystromformerForQuestionAnswering(NystromformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.nystromformer = NystromformerModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(NYSTROMFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.nystromformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"NystromformerForMaskedLM",
"NystromformerForMultipleChoice",
"NystromformerForQuestionAnswering",
"NystromformerForSequenceClassification",
"NystromformerForTokenClassification",
"NystromformerLayer",
"NystromformerModel",
"NystromformerPreTrainedModel",
]
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.99 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmo2\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_olmo2 import *
from .modeling_olmo2 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================
SOURCE CODE FILE: configuration_olmo2.py
LINES: 1
SIZE: 9.21 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmo2\configuration_olmo2.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/olmo2/modular_olmo2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_olmo2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from ...configuration_utils import PretrainedConfig
class Olmo2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50304):
Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Olmo2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50279):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
```python
>>> from transformers import Olmo2Model, Olmo2Config
>>> # Initializing a Olmo2 7B style configuration
>>> configuration = Olmo2Config()
>>> # Initializing a model from the Olmo2 7B style configuration
>>> model = Olmo2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "olmo2"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.self_attn.k_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.self_attn.v_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.self_attn.o_proj": "rowwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=50304,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
rms_norm_eps=1e-5,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.rms_norm_eps = rms_norm_eps
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
f"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
__all__ = ["Olmo2Config"]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_olmo2.py
LINES: 2
SIZE: 36.91 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmo2\modeling_olmo2.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/olmo2/modular_olmo2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_olmo2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from functools import partial
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_olmo2 import Olmo2Config
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Olmo2Config"
class Olmo2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Olmo2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Olmo2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Olmo2Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps)
self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(hidden_states))
key_states = self.k_norm(self.k_proj(hidden_states))
value_states = self.v_proj(hidden_states)
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Olmo2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class Olmo2DecoderLayer(nn.Module):
def __init__(self, config: Olmo2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Olmo2Attention(config=config, layer_idx=layer_idx)
self.mlp = Olmo2MLP(config)
self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Olmo2RotaryEmbedding(nn.Module):
def __init__(self, config: Olmo2Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
OLMO2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Olmo2Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Olmo2 Model outputting raw hidden-states without any specific head on top.",
OLMO2_START_DOCSTRING,
)
class Olmo2PreTrainedModel(PreTrainedModel):
config_class = Olmo2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Olmo2DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
OLMO2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Olmo2 Model outputting raw hidden-states without any specific head on top.",
OLMO2_START_DOCSTRING,
)
class Olmo2Model(Olmo2PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Olmo2DecoderLayer`]
Args:
config: Olmo2Config
"""
def __init__(self, config: Olmo2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Olmo2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Olmo2RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class Olmo2ForCausalLM(Olmo2PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = Olmo2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(OLMO2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Olmo2ForCausalLM
>>> model = Olmo2ForCausalLM.from_pretrained("meta-olmo2/Olmo2-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-olmo2/Olmo2-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = ["Olmo2ForCausalLM", "Olmo2Model", "Olmo2PreTrainedModel"]
```
|
==================================================================================================================================
SOURCE CODE FILE: modular_olmo2.py
LINES: 1
SIZE: 13.55 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmo2\modular_olmo2.py
ENCODING: utf-8
```py
from typing import Callable, Optional, Tuple
import torch
import torch.nn as nn
from ...cache_utils import Cache
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import logging
from ..llama.modeling_llama import LlamaRMSNorm, eager_attention_forward
from ..olmo.configuration_olmo import OlmoConfig
from ..olmo.modeling_olmo import (
OlmoAttention,
OlmoDecoderLayer,
OlmoForCausalLM,
OlmoModel,
apply_rotary_pos_emb,
)
logger = logging.get_logger(__name__)
class Olmo2Config(OlmoConfig):
r"""
This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50304):
Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Olmo2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50279):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
```python
>>> from transformers import Olmo2Model, Olmo2Config
>>> # Initializing a Olmo2 7B style configuration
>>> configuration = Olmo2Config()
>>> # Initializing a model from the Olmo2 7B style configuration
>>> model = Olmo2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "olmo2"
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.self_attn.k_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.self_attn.v_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.self_attn.o_proj": "rowwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=50304,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
rms_norm_eps=1e-5,
**kwargs,
):
super().__init__(
vocab_size=vocab_size,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_key_value_heads=num_key_value_heads,
hidden_act=hidden_act,
max_position_embeddings=max_position_embeddings,
initializer_range=initializer_range,
use_cache=use_cache,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
attention_bias=attention_bias,
attention_dropout=attention_dropout,
**kwargs,
)
self.rms_norm_eps = rms_norm_eps
del self.clip_qkv
class Olmo2RMSNorm(LlamaRMSNorm):
pass
ALL_LAYERNORM_LAYERS.append(Olmo2RMSNorm)
# Olmo2 attention is identical to OLMo attention except:
# - Norm is applied to attention queries and keys.
# - No qkv clipping.
class Olmo2Attention(OlmoAttention):
def __init__(self, config: Olmo2Config, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx=layer_idx)
self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps)
self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(hidden_states))
key_states = self.k_norm(self.k_proj(hidden_states))
value_states = self.v_proj(hidden_states)
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
# The OLMo2 layers are identical to those of the OLMo model except:
# - RMSNorm is used instead of standard layer norm.
# - Norm is applied after attention/feedforward rather than before.
class Olmo2DecoderLayer(OlmoDecoderLayer):
def __init__(self, config: Olmo2Config, layer_idx: int):
super().__init__(config, layer_idx=layer_idx)
self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.self_attn = Olmo2Attention(config=config, layer_idx=layer_idx)
del self.input_layernorm
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
# The OLMo2 model is identical to the OLMo model, except RMSNorm is used instead of
# standard layer norm for the output norm.
class Olmo2Model(OlmoModel):
def __init__(self, config: Olmo2Config):
super().__init__(config)
self.norm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.layers = nn.ModuleList(
[Olmo2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
# The heads now only need to redefine the model inside to the correct `RobertaModel`
class Olmo2ForCausalLM(OlmoForCausalLM):
pass
__all__ = [
"Olmo2Config",
"Olmo2ForCausalLM",
"Olmo2Model",
"Olmo2PreTrainedModel", # noqa: F822
]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.62 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmo\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_olmo": ["OlmoConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_olmo"] = [
"OlmoForCausalLM",
"OlmoModel",
"OlmoPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_olmo import OlmoConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_olmo import (
OlmoForCausalLM,
OlmoModel,
OlmoPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_olmo.py
LINES: 1
SIZE: 9.17 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmo\configuration_olmo.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OLMo model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class OlmoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OlmoModel`]. It is used to instantiate an OLMo
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/OLMo-7B-hf](https://huggingface.co/allenai/OLMo-7B-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50304):
Vocabulary size of the OLMo model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`OlmoModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50279):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
clip_qkv (`float`, *optional*):
If not `None`, elements of query, key and value attention states are clipped so that their
absolute value does not exceed this value.
```python
>>> from transformers import OlmoModel, OlmoConfig
>>> # Initializing a OLMo 7B style configuration
>>> configuration = OlmoConfig()
>>> # Initializing a model from the OLMo 7B style configuration
>>> model = OlmoModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "olmo"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=50304,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
clip_qkv=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.clip_qkv = clip_qkv
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
f"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_olmo.py
LINES: 2
SIZE: 36.58 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmo\modeling_olmo.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/olmo/modular_olmo.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_olmo.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from functools import partial
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_olmo import OlmoConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "OlmoConfig"
class OlmoLayerNorm(nn.Module):
"""LayerNorm but with no learnable weight or bias."""
def __init__(self, hidden_size: int) -> None:
super().__init__()
self.normalized_shape = (hidden_size,)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
return F.layer_norm(hidden_states.to(dtype=torch.float32), self.normalized_shape, None, None, eps=1e-5).to(
orig_dtype
)
class OlmoMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class OlmoAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: OlmoConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
if self.config.clip_qkv is not None:
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class OlmoDecoderLayer(nn.Module):
def __init__(self, config: OlmoConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = OlmoAttention(config=config, layer_idx=layer_idx)
self.mlp = OlmoMLP(config)
self.input_layernorm = OlmoLayerNorm(config.hidden_size)
self.post_attention_layernorm = OlmoLayerNorm(config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class OlmoRotaryEmbedding(nn.Module):
def __init__(self, config: OlmoConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
OLMO_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OlmoConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Olmo Model outputting raw hidden-states without any specific head on top.",
OLMO_START_DOCSTRING,
)
class OlmoPreTrainedModel(PreTrainedModel):
config_class = OlmoConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["OlmoDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
OLMO_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Olmo Model outputting raw hidden-states without any specific head on top.",
OLMO_START_DOCSTRING,
)
class OlmoModel(OlmoPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OlmoDecoderLayer`]
Args:
config: OlmoConfig
"""
def __init__(self, config: OlmoConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[OlmoDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = OlmoLayerNorm(config.hidden_size)
self.rotary_emb = OlmoRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(OLMO_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class OlmoForCausalLM(OlmoPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = OlmoModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(OLMO_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, OlmoForCausalLM
>>> model = OlmoForCausalLM.from_pretrained("meta-olmo/Olmo-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-olmo/Olmo-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
```
|
================================================================================================================================
SOURCE CODE FILE: modular_olmo.py
LINES: 1
SIZE: 4.78 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmo\modular_olmo.py
ENCODING: utf-8
```py
from typing import Callable, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from ...cache_utils import Cache
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...utils import logging
from ..llama.modeling_llama import (
LlamaAttention,
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaMLP,
LlamaModel,
apply_rotary_pos_emb,
eager_attention_forward,
)
from .configuration_olmo import OlmoConfig
logger = logging.get_logger(__name__)
class OlmoLayerNorm(nn.Module):
"""LayerNorm but with no learnable weight or bias."""
def __init__(self, hidden_size: int) -> None:
super().__init__()
self.normalized_shape = (hidden_size,)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
return F.layer_norm(hidden_states.to(dtype=torch.float32), self.normalized_shape, None, None, eps=1e-5).to(
orig_dtype
)
class OlmoMLP(LlamaMLP):
def __init__(self, config):
super().__init__(config)
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
class OlmoAttention(LlamaAttention):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
if self.config.clip_qkv is not None:
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class OlmoDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: OlmoConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.input_layernorm = OlmoLayerNorm(config.hidden_size)
self.post_attention_layernorm = OlmoLayerNorm(config.hidden_size)
self.self_attn = OlmoAttention(config=config, layer_idx=layer_idx)
class OlmoModel(LlamaModel):
def __init__(self, config: OlmoConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[OlmoDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = OlmoLayerNorm(config.hidden_size)
class OlmoForCausalLM(LlamaForCausalLM):
pass
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmoe\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_olmoe import *
from .modeling_olmoe import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================
SOURCE CODE FILE: configuration_olmoe.py
LINES: 1
SIZE: 8.85 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmoe\configuration_olmoe.py
ENCODING: utf-8
```py
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OLMoE model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class OlmoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OlmoeModel`]. It is used to instantiate an OLMoE
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/OLMoE-1B-7B-0924](https://huggingface.co/allenai/OLMoE-1B-7B-0924).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50304):
Vocabulary size of the OLMoE model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`OlmoeModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 16):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50279):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
clip_qkv (`float`, *optional*):
If not `None`, elements of query, key and value attention states are clipped so that their
absolute value does not exceed this value.
num_experts_per_tok (`int`, *optional*, defaults to 8):
Number of selected experts.
num_experts (`int`, *optional*, defaults to 64):
Number of routed experts.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabeling this will also
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.01):
The aux loss factor for the total loss.
norm_topk_prob (`bool`, *optional*, defaults to `False`):
Whether to normalize the topk probabilities.
```python
>>> from transformers import OlmoeModel, OlmoeConfig
>>> # Initializing a OLMoE 7B A1B style configuration
>>> configuration = OlmoeConfig()
>>> # Initializing a model from the OLMoE 7B A1B style configuration
>>> model = OlmoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "olmoe"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50304,
hidden_size=2048,
intermediate_size=2048,
num_hidden_layers=16,
num_attention_heads=16,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-05,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
clip_qkv=None,
num_experts_per_tok=8,
num_experts=64,
output_router_logits=False,
router_aux_loss_coef=0.01,
norm_topk_prob=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.clip_qkv = clip_qkv
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.norm_topk_prob = norm_topk_prob
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["OlmoeConfig"]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_olmoe.py
LINES: 2
SIZE: 58.80 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\olmoe\modeling_olmoe.py
ENCODING: utf-8
```py
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OLMoE model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_olmoe import OlmoeConfig
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "OlmoeConfig"
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
def load_balancing_loss_func(
gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], None],
num_experts: Optional[int] = None,
top_k=2,
attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits:
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts:
Number of experts
top_k:
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter.
attention_mask (`torch.Tensor`, *optional*):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return 0
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
class OlmoeRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-5):
"""
OlmoeRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
ALL_LAYERNORM_LAYERS.append(OlmoeRMSNorm)
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Olmoe
class OlmoeRotaryEmbedding(nn.Module):
def __init__(self, config: OlmoeConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.olmo.modeling_olmo.OlmoMLP with Olmo->Olmoe
class OlmoeMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class OlmoeAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: OlmoeConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
self.q_norm = OlmoeRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.k_norm = OlmoeRMSNorm(
(self.hidden_size // self.num_heads) * self.num_key_value_heads, eps=config.rms_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_norm(self.q_proj(hidden_states))
key_states = self.k_norm(self.k_proj(hidden_states))
value_states = self.v_proj(hidden_states)
if self.config.clip_qkv is not None:
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class OlmoeFlashAttention2(OlmoeAttention):
"""
OLMoE flash attention module. This module inherits from `OlmoeAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_norm(self.q_proj(hidden_states))
key_states = self.k_norm(self.k_proj(hidden_states))
value_states = self.v_proj(hidden_states)
if self.config.clip_qkv is not None:
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (OlmoeRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class OlmoeSdpaAttention(OlmoeAttention):
"""
OLMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`OlmoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from OlmoeAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"OlmoeModel is using OlmoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_norm(self.q_proj(hidden_states))
key_states = self.k_norm(self.k_proj(hidden_states))
value_states = self.v_proj(hidden_states)
if self.config.clip_qkv is not None:
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
# if attention_mask is not None and cache_position is not None:
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
OLMOE_ATTENTION_CLASSES = {
"eager": OlmoeAttention,
"flash_attention_2": OlmoeFlashAttention2,
"sdpa": OlmoeSdpaAttention,
}
class OlmoeSparseMoeBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.norm_topk_prob = config.norm_topk_prob
self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False)
self.experts = nn.ModuleList([OlmoeMLP(config) for _ in range(self.num_experts)])
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be selected
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class OlmoeDecoderLayer(nn.Module):
def __init__(self, config: OlmoeConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = OLMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = OlmoeSparseMoeBlock(config)
self.input_layernorm = OlmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = OlmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
and should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
OLMOE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OlmoeConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Olmoe Model outputting raw hidden-states without any specific head on top.",
OLMOE_START_DOCSTRING,
)
class OlmoePreTrainedModel(PreTrainedModel):
config_class = OlmoeConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["OlmoeDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
OLMOE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Olmoe Model outputting raw hidden-states without any specific head on top.",
OLMOE_START_DOCSTRING,
)
# TODO: re-enable check: Copied from transformers.models.llama.modeling_llama.LlamaModel with Llama->Olmoe
class OlmoeModel(OlmoePreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OlmoeDecoderLayer`]
Args:
config: OlmoeConfig
"""
def __init__(self, config: OlmoeConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[OlmoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = OlmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = OlmoeRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(OLMOE_INPUTS_DOCSTRING)
# Ignore copy
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits and layer_outputs[-1] is not None:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class OlmoeForCausalLM(OlmoePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = OlmoeModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(OLMOE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, OlmoeForCausalLM
>>> model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924")
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1],
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
if not return_dict:
output = (logits,) + outputs[1:]
if output_router_logits:
output = (aux_loss,) + output
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
__all__ = ["OlmoeForCausalLM", "OlmoeModel", "OlmoePreTrainedModel"]
```
|
===================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\omdet_turbo\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_omdet_turbo import *
from .modeling_omdet_turbo import *
from .processing_omdet_turbo import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================================
SOURCE CODE FILE: configuration_omdet_turbo.py
LINES: 1
SIZE: 14.14 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\omdet_turbo\configuration_omdet_turbo.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OmDet-Turbo model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import verify_backbone_config_arguments
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
class OmDetTurboConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OmDetTurboForObjectDetection`].
It is used to instantiate a OmDet-Turbo model according to the specified arguments, defining the model architecture
Instantiating a configuration with the defaults will yield a similar configuration to that of the OmDet-Turbo
[omlab/omdet-turbo-swin-tiny-hf](https://huggingface.co/omlab/omdet-turbo-swin-tiny-hf) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`PretrainedConfig`, *optional*):
The configuration of the text backbone.
backbone_config (`PretrainedConfig`, *optional*):
The configuration of the vision backbone.
use_timm_backbone (`bool`, *optional*, defaults to `True`):
Whether to use the timm for the vision backbone.
backbone (`str`, *optional*, defaults to `"swin_tiny_patch4_window7_224"`):
The name of the pretrained vision backbone to use. If `use_pretrained_backbone=False` a randomly initialized
backbone with the same architecture `backbone` is used.
backbone_kwargs (`dict`, *optional*):
Additional kwargs for the vision backbone.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use a pretrained vision backbone.
apply_layernorm_after_vision_backbone (`bool`, *optional*, defaults to `True`):
Whether to apply layer normalization on the feature maps of the vision backbone output.
image_size (`int`, *optional*, defaults to 640):
The size (resolution) of each image.
disable_custom_kernels (`bool`, *optional*, defaults to `False`):
Whether to disable custom kernels.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value for layer normalization.
batch_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value for batch normalization.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
text_projection_in_dim (`int`, *optional*, defaults to 512):
The input dimension for the text projection.
text_projection_out_dim (`int`, *optional*, defaults to 512):
The output dimension for the text projection.
task_encoder_hidden_dim (`int`, *optional*, defaults to 1024):
The feedforward dimension for the task encoder.
class_embed_dim (`int`, *optional*, defaults to 512):
The dimension of the classes embeddings.
class_distance_type (`str`, *optional*, defaults to `"cosine"`):
The type of of distance to compare predicted classes to projected classes embeddings.
Can be `"cosine"` or `"dot"`.
num_queries (`int`, *optional*, defaults to 900):
The number of queries.
csp_activation (`str`, *optional*, defaults to `"silu"`):
The activation function of the Cross Stage Partial (CSP) networks of the encoder.
conv_norm_activation (`str`, *optional*, defaults to `"gelu"`):
The activation function of the ConvNormLayer layers of the encoder.
encoder_feedforward_activation (`str`, *optional*, defaults to `"relu"`):
The activation function for the feedforward network of the encoder.
encoder_feedforward_dropout (`float`, *optional*, defaults to 0.0):
The dropout rate following the activation of the encoder feedforward network.
encoder_dropout (`float`, *optional*, defaults to 0.0):
The dropout rate of the encoder multi-head attention module.
hidden_expansion (`int`, *optional*, defaults to 1):
The hidden expansion of the CSP networks in the encoder.
vision_features_channels (`tuple(int)`, *optional*, defaults to `[256, 256, 256]`):
The projected vision features channels used as inputs for the decoder.
encoder_hidden_dim (`int`, *optional*, defaults to 256):
The hidden dimension of the encoder.
encoder_in_channels (`List(int)`, *optional*, defaults to `[192, 384, 768]`):
The input channels for the encoder.
encoder_projection_indices (`List(int)`, *optional*, defaults to `[2]`):
The indices of the input features projected by each layers.
encoder_attention_heads (`int`, *optional*, defaults to 8):
The number of attention heads for the encoder.
encoder_dim_feedforward (`int`, *optional*, defaults to 2048):
The feedforward dimension for the encoder.
encoder_layers (`int`, *optional*, defaults to 1):
The number of layers in the encoder.
positional_encoding_temperature (`int`, *optional*, defaults to 10000):
The positional encoding temperature in the encoder.
num_feature_levels (`int`, *optional*, defaults to 3):
The number of feature levels for the multi-scale deformable attention module of the decoder.
decoder_hidden_dim (`int`, *optional*, defaults to 256):
The hidden dimension of the decoder.
decoder_num_heads (`int`, *optional*, defaults to 8):
The number of heads for the decoder.
decoder_num_layers (`int`, *optional*, defaults to 6):
The number of layers for the decoder.
decoder_activation (`str`, *optional*, defaults to `"relu"`):
The activation function for the decoder.
decoder_dim_feedforward (`int`, *optional*, defaults to 2048):
The feedforward dimension for the decoder.
decoder_num_points (`int`, *optional*, defaults to 4):
The number of points sampled in the decoder multi-scale deformable attention module.
decoder_dropout (`float`, *optional*, defaults to 0.0):
The dropout rate for the decoder.
eval_size (`Tuple[int, int]`, *optional*):
Height and width used to computes the effective height and width of the position embeddings after taking
into account the stride (see RTDetr).
learn_initial_query (`bool`, *optional*, defaults to `False`):
Whether to learn the initial query.
cache_size (`int`, *optional*, defaults to 100):
The cache size for the classes and prompts caches.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder-decoder model or not.
kwargs (`Dict[str, Any]`, *optional*):
Additional parameters from the architecture. The values in kwargs will be saved as part of the configuration
and can be used to control the model outputs.
Examples:
```python
>>> from transformers import OmDetTurboConfig, OmDetTurboForObjectDetection
>>> # Initializing a OmDet-Turbo omlab/omdet-turbo-swin-tiny-hf style configuration
>>> configuration = OmDetTurboConfig()
>>> # Initializing a model (with random weights) from the omlab/omdet-turbo-swin-tiny-hf style configuration
>>> model = OmDetTurboForObjectDetection(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "omdet-turbo"
attribute_map = {
"encoder_hidden_dim": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__(
self,
text_config=None,
backbone_config=None,
use_timm_backbone=True,
backbone="swin_tiny_patch4_window7_224",
backbone_kwargs=None,
use_pretrained_backbone=False,
apply_layernorm_after_vision_backbone=True,
image_size=640,
disable_custom_kernels=False,
layer_norm_eps=1e-5,
batch_norm_eps=1e-5,
init_std=0.02,
text_projection_in_dim=512,
text_projection_out_dim=512,
task_encoder_hidden_dim=1024,
class_embed_dim=512,
class_distance_type="cosine",
num_queries=900,
csp_activation="silu",
conv_norm_activation="gelu",
encoder_feedforward_activation="relu",
encoder_feedforward_dropout=0.0,
encoder_dropout=0.0,
hidden_expansion=1,
vision_features_channels=[256, 256, 256],
encoder_hidden_dim=256,
encoder_in_channels=[192, 384, 768],
encoder_projection_indices=[2],
encoder_attention_heads=8,
encoder_dim_feedforward=2048,
encoder_layers=1,
positional_encoding_temperature=10000,
num_feature_levels=3,
decoder_hidden_dim=256,
decoder_num_heads=8,
decoder_num_layers=6,
decoder_activation="relu",
decoder_dim_feedforward=2048,
decoder_num_points=4,
decoder_dropout=0.0,
eval_size=None,
learn_initial_query=False,
cache_size=100,
is_encoder_decoder=True,
**kwargs,
):
if use_timm_backbone:
if backbone_config is None:
backbone_kwargs = {
"out_indices": [1, 2, 3],
"img_size": image_size,
"always_partition": True,
}
elif backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `swin` vision config.")
backbone_config = CONFIG_MAPPING["swin"](
window_size=7,
image_size=image_size,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
out_indices=[2, 3, 4],
)
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
verify_backbone_config_arguments(
use_timm_backbone=use_timm_backbone,
use_pretrained_backbone=use_pretrained_backbone,
backbone=backbone,
backbone_config=backbone_config,
backbone_kwargs=backbone_kwargs,
)
if text_config is None:
logger.info(
"`text_config` is `None`. Initializing the config with the default `clip_text_model` text config."
)
text_config = CONFIG_MAPPING["clip_text_model"]()
elif isinstance(text_config, dict):
text_model_type = text_config.get("model_type")
text_config = CONFIG_MAPPING[text_model_type](**text_config)
if class_distance_type not in ["cosine", "dot"]:
raise ValueError(
f"Invalid `class_distance_type`. It should be either `cosine` or `dot`, but got {class_distance_type}."
)
self.text_config = text_config
self.backbone_config = backbone_config
self.use_timm_backbone = use_timm_backbone
self.backbone = backbone
self.backbone_kwargs = backbone_kwargs
self.use_pretrained_backbone = use_pretrained_backbone
self.apply_layernorm_after_vision_backbone = apply_layernorm_after_vision_backbone
self.image_size = image_size
self.disable_custom_kernels = disable_custom_kernels
self.layer_norm_eps = layer_norm_eps
self.batch_norm_eps = batch_norm_eps
self.init_std = init_std
self.text_projection_in_dim = text_projection_in_dim
self.text_projection_out_dim = text_projection_out_dim
self.task_encoder_hidden_dim = task_encoder_hidden_dim
self.class_embed_dim = class_embed_dim
self.class_distance_type = class_distance_type
self.num_queries = num_queries
self.csp_activation = csp_activation
self.conv_norm_activation = conv_norm_activation
self.encoder_feedforward_activation = encoder_feedforward_activation
self.encoder_feedforward_dropout = encoder_feedforward_dropout
self.encoder_dropout = encoder_dropout
self.hidden_expansion = hidden_expansion
self.vision_features_channels = vision_features_channels
self.encoder_hidden_dim = encoder_hidden_dim
self.encoder_in_channels = encoder_in_channels
self.encoder_projection_indices = encoder_projection_indices
self.encoder_attention_heads = encoder_attention_heads
self.encoder_dim_feedforward = encoder_dim_feedforward
self.encoder_layers = encoder_layers
self.positional_encoding_temperature = positional_encoding_temperature
self.num_feature_levels = num_feature_levels
self.decoder_hidden_dim = decoder_hidden_dim
self.decoder_num_heads = decoder_num_heads
self.decoder_num_layers = decoder_num_layers
self.decoder_activation = decoder_activation
self.decoder_dim_feedforward = decoder_dim_feedforward
self.decoder_num_points = decoder_num_points
self.decoder_dropout = decoder_dropout
self.eval_size = eval_size
self.learn_initial_query = learn_initial_query
self.cache_size = cache_size
self.is_encoder_decoder = is_encoder_decoder
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
__all__ = ["OmDetTurboConfig"]
```
|
===============================================================================================================================================
SOURCE CODE FILE: modeling_omdet_turbo.py
LINES: 1
SIZE: 76.78 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\omdet_turbo\modeling_omdet_turbo.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Om Research Lab and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OmDet-Turbo model."""
import math
import warnings
from collections import OrderedDict
from dataclasses import dataclass
from functools import lru_cache
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from ...activations import ACT2CLS, ACT2FN
from ...file_utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...integrations import use_kernel_forward_from_hub
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from ...utils.backbone_utils import load_backbone
from ..auto import AutoModel
from .configuration_omdet_turbo import OmDetTurboConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "OmDetTurboConfig"
@dataclass
class OmDetTurboEncoderOutput(ModelOutput):
"""
Base class for outputs of the OmDetTurboHybridEncoder.
Args:
last_hidden_state (`torch.FloatTensor`):
Last hidden states of the encoder.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
extracted_states (`Tuple[torch.FloatTensor]`):
The extracted states from the Feature Pyramid Network (FPN) and Path Aggregation Network (PAN) of the encoder.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
extracted_states: Tuple[torch.FloatTensor] = None
@dataclass
class OmDetTurboDecoderOutput(ModelOutput):
"""
Base class for outputs of the OmDetTurboDecoder.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder.
decoder_coords (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The predicted coordinates of the objects.
decoder_classes (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes)`):
The predicted classes of the objects.
encoder_coord_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The predicted coordinates of the objects from the encoder.
encoder_class_logits (`Tuple[torch.FloatTensor]`) of shape `(batch_size, num_queries, num_classes)`:
The predicted class of the objects from the encoder.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The initial reference points.
intermediate_reference_points (`Tuple[Tuple[torch.FloatTensor]]`):
The intermediate reference points.
hidden_states (`Optional[Tuple[torch.FloatTensor]]`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`Optional[Tuple[Tuple[torch.FloatTensor]]]`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_coords: Optional[torch.FloatTensor] = None
decoder_classes: Optional[torch.FloatTensor] = None
encoder_coord_logits: Optional[torch.FloatTensor] = None
encoder_class_logits: Tuple[torch.FloatTensor] = None
init_reference_points: Optional[torch.FloatTensor] = None
intermediate_reference_points: Tuple[Tuple[torch.FloatTensor]] = None
@dataclass
class OmDetTurboObjectDetectionOutput(ModelOutput):
"""
Output type of [`OmDetTurboObjectDetectionOutput`].
Args:
loss (`torch.FloatTensor`):
The loss value.
decoder_coord_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The predicted coordinates logits of the objects.
decoder_class_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes)`):
The predicted class of the objects.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The initial reference points.
intermediate_reference_points (`Tuple[Tuple[torch.FloatTensor]]`):
The intermediate reference points.
encoder_coord_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The predicted coordinates of the objects from the encoder.
encoder_class_logits (`Tuple[torch.FloatTensor]`):
The predicted class of the objects from the encoder.
encoder_extracted_states (`torch.FloatTensor`):
The extracted states from the Feature Pyramid Network (FPN) and Path Aggregation Network (PAN) of the encoder.
decoder_hidden_states (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`Tuple[Tuple[torch.FloatTensor]]`, *optional*):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
encoder_hidden_states (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
encoder_attentions (`Tuple[Tuple[torch.FloatTensor]]`, *optional*):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
classes_structure (`torch.LongTensor`, *optional*):
The number of queried classes for each image.
"""
loss: Optional[torch.FloatTensor] = None
decoder_coord_logits: Optional[torch.FloatTensor] = None
decoder_class_logits: Optional[torch.FloatTensor] = None
init_reference_points: Optional[torch.FloatTensor] = None
intermediate_reference_points: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
encoder_coord_logits: Optional[torch.FloatTensor] = None
encoder_class_logits: Tuple[torch.FloatTensor] = None
encoder_extracted_states: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
classes_structure: Optional[torch.LongTensor] = None
@use_kernel_forward_from_hub("MultiScaleDeformableAttention")
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.MultiScaleDeformableAttention
class MultiScaleDeformableAttention(nn.Module):
def forward(
self,
value: Tensor,
value_spatial_shapes: Tensor,
value_spatial_shapes_list: List[Tuple],
level_start_index: Tensor,
sampling_locations: Tensor,
attention_weights: Tensor,
im2col_step: int,
):
batch_size, _, num_heads, hidden_dim = value.shape
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
value_list = value.split([height * width for height, width in value_spatial_shapes_list], dim=1)
sampling_grids = 2 * sampling_locations - 1
sampling_value_list = []
for level_id, (height, width) in enumerate(value_spatial_shapes_list):
# batch_size, height*width, num_heads, hidden_dim
# -> batch_size, height*width, num_heads*hidden_dim
# -> batch_size, num_heads*hidden_dim, height*width
# -> batch_size*num_heads, hidden_dim, height, width
value_l_ = (
value_list[level_id]
.flatten(2)
.transpose(1, 2)
.reshape(batch_size * num_heads, hidden_dim, height, width)
)
# batch_size, num_queries, num_heads, num_points, 2
# -> batch_size, num_heads, num_queries, num_points, 2
# -> batch_size*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
# batch_size*num_heads, hidden_dim, num_queries, num_points
sampling_value_l_ = nn.functional.grid_sample(
value_l_,
sampling_grid_l_,
mode="bilinear",
padding_mode="zeros",
align_corners=False,
)
sampling_value_list.append(sampling_value_l_)
# (batch_size, num_queries, num_heads, num_levels, num_points)
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.transpose(1, 2).reshape(
batch_size * num_heads, 1, num_queries, num_levels * num_points
)
output = (
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
.sum(-1)
.view(batch_size, num_heads * hidden_dim, num_queries)
)
return output.transpose(1, 2).contiguous()
class OmDetTurboLRUCache:
def __init__(self, capacity: int):
self.cache = OrderedDict()
self.capacity = capacity
self.current_load = 0
def has(self, key) -> bool:
return key in self.cache
def get(self, key):
"""
Get the value of the key if the key exists in the cache, otherwise return None.
Move the key to the end of the cache to show that it was recently used.
"""
if key not in self.cache:
return None
self.cache.move_to_end(key)
return self.cache[key]
def put(self, key, value) -> None:
"""
Add the key-value pair to the cache.
Move the key to the end of the cache to show that it was recently used.
If the cache is full, remove the first key (least recently used).
"""
if key not in self.cache:
self.current_load += 1
if self.current_load > self.capacity:
self.cache.popitem(last=False)
self.current_load -= 1
self.cache[key] = value
self.cache.move_to_end(key)
class OmDetTurboLanguageBackbone(nn.Module):
def __init__(self, config: OmDetTurboConfig):
super().__init__()
self.model = AutoModel.from_config(config.text_config)
self.text_projection = nn.Parameter(torch.zeros(config.text_projection_in_dim, config.text_projection_out_dim))
def forward(self, hidden_states, mask=None, encode_type="task"):
text_outputs = self.model(hidden_states)
pooled_output = text_outputs[0]
if encode_type == "task":
if mask is None:
raise ValueError("mask is required for task encoding")
max_len = (mask != 0).sum(1).max().item()
truncated_mask = mask[:, :max_len]
truncated_output = pooled_output[:, :max_len, :]
return truncated_output.transpose(0, 1), truncated_mask
elif encode_type == "class":
max_pooled_output = pooled_output[torch.arange(pooled_output.shape[0]), hidden_states.argmax(dim=-1)]
projected_output = max_pooled_output @ self.text_projection
return projected_output
else:
raise ValueError(f"encode_type {encode_type} is not supported")
class OmDetTurboVisionBackbone(nn.Module):
def __init__(self, config: OmDetTurboConfig):
super().__init__()
self.apply_layernorm_after_vision_backbone = config.apply_layernorm_after_vision_backbone
self.vision_backbone = load_backbone(config)
self.layer_norms = nn.ModuleList(
[nn.LayerNorm(in_channel_dim, eps=config.layer_norm_eps) for in_channel_dim in config.encoder_in_channels]
)
def forward(self, pixel_values):
outputs = self.vision_backbone(pixel_values).feature_maps
if self.apply_layernorm_after_vision_backbone:
outputs = [
layer_norm(output).permute(0, 3, 1, 2).contiguous()
for layer_norm, output in zip(self.layer_norms, outputs)
]
return outputs
# Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention with DeformableDetr->OmDetTurbo, Deformable DETR->OmDet-Turbo
class OmDetTurboMultiscaleDeformableAttention(nn.Module):
"""
Multiscale deformable attention as proposed in Deformable DETR.
"""
def __init__(self, config: OmDetTurboConfig, num_heads: int, n_points: int):
super().__init__()
self.attn = MultiScaleDeformableAttention()
if config.d_model % num_heads != 0:
raise ValueError(
f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
)
dim_per_head = config.d_model // num_heads
# check if dim_per_head is power of 2
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
warnings.warn(
"You'd better set embed_dim (d_model) in OmDetTurboMultiscaleDeformableAttention to make the"
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
" implementation."
)
self.im2col_step = 64
self.d_model = config.d_model
self.n_levels = config.num_feature_levels
self.n_heads = num_heads
self.n_points = n_points
self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
self.value_proj = nn.Linear(config.d_model, config.d_model)
self.output_proj = nn.Linear(config.d_model, config.d_model)
self.disable_custom_kernels = config.disable_custom_kernels
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
spatial_shapes_list=None,
level_start_index=None,
output_attentions: bool = False,
):
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
batch_size, num_queries, _ = hidden_states.shape
batch_size, sequence_length, _ = encoder_hidden_states.shape
# Ignore copy
total_elements = sum([shape[0] * shape[1] for shape in spatial_shapes_list])
if total_elements != sequence_length:
raise ValueError(
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
)
value = self.value_proj(encoder_hidden_states)
if attention_mask is not None:
# we invert the attention_mask
value = value.masked_fill(~attention_mask[..., None], float(0))
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
)
attention_weights = self.attention_weights(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
)
attention_weights = F.softmax(attention_weights, -1).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
num_coordinates = reference_points.shape[-1]
if num_coordinates == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif num_coordinates == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
)
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
output = self.attn(
value,
spatial_shapes,
spatial_shapes_list,
level_start_index,
sampling_locations,
attention_weights,
self.im2col_step,
)
output = self.output_proj(output)
return output, attention_weights
# Copied from transformers.models.rt_detr.modeling_rt_detr.RTDetrConvNormLayer with RTDetr->OmDetTurbo
class OmDetTurboConvNormLayer(nn.Module):
def __init__(self, config, in_channels, out_channels, kernel_size, stride, padding=None, activation=None):
super().__init__()
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding=(kernel_size - 1) // 2 if padding is None else padding,
bias=False,
)
self.norm = nn.BatchNorm2d(out_channels, config.batch_norm_eps)
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
def forward(self, hidden_state):
hidden_state = self.conv(hidden_state)
hidden_state = self.norm(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
# Copied from transformers.models.rt_detr.modeling_rt_detr.RTDetrRepVggBlock with RTDetr->OmDetTurbo, activation_function->csp_activation
class OmDetTurboRepVggBlock(nn.Module):
"""
RepVGG architecture block introduced by the work "RepVGG: Making VGG-style ConvNets Great Again".
"""
def __init__(self, config: OmDetTurboConfig):
super().__init__()
activation = config.csp_activation
hidden_channels = int(config.encoder_hidden_dim * config.hidden_expansion)
self.conv1 = OmDetTurboConvNormLayer(config, hidden_channels, hidden_channels, 3, 1, padding=1)
self.conv2 = OmDetTurboConvNormLayer(config, hidden_channels, hidden_channels, 1, 1, padding=0)
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
def forward(self, x):
y = self.conv1(x) + self.conv2(x)
return self.activation(y)
# Copied from transformers.models.rt_detr.modeling_rt_detr.RTDetrCSPRepLayer with RTDetr->OmDetTurbo, activation_function->csp_activation
class OmDetTurboCSPRepLayer(nn.Module):
"""
Cross Stage Partial (CSP) network layer with RepVGG blocks.
"""
def __init__(self, config: OmDetTurboConfig):
super().__init__()
in_channels = config.encoder_hidden_dim * 2
out_channels = config.encoder_hidden_dim
num_blocks = 3
activation = config.csp_activation
hidden_channels = int(out_channels * config.hidden_expansion)
self.conv1 = OmDetTurboConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
self.conv2 = OmDetTurboConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
self.bottlenecks = nn.Sequential(*[OmDetTurboRepVggBlock(config) for _ in range(num_blocks)])
if hidden_channels != out_channels:
self.conv3 = OmDetTurboConvNormLayer(config, hidden_channels, out_channels, 1, 1, activation=activation)
else:
self.conv3 = nn.Identity()
def forward(self, hidden_state):
hidden_state_1 = self.conv1(hidden_state)
hidden_state_1 = self.bottlenecks(hidden_state_1)
hidden_state_2 = self.conv2(hidden_state)
return self.conv3(hidden_state_1 + hidden_state_2)
class OmDetTurboMultiheadAttention(nn.Module):
"""Equivalent implementation of nn.MultiheadAttention with `batch_first=True`."""
def __init__(self, config, hidden_size, num_attention_heads, dropout):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
f"The hidden size ({hidden_size}) is not a multiple of the number of attention "
f"heads ({num_attention_heads})"
)
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.out_proj = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
queries: torch.Tensor,
keys: torch.Tensor,
values: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
query_layer = self.transpose_for_scores(self.query(queries))
key_layer = self.transpose_for_scores(self.key(keys))
value_layer = self.transpose_for_scores(self.value(values))
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
context_layer = self.out_proj(context_layer)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class OmDetTurboEncoderLayer(nn.Module):
def __init__(self, config: OmDetTurboConfig):
super().__init__()
self.self_attn = OmDetTurboMultiheadAttention(
config,
hidden_size=config.encoder_hidden_dim,
num_attention_heads=config.num_attention_heads,
dropout=config.encoder_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.encoder_dropout)
self.activation_fn = ACT2FN[config.encoder_feedforward_activation]
self.encoder_feedforward_dropout = nn.Dropout(config.encoder_feedforward_dropout)
self.fc1 = nn.Linear(config.encoder_hidden_dim, config.encoder_dim_feedforward)
self.fc2 = nn.Linear(config.encoder_dim_feedforward, config.encoder_hidden_dim)
self.final_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps)
@staticmethod
def with_pos_embed(tensor, pos_embed):
return tensor if pos_embed is None else tensor + pos_embed
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
position_embeddings (`torch.FloatTensor`, *optional*):
Object queries (also called content embeddings), to be added to the hidden states.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
query = key = self.with_pos_embed(hidden_states, position_embeddings)
hidden_states = self.self_attn(
queries=query,
keys=key,
values=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states, attentions = hidden_states if output_attentions else (hidden_states[0], None)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.encoder_feedforward_dropout(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
if output_attentions:
return hidden_states, attentions
return (hidden_states,)
class OmDetTurboEncoder(nn.Module):
def __init__(self, config: OmDetTurboConfig):
super().__init__()
self.layers = nn.ModuleList([OmDetTurboEncoderLayer(config) for _ in range(config.encoder_layers)])
def forward(
self, src, src_mask=None, pos_embed=None, output_attentions: bool = False
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
hidden_states = src
attention = () if output_attentions else None
for layer in self.layers:
hidden_states = layer(
hidden_states,
attention_mask=src_mask,
position_embeddings=pos_embed,
output_attentions=output_attentions,
)
if output_attentions:
attention = attention + (hidden_states[1],)
hidden_states = hidden_states[0]
return hidden_states, attention
class OmDetTurboHybridEncoder(nn.Module):
"""
Encoder consisting of channel projection layers, a set of `OmDetTurboEncoder`, a top-down Feature Pyramid Network
(FPN) and a bottom-up Path Aggregation Network (PAN). More details on the paper: https://arxiv.org/abs/2304.08069
Args:
config: OmDetTurboConfig
"""
def __init__(self, config: OmDetTurboConfig):
super().__init__()
self.config = config
self.in_channels = config.encoder_in_channels
self.encoder_hidden_dim = config.encoder_hidden_dim
self.encoder_projection_indices = config.encoder_projection_indices
self.positional_encoding_temperature = config.positional_encoding_temperature
self.eval_size = config.eval_size
self.out_channels = [self.encoder_hidden_dim for _ in self.in_channels]
self.channel_projection_layers = nn.ModuleList()
for in_channel in self.in_channels:
self.channel_projection_layers.append(
nn.Sequential(
nn.Conv2d(in_channel, self.encoder_hidden_dim, kernel_size=(1, 1), bias=False),
nn.BatchNorm2d(self.encoder_hidden_dim),
)
)
# encoder transformer
self.encoder = nn.ModuleList([OmDetTurboEncoder(config) for _ in range(len(self.encoder_projection_indices))])
# top-down fpn
self.lateral_convs = nn.ModuleList()
self.fpn_blocks = nn.ModuleList()
for _ in range(len(self.in_channels) - 1, 0, -1):
self.lateral_convs.append(
OmDetTurboConvNormLayer(
config,
in_channels=self.encoder_hidden_dim,
out_channels=self.encoder_hidden_dim,
kernel_size=1,
stride=1,
activation=config.conv_norm_activation,
)
)
self.fpn_blocks.append(OmDetTurboCSPRepLayer(config))
# bottom-up pan
self.downsample_convs = nn.ModuleList()
self.pan_blocks = nn.ModuleList()
for _ in range(len(self.in_channels) - 1):
self.downsample_convs.append(
OmDetTurboConvNormLayer(
config,
in_channels=self.encoder_hidden_dim,
out_channels=self.encoder_hidden_dim,
kernel_size=3,
stride=2,
activation=config.conv_norm_activation,
)
)
self.pan_blocks.append(OmDetTurboCSPRepLayer(config))
@staticmethod
def build_2d_sincos_position_embedding(
width, height, embed_dim=256, temperature=10000.0, device="cpu", dtype=torch.float32
):
grid_w = torch.arange(int(width), dtype=dtype, device=device)
grid_h = torch.arange(int(height), dtype=dtype, device=device)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
if embed_dim % 4 != 0:
raise ValueError("Embed dimension must be divisible by 4 for 2D sin-cos position embedding")
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=dtype, device=device) / pos_dim
omega = 1.0 / (temperature**omega)
out_w = grid_w.flatten()[..., None] @ omega[None]
out_h = grid_h.flatten()[..., None] @ omega[None]
return torch.concat([out_w.sin(), out_w.cos(), out_h.sin(), out_h.cos()], dim=1)[None, :, :]
def forward(
self,
inputs_embeddings=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layers) that is passed to the encoder.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeddings
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# get projection features
projected_features = [self.channel_projection_layers[i](feature) for i, feature in enumerate(hidden_states)]
# encoder
for encoder_layer_index, feature_to_project_index in enumerate(self.encoder_projection_indices):
if output_hidden_states:
encoder_states = encoder_states + (projected_features[feature_to_project_index],)
height, width = projected_features[feature_to_project_index].shape[2:]
# flatten [batch, channel, height, width] to [batch, height*width, channel]
src_flatten = projected_features[feature_to_project_index].flatten(2).permute(0, 2, 1)
if self.training or self.eval_size is None:
pos_embed = self.build_2d_sincos_position_embedding(
width,
height,
self.encoder_hidden_dim,
self.positional_encoding_temperature,
device=src_flatten.device,
dtype=src_flatten.dtype,
).to(src_flatten.device, src_flatten.dtype)
else:
pos_embed = None
layer_outputs = self.encoder[encoder_layer_index](
src_flatten,
pos_embed=pos_embed,
output_attentions=output_attentions,
)
projected_features[feature_to_project_index] = (
layer_outputs[0].permute(0, 2, 1).reshape(-1, self.encoder_hidden_dim, height, width).contiguous()
)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (projected_features[feature_to_project_index],)
# Feature Pyramid Network (FPN)
fpn_feature_maps = [projected_features[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_high = fpn_feature_maps[0]
feat_low = projected_features[idx - 1]
feat_high = self.lateral_convs[len(self.in_channels) - 1 - idx](feat_high)
fpn_feature_maps[0] = feat_high
upsample_feat = F.interpolate(feat_high, scale_factor=2.0, mode="nearest")
fps_map = self.fpn_blocks[len(self.in_channels) - 1 - idx](torch.concat([upsample_feat, feat_low], dim=1))
fpn_feature_maps.insert(0, fps_map)
# Path Aggregation Network (PAN)
fpn_states = [fpn_feature_maps[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = fpn_states[-1]
feat_high = fpn_feature_maps[idx + 1]
downsample_feat = self.downsample_convs[idx](feat_low)
hidden_states = self.pan_blocks[idx](
torch.concat([downsample_feat, feat_high.to(downsample_feat.device)], dim=1)
)
fpn_states.append(hidden_states)
if not return_dict:
return (fpn_states[-1], encoder_states, all_attentions, fpn_states)
return OmDetTurboEncoderOutput(
last_hidden_state=fpn_states[-1],
hidden_states=encoder_states,
attentions=all_attentions,
extracted_states=fpn_states,
)
class OmDetTurboMLPWithDropout(nn.Module):
def __init__(self, config):
super().__init__()
self.linear1 = nn.Linear(config.class_embed_dim, config.task_encoder_hidden_dim)
self.activation = ACT2FN[config.decoder_activation]
self.dropout = nn.Dropout(config.decoder_dropout)
self.linear2 = nn.Linear(config.task_encoder_hidden_dim, config.class_embed_dim)
def forward(self, x):
return self.linear2(self.dropout(self.activation(self.linear1(x))))
class OmDetTurboMLP(nn.Module):
"""Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
hidden_layers_dims = [hidden_dim] * (num_layers - 1)
layers_dims = [input_dim] + hidden_layers_dims + [output_dim]
self.layers = nn.ModuleList(
[nn.Linear(in_dim, out_dim) for in_dim, out_dim in zip(layers_dims[:-1], layers_dims[1:])]
)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class OmDetTurboResidualLayer(nn.Module):
"""
A residual connection followed by a layer norm.
"""
def __init__(self, config):
super().__init__()
self.norm1 = nn.LayerNorm(config.class_embed_dim, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.decoder_dropout)
def forward(self, x, y):
return self.norm1(x + self.dropout(y))
class OmDetTurboTaskEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.mlp = OmDetTurboMLPWithDropout(config)
self.res1 = OmDetTurboResidualLayer(config)
def forward(self, x):
mlp_out = self.mlp(x)
x = self.res1(x, mlp_out)
return x
class OmDetTurboDeformableTransformerDecoderLayer(nn.Module):
"""
A single layer of the Deformable Transformer Decoder.
"""
def __init__(self, config):
super().__init__()
# self attention
self.self_attn = OmDetTurboMultiheadAttention(
config,
hidden_size=config.decoder_hidden_dim,
num_attention_heads=config.decoder_num_heads,
dropout=config.decoder_dropout,
)
self.dropout1 = nn.Dropout(config.decoder_dropout)
self.norm1 = nn.LayerNorm(config.decoder_hidden_dim, eps=config.layer_norm_eps)
# cross attention
self.cross_attn = OmDetTurboMultiscaleDeformableAttention(
config, num_heads=config.decoder_num_heads, n_points=config.decoder_num_points
)
self.dropout2 = nn.Dropout(config.decoder_dropout)
self.norm2 = nn.LayerNorm(config.decoder_hidden_dim, eps=config.layer_norm_eps)
# feed forward network
self.linear1 = nn.Linear(config.decoder_hidden_dim, config.decoder_dim_feedforward)
self.act = ACT2FN[config.decoder_activation]
self.dropout3 = nn.Dropout(config.decoder_dropout)
self.linear2 = nn.Linear(config.decoder_dim_feedforward, config.decoder_hidden_dim)
self.dropout4 = nn.Dropout(config.decoder_dropout)
self.norm3 = nn.LayerNorm(config.decoder_hidden_dim, eps=config.layer_norm_eps)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward(
self,
decoder_embeddings,
task_features,
reference_points,
vision_features,
vision_shapes,
vision_shapes_list,
level_start_index=None,
attention_mask=None,
padding_mask=None,
query_position=None,
output_attentions=None,
output_hidden_states=None,
):
output_attentions = output_attentions if output_attentions is not None else self.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.output_hidden_states
origin_embedding_len = decoder_embeddings.shape[1]
# self attention
query = key = self.with_pos_embed(decoder_embeddings, query_position)
# combine task_features with query, key, value
task_features = task_features.transpose(0, 1)
query = torch.cat((query, task_features), dim=1)
key = torch.cat((key, task_features), dim=1)
decoder_embeddings = torch.cat((decoder_embeddings, task_features), dim=1)
outputs = self.self_attn(
query,
key,
decoder_embeddings,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
context, self_attention = outputs if output_attentions else (outputs[0], None)
decoder_embeddings = decoder_embeddings + self.dropout1(context)
decoder_embeddings = self.norm1(decoder_embeddings)
task_features = decoder_embeddings[:, origin_embedding_len:, :].transpose(0, 1)
decoder_embeddings = decoder_embeddings[:, :origin_embedding_len, :]
# cross attention
hidden_states = self.with_pos_embed(decoder_embeddings, query_position)
reference_points = reference_points.unsqueeze(2)
outputs, cross_attention = self.cross_attn(
hidden_states=hidden_states,
attention_mask=padding_mask,
encoder_hidden_states=vision_features,
reference_points=reference_points,
spatial_shapes=vision_shapes,
spatial_shapes_list=vision_shapes_list,
level_start_index=level_start_index,
)
decoder_embeddings = decoder_embeddings + self.dropout2(outputs)
residual = self.norm2(decoder_embeddings)
# feed forward network
decoder_embeddings = self.linear2(self.dropout3(self.act(self.linear1(residual))))
decoder_embeddings = residual + self.dropout4(decoder_embeddings)
decoder_embeddings = self.norm3(decoder_embeddings)
return (
decoder_embeddings,
task_features,
self_attention if output_attentions else None,
cross_attention if output_attentions else None,
)
class OmDetTurboPreTrainedModel(PreTrainedModel):
config_class = OmDetTurboConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
def _init_weights(self, module):
def linear_init_(module_to_init):
bound = 1 / math.sqrt(module_to_init.weight.shape[0])
nn.init.uniform_(module_to_init.weight, -bound, bound)
if hasattr(module_to_init, "bias") and module_to_init.bias is not None:
nn.init.uniform_(module_to_init.bias, -bound, bound)
if isinstance(module, OmDetTurboEncoderLayer):
linear_init_(module.fc1)
linear_init_(module.fc2)
elif isinstance(module, OmDetTurboDecoder):
nn.init.constant_(module.encoder_bbox_head.layers[-1].weight, 0.0)
nn.init.constant_(module.encoder_bbox_head.layers[-1].bias, 0.0)
for mlp in module.decoder_bbox_head:
nn.init.constant_(mlp.layers[-1].weight, 0.0)
nn.init.constant_(mlp.layers[-1].bias, 0.0)
linear_init_(module.encoder_vision_features[0])
nn.init.xavier_uniform_(module.encoder_vision_features[0].weight)
if module.learn_initial_query:
nn.init.xavier_uniform_(module.tgt_embed.weight)
nn.init.xavier_uniform_(module.query_position_head.layers[0].weight)
nn.init.xavier_uniform_(module.query_position_head.layers[1].weight)
for layer in module.channel_projection_layers:
nn.init.xavier_uniform_(layer[0].weight)
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
if module.bias is not None:
module.bias.data.zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, OmDetTurboDecoder):
module.gradient_checkpointing = value
@staticmethod
def _get_cache_key_at_index(input_ids, attention_mask, index):
input_ids = input_ids[index]
input_mask = attention_mask[index]
cache_key = tuple(input_ids[input_mask != 0].tolist())
return cache_key
def get_cached_class_embeddings(self, classes_input_ids, classes_attention_mask):
not_cached_index = []
not_cached_classes = []
total_embeddings = []
for idx, _ in enumerate(classes_input_ids):
cache_key = self._get_cache_key_at_index(classes_input_ids, classes_attention_mask, idx)
if self.language_cache_class.has(cache_key):
total_embeddings.append(self.language_cache_class.get(cache_key))
else:
total_embeddings.append(None)
not_cached_index.append(idx)
not_cached_classes.append(cache_key)
if not_cached_classes:
not_cached_classes_ids = torch.stack([classes_input_ids[idx] for idx in not_cached_index])
embeddings = self.language_backbone(not_cached_classes_ids, encode_type="class")
for idx, emb in enumerate(embeddings):
idx_to_put = not_cached_index[idx]
total_embeddings[idx_to_put] = emb
self.language_cache_class.put(not_cached_classes[idx], emb)
total_class_embs = torch.stack(total_embeddings).to(self.device)
return total_class_embs
def get_cached_task_embeddings(self, tasks_input_ids, tasks_attention_mask):
not_cached_index = []
not_cached_tasks = []
total_task_features = []
total_task_masks = []
for idx, _ in enumerate(tasks_input_ids):
cache_key = self._get_cache_key_at_index(tasks_input_ids, tasks_attention_mask, idx)
if self.language_cache_prompt.has(cache_key):
task_feature, task_mask = self.language_cache_prompt.get(cache_key)
total_task_features.append(task_feature)
total_task_masks.append(task_mask)
else:
total_task_features.append(None)
total_task_masks.append(None)
not_cached_index.append(idx)
not_cached_tasks.append(cache_key)
if not_cached_tasks:
not_cached_index_ids = torch.stack([tasks_input_ids[idx] for idx in not_cached_index])
not_cached_mask = torch.stack([tasks_attention_mask[idx] for idx in not_cached_index])
embeddings, masks = self.language_backbone(not_cached_index_ids, mask=not_cached_mask, encode_type="task")
for idx in range(embeddings.shape[1]):
emb = embeddings[:, [idx], :]
idx_to_put = not_cached_index[idx]
cur_mask = torch.unsqueeze(masks[idx], dim=0).to(self.device)
total_task_features[idx_to_put] = emb
total_task_masks[idx_to_put] = cur_mask
self.language_cache_prompt.put(not_cached_tasks[idx], (emb, cur_mask))
# pad before concat if needed
max_len = max([task.shape[0] for task in total_task_features])
for idx, task in enumerate(total_task_features):
if task.shape[0] < max_len:
pad_size = max_len - task.shape[0]
total_task_features[idx] = F.pad(task, (0, 0, 0, 0, 0, pad_size))
total_task_masks[idx] = F.pad(total_task_masks[idx], (0, pad_size))
total_task_features = torch.cat(total_task_features, dim=1).to(self.device)
total_task_masks = torch.cat(total_task_masks, dim=0).to(self.device)
return total_task_features, total_task_masks
def get_language_embedding(
self,
classes_input_ids,
classes_attention_mask,
tasks_input_ids,
tasks_attention_mask,
classes_structure,
):
batched_classes_embeddings = self.get_cached_class_embeddings(classes_input_ids, classes_attention_mask)
# regroup class embeddings using saved structure
max_class_size = torch.max(classes_structure)
class_embeddings_regrouped = []
start = 0
for size in classes_structure:
pad_size = max_class_size - size
class_embeddings_regrouped.append(
F.pad(batched_classes_embeddings[start : start + size], (0, 0, 0, pad_size)).unsqueeze(1)
)
start += size
class_embeddings = torch.cat(class_embeddings_regrouped, dim=1)
task_embeddings, task_mask = self.get_cached_task_embeddings(tasks_input_ids, tasks_attention_mask)
return class_embeddings, task_embeddings, task_mask
OMDET_TURBO_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OmDetTurboConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
OMDET_TURBO_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it.
Pixel values can be obtained using [`AutoImageProcessor`]. See [`DetrImageProcessor.__call__`] for
details.
classes_input_ids (`torch.LongTensor` of shape `(total_classes (>= batch_size), sequence_length)`):
Indices of input classes sequence tokens in the vocabulary of the language model.
Several classes can be provided for each tasks, thus the tokenized classes are flattened
and the structure of the classes is provided in the `classes_structure` argument.
Indices can be obtained using [`OmDetTurboProcessor`]. See [`OmDetTurboProcessor.__call__`] for
details.
[What are input IDs?](../glossary#input-ids)
classes_attention_mask (`torch.BoolTensor` of shape `(total_classes (>= batch_size), num_classes, sequence_length)`):
Attention mask for the classes. This is a binary mask that indicates which tokens should be attended to,
and which should not.
tasks_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input tasks sequence tokens in the vocabulary of the language model.
Indices can be obtained using [`OmDetTurboProcessor`]. See [`OmDetTurboProcessor.__call__`] for
details.
[What are input IDs?](../glossary#input-ids)
tasks_attention_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
Attention mask for the tasks. This is a binary mask that indicates which tokens should be attended to,
and which should not.
classes_structure (torch.LongTensor of shape `(batch_size)`):
Structure of the classes. This tensor indicates the number of classes for each task.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def _cosine_similarity_scaled(a, b, logit_scale):
a = a / a.norm(dim=2, keepdim=True).clamp_min(1e-12)
b = b / b.norm(dim=1, keepdim=True).clamp_min(1e-12)
logit_scale = logit_scale.exp()
logits_per_image = logit_scale * torch.bmm(a, b)
return logits_per_image
def get_class_similarity(class_distance_type, cls_feature, class_proj):
logit_scale = torch.tensor(1 / 0.07).log()
if class_distance_type == "cosine":
class_logits = _cosine_similarity_scaled(cls_feature, class_proj, logit_scale)
elif class_distance_type == "dot":
class_logits = torch.bmm(cls_feature, class_proj)
else:
raise Exception("Unknown class_distance_type {}".format(class_distance_type))
return class_logits
def _inverse_sigmoid(x, eps=1e-5):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
class OmDetTurboDecoder(OmDetTurboPreTrainedModel):
def __init__(self, config: OmDetTurboConfig):
self.config = config
super().__init__(config)
self.gradient_checkpointing = False
hidden_dim = config.decoder_hidden_dim
self.num_queries = config.num_queries
self.class_distance_type = config.class_distance_type
self.learn_initial_query = config.learn_initial_query
# backbone feature projection
self.channel_projection_layers = nn.ModuleList(
nn.Sequential(nn.Conv2d(x, hidden_dim, 1, bias=False), nn.BatchNorm2d(hidden_dim))
for x in config.vision_features_channels
)
self.task_encoder = OmDetTurboTaskEncoder(config)
if config.class_embed_dim != hidden_dim:
self.task_project = nn.Linear(config.class_embed_dim, hidden_dim)
# Transformer module
self.layers = nn.ModuleList(
[OmDetTurboDeformableTransformerDecoderLayer(config) for _ in range(config.decoder_num_layers)]
)
self.decoder_num_layers = config.decoder_num_layers
# decoder embedding
if self.learn_initial_query:
self.tgt_embed = nn.Embedding(self.num_queries, hidden_dim)
self.query_position_head = OmDetTurboMLP(
input_dim=4, hidden_dim=2 * hidden_dim, output_dim=hidden_dim, num_layers=2
)
# encoder head
self.encoder_vision_features = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim), nn.LayerNorm(hidden_dim, eps=config.layer_norm_eps)
)
self.encoder_class_head = nn.Linear(config.class_embed_dim, hidden_dim)
self.encoder_bbox_head = OmDetTurboMLP(input_dim=hidden_dim, hidden_dim=hidden_dim, output_dim=4, num_layers=3)
# decoder head
self.decoder_class_head = nn.ModuleList(
[nn.Linear(config.class_embed_dim, hidden_dim) for _ in range(config.decoder_num_layers)]
)
self.decoder_bbox_head = nn.ModuleList(
[OmDetTurboMLP(hidden_dim, hidden_dim, 4, num_layers=3) for _ in range(config.decoder_num_layers)]
)
# Initialize weights and apply final processing
self.post_init()
@lru_cache(maxsize=32)
def generate_anchors(self, spatial_shapes=None, grid_size=0.05, device="cpu", dtype=torch.float32):
# We always generate anchors in float32 to preserve equivalence between
# dynamic and static anchor inference
# Ignore copy
if spatial_shapes is None:
raise ValueError("spatial_shapes must be provided")
anchors = []
for level, (height, width) in enumerate(spatial_shapes):
grid_y, grid_x = torch.meshgrid(
torch.arange(end=height, dtype=dtype, device=device),
torch.arange(end=width, dtype=dtype, device=device),
indexing="ij",
)
grid_xy = torch.stack([grid_x, grid_y], -1)
valid_wh = torch.tensor([width, height], dtype=dtype, device=device)
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_wh
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**level)
anchors.append(torch.concat([grid_xy, wh], -1).reshape(-1, height * width, 4))
# define the valid range for anchor coordinates
eps = 1e-2
anchors = torch.concat(anchors, 1)
valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True)
anchors = torch.log(anchors / (1 - anchors))
anchors = torch.where(valid_mask, anchors, torch.inf)
return anchors, valid_mask
def _get_encoder_input(self, vision_features):
# get projection features
vision_features = [self.channel_projection_layers[i](feat) for i, feat in enumerate(vision_features)]
# get encoder inputs
new_vision_features = []
new_vision_shapes_list = []
for feat in vision_features:
height, width = feat.shape[2:]
# [batch_size, channels, height, width] -> [batch_size, height*width, channels]
new_vision_features.append(feat.flatten(2).permute(0, 2, 1))
# [num_feature_levels, 2]
new_vision_shapes_list.append((height, width))
# [batch_size, height*width, channels]
new_vision_features = torch.cat(new_vision_features, 1)
new_vision_shapes = torch.tensor(new_vision_shapes_list, dtype=torch.int64, device=vision_features[0].device)
level_start_index = torch.cat((new_vision_shapes.new_zeros((1,)), new_vision_shapes.prod(1).cumsum(0)[:-1]))
return new_vision_features, new_vision_shapes, new_vision_shapes_list, level_start_index
def _get_decoder_input(
self, vision_features, vision_shapes, class_features, denoise_embeddings=None, denoise_bboxes=None
):
batch_size = len(vision_features)
# prepare input for decoder
anchors, valid_mask = self.generate_anchors(
vision_shapes, device=vision_features.device, dtype=vision_features.dtype
)
predicted_class_features = self.encoder_vision_features(
torch.where(
valid_mask,
vision_features,
torch.tensor(0.0, dtype=vision_features.dtype, device=vision_features.device),
)
)
original_class_projected = self.encoder_class_head(class_features).permute(1, 2, 0)
encoder_class_similarity = get_class_similarity(
self.class_distance_type, predicted_class_features, original_class_projected
)
# dynamic anchors + static content
# (batch_size, height*width, 4)
encoder_outputs_bboxes = self.encoder_bbox_head(predicted_class_features) + anchors
# query selection
# (batch_size, num_queries)
topk_ind = torch.topk(encoder_class_similarity.max(-1).values, self.num_queries, dim=1).indices.view(-1)
# (batch_size, num_queries)
batch_ind = (
torch.arange(end=batch_size, dtype=topk_ind.dtype, device=topk_ind.device)
.unsqueeze(-1)
.repeat(1, self.num_queries)
.view(-1)
)
reference_points = encoder_outputs_bboxes[batch_ind, topk_ind].view(batch_size, self.num_queries, -1)
encoder_bboxes = reference_points.sigmoid()
if denoise_bboxes is not None:
reference_points = torch.cat([denoise_bboxes, reference_points], 1)
if self.training:
reference_points = reference_points.detach()
encoder_class_similarity = encoder_class_similarity[batch_ind, topk_ind].view(batch_size, self.num_queries, -1)
if self.learn_initial_query:
embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(batch_size, 1, 1)
else:
embeddings = predicted_class_features[batch_ind, topk_ind].view(batch_size, self.num_queries, -1)
if self.training:
embeddings = embeddings.detach()
if denoise_embeddings is not None:
embeddings = torch.cat([denoise_embeddings, embeddings], 1)
return embeddings, reference_points, encoder_bboxes, encoder_class_similarity, anchors
def forward(
self,
vision_features,
class_features,
task_features,
task_mask,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
"""
Args:
vision_features (`torch.FloatTensor`): The sequence of vision features. shape depends on the vision
backbone.
class_features (`torch.FloatTensor`): The sequence of class features of shape
`(class_sequence_length, batch_size, class_embed_dim)`.
task_features (`torch.FloatTensor`): The sequence of task features of shape
`(task_sequence_length, batch_size, decoder_hidden_dim)`.
task_mask (`torch.LongTensor`): The mask for the task features of shape `(batch_size, task_sequence_length)`.
output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention
layers. See `attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See
`hidden_states` under returned tensors for more detail.
return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain
tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_features, vision_shapes, vision_shapes_list, level_start_index = self._get_encoder_input(
vision_features
)
# todo add denoising for training
denoise_embeddings, denoise_bboxes, key_padding_mask = None, None, None
batch_size = task_mask.shape[0]
# compose attn_mask for vision_emb and task_emb fusion
task_features = self.task_encoder(task_features)
if self.task_project is not None:
task_features = self.task_project(task_features)
src_key_mask = (task_mask == 0).detach()
attn_mask_len = self.num_queries
fusion_size = attn_mask_len + task_features.shape[0]
key_padding_mask = torch.zeros([batch_size, fusion_size], dtype=torch.bool).to(task_features.device)
key_padding_mask[:, attn_mask_len:] = src_key_mask
attention_mask = _prepare_4d_attention_mask(~key_padding_mask, dtype=vision_features.dtype)
decoder_embeddings, reference_points, encoder_bboxes, encoder_class_similarity, init_reference_points = (
self._get_decoder_input(
vision_features, tuple(vision_shapes_list), class_features, denoise_embeddings, denoise_bboxes
)
)
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
all_self_attns = () if output_attentions else None
all_cross_attns = () if output_attentions else None
predicted_class_features = decoder_embeddings
if output_hidden_states:
all_hidden_states = all_hidden_states + (predicted_class_features,)
decoder_bboxes = []
decoder_classes = []
last_refined_bbox = None
reference_points = reference_points.sigmoid()
for i, layer in enumerate(self.layers):
if self.gradient_checkpointing and self.training:
predicted_class_features, task_features, self_attention, cross_attention = (
self._gradient_checkpointing_func(
layer.__call__,
predicted_class_features,
task_features,
reference_points,
vision_features,
vision_shapes,
vision_shapes_list,
level_start_index=level_start_index,
attention_mask=attention_mask,
query_position=self.query_position_head(reference_points),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
)
else:
predicted_class_features, task_features, self_attention, cross_attention = layer(
predicted_class_features,
task_features,
reference_points,
vision_features,
vision_shapes,
vision_shapes_list,
level_start_index=level_start_index,
attention_mask=attention_mask,
query_position=self.query_position_head(reference_points),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if output_attentions:
all_self_attns = all_self_attns + (self_attention,)
all_cross_attns = all_cross_attns + (cross_attention,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (predicted_class_features,)
refined_bbox = torch.sigmoid(
self.decoder_bbox_head[i](predicted_class_features) + _inverse_sigmoid(reference_points)
)
original_class_projected = self.decoder_class_head[i](class_features).permute(1, 2, 0)
if self.training:
decoder_classes.append(
get_class_similarity(
class_distance_type=self.class_distance_type,
cls_feature=predicted_class_features,
class_proj=original_class_projected,
)
)
if i == 0:
decoder_bboxes.append(refined_bbox)
else:
decoder_bboxes.append(
torch.sigmoid(
self.decoder_bbox_head[i](predicted_class_features) + _inverse_sigmoid(last_refined_bbox)
)
)
elif i == self.decoder_num_layers - 1:
decoder_classes.append(
get_class_similarity(self.class_distance_type, predicted_class_features, original_class_projected)
)
decoder_bboxes.append(refined_bbox)
break
last_refined_bbox = refined_bbox
reference_points = refined_bbox.detach() if self.training else refined_bbox
if output_attentions:
all_attns += (all_self_attns, all_cross_attns)
last_hidden_state = predicted_class_features
decoder_bboxes = torch.stack(decoder_bboxes)
decoder_classes = torch.stack(decoder_classes)
if not return_dict:
return (
last_hidden_state,
all_hidden_states,
all_attns,
decoder_bboxes,
decoder_classes,
encoder_bboxes,
encoder_class_similarity,
init_reference_points,
reference_points,
)
return OmDetTurboDecoderOutput(
last_hidden_state=last_hidden_state,
hidden_states=all_hidden_states,
attentions=all_attns,
decoder_coords=decoder_bboxes,
decoder_classes=decoder_classes,
encoder_coord_logits=encoder_bboxes,
encoder_class_logits=encoder_class_similarity,
init_reference_points=init_reference_points,
intermediate_reference_points=reference_points,
)
@add_start_docstrings(
"""
OmDetTurbo Model (consisting of a vision and a text backbone, and encoder-decoder architecture) outputting
bounding boxes and classes scores for tasks such as COCO detection.
""",
OMDET_TURBO_START_DOCSTRING,
)
class OmDetTurboForObjectDetection(OmDetTurboPreTrainedModel):
def __init__(self, config: OmDetTurboConfig):
super().__init__(config)
self.vision_backbone = OmDetTurboVisionBackbone(config)
self.language_backbone = OmDetTurboLanguageBackbone(config)
self.encoder = OmDetTurboHybridEncoder(config)
self.decoder = OmDetTurboDecoder(config)
self.num_queries = config.num_queries
self.language_cache_class = OmDetTurboLRUCache(config.cache_size)
self.language_cache_prompt = OmDetTurboLRUCache(config.cache_size)
self.vocab_size = config.text_config.vocab_size
self.post_init()
def get_input_embeddings(self):
return self.language_backbone.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_backbone.model.set_input_embeddings(value)
def resize_token_embeddings(
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None, mean_resizing: bool = True
) -> nn.Embedding:
model_embeds = self.language_backbone.model.resize_token_embeddings(
new_num_tokens=new_num_tokens, pad_to_multiple_of=pad_to_multiple_of, mean_resizing=mean_resizing
)
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
@add_start_docstrings_to_model_forward(OMDET_TURBO_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OmDetTurboObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
classes_input_ids: torch.LongTensor,
classes_attention_mask: torch.LongTensor,
tasks_input_ids: torch.LongTensor,
tasks_attention_mask: torch.LongTensor,
classes_structure: torch.LongTensor,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], OmDetTurboObjectDetectionOutput]:
r"""
Returns:
Examples:
```python
>>> import requests
>>> from PIL import Image
>>> from transformers import AutoProcessor, OmDetTurboForObjectDetection
>>> processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
>>> model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> classes = ["cat", "remote"]
>>> task = "Detect {}.".format(", ".join(classes))
>>> inputs = processor(image, text=classes, task=task, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # convert outputs (bounding boxes and class logits)
>>> results = processor.post_process_grounded_object_detection(
... outputs,
... classes=classes,
... target_sizes=[image.size[::-1]],
... score_threshold=0.3,
... nms_threshold=0.3,
>>> )[0]
>>> for score, class_name, box in zip(results["scores"], results["classes"], results["boxes"]):
... box = [round(i, 1) for i in box.tolist()]
... print(
... f"Detected {class_name} with confidence "
... f"{round(score.item(), 2)} at location {box}"
... )
Detected remote with confidence 0.76 at location [39.9, 71.3, 176.5, 117.9]
Detected cat with confidence 0.72 at location [345.1, 22.5, 639.7, 371.9]
Detected cat with confidence 0.65 at location [12.7, 53.8, 315.5, 475.3]
Detected remote with confidence 0.57 at location [333.4, 75.6, 370.7, 187.0]
```"""
if labels is not None:
raise NotImplementedError("Training is not implemented yet")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
loss = None
image_features = self.vision_backbone(pixel_values)
encoder_outputs = self.encoder(
image_features,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class_features, task_features, task_mask = self.get_language_embedding(
classes_input_ids,
classes_attention_mask,
tasks_input_ids,
tasks_attention_mask,
classes_structure,
)
encoder_extracted_states = encoder_outputs.extracted_states if return_dict else encoder_outputs[-1]
decoder_outputs = self.decoder(
encoder_extracted_states,
class_features,
task_features,
task_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return tuple(
output
for output in [
loss,
decoder_outputs[3][-1],
decoder_outputs[4][-1],
decoder_outputs[7],
decoder_outputs[8],
decoder_outputs[5],
decoder_outputs[6],
encoder_outputs[-1],
decoder_outputs[1],
decoder_outputs[2],
encoder_outputs[1],
encoder_outputs[2],
classes_structure,
]
if output is not None
)
return OmDetTurboObjectDetectionOutput(
loss=loss,
decoder_coord_logits=decoder_outputs.decoder_coords[-1],
decoder_class_logits=decoder_outputs.decoder_classes[-1],
init_reference_points=decoder_outputs.init_reference_points,
intermediate_reference_points=decoder_outputs.intermediate_reference_points,
encoder_coord_logits=decoder_outputs.encoder_coord_logits,
encoder_class_logits=decoder_outputs.encoder_class_logits,
encoder_extracted_states=encoder_outputs.extracted_states,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
classes_structure=classes_structure,
)
__all__ = ["OmDetTurboForObjectDetection", "OmDetTurboPreTrainedModel"]
```
|
=================================================================================================================================================
SOURCE CODE FILE: processing_omdet_turbo.py
LINES: 1
SIZE: 17.03 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\omdet_turbo\processing_omdet_turbo.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for OmDet-Turbo.
"""
import warnings
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
from ...feature_extraction_utils import BatchFeature
from ...image_transforms import center_to_corners_format
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import (
TensorType,
is_torch_available,
is_torchvision_available,
)
from ...utils.deprecation import deprecate_kwarg
if TYPE_CHECKING:
from .modeling_omdet_turbo import OmDetTurboObjectDetectionOutput
class OmDetTurboTextKwargs(TextKwargs, total=False):
task: Optional[Union[str, List[str], TextInput, PreTokenizedInput]]
if is_torch_available():
import torch
if is_torchvision_available():
from torchvision.ops.boxes import batched_nms
class OmDetTurboProcessorKwargs(ProcessingKwargs, total=False):
text_kwargs: OmDetTurboTextKwargs
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": "max_length",
"truncation": True,
"max_length": 77,
"stride": 0,
"return_overflowing_tokens": False,
"return_special_tokens_mask": False,
"return_offsets_mapping": False,
"return_token_type_ids": False,
"return_length": False,
"verbose": True,
"task": None,
},
"images_kwargs": {},
}
class DictWithDeprecationWarning(dict):
message = (
"The `classes` key is deprecated for `OmDetTurboProcessor.post_process_grounded_object_detection` "
"output dict and will be removed in a 4.51.0 version. Please use `text_labels` instead."
)
def __getitem__(self, key):
if key == "classes":
warnings.warn(self.message, FutureWarning)
return super().__getitem__("text_labels")
return super().__getitem__(key)
def get(self, key, *args, **kwargs):
if key == "classes":
warnings.warn(self.message, FutureWarning)
return super().get("text_labels", *args, **kwargs)
return super().get(key, *args, **kwargs)
def clip_boxes(box, box_size: Tuple[int, int]):
"""
Clip the boxes by limiting x coordinates to the range [0, width]
and y coordinates to the range [0, height].
Args:
box (Tensor): The box to be clipped.
box_size (height, width): The clipping box's size.
"""
assert torch.isfinite(box).all(), "Box tensor contains infinite or NaN!"
height, width = box_size
x1 = box[:, 0].clamp(min=0, max=width)
y1 = box[:, 1].clamp(min=0, max=height)
x2 = box[:, 2].clamp(min=0, max=width)
y2 = box[:, 3].clamp(min=0, max=height)
box = torch.stack((x1, y1, x2, y2), dim=-1)
return box
def compute_score(boxes):
"""
Compute logit scores per class for each box (proposal) and an array of class indices
corresponding to each proposal, flattened across the proposal_num.
The indices in `classes` will later be used to filter and match the predicted classes
with the input class names.
"""
num_classes = boxes.shape[2]
proposal_num = boxes.shape[1]
scores = torch.sigmoid(boxes)
classes = torch.arange(num_classes, device=boxes.device).unsqueeze(0).repeat(proposal_num, 1).flatten(0, 1)
return scores, classes
def _post_process_boxes_for_image(
boxes: "torch.Tensor",
scores: "torch.Tensor",
labels: "torch.Tensor",
image_num_classes: int,
image_size: Tuple[int, int],
threshold: float,
nms_threshold: float,
max_num_det: Optional[int] = None,
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
"""
Filter predicted results using given thresholds and NMS.
Args:
boxes (`torch.Tensor`):
A Tensor of predicted class-specific or class-agnostic boxes for the image.
Shape (num_queries, max_num_classes_in_batch * 4) if doing class-specific regression,
or (num_queries, 4) if doing class-agnostic regression.
scores (`torch.Tensor` of shape (num_queries, max_num_classes_in_batch + 1)):
A Tensor of predicted class scores for the image.
labels (`torch.Tensor` of shape (num_queries * (max_num_classes_in_batch + 1),)):
A Tensor of predicted labels for the image.
image_num_classes (`int`):
The number of classes queried for detection on the image.
image_size (`Tuple[int, int]`):
A tuple of (height, width) for the image.
threshold (`float`):
Only return detections with a confidence score exceeding this threshold.
nms_threshold (`float`):
The threshold to use for box non-maximum suppression. Value in [0, 1].
max_num_det (`int`, *optional*):
The maximum number of detections to return. Default is None.
Returns:
Tuple: A tuple with the following:
"boxes" (Tensor): A tensor of shape (num_filtered_objects, 4), containing the predicted boxes in (x1, y1, x2, y2) format.
"scores" (Tensor): A tensor of shape (num_filtered_objects,), containing the predicted confidence scores for each detection.
"labels" (Tensor): A tensor of ids, where each id is the predicted class id for the corresponding detection
"""
# Filter by max number of detections
proposal_num = len(boxes) if max_num_det is None else max_num_det
scores_per_image, topk_indices = scores.flatten(0, 1).topk(proposal_num, sorted=False)
labels_per_image = labels[topk_indices]
boxes_per_image = boxes.view(-1, 1, 4).repeat(1, scores.shape[1], 1).view(-1, 4)
boxes_per_image = boxes_per_image[topk_indices]
# Convert and scale boxes to original image size
boxes_per_image = center_to_corners_format(boxes_per_image)
boxes_per_image = boxes_per_image * torch.tensor(image_size[::-1]).repeat(2).to(boxes_per_image.device)
# Filtering by confidence score
filter_mask = scores_per_image > threshold # R x K
score_keep = filter_mask.nonzero(as_tuple=False).view(-1)
boxes_per_image = boxes_per_image[score_keep]
scores_per_image = scores_per_image[score_keep]
labels_per_image = labels_per_image[score_keep]
# Ensure we did not overflow to non existing classes
filter_classes_mask = labels_per_image < image_num_classes
classes_keep = filter_classes_mask.nonzero(as_tuple=False).view(-1)
boxes_per_image = boxes_per_image[classes_keep]
scores_per_image = scores_per_image[classes_keep]
labels_per_image = labels_per_image[classes_keep]
# NMS
keep = batched_nms(boxes_per_image, scores_per_image, labels_per_image, nms_threshold)
boxes_per_image = boxes_per_image[keep]
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
# Clip to image size
boxes_per_image = clip_boxes(boxes_per_image, image_size)
return boxes_per_image, scores_per_image, labels_per_image
class OmDetTurboProcessor(ProcessorMixin):
r"""
Constructs a OmDet-Turbo processor which wraps a Deformable DETR image processor and an AutoTokenizer into a
single processor.
[`OmDetTurboProcessor`] offers all the functionalities of [`DetrImageProcessor`] and
[`AutoTokenizer`]. See the docstring of [`~OmDetTurboProcessor.__call__`] and [`~OmDetTurboProcessor.decode`]
for more information.
Args:
image_processor (`DetrImageProcessor`):
An instance of [`DetrImageProcessor`]. The image processor is a required input.
tokenizer (`AutoTokenizer`):
An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = ("DetrImageProcessor", "DetrImageProcessorFast")
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: ImageInput = None,
text: Union[List[str], List[List[str]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[OmDetTurboProcessorKwargs],
) -> BatchFeature:
"""
This method uses [*DetrImageProcessor.__call__] method to prepare image(s) for the model, and
[CLIPTokenizerFast.__call__] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255.
text (`Union[str, List[str], List[List[str]]]`):
The classes used to limit the scope of the open vocabulary detection. Expects a list of strings or a list
of list of strings. Batched classes can be of different lengths.
Examples: ["cat", "dog", "bird"], [["cat", "dog", "bird"], ["hat", "person"], ["car"]]
Kwargs:
task (`Union[str, List[str], TextInput, PreTokenizedInput]`):
The grounded text used to guide open vocabulary detection. Expects a single string or a list of strings.
Examples: "Detect a cat, a dog, and a bird.",[ "Detect everything.", "Detect trees and flowers."]
When not provided, the default task is "Detect [class1], [class2], [class3]" etc.
...
"""
if images is None or text is None:
raise ValueError("You have to specify both `images` and `text`")
output_kwargs = self._merge_kwargs(
OmDetTurboProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text = text.strip(" ").split(",")
if not (len(text) and isinstance(text[0], (list, tuple))):
text = [text]
task = output_kwargs["text_kwargs"].pop("task", None)
if task is None:
task = ["Detect {}.".format(", ".join(text_single)) for text_single in text]
elif not isinstance(task, (list, tuple)):
task = [task]
encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
tasks_encoding = self.tokenizer(text=task, **output_kwargs["text_kwargs"])
classes = text
classes_structure = torch.tensor([len(class_single) for class_single in classes], dtype=torch.long)
classes_flattened = [class_single for class_batch in classes for class_single in class_batch]
classes_encoding = self.tokenizer(text=classes_flattened, **output_kwargs["text_kwargs"])
encoding = BatchFeature()
encoding.update({f"tasks_{key}": value for key, value in tasks_encoding.items()})
encoding.update({f"classes_{key}": value for key, value in classes_encoding.items()})
encoding.update({"classes_structure": classes_structure})
encoding.update(encoding_image_processor)
return encoding
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def _get_default_image_size(self) -> Tuple[int, int]:
height = (
self.image_processor.size["height"]
if "height" in self.image_processor.size
else self.image_processor.size["shortest_edge"]
)
width = (
self.image_processor.size["width"]
if "width" in self.image_processor.size
else self.image_processor.size["longest_edge"]
)
return height, width
@deprecate_kwarg("score_threshold", new_name="threshold", version="4.51.0")
@deprecate_kwarg("classes", new_name="text_labels", version="4.51.0")
def post_process_grounded_object_detection(
self,
outputs: "OmDetTurboObjectDetectionOutput",
text_labels: Optional[Union[List[str], List[List[str]]]] = None,
threshold: float = 0.3,
nms_threshold: float = 0.5,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
max_num_det: Optional[int] = None,
):
"""
Converts the raw output of [`OmDetTurboForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format and get the associated text class.
Args:
outputs ([`OmDetTurboObjectDetectionOutput`]):
Raw outputs of the model.
text_labels (Union[List[str], List[List[str]]], *optional*):
The input classes names. If not provided, `text_labels` will be set to `None` in `outputs`.
threshold (float, defaults to 0.3):
Only return detections with a confidence score exceeding this threshold.
nms_threshold (float, defaults to 0.5):
The threshold to use for box non-maximum suppression. Value in [0, 1].
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
max_num_det (`int`, *optional*):
The maximum number of detections to return.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, classes and boxes for an image
in the batch as predicted by the model.
"""
batch_size = len(outputs.decoder_coord_logits)
# Inputs consistency check for target sizes
if target_sizes is None:
height, width = self._get_default_image_size()
target_sizes = [(height, width)] * batch_size
if any(len(image_size) != 2 for image_size in target_sizes):
raise ValueError(
"Each element of target_sizes must contain the size (height, width) of each image of the batch"
)
if len(target_sizes) != batch_size:
raise ValueError("Make sure that you pass in as many target sizes as output sequences")
# Inputs consistency check for text labels
if text_labels is not None and isinstance(text_labels[0], str):
text_labels = [text_labels]
if text_labels is not None and len(text_labels) != batch_size:
raise ValueError("Make sure that you pass in as many classes group as output sequences")
# Convert target_sizes to list for easier handling
if isinstance(target_sizes, torch.Tensor):
target_sizes = target_sizes.tolist()
batch_boxes = outputs.decoder_coord_logits
batch_logits = outputs.decoder_class_logits
batch_num_classes = outputs.classes_structure
batch_scores, batch_labels = compute_score(batch_logits)
results = []
for boxes, scores, image_size, image_num_classes in zip(
batch_boxes, batch_scores, target_sizes, batch_num_classes
):
boxes, scores, labels = _post_process_boxes_for_image(
boxes=boxes,
scores=scores,
labels=batch_labels,
image_num_classes=image_num_classes,
image_size=image_size,
threshold=threshold,
nms_threshold=nms_threshold,
max_num_det=max_num_det,
)
result = DictWithDeprecationWarning(
{"boxes": boxes, "scores": scores, "labels": labels, "text_labels": None}
)
results.append(result)
# Add text labels
if text_labels is not None:
for result, image_text_labels in zip(results, text_labels):
result["text_labels"] = [image_text_labels[idx] for idx in result["labels"]]
return results
__all__ = ["OmDetTurboProcessor"]
```
|
=================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.06 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\oneformer\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_oneformer import *
from .image_processing_oneformer import *
from .modeling_oneformer import *
from .processing_oneformer import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
================================================================================================================================================
SOURCE CODE FILE: configuration_oneformer.py
LINES: 1
SIZE: 13.15 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\oneformer\configuration_oneformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OneFormer model configuration"""
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import verify_backbone_config_arguments
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
class OneFormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OneFormerModel`]. It is used to instantiate a
OneFormer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the OneFormer
[shi-labs/oneformer_ade20k_swin_tiny](https://huggingface.co/shi-labs/oneformer_ade20k_swin_tiny) architecture
trained on [ADE20k-150](https://huggingface.co/datasets/scene_parse_150).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
backbone_config (`PretrainedConfig`, *optional*, defaults to `SwinConfig`):
The configuration of the backbone model.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use pretrained weights for the backbone.
use_timm_backbone (`bool`, *optional*, defaults to `False`):
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
library.
backbone_kwargs (`dict`, *optional*):
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
ignore_value (`int`, *optional*, defaults to 255):
Values to be ignored in GT label while calculating loss.
num_queries (`int`, *optional*, defaults to 150):
Number of object queries.
no_object_weight (`float`, *optional*, defaults to 0.1):
Weight for no-object class predictions.
class_weight (`float`, *optional*, defaults to 2.0):
Weight for Classification CE loss.
mask_weight (`float`, *optional*, defaults to 5.0):
Weight for binary CE loss.
dice_weight (`float`, *optional*, defaults to 5.0):
Weight for dice loss.
contrastive_weight (`float`, *optional*, defaults to 0.5):
Weight for contrastive loss.
contrastive_temperature (`float`, *optional*, defaults to 0.07):
Initial value for scaling the contrastive logits.
train_num_points (`int`, *optional*, defaults to 12544):
Number of points to sample while calculating losses on mask predictions.
oversample_ratio (`float`, *optional*, defaults to 3.0):
Ratio to decide how many points to oversample.
importance_sample_ratio (`float`, *optional*, defaults to 0.75):
Ratio of points that are sampled via importance sampling.
init_std (`float`, *optional*, defaults to 0.02):
Standard deviation for normal intialization.
init_xavier_std (`float`, *optional*, defaults to 1.0):
Standard deviation for xavier uniform initialization.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
Epsilon for layer normalization.
is_training (`bool`, *optional*, defaults to `False`):
Whether to run in training or inference mode.
use_auxiliary_loss (`bool`, *optional*, defaults to `True`):
Whether to calculate loss using intermediate predictions from transformer decoder.
output_auxiliary_logits (`bool`, *optional*, defaults to `True`):
Whether to return intermediate predictions from transformer decoder.
strides (`list`, *optional*, defaults to `[4, 8, 16, 32]`):
List containing the strides for feature maps in the encoder.
task_seq_len (`int`, *optional*, defaults to 77):
Sequence length for tokenizing text list input.
text_encoder_width (`int`, *optional*, defaults to 256):
Hidden size for text encoder.
text_encoder_context_length (`int`, *optional*, defaults to 77):
Input sequence length for text encoder.
text_encoder_num_layers (`int`, *optional*, defaults to 6):
Number of layers for transformer in text encoder.
text_encoder_vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size for tokenizer.
text_encoder_proj_layers (`int`, *optional*, defaults to 2):
Number of layers in MLP for project text queries.
text_encoder_n_ctx (`int`, *optional*, defaults to 16):
Number of learnable text context queries.
conv_dim (`int`, *optional*, defaults to 256):
Feature map dimension to map outputs from the backbone.
mask_dim (`int`, *optional*, defaults to 256):
Dimension for feature maps in pixel decoder.
hidden_dim (`int`, *optional*, defaults to 256):
Dimension for hidden states in transformer decoder.
encoder_feedforward_dim (`int`, *optional*, defaults to 1024):
Dimension for FFN layer in pixel decoder.
norm (`str`, *optional*, defaults to `"GN"`):
Type of normalization.
encoder_layers (`int`, *optional*, defaults to 6):
Number of layers in pixel decoder.
decoder_layers (`int`, *optional*, defaults to 10):
Number of layers in transformer decoder.
use_task_norm (`bool`, *optional*, defaults to `True`):
Whether to normalize the task token.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads in transformer layers in the pixel and transformer decoders.
dropout (`float`, *optional*, defaults to 0.1):
Dropout probability for pixel and transformer decoders.
dim_feedforward (`int`, *optional*, defaults to 2048):
Dimension for FFN layer in transformer decoder.
pre_norm (`bool`, *optional*, defaults to `False`):
Whether to normalize hidden states before attention layers in transformer decoder.
enforce_input_proj (`bool`, *optional*, defaults to `False`):
Whether to project hidden states in transformer decoder.
query_dec_layers (`int`, *optional*, defaults to 2):
Number of layers in query transformer.
common_stride (`int`, *optional*, defaults to 4):
Common stride used for features in pixel decoder.
Examples:
```python
>>> from transformers import OneFormerConfig, OneFormerModel
>>> # Initializing a OneFormer shi-labs/oneformer_ade20k_swin_tiny configuration
>>> configuration = OneFormerConfig()
>>> # Initializing a model (with random weights) from the shi-labs/oneformer_ade20k_swin_tiny style configuration
>>> model = OneFormerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "oneformer"
attribute_map = {"hidden_size": "hidden_dim"}
def __init__(
self,
backbone_config: Optional[Dict] = None,
backbone: Optional[str] = None,
use_pretrained_backbone: bool = False,
use_timm_backbone: bool = False,
backbone_kwargs: Optional[Dict] = None,
ignore_value: int = 255,
num_queries: int = 150,
no_object_weight: int = 0.1,
class_weight: float = 2.0,
mask_weight: float = 5.0,
dice_weight: float = 5.0,
contrastive_weight: float = 0.5,
contrastive_temperature: float = 0.07,
train_num_points: int = 12544,
oversample_ratio: float = 3.0,
importance_sample_ratio: float = 0.75,
init_std: float = 0.02,
init_xavier_std: float = 1.0,
layer_norm_eps: float = 1e-05,
is_training: bool = False,
use_auxiliary_loss: bool = True,
output_auxiliary_logits: bool = True,
strides: Optional[list] = [4, 8, 16, 32],
task_seq_len: int = 77,
text_encoder_width: int = 256,
text_encoder_context_length: int = 77,
text_encoder_num_layers: int = 6,
text_encoder_vocab_size: int = 49408,
text_encoder_proj_layers: int = 2,
text_encoder_n_ctx: int = 16,
conv_dim: int = 256,
mask_dim: int = 256,
hidden_dim: int = 256,
encoder_feedforward_dim: int = 1024,
norm: str = "GN",
encoder_layers: int = 6,
decoder_layers: int = 10,
use_task_norm: bool = True,
num_attention_heads: int = 8,
dropout: float = 0.1,
dim_feedforward: int = 2048,
pre_norm: bool = False,
enforce_input_proj: bool = False,
query_dec_layers: int = 2,
common_stride: int = 4,
**kwargs,
):
if backbone_config is None and backbone is None:
logger.info("`backbone_config` is unset. Initializing the config with the default `Swin` backbone.")
backbone_config = CONFIG_MAPPING["swin"](
image_size=224,
num_channels=3,
patch_size=4,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
drop_path_rate=0.3,
use_absolute_embeddings=False,
out_features=["stage1", "stage2", "stage3", "stage4"],
)
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
verify_backbone_config_arguments(
use_timm_backbone=use_timm_backbone,
use_pretrained_backbone=use_pretrained_backbone,
backbone=backbone,
backbone_config=backbone_config,
backbone_kwargs=backbone_kwargs,
)
self.backbone_config = backbone_config
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = use_timm_backbone
self.backbone_kwargs = backbone_kwargs
self.ignore_value = ignore_value
self.num_queries = num_queries
self.no_object_weight = no_object_weight
self.class_weight = class_weight
self.mask_weight = mask_weight
self.dice_weight = dice_weight
self.contrastive_weight = contrastive_weight
self.contrastive_temperature = contrastive_temperature
self.train_num_points = train_num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
self.init_std = init_std
self.init_xavier_std = init_xavier_std
self.layer_norm_eps = layer_norm_eps
self.is_training = is_training
self.use_auxiliary_loss = use_auxiliary_loss
self.output_auxiliary_logits = output_auxiliary_logits
self.strides = strides
self.task_seq_len = task_seq_len
self.text_encoder_width = text_encoder_width
self.text_encoder_context_length = text_encoder_context_length
self.text_encoder_num_layers = text_encoder_num_layers
self.text_encoder_vocab_size = text_encoder_vocab_size
self.text_encoder_proj_layers = text_encoder_proj_layers
self.text_encoder_n_ctx = text_encoder_n_ctx
self.conv_dim = conv_dim
self.mask_dim = mask_dim
self.hidden_dim = hidden_dim
self.encoder_feedforward_dim = encoder_feedforward_dim
self.norm = norm
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.use_task_norm = use_task_norm
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.dim_feedforward = dim_feedforward
self.pre_norm = pre_norm
self.enforce_input_proj = enforce_input_proj
self.query_dec_layers = query_dec_layers
self.common_stride = common_stride
self.num_hidden_layers = decoder_layers
super().__init__(**kwargs)
__all__ = ["OneFormerConfig"]
```
|
===================================================================================================================================================
SOURCE CODE FILE: image_processing_oneformer.py
LINES: 1
SIZE: 59.93 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\oneformer\image_processing_oneformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for OneFormer."""
import json
import os
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union
import numpy as np
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import RepositoryNotFoundError
from ...image_processing_utils import INIT_SERVICE_KWARGS, BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
PaddingMode,
get_resize_output_image_size,
pad,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
TensorType,
filter_out_non_signature_kwargs,
is_torch_available,
is_torch_tensor,
logging,
)
from ...utils.deprecation import deprecate_kwarg
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
# Copied from transformers.models.detr.image_processing_detr.max_across_indices
def max_across_indices(values: Iterable[Any]) -> List[Any]:
"""
Return the maximum value across all indices of an iterable of values.
"""
return [max(values_i) for values_i in zip(*values)]
# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
Args:
image (`np.ndarray`):
Image to make the pixel mask for.
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle
def binary_mask_to_rle(mask):
"""
Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
mask (`torch.Tensor` or `numpy.array`):
A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
segment_id or class_id.
Returns:
`List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
format.
"""
if is_torch_tensor(mask):
mask = mask.numpy()
pixels = mask.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return list(runs)
# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle
def convert_segmentation_to_rle(segmentation):
"""
Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
segmentation (`torch.Tensor` or `numpy.array`):
A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
Returns:
`List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
"""
segment_ids = torch.unique(segmentation)
run_length_encodings = []
for idx in segment_ids:
mask = torch.where(segmentation == idx, 1, 0)
rle = binary_mask_to_rle(mask)
run_length_encodings.append(rle)
return run_length_encodings
# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects
def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
"""
Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
`labels`.
Args:
masks (`torch.Tensor`):
A tensor of shape `(num_queries, height, width)`.
scores (`torch.Tensor`):
A tensor of shape `(num_queries)`.
labels (`torch.Tensor`):
A tensor of shape `(num_queries)`.
object_mask_threshold (`float`):
A number between 0 and 1 used to binarize the masks.
Raises:
`ValueError`: Raised when the first dimension doesn't match in all input tensors.
Returns:
`Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
< `object_mask_threshold`.
"""
if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
raise ValueError("mask, scores and labels must have the same shape!")
to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
return masks[to_keep], scores[to_keep], labels[to_keep]
# Copied from transformers.models.detr.image_processing_detr.check_segment_validity
def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
# Get the mask associated with the k class
mask_k = mask_labels == k
mask_k_area = mask_k.sum()
# Compute the area of all the stuff in query k
original_area = (mask_probs[k] >= mask_threshold).sum()
mask_exists = mask_k_area > 0 and original_area > 0
# Eliminate disconnected tiny segments
if mask_exists:
area_ratio = mask_k_area / original_area
if not area_ratio.item() > overlap_mask_area_threshold:
mask_exists = False
return mask_exists, mask_k
# Copied from transformers.models.detr.image_processing_detr.compute_segments
def compute_segments(
mask_probs,
pred_scores,
pred_labels,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None,
target_size: Tuple[int, int] = None,
):
height = mask_probs.shape[1] if target_size is None else target_size[0]
width = mask_probs.shape[2] if target_size is None else target_size[1]
segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
segments: List[Dict] = []
if target_size is not None:
mask_probs = nn.functional.interpolate(
mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
)[0]
current_segment_id = 0
# Weigh each mask by its prediction score
mask_probs *= pred_scores.view(-1, 1, 1)
mask_labels = mask_probs.argmax(0) # [height, width]
# Keep track of instances of each class
stuff_memory_list: Dict[str, int] = {}
for k in range(pred_labels.shape[0]):
pred_class = pred_labels[k].item()
should_fuse = pred_class in label_ids_to_fuse
# Check if mask exists and large enough to be a segment
mask_exists, mask_k = check_segment_validity(
mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
)
if mask_exists:
if pred_class in stuff_memory_list:
current_segment_id = stuff_memory_list[pred_class]
else:
current_segment_id += 1
# Add current object segment to final segmentation map
segmentation[mask_k] = current_segment_id
segment_score = round(pred_scores[k].item(), 6)
segments.append(
{
"id": current_segment_id,
"label_id": pred_class,
"was_fused": should_fuse,
"score": segment_score,
}
)
if should_fuse:
stuff_memory_list[pred_class] = current_segment_id
return segmentation, segments
# Copied from transformers.models.maskformer.image_processing_maskformer.convert_segmentation_map_to_binary_masks
def convert_segmentation_map_to_binary_masks(
segmentation_map: "np.ndarray",
instance_id_to_semantic_id: Optional[Dict[int, int]] = None,
ignore_index: Optional[int] = None,
do_reduce_labels: bool = False,
):
if do_reduce_labels and ignore_index is None:
raise ValueError("If `do_reduce_labels` is True, `ignore_index` must be provided.")
if do_reduce_labels:
segmentation_map = np.where(segmentation_map == 0, ignore_index, segmentation_map - 1)
# Get unique ids (class or instance ids based on input)
all_labels = np.unique(segmentation_map)
# Drop background label if applicable
if ignore_index is not None:
all_labels = all_labels[all_labels != ignore_index]
# Generate a binary mask for each object instance
binary_masks = [(segmentation_map == i) for i in all_labels]
# Stack the binary masks
if binary_masks:
binary_masks = np.stack(binary_masks, axis=0)
else:
binary_masks = np.zeros((0, *segmentation_map.shape))
# Convert instance ids to class ids
if instance_id_to_semantic_id is not None:
labels = np.zeros(all_labels.shape[0])
for label in all_labels:
class_id = instance_id_to_semantic_id[label + 1 if do_reduce_labels else label]
labels[all_labels == label] = class_id - 1 if do_reduce_labels else class_id
else:
labels = all_labels
return binary_masks.astype(np.float32), labels.astype(np.int64)
def get_oneformer_resize_output_image_size(
image: np.ndarray,
size: Union[int, Tuple[int, int], List[int], Tuple[int]],
max_size: Optional[int] = None,
default_to_square: bool = True,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> tuple:
"""
Computes the output size given the desired size.
Args:
image (`np.ndarray`):
The input image.
size (`int` or `Tuple[int, int]` or `List[int]` or `Tuple[int]`):
The size of the output image.
max_size (`int`, *optional*):
The maximum size of the output image.
default_to_square (`bool`, *optional*, defaults to `True`):
Whether to default to square if no size is provided.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
Returns:
`Tuple[int, int]`: The output size.
"""
output_size = get_resize_output_image_size(
input_image=image,
size=size,
default_to_square=default_to_square,
max_size=max_size,
input_data_format=input_data_format,
)
return output_size
def prepare_metadata(class_info):
metadata = {}
class_names = []
thing_ids = []
for key, info in class_info.items():
metadata[key] = info["name"]
class_names.append(info["name"])
if info["isthing"]:
thing_ids.append(int(key))
metadata["thing_ids"] = thing_ids
metadata["class_names"] = class_names
return metadata
def load_metadata(repo_id, class_info_file):
fname = os.path.join("" if repo_id is None else repo_id, class_info_file)
if not os.path.exists(fname) or not os.path.isfile(fname):
if repo_id is None:
raise ValueError(f"Could not file {fname} locally. repo_id must be defined if loading from the hub")
# We try downloading from a dataset by default for backward compatibility
try:
fname = hf_hub_download(repo_id, class_info_file, repo_type="dataset")
except RepositoryNotFoundError:
fname = hf_hub_download(repo_id, class_info_file)
with open(fname, "r") as f:
class_info = json.load(f)
return class_info
class OneFormerImageProcessor(BaseImageProcessor):
r"""
Constructs a OneFormer image processor. The image processor can be used to prepare image(s), task input(s) and
optional text inputs and targets for the model.
This image processor inherits from [`BaseImageProcessor`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input to a certain `size`.
size (`int`, *optional*, defaults to 800):
Resize the input to the given size. Only has an effect if `do_resize` is set to `True`. If size is a
sequence like `(width, height)`, output size will be matched to this. If size is an int, smaller edge of
the image will be matched to this number. i.e, if `height > width`, then image will be rescaled to `(size *
height / width, size)`.
resample (`int`, *optional*, defaults to `Resampling.BILINEAR`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the input to a certain `scale`.
rescale_factor (`float`, *optional*, defaults to `1/ 255`):
Rescale the input by the given factor. Only has an effect if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input with mean and standard deviation.
image_mean (`int`, *optional*, defaults to `[0.485, 0.456, 0.406]`):
The sequence of means for each channel, to be used when normalizing images. Defaults to the ImageNet mean.
image_std (`int`, *optional*, defaults to `[0.229, 0.224, 0.225]`):
The sequence of standard deviations for each channel, to be used when normalizing images. Defaults to the
ImageNet std.
ignore_index (`int`, *optional*):
Label to be assigned to background pixels in segmentation maps. If provided, segmentation map pixels
denoted with 0 (background) will be replaced with `ignore_index`.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to decrement all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k).
The background label will be replaced by `ignore_index`.
repo_path (`str`, *optional*, defaults to `"shi-labs/oneformer_demo"`):
Path to hub repo or local directory containing the JSON file with class information for the dataset.
If unset, will look for `class_info_file` in the current working directory.
class_info_file (`str`, *optional*):
JSON file containing class information for the dataset. See `shi-labs/oneformer_demo/cityscapes_panoptic.json` for an example.
num_text (`int`, *optional*):
Number of text entries in the text input list.
num_labels (`int`, *optional*):
The number of labels in the segmentation map.
"""
model_input_names = ["pixel_values", "pixel_mask", "task_inputs"]
@deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.44.0")
@deprecate_kwarg("max_size", version="4.27.0", warn_if_greater_or_equal_version=True)
@filter_out_non_signature_kwargs(extra=["max_size", "metadata", *INIT_SERVICE_KWARGS])
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: float = 1 / 255,
do_normalize: bool = True,
image_mean: Union[float, List[float]] = None,
image_std: Union[float, List[float]] = None,
ignore_index: Optional[int] = None,
do_reduce_labels: bool = False,
repo_path: Optional[str] = "shi-labs/oneformer_demo",
class_info_file: Optional[str] = None,
num_text: Optional[int] = None,
num_labels: Optional[int] = None,
**kwargs,
):
super().__init__(**kwargs)
# Deprecated, backward compatibility
self._max_size = kwargs.pop("max_size", 1333)
size = size if size is not None else {"shortest_edge": 800, "longest_edge": self._max_size}
size = get_size_dict(size, max_size=self._max_size, default_to_square=False)
if class_info_file is None:
raise ValueError("You must provide a `class_info_file`")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.ignore_index = ignore_index
self.do_reduce_labels = do_reduce_labels
self.class_info_file = class_info_file
self.repo_path = repo_path
self.metadata = prepare_metadata(load_metadata(repo_path, class_info_file))
self.num_text = num_text
self.num_labels = num_labels
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to save support of deprecated `reduce_labels` in old configs
"""
image_processor_dict = image_processor_dict.copy()
if "reduce_labels" in image_processor_dict:
image_processor_dict["do_reduce_labels"] = image_processor_dict.pop("reduce_labels")
return super().from_dict(image_processor_dict, **kwargs)
# Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.to_dict
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary. This method calls the superclass method and then removes the
`_max_size` attribute from the dictionary.
"""
image_processor_dict = super().to_dict()
image_processor_dict.pop("_max_size", None)
return image_processor_dict
@deprecate_kwarg("max_size", version="4.27.0", warn_if_greater_or_equal_version=True)
@filter_out_non_signature_kwargs(extra=["max_size"])
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format=None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be min_size (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
"""
# Deprecated, backward compatibility
max_size = kwargs.pop("max_size", None)
size = get_size_dict(size, max_size=max_size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
size, max_size = size["shortest_edge"], size["longest_edge"]
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
max_size = None
else:
raise ValueError(
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
size = get_oneformer_resize_output_image_size(
image=image, size=size, max_size=max_size, default_to_square=False, input_data_format=input_data_format
)
image = resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format
)
return image
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
def rescale(
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
# Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.convert_segmentation_map_to_binary_masks
def convert_segmentation_map_to_binary_masks(
self,
segmentation_map: "np.ndarray",
instance_id_to_semantic_id: Optional[Dict[int, int]] = None,
ignore_index: Optional[int] = None,
do_reduce_labels: bool = False,
):
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
ignore_index = ignore_index if ignore_index is not None else self.ignore_index
return convert_segmentation_map_to_binary_masks(
segmentation_map=segmentation_map,
instance_id_to_semantic_id=instance_id_to_semantic_id,
ignore_index=ignore_index,
do_reduce_labels=do_reduce_labels,
)
def __call__(self, images, task_inputs=None, segmentation_maps=None, **kwargs) -> BatchFeature:
return self.preprocess(images, task_inputs=task_inputs, segmentation_maps=segmentation_maps, **kwargs)
def _preprocess(
self,
image: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
if do_resize:
image = self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_rescale and is_scaled_image(image):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
image = self._preprocess(
image=image,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def _preprocess_mask(
self,
segmentation_map: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single mask."""
segmentation_map = to_numpy_array(segmentation_map)
# Add channel dimension if missing - needed for certain transformations
if segmentation_map.ndim == 2:
added_channel_dim = True
segmentation_map = segmentation_map[None, ...]
input_data_format = ChannelDimension.FIRST
else:
added_channel_dim = False
if input_data_format is None:
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
# TODO: (Amy)
# Remork segmentation map processing to include reducing labels and resizing which doesn't
# drop segment IDs > 255.
segmentation_map = self._preprocess(
image=segmentation_map,
do_resize=do_resize,
resample=PILImageResampling.NEAREST,
size=size,
do_rescale=False,
do_normalize=False,
input_data_format=input_data_format,
)
# Remove extra channel dimension if added for processing
if added_channel_dim:
segmentation_map = segmentation_map.squeeze(0)
return segmentation_map
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
task_inputs: Optional[List[str]] = None,
segmentation_maps: Optional[ImageInput] = None,
instance_id_to_semantic_id: Optional[Dict[int, int]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
ignore_index: Optional[int] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
if task_inputs is None:
# Default value
task_inputs = ["panoptic"]
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False, max_size=self._max_size)
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
ignore_index = ignore_index if ignore_index is not None else self.ignore_index
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
images = make_list_of_images(images)
if segmentation_maps is not None:
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
if segmentation_maps is not None and len(images) != len(segmentation_maps):
raise ValueError("Images and segmentation maps must have the same length.")
images = [
self._preprocess_image(
image,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_mask(segmentation_map, do_resize, size, input_data_format=input_data_format)
for segmentation_map in segmentation_maps
]
encoded_inputs = self.encode_inputs(
images,
task_inputs,
segmentation_maps,
instance_id_to_semantic_id,
ignore_index,
do_reduce_labels,
return_tensors,
input_data_format=data_format,
)
return encoded_inputs
# Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor._pad_image
def _pad_image(
self,
image: np.ndarray,
output_size: Tuple[int, int],
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
return padded_image
# Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.pad
def pad(
self,
images: List[np.ndarray],
constant_values: Union[float, Iterable[float]] = 0,
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
in the batch and optionally returns their corresponding pixel mask.
Args:
image (`np.ndarray`):
Image to pad.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
return_pixel_mask (`bool`, *optional*, defaults to `True`):
Whether to return a pixel mask.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
pad_size = get_max_height_width(images, input_data_format=input_data_format)
padded_images = [
self._pad_image(
image,
pad_size,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
def get_semantic_annotations(self, label, num_class_obj):
annotation_classes = label["classes"]
annotation_masks = label["masks"]
texts = ["a semantic photo"] * self.num_text
classes = []
masks = []
for idx in range(len(annotation_classes)):
class_id = annotation_classes[idx]
mask = annotation_masks[idx]
if not np.all(mask is False):
if class_id not in classes:
cls_name = self.metadata[str(class_id)]
classes.append(class_id)
masks.append(mask)
num_class_obj[cls_name] += 1
else:
idx = classes.index(class_id)
masks[idx] += mask
masks[idx] = np.clip(masks[idx], 0, 1)
num = 0
for i, cls_name in enumerate(self.metadata["class_names"]):
if num_class_obj[cls_name] > 0:
for _ in range(num_class_obj[cls_name]):
if num >= len(texts):
break
texts[num] = f"a photo with a {cls_name}"
num += 1
classes = np.array(classes)
masks = np.array(masks)
return classes, masks, texts
def get_instance_annotations(self, label, num_class_obj):
annotation_classes = label["classes"]
annotation_masks = label["masks"]
texts = ["an instance photo"] * self.num_text
classes = []
masks = []
for idx in range(len(annotation_classes)):
class_id = annotation_classes[idx]
mask = annotation_masks[idx]
if class_id in self.metadata["thing_ids"]:
if not np.all(mask is False):
cls_name = self.metadata[str(class_id)]
classes.append(class_id)
masks.append(mask)
num_class_obj[cls_name] += 1
num = 0
for i, cls_name in enumerate(self.metadata["class_names"]):
if num_class_obj[cls_name] > 0:
for _ in range(num_class_obj[cls_name]):
if num >= len(texts):
break
texts[num] = f"a photo with a {cls_name}"
num += 1
classes = np.array(classes)
masks = np.array(masks)
return classes, masks, texts
def get_panoptic_annotations(self, label, num_class_obj):
annotation_classes = label["classes"]
annotation_masks = label["masks"]
texts = ["an panoptic photo"] * self.num_text
classes = []
masks = []
for idx in range(len(annotation_classes)):
class_id = annotation_classes[idx]
mask = annotation_masks[idx].data
if not np.all(mask is False):
cls_name = self.metadata[str(class_id)]
classes.append(class_id)
masks.append(mask)
num_class_obj[cls_name] += 1
num = 0
for i, cls_name in enumerate(self.metadata["class_names"]):
if num_class_obj[cls_name] > 0:
for _ in range(num_class_obj[cls_name]):
if num >= len(texts):
break
texts[num] = f"a photo with a {cls_name}"
num += 1
classes = np.array(classes)
masks = np.array(masks)
return classes, masks, texts
def encode_inputs(
self,
pixel_values_list: List[ImageInput],
task_inputs: List[str],
segmentation_maps: ImageInput = None,
instance_id_to_semantic_id: Optional[Union[List[Dict[int, int]], Dict[int, int]]] = None,
ignore_index: Optional[int] = None,
do_reduce_labels: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Pad images up to the largest image in a batch and create a corresponding `pixel_mask`.
OneFormer addresses semantic segmentation with a mask classification paradigm, thus input segmentation maps
will be converted to lists of binary masks and their respective labels. Let's see an example, assuming
`segmentation_maps = [[2,6,7,9]]`, the output will contain `mask_labels =
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]` (four binary masks) and `class_labels = [2,6,7,9]`, the labels for
each mask.
Args:
pixel_values_list (`List[ImageInput]`):
List of images (pixel values) to be padded. Each image should be a tensor of shape `(channels, height,
width)`.
task_inputs (`List[str]`):
List of task values.
segmentation_maps (`ImageInput`, *optional*):
The corresponding semantic segmentation maps with the pixel-wise annotations.
(`bool`, *optional*, defaults to `True`):
Whether or not to pad images up to the largest image in a batch and create a pixel mask.
If left to the default, will return a pixel mask that is:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
instance_id_to_semantic_id (`List[Dict[int, int]]` or `Dict[int, int]`, *optional*):
A mapping between object instance ids and class ids. If passed, `segmentation_maps` is treated as an
instance segmentation map where each pixel represents an instance id. Can be provided as a single
dictionary with a global/dataset-level mapping or as a list of dictionaries (one per image), to map
instance ids in each image separately.
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
If set, will return tensors instead of NumPy arrays. If set to `'pt'`, return PyTorch `torch.Tensor`
objects.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model.
- **pixel_mask** -- Pixel mask to be fed to a model (when `=True` or if `pixel_mask` is in
`self.model_input_names`).
- **mask_labels** -- Optional list of mask labels of shape `(labels, height, width)` to be fed to a model
(when `annotations` are provided).
- **class_labels** -- Optional list of class labels of shape `(labels)` to be fed to a model (when
`annotations` are provided). They identify the labels of `mask_labels`, e.g. the label of
`mask_labels[i][j]` if `class_labels[i][j]`.
- **text_inputs** -- Optional list of text string entries to be fed to a model (when `annotations` are
provided). They identify the binary masks present in the image.
"""
ignore_index = self.ignore_index if ignore_index is None else ignore_index
do_reduce_labels = self.do_reduce_labels if do_reduce_labels is None else do_reduce_labels
pixel_values_list = [to_numpy_array(pixel_values) for pixel_values in pixel_values_list]
if input_data_format is None:
input_data_format = infer_channel_dimension_format(pixel_values_list[0])
pad_size = get_max_height_width(pixel_values_list, input_data_format=input_data_format)
encoded_inputs = self.pad(
pixel_values_list, return_tensors=return_tensors, input_data_format=input_data_format
)
annotations = None
if segmentation_maps is not None:
segmentation_maps = map(np.array, segmentation_maps)
annotations = []
for idx, segmentation_map in enumerate(segmentation_maps):
# Use instance2class_id mapping per image
if isinstance(instance_id_to_semantic_id, list):
instance_id = instance_id_to_semantic_id[idx]
else:
instance_id = instance_id_to_semantic_id
# Use instance2class_id mapping per image
masks, classes = self.convert_segmentation_map_to_binary_masks(
segmentation_map, instance_id, ignore_index=ignore_index, do_reduce_labels=do_reduce_labels
)
annotations.append({"masks": masks, "classes": classes})
if annotations is not None:
mask_labels = []
class_labels = []
text_inputs = []
num_class_obj = {}
for cls_name in self.metadata["class_names"]:
num_class_obj[cls_name] = 0
for i, label in enumerate(annotations):
task = task_inputs[i]
if task == "semantic":
classes, masks, texts = self.get_semantic_annotations(label, num_class_obj)
elif task == "instance":
classes, masks, texts = self.get_instance_annotations(label, num_class_obj)
elif task == "panoptic":
classes, masks, texts = self.get_panoptic_annotations(label, num_class_obj)
else:
raise ValueError(f"{task} was not expected, expected `semantic`, `instance` or `panoptic`")
# we cannot batch them since they don't share a common class size
masks = [mask[None, ...] for mask in masks]
masks = [
self._pad_image(image=mask, output_size=pad_size, constant_values=ignore_index) for mask in masks
]
masks = np.concatenate(masks, axis=0)
mask_labels.append(torch.from_numpy(masks))
class_labels.append(torch.from_numpy(classes).long())
text_inputs.append(texts)
encoded_inputs["mask_labels"] = mask_labels
encoded_inputs["class_labels"] = class_labels
encoded_inputs["text_inputs"] = text_inputs
# This needs to be tokenized before sending to the model.
encoded_inputs["task_inputs"] = [f"the task is {task_input}" for task_input in task_inputs]
return encoded_inputs
# Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.post_process_semantic_segmentation
def post_process_semantic_segmentation(
self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None
) -> "torch.Tensor":
"""
Converts the output of [`MaskFormerForInstanceSegmentation`] into semantic segmentation maps. Only supports
PyTorch.
Args:
outputs ([`MaskFormerForInstanceSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple[int, int]]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction. If left to None, predictions will not be resized.
Returns:
`List[torch.Tensor]`:
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
`torch.Tensor` correspond to a semantic class id.
"""
class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width]
# Remove the null class `[..., :-1]`
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Semantic segmentation logits of shape (batch_size, num_classes, height, width)
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
batch_size = class_queries_logits.shape[0]
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if batch_size != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
semantic_segmentation = []
for idx in range(batch_size):
resized_logits = torch.nn.functional.interpolate(
segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = segmentation.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
def post_process_instance_segmentation(
self,
outputs,
task_type: str = "instance",
is_demo: bool = True,
threshold: float = 0.5,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
target_sizes: Optional[List[Tuple[int, int]]] = None,
return_coco_annotation: Optional[bool] = False,
):
"""
Converts the output of [`OneFormerForUniversalSegmentationOutput`] into image instance segmentation
predictions. Only supports PyTorch.
Args:
outputs ([`OneFormerForUniversalSegmentationOutput`]):
The outputs from [`OneFormerForUniversalSegmentationOutput`].
task_type (`str`, *optional*, defaults to "instance"):
The post processing depends on the task token input. If the `task_type` is "panoptic", we need to
ignore the stuff predictions.
is_demo (`bool`, *optional)*, defaults to `True`):
Whether the model is in demo mode. If true, use threshold to predict final masks.
threshold (`float`, *optional*, defaults to 0.5):
The probability score threshold to keep predicted instance masks.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
The overlap mask area threshold to merge or discard small disconnected parts within each binary
instance mask.
target_sizes (`List[Tuple]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction in batch. If left to None, predictions will not be
resized.
return_coco_annotation (`bool`, *optional)*, defaults to `False`):
Whether to return predictions in COCO format.
Returns:
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
- **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set
to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized
to the corresponding `target_sizes` entry.
- **segments_info** -- A dictionary that contains additional information on each segment.
- **id** -- an integer representing the `segment_id`.
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
- **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise.
Multiple instances of the same class / label were fused and assigned a single `segment_id`.
- **score** -- Prediction score of segment with `segment_id`.
"""
class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width]
device = masks_queries_logits.device
batch_size = class_queries_logits.shape[0]
num_queries = class_queries_logits.shape[1]
num_classes = class_queries_logits.shape[-1] - 1
# Loop over items in batch size
results: List[Dict[str, torch.Tensor]] = []
for i in range(batch_size):
# [Q, K]
scores = torch.nn.functional.softmax(class_queries_logits[i], dim=-1)[:, :-1]
labels = torch.arange(num_classes, device=device).unsqueeze(0).repeat(num_queries, 1).flatten(0, 1)
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
scores_per_image, topk_indices = scores.flatten(0, 1).topk(num_queries, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = torch.div(topk_indices, num_classes, rounding_mode="floor")
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
mask_pred = masks_queries_logits[i][topk_indices]
# Only consider scores with confidence over [threshold] for demo
if is_demo:
keep = scores_per_image > threshold
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
mask_pred = mask_pred[keep]
# if this is panoptic segmentation, we only keep the "thing" classes
if task_type == "panoptic":
keep = torch.zeros_like(scores_per_image).bool()
for j, lab in enumerate(labels_per_image):
keep[j] = lab in self.metadata["thing_ids"]
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
mask_pred = mask_pred[keep]
if mask_pred.shape[0] <= 0:
height, width = target_sizes[i] if target_sizes is not None else mask_pred.shape[1:]
segmentation = torch.zeros((height, width)) - 1
results.append({"segmentation": segmentation, "segments_info": []})
continue
if "ade20k" in self.class_info_file and not is_demo and "instance" in task_type:
for j in range(labels_per_image.shape[0]):
labels_per_image[j] = self.metadata["thing_ids"].index(labels_per_image[j].item())
# Get segmentation map and segment information of batch item
target_size = target_sizes[i] if target_sizes is not None else None
segmentation, segments = compute_segments(
mask_pred,
scores_per_image,
labels_per_image,
mask_threshold,
overlap_mask_area_threshold,
set(),
target_size,
)
# Return segmentation map in run-length encoding (RLE) format
if return_coco_annotation:
segmentation = convert_segmentation_to_rle(segmentation)
results.append({"segmentation": segmentation, "segments_info": segments})
return results
# Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.post_process_panoptic_segmentation
def post_process_panoptic_segmentation(
self,
outputs,
threshold: float = 0.5,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None,
target_sizes: Optional[List[Tuple[int, int]]] = None,
) -> List[Dict]:
"""
Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into image panoptic segmentation
predictions. Only supports PyTorch.
Args:
outputs ([`MaskFormerForInstanceSegmentationOutput`]):
The outputs from [`MaskFormerForInstanceSegmentation`].
threshold (`float`, *optional*, defaults to 0.5):
The probability score threshold to keep predicted instance masks.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
The overlap mask area threshold to merge or discard small disconnected parts within each binary
instance mask.
label_ids_to_fuse (`Set[int]`, *optional*):
The labels in this state will have all their instances be fused together. For instance we could say
there can only be one sky in an image, but several persons, so the label ID for sky would be in that
set, but not the one for person.
target_sizes (`List[Tuple]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction in batch. If left to None, predictions will not be
resized.
Returns:
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
- **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set
to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized
to the corresponding `target_sizes` entry.
- **segments_info** -- A dictionary that contains additional information on each segment.
- **id** -- an integer representing the `segment_id`.
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
- **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise.
Multiple instances of the same class / label were fused and assigned a single `segment_id`.
- **score** -- Prediction score of segment with `segment_id`.
"""
if label_ids_to_fuse is None:
logger.warning("`label_ids_to_fuse` unset. No instance will be fused.")
label_ids_to_fuse = set()
class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width]
batch_size = class_queries_logits.shape[0]
num_labels = class_queries_logits.shape[-1] - 1
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Predicted label and score of each query (batch_size, num_queries)
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
# Loop over items in batch size
results: List[Dict[str, TensorType]] = []
for i in range(batch_size):
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
)
# No mask found
if mask_probs_item.shape[0] <= 0:
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
segmentation = torch.zeros((height, width)) - 1
results.append({"segmentation": segmentation, "segments_info": []})
continue
# Get segmentation map and segment information of batch item
target_size = target_sizes[i] if target_sizes is not None else None
segmentation, segments = compute_segments(
mask_probs=mask_probs_item,
pred_scores=pred_scores_item,
pred_labels=pred_labels_item,
mask_threshold=mask_threshold,
overlap_mask_area_threshold=overlap_mask_area_threshold,
label_ids_to_fuse=label_ids_to_fuse,
target_size=target_size,
)
results.append({"segmentation": segmentation, "segments_info": segments})
return results
__all__ = ["OneFormerImageProcessor"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: modeling_oneformer.py
LINES: 1
SIZE: 140.39 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\oneformer\modeling_oneformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OneFormer model."""
import copy
import math
import warnings
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from torch import Tensor, nn
from torch.cuda.amp import autocast
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_accelerate_available,
is_scipy_available,
logging,
replace_return_docstrings,
requires_backends,
)
from ...utils.backbone_utils import load_backbone
from .configuration_oneformer import OneFormerConfig
if is_accelerate_available():
from accelerate import PartialState
from accelerate.utils import reduce
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "OneFormerConfig"
_CHECKPOINT_FOR_DOC = "shi-labs/oneformer_ade20k_swin_tiny"
if is_scipy_available():
from scipy.optimize import linear_sum_assignment
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def multi_scale_deformable_attention(
value: Tensor,
value_spatial_shapes: Union[Tensor, List[Tuple]],
sampling_locations: Tensor,
attention_weights: Tensor,
) -> Tensor:
batch_size, _, num_heads, hidden_dim = value.shape
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
value_list = value.split([height * width for height, width in value_spatial_shapes], dim=1)
sampling_grids = 2 * sampling_locations - 1
sampling_value_list = []
for level_id, (height, width) in enumerate(value_spatial_shapes):
# batch_size, height*width, num_heads, hidden_dim
# -> batch_size, height*width, num_heads*hidden_dim
# -> batch_size, num_heads*hidden_dim, height*width
# -> batch_size*num_heads, hidden_dim, height, width
value_l_ = (
value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width)
)
# batch_size, num_queries, num_heads, num_points, 2
# -> batch_size, num_heads, num_queries, num_points, 2
# -> batch_size*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
# batch_size*num_heads, hidden_dim, num_queries, num_points
sampling_value_l_ = nn.functional.grid_sample(
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
)
sampling_value_list.append(sampling_value_l_)
# (batch_size, num_queries, num_heads, num_levels, num_points)
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.transpose(1, 2).reshape(
batch_size * num_heads, 1, num_queries, num_levels * num_points
)
output = (
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
.sum(-1)
.view(batch_size, num_heads * hidden_dim, num_queries)
)
return output.transpose(1, 2).contiguous()
# Copied from transformers.models.maskformer.modeling_maskformer.dice_loss
def dice_loss(inputs: Tensor, labels: Tensor, num_masks: int) -> Tensor:
r"""
Compute the DICE loss, similar to generalized IOU for masks as follows:
$$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x \cap y }{x \cup y + 1}} $$
In practice, since `labels` is a binary mask, (only 0s and 1s), dice can be computed as follow
$$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x * y }{x + y + 1}} $$
Args:
inputs (`torch.Tensor`):
A tensor representing a mask.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
num_masks (`int`):
The number of masks present in the current batch, used for normalization.
Returns:
`torch.Tensor`: The computed loss.
"""
probs = inputs.sigmoid().flatten(1)
numerator = 2 * (probs * labels).sum(-1)
denominator = probs.sum(-1) + labels.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
loss = loss.sum() / num_masks
return loss
# Copied from transformers.models.mask2former.modeling_mask2former.sigmoid_cross_entropy_loss
def sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor, num_masks: int) -> torch.Tensor:
r"""
Args:
inputs (`torch.Tensor`):
A float tensor of arbitrary shape.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
loss (`torch.Tensor`): The computed loss.
"""
criterion = nn.BCEWithLogitsLoss(reduction="none")
cross_entropy_loss = criterion(inputs, labels)
loss = cross_entropy_loss.mean(1).sum() / num_masks
return loss
# Copied from transformers.models.maskformer.modeling_maskformer.pair_wise_dice_loss
def pair_wise_dice_loss(inputs: Tensor, labels: Tensor) -> Tensor:
"""
A pair wise version of the dice loss, see `dice_loss` for usage.
Args:
inputs (`torch.Tensor`):
A tensor representing a mask
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
`torch.Tensor`: The computed loss between each pairs.
"""
inputs = inputs.sigmoid().flatten(1)
numerator = 2 * torch.matmul(inputs, labels.T)
# using broadcasting to get a [num_queries, NUM_CLASSES] matrix
denominator = inputs.sum(-1)[:, None] + labels.sum(-1)[None, :]
loss = 1 - (numerator + 1) / (denominator + 1)
return loss
# Copied from transformers.models.mask2former.modeling_mask2former.pair_wise_sigmoid_cross_entropy_loss
def pair_wise_sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
r"""
A pair wise version of the cross entropy loss, see `sigmoid_cross_entropy_loss` for usage.
Args:
inputs (`torch.Tensor`):
A tensor representing a mask.
labels (`torch.Tensor`):
A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
loss (`torch.Tensor`): The computed loss between each pairs.
"""
height_and_width = inputs.shape[1]
criterion = nn.BCEWithLogitsLoss(reduction="none")
cross_entropy_loss_pos = criterion(inputs, torch.ones_like(inputs))
cross_entropy_loss_neg = criterion(inputs, torch.zeros_like(inputs))
loss_pos = torch.matmul(cross_entropy_loss_pos / height_and_width, labels.T)
loss_neg = torch.matmul(cross_entropy_loss_neg / height_and_width, (1 - labels).T)
loss = loss_pos + loss_neg
return loss
# Copied from transformers.models.mask2former.modeling_mask2former.sample_point
def sample_point(
input_features: torch.Tensor, point_coordinates: torch.Tensor, add_dim=False, **kwargs
) -> torch.Tensor:
"""
A wrapper around `torch.nn.functional.grid_sample` to support 3D point_coordinates tensors.
Args:
input_features (`torch.Tensor` of shape (batch_size, channels, height, width)):
A tensor that contains features map on a height * width grid
point_coordinates (`torch.Tensor` of shape (batch_size, num_points, 2) or (batch_size, grid_height, grid_width,:
2)):
A tensor that contains [0, 1] * [0, 1] normalized point coordinates
add_dim (`bool`):
boolean value to keep track of added dimension
Returns:
point_features (`torch.Tensor` of shape (batch_size, channels, num_points) or (batch_size, channels,
height_grid, width_grid):
A tensor that contains features for points in `point_coordinates`.
"""
if point_coordinates.dim() == 3:
add_dim = True
point_coordinates = point_coordinates.unsqueeze(2)
# use nn.function.grid_sample to get features for points in `point_coordinates` via bilinear interpolation
point_features = torch.nn.functional.grid_sample(input_features, 2.0 * point_coordinates - 1.0, **kwargs)
if add_dim:
point_features = point_features.squeeze(3)
return point_features
# Refactored from https://github.com/SHI-Labs/OneFormer/blob/33ebb56ed34f970a30ae103e786c0cb64c653d9a/oneformer/modeling/matcher.py#L93
class OneFormerHungarianMatcher(nn.Module):
def __init__(
self, cost_class: float = 1.0, cost_mask: float = 1.0, cost_dice: float = 1.0, num_points: int = 12544
):
"""This class computes an assignment between the labels and the predictions of the network.
For efficiency reasons, the labels don't include the no_object. Because of this, in general, there are more
predictions than labels. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
Params:
cost_class (float, *optional*, defaults to 1.0):
This is the relative weight of the classification error in the matching cost.
cost_mask (float, *optional*, defaults to 1.0):
This is the relative weight of the sigmoid ce loss of the binary mask in the matching cost.
cost_dice (float, *optional*, defaults to 1.0):
This is the relative weight of the dice loss of the binary mask in the matching cost
num_points (int, *optional*, defaults to 12544):
Number of points to be sampled for dice and mask loss matching cost.
"""
super().__init__()
if cost_class == 0 and cost_mask == 0 and cost_dice == 0:
raise ValueError("All costs cant be 0")
self.cost_class = cost_class
self.cost_mask = cost_mask
self.cost_dice = cost_dice
self.num_points = num_points
@torch.no_grad()
def forward(self, masks_queries_logits, class_queries_logits, mask_labels, class_labels) -> List[Tuple[Tensor]]:
"""Performs the matching
Params:
masks_queries_logits (`torch.Tensor`):
A tensor` of dim `batch_size, num_queries, num_labels` with the
classification logits.
class_queries_logits (`torch.Tensor`):
A tensor` of dim `batch_size, num_queries, height, width` with the
predicted masks.
class_labels (`torch.Tensor`):
A tensor` of dim `num_target_boxes` (where num_target_boxes is the number
of ground-truth objects in the target) containing the class labels.
mask_labels (`torch.Tensor`):
A tensor` of dim `num_target_boxes, height, width` containing the target
masks.
Returns:
`List[Tuple[Tensor]]`: A list of size batch_size, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected labels (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_targets).
"""
indices: List[Tuple[np.array]] = []
num_queries = class_queries_logits.shape[1]
preds_masks = masks_queries_logits
preds_probs = class_queries_logits
# iterate through batch size
for pred_probs, pred_mask, target_mask, labels in zip(preds_probs, preds_masks, mask_labels, class_labels):
pred_probs = pred_probs.softmax(-1)
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
cost_class = -pred_probs[:, labels]
pred_mask = pred_mask[:, None]
target_mask = target_mask[:, None].to(pred_mask.device)
# all masks share the same set of points for efficient matching!
point_coords = torch.rand(1, self.num_points, 2, device=pred_mask.device)
# get ground truth labels
target_mask = sample_point(
target_mask,
point_coords.repeat(target_mask.shape[0], 1, 1),
align_corners=False,
).squeeze(1)
pred_mask = sample_point(
pred_mask,
point_coords.repeat(pred_mask.shape[0], 1, 1),
align_corners=False,
).squeeze(1)
with autocast(enabled=False):
pred_mask = pred_mask.float()
target_mask = target_mask.float()
# compute the sigmoid ce loss
cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask)
# Compute the dice loss
cost_dice = pair_wise_dice_loss(pred_mask, target_mask)
# final cost matrix
cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice
cost_matrix = cost_matrix.reshape(num_queries, -1).cpu()
# do the assigmented using the hungarian algorithm in scipy
assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.cpu())
indices.append(assigned_indices)
# It could be stacked in one tensor
matched_indices = [
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices
]
return matched_indices
class OneFormerLoss(nn.Module):
def __init__(
self,
num_classes: int,
matcher: OneFormerHungarianMatcher,
weight_dict: Dict[str, float],
eos_coef: float,
num_points: int,
oversample_ratio: float,
importance_sample_ratio: float,
contrastive_temperature: Optional[float] = None,
):
"""
This class computes the losses using the class predictions, mask predictions and the contrastive queries.
Oneformer calculates the classification CE loss on the class predictions. Mask predictions are used for
calculating the binary CE loss and dice loss. The contrastive queries are used for calculating the contrastive
loss.
Args:
num_labels (`int`):
The number of classes.
matcher (`OneFormerHungarianMatcher`):
A torch module that computes the assigments between the predictions and labels.
weight_dict (`Dict[str, float]`):
A dictionary of weights to be applied to the different losses.
eos_coef (`float`):
Weight to apply to the null class.
num_points (`int`):
Number of points to be sampled for dice and mask loss calculations.
oversample_ratio (`float`):
Required for pointwise loss calculation.
importance_sample_ratio (`float`):
Required for pointwise loss calculation.
contrastive_temperature (`float`):
Temperature for scaling the contrastive logits.
"""
requires_backends(self, ["scipy"])
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# pointwise mask loss parameters
self.num_points = num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
self.contrastive_temperature = contrastive_temperature
if self.contrastive_temperature is not None:
self.logit_scale = nn.Parameter(torch.tensor(np.log(1 / contrastive_temperature)))
def _max_by_axis(self, the_list: List[List[int]]) -> List[int]:
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
def _pad_images_to_max_in_batch(self, tensors: List[Tensor]) -> Tuple[Tensor, Tensor]:
# get the maximum size in the batch
max_size = self._max_by_axis([list(tensor.shape) for tensor in tensors])
batch_size = len(tensors)
# compute finel size
batch_shape = [batch_size] + max_size
b, _, h, w = batch_shape
# get metadata
dtype = tensors[0].dtype
device = tensors[0].device
padded_tensors = torch.zeros(batch_shape, dtype=dtype, device=device)
padding_masks = torch.ones((b, h, w), dtype=torch.bool, device=device)
# pad the tensors to the size of the biggest one
for tensor, padded_tensor, padding_mask in zip(tensors, padded_tensors, padding_masks):
padded_tensor[: tensor.shape[0], : tensor.shape[1], : tensor.shape[2]].copy_(tensor)
padding_mask[: tensor.shape[1], : tensor.shape[2]] = False
return padded_tensors, padding_masks
def loss_contrastive(self, contrastive_queries_logits: Tensor, text_queries: Tensor):
"""Compute the query-text contrastive loss.
Args:
contrastive_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, hidden_dim`
text_queries (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, hidden_dim`
Returns:
`Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key:
- **loss_contrastive** -- The query-text contrastive loss computed using task-guided queries
and text queries derived from input text list.
"""
image_queries = contrastive_queries_logits.float()
# [batch_size, hidden_dim]
image_queries = nn.functional.normalize(image_queries.flatten(1), dim=-1)
text_queries = nn.functional.normalize(text_queries.flatten(1), dim=-1)
logit_scale = torch.clamp(self.logit_scale.exp(), max=100)
logits_per_text = torch.matmul(text_queries, image_queries.t()) * logit_scale
logits_per_img = logits_per_text.t()
loss_img = nn.functional.cross_entropy(
logits_per_img, torch.arange(len(logits_per_img), device=logits_per_text.device)
)
loss_text = nn.functional.cross_entropy(
logits_per_text, torch.arange(len(logits_per_text), device=logits_per_text.device)
)
loss_contrastive = loss_img + loss_text
losses = {"loss_contrastive": loss_contrastive}
return losses
def loss_labels(
self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array]
) -> Dict[str, Tensor]:
"""Compute the losses related to the labels using cross entropy.
Args:
class_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, num_labels`
class_labels (`List[torch.Tensor]`):
List of class labels of shape `(labels)`.
indices (`Tuple[np.array])`:
The indices computed by the Hungarian matcher.
Returns:
`Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key:
- **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels.
"""
pred_logits = class_queries_logits
batch_size, num_queries, _ = pred_logits.shape
criterion = nn.CrossEntropyLoss(weight=self.empty_weight)
idx = self._get_predictions_permutation_indices(indices)
# shape = (batch_size, num_queries)
target_classes_o = torch.cat([target[j] for target, (_, j) in zip(class_labels, indices)])
# shape = (batch_size, num_queries)
target_classes = torch.full(
(batch_size, num_queries), fill_value=self.num_classes, dtype=torch.int64, device=pred_logits.device
)
target_classes[idx] = target_classes_o
# permute pred_logits (batch_size, num_queries, num_labels) -> (batch_size, num_labels, num_queries)
pred_logits_transposed = pred_logits.transpose(1, 2)
loss_ce = criterion(pred_logits_transposed, target_classes)
losses = {"loss_cross_entropy": loss_ce}
return losses
def loss_masks(
self, masks_queries_logits: Tensor, mask_labels: List[Tensor], indices: Tuple[np.array], num_masks: int
) -> Dict[str, Tensor]:
"""Compute the losses related to the masks using focal and dice loss.
Args:
masks_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, height, width`
mask_labels (`torch.Tensor`):
List of mask labels of shape `(labels, height, width)`.
indices (`Tuple[np.array])`:
The indices computed by the Hungarian matcher.
num_masks (`int)`:
The number of masks, used for normalization.
Returns:
`Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys:
- **loss_mask** -- The loss computed using sigmoid ce loss on the predicted and ground truth masks.
- **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth
masks.
"""
src_idx = self._get_predictions_permutation_indices(indices)
tgt_idx = self._get_targets_permutation_indices(indices)
# shape (batch_size * num_queries, height, width)
pred_masks = masks_queries_logits[src_idx]
# shape (batch_size, num_queries, height, width)
# pad all and stack the targets to the num_labels dimension
# upsample predictions to the target size, we have to add one dim to use interpolate
target_masks, _ = self._pad_images_to_max_in_batch(mask_labels)
target_masks = target_masks[tgt_idx]
pred_masks = pred_masks[:, None]
target_masks = target_masks[:, None]
with torch.no_grad():
# sample point_coords
point_coords = self.sample_points_using_uncertainty(
pred_masks,
self.calculate_uncertainty,
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
)
# get ground-truth labels
point_labels = sample_point(target_masks, point_coords, align_corners=False).squeeze(1)
point_logits = sample_point(pred_masks, point_coords, align_corners=False).squeeze(1)
losses = {
"loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks),
"loss_dice": dice_loss(point_logits, point_labels, num_masks),
}
del pred_masks
del target_masks
return losses
# Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerLoss.calculate_uncertainty
def calculate_uncertainty(self, logits: torch.Tensor) -> torch.Tensor:
"""
In Mask2Former paper, uncertainty is estimated as L1 distance between 0.0 and the logit prediction in 'logits'
for the foreground class in `classes`.
Args:
logits (`torch.Tensor`):
A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is:
the number of foreground classes. The values are logits.
Returns:
scores (`torch.Tensor`): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most
uncertain locations having the highest uncertainty score.
"""
uncertainty_scores = -(torch.abs(logits))
return uncertainty_scores
# Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerLoss.sample_points_using_uncertainty
def sample_points_using_uncertainty(
self,
logits: torch.Tensor,
uncertainty_function,
num_points: int,
oversample_ratio: int,
importance_sample_ratio: float,
) -> torch.Tensor:
"""
This function is meant for sampling points in [0, 1] * [0, 1] coordinate space based on their uncertainty. The
uncertainty is calculated for each point using the passed `uncertainty function` that takes points logit
prediction as input.
Args:
logits (`float`):
Logit predictions for P points.
uncertainty_function:
A function that takes logit predictions for P points and returns their uncertainties.
num_points (`int`):
The number of points P to sample.
oversample_ratio (`int`):
Oversampling parameter.
importance_sample_ratio (`float`):
Ratio of points that are sampled via importance sampling.
Returns:
point_coordinates (`torch.Tensor`):
Coordinates for P sampled points.
"""
num_boxes = logits.shape[0]
num_points_sampled = int(num_points * oversample_ratio)
# Get random point coordinates
point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device)
# Get sampled prediction value for the point coordinates
point_logits = sample_point(logits, point_coordinates, align_corners=False)
# Calculate the uncertainties based on the sampled prediction values of the points
point_uncertainties = uncertainty_function(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device)
idx += shift[:, None]
point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2)
if num_random_points > 0:
point_coordinates = torch.cat(
[point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)],
dim=1,
)
return point_coordinates
def _get_predictions_permutation_indices(self, indices):
# permute predictions following indices
batch_indices = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
predictions_indices = torch.cat([src for (src, _) in indices])
return batch_indices, predictions_indices
def _get_targets_permutation_indices(self, indices):
# permute labels following indices
batch_indices = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
target_indices = torch.cat([tgt for (_, tgt) in indices])
return batch_indices, target_indices
def forward(
self,
masks_queries_logits: Tensor,
class_queries_logits: Tensor,
contrastive_queries_logits: Tensor,
mask_labels: List[Tensor],
class_labels: List[Tensor],
text_queries: Tensor,
auxiliary_predictions: Optional[Dict[str, Tensor]] = None,
calculate_contrastive_loss: bool = True,
) -> Dict[str, Tensor]:
"""
This performs the loss computation.
Args:
masks_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, height, width`
class_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, num_labels`
contrastive_queries_logits (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, hidden_dim`
mask_labels (`torch.Tensor`):
List of mask labels of shape `(labels, height, width)`.
class_labels (`List[torch.Tensor]`):
List of class labels of shape `(labels)`.
text_queries (`torch.Tensor`):
A tensor of shape `batch_size, num_queries, hidden_dim`
auxiliary_predictions (`Dict[str, torch.Tensor]`, *optional*):
if `use_auxiliary_loss` was set to `true` in [`OneFormerConfig`], then it contains the logits from the
inner layers of the Detr's Decoder.
calculate_contrastive_loss (`bool`, *optional*, defaults to `True`):
Whether or not to calculate the contrastive loss.
Returns:
`Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys:
- **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels.
- **loss_mask** -- The loss computed using sigmoid ce loss on the predicted and ground truth masks.
- **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth
masks.
- **loss_contrastive** -- The query-text contrstive loss computed using object and text queries.
if `use_auxiliary_loss` was set to `true` in [`OneFormerConfig`], the dictionary contains addional losses
for each auxiliary predictions.
"""
# retrieve the matching between the outputs of the last layer and the labels
indices = self.matcher(masks_queries_logits, class_queries_logits, mask_labels, class_labels)
# compute the average number of target masks for normalization purposes
num_masks = self.get_num_masks(class_labels, device=class_labels[0].device)
# get all the losses
losses: Dict[str, Tensor] = {
**self.loss_masks(masks_queries_logits, mask_labels, indices, num_masks),
**self.loss_labels(class_queries_logits, class_labels, indices),
}
if calculate_contrastive_loss:
losses = {**losses, **self.loss_contrastive(contrastive_queries_logits, text_queries)}
# in case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if auxiliary_predictions is not None:
for idx, aux_outputs in enumerate(auxiliary_predictions):
masks_queries_logits = aux_outputs["masks_queries_logits"]
class_queries_logits = aux_outputs["class_queries_logits"]
loss_dict = self.forward(
masks_queries_logits,
class_queries_logits,
None,
mask_labels,
class_labels,
None,
calculate_contrastive_loss=False,
)
loss_dict = {f"{key}_{idx}": value for key, value in loss_dict.items()}
losses.update(loss_dict)
return losses
def get_num_masks(self, class_labels: torch.Tensor, device: torch.device) -> torch.Tensor:
"""
Computes the average number of target masks across the batch, for normalization purposes.
"""
num_masks = sum([len(classes) for classes in class_labels])
num_masks = torch.as_tensor([num_masks], dtype=torch.float, device=device)
world_size = 1
if is_accelerate_available():
if PartialState._shared_state != {}:
num_masks = reduce(num_masks)
world_size = PartialState().num_processes
num_masks = torch.clamp(num_masks / world_size, min=1)
return num_masks
@dataclass
class OneFormerTransformerDecoderOutput(BaseModelOutput):
"""
Base class for outputs of the Transformer decoder. This class adds attributes for class predictions, mask
predictions and contrastive logits to BaseModelOutputWithCrossAttentions.
Args:
object_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`):
Queries representation for the region proposals.
contrastive_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`):
Queries representation for the contrastive loss.
prediction_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`):
Mask predictions from last layer of the transformer decoder.
prediction_class (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`):
Class predictions from last layer of the transformer decoder.
auxiliary_predictions (Tuple of Dict of `str, torch.FloatTensor`, *optional*):
Tuple of class and mask predictions from each layer of the transformer decoder.
"""
object_queries: Optional[torch.FloatTensor] = None
contrastive_logits: Optional[torch.FloatTensor] = None
prediction_masks: Optional[torch.FloatTensor] = None
prediction_class: Optional[torch.FloatTensor] = None
auxiliary_predictions: Optional[Tuple[Dict[str, torch.FloatTensor]]] = None
@dataclass
# Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelDecoderOutput with Mask2->One
class OneFormerPixelDecoderOutput(ModelOutput):
"""
OneFormer's pixel decoder module output, practically a Multi-Scale Deformable Attention based decoder. It returns
the mask features and the multiscale features.
Args:
multi_scale_features (`tuple(torch.FloatTensor)`):
Tuple of multi-scale features of scales [1/8, 1/16, 1/32] and shape `(batch_size, num_channels, height,
width)`from the Multi-Scale Deformable Attenntion based Pixel Decoder.
mask_features (`torch.FloatTensor`):
Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel Decoder
Layer.
attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights from pixel decoder. Returned when `output_attentions=True` is passed
or when `config.output_attentions=True`
"""
multi_scale_features: Tuple[torch.FloatTensor] = None
mask_features: Optional[torch.FloatTensor] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class OneFormerPixelLevelModuleOutput(ModelOutput):
"""
OneFormer's pixel level module output. It returns both the last and (optionally) the hidden states from the
`encoder` and `decoder`. By default, the `encoder` is a Swin/Dinat Backbone and the `decoder` is a Multi-Scale
Deformable Attention based decoder.
Args:
encoder_features (List of `(torch.FloatTensor)`):
List of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden-states (also
called feature maps) of the model at the output of each stage.
decoder_features (List of `(torch.FloatTensor)`):
List of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden-states (also
called feature maps) of the model at the output of each stage.
decoder_last_feature (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)):
1/4 scale features from the last Pixel Decoder Layer.
"""
encoder_features: List[torch.FloatTensor] = None
decoder_features: List[torch.FloatTensor] = None
decoder_last_feature: Optional[torch.FloatTensor] = None
@dataclass
class OneFormerModelOutput(ModelOutput):
"""
Class for outputs of [`OneFormerModel`]. This class returns all the needed hidden states to compute the logits.
Args:
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
model at the output of each stage.
pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
decoder model at the output of each stage.
transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
transformer decoder at the output of each stage.
transformer_decoder_object_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
Output object queries from the last layer in the transformer decoder.
transformer_decoder_contrastive_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
Contrastive queries from the transformer decoder.
transformer_decoder_mask_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`)
Mask Predictions from the last layer in the transformer decoder.
transformer_decoder_class_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`):
Class Predictions from the last layer in the transformer decoder.
transformer_decoder_auxiliary_predictions (Tuple of Dict of `str, torch.FloatTensor`, *optional*):
Tuple of class and mask predictions from each layer of the transformer decoder.
text_queries (`torch.FloatTensor`, *optional* of shape `(batch_size, num_queries, hidden_dim)`)
Text queries derived from the input text list used for calculating contrastive loss during training.
task_token (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`)
1D task token to condition the queries.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Self and Cross Attentions weights from transformer decoder.
"""
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None
transformer_decoder_object_queries: Optional[torch.FloatTensor] = None
transformer_decoder_contrastive_queries: Optional[torch.FloatTensor] = None
transformer_decoder_mask_predictions: Optional[torch.FloatTensor] = None
transformer_decoder_class_predictions: Optional[torch.FloatTensor] = None
transformer_decoder_auxiliary_predictions: Optional[Tuple[Dict[str, torch.FloatTensor]]] = None
text_queries: Optional[torch.FloatTensor] = None
task_token: Optional[torch.FloatTensor] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class OneFormerForUniversalSegmentationOutput(ModelOutput):
"""
Class for outputs of [`OneFormerForUniversalSegmentationOutput`].
This output can be directly passed to [`~OneFormerImageProcessor.post_process_semantic_segmentation`] or
[`~OneFormerImageProcessor.post_process_instance_segmentation`] or
[`~OneFormerImageProcessor.post_process_panoptic_segmentation`] depending on the task. Please, see
[`~OneFormerImageProcessor] for details regarding usage.
Args:
loss (`torch.Tensor`, *optional*):
The computed loss, returned when labels are present.
class_queries_logits (`torch.FloatTensor`):
A tensor of shape `(batch_size, num_queries, num_labels + 1)` representing the proposed classes for each
query. Note the `+ 1` is needed because we incorporate the null class.
masks_queries_logits (`torch.FloatTensor`):
A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each
query.
auxiliary_predictions (List of Dict of `str, torch.FloatTensor`, *optional*):
List of class and mask predictions from each layer of the transformer decoder.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder
model at the output of each stage.
pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel
decoder model at the output of each stage.
transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the
transformer decoder at the output of each stage.
transformer_decoder_object_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
Output object queries from the last layer in the transformer decoder.
transformer_decoder_contrastive_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`)
Contrastive queries from the transformer decoder.
transformer_decoder_mask_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`)
Mask Predictions from the last layer in the transformer decoder.
transformer_decoder_class_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`):
Class Predictions from the last layer in the transformer decoder.
transformer_decoder_auxiliary_predictions (List of Dict of `str, torch.FloatTensor`, *optional*):
List of class and mask predictions from each layer of the transformer decoder.
text_queries (`torch.FloatTensor`, *optional* of shape `(batch_size, num_queries, hidden_dim)`)
Text queries derived from the input text list used for calculating contrastive loss during training.
task_token (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`)
1D task token to condition the queries.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Self and Cross Attentions weights from transformer decoder.
"""
loss: Optional[torch.FloatTensor] = None
class_queries_logits: Optional[torch.FloatTensor] = None
masks_queries_logits: Optional[torch.FloatTensor] = None
auxiliary_predictions: List[Dict[str, torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
pixel_decoder_hidden_states: Optional[List[torch.FloatTensor]] = None
transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None
transformer_decoder_object_queries: Optional[torch.FloatTensor] = None
transformer_decoder_contrastive_queries: Optional[torch.FloatTensor] = None
transformer_decoder_mask_predictions: Optional[torch.FloatTensor] = None
transformer_decoder_class_predictions: Optional[torch.FloatTensor] = None
transformer_decoder_auxiliary_predictions: Optional[List[Dict[str, torch.FloatTensor]]] = None
text_queries: Optional[torch.FloatTensor] = None
task_token: Optional[torch.FloatTensor] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
# Modified from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrFrozenBatchNorm2d with DeformableDetr->OneFormerPixelDecoder
class OneFormerPixelDecoderFrozenBatchNorm2d(nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
torchvision.models.resnet[18,34,50,101] produce nans.
"""
def __init__(self, n):
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
weight = self.weight.reshape(1, -1, 1, 1)
bias = self.bias.reshape(1, -1, 1, 1)
running_var = self.running_var.reshape(1, -1, 1, 1)
running_mean = self.running_mean.reshape(1, -1, 1, 1)
epsilon = 1e-5
scale = weight * (running_var + epsilon).rsqrt()
bias = bias - running_mean * scale
return x * scale + bias
# Modified from transformers.models.detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention with DeformableDetr->OneFormerPixelDecoderEncoder
class OneFormerPixelDecoderEncoderMultiscaleDeformableAttention(nn.Module):
"""
Multiscale deformable attention as proposed in Deformable DETR.
"""
def __init__(self, embed_dim: int, num_heads: int, n_levels: int, n_points: int):
super().__init__()
if embed_dim % num_heads != 0:
raise ValueError(
f"embed_dim (d_model) must be divisible by num_heads, but got {embed_dim} and {num_heads}"
)
dim_per_head = embed_dim // num_heads
# check if dim_per_head is power of 2
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
warnings.warn(
"You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the"
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
" implementation."
)
self.im2col_step = 128
self.d_model = embed_dim
self.n_levels = n_levels
self.n_heads = num_heads
self.n_points = n_points
self.sampling_offsets = nn.Linear(embed_dim, num_heads * n_levels * n_points * 2)
self.attention_weights = nn.Linear(embed_dim, num_heads * n_levels * n_points)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.output_proj = nn.Linear(embed_dim, embed_dim)
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
):
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
batch_size, num_queries, _ = hidden_states.shape
batch_size, sequence_length, _ = encoder_hidden_states.shape
if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
raise ValueError(
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
)
value = self.value_proj(encoder_hidden_states)
if attention_mask is not None:
# we invert the attention_mask
value = value.masked_fill(attention_mask[..., None], float(0))
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
)
attention_weights = self.attention_weights(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
)
attention_weights = nn.functional.softmax(attention_weights, -1).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
if reference_points.shape[-1] == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif reference_points.shape[-1] == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
)
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
# PyTorch implementation
output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights)
output = self.output_proj(output)
return output, attention_weights
class OneFormerPixelDecoderEncoderLayer(nn.Module):
def __init__(self, config: OneFormerConfig):
super().__init__()
self.embed_dim = config.conv_dim
self.self_attn = OneFormerPixelDecoderEncoderMultiscaleDeformableAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
n_levels=3,
n_points=4,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.dropout = config.dropout
self.activation_fn = nn.functional.relu
self.activation_dropout = config.dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_feedforward_dim)
self.fc2 = nn.Linear(config.encoder_feedforward_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.is_training = config.is_training
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Input to the layer.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Attention mask.
position_embeddings (`torch.FloatTensor`, *optional*):
Position embeddings, to be added to `hidden_states`.
reference_points (`torch.FloatTensor`, *optional*):
Reference points.
spatial_shapes (`torch.LongTensor`, *optional*):
Spatial shapes of the backbone feature maps.
level_start_index (`torch.LongTensor`, *optional*):
Level start index.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Apply Multi-scale Deformable Attention Module on the multi-scale feature maps.
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.is_training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.is_training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.is_training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.is_training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrEncoder with DeformableDetrEncoder->OneFormerPixelDecoderEncoderOnly
class OneFormerPixelDecoderEncoderOnly(nn.Module):
"""
Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
[`OneFormerPixelDecoderEncoderLayer`].
The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers.
Args:
config: OneFormerConfig
"""
def __init__(self, config: OneFormerConfig):
super().__init__()
self.config = config
self.dropout = config.dropout
self.layers = nn.ModuleList([OneFormerPixelDecoderEncoderLayer(config) for _ in range(config.encoder_layers)])
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
"""
Get reference points for each feature map. Used in decoder.
Args:
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Valid ratios of each feature map.
device (`torch.device`):
Device on which to create the tensors.
Returns:
`torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
"""
reference_points_list = []
for lvl, (height, width) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(
torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device),
torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device),
)
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * height)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * width)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(
self,
inputs_embeds=None,
attention_mask=None,
position_embeddings=None,
spatial_shapes=None,
level_start_index=None,
valid_ratios=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Position embeddings that are added to the queries and keys in each self-attention layer.
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
Spatial shapes of each feature map.
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
Starting index of each feature map.
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
Ratio of valid area in each feature level.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeds
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=inputs_embeds.device)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
position_embeddings=position_embeddings,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Modified from from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelDecoder with Mask2->One
class OneFormerPixelDecoder(nn.Module):
def __init__(self, config: OneFormerConfig, feature_channels):
super().__init__()
self.config = config
# positional encoding
self.position_embedding = OneFormerSinePositionEmbedding(num_pos_feats=config.conv_dim // 2, normalize=True)
self.num_feature_levels = 3
transformer_in_channels = feature_channels[-self.num_feature_levels :]
self.transformer_feature_strides = config.strides[-self.num_feature_levels :]
self.feature_channels = feature_channels
self.level_embed = nn.Parameter(torch.Tensor(self.num_feature_levels, config.conv_dim))
# Create input projection layers
if self.num_feature_levels > 1:
input_projections_list = []
for in_channels in transformer_in_channels[::-1]:
input_projections_list.append(
nn.Sequential(
nn.Conv2d(in_channels, config.conv_dim, kernel_size=1),
nn.GroupNorm(32, config.conv_dim),
)
)
self.input_projections = nn.ModuleList(input_projections_list)
else:
self.input_projections = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(transformer_in_channels[-1], config.conv_dim, kernel_size=1),
nn.GroupNorm(32, config.conv_dim),
)
]
)
self.encoder = OneFormerPixelDecoderEncoderOnly(config)
self.mask_projection = nn.Conv2d(
config.conv_dim,
config.mask_dim,
kernel_size=1,
stride=1,
padding=0,
)
self.common_stride = config.common_stride
# extra fpn levels
stride = min(self.transformer_feature_strides)
self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride))
lateral_convs = []
output_convs = []
for idx, in_channels in enumerate(self.feature_channels[: self.num_fpn_levels]):
lateral_conv = nn.Sequential(
nn.Conv2d(
in_channels,
config.conv_dim,
kernel_size=1,
bias=False,
),
nn.GroupNorm(32, config.conv_dim),
)
output_conv = nn.Sequential(
nn.Conv2d(
config.conv_dim,
config.conv_dim,
kernel_size=3,
stride=1,
padding=1,
bias=False,
),
nn.GroupNorm(32, config.conv_dim),
nn.ReLU(),
)
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
self.add_module("layer_{}".format(idx + 1), output_conv)
lateral_convs.append(lateral_conv)
output_convs.append(output_conv)
# Place convs into top-down order (from low to high resolution)
# to make the top-down computation in forward clearer.
self.lateral_convs = lateral_convs[::-1]
self.output_convs = output_convs[::-1]
def get_valid_ratio(self, mask, dtype=torch.float32):
"""Get the valid ratio of all feature maps."""
_, height, width = mask.shape
valid_height = torch.sum(~mask[:, :, 0], 1)
valid_width = torch.sum(~mask[:, 0, :], 1)
valid_ratio_heigth = valid_height.to(dtype) / height
valid_ratio_width = valid_width.to(dtype) / width
valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1)
return valid_ratio
def forward(
self,
features,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
sources = []
position_embeddings_list = []
for level, source in enumerate(features[::-1][: self.num_feature_levels]):
sources.append(self.input_projections[level](source))
position_embeddings_list.append(self.position_embedding(source))
masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in sources]
# Prepare encoder inputs (by flattening)
source_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for level, (source, mask, pos_embed) in enumerate(zip(sources, masks, position_embeddings_list)):
batch_size, num_channels, height, width = source.shape
spatial_shape = (height, width)
spatial_shapes.append(spatial_shape)
source = source.flatten(2).transpose(1, 2)
mask = mask.flatten(1)
pos_embed = pos_embed.flatten(2).transpose(1, 2)
lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1)
lvl_pos_embed_flatten.append(lvl_pos_embed)
source_flatten.append(source)
mask_flatten.append(mask)
source_flatten = torch.cat(source_flatten, 1)
mask_flatten = torch.cat(mask_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=source_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(m, dtype=source_flatten.dtype) for m in masks], 1)
# Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder
# Also provide spatial_shapes, level_start_index and valid_ratios
if encoder_outputs is None:
encoder_outputs = self.encoder(
inputs_embeds=source_flatten,
attention_mask=mask_flatten,
position_embeddings=lvl_pos_embed_flatten,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
y = encoder_outputs.last_hidden_state
bs = y.shape[0]
split_size_or_sections = [None] * self.num_feature_levels
for i in range(self.num_feature_levels):
if i < self.num_feature_levels - 1:
split_size_or_sections[i] = level_start_index[i + 1] - level_start_index[i]
else:
split_size_or_sections[i] = y.shape[1] - level_start_index[i]
y = torch.split(y, split_size_or_sections, dim=1)
out = []
multi_scale_features = []
num_cur_levels = 0
for i, z in enumerate(y):
out.append(z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0], spatial_shapes[i][1]))
# append `out` with extra FPN levels
# Reverse feature maps into top-down order (from low to high resolution)
for idx, feats in enumerate(features[: self.num_fpn_levels][::-1]):
lateral_conv = self.lateral_convs[idx]
output_conv = self.output_convs[idx]
cur_fpn = lateral_conv(feats)
# Following FPN implementation, we use nearest upsampling here
y = cur_fpn + nn.functional.interpolate(
out[-1], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False
)
y = output_conv(y)
out.append(y)
for o in out:
if num_cur_levels < self.num_feature_levels:
multi_scale_features.append(o)
num_cur_levels += 1
return OneFormerPixelDecoderOutput(
mask_features=self.mask_projection(out[-1]),
multi_scale_features=multi_scale_features,
attentions=encoder_outputs.attentions,
)
# Modified from from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelLevelModule with Mask2->One
class OneFormerPixelLevelModule(nn.Module):
def __init__(self, config: OneFormerConfig):
"""
Pixel Level Module proposed in [Masked-attention Mask Transformer for Universal Image
Segmentation](https://arxiv.org/abs/2112.01527). It runs the input image through a backbone and a pixel
decoder, generating multi-scale feature maps and pixel embeddings.
Args:
config ([`OneFormerConfig`]):
The configuration used to instantiate this model.
"""
super().__init__()
self.encoder = load_backbone(config)
self.decoder = OneFormerPixelDecoder(config, feature_channels=self.encoder.channels)
def forward(self, pixel_values: Tensor, output_hidden_states: bool = False) -> OneFormerPixelLevelModuleOutput:
features: List[Tensor] = self.encoder(pixel_values).feature_maps
decoder_output: OneFormerPixelDecoderOutput = self.decoder(features, output_hidden_states=output_hidden_states)
return OneFormerPixelLevelModuleOutput(
encoder_features=tuple(features),
decoder_features=decoder_output.multi_scale_features,
decoder_last_feature=decoder_output.mask_features,
)
# Modified from transformers.models.detr.modeling_detr.DetrAttention with Detr->OneFormer
class OneFormerAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and
keys (as explained in the DETR paper).
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
key_value_states: Optional[torch.Tensor] = None,
key_value_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
hidden_states = hidden_states.permute(1, 0, 2) if hidden_states is not None else None
position_embeddings = position_embeddings.permute(1, 0, 2) if position_embeddings is not None else None
key_value_states = key_value_states.permute(1, 0, 2) if key_value_states is not None else None
key_value_position_embeddings = (
key_value_position_embeddings.permute(1, 0, 2) if key_value_position_embeddings is not None else None
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states_original = hidden_states
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
# add key-value position embeddings to the key value states
if key_value_position_embeddings is not None:
key_value_states_original = key_value_states
key_value_states = self.with_pos_embed(key_value_states, key_value_position_embeddings)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(target_len, batch_size * self.num_heads, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights += attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output).permute(1, 0, 2)
return attn_output, attn_weights_reshaped
class OneFormerTransformerDecoderSelfAttentionLayer(nn.Module):
def __init__(
self, embed_dim, num_heads, dropout=0.0, activation="relu", normalize_before=False, layer_norm_eps=1e-05
):
super().__init__()
self.self_attn = OneFormerAttention(embed_dim=embed_dim, num_heads=num_heads, dropout=dropout, is_decoder=True)
self.norm = nn.LayerNorm(embed_dim, eps=layer_norm_eps)
self.dropout = nn.Dropout(dropout)
self.activation = ACT2FN[activation]
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
output,
output_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output2, attention_weights = self.self_attn(
hidden_states=output, position_embeddings=query_pos, attention_mask=output_mask, output_attentions=True
)
output = output + self.dropout(output2)
output = self.norm(output)
return output, attention_weights
def forward_pre(
self,
output,
output_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output2 = self.norm(output)
output2, attention_weights = self.self_attn(
hidden_states=output2, position_embeddings=query_pos, attention_mask=output_mask, output_attentions=True
)
output = output + self.dropout(output2)
return output, attention_weights
def forward(
self,
output,
output_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
if self.normalize_before:
return self.forward_pre(output, output_mask, output_key_padding_mask, query_pos)
return self.forward_post(output, output_mask, output_key_padding_mask, query_pos)
class OneFormerTransformerDecoderCrossAttentionLayer(nn.Module):
def __init__(
self, embed_dim, num_heads, dropout=0.0, activation="relu", normalize_before=False, layer_norm_eps=1e-05
):
super().__init__()
self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
self.norm = nn.LayerNorm(embed_dim, eps=layer_norm_eps)
self.dropout = nn.Dropout(dropout)
self.activation = ACT2FN[activation]
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
output,
memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output2, attention_weights = self.multihead_attn(
query=self.with_pos_embed(output, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)
output = output + self.dropout(output2)
output = self.norm(output)
return output, attention_weights
def forward_pre(
self,
output,
memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output2 = self.norm(output)
output2, attention_weights = self.multihead_attn(
query=self.with_pos_embed(output2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)
output = output + self.dropout(output2)
return output, attention_weights
def forward(
self,
output,
memory,
memory_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
if self.normalize_before:
return self.forward_pre(output, memory, memory_mask, memory_key_padding_mask, pos, query_pos)
return self.forward_post(output, memory, memory_mask, memory_key_padding_mask, pos, query_pos)
class OneFormerTransformerDecoderFFNLayer(nn.Module):
def __init__(
self,
d_model,
dim_feedforward=2048,
dropout=0.0,
activation="relu",
normalize_before=False,
layer_norm_eps=1e-05,
):
super().__init__()
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.activation = ACT2FN[activation]
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, output):
output2 = self.linear2(self.dropout(self.activation(self.linear1(output))))
output = output + self.dropout(output2)
output = self.norm(output)
return output
def forward_pre(self, output):
output2 = self.norm(output)
output2 = self.linear2(self.dropout(self.activation(self.linear1(output2))))
output = output + self.dropout(output2)
return output
def forward(self, output):
if self.normalize_before:
return self.forward_pre(output)
return self.forward_post(output)
class OneFormerMLPPredictionHead(nn.Module):
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int = 3):
"""
A classic Multi Layer Perceptron (MLP).
Args:
input_dim (`int`):
The input dimensions.
hidden_dim (`int`):
The hidden dimensions.
output_dim (`int`):
The output dimensions.
num_layers (int, *optional*, defaults to 3):
The number of layers.
"""
super().__init__()
in_dims = [input_dim] + [hidden_dim] * (num_layers - 1)
out_dims = [hidden_dim] * (num_layers - 1) + [output_dim]
layers = []
for i, (in_dim, out_dim) in enumerate(zip(in_dims, out_dims)):
layers.append(
PredictionBlock(in_dim, out_dim, activation=nn.ReLU() if i < num_layers - 1 else nn.Identity())
)
self.layers = nn.Sequential(*layers)
def forward(self, input: Tensor) -> Tensor:
return self.layers(input)
# refactored from original implementation
class OneFormerTransformerDecoderLayer(nn.Module):
def __init__(self, config: OneFormerConfig):
super().__init__()
self.embed_dim = config.hidden_dim
self.num_feature_levels = 3
self.cross_attn = OneFormerTransformerDecoderCrossAttentionLayer(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=0.0,
normalize_before=config.pre_norm,
layer_norm_eps=config.layer_norm_eps,
)
self.self_attn = OneFormerTransformerDecoderSelfAttentionLayer(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=0.0,
normalize_before=config.pre_norm,
layer_norm_eps=config.layer_norm_eps,
)
self.ffn = OneFormerTransformerDecoderFFNLayer(
d_model=self.embed_dim,
dim_feedforward=config.dim_feedforward,
dropout=0.0,
normalize_before=config.pre_norm,
layer_norm_eps=config.layer_norm_eps,
)
def forward(
self,
index: int,
output: torch.Tensor,
multi_stage_features: List[torch.Tensor],
multi_stage_positional_embeddings: List[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
query_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
"""
Args:
index (`int`): index of the layer in the Transformer decoder.
output (`torch.FloatTensor`): the object queries of shape `(N, batch, hidden_dim)`
multi_stage_features (`List[torch.Tensor]`): the multi-scale features from the pixel decoder.
multi_stage_positional_embeddings (`List[torch.Tensor]`):
positional embeddings for the multi_stage_features
attention_mask (`torch.FloatTensor`): attention mask for the masked cross attention layer
query_embeddings (`torch.FloatTensor`, *optional*):
position embeddings that are added to the queries and keys in the self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
level_index = index % self.num_feature_levels
attention_mask[torch.where(attention_mask.sum(-1) == attention_mask.shape[-1])] = False
# Masked Cross Attention
output, cross_attn_weights = self.cross_attn(
output,
multi_stage_features[level_index],
memory_mask=attention_mask,
memory_key_padding_mask=None, # here we do not apply masking on padded region
pos=multi_stage_positional_embeddings[level_index],
query_pos=query_embeddings,
)
# Self Attention
output, self_attn_weights = self.self_attn(
output,
output_mask=None,
output_key_padding_mask=None,
query_pos=query_embeddings,
)
# Fully Connected
output = self.ffn(output)
outputs = (output,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class OneFormerTransformerDecoderQueryTransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(
self,
output,
memory,
output_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
intermediate = []
for layer in self.layers:
output = layer(
output,
memory,
output_mask=output_mask,
memory_mask=memory_mask,
output_key_padding_mask=output_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
pos=pos,
query_pos=query_pos,
)
if self.return_intermediate:
intermediate.append(self.norm(output))
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
intermediate.pop()
intermediate.append(output)
if self.return_intermediate:
return torch.stack(intermediate)
return output.unsqueeze(0)
class OneFormerTransformerDecoderQueryTransformerDecoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
layer_norm_eps=1e-05,
):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = ACT2FN[activation]
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
output,
memory,
output_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
q = k = self.with_pos_embed(output, query_pos)
output2 = self.self_attn(q, k, value=output, attn_mask=output_mask, key_padding_mask=output_key_padding_mask)
output2 = output2[0]
output = output + self.dropout1(output2)
output = self.norm1(output)
output2 = self.multihead_attn(
query=self.with_pos_embed(output, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)
output2 = output2[0]
output = output + self.dropout2(output2)
output = self.norm2(output)
output2 = self.linear2(self.dropout(self.activation(self.linear1(output))))
output = output + self.dropout3(output2)
output = self.norm3(output)
return output
def forward_pre(
self,
output,
memory,
output_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output2 = self.norm1(output)
q = k = self.with_pos_embed(output2, query_pos)
output2 = self.self_attn(q, k, value=output2, attn_mask=output_mask, key_padding_mask=output_key_padding_mask)
output2 = output2[0]
output = output + self.dropout1(output2)
output2 = self.norm2(output)
output2 = self.multihead_attn(
query=self.with_pos_embed(output2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)
output2 = output2[0]
output = output + self.dropout2(output2)
output2 = self.norm3(output)
output2 = self.linear2(self.dropout(self.activation(self.linear1(output2))))
output = output + self.dropout3(output2)
return output
def forward(
self,
output,
memory,
output_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
output_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
if self.normalize_before:
return self.forward_pre(
output,
memory,
output_mask,
memory_mask,
output_key_padding_mask,
memory_key_padding_mask,
pos,
query_pos,
)
return self.forward_post(
output,
memory,
output_mask,
memory_mask,
output_key_padding_mask,
memory_key_padding_mask,
pos,
query_pos,
)
class OneFormerTransformerDecoderQueryTransformer(nn.Module):
def __init__(
self,
d_model=512,
nhead=8,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
return_intermediate_dec=False,
layer_norm_eps=1e-05,
):
super().__init__()
decoder_layer = OneFormerTransformerDecoderQueryTransformerDecoderLayer(
d_model, nhead, dim_feedforward, dropout, activation, normalize_before, layer_norm_eps
)
decoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.decoder = OneFormerTransformerDecoderQueryTransformerDecoder(
decoder_layer,
num_decoder_layers,
decoder_norm,
return_intermediate=return_intermediate_dec,
)
self.d_model = d_model
self.nhead = nhead
def forward(self, src, mask, query_embed, pos_embed, task_token=None):
batch_size = src.shape[0]
src = src.flatten(2).permute(2, 0, 1)
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
query_embed = query_embed.unsqueeze(1).repeat(1, batch_size, 1)
if mask is not None:
mask = mask.flatten(1)
if task_token is None:
queries = torch.zeros_like(query_embed)
else:
queries = task_token.repeat(query_embed.shape[0], 1, 1)
queries = self.decoder(queries, src, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed)
return queries.transpose(1, 2)
class OneFormerTransformerDecoder(nn.Module):
"""
Transformer decoder
"""
def __init__(self, in_channels: int, config: OneFormerConfig):
super().__init__()
self.config = config
self.dropout = config.dropout
self.num_heads = config.num_attention_heads
self.is_training = config.is_training
self.use_task_norm = config.use_task_norm
self.use_auxiliary_loss = config.use_auxiliary_loss
self.query_transformer = OneFormerTransformerDecoderQueryTransformer(
d_model=config.hidden_dim,
dropout=config.dropout,
nhead=config.num_attention_heads,
dim_feedforward=config.dim_feedforward,
num_decoder_layers=config.query_dec_layers,
normalize_before=config.pre_norm,
return_intermediate_dec=False,
layer_norm_eps=config.layer_norm_eps,
)
self.decoder_norm = nn.LayerNorm(config.hidden_dim, eps=config.layer_norm_eps)
self.num_feature_levels = 3
self.layers = nn.ModuleList(
[OneFormerTransformerDecoderLayer(config) for _ in range(config.decoder_layers - 1)]
)
self.query_input_projection = nn.Conv2d(in_channels, config.hidden_dim, kernel_size=1)
self.class_embed = nn.Linear(config.hidden_dim, config.num_labels + 1)
self.mask_embed = OneFormerMLPPredictionHead(
config.hidden_dim,
config.hidden_dim,
config.mask_dim,
3,
)
def forward(
self,
task_token=None,
multi_stage_features=None,
multi_stage_positional_embeddings=None,
mask_features=None,
query_features=None,
query_embeddings=None,
query_embedder=None,
size_list=None,
output_attentions=None,
):
if self.use_task_norm:
task_token = self.decoder_norm(task_token)
object_queries = self.query_transformer(
query_features,
None,
query_embedder.weight[:-1],
self.query_input_projection(mask_features),
task_token if self.use_task_norm else None,
)
object_queries = object_queries[0].permute(1, 0, 2)
queries = torch.cat([object_queries, task_token], dim=0)
output = queries.clone()
intermediate_class_predictions = []
intermediate_mask_predictions = []
# prediction heads on learnable query features
outputs_class, outputs_mask, attention_mask = self.forward_prediction_heads(
output, mask_features, attention_mask_target_size=size_list[0]
)
intermediate_class_predictions.append(outputs_class)
intermediate_mask_predictions.append(outputs_mask)
attentions = ()
for index, layer in enumerate(self.layers):
layer_outputs = layer(
index=index,
output=output,
multi_stage_features=multi_stage_features,
multi_stage_positional_embeddings=multi_stage_positional_embeddings,
attention_mask=attention_mask,
query_embeddings=query_embeddings,
output_attentions=output_attentions,
)
output = layer_outputs[0]
attentions += (layer_outputs[1:],)
outputs_class, outputs_mask, attention_mask = self.forward_prediction_heads(
output, mask_features, attention_mask_target_size=size_list[(index + 1) % self.num_feature_levels]
)
intermediate_class_predictions.append(outputs_class)
intermediate_mask_predictions.append(outputs_mask)
if not len(intermediate_mask_predictions) == len(self.layers) + 1:
raise ValueError(
"Intermediate predictions in the transformer decoder must have the same number of elements as number"
" of layers"
)
object_queries = layer_outputs[0].permute(1, 0, 2)
contrastive_logits = queries.permute(1, 0, 2)
return OneFormerTransformerDecoderOutput(
object_queries=object_queries,
contrastive_logits=contrastive_logits,
prediction_masks=intermediate_mask_predictions[-1],
prediction_class=intermediate_class_predictions[-1],
auxiliary_predictions=self._get_aux_predictions(
intermediate_class_predictions, intermediate_mask_predictions
)
if self.use_auxiliary_loss
else None,
attentions=attentions,
)
def forward_prediction_heads(self, output, mask_features, attention_mask_target_size):
decoder_output = self.decoder_norm(output)
decoder_output = decoder_output.transpose(0, 1)
outputs_class = self.class_embed(decoder_output)
mask_embed = self.mask_embed(decoder_output)
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
attention_mask = nn.functional.interpolate(
outputs_mask, size=attention_mask_target_size, mode="bilinear", align_corners=False
)
# must use bool type
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
attention_mask = (
attention_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5
).bool()
attention_mask = attention_mask.detach()
return outputs_class, outputs_mask, attention_mask
@torch.jit.unused
def _get_aux_predictions(self, outputs_class, outputs_seg_masks):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
aux_list = [
{"class_queries_logits": a, "masks_queries_logits": b}
for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1])
]
return tuple(aux_list)
class OneFormerTransformerModule(nn.Module):
"""
The OneFormer's transformer module.
"""
def __init__(self, in_features: int, config: OneFormerConfig):
super().__init__()
hidden_dim = config.hidden_dim
self.num_feature_levels = 3
self.position_embedder = OneFormerSinePositionEmbedding(num_pos_feats=hidden_dim // 2, normalize=True)
self.queries_embedder = nn.Embedding(config.num_queries, hidden_dim)
self.input_projections = []
for _ in range(self.num_feature_levels):
if in_features != hidden_dim or config.enforce_input_proj:
self.input_projections.append(nn.Conv2d(in_features, hidden_dim, kernel_size=1))
else:
self.input_projections.append(nn.Sequential())
self.decoder = OneFormerTransformerDecoder(in_channels=in_features, config=config)
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
def forward(
self,
multi_scale_features: List[Tensor],
mask_features: Tensor,
task_token: Tensor,
output_attentions: bool = False,
) -> OneFormerTransformerDecoderOutput:
if not len(multi_scale_features) == self.num_feature_levels:
raise ValueError(
f"Number of elements in multi_scale_features ({len(multi_scale_features)}) and num_feature_levels"
f" ({self.num_feature_levels}) do not match!"
)
multi_stage_features = []
multi_stage_positional_embeddings = []
size_list = []
for i in range(self.num_feature_levels):
size_list.append(multi_scale_features[i].shape[-2:])
multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
multi_stage_features.append(
self.input_projections[i](multi_scale_features[i]).flatten(2)
+ self.level_embed.weight[i][None, :, None]
)
# flatten NxCxHxW to HWxNxC
multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)
_, batch_size, _ = multi_stage_features[0].shape
# QxNxC
query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
task_token = task_token.unsqueeze(0)
query_features = self.position_embedder(mask_features, None)
return self.decoder(
task_token=task_token,
multi_stage_features=multi_stage_features,
multi_stage_positional_embeddings=multi_stage_positional_embeddings,
mask_features=mask_features,
query_features=query_features,
query_embeddings=query_embeddings,
query_embedder=self.queries_embedder,
size_list=size_list,
output_attentions=output_attentions,
)
# Copied from transformers.models.maskformer.modeling_maskformer.MaskFormerSinePositionEmbedding with Mask->One
class OneFormerSinePositionEmbedding(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
need paper, generalized to work on images.
"""
def __init__(
self, num_pos_feats: int = 64, temperature: int = 10000, normalize: bool = False, scale: Optional[float] = None
):
super().__init__()
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
self.scale = 2 * math.pi if scale is None else scale
def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor:
if mask is None:
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
not_mask = (~mask).to(x.dtype)
y_embed = not_mask.cumsum(1)
x_embed = not_mask.cumsum(2)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.int64, device=x.device).type_as(x)
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
# Copied from transformers.models.maskformer.modeling_maskformer.PredictionBlock
class PredictionBlock(nn.Module):
def __init__(self, in_dim: int, out_dim: int, activation: nn.Module) -> None:
super().__init__()
self.layers = [nn.Linear(in_dim, out_dim), activation]
# Maintain submodule indexing as if part of a Sequential block
for i, layer in enumerate(self.layers):
self.add_module(str(i), layer)
def forward(self, input: Tensor) -> Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class OneFormerTextMapperAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.q_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.k_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.v_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, q, k, v):
batch_size, q_sequence_length, num_channels = q.shape
if not k.shape == v.shape:
raise ValueError(f"keys ({list(k.shape)}) and values ({list(v.shape)}) have different shapes!")
batch_size, k_sequence_length, num_channels = k.shape
q = self.q_proj(q).reshape(batch_size, q_sequence_length, self.num_heads, num_channels // self.num_heads)
k = self.k_proj(k).reshape(batch_size, k_sequence_length, self.num_heads, num_channels // self.num_heads)
v = self.v_proj(v).reshape(batch_size, k_sequence_length, self.num_heads, num_channels // self.num_heads)
attn = torch.einsum("bnkc,bmkc->bknm", q, k) * self.scale
attn = attn.softmax(dim=-1)
output = torch.einsum("bknm,bmkc->bnkc", attn, v).reshape(batch_size, q_sequence_length, num_channels)
output = self.proj(output)
output = self.proj_drop(output)
return output
class OneFormerTextTransformerDecoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dropout=0.1,
layer_norm_eps=1e-05,
):
super().__init__()
self.self_attn = OneFormerTextMapperAttention(d_model, nhead, proj_drop=dropout)
self.cross_attn = OneFormerTextMapperAttention(d_model, nhead, proj_drop=dropout)
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.dropout = nn.Dropout(dropout)
self.mlp = nn.Sequential(
nn.Linear(d_model, d_model * 4), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_model * 4, d_model)
)
def forward(self, hidden_state, mem):
q = k = v = self.norm1(hidden_state)
hidden_state = hidden_state + self.self_attn(q, k, v)
q = self.norm2(hidden_state)
hidden_state = hidden_state + self.cross_attn(q, mem, mem)
hidden_state = hidden_state + self.dropout(self.mlp(self.norm3(hidden_state)))
return hidden_state
class OneFormerTextContextDecoder(nn.Module):
def __init__(
self,
transformer_width=256,
transformer_heads=4,
transformer_layers=6,
visual_dim=1024,
dropout=0.1,
layer_norm_eps=1e-05,
**kwargs,
):
super().__init__()
self.memory_proj = nn.Sequential(
nn.LayerNorm(visual_dim, eps=layer_norm_eps),
nn.Linear(visual_dim, transformer_width),
nn.LayerNorm(transformer_width, eps=layer_norm_eps),
)
self.text_proj = nn.Sequential(
nn.LayerNorm(visual_dim, eps=layer_norm_eps),
nn.Linear(visual_dim, transformer_width),
)
self.decoder = nn.ModuleList(
[
OneFormerTextTransformerDecoderLayer(transformer_width, transformer_heads, dropout, layer_norm_eps)
for _ in range(transformer_layers)
]
)
self.out_proj = nn.Sequential(
nn.LayerNorm(transformer_width, eps=layer_norm_eps), nn.Linear(transformer_width, visual_dim)
)
def forward(self, text, visual):
visual = self.memory_proj(visual)
hidden_state = self.text_proj(text)
for layer in self.decoder:
hidden_state = layer(hidden_state, visual)
return self.out_proj(hidden_state)
class OneFormerTextMLP(nn.Module):
def __init__(
self,
hidden_size: Optional[int] = None,
intermediate_size: Optional[int] = None,
output_size: Optional[int] = None,
):
super().__init__()
self.activation_fn = ACT2FN["quick_gelu"]
hidden_size = hidden_size
intermediate_size = intermediate_size
output_size = output_size
self.fc1 = nn.Linear(hidden_size, intermediate_size)
self.fc2 = nn.Linear(intermediate_size, output_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class OneFormerTextTransformerLayer(nn.Module):
def __init__(self, width: int, heads: int, attn_mask: torch.Tensor, layer_norm_eps=1e-05):
super().__init__()
self.self_attn = nn.MultiheadAttention(width, heads)
self.layer_norm1 = nn.LayerNorm(width, eps=layer_norm_eps)
self.mlp = OneFormerTextMLP(width, width * 4, width)
self.layer_norm2 = nn.LayerNorm(width, eps=layer_norm_eps)
self.attn_mask = attn_mask
def forward(
self,
hidden_states: torch.Tensor,
key_padding_mask: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(
hidden_states,
hidden_states,
hidden_states,
need_weights=False,
key_padding_mask=key_padding_mask,
)[0]
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class OneFormerTextTransformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
attn_mask: Optional[torch.Tensor] = None,
use_checkpoint=False,
layer_norm_eps=1e-05,
):
super().__init__()
self.width = width
self.num_layers = layers
self.layers = nn.Sequential(
*[OneFormerTextTransformerLayer(width, heads, attn_mask, layer_norm_eps) for _ in range(layers)]
)
self.use_checkpoint = use_checkpoint
def forward(self, hidden_states: torch.Tensor):
for layer in self.layers:
if self.use_checkpoint:
hidden_states = self._gradient_checkpointing_func(layer, hidden_states)
else:
hidden_states = layer(hidden_states)
return hidden_states
class OneFormerTextEncoder(nn.Module):
def __init__(
self,
context_length: int,
width: int,
layers: int,
vocab_size,
use_checkpoint=False,
layer_norm_eps=1e-05,
):
super().__init__()
heads = width // 64
self.context_length = context_length
self.width = width
self.transformer = OneFormerTextTransformer(
width=width,
layers=layers,
heads=heads,
attn_mask=self.build_attention_mask(),
use_checkpoint=use_checkpoint,
layer_norm_eps=layer_norm_eps,
)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
self.ln_final = nn.LayerNorm(width, eps=layer_norm_eps)
self.token_embedding = nn.Embedding(vocab_size, width)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def forward(self, text):
hidden_state = self.token_embedding(text)
hidden_state = hidden_state + self.positional_embedding
hidden_state = hidden_state.permute(1, 0, 2)
hidden_state = self.transformer(hidden_state)
hidden_state = hidden_state.permute(1, 0, 2)
hidden_state = self.ln_final(hidden_state)
hidden_state = hidden_state[torch.arange(hidden_state.shape[0]), text.argmax(dim=-1)]
return hidden_state
class OneFormerTextMapper(nn.Module):
def __init__(self, config: OneFormerConfig):
super().__init__()
self.text_encoder = OneFormerTextEncoder(
context_length=config.text_encoder_context_length,
width=config.text_encoder_width,
layers=config.text_encoder_num_layers,
vocab_size=config.text_encoder_vocab_size,
layer_norm_eps=config.layer_norm_eps,
)
self.text_projector = OneFormerMLPPredictionHead(
config.text_encoder_width,
config.hidden_dim,
config.hidden_dim,
config.text_encoder_proj_layers,
)
if config.text_encoder_n_ctx > 0:
self.prompt_ctx = nn.Embedding(
config.text_encoder_n_ctx,
config.text_encoder_width,
)
else:
self.prompt_ctx = None
def forward(
self,
inputs: Tensor,
) -> Tensor:
text_queries = self.encode_text(inputs)
return text_queries
def encode_text(self, text):
if text.ndim is None:
raise ValueError("text must not be NoneType")
if text.ndim not in [2, 3]:
raise ValueError("Number of dimensions in text must be 2 or 3")
squeeze_dim = False
num_text = 1
if text.ndim == 3:
num_text = text.shape[1]
batch_size, num_text, hidden_dim = text.shape
text = text.reshape(batch_size * num_text, hidden_dim)
squeeze_dim = True
# [batch_size, num_channels]
encoded_text = self.text_encoder(text)
text_queries = self.text_projector(encoded_text)
if squeeze_dim:
_, hidden_dim = text_queries.shape
text_queries = text_queries.reshape(batch_size, num_text, hidden_dim)
if self.prompt_ctx is not None:
text_queries_ctx = self.prompt_ctx.weight.unsqueeze(0).repeat(text_queries.shape[0], 1, 1)
text_queries = torch.cat([text_queries, text_queries_ctx], dim=1)
return text_queries
class OneFormerTaskModel(nn.Module):
def __init__(self, config: OneFormerConfig):
super().__init__()
self.task_mlp = OneFormerMLPPredictionHead(
config.task_seq_len,
config.hidden_dim,
config.hidden_dim,
2,
)
def forward(self, inputs: Tensor) -> Tensor:
task_tokens = self.task_mlp(inputs)
return task_tokens
ONEFORMER_START_DOCSTRING = r"""
This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a
regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Parameters:
config ([`OneFormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ONEFORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`OneFormerProcessor`]. See
[`OneFormerProcessor.__call__`] for details.
task_inputs (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Task inputs. Task inputs can be obtained using [`AutoImageProcessor`]. See [`OneFormerProcessor.__call__`]
for details.
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of Detr's decoder attention layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~OneFormerModelOutput`] instead of a plain tuple.
"""
class OneFormerPreTrainedModel(PreTrainedModel):
config_class = OneFormerConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
def _init_weights(self, module: nn.Module):
xavier_std = self.config.init_xavier_std
std = self.config.init_std
if isinstance(module, OneFormerTransformerModule):
if module.input_projections is not None:
for input_projection in module.input_projections:
if not isinstance(input_projection, nn.Sequential):
nn.init.xavier_uniform_(input_projection.weight, gain=xavier_std)
nn.init.constant_(input_projection.bias, 0)
elif isinstance(module, OneFormerTransformerDecoder):
nn.init.xavier_uniform_(module.query_input_projection.weight, gain=xavier_std)
nn.init.constant_(module.query_input_projection.bias, 0)
module.query_input_projection._is_hf_initialized = True
elif isinstance(module, OneFormerPixelDecoderEncoderMultiscaleDeformableAttention):
nn.init.constant_(module.sampling_offsets.weight.data, 0.0)
thetas = torch.arange(module.n_heads, dtype=torch.int64).float() * (2.0 * math.pi / module.n_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
.view(module.n_heads, 1, 1, 2)
.repeat(1, module.n_levels, module.n_points, 1)
)
for i in range(module.n_points):
grid_init[:, :, i, :] *= i + 1
with torch.no_grad():
module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
nn.init.constant_(module.attention_weights.weight.data, 0.0)
nn.init.constant_(module.attention_weights.bias.data, 0.0)
nn.init.xavier_uniform_(module.value_proj.weight.data)
nn.init.constant_(module.value_proj.bias.data, 0.0)
nn.init.xavier_uniform_(module.output_proj.weight.data)
nn.init.constant_(module.output_proj.bias.data, 0.0)
elif isinstance(module, OneFormerPixelDecoderEncoderOnly):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
elif isinstance(module, OneFormerPixelDecoder):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
nn.init.normal_(module.level_embed, std=0)
elif isinstance(module, OneFormerTransformerDecoderSelfAttentionLayer):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=xavier_std)
elif isinstance(module, OneFormerTransformerDecoderCrossAttentionLayer):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=xavier_std)
elif isinstance(module, OneFormerTransformerDecoderFFNLayer):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=xavier_std)
elif isinstance(module, OneFormerTransformerDecoderQueryTransformer):
for p in module.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=xavier_std)
elif isinstance(module, OneFormerPixelLevelModule):
for submodule in module.modules():
if isinstance(submodule, (nn.Conv2d, nn.Linear)):
submodule.weight.data.normal_(mean=0.0, std=std)
if submodule.bias is not None:
submodule.bias.data.zero_()
elif isinstance(module, OneFormerTextContextDecoder):
for submodule in module.modules():
if isinstance(submodule, nn.Linear):
nn.init.trunc_normal_(submodule.weight, std=0.02)
if isinstance(submodule, nn.Linear) and submodule.bias is not None:
nn.init.constant_(submodule.bias, 0)
elif isinstance(submodule, nn.LayerNorm):
nn.init.constant_(submodule.bias, 0)
nn.init.constant_(submodule.weight, 1.0)
elif isinstance(module, OneFormerTextTransformer):
proj_std = (module.width**-0.5) * ((2 * module.num_layers) ** -0.5)
attn_std = module.width**-0.5
fc_std = (2 * module.width) ** -0.5
for layer in module.layers:
nn.init.normal_(layer.self_attn.in_proj_weight, std=attn_std)
nn.init.normal_(layer.self_attn.out_proj.weight, std=proj_std)
nn.init.normal_(layer.mlp.fc1.weight, std=fc_std)
nn.init.normal_(layer.mlp.fc2.weight, std=proj_std)
elif isinstance(module, OneFormerTextEncoder):
nn.init.normal_(module.token_embedding.weight, std=0.02)
nn.init.normal_(module.positional_embedding, std=0.01)
if hasattr(module, "reference_points"):
nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0)
nn.init.constant_(module.reference_points.bias.data, 0.0)
elif isinstance(module, OneFormerTaskModel):
for submodule in module.modules():
if isinstance(module, OneFormerMLPPredictionHead):
for submodule in module.modules():
if isinstance(submodule, nn.Linear):
nn.init.xavier_uniform_(submodule.weight, gain=xavier_std)
nn.init.constant_(submodule.bias, 0)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.MultiheadAttention):
module.in_proj_weight.data.normal_(mean=0.0, std=std)
module.in_proj_bias.data.zero_()
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@add_start_docstrings(
"The bare OneFormer Model outputting raw hidden-states without any specific head on top.",
ONEFORMER_START_DOCSTRING,
)
class OneFormerModel(OneFormerPreTrainedModel):
main_input_name = ["pixel_values", "task_inputs"]
def __init__(self, config: OneFormerConfig):
super().__init__(config)
self.pixel_level_module = OneFormerPixelLevelModule(config)
self.transformer_module = OneFormerTransformerModule(in_features=config.conv_dim, config=config)
self.task_encoder = OneFormerTaskModel(config)
self.is_training = config.is_training
if self.is_training:
self.text_mapper = OneFormerTextMapper(config)
else:
self.text_mapper = None
self.post_init()
@add_start_docstrings_to_model_forward(ONEFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OneFormerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
task_inputs: Tensor,
text_inputs: Optional[Tensor] = None,
pixel_mask: Optional[Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> OneFormerModelOutput:
r"""
Returns:
`OneFormerModelOutput`
Example:
```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import OneFormerProcessor, OneFormerModel
>>> # download texting image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # load processor for preprocessing the inputs
>>> processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
>>> model = OneFormerModel.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
>>> inputs = processor(image, ["semantic"], return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> mask_predictions = outputs.transformer_decoder_mask_predictions
>>> class_predictions = outputs.transformer_decoder_class_predictions
>>> f"👉 Mask Predictions Shape: {list(mask_predictions.shape)}, Class Predictions Shape: {list(class_predictions.shape)}"
'👉 Mask Predictions Shape: [1, 150, 128, 171], Class Predictions Shape: [1, 150, 151]'
```"""
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, _, height, width = pixel_values.shape
if pixel_mask is None:
pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)
pixel_level_module_output = self.pixel_level_module(pixel_values, output_hidden_states)
multi_scale_features = pixel_level_module_output.decoder_features
mask_features = pixel_level_module_output.decoder_last_feature
task_token = self.task_encoder(task_inputs.to(self.dtype))
if self.is_training:
text_queries = self.text_mapper(text_inputs)
else:
text_queries = None
transformer_module_output = self.transformer_module(
multi_scale_features=multi_scale_features,
mask_features=mask_features,
task_token=task_token,
output_attentions=output_attentions,
)
queries = transformer_module_output.object_queries
encoder_hidden_states = None
pixel_decoder_hidden_states = None
transformer_decoder_hidden_states = None
if output_hidden_states:
encoder_hidden_states = pixel_level_module_output.encoder_features
pixel_decoder_hidden_states = (pixel_level_module_output.decoder_last_feature,)
for f in pixel_level_module_output.decoder_features:
pixel_decoder_hidden_states += (f,)
transformer_decoder_hidden_states = transformer_module_output.auxiliary_predictions
output = OneFormerModelOutput(
encoder_hidden_states=encoder_hidden_states,
pixel_decoder_hidden_states=pixel_decoder_hidden_states,
transformer_decoder_hidden_states=transformer_decoder_hidden_states,
transformer_decoder_object_queries=queries,
transformer_decoder_contrastive_queries=transformer_module_output.contrastive_logits,
transformer_decoder_mask_predictions=transformer_module_output.prediction_masks,
transformer_decoder_class_predictions=transformer_module_output.prediction_class,
transformer_decoder_auxiliary_predictions=transformer_module_output.auxiliary_predictions,
text_queries=text_queries,
task_token=task_token,
attentions=transformer_module_output.attentions,
)
if not return_dict:
output = tuple(v for v in output.values())
return output
@add_start_docstrings(
"OneFormer Model for instance, semantic and panoptic image segmentation.",
ONEFORMER_START_DOCSTRING,
)
class OneFormerForUniversalSegmentation(OneFormerPreTrainedModel):
main_input_name = ["pixel_values", "task_inputs"]
def __init__(self, config: OneFormerConfig):
super().__init__(config)
self.model = OneFormerModel(config)
self.matcher = OneFormerHungarianMatcher(
cost_class=config.class_weight,
cost_dice=config.dice_weight,
cost_mask=config.mask_weight,
num_points=config.train_num_points,
)
self.weight_dict: Dict[str, float] = {
"loss_cross_entropy": config.class_weight,
"loss_mask": config.mask_weight,
"loss_dice": config.dice_weight,
"loss_contrastive": config.contrastive_weight,
}
self.criterion = OneFormerLoss(
num_classes=config.num_labels,
matcher=self.matcher,
weight_dict=self.weight_dict,
eos_coef=config.no_object_weight,
num_points=config.train_num_points,
oversample_ratio=config.oversample_ratio,
importance_sample_ratio=config.importance_sample_ratio,
contrastive_temperature=config.contrastive_temperature,
)
self.post_init()
def get_loss_dict(
self,
masks_queries_logits: Tensor,
class_queries_logits: Tensor,
contrastive_queries_logits: Tensor,
mask_labels: Tensor,
class_labels: Tensor,
text_queries: Tensor,
auxiliary_predictions: Dict[str, Tensor],
calculate_contrastive_loss: bool,
) -> Dict[str, Tensor]:
loss_dict: Dict[str, Tensor] = self.criterion(
masks_queries_logits=masks_queries_logits,
class_queries_logits=class_queries_logits,
contrastive_queries_logits=contrastive_queries_logits,
mask_labels=mask_labels,
class_labels=class_labels,
text_queries=text_queries,
auxiliary_predictions=auxiliary_predictions,
calculate_contrastive_loss=calculate_contrastive_loss,
)
# weight each loss by `self.weight_dict[<LOSS_NAME>]` including auxiliary losses
for key, weight in self.weight_dict.items():
for loss_key, loss in loss_dict.items():
if key in loss_key:
loss *= weight
return loss_dict
def get_loss(self, loss_dict: Dict[str, Tensor]) -> Tensor:
return sum(loss_dict.values())
@add_start_docstrings_to_model_forward(ONEFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OneFormerForUniversalSegmentationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
task_inputs: Tensor,
text_inputs: Optional[Tensor] = None,
mask_labels: Optional[List[Tensor]] = None,
class_labels: Optional[List[Tensor]] = None,
pixel_mask: Optional[Tensor] = None,
output_auxiliary_logits: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> OneFormerForUniversalSegmentationOutput:
r"""
text_inputs (`List[torch.Tensor]`, *optional*):
Tensor fof shape `(num_queries, sequence_length)` to be fed to a model
mask_labels (`List[torch.Tensor]`, *optional*):
List of mask labels of shape `(num_labels, height, width)` to be fed to a model
class_labels (`List[torch.LongTensor]`, *optional*):
list of target class labels of shape `(num_labels, height, width)` to be fed to a model. They identify the
labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`.
Returns:
`OneFormerUniversalSegmentationOutput`
Example:
Universal segmentation example:
```python
>>> from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
>>> from PIL import Image
>>> import requests
>>> import torch
>>> # load OneFormer fine-tuned on ADE20k for universal segmentation
>>> processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
>>> model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
>>> url = (
... "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
... )
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # Semantic Segmentation
>>> inputs = processor(image, ["semantic"], return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # you can pass them to processor for semantic postprocessing
>>> predicted_semantic_map = processor.post_process_semantic_segmentation(
... outputs, target_sizes=[(image.height, image.width)]
... )[0]
>>> f"👉 Semantic Predictions Shape: {list(predicted_semantic_map.shape)}"
'👉 Semantic Predictions Shape: [512, 683]'
>>> # Instance Segmentation
>>> inputs = processor(image, ["instance"], return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # you can pass them to processor for instance postprocessing
>>> predicted_instance_map = processor.post_process_instance_segmentation(
... outputs, target_sizes=[(image.height, image.width)]
... )[0]["segmentation"]
>>> f"👉 Instance Predictions Shape: {list(predicted_instance_map.shape)}"
'👉 Instance Predictions Shape: [512, 683]'
>>> # Panoptic Segmentation
>>> inputs = processor(image, ["panoptic"], return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # model predicts class_queries_logits of shape `(batch_size, num_queries)`
>>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
>>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits
>>> # you can pass them to processor for panoptic postprocessing
>>> predicted_panoptic_map = processor.post_process_panoptic_segmentation(
... outputs, target_sizes=[(image.height, image.width)]
... )[0]["segmentation"]
>>> f"👉 Panoptic Predictions Shape: {list(predicted_panoptic_map.shape)}"
'👉 Panoptic Predictions Shape: [512, 683]'
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
pixel_values=pixel_values,
task_inputs=task_inputs,
text_inputs=text_inputs,
pixel_mask=pixel_mask,
output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
output_attentions=output_attentions,
return_dict=True,
)
loss, loss_dict, auxiliary_predictions = None, None, None
class_queries_logits = outputs.transformer_decoder_class_predictions
masks_queries_logits = outputs.transformer_decoder_mask_predictions
contrastive_queries_logits = outputs.transformer_decoder_contrastive_queries
auxiliary_predictions = outputs.transformer_decoder_auxiliary_predictions
text_queries = outputs.text_queries
if mask_labels is not None and class_labels is not None:
loss_dict: Dict[str, Tensor] = self.get_loss_dict(
masks_queries_logits=masks_queries_logits,
class_queries_logits=class_queries_logits,
contrastive_queries_logits=contrastive_queries_logits,
mask_labels=mask_labels,
class_labels=class_labels,
text_queries=text_queries,
auxiliary_predictions=auxiliary_predictions,
calculate_contrastive_loss=self.config.contrastive_temperature is not None,
)
loss = self.get_loss(loss_dict)
output_auxiliary_logits = (
self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits
)
if not output_auxiliary_logits:
auxiliary_predictions = None
output = OneFormerForUniversalSegmentationOutput(
class_queries_logits=class_queries_logits,
masks_queries_logits=masks_queries_logits,
auxiliary_predictions=auxiliary_predictions,
loss=loss,
**outputs,
)
if not return_dict:
output = tuple(v for v in output.values())
if loss is not None:
output = (loss) + output
return output
__all__ = ["OneFormerForUniversalSegmentation", "OneFormerModel", "OneFormerPreTrainedModel"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: processing_oneformer.py
LINES: 1
SIZE: 9.19 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\oneformer\processing_oneformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for OneFormer
"""
from typing import List
from ...processing_utils import ProcessorMixin
from ...utils import is_torch_available
if is_torch_available():
import torch
class OneFormerProcessor(ProcessorMixin):
r"""
Constructs an OneFormer processor which wraps [`OneFormerImageProcessor`] and
[`CLIPTokenizer`]/[`CLIPTokenizerFast`] into a single processor that inherits both the image processor and
tokenizer functionalities.
Args:
image_processor ([`OneFormerImageProcessor`]):
The image processor is a required input.
tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`]):
The tokenizer is a required input.
max_seq_len (`int`, *optional*, defaults to 77)):
Sequence length for input text list.
task_seq_len (`int`, *optional*, defaults to 77):
Sequence length for input task token.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "OneFormerImageProcessor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__(
self, image_processor=None, tokenizer=None, max_seq_length: int = 77, task_seq_length: int = 77, **kwargs
):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
self.max_seq_length = max_seq_length
self.task_seq_length = task_seq_length
super().__init__(image_processor, tokenizer)
def _preprocess_text(self, text_list=None, max_length=77):
if text_list is None:
raise ValueError("tokens cannot be None.")
tokens = self.tokenizer(text_list, padding="max_length", max_length=max_length, truncation=True)
attention_masks, input_ids = tokens["attention_mask"], tokens["input_ids"]
token_inputs = []
for attn_mask, input_id in zip(attention_masks, input_ids):
token = torch.tensor(attn_mask) * torch.tensor(input_id)
token_inputs.append(token.unsqueeze(0))
token_inputs = torch.cat(token_inputs, dim=0)
return token_inputs
def __call__(self, images=None, task_inputs=None, segmentation_maps=None, **kwargs):
"""
Main method to prepare for the model one or several task input(s) and image(s). This method forwards the
`task_inputs` and `kwargs` arguments to CLIPTokenizer's [`~CLIPTokenizer.__call__`] if `task_inputs` is not
`None` to encode. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
OneFormerImageProcessor's [`~OneFormerImageProcessor.__call__`] if `images` is not `None`. Please refer to the
docstring of the above two methods for more information.
Args:
task_inputs (`str`, `List[str]`):
The sequence or batch of task_inputs sequences to be encoded. Each sequence can be a string or a list
of strings of the template "the task is {task}".
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
segmentation_maps (`ImageInput`, *optional*):
The corresponding semantic segmentation maps with the pixel-wise annotations.
(`bool`, *optional*, defaults to `True`):
Whether or not to pad images up to the largest image in a batch and create a pixel mask.
If left to the default, will return a pixel mask that is:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **task_inputs** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if task_inputs is None:
raise ValueError("You have to specify the task_input. Found None.")
elif images is None:
raise ValueError("You have to specify the image. Found None.")
if not all(task in ["semantic", "instance", "panoptic"] for task in task_inputs):
raise ValueError("task_inputs must be semantic, instance, or panoptic.")
encoded_inputs = self.image_processor(images, task_inputs, segmentation_maps, **kwargs)
if isinstance(task_inputs, str):
task_inputs = [task_inputs]
if isinstance(task_inputs, List) and all(isinstance(task_input, str) for task_input in task_inputs):
task_token_inputs = []
for task in task_inputs:
task_input = f"the task is {task}"
task_token_inputs.append(task_input)
encoded_inputs["task_inputs"] = self._preprocess_text(task_token_inputs, max_length=self.task_seq_length)
else:
raise TypeError("Task Inputs should be a string or a list of strings.")
if hasattr(encoded_inputs, "text_inputs"):
texts_list = encoded_inputs.text_inputs
text_inputs = []
for texts in texts_list:
text_input_list = self._preprocess_text(texts, max_length=self.max_seq_length)
text_inputs.append(text_input_list.unsqueeze(0))
encoded_inputs["text_inputs"] = torch.cat(text_inputs, dim=0)
return encoded_inputs
def encode_inputs(self, images=None, task_inputs=None, segmentation_maps=None, **kwargs):
"""
This method forwards all its arguments to [`OneFormerImageProcessor.encode_inputs`] and then tokenizes the
task_inputs. Please refer to the docstring of this method for more information.
"""
if task_inputs is None:
raise ValueError("You have to specify the task_input. Found None.")
elif images is None:
raise ValueError("You have to specify the image. Found None.")
if not all(task in ["semantic", "instance", "panoptic"] for task in task_inputs):
raise ValueError("task_inputs must be semantic, instance, or panoptic.")
encoded_inputs = self.image_processor.encode_inputs(images, task_inputs, segmentation_maps, **kwargs)
if isinstance(task_inputs, str):
task_inputs = [task_inputs]
if isinstance(task_inputs, List) and all(isinstance(task_input, str) for task_input in task_inputs):
task_token_inputs = []
for task in task_inputs:
task_input = f"the task is {task}"
task_token_inputs.append(task_input)
encoded_inputs["task_inputs"] = self._preprocess_text(task_token_inputs, max_length=self.task_seq_length)
else:
raise TypeError("Task Inputs should be a string or a list of strings.")
if hasattr(encoded_inputs, "text_inputs"):
texts_list = encoded_inputs.text_inputs
text_inputs = []
for texts in texts_list:
text_input_list = self._preprocess_text(texts, max_length=self.max_seq_length)
text_inputs.append(text_input_list.unsqueeze(0))
encoded_inputs["text_inputs"] = torch.cat(text_inputs, dim=0)
return encoded_inputs
def post_process_semantic_segmentation(self, *args, **kwargs):
"""
This method forwards all its arguments to [`OneFormerImageProcessor.post_process_semantic_segmentation`].
Please refer to the docstring of this method for more information.
"""
return self.image_processor.post_process_semantic_segmentation(*args, **kwargs)
def post_process_instance_segmentation(self, *args, **kwargs):
"""
This method forwards all its arguments to [`OneFormerImageProcessor.post_process_instance_segmentation`].
Please refer to the docstring of this method for more information.
"""
return self.image_processor.post_process_instance_segmentation(*args, **kwargs)
def post_process_panoptic_segmentation(self, *args, **kwargs):
"""
This method forwards all its arguments to [`OneFormerImageProcessor.post_process_panoptic_segmentation`].
Please refer to the docstring of this method for more information.
"""
return self.image_processor.post_process_panoptic_segmentation(*args, **kwargs)
__all__ = ["OneFormerProcessor"]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.09 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\openai\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_openai import *
from .modeling_openai import *
from .modeling_tf_openai import *
from .tokenization_openai import *
from .tokenization_openai_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_openai.py
LINES: 1
SIZE: 6.94 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\openai\configuration_openai.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OpenAI GPT configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class OpenAIGPTConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is
used to instantiate a GPT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT
[openai-community/openai-gpt](https://huggingface.co/openai-community/openai-gpt) architecture from OpenAI.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 40478):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`OpenAIGPTModel`] or [`TFOpenAIGPTModel`].
n_positions (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
afn (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
summary_type (`str`, *optional*, defaults to `"cls_index"`):
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
[`OpenAIGPTDoubleHeadsModel`].
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
[`OpenAIGPTDoubleHeadsModel`].
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
[`OpenAIGPTDoubleHeadsModel`].
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
[`OpenAIGPTDoubleHeadsModel`].
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
summary_first_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
[`OpenAIGPTDoubleHeadsModel`].
The dropout ratio to be used after the projection and activation.
Examples:
```python
>>> from transformers import OpenAIGPTConfig, OpenAIGPTModel
>>> # Initializing a GPT configuration
>>> configuration = OpenAIGPTConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = OpenAIGPTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "openai-gpt"
attribute_map = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=40478,
n_positions=512,
n_embd=768,
n_layer=12,
n_head=12,
afn="gelu",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.afn = afn
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels
super().__init__(**kwargs)
__all__ = ["OpenAIGPTConfig"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: modeling_openai.py
LINES: 1
SIZE: 37.62 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\openai\modeling_openai.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""
import json
import math
import os
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import gelu_new, silu
from ...generation import GenerationMixin
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_openai import OpenAIGPTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "openai-community/openai-gpt"
_CONFIG_FOR_DOC = "OpenAIGPTConfig"
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
"""Load tf pre-trained weights in a pytorch model (from NumPy arrays here)"""
import re
import numpy as np
if ".ckpt" in openai_checkpoint_folder_path:
openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)
logger.info(f"Loading weights from {openai_checkpoint_folder_path}")
with open(openai_checkpoint_folder_path + "/parameters_names.json", "r", encoding="utf-8") as names_handle:
names = json.load(names_handle)
with open(openai_checkpoint_folder_path + "/params_shapes.json", "r", encoding="utf-8") as shapes_handle:
shapes = json.load(shapes_handle)
offsets = np.cumsum([np.prod(shape) for shape in shapes])
init_params = [np.load(openai_checkpoint_folder_path + f"/params_{n}.npy") for n in range(10)]
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
# This was used when we had a single embedding matrix for positions and tokens
# init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
# del init_params[1]
init_params = [arr.squeeze() for arr in init_params]
# Check that the token and position embeddings weight dimensions map those of the init parameters.
if model.tokens_embed.weight.shape != init_params[1].shape:
raise ValueError(
f"tokens_embed.weight.shape: {model.tokens_embed.weight.shape} does not match init_param[1].shape:"
f" {init_params[1].shape}"
)
if model.positions_embed.weight.shape != init_params[0].shape:
raise ValueError(
f"positions_embed.weight.shape: {model.positions_embed.weight.shape} does not match init_param[0].shape:"
f" {init_params[0].shape}"
)
model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
model.positions_embed.weight.data = torch.from_numpy(init_params[0])
names.pop(0)
# Pop position and token embedding arrays
init_params.pop(0)
init_params.pop(0)
for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
name = name[6:] # skip "model/"
if name[-2:] != ":0":
raise ValueError(f"Layer {name} does not end with :0")
name = name[:-2]
name = name.split("/")
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
scope_names = re.split(r"(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "g":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "b":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "w":
pointer = getattr(pointer, "weight")
else:
pointer = getattr(pointer, scope_names[0])
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
# Ensure that the pointer and array have compatible shapes.
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
ACT_FNS = {"relu": nn.ReLU(), "silu": silu, "gelu": gelu_new, "swish": silu}
class Attention(nn.Module):
def __init__(self, nx, n_positions, config, scale=False):
super().__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implementation]
if n_state % config.n_head != 0:
raise ValueError(f"Attention n_state shape: {n_state} must be divisible by config.n_head {config.n_head}")
self.register_buffer(
"bias",
torch.tril(torch.ones(n_positions, n_positions)).view(1, 1, n_positions, n_positions),
persistent=False,
)
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, nx)
self.c_proj = Conv1D(n_state, nx)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads
)
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
# Prune conv1d layers
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
# Update hyper params
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
self.n_head = self.n_head - len(heads)
self.pruned_heads = self.pruned_heads.union(heads)
def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
# w = w * self.bias + -1e9 * (1 - self.bias) # TF implementation method: mask_attn_weights
# XD: self.b may be larger than w, so we need to crop it
b = self.bias[:, :, : w.size(-2), : w.size(-1)]
w = w * b + -1e4 * (1 - b)
if attention_mask is not None:
# Apply the attention mask
w = w + attention_mask
w = nn.functional.softmax(w, dim=-1)
w = self.attn_dropout(w)
# Mask heads if we want to
if head_mask is not None:
w = w * head_mask
outputs = [torch.matmul(w, v)]
if output_attentions:
outputs.append(w)
return outputs
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implementation: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implementation: fct split_states
if k:
return x.permute(0, 2, 3, 1)
else:
return x.permute(0, 2, 1, 3)
def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions)
a = attn_outputs[0]
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a)
outputs = [a] + attn_outputs[1:]
return outputs # a, (attentions)
class MLP(nn.Module):
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
super().__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, nx)
self.c_proj = Conv1D(nx, n_state)
self.act = ACT_FNS[config.afn]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return self.dropout(h2)
class Block(nn.Module):
def __init__(self, n_positions, config, scale=False):
super().__init__()
nx = config.n_embd
self.attn = Attention(nx, n_positions, config, scale)
self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
self.mlp = MLP(4 * nx, config)
self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False):
attn_outputs = self.attn(
x,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
a = attn_outputs[0]
n = self.ln_1(x + a)
m = self.mlp(n)
h = self.ln_2(n + m)
outputs = [h] + attn_outputs[1:]
return outputs
class OpenAIGPTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = OpenAIGPTConfig
load_tf_weights = load_tf_weights_in_openai_gpt
base_model_prefix = "transformer"
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, Conv1D)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@dataclass
class OpenAIGPTDoubleHeadsModelOutput(ModelOutput):
"""
Base class for outputs of models predicting if two sentences are consecutive or not.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
Multiple choice classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
mc_loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
mc_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
OPENAI_GPT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
OPENAI_GPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.",
OPENAI_GPT_START_DOCSTRING,
)
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList([Block(config.n_positions, config, scale=True) for _ in range(config.n_layer)])
self.register_buffer("position_ids", torch.arange(config.n_positions), persistent=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.tokens_embed
def set_input_embeddings(self, new_embeddings):
self.tokens_embed = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
for layer, heads in heads_to_prune.items():
self.h[layer].attn.prune_heads(heads)
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if position_ids is None:
# Code is different from when we had a single embedding matrix from position and token embeddings
position_ids = self.position_ids[None, : input_shape[-1]]
# Attention mask.
if attention_mask is not None:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.tokens_embed(input_ids)
position_embeds = self.positions_embed(position_ids)
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
token_type_embeds = self.tokens_embed(token_type_ids)
else:
token_type_embeds = 0
hidden_states = inputs_embeds + position_embeds + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, block in enumerate(self.h):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = block(hidden_states, attention_mask, head_mask[i], output_attentions=output_attentions)
hidden_states = outputs[0]
if output_attentions:
all_attentions = all_attentions + (outputs[1],)
hidden_states = hidden_states.view(*output_shape)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
@add_start_docstrings(
"""
OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
OPENAI_GPT_START_DOCSTRING,
)
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Flatten the tokens
loss = self.loss_function(
lm_logits,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss,
logits=lm_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs) -> Dict[str, Any]:
# Overwritten -- old model with reduced inputs
return {"input_ids": input_ids}
@add_start_docstrings(
"""
OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
input embeddings, the classification head takes as input the input of a specified classification token index in the
input sequence).
""",
OPENAI_GPT_START_DOCSTRING,
)
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 1
self.transformer = OpenAIGPTModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.multiple_choice_head = SequenceSummary(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
mc_token_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
mc_labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], OpenAIGPTDoubleHeadsModelOutput]:
r"""
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
1]`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-1, 0, ..., config.vocab_size]` All labels set to `-100` are
ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
Return:
Examples:
```python
>>> from transformers import AutoTokenizer, OpenAIGPTDoubleHeadsModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = OpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt")
>>> tokenizer.add_special_tokens(
... {"cls_token": "[CLS]"}
... ) # Add a [CLS] to the vocabulary (we should train it also!)
>>> model.resize_token_embeddings(len(tokenizer))
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>> mc_token_ids = torch.tensor([input_ids.size(-1) - 1, input_ids.size(-1) - 1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
>>> lm_logits = outputs.logits
>>> mc_logits = outputs.mc_logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
lm_loss, mc_loss = None, None
if mc_labels is not None:
loss_fct = CrossEntropyLoss()
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
if labels is not None:
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (lm_logits, mc_logits) + transformer_outputs[1:]
if mc_loss is not None:
output = (mc_loss,) + output
return ((lm_loss,) + output) if lm_loss is not None else output
return OpenAIGPTDoubleHeadsModelOutput(
loss=lm_loss,
mc_loss=mc_loss,
logits=lm_logits,
mc_logits=mc_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Original OpenAI GPT Model transformer with a sequence classification head on top (linear layer).
[`OpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal
models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the
last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding
token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since
it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take
the last value in each row of the batch).
""",
OPENAI_GPT_START_DOCSTRING,
)
class OpenAIGPTForSequenceClassification(OpenAIGPTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = OpenAIGPTModel(config)
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
# Ensure the batch size is > 1 if there is no padding.
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=pooled_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
__all__ = [
"OpenAIGPTDoubleHeadsModel",
"OpenAIGPTForSequenceClassification",
"OpenAIGPTLMHeadModel",
"OpenAIGPTModel",
"OpenAIGPTPreTrainedModel",
"load_tf_weights_in_openai_gpt",
]
```
|
========================================================================================================================================
SOURCE CODE FILE: modeling_tf_openai.py
LINES: 1
SIZE: 40.03 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\openai\modeling_tf_openai.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 OpenAI GPT model."""
from __future__ import annotations
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequenceClassifierOutput
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFConv1D,
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
TFSequenceSummary,
TFSharedEmbeddings,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_openai import OpenAIGPTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "openai-community/openai-gpt"
_CONFIG_FOR_DOC = "OpenAIGPTConfig"
class TFAttention(keras.layers.Layer):
def __init__(self, nx, config, scale=False, **kwargs):
super().__init__(**kwargs)
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implementation]
assert n_state % config.n_head == 0, (
f"Hidden dimension {n_state} not dividable by number of heads {config.n_head}"
)
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.output_attentions = config.output_attentions
self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name="c_attn")
self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_proj")
self.attn_dropout = keras.layers.Dropout(config.attn_pdrop)
self.resid_dropout = keras.layers.Dropout(config.resid_pdrop)
self.n_state = n_state
self.pruned_heads = set()
def prune_heads(self, heads):
pass
@staticmethod
def causal_attention_mask(nd, ns):
"""
1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]),
-1, ns-nd), but doesn't produce garbage on TPUs.
"""
i = tf.range(nd)[:, None]
j = tf.range(ns)
m = i >= j - ns + nd
return m
def _attn(self, q, k, v, attention_mask, head_mask, output_attentions, training=False):
# q, k, v have shape [batch, heads, sequence, features]
w = tf.matmul(q, k, transpose_b=True)
if self.scale:
dk = tf.cast(shape_list(k)[-1], dtype=w.dtype) # scale attention_scores
w = w / tf.math.sqrt(dk)
# w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
_, _, nd, ns = shape_list(w)
b = tf.cast(self.causal_attention_mask(nd, ns), dtype=w.dtype)
b = tf.reshape(b, [1, 1, nd, ns])
w = w * b - 1e4 * (1 - b)
if attention_mask is not None:
# Apply the attention mask
attention_mask = tf.cast(attention_mask, dtype=w.dtype)
w = w + attention_mask
w = stable_softmax(w, axis=-1)
w = self.attn_dropout(w, training=training)
# Mask heads if we want to
if head_mask is not None:
w = w * head_mask
outputs = [tf.matmul(w, v)]
if output_attentions:
outputs.append(w)
return outputs
def merge_heads(self, x):
x = tf.transpose(x, [0, 2, 1, 3])
x_shape = shape_list(x)
new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]]
return tf.reshape(x, new_x_shape)
def split_heads(self, x):
x_shape = shape_list(x)
new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head]
x = tf.reshape(x, new_x_shape)
return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features)
def call(self, x, attention_mask, head_mask, output_attentions, training=False):
x = self.c_attn(x)
query, key, value = tf.split(x, 3, axis=2)
query = self.split_heads(query)
key = self.split_heads(key)
value = self.split_heads(value)
attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions, training=training)
a = attn_outputs[0]
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a, training=training)
outputs = [a] + attn_outputs[1:]
return outputs # a, (attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "c_attn", None) is not None:
with tf.name_scope(self.c_attn.name):
self.c_attn.build([None, None, self.n_state * 3])
if getattr(self, "c_proj", None) is not None:
with tf.name_scope(self.c_proj.name):
self.c_proj.build([None, None, self.n_state])
class TFMLP(keras.layers.Layer):
def __init__(self, n_state, config, **kwargs):
super().__init__(**kwargs)
nx = config.n_embd
self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc")
self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj")
self.act = get_tf_activation("gelu")
self.dropout = keras.layers.Dropout(config.resid_pdrop)
self.nx = nx
self.n_state = n_state
def call(self, x, training=False):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
h2 = self.dropout(h2, training=training)
return h2
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "c_fc", None) is not None:
with tf.name_scope(self.c_fc.name):
self.c_fc.build([None, None, self.n_state])
if getattr(self, "c_proj", None) is not None:
with tf.name_scope(self.c_proj.name):
self.c_proj.build([None, None, self.nx])
class TFBlock(keras.layers.Layer):
def __init__(self, config, scale=False, **kwargs):
super().__init__(**kwargs)
nx = config.n_embd
self.attn = TFAttention(nx, config, scale, name="attn")
self.ln_1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
self.mlp = TFMLP(4 * nx, config, name="mlp")
self.ln_2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_2")
self.nx = nx
def call(self, x, attention_mask, head_mask, output_attentions, training=False):
output_attn = self.attn(x, attention_mask, head_mask, output_attentions, training=training)
a = output_attn[0] # output_attn: a, (attentions)
n = self.ln_1(x + a)
m = self.mlp(n, training=training)
h = self.ln_2(n + m)
outputs = [h] + output_attn[1:]
return outputs # x, (attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attn", None) is not None:
with tf.name_scope(self.attn.name):
self.attn.build(None)
if getattr(self, "ln_1", None) is not None:
with tf.name_scope(self.ln_1.name):
self.ln_1.build([None, None, self.nx])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "ln_2", None) is not None:
with tf.name_scope(self.ln_2.name):
self.ln_2.build([None, None, self.nx])
@keras_serializable
class TFOpenAIGPTMainLayer(keras.layers.Layer):
config_class = OpenAIGPTConfig
def __init__(self, config, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
self.config = config
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.return_dict = config.use_return_dict
self.num_hidden_layers = config.n_layer
self.n_embd = config.n_embd
self.n_positions = config.n_positions
self.initializer_range = config.initializer_range
self.tokens_embed = TFSharedEmbeddings(
config.vocab_size, config.n_embd, initializer_range=config.initializer_range, name="tokens_embed"
)
self.drop = keras.layers.Dropout(config.embd_pdrop)
self.h = [TFBlock(config, scale=True, name=f"h_._{i}") for i in range(config.n_layer)]
def build(self, input_shape=None):
with tf.name_scope("positions_embed"):
self.positions_embed = self.add_weight(
name="embeddings",
shape=[self.n_positions, self.n_embd],
initializer=get_initializer(self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "tokens_embed", None) is not None:
with tf.name_scope(self.tokens_embed.name):
self.tokens_embed.build(None)
if getattr(self, "h", None) is not None:
for layer in self.h:
with tf.name_scope(layer.name):
layer.build(None)
def get_input_embeddings(self):
return self.tokens_embed
def set_input_embeddings(self, value):
self.tokens_embed.weight = value
self.tokens_embed.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutput]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if position_ids is None:
position_ids = tf.expand_dims(tf.range(input_shape[-1]), axis=0)
if attention_mask is not None:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
one_cst = tf.constant(1.0)
attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype)
attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0))
else:
attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.num_hidden_layers
# head_mask = tf.constant([0] * self.num_hidden_layers)
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = self.tokens_embed(input_ids, mode="embedding")
position_embeds = tf.gather(self.positions_embed, position_ids)
if token_type_ids is not None:
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
check_embeddings_within_bounds(token_type_ids, self.config.vocab_size, "token_type_ids")
token_type_embeds = self.tokens_embed(token_type_ids, mode="embedding")
else:
token_type_embeds = 0
hidden_states = inputs_embeds + position_embeds + token_type_embeds
hidden_states = self.drop(hidden_states, training=training)
output_shape = input_shape + [shape_list(hidden_states)[-1]]
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, block in enumerate(self.h):
if output_hidden_states:
all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)
outputs = block(
hidden_states,
attention_mask,
head_mask[i],
output_attentions,
training=training,
)
hidden_states = outputs[0]
if output_attentions:
all_attentions = all_attentions + (outputs[1],)
hidden_states = tf.reshape(hidden_states, output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if output_attentions:
# let the number of heads free (-1) so we can extract attention even after head pruning
attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
class TFOpenAIGPTPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = OpenAIGPTConfig
base_model_prefix = "transformer"
@dataclass
class TFOpenAIGPTDoubleHeadsModelOutput(ModelOutput):
"""
Base class for outputs of models predicting if two sentences are consecutive or not.
Args:
logits (`tf.Tensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
mc_logits (`tf.Tensor` of shape `(batch_size, num_choices)`):
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: Optional[tf.Tensor] = None
mc_logits: Optional[tf.Tensor] = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
OPENAI_GPT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
OPENAI_GPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.",
OPENAI_GPT_START_DOCSTRING,
)
class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
@add_start_docstrings(
"""
OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
OPENAI_GPT_START_DOCSTRING,
)
class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelingLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
# OpenAIGPT does not have past caching features
self.supports_xla_generation = False
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
@unpack_inputs
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFCausalLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
config.vocab_size - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
logits = self.transformer.tokens_embed(hidden_states, mode="linear")
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels, shifted_logits)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def prepare_inputs_for_generation(self, inputs, **kwargs):
return {"input_ids": inputs}
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
@add_start_docstrings(
"""
OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
input embeddings, the classification head takes as input the input of a specified classification token index in the
input sequence).
""",
OPENAI_GPT_START_DOCSTRING,
)
class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
config.num_labels = 1
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
self.multiple_choice_head = TFSequenceSummary(
config, initializer_range=config.initializer_range, name="multiple_choice_head"
)
@unpack_inputs
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFOpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
mc_token_ids: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]:
r"""
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
1]`.
Return:
Examples:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFOpenAIGPTDoubleHeadsModel
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = TFOpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt")
>>> # Add a [CLS] to the vocabulary (we should train it also!)
>>> tokenizer.add_special_tokens({"cls_token": "[CLS]"})
>>> model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size
>>> print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
>>> encoding = tokenizer(choices, return_tensors="tf")
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> inputs["mc_token_ids"] = tf.constant(
... [inputs["input_ids"].shape[-1] - 1, inputs["input_ids"].shape[-1] - 1]
... )[
... None, :
... ] # Batch size 1
>>> outputs = model(inputs)
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
```"""
if input_ids is not None:
input_shapes = shape_list(input_ids)
else:
input_shapes = shape_list(inputs_embeds)[:-1]
seq_length = input_shapes[-1]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
transformer_outputs = self.transformer(
flat_input_ids,
flat_attention_mask,
flat_token_type_ids,
flat_position_ids,
head_mask,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:])
if return_dict and output_hidden_states:
# We do this to match the slightly odd PT behaviour - the final hidden state is reshaped to rank 4 when the
# input is rank 3, but all other hidden states remain at rank-3 (with the first 2 dims merged)
all_hidden_states = transformer_outputs.hidden_states[:-1] + (hidden_states,)
else:
all_hidden_states = None
lm_logits = self.transformer.tokens_embed(hidden_states, mode="linear")
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids, training=training)
mc_logits = tf.squeeze(mc_logits, axis=-1)
if not return_dict:
return (lm_logits, mc_logits) + transformer_outputs[1:]
return TFOpenAIGPTDoubleHeadsModelOutput(
logits=lm_logits,
mc_logits=mc_logits,
hidden_states=all_hidden_states,
attentions=transformer_outputs.attentions,
)
@property
def input_signature(self):
return {
"input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"),
"mc_token_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"),
}
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "multiple_choice_head", None) is not None:
with tf.name_scope(self.multiple_choice_head.name):
self.multiple_choice_head.build(None)
@add_start_docstrings(
"""
The OpenAI GPT Model transformer with a sequence classification head on top (linear layer).
[`TFOpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal
models (e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
OPENAI_GPT_START_DOCSTRING,
)
class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.score = keras.layers.Dense(
config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="score",
use_bias=False,
)
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFSequenceClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
config.vocab_size - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
logits_shape = shape_list(logits)
batch_size = logits_shape[0]
if self.config.pad_token_id is None:
last_non_pad_token = tf.fill((batch_size,), value=logits_shape[1] - 1)
else:
if input_ids is not None:
token_indices = tf.range(shape_list(input_ids)[-1])
non_pad_mask = tf.cast(input_ids != self.config.pad_token_id, token_indices.dtype)
last_non_pad_token = tf.reduce_max(token_indices * non_pad_mask, axis=-1)
else:
last_non_pad_token = tf.fill((batch_size,), value=logits_shape[1] - 1)
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
loss = None
pooled_logits = tf.gather(logits, last_non_pad_token, batch_dims=1, axis=1)
if labels is not None:
if self.config.pad_token_id is None and logits_shape[0] != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
loss = self.hf_compute_loss(tf.reshape(labels, [-1]), tf.reshape(pooled_logits, [-1, self.num_labels]))
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=pooled_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "score", None) is not None:
with tf.name_scope(self.score.name):
self.score.build([None, None, self.config.n_embd])
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
__all__ = [
"TFOpenAIGPTDoubleHeadsModel",
"TFOpenAIGPTForSequenceClassification",
"TFOpenAIGPTLMHeadModel",
"TFOpenAIGPTMainLayer",
"TFOpenAIGPTModel",
"TFOpenAIGPTPreTrainedModel",
]
```
|
=========================================================================================================================================
SOURCE CODE FILE: tokenization_openai.py
LINES: 10
SIZE: 14.83 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\openai\tokenization_openai.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
import os
import re
import unicodedata
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
def get_pairs(word):
"""
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def text_standardize(text):
"""
fixes some issues the spacy tokenizer had on books corpus also does some whitespace standardization
"""
text = text.replace("—", "-")
text = text.replace("–", "-")
text = text.replace("―", "-")
text = text.replace("…", "...")
text = text.replace("´", "'")
text = re.sub(r"""(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)""", r" \1 ", text)
text = re.sub(r"\s*\n\s*", " \n ", text)
text = re.sub(r"[^\S\n]+", " ", text)
return text.strip()
class OpenAIGPTTokenizer(PreTrainedTokenizer):
"""
Construct a GPT Tokenizer. Based on Byte-Pair-Encoding with the following peculiarities:
- lowercases all inputs,
- uses `SpaCy` tokenizer and `ftfy` for pre-BPE tokenization if they are installed, fallback to BERT's
`BasicTokenizer` if not.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs):
try:
import ftfy
from spacy.lang.en import English
_nlp = English()
self.nlp = _nlp.tokenizer
self.fix_text = ftfy.fix_text
except ImportError:
logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.")
self.nlp = BasicTokenizer(do_lower_case=True)
self.fix_text = None
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[1:-1]
merges = [tuple(merge.split()) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(unk_token=unk_token, **kwargs)
@property
def do_lower_case(self):
return True
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
word = tuple(token[:-1]) + (token[-1] + "</w>",)
if token in self.cache:
return self.cache[token]
pairs = get_pairs(word)
if not pairs:
return token + "</w>"
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
if word == "\n </w>":
word = "\n</w>"
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
split_tokens = []
if self.fix_text is None:
# Using BERT's BasicTokenizer
text = self.nlp.tokenize(text)
for token in text:
split_tokens.extend(list(self.bpe(token).split(" ")))
else:
# Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
text = self.nlp(text_standardize(self.fix_text(text)))
for token in text:
split_tokens.extend(list(self.bpe(token.text.lower()).split(" ")))
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an id in a token (BPE) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = "".join(tokens).replace("</w>", " ").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
__all__ = ["OpenAIGPTTokenizer"]
```
|
==============================================================================================================================================
SOURCE CODE FILE: tokenization_openai_fast.py
LINES: 1
SIZE: 2.50 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\openai\tokenization_openai_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Tokenization classes for OpenAI GPT."""
from typing import Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_openai import OpenAIGPTTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
class OpenAIGPTTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" GPT Tokenizer (backed by HuggingFace's *tokenizers* library). Based on Byte-Pair-Encoding with
the following peculiarities:
- lower case all inputs
- uses BERT's BasicTokenizer for pre-BPE tokenization
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = OpenAIGPTTokenizer
def __init__(self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<unk>", **kwargs):
super().__init__(vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, **kwargs)
@property
def do_lower_case(self):
return True
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["OpenAIGPTTokenizerFast"]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.03 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\opt\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_opt import *
from .modeling_flax_opt import *
from .modeling_opt import *
from .modeling_tf_opt import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_opt.py
LINES: 1
SIZE: 6.53 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\opt\configuration_opt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OPT model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class OPTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the OPT
[facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50272):
Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`OPTModel`]
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
ffn_dim (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer decoder.
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
do_layer_norm_before (`bool`, *optional*, defaults to `True`):
Whether to perform layer normalization before the attention block.
word_embed_proj_dim (`int`, *optional*):
`word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to
`hidden_size`.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
enable_bias (`bool`, *optional*, defaults to `True`):
Whether or not if the linear layers in the attention blocks should use the bias term.
layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether or not if the layer norms should have learnable parameters.
Example:
```python
>>> from transformers import OPTConfig, OPTModel
>>> # Initializing a OPT facebook/opt-large style configuration
>>> configuration = OPTConfig()
>>> # Initializing a model (with random weights) from the facebook/opt-large style configuration
>>> model = OPTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "opt"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50272,
hidden_size=768,
num_hidden_layers=12,
ffn_dim=3072,
max_position_embeddings=2048,
do_layer_norm_before=True,
_remove_final_layer_norm=False,
word_embed_proj_dim=None,
dropout=0.1,
attention_dropout=0.0,
num_attention_heads=12,
activation_function="relu",
layerdrop=0.0,
init_std=0.02,
use_cache=True,
pad_token_id=1,
bos_token_id=2,
eos_token_id=2,
enable_bias=True,
layer_norm_elementwise_affine=True,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.num_attention_heads = num_attention_heads
self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size
self.ffn_dim = ffn_dim
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_function = activation_function
self.init_std = init_std
self.layerdrop = layerdrop
self.use_cache = use_cache
self.do_layer_norm_before = do_layer_norm_before
# We keep these variables at `True` for backward compatibility.
self.enable_bias = enable_bias
self.layer_norm_elementwise_affine = layer_norm_elementwise_affine
# Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
self._remove_final_layer_norm = _remove_final_layer_norm
__all__ = ["OPTConfig"]
```
|
====================================================================================================================================
SOURCE CODE FILE: modeling_flax_opt.py
LINES: 1
SIZE: 30.88 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\opt\modeling_flax_opt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax OPT model."""
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxMaskedLMOutput
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, logging
from .configuration_opt import OPTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
_CONFIG_FOR_DOC = "OPTConfig"
OPT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`OPTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
OPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->OPT
class FlaxOPTAttention(nn.Module):
config: OPTConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slightly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class FlaxOPTDecoderLayer(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.hidden_size
self.self_attn = FlaxOPTAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.num_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.do_layer_norm_before = self.config.do_layer_norm_before
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
init_cache=init_cache,
deterministic=deterministic,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
hidden_states_shape = hidden_states.shape
hidden_states = hidden_states.reshape(-1, hidden_states.shape[-1])
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = (residual + hidden_states).reshape(hidden_states_shape)
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class FlaxOPTDecoderLayerCollection(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxOPTDecoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
self.layerdrop = self.config.layerdrop
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
outputs = [hidden_states, all_hidden_states, all_self_attns]
return outputs
class FlaxOPTLearnedPositionalEmbedding(nn.Embed):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def setup(self):
self.offset = 2
self.embedding = self.param(
"embedding", self.embedding_init, (self.num_embeddings + self.offset, self.features), self.param_dtype
)
def __call__(self, positions):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
return super().__call__(positions + self.offset)
class FlaxOPTDecoder(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
offset: int = 2
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.hidden_size
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_tokens = nn.Embed(
self.config.vocab_size,
self.config.word_embed_proj_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.embed_positions = FlaxOPTLearnedPositionalEmbedding(
self.config.max_position_embeddings,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
if self.config.word_embed_proj_dim != self.config.hidden_size:
self.project_in = nn.Dense(self.config.hidden_size, use_bias=False)
self.project_out = nn.Dense(self.config.word_embed_proj_dim, use_bias=False)
else:
self.project_in = None
self.project_out = None
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if self.config.do_layer_norm_before and not self.config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
else:
self.final_layer_norm = None
self.layers = FlaxOPTDecoderLayerCollection(self.config, self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
positions = self.embed_positions(position_ids)
hidden_states = inputs_embeds + positions
hidden_state, all_hidden_states, attentions = self.layers(
hidden_states,
attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if self.final_layer_norm is not None:
hidden_state = self.final_layer_norm(hidden_state)
if self.project_out is not None:
hidden_state = self.project_out(hidden_state)
if output_hidden_states:
all_hidden_states += (hidden_state,)
outputs = [hidden_state, all_hidden_states, attentions]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_state,
hidden_states=all_hidden_states,
attentions=attentions,
)
class FlaxOPTPreTrainedModel(FlaxPreTrainedModel):
config_class = OPTConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: OPTConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
position_ids,
return_dict=False,
)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
params: dict = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
dropout_rng: PRNGKey = None,
deterministic: bool = True,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
position_ids = (attention_mask.cumsum(axis=1) * attention_mask) - 1
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxOPTAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxOPTModule(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.decoder = FlaxOPTDecoder(self.config, dtype=self.dtype)
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
init_cache=False,
):
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
init_cache=init_cache,
)
if not return_dict:
return decoder_outputs
return FlaxBaseModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModel with Bart->OPT
class FlaxOPTModel(FlaxOPTPreTrainedModel):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
module_class = FlaxOPTModule
append_call_sample_docstring(FlaxOPTModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
@add_start_docstrings(
"The bare OPT Model transformer outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class FlaxOPTForCausalLMModule(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.model = FlaxOPTModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids,
attention_mask,
position_ids,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=lm_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
OPT Model with a language modeling head on top (linear layer with weights tied to the input embeddings) e.g for
autoregressive tasks.
""",
OPT_START_DOCSTRING,
)
class FlaxOPTForCausalLM(FlaxOPTPreTrainedModel):
module_class = FlaxOPTForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxOPTForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutput,
_CONFIG_FOR_DOC,
)
__all__ = ["FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_opt.py
LINES: 2
SIZE: 69.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\opt\modeling_opt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OPT model."""
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
AttentionMaskConverter,
)
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from .configuration_opt import OPTConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
_CONFIG_FOR_DOC = "OPTConfig"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc"
_SEQ_CLASS_EXPECTED_LOSS = 1.71
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"
class OPTLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(
self,
attention_mask: torch.LongTensor,
past_key_values_length: int = 0,
position_ids: Optional[torch.LongTensor] = None,
):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
if position_ids is None:
position_ids = torch.cumsum(attention_mask, dim=1)
position_ids = (position_ids * attention_mask - 1).long()
# cut positions if `past_key_values_length` is > 0
position_ids = position_ids[:, past_key_values_length:]
return super().forward(position_ids + self.offset)
class OPTAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: OPTConfig,
layer_idx: Optional[int] = None,
**kwargs,
):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.dropout = config.attention_dropout
self.enable_bias = config.enable_bias
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.head_dim = self.embed_dim // self.num_heads
self.is_causal = True
if (self.head_dim * self.num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias)
def forward(
self,
hidden_states: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
# isn't needed in normal attention, but needed in flash attention so to keep the signature same
position_ids: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
query_states = query_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
attn_weights = torch.matmul(query_states, key_states.transpose(3, 2))
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_probs, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_probs, past_key_value
class OptFlashAttention2(OPTAttention):
"""
OPT flash attention module. This module inherits from `OPTAttention` as the weights of the module stays untouched.
The only required change would be on the forward pass where it needs to correctly call the public API of flash
attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
position_ids: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, query_length, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, -1, self.num_heads, self.head_dim)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
attn_dropout = self.dropout if self.training else 0.0
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
query_length,
position_ids=position_ids,
dropout=attn_dropout,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim)
attn_output = self.out_proj(attn_weights_reshaped)
if not output_attentions:
attn_weights_reshaped = None
return attn_output, attn_weights_reshaped, past_key_value
class OPTSdpaAttention(OPTAttention):
"""
OPT sdpa attention module. This module inherits from `OPTAttention` as the weights of the module stays untouched.
The only required change would be on the forward pass where it needs to correctly call the public API of sdpa
attention and deal with padding tokens in case the input contains any of them.
"""
def forward(
self,
hidden_states: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
position_ids: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions or layer_head_mask is not None:
logger.warning_once(
"OPTModel is using SDPA attention, which currently does not support output_attentions=True."
'failing back to eager attention. remove warning using attn_implementation="eager".'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
cache_position=cache_position,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
OPT_ATTENTION_CLASSES = {
"eager": OPTAttention,
"flash_attention_2": OptFlashAttention2,
"sdpa": OPTSdpaAttention,
}
class OPTDecoderLayer(nn.Module):
def __init__(self, config: OPTConfig, layer_idx: Optional[int] = None):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.do_layer_norm_before = config.do_layer_norm_before
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.self_attn_layer_norm = nn.LayerNorm(
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine
)
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias)
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=config.enable_bias)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
position_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.Tensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence..
"""
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=past_key_value,
position_ids=position_ids,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
hidden_states_shape = hidden_states.shape
hidden_states = hidden_states.reshape(-1, hidden_states.size(-1))
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = (residual + hidden_states).view(hidden_states_shape)
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
OPT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OPTConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class OPTPreTrainedModel(PreTrainedModel):
config_class = OPTConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["OPTDecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
OPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. for padding use -1.
[What are position IDs?](../glossary#position-ids)
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
class OPTDecoder(OPTPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`]
Args:
config: OPTConfig
"""
def __init__(self, config: OPTConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
else:
self.project_out = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
else:
self.project_in = None
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
)
else:
self.final_layer_norm = None
self.layers = nn.ModuleList([OPTDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
position_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.Tensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. for padding use -1.
[What are position IDs?](../glossary#position-ids)
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if input_ids is not None:
input_ids = input_ids.view(-1, input_ids.shape[-1])
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
if past_key_values is None:
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.53.0. "
"You should pass an instance of `DynamicCache` instead, e.g. "
"`past_key_values=DynamicCache.from_legacy_cache(past_key_values)`."
)
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
if cache_position is None:
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if attention_mask is None:
seq_length = past_seen_tokens + inputs_embeds.shape[1]
attention_mask = torch.ones(inputs_embeds.shape[0], seq_length, device=inputs_embeds.device)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
if position_ids is None:
# position_ids = cache_position.unsqueeze(0)
position_ids = torch.cumsum(attention_mask, dim=1)
position_ids = (position_ids * attention_mask - 1).long()
# cut positions if `past_seen_tokens` is > 0
position_ids = position_ids[:, past_seen_tokens:]
pos_embeds = self.embed_positions(attention_mask, past_seen_tokens, position_ids=position_ids)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds.to(inputs_embeds.device)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
# check if head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
head_mask[idx] if head_mask is not None else None,
None,
output_attentions,
use_cache,
position_ids,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@add_start_docstrings(
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class OPTModel(OPTPreTrainedModel):
def __init__(self, config: OPTConfig):
super().__init__(config)
self.decoder = OPTDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
position_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.Tensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs
return BaseModelOutputWithPast(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
)
class OPTForCausalLM(OPTPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = OPTModel(config)
# the lm_head weight is automatically tied to the embed tokens weight
self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
position_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. for padding use -1.
[What are position IDs?](../glossary#position-ids)
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, OPTForCausalLM
>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
logits = self.lm_head(outputs[0]).contiguous()
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
loss = self.loss_function(
logits,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings(
"""
The OPT Model transformer with a sequence classification head on top (linear layer).
[`OPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
OPT_START_DOCSTRING,
)
class OPTForSequenceClassification(OPTPreTrainedModel):
def __init__(self, config: OPTConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.model = OPTModel(config)
self.score = nn.Linear(config.word_embed_proj_dim, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
position_ids: Optional[torch.LongTensor] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
@add_start_docstrings(
"""
The OPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD
(a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
OPT_START_DOCSTRING,
)
class OPTForQuestionAnswering(OPTPreTrainedModel):
def __init__(self, config: OPTConfig):
super().__init__(config)
self.model = OPTModel(config)
self.qa_outputs = nn.Linear(config.word_embed_proj_dim, 2)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
position_ids: Optional[torch.LongTensor] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, OPTForQuestionAnswering
>>> import torch
>>> torch.manual_seed(4) # doctest: +IGNORE_RESULT
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> # note: we are loading a OPTForQuestionAnswering from the hub here,
>>> # so the head will be randomly initialized, hence the predictions will be random
>>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> answer_offset = len(tokenizer(question)[0])
>>> predict_answer_tokens = inputs.input_ids[
... 0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1
... ]
>>> predicted = tokenizer.decode(predict_answer_tokens)
>>> predicted
' a nice puppet'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index).to(logits.device)
end_positions = end_positions.clamp(0, ignored_index).to(logits.device)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + transformer_outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
__all__ = [
"OPTForCausalLM",
"OPTModel",
"OPTPreTrainedModel",
"OPTForSequenceClassification",
"OPTForQuestionAnswering",
]
```
|
==================================================================================================================================
SOURCE CODE FILE: modeling_tf_opt.py
LINES: 2
SIZE: 48.46 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\opt\modeling_tf_opt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 OPT model."""
from __future__ import annotations
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast
# Public API
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFSharedEmbeddings,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_opt import OPTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
_CONFIG_FOR_DOC = "OPTConfig"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# Causal LM output
_CAUSAL_LM_EXPECTED_OUTPUT = (
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
)
LARGE_NEGATIVE = -1e8
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
# We need triu with k = 1 but TF expects known compile-time dims for that, so we hack around it
mask = tf.fill((tgt_len, tgt_len), tf.cast(LARGE_NEGATIVE, tf.float32))
mask = tf.linalg.band_part(mask, 0, -1) - tf.linalg.band_part(mask, 0, 0)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFOPTLearnedPositionalEmbedding(keras.layers.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs)
def call(self, attention_mask, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
attention_mask = tf.cast(attention_mask, tf.int64)
# create positions depending on attention_mask
positions = tf.math.cumsum(attention_mask, axis=1) * attention_mask - 1
# cut positions if `past_key_values_length` is > 0
positions = positions[:, past_key_values_length:]
return super().call(positions + self.offset)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->OPT
class TFOPTAttention(keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
class TFOPTDecoderLayer(keras.layers.Layer):
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(**kwargs)
self.do_layer_norm_before = config.do_layer_norm_before
self.embed_dim = config.hidden_size
self.self_attn = TFOPTAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.fc1 = keras.layers.Dense(config.ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: np.ndarray | tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
training: Optional[bool] = False,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`, *optional*): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return (hidden_states, self_attn_weights, present_key_value)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
OPT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`OPTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class TFOPTPreTrainedModel(TFPreTrainedModel):
"""
TFOPT Pretrained Model that inheritates from transformers.TFPreTrainedModel
Args:
config: OPTConfig
"""
config_class = OPTConfig
base_model_prefix = "model"
OPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TFOPTDecoder(keras.layers.Layer):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.layerdrop = config.layerdrop
num_embeddings = config.max_position_embeddings
self.embed_tokens = TFSharedEmbeddings(
config.vocab_size, config.word_embed_proj_dim, config.pad_token_id, name="embed_tokens"
)
self.embed_positions = TFOPTLearnedPositionalEmbedding(
num_embeddings,
config.hidden_size,
name="embed_positions",
)
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
else:
self.final_layer_norm = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = keras.layers.Dense(config.word_embed_proj_dim, name="project_out", use_bias=False)
self.project_in = keras.layers.Dense(config.hidden_size, name="project_in", use_bias=False)
else:
self.project_in = None
self.project_out = None
self.layers = [TFOPTDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)]
self.dropout = keras.layers.Dropout(config.dropout)
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens.vocab_size = new_embeddings.shape[0]
self.embed_tokens.weight = new_embeddings
def get_input_embeddings(self):
return self.embed_tokens
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length):
# create causal mask
# # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
_, seq_length = input_shape
tf.debugging.assert_equal(
seq_length + past_key_values_length,
shape_list(attention_mask)[1],
message="Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
f" but is {shape_list(attention_mask)[1]} with input_ids shape {input_shape} and past length"
f" {past_key_values_length}.",
)
expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1])
if seq_length > 1:
combined_attention_mask = (
_make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + expanded_attn_mask
)
else:
combined_attention_mask = expanded_attn_mask
return combined_attention_mask
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size)
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is None:
attention_mask = tf.ones((input_shape[0], input_shape[1] + past_key_values_length), dtype=tf.bool)
else:
tf.debugging.assert_equal(
shape_list(attention_mask)[1],
past_key_values_length + input_shape[1],
message=(
f"The provided attention mask has length {tf.shape(attention_mask)[1]}, but its length should be "
f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)"
),
)
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
for attn_mask_name, attn_mask in [("head_mask", head_mask)]:
if attn_mask is not None:
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.layers),
message=(
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=head_mask[idx] if head_mask is not None else None,
past_key_value=past_key_value,
)
if use_cache:
present_key_values += (present_key_value,)
if output_attentions:
all_self_attns += (layer_self_attn,)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, present_key_values, all_hidden_states, all_self_attns] if v is not None
)
else:
return TFBaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_tokens", None) is not None:
with tf.name_scope(self.embed_tokens.name):
self.embed_tokens.build(None)
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "project_out", None) is not None:
with tf.name_scope(self.project_out.name):
self.project_out.build([None, None, self.config.hidden_size])
if getattr(self, "project_in", None) is not None:
with tf.name_scope(self.project_in.name):
self.project_in.build([None, None, self.config.word_embed_proj_dim])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFOPTMainLayer(keras.layers.Layer):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.decoder = TFOPTDecoder(config, name="decoder")
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.decoder.set_input_embeddings(new_embeddings)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.decoder(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return outputs
return TFBaseModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
@add_start_docstrings(
"The bare TF OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
@keras_serializable
class TFOPTModel(TFOPTPreTrainedModel):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.model = TFOPTMainLayer(config, name="model")
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.model.set_input_embeddings(new_embeddings)
@unpack_inputs
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return outputs
return TFBaseModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFBaseModelOutputWithPast(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
@add_start_docstrings(
"""
The OPT Model transformer with a language modeling head on top.
""",
OPT_START_DOCSTRING,
)
@keras_serializable
class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.model = TFOPTMainLayer(config, name="model")
def get_output_embeddings(self):
return self.model.get_input_embeddings()
def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
attention_mask = kwargs.get("attention_mask", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
inputs = tf.expand_dims(inputs[:, -1], -1)
return {
"input_ids": inputs,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
@unpack_inputs
@replace_return_docstrings(output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_CAUSAL_LM_EXPECTED_OUTPUT,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
logits = self.model.decoder.embed_tokens(outputs[0], mode="linear")
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels, shifted_logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFCausalLMOutputWithPast(
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
loss=output.loss,
logits=output.logits,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
__all__ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.04 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlv2\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_owlv2 import *
from .image_processing_owlv2 import *
from .modeling_owlv2 import *
from .processing_owlv2 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================
SOURCE CODE FILE: configuration_owlv2.py
LINES: 1
SIZE: 12.89 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlv2\configuration_owlv2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OWLv2 model configuration"""
from typing import TYPE_CHECKING, Dict
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
# Copied from transformers.models.owlvit.configuration_owlvit.OwlViTTextConfig with OwlViT->Owlv2, owlvit-base-patch32->owlv2-base-patch16, owlvit->owlv2, OWL-ViT->OWLv2
class Owlv2TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`Owlv2TextModel`]. It is used to instantiate an
Owlv2 text encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Owlv2
[google/owlv2-base-patch16](https://huggingface.co/google/owlv2-base-patch16) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size of the OWLv2 text model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`Owlv2TextModel`].
hidden_size (`int`, *optional*, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 16):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token in the input sequences.
bos_token_id (`int`, *optional*, defaults to 49406):
The id of the beginning-of-sequence token in the input sequences.
eos_token_id (`int`, *optional*, defaults to 49407):
The id of the end-of-sequence token in the input sequences.
Example:
```python
>>> from transformers import Owlv2TextConfig, Owlv2TextModel
>>> # Initializing a Owlv2TextModel with google/owlv2-base-patch16 style configuration
>>> configuration = Owlv2TextConfig()
>>> # Initializing a Owlv2TextConfig from the google/owlv2-base-patch16 style configuration
>>> model = Owlv2TextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "owlv2_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size=49408,
hidden_size=512,
intermediate_size=2048,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=16,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=0,
bos_token_id=49406,
eos_token_id=49407,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
# Copied from transformers.models.owlvit.configuration_owlvit.OwlViTVisionConfig with OwlViT->Owlv2, owlvit-base-patch32->owlv2-base-patch16, owlvit->owlv2, OWL-ViT->OWLv2, 32->16
class Owlv2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`Owlv2VisionModel`]. It is used to instantiate
an OWLv2 image encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the OWLv2
[google/owlv2-base-patch16](https://huggingface.co/google/owlv2-base-patch16) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 768):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import Owlv2VisionConfig, Owlv2VisionModel
>>> # Initializing a Owlv2VisionModel with google/owlv2-base-patch16 style configuration
>>> configuration = Owlv2VisionConfig()
>>> # Initializing a Owlv2VisionModel model from the google/owlv2-base-patch16 style configuration
>>> model = Owlv2VisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "owlv2_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=768,
patch_size=16,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
# Copied from transformers.models.owlvit.configuration_owlvit.OwlViTConfig with OwlViT->Owlv2, owlvit-base-patch32->owlv2-base-patch16, owlvit->owlv2, OWL-ViT->OWLv2
class Owlv2Config(PretrainedConfig):
r"""
[`Owlv2Config`] is the configuration class to store the configuration of an [`Owlv2Model`]. It is used to
instantiate an OWLv2 model according to the specified arguments, defining the text model and vision model
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWLv2
[google/owlv2-base-patch16](https://huggingface.co/google/owlv2-base-patch16) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Owlv2TextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Owlv2VisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The initial value of the *logit_scale* parameter. Default is used as per the original OWLv2
implementation.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not the model should return a dictionary. If `False`, returns a tuple.
kwargs (*optional*):
Dictionary of keyword arguments.
"""
model_type = "owlv2"
sub_configs = {"text_config": Owlv2TextConfig, "vision_config": Owlv2VisionConfig}
def __init__(
self,
text_config=None,
vision_config=None,
projection_dim=512,
logit_scale_init_value=2.6592,
return_dict=True,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("text_config is None. Initializing the Owlv2TextConfig with default values.")
if vision_config is None:
vision_config = {}
logger.info("vision_config is None. initializing the Owlv2VisionConfig with default values.")
self.text_config = Owlv2TextConfig(**text_config)
self.vision_config = Owlv2VisionConfig(**vision_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.return_dict = return_dict
self.initializer_factor = 1.0
@classmethod
def from_text_vision_configs(cls, text_config: Dict, vision_config: Dict, **kwargs):
r"""
Instantiate a [`Owlv2Config`] (or a derived class) from owlv2 text model configuration and owlv2 vision
model configuration.
Returns:
[`Owlv2Config`]: An instance of a configuration object
"""
config_dict = {}
config_dict["text_config"] = text_config
config_dict["vision_config"] = vision_config
return cls.from_dict(config_dict, **kwargs)
__all__ = ["Owlv2Config", "Owlv2TextConfig", "Owlv2VisionConfig"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: image_processing_owlv2.py
LINES: 1
SIZE: 27.38 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlv2\image_processing_owlv2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for OWLv2."""
import warnings
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_to_corners_format,
pad,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import (
TensorType,
filter_out_non_signature_kwargs,
is_scipy_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
if is_torch_available():
import torch
if is_vision_available():
import PIL
if is_scipy_available():
from scipy import ndimage as ndi
if TYPE_CHECKING:
from .modeling_owlv2 import Owlv2ObjectDetectionOutput
logger = logging.get_logger(__name__)
def _scale_boxes(boxes, target_sizes):
"""
Scale batch of bounding boxes to the target sizes.
Args:
boxes (`torch.Tensor` of shape `(batch_size, num_boxes, 4)`):
Bounding boxes to scale. Each box is expected to be in (x1, y1, x2, y2) format.
target_sizes (`List[Tuple[int, int]]` or `torch.Tensor` of shape `(batch_size, 2)`):
Target sizes to scale the boxes to. Each target size is expected to be in (height, width) format.
Returns:
`torch.Tensor` of shape `(batch_size, num_boxes, 4)`: Scaled bounding boxes.
"""
if isinstance(target_sizes, (list, tuple)):
image_height = torch.tensor([i[0] for i in target_sizes])
image_width = torch.tensor([i[1] for i in target_sizes])
elif isinstance(target_sizes, torch.Tensor):
image_height, image_width = target_sizes.unbind(1)
else:
raise ValueError("`target_sizes` must be a list, tuple or torch.Tensor")
# for owlv2 image is padded to max size unlike owlvit, thats why we have to scale boxes to max size
max_size = torch.max(image_height, image_width)
scale_factor = torch.stack([max_size, max_size, max_size, max_size], dim=1)
scale_factor = scale_factor.unsqueeze(1).to(boxes.device)
boxes = boxes * scale_factor
return boxes
# Copied from transformers.models.owlvit.image_processing_owlvit._upcast
def _upcast(t):
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
return t if t.dtype in (torch.float32, torch.float64) else t.float()
else:
return t if t.dtype in (torch.int32, torch.int64) else t.int()
# Copied from transformers.models.owlvit.image_processing_owlvit.box_area
def box_area(boxes):
"""
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
Args:
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
< x2` and `0 <= y1 < y2`.
Returns:
`torch.FloatTensor`: a tensor containing the area for each box.
"""
boxes = _upcast(boxes)
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# Copied from transformers.models.owlvit.image_processing_owlvit.box_iou
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / union
return iou, union
def _preprocess_resize_output_shape(image, output_shape):
"""Validate resize output shape according to input image.
Args:
image (`np.ndarray`):
Image to be resized.
output_shape (`iterable`):
Size of the generated output image `(rows, cols[, ...][, dim])`. If `dim` is not provided, the number of
channels is preserved.
Returns
image (`np.ndarray`):
The input image, but with additional singleton dimensions appended in the case where `len(output_shape) >
input.ndim`.
output_shape (`Tuple`):
The output shape converted to tuple.
Raises ------ ValueError:
If output_shape length is smaller than the image number of dimensions.
Notes ----- The input image is reshaped if its number of dimensions is not equal to output_shape_length.
"""
output_shape = tuple(output_shape)
output_ndim = len(output_shape)
input_shape = image.shape
if output_ndim > image.ndim:
# append dimensions to input_shape
input_shape += (1,) * (output_ndim - image.ndim)
image = np.reshape(image, input_shape)
elif output_ndim == image.ndim - 1:
# multichannel case: append shape of last axis
output_shape = output_shape + (image.shape[-1],)
elif output_ndim < image.ndim:
raise ValueError("output_shape length cannot be smaller than the image number of dimensions")
return image, output_shape
def _clip_warp_output(input_image, output_image):
"""Clip output image to range of values of input image.
Note that this function modifies the values of *output_image* in-place.
Taken from:
https://github.com/scikit-image/scikit-image/blob/b4b521d6f0a105aabeaa31699949f78453ca3511/skimage/transform/_warps.py#L640.
Args:
input_image : ndarray
Input image.
output_image : ndarray
Output image, which is modified in-place.
"""
min_val = np.min(input_image)
if np.isnan(min_val):
# NaNs detected, use NaN-safe min/max
min_func = np.nanmin
max_func = np.nanmax
min_val = min_func(input_image)
else:
min_func = np.min
max_func = np.max
max_val = max_func(input_image)
output_image = np.clip(output_image, min_val, max_val)
return output_image
class Owlv2ImageProcessor(BaseImageProcessor):
r"""
Constructs an OWLv2 image processor.
Args:
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess`
method.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image to a square with gray pixels on the bottom and the right. Can be overriden by
`do_pad` in the `preprocess` method.
do_resize (`bool`, *optional*, defaults to `True`):
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden
by `do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 960, "width": 960}`):
Size to resize the image to. Can be overriden by `size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling method to use if resizing the image. Can be overriden by `resample` in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_pad: bool = True,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.do_resize = do_resize
self.size = size if size is not None else {"height": 960, "width": 960}
self.resample = resample
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
def pad(
self,
image: np.array,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Pad an image to a square with gray pixels on the bottom and the right, as per the original OWLv2
implementation.
Args:
image (`np.ndarray`):
Image to pad.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
height, width = get_image_size(image)
size = max(height, width)
image = pad(
image=image,
padding=((0, size - height), (0, size - width)),
constant_values=0.5,
data_format=data_format,
input_data_format=input_data_format,
)
return image
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
anti_aliasing: bool = True,
anti_aliasing_sigma=None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image as per the original implementation.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary containing the height and width to resize the image to.
anti_aliasing (`bool`, *optional*, defaults to `True`):
Whether to apply anti-aliasing when downsampling the image.
anti_aliasing_sigma (`float`, *optional*, defaults to `None`):
Standard deviation for Gaussian kernel when downsampling the image. If `None`, it will be calculated
automatically.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
requires_backends(self, "scipy")
output_shape = (size["height"], size["width"])
image = to_channel_dimension_format(image, ChannelDimension.LAST)
image, output_shape = _preprocess_resize_output_shape(image, output_shape)
input_shape = image.shape
factors = np.divide(input_shape, output_shape)
# Translate modes used by np.pad to those used by scipy.ndimage
ndi_mode = "mirror"
cval = 0
order = 1
if anti_aliasing:
if anti_aliasing_sigma is None:
anti_aliasing_sigma = np.maximum(0, (factors - 1) / 2)
else:
anti_aliasing_sigma = np.atleast_1d(anti_aliasing_sigma) * np.ones_like(factors)
if np.any(anti_aliasing_sigma < 0):
raise ValueError("Anti-aliasing standard deviation must be greater than or equal to zero")
elif np.any((anti_aliasing_sigma > 0) & (factors <= 1)):
warnings.warn(
"Anti-aliasing standard deviation greater than zero but not down-sampling along all axes"
)
filtered = ndi.gaussian_filter(image, anti_aliasing_sigma, cval=cval, mode=ndi_mode)
else:
filtered = image
zoom_factors = [1 / f for f in factors]
out = ndi.zoom(filtered, zoom_factors, order=order, mode=ndi_mode, cval=cval, grid_mode=True)
image = _clip_warp_output(image, out)
image = to_channel_dimension_format(image, input_data_format, ChannelDimension.LAST)
image = (
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
)
return image
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_pad: Optional[bool] = None,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the image to a square with gray pixels on the bottom and the right.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size to resize the image to.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_pad = do_pad if do_pad is not None else self.do_pad
do_resize = do_resize if do_resize is not None else self.do_resize
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size) # for BC
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# Here, pad and resize methods are different from the rest of image processors
# as they don't have any resampling in resize()
# or pad size in pad() (the maximum of (height, width) is taken instead).
# hence, these arguments don't need to be passed in validate_preprocess_arguments.
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
size=size,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_pad:
images = [self.pad(image=image, input_data_format=input_data_format) for image in images]
if do_resize:
images = [
self.resize(
image=image,
size=size,
input_data_format=input_data_format,
)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
# Copied from transformers.models.owlvit.image_processing_owlvit.OwlViTImageProcessor.post_process_object_detection with OwlViT->Owlv2
def post_process_object_detection(
self,
outputs: "Owlv2ObjectDetectionOutput",
threshold: float = 0.1,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
):
"""
Converts the raw output of [`Owlv2ForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format.
Args:
outputs ([`Owlv2ObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.1):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the following keys:
- "scores": The confidence scores for each predicted box on the image.
- "labels": Indexes of the classes predicted by the model on the image.
- "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format.
"""
batch_logits, batch_boxes = outputs.logits, outputs.pred_boxes
batch_size = len(batch_logits)
if target_sizes is not None and len(target_sizes) != batch_size:
raise ValueError("Make sure that you pass in as many target sizes as images")
# batch_logits of shape (batch_size, num_queries, num_classes)
batch_class_logits = torch.max(batch_logits, dim=-1)
batch_scores = torch.sigmoid(batch_class_logits.values)
batch_labels = batch_class_logits.indices
# Convert to [x0, y0, x1, y1] format
batch_boxes = center_to_corners_format(batch_boxes)
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
batch_boxes = _scale_boxes(batch_boxes, target_sizes)
results = []
for scores, labels, boxes in zip(batch_scores, batch_labels, batch_boxes):
keep = scores > threshold
scores = scores[keep]
labels = labels[keep]
boxes = boxes[keep]
results.append({"scores": scores, "labels": labels, "boxes": boxes})
return results
# Copied from transformers.models.owlvit.image_processing_owlvit.OwlViTImageProcessor.post_process_image_guided_detection
def post_process_image_guided_detection(self, outputs, threshold=0.0, nms_threshold=0.3, target_sizes=None):
"""
Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO
api.
Args:
outputs ([`OwlViTImageGuidedObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.0):
Minimum confidence threshold to use to filter out predicted boxes.
nms_threshold (`float`, *optional*, defaults to 0.3):
IoU threshold for non-maximum suppression of overlapping boxes.
target_sizes (`torch.Tensor`, *optional*):
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to
None, predictions will not be unnormalized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model. All labels are set to None as
`OwlViTForObjectDetection.image_guided_detection` perform one-shot object detection.
"""
logits, target_boxes = outputs.logits, outputs.target_pred_boxes
if target_sizes is not None and len(logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes is not None and target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
probs = torch.max(logits, dim=-1)
scores = torch.sigmoid(probs.values)
# Convert to [x0, y0, x1, y1] format
target_boxes = center_to_corners_format(target_boxes)
# Apply non-maximum suppression (NMS)
if nms_threshold < 1.0:
for idx in range(target_boxes.shape[0]):
for i in torch.argsort(-scores[idx]):
if not scores[idx][i]:
continue
ious = box_iou(target_boxes[idx][i, :].unsqueeze(0), target_boxes[idx])[0][0]
ious[i] = -1.0 # Mask self-IoU.
scores[idx][ious > nms_threshold] = 0.0
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
target_boxes = _scale_boxes(target_boxes, target_sizes)
# Compute box display alphas based on prediction scores
results = []
alphas = torch.zeros_like(scores)
for idx in range(target_boxes.shape[0]):
# Select scores for boxes matching the current query:
query_scores = scores[idx]
if not query_scores.nonzero().numel():
continue
# Apply threshold on scores before scaling
query_scores[query_scores < threshold] = 0.0
# Scale box alpha such that the best box for each query has alpha 1.0 and the worst box has alpha 0.1.
# All other boxes will either belong to a different query, or will not be shown.
max_score = torch.max(query_scores) + 1e-6
query_alphas = (query_scores - (max_score * 0.1)) / (max_score * 0.9)
query_alphas = torch.clip(query_alphas, 0.0, 1.0)
alphas[idx] = query_alphas
mask = alphas[idx] > 0
box_scores = alphas[idx][mask]
boxes = target_boxes[idx][mask]
results.append({"scores": box_scores, "labels": None, "boxes": boxes})
return results
__all__ = ["Owlv2ImageProcessor"]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_owlv2.py
LINES: 1
SIZE: 84.30 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlv2\modeling_owlv2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Google AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OWLv2 model."""
from dataclasses import dataclass
from functools import lru_cache
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_vision_available,
logging,
replace_return_docstrings,
torch_int,
)
from .configuration_owlv2 import Owlv2Config, Owlv2TextConfig, Owlv2VisionConfig
if is_vision_available():
from transformers.image_transforms import center_to_corners_format
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/owlv2-base-patch16-ensemble"
# See all Owlv2 models at https://huggingface.co/models?filter=owlv2
# Copied from transformers.models.clip.modeling_clip.contrastive_loss with clip->owlv2
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->owlv2
def owlv2_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(similarity.t())
return (caption_loss + image_loss) / 2.0
@dataclass
class Owlv2Output(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size * num_max_text_queries, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`Owlv2TextModel`].
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of
[`Owlv2VisionModel`].
text_model_output (Tuple[`BaseModelOutputWithPooling`]):
The output of the [`Owlv2TextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`Owlv2VisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: Optional[torch.FloatTensor] = None
logits_per_text: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.loss.loss_for_object_detection._upcast
def _upcast(t: Tensor) -> Tensor:
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
return t if t.dtype in (torch.float32, torch.float64) else t.float()
else:
return t if t.dtype in (torch.int32, torch.int64) else t.int()
# Copied from transformers.loss.loss_for_object_detection.box_area
def box_area(boxes: Tensor) -> Tensor:
"""
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
Args:
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
< x2` and `0 <= y1 < y2`.
Returns:
`torch.FloatTensor`: a tensor containing the area for each box.
"""
boxes = _upcast(boxes)
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# Copied from transformers.loss.loss_for_object_detection.box_iou
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / union
return iou, union
# Copied from transformers.loss.loss_for_object_detection.generalized_box_iou
def generalized_box_iou(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format.
Returns:
`torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)
"""
# degenerate boxes gives inf / nan results
# so do an early check
if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
iou, union = box_iou(boxes1, boxes2)
top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2]
area = width_height[:, :, 0] * width_height[:, :, 1]
return iou - (area - union) / area
@dataclass
class Owlv2ObjectDetectionOutput(ModelOutput):
"""
Output type of [`Owlv2ForObjectDetection`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_patches, num_queries)`):
Classification logits (including no-object) for all queries.
objectness_logits (`torch.FloatTensor` of shape `(batch_size, num_patches, 1)`):
The objectness logits of all image patches. OWL-ViT represents images as a set of image patches where the
total number of patches is (image_size / patch_size)**2.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~Owlv2ImageProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
text_embeds (`torch.FloatTensor` of shape `(batch_size, num_max_text_queries, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`Owlv2TextModel`].
image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`):
Pooled output of [`Owlv2VisionModel`]. OWLv2 represents images as a set of image patches and computes image
embeddings for each patch.
class_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`):
Class embeddings of all image patches. OWLv2 represents images as a set of image patches where the total
number of patches is (image_size / patch_size)**2.
text_model_output (Tuple[`BaseModelOutputWithPooling`]):
The output of the [`Owlv2TextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`Owlv2VisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: Optional[torch.FloatTensor] = None
objectness_logits: Optional[torch.FloatTensor] = None
pred_boxes: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
class_embeds: Optional[torch.FloatTensor] = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
@dataclass
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTImageGuidedObjectDetectionOutput with OwlViT->Owlv2,OWL-ViT->OWLv2
class Owlv2ImageGuidedObjectDetectionOutput(ModelOutput):
"""
Output type of [`Owlv2ForObjectDetection.image_guided_detection`].
Args:
logits (`torch.FloatTensor` of shape `(batch_size, num_patches, num_queries)`):
Classification logits (including no-object) for all queries.
target_pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual target image in the batch
(disregarding possible padding). You can use [`~Owlv2ImageProcessor.post_process_object_detection`] to
retrieve the unnormalized bounding boxes.
query_pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual query image in the batch
(disregarding possible padding). You can use [`~Owlv2ImageProcessor.post_process_object_detection`] to
retrieve the unnormalized bounding boxes.
image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`):
Pooled output of [`Owlv2VisionModel`]. OWLv2 represents images as a set of image patches and computes
image embeddings for each patch.
query_image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`):
Pooled output of [`Owlv2VisionModel`]. OWLv2 represents images as a set of image patches and computes
image embeddings for each patch.
class_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`):
Class embeddings of all image patches. OWLv2 represents images as a set of image patches where the total
number of patches is (image_size / patch_size)**2.
text_model_output (Tuple[`BaseModelOutputWithPooling`]):
The output of the [`Owlv2TextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`Owlv2VisionModel`].
"""
logits: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
query_image_embeds: Optional[torch.FloatTensor] = None
target_pred_boxes: Optional[torch.FloatTensor] = None
query_pred_boxes: Optional[torch.FloatTensor] = None
class_embeds: Optional[torch.FloatTensor] = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTVisionEmbeddings with OwlViT->Owlv2
class Owlv2VisionEmbeddings(nn.Module):
def __init__(self, config: Owlv2VisionConfig):
super().__init__()
self.patch_size = config.patch_size
self.config = config
self.embed_dim = config.hidden_size
self.class_embedding = nn.Parameter(torch.randn(config.hidden_size))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=config.patch_size,
stride=config.patch_size,
bias=False,
)
self.num_patches = (config.image_size // config.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings.interpolate_pos_encoding
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
position_embedding = self.position_embedding.weight.unsqueeze(0)
num_positions = position_embedding.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding(self.position_ids)
class_pos_embed = position_embedding[:, :1]
patch_pos_embed = position_embedding[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
patch_embeds = self.patch_embedding(pixel_values) # shape = [batch_size, num_channels, height, width]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTTextEmbeddings with OwlViT->Owlv2
class Owlv2TextEmbeddings(nn.Module):
def __init__(self, config: Owlv2TextConfig):
super().__init__()
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTAttention with OwlViT->Owlv2
class Owlv2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# For int8 compatibility, sometimes the `attn_probs` are in `fp32`
attn_probs = attn_probs.to(value_states.dtype)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Owlv2
class Owlv2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->Owlv2
class Owlv2EncoderLayer(nn.Module):
def __init__(self, config: Owlv2Config):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Owlv2Attention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Owlv2MLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTPreTrainedModel with OwlViT->Owlv2,owlvit->owlv2
class Owlv2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Owlv2Config
base_model_prefix = "owlv2"
supports_gradient_checkpointing = True
_no_split_modules = ["Owlv2EncoderLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, Owlv2TextEmbeddings):
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, Owlv2VisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, Owlv2Attention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, Owlv2MLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, Owlv2Model):
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
OWLV2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Owvl2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
OWLV2_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size * num_max_text_queries, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, num_max_text_queries, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
OWLV2_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
OWLV2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_base_image_embeds (`bool`, *optional*):
Whether or not to return the base image embeddings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
OWLV2_OBJECT_DETECTION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values.
input_ids (`torch.LongTensor` of shape `(batch_size * num_max_text_queries, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids).
attention_mask (`torch.Tensor` of shape `(batch_size, num_max_text_queries, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_hidden_states (`bool`, *optional*):
Whether or not to return the last hidden state. See `text_model_last_hidden_state` and
`vision_model_last_hidden_state` under returned tensors for more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
OWLV2_IMAGE_GUIDED_OBJECT_DETECTION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values.
query_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values of query image(s) to be detected. Pass in one query image per target image.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTEncoder with OwlViT->Owlv2
class Owlv2Encoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Owlv2EncoderLayer`].
Args:
config: Owlv2Config
"""
def __init__(self, config: Owlv2Config):
super().__init__()
self.layers = nn.ModuleList([Owlv2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`).
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTTextTransformer with OWLVIT->OWLV2,OwlViT->Owlv2
class Owlv2TextTransformer(nn.Module):
def __init__(self, config: Owlv2TextConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = Owlv2TextEmbeddings(config)
self.encoder = Owlv2Encoder(config)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(OWLV2_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Owlv2TextConfig)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
# num_samples, seq_len = input_shape where num_samples = batch_size * num_max_text_queries
# OWLV2's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _create_4d_causal_attention_mask(
input_shape, hidden_states.dtype, device=hidden_states.device
)
# expand attention_mask
if attention_mask is not None:
# [num_samples, seq_len] -> [num_samples, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
# take features from the end of tokens embedding (end of token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(torch.int).argmax(dim=-1).to(last_hidden_state.device),
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTTextModel with google/owlvit-base-patch32->google/owlv2-base-patch16, OWLVIT->OWLV2,OwlViT->Owlv2
class Owlv2TextModel(Owlv2PreTrainedModel):
config_class = Owlv2TextConfig
def __init__(self, config: Owlv2TextConfig):
super().__init__(config)
self.text_model = Owlv2TextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@add_start_docstrings_to_model_forward(OWLV2_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Owlv2TextConfig)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, Owlv2TextModel
>>> model = Owlv2TextModel.from_pretrained("google/owlv2-base-patch16")
>>> processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16")
>>> inputs = processor(
... text=[["a photo of a cat", "a photo of a dog"], ["photo of a astranaut"]], return_tensors="pt"
... )
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
# Get embeddings for all text queries in all batch samples
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTVisionTransformer with OWLVIT->OWLV2,OwlViT->Owlv2
class Owlv2VisionTransformer(nn.Module):
def __init__(self, config: Owlv2VisionConfig):
super().__init__()
self.config = config
self.embeddings = Owlv2VisionEmbeddings(config)
self.pre_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.encoder = Owlv2Encoder(config)
self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(OWLV2_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Owlv2VisionConfig)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Cast the input to the expected `dtype`
expected_input_dtype = self.embeddings.patch_embedding.weight.dtype
pixel_values = pixel_values.to(expected_input_dtype)
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layernorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTVisionModel with OWLVIT->OWLV2,OwlViT->Owlv2,google/owlvit-base-patch32->google/owlv2-base-patch16
class Owlv2VisionModel(Owlv2PreTrainedModel):
config_class = Owlv2VisionConfig
main_input_name = "pixel_values"
def __init__(self, config: Owlv2VisionConfig):
super().__init__(config)
self.vision_model = Owlv2VisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(OWLV2_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Owlv2VisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Owlv2VisionModel
>>> model = Owlv2VisionModel.from_pretrained("google/owlv2-base-patch16")
>>> processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
@add_start_docstrings(OWLV2_START_DOCSTRING)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTModel with google/owlvit-base-patch32->google/owlv2-base-patch16-ensemble, OWLVIT->OWLV2,OwlViT->Owlv2,owlvit->owlv2,OWL-ViT->OWLv2
class Owlv2Model(Owlv2PreTrainedModel):
config_class = Owlv2Config
def __init__(self, config: Owlv2Config):
super().__init__(config)
if not isinstance(config.text_config, Owlv2TextConfig):
raise TypeError(
"config.text_config is expected to be of type Owlv2TextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, Owlv2VisionConfig):
raise TypeError(
"config.vision_config is expected to be of type Owlv2VisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = Owlv2TextTransformer(text_config)
self.vision_model = Owlv2VisionTransformer(vision_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(config.logit_scale_init_value))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(OWLV2_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`Owlv2TextModel`].
Examples:
```python
>>> from transformers import AutoProcessor, Owlv2Model
>>> model = Owlv2Model.from_pretrained("google/owlv2-base-patch16-ensemble")
>>> processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble")
>>> inputs = processor(
... text=[["a photo of a cat", "a photo of a dog"], ["photo of a astranaut"]], return_tensors="pt"
... )
>>> text_features = model.get_text_features(**inputs)
```"""
# Use OWLv2 model's config for some fields (if specified) instead of those of vision & text components.
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Get embeddings for all text queries in all batch samples
text_output = self.text_model(input_ids=input_ids, attention_mask=attention_mask, return_dict=return_dict)
pooled_output = text_output[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(OWLV2_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`Owlv2VisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Owlv2Model
>>> model = Owlv2Model.from_pretrained("google/owlv2-base-patch16-ensemble")
>>> processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
# Use OWLv2 model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = vision_outputs[1]
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(OWLV2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Owlv2Output, config_class=Owlv2Config)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_base_image_embeds: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Owlv2Output]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Owlv2Model
>>> model = Owlv2Model.from_pretrained("google/owlv2-base-patch16-ensemble")
>>> processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=[["a photo of a cat", "a photo of a dog"]], images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
# Use OWLv2 model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
# Get embeddings for all text queries in all batch samples
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
# normalized features
image_embeds = image_embeds / torch.linalg.norm(image_embeds, ord=2, dim=-1, keepdim=True)
text_embeds_norm = text_embeds / torch.linalg.norm(text_embeds, ord=2, dim=-1, keepdim=True)
# cosine similarity as logits and set it on the correct device
logit_scale = self.logit_scale.exp().to(image_embeds.device)
logits_per_text = torch.matmul(text_embeds_norm, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
loss = owlv2_loss(logits_per_text)
text_embeds = text_embeds_norm
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return Owlv2Output(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTBoxPredictionHead with OwlViT->Owlv2
class Owlv2BoxPredictionHead(nn.Module):
def __init__(self, config: Owlv2Config, out_dim: int = 4):
super().__init__()
width = config.vision_config.hidden_size
self.dense0 = nn.Linear(width, width)
self.dense1 = nn.Linear(width, width)
self.gelu = nn.GELU()
self.dense2 = nn.Linear(width, out_dim)
def forward(self, image_features: torch.Tensor) -> torch.FloatTensor:
output = self.dense0(image_features)
output = self.gelu(output)
output = self.dense1(output)
output = self.gelu(output)
output = self.dense2(output)
return output
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTClassPredictionHead with OwlViT->Owlv2
class Owlv2ClassPredictionHead(nn.Module):
def __init__(self, config: Owlv2Config):
super().__init__()
out_dim = config.text_config.hidden_size
self.query_dim = config.vision_config.hidden_size
self.dense0 = nn.Linear(self.query_dim, out_dim)
self.logit_shift = nn.Linear(self.query_dim, 1)
self.logit_scale = nn.Linear(self.query_dim, 1)
self.elu = nn.ELU()
def forward(
self,
image_embeds: torch.FloatTensor,
query_embeds: Optional[torch.FloatTensor],
query_mask: Optional[torch.Tensor],
) -> Tuple[torch.FloatTensor]:
image_class_embeds = self.dense0(image_embeds)
if query_embeds is None:
device = image_class_embeds.device
batch_size, num_patches = image_class_embeds.shape[:2]
pred_logits = torch.zeros((batch_size, num_patches, self.query_dim)).to(device)
return (pred_logits, image_class_embeds)
# Normalize image and text features
image_class_embeds = image_class_embeds / (torch.linalg.norm(image_class_embeds, dim=-1, keepdim=True) + 1e-6)
query_embeds = query_embeds / (torch.linalg.norm(query_embeds, dim=-1, keepdim=True) + 1e-6)
# Get class predictions
pred_logits = torch.einsum("...pd,...qd->...pq", image_class_embeds, query_embeds)
# Apply a learnable shift and scale to logits
logit_shift = self.logit_shift(image_embeds)
logit_scale = self.logit_scale(image_embeds)
logit_scale = self.elu(logit_scale) + 1
pred_logits = (pred_logits + logit_shift) * logit_scale
if query_mask is not None:
if query_mask.ndim > 1:
query_mask = torch.unsqueeze(query_mask, dim=-2)
pred_logits = torch.where(query_mask == 0, torch.finfo(pred_logits.dtype).min, pred_logits)
pred_logits = pred_logits.to(torch.float32)
return (pred_logits, image_class_embeds)
class Owlv2ForObjectDetection(Owlv2PreTrainedModel):
config_class = Owlv2Config
def __init__(self, config: Owlv2Config):
super().__init__(config)
self.owlv2 = Owlv2Model(config)
self.class_head = Owlv2ClassPredictionHead(config)
self.box_head = Owlv2BoxPredictionHead(config)
self.objectness_head = Owlv2BoxPredictionHead(config, out_dim=1)
self.layer_norm = nn.LayerNorm(config.vision_config.hidden_size, eps=config.vision_config.layer_norm_eps)
self.sigmoid = nn.Sigmoid()
self.config = config
self.num_patches_height = self.config.vision_config.image_size // self.config.vision_config.patch_size
self.num_patches_width = self.config.vision_config.image_size // self.config.vision_config.patch_size
self.box_bias = self.compute_box_bias(self.num_patches_height, self.num_patches_width)
@staticmethod
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTForObjectDetection.normalize_grid_corner_coordinates
def normalize_grid_corner_coordinates(num_patches_height: int, num_patches_width: int) -> torch.Tensor:
# Create grid coordinates using torch
x_coordinates = torch.arange(1, num_patches_width + 1, dtype=torch.float32)
y_coordinates = torch.arange(1, num_patches_height + 1, dtype=torch.float32)
xx, yy = torch.meshgrid(x_coordinates, y_coordinates, indexing="xy")
# Stack the coordinates and divide by their respective patch counts
box_coordinates = torch.stack((xx, yy), dim=-1)
box_coordinates[..., 0] /= num_patches_width
box_coordinates[..., 1] /= num_patches_height
# Flatten (h, w, 2) -> (h*w, 2)
box_coordinates = box_coordinates.view(-1, 2)
return box_coordinates
def objectness_predictor(self, image_features: torch.FloatTensor) -> torch.FloatTensor:
"""Predicts the probability that each image feature token is an object.
Args:
image_features (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_dim)`)):
Features extracted from the image.
Returns:
Objectness scores.
"""
image_features = image_features.detach()
objectness_logits = self.objectness_head(image_features)
objectness_logits = objectness_logits[..., 0]
return objectness_logits
@lru_cache(maxsize=2)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTForObjectDetection.compute_box_bias
def compute_box_bias(
self, num_patches_height: int, num_patches_width: int, feature_map: Optional[torch.FloatTensor] = None
) -> torch.Tensor:
if feature_map is not None:
raise ValueError("feature_map has been deprecated as an input. Please pass in num_patches instead")
# The box center is biased to its position on the feature grid
box_coordinates = self.normalize_grid_corner_coordinates(num_patches_height, num_patches_width)
box_coordinates = torch.clip(box_coordinates, 0.0, 1.0)
# Unnormalize xy
box_coord_bias = torch.log(box_coordinates + 1e-4) - torch.log1p(-box_coordinates + 1e-4)
# The box size is biased to the patch size
box_size = torch.full_like(box_coord_bias, 1.0)
box_size[..., 0] /= num_patches_width
box_size[..., 1] /= num_patches_height
box_size_bias = torch.log(box_size + 1e-4) - torch.log1p(-box_size + 1e-4)
# Compute box bias
box_bias = torch.cat([box_coord_bias, box_size_bias], dim=-1)
return box_bias
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTForObjectDetection.box_predictor
def box_predictor(
self,
image_feats: torch.FloatTensor,
feature_map: torch.FloatTensor,
interpolate_pos_encoding: bool = False,
) -> torch.FloatTensor:
"""
Args:
image_feats:
Features extracted from the image, returned by the `image_text_embedder` method.
feature_map:
A spatial re-arrangement of image_features, also returned by the `image_text_embedder` method.
interpolate_pos_encoding:
Whether to interpolate the pre-trained position encodings.
Returns:
pred_boxes:
List of predicted boxes (cxcywh normalized to 0, 1) nested within a dictionary.
"""
# Bounding box detection head [batch_size, num_boxes, 4].
pred_boxes = self.box_head(image_feats)
# Compute the location of each token on the grid and use it to compute a bias for the bbox prediction
if interpolate_pos_encoding:
_, num_patches_height, num_patches_width, _ = feature_map.shape
box_bias = self.compute_box_bias(num_patches_height, num_patches_width)
else:
box_bias = self.box_bias
box_bias = box_bias.to(feature_map.device)
pred_boxes += box_bias
pred_boxes = self.sigmoid(pred_boxes)
return pred_boxes
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTForObjectDetection.class_predictor
def class_predictor(
self,
image_feats: torch.FloatTensor,
query_embeds: Optional[torch.FloatTensor] = None,
query_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.FloatTensor]:
"""
Args:
image_feats:
Features extracted from the `image_text_embedder`.
query_embeds:
Text query embeddings.
query_mask:
Must be provided with query_embeddings. A mask indicating which query embeddings are valid.
"""
(pred_logits, image_class_embeds) = self.class_head(image_feats, query_embeds, query_mask)
return (pred_logits, image_class_embeds)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTForObjectDetection.image_text_embedder with owlvit->owlv2
def image_text_embedder(
self,
input_ids: torch.Tensor,
pixel_values: torch.FloatTensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Tuple[torch.FloatTensor]:
# Encode text and image
outputs = self.owlv2(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=True,
)
if interpolate_pos_encoding:
_, _, height, width = pixel_values.shape
num_patches_height = height // self.config.vision_config.patch_size
num_patches_width = width // self.config.vision_config.patch_size
else:
num_patches_height = self.num_patches_height
num_patches_width = self.num_patches_width
# Get image embeddings
last_hidden_state = outputs.vision_model_output[0]
image_embeds = self.owlv2.vision_model.post_layernorm(last_hidden_state)
# Resize class token
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], image_embeds[:, :-1].shape)
# Merge image embedding with class tokens
image_embeds = image_embeds[:, 1:, :] * class_token_out
image_embeds = self.layer_norm(image_embeds)
# Resize to [batch_size, num_patches_height, num_patches_width, hidden_size]
new_size = (
image_embeds.shape[0],
num_patches_height,
num_patches_width,
image_embeds.shape[-1],
)
image_embeds = image_embeds.reshape(new_size)
text_embeds = outputs[-4]
return (text_embeds, image_embeds, outputs)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTForObjectDetection.image_embedder with owlvit->owlv2, OwlViTModel->Owlv2Model
def image_embedder(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Tuple[torch.FloatTensor]:
# Get Owlv2Model vision embeddings (same as CLIP)
vision_outputs = self.owlv2.vision_model(
pixel_values=pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=True
)
if interpolate_pos_encoding:
_, _, height, width = pixel_values.shape
num_patches_height = height // self.config.vision_config.patch_size
num_patches_width = width // self.config.vision_config.patch_size
else:
num_patches_height = self.num_patches_height
num_patches_width = self.num_patches_width
# Apply post_layernorm to last_hidden_state, return non-projected output
last_hidden_state = vision_outputs[0]
image_embeds = self.owlv2.vision_model.post_layernorm(last_hidden_state)
# Resize class token
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], image_embeds[:, :-1].shape)
# Merge image embedding with class tokens
image_embeds = image_embeds[:, 1:, :] * class_token_out
image_embeds = self.layer_norm(image_embeds)
# Resize to [batch_size, num_patches_height, num_patches_width, hidden_size]
new_size = (
image_embeds.shape[0],
num_patches_height,
num_patches_width,
image_embeds.shape[-1],
)
image_embeds = image_embeds.reshape(new_size)
return (image_embeds, vision_outputs)
# Copied from transformers.models.owlvit.modeling_owlvit.OwlViTForObjectDetection.embed_image_query
def embed_image_query(
self,
query_image_features: torch.FloatTensor,
query_feature_map: torch.FloatTensor,
interpolate_pos_encoding: bool = False,
) -> torch.FloatTensor:
_, class_embeds = self.class_predictor(query_image_features)
pred_boxes = self.box_predictor(query_image_features, query_feature_map, interpolate_pos_encoding)
pred_boxes_as_corners = center_to_corners_format(pred_boxes)
# Loop over query images
best_class_embeds = []
best_box_indices = []
pred_boxes_device = pred_boxes_as_corners.device
for i in range(query_image_features.shape[0]):
each_query_box = torch.tensor([[0, 0, 1, 1]], device=pred_boxes_device)
each_query_pred_boxes = pred_boxes_as_corners[i]
ious, _ = box_iou(each_query_box, each_query_pred_boxes)
# If there are no overlapping boxes, fall back to generalized IoU
if torch.all(ious[0] == 0.0):
ious = generalized_box_iou(each_query_box, each_query_pred_boxes)
# Use an adaptive threshold to include all boxes within 80% of the best IoU
iou_threshold = torch.max(ious) * 0.8
selected_inds = (ious[0] >= iou_threshold).nonzero()
if selected_inds.numel():
selected_embeddings = class_embeds[i][selected_inds.squeeze(1)]
mean_embeds = torch.mean(class_embeds[i], axis=0)
mean_sim = torch.einsum("d,id->i", mean_embeds, selected_embeddings)
best_box_ind = selected_inds[torch.argmin(mean_sim)]
best_class_embeds.append(class_embeds[i][best_box_ind])
best_box_indices.append(best_box_ind)
if best_class_embeds:
query_embeds = torch.stack(best_class_embeds)
box_indices = torch.stack(best_box_indices)
else:
query_embeds, box_indices = None, None
return query_embeds, box_indices, pred_boxes
@add_start_docstrings_to_model_forward(OWLV2_IMAGE_GUIDED_OBJECT_DETECTION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Owlv2ImageGuidedObjectDetectionOutput, config_class=Owlv2Config)
def image_guided_detection(
self,
pixel_values: torch.FloatTensor,
query_pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Owlv2ImageGuidedObjectDetectionOutput:
r"""
Returns:
Examples:
```python
>>> import requests
>>> from PIL import Image
>>> import torch
>>> from transformers import AutoProcessor, Owlv2ForObjectDetection
>>> processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble")
>>> model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> query_url = "http://images.cocodataset.org/val2017/000000001675.jpg"
>>> query_image = Image.open(requests.get(query_url, stream=True).raw)
>>> inputs = processor(images=image, query_images=query_image, return_tensors="pt")
>>> # forward pass
>>> with torch.no_grad():
... outputs = model.image_guided_detection(**inputs)
>>> target_sizes = torch.Tensor([image.size[::-1]])
>>> # Convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> results = processor.post_process_image_guided_detection(
... outputs=outputs, threshold=0.9, nms_threshold=0.3, target_sizes=target_sizes
... )
>>> i = 0 # Retrieve predictions for the first image
>>> boxes, scores = results[i]["boxes"], results[i]["scores"]
>>> for box, score in zip(boxes, scores):
... box = [round(i, 2) for i in box.tolist()]
... print(f"Detected similar object with confidence {round(score.item(), 3)} at location {box}")
Detected similar object with confidence 0.938 at location [327.31, 54.94, 547.39, 268.06]
Detected similar object with confidence 0.959 at location [5.78, 360.65, 619.12, 366.39]
Detected similar object with confidence 0.902 at location [2.85, 360.01, 627.63, 380.8]
Detected similar object with confidence 0.985 at location [176.98, -29.45, 672.69, 182.83]
Detected similar object with confidence 1.0 at location [6.53, 14.35, 624.87, 470.82]
Detected similar object with confidence 0.998 at location [579.98, 29.14, 615.49, 489.05]
Detected similar object with confidence 0.985 at location [206.15, 10.53, 247.74, 466.01]
Detected similar object with confidence 0.947 at location [18.62, 429.72, 646.5, 457.72]
Detected similar object with confidence 0.996 at location [523.88, 20.69, 586.84, 483.18]
Detected similar object with confidence 0.998 at location [3.39, 360.59, 617.29, 499.21]
Detected similar object with confidence 0.969 at location [4.47, 449.05, 614.5, 474.76]
Detected similar object with confidence 0.966 at location [31.44, 463.65, 654.66, 471.07]
Detected similar object with confidence 0.924 at location [30.93, 468.07, 635.35, 475.39]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# Compute feature maps for the input and query images
query_feature_map = self.image_embedder(
pixel_values=query_pixel_values, interpolate_pos_encoding=interpolate_pos_encoding
)[0]
feature_map, vision_outputs = self.image_embedder(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
)
batch_size, num_patches_height, num_patches_width, hidden_dim = feature_map.shape
image_feats = torch.reshape(feature_map, (batch_size, num_patches_height * num_patches_width, hidden_dim))
batch_size, num_patches_height, num_patches_width, hidden_dim = query_feature_map.shape
query_image_feats = torch.reshape(
query_feature_map, (batch_size, num_patches_height * num_patches_width, hidden_dim)
)
# Get top class embedding and best box index for each query image in batch
query_embeds, best_box_indices, query_pred_boxes = self.embed_image_query(
query_image_feats, query_feature_map, interpolate_pos_encoding
)
# Predict object classes [batch_size, num_patches, num_queries+1]
(pred_logits, class_embeds) = self.class_predictor(image_feats=image_feats, query_embeds=query_embeds)
# Predict object boxes
target_pred_boxes = self.box_predictor(image_feats, feature_map, interpolate_pos_encoding)
if not return_dict:
output = (
feature_map,
query_feature_map,
target_pred_boxes,
query_pred_boxes,
pred_logits,
class_embeds,
vision_outputs.to_tuple(),
)
output = tuple(x for x in output if x is not None)
return output
return Owlv2ImageGuidedObjectDetectionOutput(
image_embeds=feature_map,
query_image_embeds=query_feature_map,
target_pred_boxes=target_pred_boxes,
query_pred_boxes=query_pred_boxes,
logits=pred_logits,
class_embeds=class_embeds,
text_model_output=None,
vision_model_output=vision_outputs,
)
@add_start_docstrings_to_model_forward(OWLV2_OBJECT_DETECTION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Owlv2ObjectDetectionOutput, config_class=Owlv2Config)
def forward(
self,
input_ids: torch.Tensor,
pixel_values: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Owlv2ObjectDetectionOutput:
r"""
Returns:
Examples:
```python
>>> import requests
>>> from PIL import Image
>>> import torch
>>> from transformers import Owlv2Processor, Owlv2ForObjectDetection
>>> processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
>>> model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text_labels = [["a photo of a cat", "a photo of a dog"]]
>>> inputs = processor(text=text_labels, images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # Target image sizes (height, width) to rescale box predictions [batch_size, 2]
>>> target_sizes = torch.tensor([(image.height, image.width)])
>>> # Convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> results = processor.post_process_grounded_object_detection(
... outputs=outputs, target_sizes=target_sizes, threshold=0.1, text_labels=text_labels
... )
>>> # Retrieve predictions for the first image for the corresponding text queries
>>> result = results[0]
>>> boxes, scores, text_labels = result["boxes"], result["scores"], result["text_labels"]
>>> for box, score, text_label in zip(boxes, scores, text_labels):
... box = [round(i, 2) for i in box.tolist()]
... print(f"Detected {text_label} with confidence {round(score.item(), 3)} at location {box}")
Detected a photo of a cat with confidence 0.614 at location [341.67, 23.39, 642.32, 371.35]
Detected a photo of a cat with confidence 0.665 at location [6.75, 51.96, 326.62, 473.13]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# Embed images and text queries
query_embeds, feature_map, outputs = self.image_text_embedder(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
)
# Text and vision model outputs
text_outputs = outputs.text_model_output
vision_outputs = outputs.vision_model_output
batch_size, num_patches_height, num_patches_width, hidden_dim = feature_map.shape
image_feats = torch.reshape(feature_map, (batch_size, num_patches_height * num_patches_width, hidden_dim))
# Reshape from [batch_size * max_text_queries, hidden_dim] -> [batch_size, max_text_queries, hidden_dim]
max_text_queries = input_ids.shape[0] // batch_size
query_embeds = query_embeds.reshape(batch_size, max_text_queries, query_embeds.shape[-1])
# If first token is 0, then this is a padded query [batch_size, num_queries].
input_ids = input_ids.reshape(batch_size, max_text_queries, input_ids.shape[-1])
query_mask = input_ids[..., 0] > 0
# Predict object classes [batch_size, num_patches, num_queries+1]
(pred_logits, class_embeds) = self.class_predictor(image_feats, query_embeds, query_mask)
# Predict objectness
objectness_logits = self.objectness_predictor(image_feats)
# Predict object boxes
pred_boxes = self.box_predictor(image_feats, feature_map, interpolate_pos_encoding)
if not return_dict:
output = (
pred_logits,
objectness_logits,
pred_boxes,
query_embeds,
feature_map,
class_embeds,
text_outputs.to_tuple(),
vision_outputs.to_tuple(),
)
output = tuple(x for x in output if x is not None)
return output
return Owlv2ObjectDetectionOutput(
image_embeds=feature_map,
text_embeds=query_embeds,
pred_boxes=pred_boxes,
logits=pred_logits,
objectness_logits=objectness_logits,
class_embeds=class_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
__all__ = ["Owlv2Model", "Owlv2PreTrainedModel", "Owlv2TextModel", "Owlv2VisionModel", "Owlv2ForObjectDetection"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: processing_owlv2.py
LINES: 1
SIZE: 15.78 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlv2\processing_owlv2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for OWLv2
"""
import warnings
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import (
ImagesKwargs,
ProcessingKwargs,
ProcessorMixin,
Unpack,
_validate_images_text_input_order,
)
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available
if TYPE_CHECKING:
from .modeling_owlv2 import Owlv2ImageGuidedObjectDetectionOutput, Owlv2ObjectDetectionOutput
class Owlv2ImagesKwargs(ImagesKwargs, total=False):
query_images: Optional[ImageInput]
class Owlv2ProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: Owlv2ImagesKwargs
_defaults = {
"text_kwargs": {
"padding": "max_length",
},
"images_kwargs": {},
"common_kwargs": {
"return_tensors": "np",
},
}
class Owlv2Processor(ProcessorMixin):
r"""
Constructs an Owlv2 processor which wraps [`Owlv2ImageProcessor`] and [`CLIPTokenizer`]/[`CLIPTokenizerFast`] into
a single processor that interits both the image processor and tokenizer functionalities. See the
[`~OwlViTProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information.
Args:
image_processor ([`Owlv2ImageProcessor`]):
The image processor is a required input.
tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "Owlv2ImageProcessor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
# For backward compatibility. See transformers.processing_utils.ProcessorMixin.prepare_and_validate_optional_call_args for more details.
optional_call_args = ["query_images"]
def __init__(self, image_processor, tokenizer, **kwargs):
super().__init__(image_processor, tokenizer)
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.__call__ with OwlViT->Owlv2
def __call__(
self,
images: Optional[ImageInput] = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
# The following is to capture `query_images` argument that may be passed as a positional argument.
# See transformers.processing_utils.ProcessorMixin.prepare_and_validate_optional_call_args for more details,
# or this conversation for more context: https://github.com/huggingface/transformers/pull/32544#discussion_r1720208116
# This behavior is only needed for backward compatibility and will be removed in future versions.
#
*args,
audio=None,
videos=None,
**kwargs: Unpack[Owlv2ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several text(s) and image(s). This method forwards the `text` and
`kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode:
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The query image to be prepared, one query image is expected per target image to be queried. Each image
can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
should be of shape (C, H, W), where C is a number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **query_pixel_values** -- Pixel values of the query images to be fed to a model. Returned when `query_images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
Owlv2ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
**self.prepare_and_validate_optional_call_args(*args),
)
query_images = output_kwargs["images_kwargs"].pop("query_images", None)
return_tensors = output_kwargs["common_kwargs"]["return_tensors"]
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none."
)
# check if images and text inputs are reversed for BC
images, text = _validate_images_text_input_order(images, text)
data = {}
if text is not None:
if isinstance(text, str) or (isinstance(text, List) and not isinstance(text[0], List)):
encodings = [self.tokenizer(text, **output_kwargs["text_kwargs"])]
elif isinstance(text, List) and isinstance(text[0], List):
encodings = []
# Maximum number of queries across batch
max_num_queries = max([len(text_single) for text_single in text])
# Pad all batch samples to max number of text queries
for text_single in text:
if len(text_single) != max_num_queries:
text_single = text_single + [" "] * (max_num_queries - len(text_single))
encoding = self.tokenizer(text_single, **output_kwargs["text_kwargs"])
encodings.append(encoding)
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
if return_tensors == "np":
input_ids = np.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = np.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
input_ids = jnp.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = jnp.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
input_ids = torch.cat([encoding["input_ids"] for encoding in encodings], dim=0)
attention_mask = torch.cat([encoding["attention_mask"] for encoding in encodings], dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
input_ids = tf.stack([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = tf.stack([encoding["attention_mask"] for encoding in encodings], axis=0)
else:
raise ValueError("Target return tensor type could not be returned")
data["input_ids"] = input_ids
data["attention_mask"] = attention_mask
if query_images is not None:
query_pixel_values = self.image_processor(query_images, **output_kwargs["images_kwargs"]).pixel_values
# Query images always override the text prompt
data = {"query_pixel_values": query_pixel_values}
if images is not None:
image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
data["pixel_values"] = image_features.pixel_values
return BatchFeature(data=data, tensor_type=return_tensors)
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.post_process_object_detection with OwlViT->Owlv2
def post_process_object_detection(self, *args, **kwargs):
"""
This method forwards all its arguments to [`Owlv2ImageProcessor.post_process_object_detection`]. Please refer
to the docstring of this method for more information.
"""
warnings.warn(
"`post_process_object_detection` method is deprecated for OwlVitProcessor and will be removed in v5. "
"Use `post_process_grounded_object_detection` instead.",
FutureWarning,
)
return self.image_processor.post_process_object_detection(*args, **kwargs)
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.post_process_grounded_object_detection with OwlViT->Owlv2
def post_process_grounded_object_detection(
self,
outputs: "Owlv2ObjectDetectionOutput",
threshold: float = 0.1,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
text_labels: Optional[List[List[str]]] = None,
):
"""
Converts the raw output of [`Owlv2ForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format.
Args:
outputs ([`Owlv2ObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.1):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
text_labels (`List[List[str]]`, *optional*):
List of lists of text labels for each image in the batch. If unset, "text_labels" in output will be
set to `None`.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the following keys:
- "scores": The confidence scores for each predicted box on the image.
- "labels": Indexes of the classes predicted by the model on the image.
- "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format.
- "text_labels": The text labels for each predicted bounding box on the image.
"""
output = self.image_processor.post_process_object_detection(
outputs=outputs, threshold=threshold, target_sizes=target_sizes
)
if text_labels is not None and len(text_labels) != len(output):
raise ValueError("Make sure that you pass in as many lists of text labels as images")
# adding text labels to the output
if text_labels is not None:
for image_output, image_text_labels in zip(output, text_labels):
object_text_labels = [image_text_labels[i] for i in image_output["labels"]]
image_output["text_labels"] = object_text_labels
else:
for image_output in output:
image_output["text_labels"] = None
return output
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.post_process_image_guided_detection with OwlViT->Owlv2
def post_process_image_guided_detection(
self,
outputs: "Owlv2ImageGuidedObjectDetectionOutput",
threshold: float = 0.0,
nms_threshold: float = 0.3,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
):
"""
Converts the output of [`Owlv2ForObjectDetection.image_guided_detection`] into the format expected by the COCO
api.
Args:
outputs ([`Owlv2ImageGuidedObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.0):
Minimum confidence threshold to use to filter out predicted boxes.
nms_threshold (`float`, *optional*, defaults to 0.3):
IoU threshold for non-maximum suppression of overlapping boxes.
target_sizes (`torch.Tensor`, *optional*):
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to
None, predictions will not be unnormalized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the following keys:
- "scores": The confidence scores for each predicted box on the image.
- "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format.
- "labels": Set to `None`.
"""
return self.image_processor.post_process_image_guided_detection(
outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes
)
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.batch_decode
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.owlvit.processing_owlvit.OwlViTProcessor.decode
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
__all__ = ["Owlv2Processor"]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.09 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlvit\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_owlvit import *
from .feature_extraction_owlvit import *
from .image_processing_owlvit import *
from .modeling_owlvit import *
from .processing_owlvit import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_owlvit.py
LINES: 1
SIZE: 14.08 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlvit\configuration_owlvit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OWL-ViT model configuration"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class OwlViTTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`OwlViTTextModel`]. It is used to instantiate an
OwlViT text encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the OwlViT
[google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size of the OWL-ViT text model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`OwlViTTextModel`].
hidden_size (`int`, *optional*, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 16):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token in the input sequences.
bos_token_id (`int`, *optional*, defaults to 49406):
The id of the beginning-of-sequence token in the input sequences.
eos_token_id (`int`, *optional*, defaults to 49407):
The id of the end-of-sequence token in the input sequences.
Example:
```python
>>> from transformers import OwlViTTextConfig, OwlViTTextModel
>>> # Initializing a OwlViTTextModel with google/owlvit-base-patch32 style configuration
>>> configuration = OwlViTTextConfig()
>>> # Initializing a OwlViTTextConfig from the google/owlvit-base-patch32 style configuration
>>> model = OwlViTTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "owlvit_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size=49408,
hidden_size=512,
intermediate_size=2048,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=16,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=0,
bos_token_id=49406,
eos_token_id=49407,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
class OwlViTVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`OwlViTVisionModel`]. It is used to instantiate
an OWL-ViT image encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the OWL-ViT
[google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 768):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import OwlViTVisionConfig, OwlViTVisionModel
>>> # Initializing a OwlViTVisionModel with google/owlvit-base-patch32 style configuration
>>> configuration = OwlViTVisionConfig()
>>> # Initializing a OwlViTVisionModel model from the google/owlvit-base-patch32 style configuration
>>> model = OwlViTVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "owlvit_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=768,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
class OwlViTConfig(PretrainedConfig):
r"""
[`OwlViTConfig`] is the configuration class to store the configuration of an [`OwlViTModel`]. It is used to
instantiate an OWL-ViT model according to the specified arguments, defining the text model and vision model
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWL-ViT
[google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`OwlViTTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`OwlViTVisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The initial value of the *logit_scale* parameter. Default is used as per the original OWL-ViT
implementation.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not the model should return a dictionary. If `False`, returns a tuple.
kwargs (*optional*):
Dictionary of keyword arguments.
"""
model_type = "owlvit"
sub_configs = {"text_config": OwlViTTextConfig, "vision_config": OwlViTVisionConfig}
def __init__(
self,
text_config=None,
vision_config=None,
projection_dim=512,
logit_scale_init_value=2.6592,
return_dict=True,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values.")
if vision_config is None:
vision_config = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values.")
self.text_config = OwlViTTextConfig(**text_config)
self.vision_config = OwlViTVisionConfig(**vision_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.return_dict = return_dict
self.initializer_factor = 1.0
@classmethod
def from_text_vision_configs(cls, text_config: Dict, vision_config: Dict, **kwargs):
r"""
Instantiate a [`OwlViTConfig`] (or a derived class) from owlvit text model configuration and owlvit vision
model configuration.
Returns:
[`OwlViTConfig`]: An instance of a configuration object
"""
config_dict = {}
config_dict["text_config"] = text_config
config_dict["vision_config"] = vision_config
return cls.from_dict(config_dict, **kwargs)
class OwlViTOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
]
)
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
def generate_dummy_inputs(
self,
processor: "ProcessorMixin",
batch_size: int = -1,
seq_length: int = -1,
framework: Optional["TensorType"] = None,
) -> Mapping[str, Any]:
text_input_dict = super().generate_dummy_inputs(
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
)
image_input_dict = super().generate_dummy_inputs(
processor.image_processor, batch_size=batch_size, framework=framework
)
return {**text_input_dict, **image_input_dict}
@property
def default_onnx_opset(self) -> int:
return 14
__all__ = ["OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig"]
```
|
===============================================================================================================================================
SOURCE CODE FILE: feature_extraction_owlvit.py
LINES: 1
SIZE: 1.20 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlvit\feature_extraction_owlvit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for OwlViT."""
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
logger = logging.get_logger(__name__)
class OwlViTFeatureExtractor(OwlViTImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use OwlViTImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["OwlViTFeatureExtractor"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: image_processing_owlvit.py
LINES: 1
SIZE: 28.72 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlvit\image_processing_owlvit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for OwlViT"""
import warnings
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
center_to_corners_format,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_torch_available, logging
if TYPE_CHECKING:
from .modeling_owlvit import OwlViTObjectDetectionOutput
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
def _upcast(t):
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
return t if t.dtype in (torch.float32, torch.float64) else t.float()
else:
return t if t.dtype in (torch.int32, torch.int64) else t.int()
def _scale_boxes(boxes, target_sizes):
"""
Scale batch of bounding boxes to the target sizes.
Args:
boxes (`torch.Tensor` of shape `(batch_size, num_boxes, 4)`):
Bounding boxes to scale. Each box is expected to be in (x1, y1, x2, y2) format.
target_sizes (`List[Tuple[int, int]]` or `torch.Tensor` of shape `(batch_size, 2)`):
Target sizes to scale the boxes to. Each target size is expected to be in (height, width) format.
Returns:
`torch.Tensor` of shape `(batch_size, num_boxes, 4)`: Scaled bounding boxes.
"""
if isinstance(target_sizes, (list, tuple)):
image_height = torch.tensor([i[0] for i in target_sizes])
image_width = torch.tensor([i[1] for i in target_sizes])
elif isinstance(target_sizes, torch.Tensor):
image_height, image_width = target_sizes.unbind(1)
else:
raise ValueError("`target_sizes` must be a list, tuple or torch.Tensor")
scale_factor = torch.stack([image_width, image_height, image_width, image_height], dim=1)
scale_factor = scale_factor.unsqueeze(1).to(boxes.device)
boxes = boxes * scale_factor
return boxes
def box_area(boxes):
"""
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
Args:
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
< x2` and `0 <= y1 < y2`.
Returns:
`torch.FloatTensor`: a tensor containing the area for each box.
"""
boxes = _upcast(boxes)
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / union
return iou, union
class OwlViTImageProcessor(BaseImageProcessor):
r"""
Constructs an OWL-ViT image processor.
This image processor inherits from [`ImageProcessingMixin`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the shorter edge of the input to a certain `size`.
size (`Dict[str, int]`, *optional*, defaults to {"height": 768, "width": 768}):
The size to use for resizing the image. Only has an effect if `do_resize` is set to `True`. If `size` is a
sequence like (h, w), output size will be matched to this. If `size` is an int, then image will be resized
to (size, size).
resample (`int`, *optional*, defaults to `Resampling.BICUBIC`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
do_center_crop (`bool`, *optional*, defaults to `False`):
Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
image is padded with 0's and then center cropped.
crop_size (`int`, *optional*, defaults to {"height": 768, "width": 768}):
The size to use for center cropping the image. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the input by a certain factor.
rescale_factor (`float`, *optional*, defaults to `1/255`):
The factor to use for rescaling the image. Only has an effect if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input with `image_mean` and `image_std`. Desired output size when applying
center-cropping. Only has an effect if `do_center_crop` is set to `True`.
image_mean (`List[int]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
The sequence of means for each channel, to be used when normalizing images.
image_std (`List[int]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
The sequence of standard deviations for each channel, to be used when normalizing images.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize=True,
size=None,
resample=PILImageResampling.BICUBIC,
do_center_crop=False,
crop_size=None,
do_rescale=True,
rescale_factor=1 / 255,
do_normalize=True,
image_mean=None,
image_std=None,
**kwargs,
):
size = size if size is not None else {"height": 768, "width": 768}
size = get_size_dict(size, default_to_square=True)
crop_size = crop_size if crop_size is not None else {"height": 768, "width": 768}
crop_size = get_size_dict(crop_size, default_to_square=True)
# Early versions of the OWL-ViT config on the hub had "rescale" as a flag. This clashes with the
# vision image processor method `rescale` as it would be set as an attribute during the super().__init__
# call. This is for backwards compatibility.
if "rescale" in kwargs:
rescale_val = kwargs.pop("rescale")
kwargs["do_rescale"] = rescale_val
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to a certain size.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
The size to resize the image to. Must contain height and width keys.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
The resampling filter to use when resizing the input.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=True)
if "height" not in size or "width" not in size:
raise ValueError("size dictionary must contain height and width keys")
return resize(
image,
(size["height"], size["width"]),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def center_crop(
self,
image: np.ndarray,
crop_size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Center crop an image to a certain size.
Args:
image (`np.ndarray`):
Image to center crop.
crop_size (`Dict[str, int]`):
The size to center crop the image to. Must contain height and width keys.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
crop_size = get_size_dict(crop_size, default_to_square=True)
if "height" not in crop_size or "width" not in crop_size:
raise ValueError("crop_size dictionary must contain height and width keys")
return center_crop(
image,
(crop_size["height"], crop_size["width"]),
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
def rescale(
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Prepares an image or batch of images for the model.
Args:
images (`ImageInput`):
The image or batch of images to be prepared. Expects a single or batch of images with pixel values
ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether or not to resize the input. If `True`, will resize the input to the size specified by `size`.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
The size to resize the input to. Only has an effect if `do_resize` is set to `True`.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
The resampling filter to use when resizing the input. Only has an effect if `do_resize` is set to
`True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether or not to center crop the input. If `True`, will center crop the input to the size specified by
`crop_size`.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
The size to center crop the input to. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether or not to rescale the input. If `True`, will rescale the input by dividing it by
`rescale_factor`.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
The factor to rescale the input by. Only has an effect if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether or not to normalize the input. If `True`, will normalize the input by subtracting `image_mean`
and dividing by `image_std`.
image_mean (`Union[float, List[float]]`, *optional*, defaults to `self.image_mean`):
The mean to subtract from the input when normalizing. Only has an effect if `do_normalize` is set to
`True`.
image_std (`Union[float, List[float]]`, *optional*, defaults to `self.image_std`):
The standard deviation to divide the input by when normalizing. Only has an effect if `do_normalize` is
set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image, crop_size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
return encoded_inputs
def post_process(self, outputs, target_sizes):
"""
Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format.
Args:
outputs ([`OwlViTObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
image size (before any data augmentation). For visualization, this should be the image size after data
augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
# TODO: (amy) add support for other frameworks
warnings.warn(
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
FutureWarning,
)
logits, boxes = outputs.logits, outputs.pred_boxes
if len(logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
probs = torch.max(logits, dim=-1)
scores = torch.sigmoid(probs.values)
labels = probs.indices
# Convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(boxes)
# Convert from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
return results
def post_process_object_detection(
self,
outputs: "OwlViTObjectDetectionOutput",
threshold: float = 0.1,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
):
"""
Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format.
Args:
outputs ([`OwlViTObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.1):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the following keys:
- "scores": The confidence scores for each predicted box on the image.
- "labels": Indexes of the classes predicted by the model on the image.
- "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format.
"""
batch_logits, batch_boxes = outputs.logits, outputs.pred_boxes
batch_size = len(batch_logits)
if target_sizes is not None and len(target_sizes) != batch_size:
raise ValueError("Make sure that you pass in as many target sizes as images")
# batch_logits of shape (batch_size, num_queries, num_classes)
batch_class_logits = torch.max(batch_logits, dim=-1)
batch_scores = torch.sigmoid(batch_class_logits.values)
batch_labels = batch_class_logits.indices
# Convert to [x0, y0, x1, y1] format
batch_boxes = center_to_corners_format(batch_boxes)
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
batch_boxes = _scale_boxes(batch_boxes, target_sizes)
results = []
for scores, labels, boxes in zip(batch_scores, batch_labels, batch_boxes):
keep = scores > threshold
scores = scores[keep]
labels = labels[keep]
boxes = boxes[keep]
results.append({"scores": scores, "labels": labels, "boxes": boxes})
return results
def post_process_image_guided_detection(self, outputs, threshold=0.0, nms_threshold=0.3, target_sizes=None):
"""
Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO
api.
Args:
outputs ([`OwlViTImageGuidedObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.0):
Minimum confidence threshold to use to filter out predicted boxes.
nms_threshold (`float`, *optional*, defaults to 0.3):
IoU threshold for non-maximum suppression of overlapping boxes.
target_sizes (`torch.Tensor`, *optional*):
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to
None, predictions will not be unnormalized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model. All labels are set to None as
`OwlViTForObjectDetection.image_guided_detection` perform one-shot object detection.
"""
logits, target_boxes = outputs.logits, outputs.target_pred_boxes
if target_sizes is not None and len(logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes is not None and target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
probs = torch.max(logits, dim=-1)
scores = torch.sigmoid(probs.values)
# Convert to [x0, y0, x1, y1] format
target_boxes = center_to_corners_format(target_boxes)
# Apply non-maximum suppression (NMS)
if nms_threshold < 1.0:
for idx in range(target_boxes.shape[0]):
for i in torch.argsort(-scores[idx]):
if not scores[idx][i]:
continue
ious = box_iou(target_boxes[idx][i, :].unsqueeze(0), target_boxes[idx])[0][0]
ious[i] = -1.0 # Mask self-IoU.
scores[idx][ious > nms_threshold] = 0.0
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
target_boxes = _scale_boxes(target_boxes, target_sizes)
# Compute box display alphas based on prediction scores
results = []
alphas = torch.zeros_like(scores)
for idx in range(target_boxes.shape[0]):
# Select scores for boxes matching the current query:
query_scores = scores[idx]
if not query_scores.nonzero().numel():
continue
# Apply threshold on scores before scaling
query_scores[query_scores < threshold] = 0.0
# Scale box alpha such that the best box for each query has alpha 1.0 and the worst box has alpha 0.1.
# All other boxes will either belong to a different query, or will not be shown.
max_score = torch.max(query_scores) + 1e-6
query_alphas = (query_scores - (max_score * 0.1)) / (max_score * 0.9)
query_alphas = torch.clip(query_alphas, 0.0, 1.0)
alphas[idx] = query_alphas
mask = alphas[idx] > 0
box_scores = alphas[idx][mask]
boxes = target_boxes[idx][mask]
results.append({"scores": box_scores, "labels": None, "boxes": boxes})
return results
__all__ = ["OwlViTImageProcessor"]
```
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.