text
stringlengths
145
7.65M
========================================================================================================================================== SOURCE CODE FILE: configuration_mamba2.py LINES: 1 SIZE: 7.73 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mamba2\configuration_mamba2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAMBA2 configuration""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class Mamba2Config(PretrainedConfig): """ This is the configuration class to store the configuration of a [`Mamba2Model`]. It is used to instantiate a MAMBA2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MAMBA2 [state-spaces/mamba2-2.8b](https://huggingface.co/state-spaces/mamba2-2.8b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_heads (`int`, *optional*, defaults to 128): Number of heads for the evolution matrices of mamba 2. head_dim (`int`, *optional*, defaults to 64): Dimension of each head. vocab_size (`int`, *optional*, defaults to 32768): Vocabulary size of the MAMBA2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Mamba2Model`]. hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. state_size (`int`, *optional*, defaults to 128): shape of the state space latents. num_hidden_layers (`int`, *optional*, defaults to 64): Number of hidden layers in the model. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon to use in the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 1): Padding token id. bos_token_id (`int`, *optional*, defaults to 0): The id of the beginning of sentence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 2): The id of the end of sentence token in the vocabulary. expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. n_groups (`int`, *optional*, defaults to 8): Number of groups for the evolution matrices of mamba 2. use_bias (`bool`, *optional*, defaults to `False`): Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block use_conv_bias (`bool`, *optional*, defaults to `True`): Whether or not to use bias in the convolution layer of the mixer block. hidden_act (`str`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. initializer_range (`float`, *optional*, defaults to 0.1): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. residual_in_fp32 (`bool`, *optional*, defaults to `True`): Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` time_step_min (`float`, *optional*, defaults to 0.001): Minimum `time_step` used to bound `dt_proj.bias`. time_step_max (`float`, *optional*, defaults to 0.1): Maximum `time_step` used to bound `dt_proj.bias`. time_step_floor (`float`, *optional*, defaults to 0.0001): Minimum clamping value of the `dt_proj.bias` layer initialization. time_step_limit (`tuple`, *optional*, defaults to `(0.0, inf)`): Accepted range of time step values. rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): Whether or not to rescale `out_proj` weights when initializing. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the cache should be used. rms_norm (`bool`, *optional*, defaults to `True`): Whether to use RMS norm or not. chunk_size (`int`, *optional*, defaults to 256): Size of the chunks that will comprise the sequence. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie word embeddings or not. Example: ```python >>> from transformers import Mamba2Config, Mamba2Model >>> # Initializing a Mamba2 configuration >>> configuration = Mamba2Config() >>> # Initializing a model (with random weights) from the configuration >>> model = Mamba2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mamba2" def __init__( self, num_heads=128, head_dim=64, vocab_size=32768, hidden_size=4096, state_size=128, num_hidden_layers=64, layer_norm_epsilon=1e-5, pad_token_id=1, bos_token_id=0, eos_token_id=2, expand=2, conv_kernel=4, n_groups=8, use_bias=False, use_conv_bias=True, hidden_act="silu", initializer_range=0.1, residual_in_fp32=True, time_step_rank="auto", time_step_min=0.001, time_step_max=0.1, time_step_floor=1e-4, time_step_limit=(0.0, float("inf")), rescale_prenorm_residual=False, use_cache=True, rms_norm=True, chunk_size=256, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.state_size = state_size self.num_hidden_layers = num_hidden_layers self.layer_norm_epsilon = layer_norm_epsilon self.conv_kernel = conv_kernel self.expand = expand self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.use_bias = use_bias self.use_conv_bias = use_conv_bias self.hidden_act = hidden_act self.initializer_range = initializer_range self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank self.time_step_min = time_step_min self.time_step_max = time_step_max self.time_step_floor = time_step_floor self.rescale_prenorm_residual = rescale_prenorm_residual self.residual_in_fp32 = residual_in_fp32 self.use_cache = use_cache self.n_groups = n_groups self.num_heads = num_heads self.head_dim = head_dim self.rms_norm = rms_norm self.state_size = state_size self.chunk_size = chunk_size self.time_step_limit = time_step_limit self.tie_word_embeddings = tie_word_embeddings super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) __all__ = ["Mamba2Config"] ```
===================================================================================================================================== SOURCE CODE FILE: modeling_mamba2.py LINES: 1 SIZE: 50.71 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mamba2\modeling_mamba2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 state-spaces/mamba2 org and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MAMBA2 model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from ...utils.import_utils import is_causal_conv1d_available, is_mamba_2_ssm_available from .configuration_mamba2 import Mamba2Config logger = logging.get_logger(__name__) if is_mamba_2_ssm_available(): from mamba_ssm.ops.triton.selective_state_update import selective_state_update from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined else: mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, selective_state_update = None, None, None if is_causal_conv1d_available(): from causal_conv1d import causal_conv1d_fn, causal_conv1d_update else: causal_conv1d_update, causal_conv1d_fn = None, None is_fast_path_available = all( ( selective_state_update, mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, causal_conv1d_fn, causal_conv1d_update, ) ) _CHECKPOINT_FOR_DOC = "mistralai/mamba-codestral-7B-v0.1" _CONFIG_FOR_DOC = "Mamba2Config" # Helper methods for segment sum computation def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int): """ Padding x tensor with `pad_size` on the seq_len dim (dim=1) Assumes that we only have tensors of either size 4 or 3 """ pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0) return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0) def reshape_into_chunks(input_tensor, pad_size, chunk_size): """ Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and simultaneously splitting it into chunk sequences. Assumes that we only have tensors of either size 4 or 3 """ # [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...] input_tensor = pad_tensor_by_size(input_tensor, pad_size) if len(input_tensor.shape) == 3: # [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads] return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2]) else: # [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size] return input_tensor.reshape( input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3] ) def segment_sum(input_tensor): """ More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions. """ chunk_size = input_tensor.size(-1) # 1. expand input tensor to have an additional dimension and repeat along that dimension # [..., chunk_size] -> [..., chunk_size, chunk_size] input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size) # 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1) input_tensor = input_tensor.masked_fill(~mask, 0) # 3. compute actual cumsum tensor_segsum = torch.cumsum(input_tensor, dim=-2) # 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time) mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0) tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf) return tensor_segsum def apply_mask_to_padding_states(hidden_states, attention_mask): """ Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66 """ if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: dtype = hidden_states.dtype hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) return hidden_states class Mamba2Cache: """ Arguments: config: Mamba2Config batch_size: int dtype: torch.dtype device: torch.device Attributes: dtype: (`torch.dtype`): The default `dtype` used to initializing the cache. conv_kernel_size: (`int`): Model's convolution kernel size taken from config. n_groups: (`int`): Model's number of groups taken from the config - similar to tensor parallel in Transformer. state_size: (`int`): Model's SSM state size taken from config. num_heads: (`int`): The number of heads used in the linear attention / SSM. head_dim: (`int`): The respective dimension of the heads used in the linear attention / SSM. intermediate_size: (`int`): Model's intermediate_size based on (expand * hidden_dim) from config. conv_states: (`torch.Tensor`): A tensor of shape `[num_layers, batch_size, conv_kernel_size, intermediate_size + 2 * n_groups * state_size]` that holds convolutional states. ssm_states: (`torch.Tensor`): A tensor of shape `[num_layers, batch_size, num_heads, head_dim, state_size]` that holds ssm states. """ def __init__( self, config: Mamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None ): self.dtype = dtype self.conv_kernel_size = config.conv_kernel self.n_groups = config.n_groups self.state_size = config.state_size self.num_heads = config.num_heads self.head_dim = config.head_dim self.intermediate_size = int(config.expand * config.hidden_size) self.conv_states = torch.zeros( config.num_hidden_layers, batch_size, self.intermediate_size + 2 * self.n_groups * self.state_size, self.conv_kernel_size, device=device, dtype=dtype, ) self.ssm_states = torch.zeros( config.num_hidden_layers, batch_size, self.num_heads, self.head_dim, self.state_size, device=device, dtype=dtype, ) def update_conv_state( self, layer_idx: int, new_conv_state: torch.Tensor, cache_init: bool = False ) -> torch.Tensor: if cache_init: self.conv_states[layer_idx] = new_conv_state.to(self.conv_states.device) else: self.conv_states[layer_idx] = self.conv_states[layer_idx].roll(shifts=-1, dims=-1) self.conv_states[layer_idx][:, :, -1] = new_conv_state[:, 0, :].to(self.conv_states.device) return self.conv_states[layer_idx] def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor): self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device) return self.ssm_states[layer_idx] def reset(self): self.conv_states.zero_() self.ssm_states.zero_() class MambaRMSNormGated(torch.nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states, gate=None): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) if gate is not None: hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32)) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class Mamba2Mixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) """ def __init__(self, config: Mamba2Config, layer_idx: int): super().__init__() self.num_heads = config.num_heads self.hidden_size = config.hidden_size self.ssm_state_size = config.state_size self.conv_kernel_size = config.conv_kernel self.intermediate_size = int(config.expand * self.hidden_size) self.time_step_rank = int(config.time_step_rank) self.layer_idx = layer_idx self.use_conv_bias = config.use_conv_bias self.activation = config.hidden_act self.act = ACT2FN[config.hidden_act] self.layer_norm_epsilon = config.layer_norm_epsilon self.rms_norm = config.rms_norm self.n_groups = config.n_groups self.head_dim = config.head_dim self.chunk_size = config.chunk_size self.time_step_limit = config.time_step_limit self.time_step_min = config.time_step_min self.time_step_max = config.time_step_max self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size self.conv1d = nn.Conv1d( in_channels=self.conv_dim, out_channels=self.conv_dim, bias=config.use_conv_bias, kernel_size=config.conv_kernel, groups=self.conv_dim, padding=config.conv_kernel - 1, ) # projection of the input hidden states projection_size = self.intermediate_size + self.conv_dim + self.num_heads self.in_proj = nn.Linear( self.hidden_size, projection_size, bias=config.use_bias, ) # selective projection used to make dt, B and C input dependant # time step projection (discretization) # instantiate once and copy inv_dt in init_weights of PretrainedModel self.dt_bias = nn.Parameter(torch.ones(self.num_heads)) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.num_heads + 1) self.A_log = nn.Parameter(torch.log(A)) self.A_log._no_weight_decay = True self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon) self.D = nn.Parameter(torch.ones(self.num_heads)) self.D._no_weight_decay = True self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias) self.use_bias = config.use_bias if not is_fast_path_available: logger.warning_once( "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`" " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d" ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: Optional[Mamba2Cache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, ): # 1. Gated MLP's linear projection hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask) projected_states = self.in_proj(hidden_states) # Set up dimensions for reshapes later batch_size, seq_len, _ = hidden_states.shape groups_time_state_size = self.n_groups * self.ssm_state_size d_mlp = ( projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size - self.num_heads ) // 2 # Single step calculations via cache if cache_params is not None and cache_position is not None and cache_position[0] > 0: _, _, gate, hidden_states_B_C, dt = projected_states.squeeze(1).split( [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 ) # 2. Convolution sequence transformation hidden_states_B_C = causal_conv1d_update( hidden_states_B_C, cache_params.conv_states[self.layer_idx], self.conv1d.weight.squeeze(1), self.conv1d.bias, self.activation, ) hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, groups_time_state_size, groups_time_state_size], dim=-1, ) # 3. SSM transformation A = -torch.exp(self.A_log.float()) # (nheads,) A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) dt = dt[:, :, None].expand(-1, -1, self.head_dim) dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) D = self.D[:, None, ...].expand(-1, self.head_dim) B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups) C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups) hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim) hidden_states = selective_state_update( cache_params.ssm_states[self.layer_idx], hidden_states_reshaped, dt, A, B, C, D, z=None, dt_bias=dt_bias, dt_softplus=True, ) hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim) hidden_states = self.norm(hidden_states, gate) # 4. Final linear projection out = self.out_proj(hidden_states)[:, None, ...] # Fused calculations or step by step if no initialized cache is found else: A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size) dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit} # 2-4. Fused kernel for conv1d, SSM, and the final projection if self.training and cache_params is None: out = mamba_split_conv1d_scan_combined( projected_states, self.conv1d.weight.squeeze(1), self.conv1d.bias, self.dt_bias, A, D=self.D, chunk_size=self.chunk_size, seq_idx=None, # was seq_idx activation=self.activation, rmsnorm_weight=self.norm.weight, rmsnorm_eps=self.norm.variance_epsilon, outproj_weight=self.out_proj.weight, outproj_bias=self.out_proj.bias, headdim=self.head_dim, ngroups=self.n_groups, norm_before_gate=False, return_final_states=False, **dt_limit_kwargs, ) else: _, _, gate, hidden_states_B_C, dt = projected_states.split( [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 ) # 2. Convolution sequence transformation # Init cache if cache_params is not None: hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2) conv_states = nn.functional.pad( hidden_states_B_C_transposed, (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0), ) cache_params.update_conv_state( layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True ) if self.activation not in ["silu", "swish"]: hidden_states_B_C = self.act( self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2) ) else: hidden_states_B_C = causal_conv1d_fn( x=hidden_states_B_C.transpose(1, 2), weight=self.conv1d.weight.squeeze(1), bias=self.conv1d.bias, activation=self.activation, ).transpose(1, 2) hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask) hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, groups_time_state_size, groups_time_state_size], dim=-1, ) # 3. SSM transformation scan_output, ssm_state = mamba_chunk_scan_combined( hidden_states.view(batch_size, seq_len, -1, self.head_dim), dt, A, B.view(batch_size, seq_len, self.n_groups, -1), C.view(batch_size, seq_len, self.n_groups, -1), chunk_size=self.chunk_size, D=self.D, z=None, seq_idx=None, return_final_states=True, dt_bias=self.dt_bias, dt_softplus=True, **dt_limit_kwargs, ) # Init cache if ssm_state is not None and cache_params is not None: cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state) scan_output = scan_output.view(batch_size, seq_len, -1) # Multiply "gate" branch and apply extra normalization layer scan_output = self.norm(scan_output, gate) # 4. Final linear projection out = self.out_proj(scan_output) return out # fmt: off def torch_forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # 1. Gated MLP's linear projection input_states = apply_mask_to_padding_states(input_states, attention_mask) projected_states = self.in_proj(input_states) d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size-self.num_heads) // 2 _, _, gate, hidden_states_B_C, dt = projected_states.split( [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 ) # 2. Convolution sequence transformation if cache_params is not None and cache_position is not None and cache_position[0] > 0: cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=hidden_states_B_C, cache_init=False) # We need to guarantee that anything regarding the cache is on the same device conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device) hidden_states_B_C = torch.sum( conv_states * self.conv1d.weight.squeeze(1), dim=-1 ) if self.use_conv_bias: hidden_states_B_C = hidden_states_B_C + self.conv1d.bias hidden_states_B_C = self.act(hidden_states_B_C) else: # Init cache if cache_params is not None: hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2) conv_states = nn.functional.pad( hidden_states_B_C_transposed, (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0) ) cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True) hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)) hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask) hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1 ) # 3. SSM transformation A = -torch.exp(self.A_log.float()) # [num_heads] if cache_params is not None and cache_position is not None and cache_position[0] > 0: # We need to guarantee that anything regarding the cache is on the same device cache_device = cache_params.ssm_states.device # Note: there is no need to pad parameter matrices here, as there is just one new token # for batched generation dt = dt[:, 0, :][:, None, ...] dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim) # [num_heads] -> [num_heads, head_dim] dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim) dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype)) dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1]) A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) # [bsz, num_heads, head_dim, state_size] dA = (torch.exp(dt[..., None] * A)).to(device=cache_device) # Discretize B # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] -> # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size] B = B.reshape(batch_size, self.n_groups, -1)[..., None, :] B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous() B = B.reshape(batch_size, -1, B.shape[-1]) # [bsz, num_heads, head_dim, state_size] dB = dt[..., None] * B[..., None, :] # Discretize x into dB # [bsz, intermediate_size] -> [bsz, num_heads, head_dim] hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim) dBx = (dB * hidden_states[..., None]).to(device=cache_device) # State calculation cache_params.update_ssm_state( layer_idx=self.layer_idx, new_ssm_state=cache_params.ssm_states[self.layer_idx] * dA + dBx ) # Subsequent output # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size] C = C.reshape(batch_size, self.n_groups, -1)[..., None, :] C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous() C = C.reshape(batch_size, -1, C.shape[-1]) # [bsz, num_heads, head_dim] ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype) # Shape: [b, h, d, n] # Reshape ssm_states to merge the first two dimensions ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n] C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1] y = torch.bmm(ssm_states_reshaped, C_reshaped) y = y.view(batch_size, self.num_heads, self.head_dim) # D skip connection # [num_heads] -> [num_heads, head_dim] D = self.D[..., None].expand(self.D.shape[0], self.head_dim) y = (y + hidden_states * D).to(y.dtype) # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size] y = y.reshape(batch_size, -1)[:, None, ...] else: # begin ssd naive implementation without einsums dt = nn.functional.softplus(dt + self.dt_bias) dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1]) hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float() B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() B = B.repeat(1, 1, self.num_heads // self.n_groups, 1) C = C.repeat(1, 1, self.num_heads // self.n_groups, 1) pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size) # Discretize x and A hidden_states = hidden_states * dt[..., None] A = A.to(hidden_states.dtype) * dt # Rearrange into blocks/chunks hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)] # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size] A = A.permute(0, 3, 1, 2) A_cumsum = torch.cumsum(A, dim=-1) # 1. Compute the output for each intra-chunk (diagonal blocks) # This is the analog of a causal mask L = torch.exp(segment_sum(A)) # Contraction of C and B to get G (attention-weights like) G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :] # shape: (b, c, l, s, h, n) G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h) # Compute M, equivalent to applying attention mask to weights M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None] M = M_intermediate.sum(dim=-1) # Compute Y_diag (apply to values) Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3) # 2. Compute the state for each intra-chunk # (right term of low-rank factorization of off-diagonal blocks; B terms) decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum)) B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None] states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2) # 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries # (middle term of factorization of off-diag blocks; A terms) if cache_params is not None and cache_position is not None and cache_position[0] > 0: previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device) else: previous_states = torch.zeros_like(states[:, :1]) states = torch.cat([previous_states, states], dim=1) decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0)))) decay_chunk = decay_chunk.transpose(1, 3) new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1) states, ssm_state = new_states[:, :-1], new_states[:, -1] # 4. Compute state -> output conversion per chunk # (left term of low-rank factorization of off-diagonal blocks; C terms) state_decay_out = torch.exp(A_cumsum) C_times_states = (C[..., None, :] * states[:, :, None, ...]) state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1) Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None]) # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks) y = Y_diag + Y_off # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim] y = y.reshape(batch_size, -1, self.num_heads, self.head_dim) y = y + D_residual # Cutting off padded chunks if pad_size > 0: y = y[:, :seq_len, :, :] y = y.reshape(batch_size, seq_len, -1) # Init cache if ssm_state is not None and cache_params is not None: cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state) scan_output = self.norm(y, gate) # end ssd naive # 4. Final linear projection contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size] return contextualized_states # fmt: on def forward( self, hidden_states, cache_params: Optional[Mamba2Cache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, ): if is_fast_path_available and "cuda" in self.in_proj.weight.device.type: return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask) dtype = hidden_states.dtype if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask) class Mamba2RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class Mamba2Block(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.residual_in_fp32 = config.residual_in_fp32 self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.mixer = Mamba2Mixer(config, layer_idx=layer_idx) def forward( self, hidden_states, cache_params: Optional[Mamba2Cache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, ): residual = hidden_states hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) hidden_states = self.mixer( hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask ) hidden_states = residual + hidden_states return hidden_states class Mamba2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Mamba2Config base_model_prefix = "backbone" _no_split_modules = ["Mamba2Block"] supports_gradient_checkpointing = True _is_stateful = True def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, Mamba2Mixer): module.A_log._no_weight_decay = True module.D._no_weight_decay = True dt = torch.exp( torch.rand(self.config.num_heads) * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + math.log(self.config.time_step_min) ).clamp(min=self.config.time_step_floor) # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): module.dt_bias.copy_(inv_dt) module.dt_bias._no_reinit = True if isinstance(module, nn.Linear): if module.bias is not None: if not getattr(module.bias, "_no_reinit", False): nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=self.config.initializer_range) if self.config.rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block # Following Pytorch init, except scale by 1/sqrt(2 * n_layer) # We need to reinit p since this code could be called multiple times # Having just p *= scale would repeatedly scale it down nn.init.kaiming_uniform_(p, a=math.sqrt(5)) with torch.no_grad(): p /= math.sqrt(self.config.num_hidden_layers) @dataclass # Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2 class Mamba2Output(ModelOutput): """ Class for the MAMBA2 model outputs. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. cache_params (`Mamba2Cache`): The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to avoid providing the old `input_ids`. Includes both the State space model state matrices after the selective scan, and the Convolutional states hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. """ last_hidden_state: Optional[torch.FloatTensor] = None cache_params: Optional[Mamba2Cache] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass # Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2 class Mamba2CausalLMOutput(ModelOutput): """ Base class for causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). cache_params (`Mamba2Cache`): The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to avoid providing the old `input_ids`. Includes both the State space model state matrices after the selective scan, and the Convolutional states hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None cache_params: Optional[Mamba2Cache] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None MAMBA2_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Mamba2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MAMBA2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): Indices of input sequence tokens in the vocabulary. If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. cache_params (`Mamba2Cache`, *optional*): If passed along, the model uses the previous state in all the blocks (which will give the output for the `input_ids` provided as if the model add `state_input_ids + input_ids` as context). use_cache (`bool`, *optional*): If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(batch_size,)`, *optional*): The position of the current input in the cache. This is used to ensure that the cache is correctly updated. If `cache_params` is passed, `cache_position` should also be passed. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) """ @add_start_docstrings( "The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.", MAMBA2_START_DOCSTRING, ) class Mamba2Model(Mamba2PreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) # Initialize weights and apply final processing self._register_load_state_dict_pre_hook(self.load_hook) self.post_init() def load_hook(self, state_dict, prefix, *args): for k in state_dict: if "embedding." in k: state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k) break def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, new_embeddings): self.embeddings = new_embeddings @add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Mamba2Output, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, cache_params: Optional[Mamba2Cache] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs, ) -> Union[Tuple, Mamba2Output]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) if self.gradient_checkpointing and self.training and use_cache: use_cache = False if use_cache: if cache_params is None: cache_params = Mamba2Cache( self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype ) cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device) elif cache_position is None: # cases when we do manual forward instead of using `model.generate` which will initiate # `cache_position` and makes sure it is not None, throw error here instead of doing some # hack to conjecture the current cache position raise ValueError( "You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, " "you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will " "be initialized for you automatically" ) else: cache_params = None hidden_states = inputs_embeds all_hidden_states = () if output_hidden_states else None for mixer_block in self.layers: if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask ) else: hidden_states = mixer_block( hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask, ) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.norm_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None) return Mamba2Output( last_hidden_state=hidden_states, cache_params=cache_params if use_cache else None, hidden_states=all_hidden_states, ) @add_start_docstrings( """ The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input embeddings). """, MAMBA2_START_DOCSTRING, ) class Mamba2ForCausalLM(Mamba2PreTrainedModel, GenerationMixin): _tied_weights_keys = [] def __init__(self, config): super().__init__(config) self.backbone = Mamba2Model(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.backbone.get_input_embeddings() def set_input_embeddings(self, new_embeddings): return self.backbone.set_input_embeddings(new_embeddings) def prepare_inputs_for_generation( self, input_ids, inputs_embeds=None, use_cache=None, cache_params: Optional[Mamba2Cache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs, ): # Overwitten -- uses `cache_params` as opposed to `past_key_values` if use_cache: # `cache_position` should have been initialized in `generate` if cache_position is None: raise ValueError( "`cache_position` should not be None as it should have been initialized in " "`model.generate`, you are responsible for passing in a valid `cache_position` if " "you are calling `prepare_inputs_for_generation` directly with `use_cache=True`" ) if cache_position[0] > 0: input_ids = input_ids[:, -1][..., None] if attention_mask is not None: attention_mask = None else: # we initialize the `cache_position` to full size of `conv_states` at prefill stage # considering padding will be applied when input length is shorter, and truncation # will be applied when it is longer, so it will be equivalent to always have it match # the length of `cache_params.conv_states`, which is `config.conv_kernel` cache_position = torch.arange(0, self.config.conv_kernel, device=input_ids.device) if inputs_embeds is not None and cache_params is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "attention_mask": attention_mask, "cache_params": cache_params, "use_cache": use_cache, "cache_position": cache_position, } ) return model_inputs @add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Mamba2CausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, cache_params: Optional[Mamba2Cache] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs, # for now we need this for generation ) -> Union[Tuple, Mamba2CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict mamba2_outputs = self.backbone( input_ids, cache_params=cache_params, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, use_cache=use_cache, cache_position=cache_position, attention_mask=attention_mask, ) hidden_states = mamba2_outputs[0] logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float() loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (logits,) + mamba2_outputs[1:] return ((loss,) + output) if loss is not None else output return Mamba2CausalLMOutput( loss=loss, logits=logits, cache_params=mamba2_outputs.cache_params, hidden_states=mamba2_outputs.hidden_states, ) __all__ = ["Mamba2ForCausalLM", "Mamba2Model", "Mamba2PreTrainedModel"] ```
============================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.97 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mamba\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mamba import * from .modeling_mamba import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
======================================================================================================================================== SOURCE CODE FILE: configuration_mamba.py LINES: 1 SIZE: 7.26 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mamba\configuration_mamba.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAMBA configuration""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class MambaConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MAMBA [state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50280): Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MambaModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. state_size (`int`, *optional*, defaults to 16): shape of the state space latents. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the model. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon to use in the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. bos_token_id (`int`, *optional*, defaults to 0): The id of the beginning of sentence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 0): The id of the end of sentence token in the vocabulary. expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. use_bias (`bool`, *optional*, defaults to `False`): Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block use_conv_bias (`bool`, *optional*, defaults to `True`): Whether or not to use bias in the convolution layer of the mixer block. hidden_act (`str`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. initializer_range (`float`, *optional*, defaults to 0.1): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. residual_in_fp32 (`bool`, *optional*, defaults to `True`): Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` time_step_scale (`float`, *optional*, defaults to 1.0): Scale used used to scale `dt_proj.bias`. time_step_min (`float`, *optional*, defaults to 0.001): Minimum `time_step` used to bound `dt_proj.bias`. time_step_max (`float`, *optional*, defaults to 0.1): Maximum `time_step` used to bound `dt_proj.bias`. time_step_init_scheme (`float`, *optional*, defaults to `"random"`): Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]` time_step_floor (`float`, *optional*, defaults to 0.0001): Minimum clamping value of the `dt_proj.bias` layer initialization. rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): Whether or not to rescale `out_proj` weights when initializing. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the cache should be used. use_mambapy (`bool`, *optional*, defaults to `False`): Determines the fallback strategy during training if the CUDA-based official implementation of Mamba is not avaiable. If `True`, the mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited. Example: ```python >>> from transformers import MambaConfig, MambaModel >>> # Initializing a Mamba configuration >>> configuration = MambaConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = MambaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mamba" def __init__( self, vocab_size=50280, hidden_size=768, state_size=16, num_hidden_layers=32, layer_norm_epsilon=1e-5, pad_token_id=0, bos_token_id=0, eos_token_id=0, expand=2, conv_kernel=4, use_bias=False, use_conv_bias=True, hidden_act="silu", initializer_range=0.1, residual_in_fp32=True, time_step_rank="auto", time_step_scale=1.0, time_step_min=0.001, time_step_max=0.1, time_step_init_scheme="random", time_step_floor=1e-4, rescale_prenorm_residual=False, use_cache=True, use_mambapy=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.state_size = state_size self.num_hidden_layers = num_hidden_layers self.layer_norm_epsilon = layer_norm_epsilon self.conv_kernel = conv_kernel self.expand = expand self.intermediate_size = int(expand * self.hidden_size) self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.use_bias = use_bias self.use_conv_bias = use_conv_bias self.hidden_act = hidden_act self.initializer_range = initializer_range self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank self.time_step_scale = time_step_scale self.time_step_min = time_step_min self.time_step_max = time_step_max self.time_step_init_scheme = time_step_init_scheme self.time_step_floor = time_step_floor self.rescale_prenorm_residual = rescale_prenorm_residual self.residual_in_fp32 = residual_in_fp32 self.use_cache = use_cache self.use_mambapy = use_mambapy super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs) __all__ = ["MambaConfig"] ```
=================================================================================================================================== SOURCE CODE FILE: modeling_mamba.py LINES: 1 SIZE: 37.24 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mamba\modeling_mamba.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MAMBA model.""" import math from dataclasses import dataclass from typing import Any, Dict, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...cache_utils import MambaCache from ...generation import GenerationMixin from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from ...utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available, is_mambapy_available from .configuration_mamba import MambaConfig logger = logging.get_logger(__name__) if is_mambapy_available(): from mambapy.pscan import pscan else: pscan = None if is_mamba_ssm_available(): from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn from mamba_ssm.ops.triton.selective_state_update import selective_state_update else: selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None if is_causal_conv1d_available(): from causal_conv1d import causal_conv1d_fn, causal_conv1d_update else: causal_conv1d_update, causal_conv1d_fn = None, None is_fast_path_available = all( (selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn) ) _CHECKPOINT_FOR_DOC = "state-spaces/mamba-130m-hf" _CONFIG_FOR_DOC = "MambaConfig" class MambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) """ def __init__(self, config: MambaConfig, layer_idx: int): super().__init__() self.config = config self.hidden_size = config.hidden_size self.ssm_state_size = config.state_size self.conv_kernel_size = config.conv_kernel self.intermediate_size = config.intermediate_size self.time_step_rank = int(config.time_step_rank) self.layer_idx = layer_idx self.use_conv_bias = config.use_conv_bias self.conv1d = nn.Conv1d( in_channels=self.intermediate_size, out_channels=self.intermediate_size, bias=config.use_conv_bias, kernel_size=config.conv_kernel, groups=self.intermediate_size, padding=config.conv_kernel - 1, ) self.activation = config.hidden_act self.act = ACT2FN[config.hidden_act] self.use_mambapy = config.use_mambapy # projection of the input hidden states self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias) # selective projection used to make dt, B and C input dependent self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False) # time step projection (discretization) self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] A = A.expand(self.intermediate_size, -1).contiguous() self.A_log = nn.Parameter(torch.log(A)) self.D = nn.Parameter(torch.ones(self.intermediate_size)) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias) self.use_bias = config.use_bias if not is_fast_path_available: if self.use_mambapy: if is_mambapy_available(): logger.warning_once( "The fast path is not available because one of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" " is None. Falling back to the mamba.py backend. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d" ) else: raise ImportError( "use_mambapy is set to True but the mambapy package is not installed. To install it follow https://github.com/alxndrTL/mamba.py." ) else: logger.warning_once( "The fast path is not available because one of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" " is None. Falling back to the sequential implementation of Mamba, as use_mambapy is set to False. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d. For the mamba.py backend, follow https://github.com/alxndrTL/mamba.py." ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: Optional[MambaCache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): # 1. Gated MLP's linear projection projected_states = self.in_proj(hidden_states).transpose(1, 2) if self.training and cache_params is None: # Doesn't support outputting the states -> used for training contextualized_states = mamba_inner_fn( projected_states, self.conv1d.weight, self.conv1d.bias if self.use_conv_bias else None, self.x_proj.weight, self.dt_proj.weight, self.out_proj.weight, self.out_proj.bias.float() if self.use_bias else None, -torch.exp(self.A_log.float()), None, # input-dependent B None, # input-dependent C self.D.float(), delta_bias=self.dt_proj.bias.float(), delta_softplus=True, ) else: hidden_states, gate = projected_states.chunk(2, dim=1) if attention_mask is not None: hidden_states = hidden_states * attention_mask.unsqueeze(1) # 2. Convolution sequence transformation conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) if cache_params is not None and cache_position[0] > 0: hidden_states = causal_conv1d_update( hidden_states.squeeze(-1), cache_params.conv_states[self.layer_idx], conv_weights, self.conv1d.bias, self.activation, ) hidden_states = hidden_states.unsqueeze(-1) else: if cache_params is not None: conv_states = nn.functional.pad( hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) ) cache_params.update_conv_state(self.layer_idx, conv_states, cache_position) hidden_states = causal_conv1d_fn( hidden_states, conv_weights, self.conv1d.bias, activation=self.activation ) if attention_mask is not None: hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. State Space Model sequence transformation # 3.a. input varying initialization of time_step, B and C ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2) A = -torch.exp(self.A_log.float()) # 3.c perform the recurrence y ← SSM(A, B, C)(x) time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None if cache_params is not None and cache_position[0] > 0: scan_outputs = selective_state_update( cache_params.ssm_states[self.layer_idx], hidden_states[..., 0], discrete_time_step[..., 0], A, B[:, 0], C[:, 0], self.D, gate[..., 0], time_proj_bias, dt_softplus=True, ).unsqueeze(-1) else: scan_outputs, ssm_state = selective_scan_fn( hidden_states, discrete_time_step, A, B.transpose(1, 2), C.transpose(1, 2), self.D.float(), gate, time_proj_bias, delta_softplus=True, return_last_state=True, ) if ssm_state is not None and cache_params is not None: cache_params.update_ssm_state(self.layer_idx, ssm_state) # 4. Final linear projection contextualized_states = self.out_proj(scan_outputs.transpose(1, 2)) return contextualized_states # fmt: off def slow_forward(self, input_states, cache_params: Optional[MambaCache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.LongTensor] = None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # 1. Gated MLP's linear projection projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len] hidden_states, gate = projected_states.chunk(2, dim=1) if attention_mask is not None: hidden_states = hidden_states * attention_mask.unsqueeze(1) # 2. Convolution sequence transformation if cache_params is not None: ssm_state = cache_params.ssm_states[self.layer_idx].clone() ssm_state = ssm_state.to(hidden_states.device) # use `cache_position.shape[0]` to check whether we are in prefill # stage, it's equivalent to check `cache_position[0] == 0`, which # breaks dynamo fullgraph constraints if cache_position.shape[0] == self.conv_kernel_size: conv_state = nn.functional.pad( hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) ) cache_params.update_conv_state(self.layer_idx, conv_state, cache_position) hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len] else: conv_state = cache_params.update_conv_state(self.layer_idx, hidden_states, cache_position) conv_state = conv_state.to(self.conv1d.weight.device) hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding else: ssm_state = torch.zeros( (batch_size, self.intermediate_size, self.ssm_state_size), device=hidden_states.device, dtype=dtype ) hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len] if attention_mask is not None: hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. State Space Model sequence transformation # 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2] ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size] discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len] # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM) A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size] discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size] discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediate_size, seq_len, ssm_state_size] deltaB_u = discrete_B * hidden_states[:, :, :, None].float() # 3.c perform the recurrence y ← SSM(A, B, C)(x) if self.use_mambapy and self.training and cache_params is None: hs = pscan(discrete_A.transpose(1, 2), deltaB_u.transpose(1, 2)) # [batch, seq_len, intermediate_size, ssm_state_size] scan_output = (hs @ C.unsqueeze(-1)).squeeze(3).transpose(1, 2) # [batch, intermediate_size, seq_len] scan_output = scan_output + hidden_states * self.D[None, :, None] scan_output = scan_output * self.act(gate) else: scan_outputs = [] for i in range(seq_len): ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state] scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1] scan_outputs.append(scan_output[:, :, 0]) scan_output = torch.stack(scan_outputs, dim=-1) # [batch, seq_len, intermediade_size] scan_output = scan_output + (hidden_states * self.D[None, :, None]) scan_output = (scan_output * self.act(gate)) if cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) # 4. Final linear projection contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size] return contextualized_states # fmt: on def forward( self, hidden_states, cache_params: Optional[MambaCache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): if is_fast_path_available and "cuda" in self.x_proj.weight.device.type and not torch._dynamo.is_compiling(): return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask) return self.slow_forward(hidden_states, cache_params, cache_position, attention_mask) class MambaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ MambaRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{self.weight.shape[0]}, eps={self.variance_epsilon}" class MambaBlock(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.residual_in_fp32 = config.residual_in_fp32 self.norm = MambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.mixer = MambaMixer(config, layer_idx=layer_idx) def forward( self, hidden_states, cache_params: Optional[MambaCache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): residual = hidden_states hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) hidden_states = self.mixer( hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask ) hidden_states = residual + hidden_states return hidden_states class MambaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MambaConfig base_model_prefix = "backbone" _no_split_modules = ["MambaBlock", "MambaMixer"] supports_gradient_checkpointing = True _is_stateful = True def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, MambaMixer): module.A_log._no_weight_decay = True module.D._no_weight_decay = True dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale if self.config.time_step_init_scheme == "constant": nn.init.constant_(module.dt_proj.weight, dt_init_std) elif self.config.time_step_init_scheme == "random": nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std) dt = torch.exp( torch.rand(self.config.intermediate_size) * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + math.log(self.config.time_step_min) ).clamp(min=self.config.time_step_floor) # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): module.dt_proj.bias.copy_(inv_dt) module.dt_proj.bias._no_reinit = True if isinstance(module, nn.Linear): if module.bias is not None: if not getattr(module.bias, "_no_reinit", False): nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=self.config.initializer_range) if self.config.rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block # Following Pytorch init, except scale by 1/sqrt(2 * n_layer) # We need to reinit p since this code could be called multiple times # Having just p *= scale would repeatedly scale it down nn.init.kaiming_uniform_(p, a=math.sqrt(5)) with torch.no_grad(): p /= math.sqrt(self.config.num_hidden_layers) @dataclass class MambaOutput(ModelOutput): """ Class for the MAMBA model outputs. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. cache_params (`MambaCache`): The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to avoid providing the old `input_ids`. Includes both the State space model state matrices after the selective scan, and the Convolutional states hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. """ last_hidden_state: Optional[torch.FloatTensor] = None cache_params: Optional[MambaCache] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class MambaCausalLMOutput(ModelOutput): """ Base class for causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). cache_params (`MambaCache`): The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to avoid providing the old `input_ids`. Includes both the State space model state matrices after the selective scan, and the Convolutional states hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None cache_params: Optional[MambaCache] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None MAMBA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MambaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MAMBA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): Indices of input sequence tokens in the vocabulary. If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. cache_params (`MambaCache`, *optional*): If passed along, the model uses the previous state in all the blocks (which will give the output for the `input_ids` provided as if the model add `state_input_ids + input_ids` as context). use_cache (`bool`, *optional*): If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare MAMBA Model transformer outputting raw hidden-states without any specific head on top.", MAMBA_START_DOCSTRING, ) class MambaModel(MambaPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self.norm_f = MambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) # Initialize weights and apply final processing self._register_load_state_dict_pre_hook(self.load_hook) self.post_init() def load_hook(self, state_dict, prefix, *args): for k in state_dict: if "embedding." in k: state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k) break def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, new_embeddings): self.embeddings = new_embeddings @add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MambaOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, cache_params: Optional[MambaCache] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ) -> Union[Tuple, MambaOutput]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) if self.gradient_checkpointing and self.training and use_cache: use_cache = False if use_cache: if cache_params is None: cache_params = MambaCache( self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype ) cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device) elif cache_position is None: # cases when we do manual forward instead of using `model.generate` which will initiate # `cache_position` and makes sure it is not None, throw error here instead of doing some # hack to conjecture the current cache position raise ValueError( "You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, " "you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will " "be initialized for you automatically" ) else: cache_params = None hidden_states = inputs_embeds all_hidden_states = () if output_hidden_states else None for mixer_block in self.layers: if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask ) else: hidden_states = mixer_block( hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask, ) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.norm_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None) return MambaOutput( last_hidden_state=hidden_states, cache_params=cache_params if use_cache else None, hidden_states=all_hidden_states, ) @add_start_docstrings( """ The MAMBA Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, MAMBA_START_DOCSTRING, ) class MambaForCausalLM(MambaPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.backbone = MambaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.backbone.get_input_embeddings() def set_input_embeddings(self, new_embeddings): return self.backbone.set_input_embeddings(new_embeddings) def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], num_new_tokens: int = 1, **kwargs ) -> Dict[str, Any]: model_kwargs["cache_params"] = outputs.get("cache_params", None) if ( model_kwargs.get("use_cache", True) and "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None ): model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) return model_kwargs def prepare_inputs_for_generation( self, input_ids, inputs_embeds=None, use_cache=None, cache_params: Optional[MambaCache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, **kwargs, ): # Overwritten -- uses `cache_params` as opposed to `past_key_values` if use_cache: # `cache_position` should have been initialized in `generate` if cache_position is None: raise ValueError( "`cache_position` should not be None as it should have been initialized in " "`model.generate`, you are responsible for passing in a valid `cache_position` if " "you are calling `prepare_inputs_for_generation` directly with `use_cache=True`" ) if cache_position[0] > 0: input_ids = input_ids[:, -1].unsqueeze(-1) if attention_mask is not None: attention_mask = None else: # we initialize the `cache_position` to full size of `conv_states` at prefill stage # considering padding will be applied when input length is shorter, and truncation # will be applied when it is longer, so it will be equivalent to always have it match # the length of `cache_params.conv_states`, which is `config.conv_kernel` cache_position = torch.arange(0, self.config.conv_kernel, device=input_ids.device) if inputs_embeds is not None and cache_params is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} model_inputs.update( { "cache_params": cache_params, "use_cache": use_cache, "cache_position": cache_position, "attention_mask": attention_mask, } ) return model_inputs @add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MambaCausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, cache_params: Optional[MambaCache] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, **kwargs, # for now we need this for generation ) -> Union[Tuple, MambaCausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict mamba_outputs = self.backbone( input_ids, cache_params=cache_params, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, use_cache=use_cache, cache_position=cache_position, attention_mask=attention_mask, ) hidden_states = mamba_outputs[0] logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float() loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (logits,) + mamba_outputs[1:] return ((loss,) + output) if loss is not None else output return MambaCausalLMOutput( loss=loss, logits=logits, cache_params=mamba_outputs.cache_params, hidden_states=mamba_outputs.hidden_states, ) __all__ = ["MambaForCausalLM", "MambaModel", "MambaPreTrainedModel"] ```
============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.08 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\marian\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_marian import * from .modeling_flax_marian import * from .modeling_marian import * from .modeling_tf_marian import * from .tokenization_marian import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
========================================================================================================================================== SOURCE CODE FILE: configuration_marian.py LINES: 1 SIZE: 17.95 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\marian\configuration_marian.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The Marian Team Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Marian model configuration""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging logger = logging.get_logger(__name__) class MarianConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MarianModel`]. It is used to instantiate an Marian model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Marian [Helsinki-NLP/opus-mt-en-de](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 58101): Vocabulary size of the Marian model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MarianModel`] or [`TFMarianModel`]. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(d_model). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models) forced_eos_token_id (`int`, *optional*, defaults to 0): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. Examples: ```python >>> from transformers import MarianModel, MarianConfig >>> # Initializing a Marian Helsinki-NLP/opus-mt-en-de style configuration >>> configuration = MarianConfig() >>> # Initializing a model from the Helsinki-NLP/opus-mt-en-de style configuration >>> model = MarianModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "marian" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=58101, decoder_vocab_size=None, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=58100, scale_embedding=False, pad_token_id=58100, eos_token_id=0, forced_eos_token_id=0, share_encoder_decoder_embeddings=True, **kwargs, ): self.vocab_size = vocab_size self.decoder_vocab_size = decoder_vocab_size or vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.share_encoder_decoder_embeddings = share_encoder_decoder_embeddings super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, **kwargs, ) class MarianOnnxConfig(OnnxSeq2SeqConfigWithPast): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") elif self.task == "causal-lm": # TODO: figure this case out. common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} else: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_outputs = super().outputs else: common_outputs = super(OnnxConfigWithPast, self).outputs if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _generate_dummy_inputs_for_default_and_seq2seq_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: encoder_inputs = self._generate_dummy_inputs_for_encoder_and_decoder( tokenizer, batch_size, seq_length, is_pair, framework ) # Generate decoder inputs decoder_seq_length = seq_length if not self.use_past else 1 decoder_inputs = self._generate_dummy_inputs_for_encoder_and_decoder( tokenizer, batch_size, decoder_seq_length, is_pair, framework ) decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} common_inputs = dict(**encoder_inputs, **decoder_inputs) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, encoder_seq_length = common_inputs["input_ids"].shape decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads encoder_shape = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) decoder_past_length = decoder_seq_length + 3 decoder_shape = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) common_inputs["decoder_attention_mask"] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 ) common_inputs["past_key_values"] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(min_num_layers): common_inputs["past_key_values"].append( ( torch.zeros(decoder_shape), torch.zeros(decoder_shape), torch.zeros(encoder_shape), torch.zeros(encoder_shape), ) ) # TODO: test this. shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(min_num_layers, max_num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs def _generate_dummy_inputs_for_causal_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = self._generate_dummy_inputs_for_encoder_and_decoder( tokenizer, batch_size, seq_length, is_pair, framework ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 num_encoder_layers, _ = self.num_layers num_encoder_attention_heads, _ = self.num_attention_heads past_shape = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) mask_dtype = common_inputs["attention_mask"].dtype common_inputs["attention_mask"] = torch.cat( [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) common_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) ] return common_inputs # Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering # We renamed this function because Marian models do not have a sequence classification or question answering head def _generate_dummy_inputs_for_encoder_and_decoder( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = tokenizer.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) return common_inputs def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) else: common_inputs = self._generate_dummy_inputs_for_causal_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) return common_inputs # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._flatten_past_key_values_ def _flatten_past_key_values_(self, flattened_output, name, idx, t): if self.task in ["default", "seq2seq-lm"]: flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) else: flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( flattened_output, name, idx, t ) @property def atol_for_validation(self) -> float: return 1e-4 __all__ = ["MarianConfig", "MarianOnnxConfig"] ```
========================================================================================================================================== SOURCE CODE FILE: modeling_flax_marian.py LINES: 1 SIZE: 62.84 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\marian\modeling_flax_marian.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The Marian Team Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flax Marian model.""" import math import random from functools import partial from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_marian import MarianConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" _CONFIG_FOR_DOC = "MarianConfig" MARIAN_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`MarianConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ MARIAN_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ MARIAN_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ MARIAN_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def create_sinusoidal_positions(n_pos, dim): position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) sentinel = dim // 2 + dim % 2 out = np.zeros_like(position_enc) out[:, 0:sentinel] = np.sin(position_enc[:, 0::2]) out[:, sentinel:] = np.cos(position_enc[:, 1::2]) return jnp.array(out) # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Marian class FlaxMarianAttention(nn.Module): config: MarianConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slightly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayer with Bart->Marian class FlaxMarianEncoderLayer(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxMarianAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Marian class FlaxMarianEncoderLayerCollection(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxMarianEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayer with Bart->Marian class FlaxMarianDecoderLayer(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxMarianAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxMarianAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Marian class FlaxMarianDecoderLayerCollection(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxMarianDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxMarianEncoder(nn.Module): config: MarianConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxMarianEncoderLayerCollection(self.config, self.dtype) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale positions = jnp.take(self.embed_positions, position_ids, axis=0) # explicitly cast the positions here, since self.embed_positions are not registered as parameters positions = positions.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class FlaxMarianDecoder(nn.Module): config: MarianConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxMarianDecoderLayerCollection(self.config, self.dtype) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = jnp.take(self.embed_positions, position_ids, axis=0) # explicitly cast the positions here, since self.embed_positions are not registered as parameters positions = positions.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) class FlaxMarianModule(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.encoder = FlaxMarianEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxMarianDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxMarianPreTrainedModel(FlaxPreTrainedModel): config_class = MarianConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: MarianConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") # make sure initialization pass will work for FlaxMarianForSequenceClassificationModule input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module(decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(MARIAN_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=MarianConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxMarianMTModel >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(MARIAN_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=MarianConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxMarianMTModel >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxMarianAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare Marian Model transformer outputting raw hidden-states without any specific head on top.", MARIAN_START_DOCSTRING, ) class FlaxMarianModel(FlaxMarianPreTrainedModel): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxMarianModule append_call_sample_docstring(FlaxMarianModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) class FlaxMarianMTModule(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxMarianModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += self.final_logits_bias.astype(self.dtype) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( "The MARIAN Model with a language modeling head. Can be used for translation.", MARIAN_START_DOCSTRING ) class FlaxMarianMTModel(FlaxMarianPreTrainedModel): module_class = FlaxMarianMTModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(MARIAN_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=MarianConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxMarianMTModel >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxMarianAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias.astype(self.dtype) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def _adapt_logits_for_beam_search(self, logits): """This function enforces the padding token never to be generated.""" logits = logits.at[:, :, self.config.pad_token_id].set(float("-inf")) return logits def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_MARIAN_MT_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxMarianMTModel >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> input_ids = tokenizer(text, max_length=64, return_tensors="jax").input_ids >>> sequences = model.generate(input_ids, max_length=64, num_beams=2).sequences >>> outputs = tokenizer.batch_decode(sequences, skip_special_tokens=True) >>> # should give *Meine Freunde sind cool, aber sie essen zu viele Kohlenhydrate.* ``` """ overwrite_call_docstring( FlaxMarianMTModel, MARIAN_INPUTS_DOCSTRING + FLAX_MARIAN_MT_DOCSTRING, ) append_replace_return_docstrings(FlaxMarianMTModel, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) __all__ = ["FlaxMarianModel", "FlaxMarianMTModel", "FlaxMarianPreTrainedModel"] ```
===================================================================================================================================== SOURCE CODE FILE: modeling_marian.py LINES: 1 SIZE: 77.77 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\marian\modeling_marian.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The Marian Team Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MarianMTModel model, ported from the Marian C++ repo.""" import copy import math from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_marian import MarianConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MarianConfig" _CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class MarianSinusoidalPositionalEmbedding(nn.Embedding): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None: super().__init__(num_positions, embedding_dim) def _init_weight(self): """ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ n_pos, dim = self.weight.shape position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) out = torch.empty(n_pos, dim, dtype=self.weight.dtype, requires_grad=False) sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1 out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) self.weight = nn.Parameter(out, requires_grad=False) @torch.no_grad() def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor: """`input_ids_shape` is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids_shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ) return super().forward(positions) # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Marian class MarianAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[MarianConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->Marian, BART->MARIAN class MarianEncoderLayer(nn.Module): def __init__(self, config: MarianConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = MARIAN_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, layer_head_mask: torch.FloatTensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs MARIAN_ATTENTION_CLASSES = {"eager": MarianAttention} # Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->Marian, BART->MARIAN class MarianDecoderLayer(nn.Module): def __init__(self, config: MarianConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = MARIAN_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = MARIAN_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class MarianPreTrainedModel(PreTrainedModel): config_class = MarianConfig base_model_prefix = "model" supports_gradient_checkpointing = True def _init_weights(self, module: Union[nn.Linear, nn.Embedding, MarianSinusoidalPositionalEmbedding]): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, MarianSinusoidalPositionalEmbedding): module._init_weight() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def dummy_inputs(self): pad_token = self.config.pad_token_id input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) dummy_inputs = { "attention_mask": input_ids.ne(pad_token), "input_ids": input_ids, "decoder_input_ids": input_ids, } return dummy_inputs MARIAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MarianConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MARIAN_GENERATION_EXAMPLE = r""" Pytorch version of marian-nmt's transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available models are listed [here](https://huggingface.co/models?search=Helsinki-NLP). Examples: ```python >>> from transformers import AutoTokenizer, MarianMTModel >>> src = "fr" # source language >>> trg = "en" # target language >>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" >>> model = MarianMTModel.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) >>> sample_text = "où est l'arrêt de bus ?" >>> batch = tokenizer([sample_text], return_tensors="pt") >>> generated_ids = model.generate(**batch) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] "Where's the bus stop?" ``` """ MARIAN_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Marian uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class MarianEncoder(MarianPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`MarianEncoderLayer`]. Args: config: MarianConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: MarianConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) self.embed_positions = MarianSinusoidalPositionalEmbedding( config.max_position_embeddings, embed_dim, self.padding_idx ) self.layers = nn.ModuleList([MarianEncoderLayer(config) for _ in range(config.encoder_layers)]) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == (len(self.layers)), ( f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class MarianDecoder(MarianPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MarianDecoderLayer`] Args: config: MarianConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: MarianConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.decoder_vocab_size, config.d_model, self.padding_idx) self.embed_positions = MarianSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, self.padding_idx ) self.layers = nn.ModuleList([MarianDecoderLayer(config) for _ in range(config.decoder_layers)]) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Marian Model outputting raw hidden-states without any specific head on top.", MARIAN_START_DOCSTRING ) class MarianModel(MarianPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: MarianConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size # We always use self.shared for token embeddings to ensure compatibility with all marian models self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) if self.config.share_encoder_decoder_embeddings: encoder_embed_tokens = decoder_embed_tokens = self.shared else: # Since the embeddings are not shared, deepcopy the embeddings here for encoder # and decoder to make sure they are not tied. encoder_embed_tokens = copy.deepcopy(self.shared) decoder_embed_tokens = copy.deepcopy(self.shared) self.shared = None self.encoder = MarianEncoder(config, encoder_embed_tokens) self.decoder = MarianDecoder(config, decoder_embed_tokens) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): # This will return shared embeddings if they are shared else specific to encoder. return self.get_encoder().get_input_embeddings() def set_input_embeddings(self, value): if self.config.share_encoder_decoder_embeddings: self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared else: # if not shared only set encoder embeedings self.encoder.embed_tokens = value def get_decoder_input_embeddings(self): if self.config.share_encoder_decoder_embeddings: raise ValueError( "`get_decoder_input_embeddings` should not be called if `config.share_encoder_decoder_embeddings` " "is `True`. Please use `get_input_embeddings` instead." ) return self.get_decoder().get_input_embeddings() def set_decoder_input_embeddings(self, value): if self.config.share_encoder_decoder_embeddings: raise ValueError( "`config.share_encoder_decoder_embeddings` is set to `True` meaning the decoder input embeddings " "are shared with the encoder. In order to set the decoder input embeddings, you should simply set " "the encoder input embeddings by calling `set_input_embeddings` with the appropriate embeddings." ) self.decoder.embed_tokens = value def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def resize_decoder_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: if self.config.share_encoder_decoder_embeddings: raise ValueError( "`resize_decoder_token_embeddings` should not be called if `config.share_encoder_decoder_embeddings` " "is `True`. Please use `resize_token_embeddings` instead." ) old_embeddings = self.get_decoder_input_embeddings() new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.set_decoder_input_embeddings(new_embeddings) model_embeds = self.get_decoder_input_embeddings() if new_num_tokens is None: return model_embeds # Update base model and current model config self.config.decoder_vocab_size = new_num_tokens # Tie weights again if needed self.tie_weights() return model_embeds @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Union[Tuple[torch.Tensor], BaseModelOutput]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Seq2SeqModelOutput: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, MarianModel >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> model = MarianModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") >>> decoder_inputs = tokenizer( ... "<pad> Studien haben gezeigt dass es hilfreich ist einen Hund zu besitzen", ... return_tensors="pt", ... add_special_tokens=False, ... ) >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 26, 512] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The Marian Model with a language modeling head. Can be used for summarization.", MARIAN_START_DOCSTRING ) class MarianMTModel(MarianPreTrainedModel, GenerationMixin): base_model_prefix = "model" _keys_to_ignore_on_load_missing = [ "final_logits_bias", "encoder.embed_positions.weight", "decoder.embed_positions.weight", ] _keys_to_ignore_on_save = ["model.encoder.embed_positions.weight", "model.decoder.embed_positions.weight"] _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: MarianConfig): super().__init__(config) self.model = MarianModel(config) target_vocab_size = config.vocab_size if config.share_encoder_decoder_embeddings else config.decoder_vocab_size self.register_buffer("final_logits_bias", torch.zeros((1, target_vocab_size))) self.lm_head = nn.Linear(config.d_model, target_vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_token_embeddings( self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True ) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing) if self.config.share_encoder_decoder_embeddings: self._resize_final_logits_bias(new_num_tokens) return new_embeddings # NOTE: `_resize_token_embeddings` was rewriten in the base class, *args exists to absorb the extra arg def _resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of=None, *args) -> nn.Embedding: old_embeddings = self.get_input_embeddings() new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of) self.set_input_embeddings(new_embeddings) new_num_tokens = new_embeddings.weight.shape[0] # update config.decoder_vocab_size if embeddings are tied if self.config.share_encoder_decoder_embeddings: self.config.decoder_vocab_size = new_num_tokens # if word embeddings are not tied, make sure that lm head is resized as well if ( self.config.share_encoder_decoder_embeddings and self.get_output_embeddings() is not None and not self.config.tie_word_embeddings ): old_lm_head = self.get_output_embeddings() new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens) self.set_output_embeddings(new_lm_head) return self.get_input_embeddings() def resize_decoder_token_embeddings(self, new_num_tokens): if self.config.share_encoder_decoder_embeddings: raise ValueError( "`resize_decoder_token_embeddings` should not be called if `config.share_encoder_decoder_embeddings` " "is `True`. Please use `resize_token_embeddings` instead." ) old_embeddings = self.model.get_decoder_input_embeddings() new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.model.set_decoder_input_embeddings(new_embeddings) # if word embeddings are not tied, make sure that lm head is resized as well if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings: old_lm_head = self.get_output_embeddings() new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens) self.set_output_embeddings(new_lm_head) model_embeds = self.model.get_decoder_input_embeddings() if new_num_tokens is None: return model_embeds # Update base model and current model config self.config.decoder_vocab_size = new_num_tokens # Tie weights again if needed self.tie_weights() self._resize_final_logits_bias(new_num_tokens) return model_embeds def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Embedding): self.lm_head = new_embeddings def tie_weights(self): """ Tie the weights between the input embeddings and the output embeddings. If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the weights instead. """ output_embeddings = self.get_output_embeddings() if output_embeddings is not None and getattr(self.config, "tie_word_embeddings", True): # if embeddings are shared this will return shared embeddings otherwise decoder embed_tokens word_embeddings = self.get_decoder().get_input_embeddings() self._tie_or_clone_weights(output_embeddings, word_embeddings) if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False): if hasattr(self, self.base_model_prefix): self = getattr(self, self.base_model_prefix) tied_weights = self._tie_encoder_decoder_weights( self.encoder, self.decoder, self.base_model_prefix, "encoder" ) # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class # attributed not an instance member, therefore modifying it will modify the entire class # Leading to issues on subsequent calls by different tests or subsequent calls. self._dynamic_tied_weights_keys = tied_weights for module in self.modules(): if hasattr(module, "_tie_weights"): module._tie_weights() @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(MARIAN_GENERATION_EXAMPLE) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Union[Tuple[torch.Tensor], BaseModelOutput]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Seq2SeqLMOutput: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.decoder_vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Marian class MarianDecoderWrapper(MarianPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = MarianDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs) # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Marian, facebook/bart-base->Helsinki-NLP/opus-mt-fr-en class MarianForCausalLM(MarianPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.model = MarianDecoderWrapper(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: Example: ```python >>> from transformers import AutoTokenizer, MarianForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-fr-en") >>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-fr-en", add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] >>> list(logits.shape) == expected_shape True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past __all__ = ["MarianForCausalLM", "MarianModel", "MarianMTModel", "MarianPreTrainedModel"] ```
======================================================================================================================================== SOURCE CODE FILE: modeling_tf_marian.py LINES: 1 SIZE: 71.05 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\marian\modeling_tf_marian.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The Marian Team Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 Marian model.""" from __future__ import annotations import random from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) # Public API from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFPreTrainedModel, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_marian import MarianConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" _CONFIG_FOR_DOC = "MarianConfig" LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill( (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) ) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFMarianSinusoidalPositionalEmbedding(keras.layers.Layer): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, **kwargs): super().__init__(**kwargs) if embedding_dim % 2 != 0: raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported") self.embedding_dim = embedding_dim self.num_positions = num_positions def build(self, input_shape: tf.TensorShape): """ Build shared token embedding layer Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ weight = self._init_weight(self.num_positions, self.embedding_dim) self.weight = self.add_weight( name="embeddings", shape=[self.num_positions, self.embedding_dim], ) weight = tf.cast(weight, dtype=self.weight.dtype) self.weight.assign(weight) super().build(input_shape) @staticmethod def _init_weight(n_pos: int, dim: int): """ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) table = np.zeros_like(position_enc) # index 0 is all zero table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2]) table[:, dim // 2 :] = np.cos(position_enc[:, 1::2]) # convert to tensor table = tf.convert_to_tensor(table) tf.stop_gradient(table) return table def call( self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None ): """Input is expected to be of size [bsz x seqlen].""" if position_ids is None: seq_len = input_shape[1] position_ids = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range") return tf.gather(self.weight, position_ids) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Marian class TFMarianAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) # Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->Marian class TFMarianEncoderLayer(keras.layers.Layer): def __init__(self, config: MarianConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFMarianAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None, layer_head_mask: tf.Tensor | None, training: Optional[bool] = False, ) -> tf.Tensor: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states, self_attn_weights def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.encoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) # Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->Marian class TFMarianDecoderLayer(keras.layers.Layer): def __init__(self, config: MarianConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFMarianAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFMarianAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.decoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) class TFMarianPreTrainedModel(TFPreTrainedModel): config_class = MarianConfig base_model_prefix = "model" MARIAN_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`MarianConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ MARIAN_GENERATION_EXAMPLE = r""" TF version of marian-nmt's transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available models are listed [here](https://huggingface.co/models?search=Helsinki-NLP). Examples: ```python >>> from transformers import AutoTokenizer, TFMarianMTModel >>> from typing import List >>> src = "fr" # source language >>> trg = "en" # target language >>> sample_text = "où est l'arrêt de bus ?" >>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" >>> model = TFMarianMTModel.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) >>> batch = tokenizer([sample_text], return_tensors="tf") >>> gen = model.generate(**batch) >>> tokenizer.batch_decode(gen, skip_special_tokens=True) "Where is the bus stop ?" ``` """ MARIAN_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Marian uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFMarianEncoder(keras.layers.Layer): config_class = MarianConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFMarianEncoderLayer`]. Args: config: MarianConfig """ def __init__(self, config: MarianConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFMarianSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFMarianEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ): """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) else: attention_mask = None encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFMarianDecoder(keras.layers.Layer): config_class = MarianConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFMarianDecoderLayer`] Args: config: MarianConfig embed_tokens: output embedding """ def __init__(self, config: MarianConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFMarianSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFMarianDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 # embed positions if position_ids is None: positions = self.embed_positions(input_shape, past_key_values_length) else: positions = self.embed_positions(input_shape, position_ids=position_ids) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale hidden_states = inputs_embeds # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) hidden_states = self.dropout(hidden_states + positions, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFMarianMainLayer(keras.layers.Layer): config_class = MarianConfig def __init__(self, config: MarianConfig, **kwargs): super().__init__(**kwargs) self.config = config self.shared = keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="model.shared", ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "model.shared" self.encoder = TFMarianEncoder(config, self.shared, name="encoder") self.decoder = TFMarianDecoder(config, self.shared, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Tuple[Tuple[tf.Tensor]] = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ): if decoder_input_ids is None and decoder_inputs_embeds is None: use_cache = False output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True # The shared/tied weights expect to be in the model base namespace # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than # the current one. with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): self.shared.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) @add_start_docstrings( "The bare MARIAN Model outputting raw hidden-states without any specific head on top.", MARIAN_START_DOCSTRING, ) class TFMarianModel(TFMarianPreTrainedModel): def __init__(self, config: MarianConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFMarianMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: tf.Tensor | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, **kwargs, ) -> Tuple[tf.Tensor] | TFSeq2SeqModelOutput: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) # Copied from transformers.models.bart.modeling_tf_bart.BiasLayer class BiasLayer(keras.layers.Layer): """ Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, so all weights have to be registered in a layer. """ def __init__(self, shape, initializer, trainable, name, **kwargs): super().__init__(name=name, **kwargs) # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) def call(self, x): return x + self.bias @add_start_docstrings( "The MARIAN Model with a language modeling head. Can be used for summarization.", MARIAN_START_DOCSTRING, ) class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFMarianMainLayer(config, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.bias_layer.bias} def set_bias(self, value): # Replaces the existing layers containing bias for correct (de)serialization. vocab_size = value["final_logits_bias"].shape[-1] self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False ) self.bias_layer.bias.assign(value["final_logits_bias"]) @unpack_inputs @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(MARIAN_GENERATION_EXAMPLE) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: TFBaseModelOutput | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, labels: tf.Tensor | None = None, training: bool = False, ) -> Tuple[tf.Tensor] | TFSeq2SeqLMOutput: r""" labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ if labels is not None: labels = tf.where( labels == self.config.pad_token_id, tf.fill(shape_list(labels), tf.cast(-100, labels.dtype)), labels, ) use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past_key_values is not None: # no xla + past_key_values decoder_position_ids = past_key_values[0][0].shape[2] else: # no xla + no past_key_values decoder_position_ids = tf.range(decoder_input_ids.shape[1]) return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "bias_layer", None) is not None: with tf.name_scope(self.bias_layer.name): self.bias_layer.build(None) __all__ = ["TFMarianModel", "TFMarianMTModel", "TFMarianPreTrainedModel"] ```
========================================================================================================================================= SOURCE CODE FILE: tokenization_marian.py LINES: 1 SIZE: 16.45 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\marian\tokenization_marian.py ENCODING: utf-8 ```py # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import warnings from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "source_spm": "source.spm", "target_spm": "target.spm", "vocab": "vocab.json", "target_vocab_file": "target_vocab.json", "tokenizer_config_file": "tokenizer_config.json", } SPIECE_UNDERLINE = "▁" # Example URL https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json class MarianTokenizer(PreTrainedTokenizer): r""" Construct a Marian tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: source_spm (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary for the source language. target_spm (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary for the target language. source_lang (`str`, *optional*): A string representing the source language. target_lang (`str`, *optional*): A string representing the target language. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. model_max_length (`int`, *optional*, defaults to 512): The maximum sentence length the model accepts. additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Examples: ```python >>> from transformers import MarianForCausalLM, MarianTokenizer >>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> src_texts = ["I am a small frog.", "Tom asked his teacher for advice."] >>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional >>> inputs = tokenizer(src_texts, text_target=tgt_texts, return_tensors="pt", padding=True) >>> outputs = model(**inputs) # should work ```""" vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] language_code_re = re.compile(">>.+<<") # type: re.Pattern def __init__( self, source_spm, target_spm, vocab, target_vocab_file=None, source_lang=None, target_lang=None, unk_token="<unk>", eos_token="</s>", pad_token="<pad>", model_max_length=512, sp_model_kwargs: Optional[Dict[str, Any]] = None, separate_vocabs=False, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs assert Path(source_spm).exists(), f"cannot find spm source {source_spm}" self.separate_vocabs = separate_vocabs self.encoder = load_json(vocab) if str(unk_token) not in self.encoder: raise KeyError("<unk> token must be in the vocab") assert str(pad_token) in self.encoder if separate_vocabs: self.target_encoder = load_json(target_vocab_file) self.decoder = {v: k for k, v in self.target_encoder.items()} self.supported_language_codes = [] else: self.decoder = {v: k for k, v in self.encoder.items()} self.supported_language_codes: list = [k for k in self.encoder if k.startswith(">>") and k.endswith("<<")] self.source_lang = source_lang self.target_lang = target_lang self.spm_files = [source_spm, target_spm] # load SentencePiece model for pre-processing self.spm_source = load_spm(source_spm, self.sp_model_kwargs) self.spm_target = load_spm(target_spm, self.sp_model_kwargs) self.current_spm = self.spm_source self.current_encoder = self.encoder # Multilingual target side: default to using first supported language code. self._setup_normalizer() super().__init__( # bos_token=bos_token, unused. Start decoding with config.decoder_start_token_id source_lang=source_lang, target_lang=target_lang, unk_token=unk_token, eos_token=eos_token, pad_token=pad_token, model_max_length=model_max_length, sp_model_kwargs=self.sp_model_kwargs, target_vocab_file=target_vocab_file, separate_vocabs=separate_vocabs, **kwargs, ) def _setup_normalizer(self): try: from sacremoses import MosesPunctNormalizer self.punc_normalizer = MosesPunctNormalizer(self.source_lang).normalize except (ImportError, FileNotFoundError): warnings.warn("Recommended: pip install sacremoses.") self.punc_normalizer = lambda x: x def normalize(self, x: str) -> str: """Cover moses empty string edge case. They return empty list for '' input!""" return self.punc_normalizer(x) if x else "" def _convert_token_to_id(self, token): return self.current_encoder.get(token, self.current_encoder[self.unk_token]) def remove_language_code(self, text: str): """Remove language codes like >>fr<< before sentencepiece""" match = self.language_code_re.match(text) code: list = [match.group(0)] if match else [] return code, self.language_code_re.sub("", text) def _tokenize(self, text: str) -> List[str]: code, text = self.remove_language_code(text) pieces = self.current_spm.encode(text, out_type=str) return code + pieces def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the decoder.""" return self.decoder.get(index, self.unk_token) def batch_decode(self, sequences, **kwargs): """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). use_source_tokenizer (`bool`, *optional*, defaults to `False`): Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence problems). kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `List[str]`: The list of decoded sentences. """ return super().batch_decode(sequences, **kwargs) def decode(self, token_ids, **kwargs): """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). use_source_tokenizer (`bool`, *optional*, defaults to `False`): Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence problems). kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str`: The decoded sentence. """ return super().decode(token_ids, **kwargs) def convert_tokens_to_string(self, tokens: List[str]) -> str: """Uses source spm if _decode_use_source_tokenizer is True, and target spm otherwise""" sp_model = self.spm_source if self._decode_use_source_tokenizer else self.spm_target current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += sp_model.decode_pieces(current_sub_tokens) + token + " " current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += sp_model.decode_pieces(current_sub_tokens) out_string = out_string.replace(SPIECE_UNDERLINE, " ") return out_string.strip() def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_0 + token_ids_1 + [self.eos_token_id] def _switch_to_input_mode(self): self.current_spm = self.spm_source self.current_encoder = self.encoder def _switch_to_target_mode(self): self.current_spm = self.spm_target if self.separate_vocabs: self.current_encoder = self.target_encoder @property def vocab_size(self) -> int: return len(self.encoder) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return saved_files = [] if self.separate_vocabs: out_src_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"], ) out_tgt_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["target_vocab_file"], ) save_json(self.encoder, out_src_vocab_file) save_json(self.target_encoder, out_tgt_vocab_file) saved_files.append(out_src_vocab_file) saved_files.append(out_tgt_vocab_file) else: out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"] ) save_json(self.encoder, out_vocab_file) saved_files.append(out_vocab_file) for spm_save_filename, spm_orig_path, spm_model in zip( [VOCAB_FILES_NAMES["source_spm"], VOCAB_FILES_NAMES["target_spm"]], self.spm_files, [self.spm_source, self.spm_target], ): spm_save_path = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + spm_save_filename ) if os.path.abspath(spm_orig_path) != os.path.abspath(spm_save_path) and os.path.isfile(spm_orig_path): copyfile(spm_orig_path, spm_save_path) saved_files.append(spm_save_path) elif not os.path.isfile(spm_orig_path): with open(spm_save_path, "wb") as fi: content_spiece_model = spm_model.serialized_model_proto() fi.write(content_spiece_model) saved_files.append(spm_save_path) return tuple(saved_files) def get_vocab(self) -> Dict: return self.get_src_vocab() def get_src_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def get_tgt_vocab(self): return dict(self.target_encoder, **self.added_tokens_decoder) def __getstate__(self) -> Dict: state = self.__dict__.copy() state.update( dict.fromkeys(["spm_source", "spm_target", "current_spm", "punc_normalizer", "target_vocab_file"]) ) return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.spm_source, self.spm_target = (load_spm(f, self.sp_model_kwargs) for f in self.spm_files) self.current_spm = self.spm_source self._setup_normalizer() def num_special_tokens_to_add(self, *args, **kwargs): """Just EOS""" return 1 def _special_token_mask(self, seq): all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """Get list where entries are [1] if a token is [eos] or [pad] else 0.""" if already_has_special_tokens: return self._special_token_mask(token_ids_0) elif token_ids_1 is None: return self._special_token_mask(token_ids_0) + [1] else: return self._special_token_mask(token_ids_0 + token_ids_1) + [1] def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) spm.Load(path) return spm def save_json(data, path: str) -> None: with open(path, "w") as f: json.dump(data, f, indent=2) def load_json(path: str) -> Union[Dict, List]: with open(path, "r") as f: return json.load(f) __all__ = ["MarianTokenizer"] ```
================================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.14 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\markuplm\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_markuplm import * from .feature_extraction_markuplm import * from .modeling_markuplm import * from .processing_markuplm import * from .tokenization_markuplm import * from .tokenization_markuplm_fast import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================== SOURCE CODE FILE: configuration_markuplm.py LINES: 1 SIZE: 7.17 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\markuplm\configuration_markuplm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021, The Microsoft Research Asia MarkupLM Team authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MarkupLM model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class MarkupLMConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MarkupLMModel`]. It is used to instantiate a MarkupLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MarkupLM [microsoft/markuplm-base](https://huggingface.co/microsoft/markuplm-base) architecture. Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the documentation from [`BertConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the MarkupLM model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`MarkupLMModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed into [`MarkupLMModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. max_tree_id_unit_embeddings (`int`, *optional*, defaults to 1024): The maximum value that the tree id unit embedding might ever use. Typically set this to something large just in case (e.g., 1024). max_xpath_tag_unit_embeddings (`int`, *optional*, defaults to 256): The maximum value that the xpath tag unit embedding might ever use. Typically set this to something large just in case (e.g., 256). max_xpath_subs_unit_embeddings (`int`, *optional*, defaults to 1024): The maximum value that the xpath subscript unit embedding might ever use. Typically set this to something large just in case (e.g., 1024). tag_pad_id (`int`, *optional*, defaults to 216): The id of the padding token in the xpath tags. subs_pad_id (`int`, *optional*, defaults to 1001): The id of the padding token in the xpath subscripts. xpath_tag_unit_hidden_size (`int`, *optional*, defaults to 32): The hidden size of each tree id unit. One complete tree index will have (50*xpath_tag_unit_hidden_size)-dim. max_depth (`int`, *optional*, defaults to 50): The maximum depth in xpath. Examples: ```python >>> from transformers import MarkupLMModel, MarkupLMConfig >>> # Initializing a MarkupLM microsoft/markuplm-base style configuration >>> configuration = MarkupLMConfig() >>> # Initializing a model from the microsoft/markuplm-base style configuration >>> model = MarkupLMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "markuplm" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, bos_token_id=0, eos_token_id=2, max_xpath_tag_unit_embeddings=256, max_xpath_subs_unit_embeddings=1024, tag_pad_id=216, subs_pad_id=1001, xpath_unit_hidden_size=32, max_depth=50, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout # additional properties self.max_depth = max_depth self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings self.tag_pad_id = tag_pad_id self.subs_pad_id = subs_pad_id self.xpath_unit_hidden_size = xpath_unit_hidden_size __all__ = ["MarkupLMConfig"] ```
=================================================================================================================================================== SOURCE CODE FILE: feature_extraction_markuplm.py LINES: 1 SIZE: 6.30 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\markuplm\feature_extraction_markuplm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for MarkupLM. """ import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bs4_available, logging, requires_backends if is_bs4_available(): import bs4 from bs4 import BeautifulSoup logger = logging.get_logger(__name__) class MarkupLMFeatureExtractor(FeatureExtractionMixin): r""" Constructs a MarkupLM feature extractor. This can be used to get a list of nodes and corresponding xpaths from HTML strings. This feature extractor inherits from [`~feature_extraction_utils.PreTrainedFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. """ def __init__(self, **kwargs): requires_backends(self, ["bs4"]) super().__init__(**kwargs) def xpath_soup(self, element): xpath_tags = [] xpath_subscripts = [] child = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag siblings = parent.find_all(child.name, recursive=False) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(siblings) else next(i for i, s in enumerate(siblings, 1) if s is child) ) child = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def get_three_from_single(self, html_string): html_code = BeautifulSoup(html_string, "html.parser") all_doc_strings = [] string2xtag_seq = [] string2xsubs_seq = [] for element in html_code.descendants: if isinstance(element, bs4.element.NavigableString): if type(element.parent) is not bs4.element.Tag: continue text_in_this_tag = html.unescape(element).strip() if not text_in_this_tag: continue all_doc_strings.append(text_in_this_tag) xpath_tags, xpath_subscripts = self.xpath_soup(element) string2xtag_seq.append(xpath_tags) string2xsubs_seq.append(xpath_subscripts) if len(all_doc_strings) != len(string2xtag_seq): raise ValueError("Number of doc strings and xtags does not correspond") if len(all_doc_strings) != len(string2xsubs_seq): raise ValueError("Number of doc strings and xsubs does not correspond") return all_doc_strings, string2xtag_seq, string2xsubs_seq def construct_xpath(self, xpath_tags, xpath_subscripts): xpath = "" for tagname, subs in zip(xpath_tags, xpath_subscripts): xpath += f"/{tagname}" if subs != 0: xpath += f"[{subs}]" return xpath def __call__(self, html_strings) -> BatchFeature: """ Main method to prepare for the model one or several HTML strings. Args: html_strings (`str`, `List[str]`): The HTML string or batch of HTML strings from which to extract nodes and corresponding xpaths. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **nodes** -- Nodes. - **xpaths** -- Corresponding xpaths. Examples: ```python >>> from transformers import MarkupLMFeatureExtractor >>> page_name_1 = "page1.html" >>> page_name_2 = "page2.html" >>> page_name_3 = "page3.html" >>> with open(page_name_1) as f: ... single_html_string = f.read() >>> feature_extractor = MarkupLMFeatureExtractor() >>> # single example >>> encoding = feature_extractor(single_html_string) >>> print(encoding.keys()) >>> # dict_keys(['nodes', 'xpaths']) >>> # batched example >>> multi_html_strings = [] >>> with open(page_name_2) as f: ... multi_html_strings.append(f.read()) >>> with open(page_name_3) as f: ... multi_html_strings.append(f.read()) >>> encoding = feature_extractor(multi_html_strings) >>> print(encoding.keys()) >>> # dict_keys(['nodes', 'xpaths']) ```""" # Input type checking for clearer error valid_strings = False # Check that strings has a valid type if isinstance(html_strings, str): valid_strings = True elif isinstance(html_strings, (list, tuple)): if len(html_strings) == 0 or isinstance(html_strings[0], str): valid_strings = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f"but is of type {type(html_strings)}." ) is_batched = bool(isinstance(html_strings, (list, tuple)) and (isinstance(html_strings[0], str))) if not is_batched: html_strings = [html_strings] # Get nodes + xpaths nodes = [] xpaths = [] for html_string in html_strings: all_doc_strings, string2xtag_seq, string2xsubs_seq = self.get_three_from_single(html_string) nodes.append(all_doc_strings) xpath_strings = [] for node, tag_list, sub_list in zip(all_doc_strings, string2xtag_seq, string2xsubs_seq): xpath_string = self.construct_xpath(tag_list, sub_list) xpath_strings.append(xpath_string) xpaths.append(xpath_strings) # return as Dict data = {"nodes": nodes, "xpaths": xpaths} encoded_inputs = BatchFeature(data=data, tensor_type=None) return encoded_inputs __all__ = ["MarkupLMFeatureExtractor"] ```
========================================================================================================================================= SOURCE CODE FILE: modeling_markuplm.py LINES: 1 SIZE: 56.06 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\markuplm\modeling_markuplm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Microsoft Research Asia and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MarkupLM model.""" import math import os from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_markuplm import MarkupLMConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/markuplm-base" _CONFIG_FOR_DOC = "MarkupLMConfig" class XPathEmbeddings(nn.Module): """Construct the embeddings from xpath tags and subscripts. We drop tree-id in this version, as its info can be covered by xpath. """ def __init__(self, config): super(XPathEmbeddings, self).__init__() self.max_depth = config.max_depth self.xpath_unitseq2_embeddings = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.activation = nn.ReLU() self.xpath_unitseq2_inner = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, 4 * config.hidden_size) self.inner2emb = nn.Linear(4 * config.hidden_size, config.hidden_size) self.xpath_tag_sub_embeddings = nn.ModuleList( [ nn.Embedding(config.max_xpath_tag_unit_embeddings, config.xpath_unit_hidden_size) for _ in range(self.max_depth) ] ) self.xpath_subs_sub_embeddings = nn.ModuleList( [ nn.Embedding(config.max_xpath_subs_unit_embeddings, config.xpath_unit_hidden_size) for _ in range(self.max_depth) ] ) def forward(self, xpath_tags_seq=None, xpath_subs_seq=None): xpath_tags_embeddings = [] xpath_subs_embeddings = [] for i in range(self.max_depth): xpath_tags_embeddings.append(self.xpath_tag_sub_embeddings[i](xpath_tags_seq[:, :, i])) xpath_subs_embeddings.append(self.xpath_subs_sub_embeddings[i](xpath_subs_seq[:, :, i])) xpath_tags_embeddings = torch.cat(xpath_tags_embeddings, dim=-1) xpath_subs_embeddings = torch.cat(xpath_subs_embeddings, dim=-1) xpath_embeddings = xpath_tags_embeddings + xpath_subs_embeddings xpath_embeddings = self.inner2emb(self.dropout(self.activation(self.xpath_unitseq2_inner(xpath_embeddings)))) return xpath_embeddings # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx class MarkupLMEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super(MarkupLMEmbeddings, self).__init__() self.config = config self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.max_depth = config.max_depth self.xpath_embeddings = XPathEmbeddings(config) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings.create_position_ids_from_inputs_embeds def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) def forward( self, input_ids=None, xpath_tags_seq=None, xpath_subs_seq=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0, ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # prepare xpath seq if xpath_tags_seq is None: xpath_tags_seq = self.config.tag_pad_id * torch.ones( tuple(list(input_shape) + [self.max_depth]), dtype=torch.long, device=device ) if xpath_subs_seq is None: xpath_subs_seq = self.config.subs_pad_id * torch.ones( tuple(list(input_shape) + [self.max_depth]), dtype=torch.long, device=device ) words_embeddings = inputs_embeds position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) xpath_embeddings = self.xpath_embeddings(xpath_tags_seq, xpath_subs_seq) embeddings = words_embeddings + position_embeddings + token_type_embeddings + xpath_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->MarkupLM class MarkupLMSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertIntermediate class MarkupLMIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->MarkupLM class MarkupLMOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertPooler class MarkupLMPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->MarkupLM class MarkupLMPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->MarkupLM class MarkupLMLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MarkupLMPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->MarkupLM class MarkupLMOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MarkupLMLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->MarkupLM class MarkupLMSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in MarkupLMModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs MARKUPLM_SELF_ATTENTION_CLASSES = { "eager": MarkupLMSelfAttention, } # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->MarkupLM,BERT->MARKUPLM class MarkupLMAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = MARKUPLM_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = MarkupLMSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->MarkupLM class MarkupLMLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = MarkupLMAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = MarkupLMAttention(config, position_embedding_type="absolute") self.intermediate = MarkupLMIntermediate(config) self.output = MarkupLMOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->MarkupLM class MarkupLMEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([MarkupLMLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class MarkupLMPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MarkupLMConfig base_model_prefix = "markuplm" # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights with Bert->MarkupLM def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, MarkupLMLMPredictionHead): module.bias.data.zero_() @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): return super(MarkupLMPreTrainedModel, cls).from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) MARKUPLM_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MarkupLMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MARKUPLM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) xpath_tags_seq (`torch.LongTensor` of shape `({0}, config.max_depth)`, *optional*): Tag IDs for each token in the input sequence, padded up to config.max_depth. xpath_subs_seq (`torch.LongTensor` of shape `({0}, config.max_depth)`, *optional*): Subscript IDs for each token in the input sequence, padded up to config.max_depth. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: `1` for tokens that are NOT MASKED, `0` for MASKED tokens. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: `0` corresponds to a *sentence A* token, `1` corresponds to a *sentence B* token [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: `1` indicates the head is **not masked**, `0` indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): If set to `True`, the attentions tensors of all attention layers are returned. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): If set to `True`, the hidden states of all layers are returned. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MarkupLM Model transformer outputting raw hidden-states without any specific head on top.", MARKUPLM_START_DOCSTRING, ) class MarkupLMModel(MarkupLMPreTrainedModel): # Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->MarkupLM def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MarkupLMEmbeddings(config) self.encoder = MarkupLMEncoder(config) self.pooler = MarkupLMPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, xpath_tags_seq: Optional[torch.LongTensor] = None, xpath_subs_seq: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, MarkupLMModel >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base") >>> model = MarkupLMModel.from_pretrained("microsoft/markuplm-base") >>> html_string = "<html> <head> <title>Page Title</title> </head> </html>" >>> encoding = processor(html_string, return_tensors="pt") >>> outputs = model(**encoding) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 4, 768] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.to(dtype=next(self.parameters()).dtype) else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids=input_ids, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertModel._reorder_cache def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ MarkupLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MARKUPLM_START_DOCSTRING, ) class MarkupLMForQuestionAnswering(MarkupLMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with bert->markuplm, Bert->MarkupLM def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.markuplm = MarkupLMModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, xpath_tags_seq: Optional[torch.Tensor] = None, xpath_subs_seq: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Examples: ```python >>> from transformers import AutoProcessor, MarkupLMForQuestionAnswering >>> import torch >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base-finetuned-websrc") >>> model = MarkupLMForQuestionAnswering.from_pretrained("microsoft/markuplm-base-finetuned-websrc") >>> html_string = "<html> <head> <title>My name is Niels</title> </head> </html>" >>> question = "What's his name?" >>> encoding = processor(html_string, questions=question, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**encoding) >>> answer_start_index = outputs.start_logits.argmax() >>> answer_end_index = outputs.end_logits.argmax() >>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1] >>> processor.decode(predict_answer_tokens).strip() 'Niels' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.markuplm( input_ids, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""MarkupLM Model with a `token_classification` head on top.""", MARKUPLM_START_DOCSTRING) class MarkupLMForTokenClassification(MarkupLMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with bert->markuplm, Bert->MarkupLM def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.markuplm = MarkupLMModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, xpath_tags_seq: Optional[torch.Tensor] = None, xpath_subs_seq: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForTokenClassification >>> import torch >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base") >>> processor.parse_html = False >>> model = AutoModelForTokenClassification.from_pretrained("microsoft/markuplm-base", num_labels=7) >>> nodes = ["hello", "world"] >>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"] >>> node_labels = [1, 2] >>> encoding = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**encoding) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.markuplm( input_ids, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.classifier(sequence_output) # (batch_size, seq_length, node_type_size) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct( prediction_scores.view(-1, self.config.num_labels), labels.view(-1), ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MarkupLM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MARKUPLM_START_DOCSTRING, ) class MarkupLMForSequenceClassification(MarkupLMPreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with bert->markuplm, Bert->MarkupLM def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.markuplm = MarkupLMModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MARKUPLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, xpath_tags_seq: Optional[torch.Tensor] = None, xpath_subs_seq: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoProcessor, AutoModelForSequenceClassification >>> import torch >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base") >>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/markuplm-base", num_labels=7) >>> html_string = "<html> <head> <title>Page Title</title> </head> </html>" >>> encoding = processor(html_string, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**encoding) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.markuplm( input_ids, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "MarkupLMForQuestionAnswering", "MarkupLMForSequenceClassification", "MarkupLMForTokenClassification", "MarkupLMModel", "MarkupLMPreTrainedModel", ] ```
=========================================================================================================================================== SOURCE CODE FILE: processing_markuplm.py LINES: 1 SIZE: 6.23 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\markuplm\processing_markuplm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for MarkupLM. """ from typing import Optional, Union from ...file_utils import TensorType from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy class MarkupLMProcessor(ProcessorMixin): r""" Constructs a MarkupLM processor which combines a MarkupLM feature extractor and a MarkupLM tokenizer into a single processor. [`MarkupLMProcessor`] offers all the functionalities you need to prepare data for the model. It first uses [`MarkupLMFeatureExtractor`] to extract nodes and corresponding xpaths from one or more HTML strings. Next, these are provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which turns them into token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_subs_seq`. Args: feature_extractor (`MarkupLMFeatureExtractor`): An instance of [`MarkupLMFeatureExtractor`]. The feature extractor is a required input. tokenizer (`MarkupLMTokenizer` or `MarkupLMTokenizerFast`): An instance of [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. The tokenizer is a required input. parse_html (`bool`, *optional*, defaults to `True`): Whether or not to use `MarkupLMFeatureExtractor` to parse HTML strings into nodes and corresponding xpaths. """ feature_extractor_class = "MarkupLMFeatureExtractor" tokenizer_class = ("MarkupLMTokenizer", "MarkupLMTokenizerFast") parse_html = True def __call__( self, html_strings=None, nodes=None, xpaths=None, node_labels=None, questions=None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method first forwards the `html_strings` argument to [`~MarkupLMFeatureExtractor.__call__`]. Next, it passes the `nodes` and `xpaths` along with the additional arguments to [`~MarkupLMTokenizer.__call__`] and returns the output. Optionally, one can also provide a `text` argument which is passed along as first sequence. Please refer to the docstring of the above two methods for more information. """ # first, create nodes and xpaths if self.parse_html: if html_strings is None: raise ValueError("Make sure to pass HTML strings in case `parse_html` is set to `True`") if nodes is not None or xpaths is not None or node_labels is not None: raise ValueError( "Please don't pass nodes, xpaths nor node labels in case `parse_html` is set to `True`" ) features = self.feature_extractor(html_strings) nodes = features["nodes"] xpaths = features["xpaths"] else: if html_strings is not None: raise ValueError("You have passed HTML strings but `parse_html` is set to `False`.") if nodes is None or xpaths is None: raise ValueError("Make sure to pass nodes and xpaths in case `parse_html` is set to `False`") # # second, apply the tokenizer if questions is not None and self.parse_html: if isinstance(questions, str): questions = [questions] # add batch dimension (as the feature extractor always adds a batch dimension) encoded_inputs = self.tokenizer( text=questions if questions is not None else nodes, text_pair=nodes if questions is not None else None, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) return encoded_inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names return tokenizer_input_names __all__ = ["MarkupLMProcessor"] ```
============================================================================================================================================= SOURCE CODE FILE: tokenization_markuplm.py LINES: 5 SIZE: 68.52 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\markuplm\tokenization_markuplm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for MarkupLM.""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, TextInputPair, TruncationStrategy, ) from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class MarkupLMTokenizer(PreTrainedTokenizer): r""" Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). [`MarkupLMTokenizer`] can be used to turn HTML strings into to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, merges_file, tags_dict, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, max_depth=50, max_width=1000, pad_width=1001, pad_token_label=-100, only_label_first_subword=True, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.tags_dict = tags_dict self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") # additional properties self.max_depth = max_depth self.max_width = max_width self.pad_width = pad_width self.unk_tag_id = len(self.tags_dict) self.pad_tag_id = self.unk_tag_id + 1 self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth super().__init__( vocab_file=vocab_file, merges_file=merges_file, tags_dict=tags_dict, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, max_depth=max_depth, max_width=max_width, pad_width=pad_width, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, **kwargs, ) self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword def get_xpath_seq(self, xpath): """ Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of tag IDs and corresponding subscripts, taking into account max depth. """ xpath_tags_list = [] xpath_subs_list = [] xpath_units = xpath.split("/") for unit in xpath_units: if not unit.strip(): continue name_subs = unit.strip().split("[") tag_name = name_subs[0] sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1]) xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id)) xpath_subs_list.append(min(self.max_width, sub)) xpath_tags_list = xpath_tags_list[: self.max_depth] xpath_subs_list = xpath_subs_list[: self.max_depth] xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list)) xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list)) return xpath_tags_list, xpath_subs_list @property def vocab_size(self): return len(self.encoder) def get_vocab(self): vocab = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" logger.warning( "MarkupLM now does not support generative tasks, decoding is experimental and subject to change." ) text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) # save vocab_file with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") # save merge_file index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def build_xpath_tags_with_special_tokens( self, xpath_tags_0: List[int], xpath_tags_1: Optional[List[int]] = None ) -> List[int]: pad = [self.pad_xpath_tags_seq] if len(xpath_tags_1) == 0: return pad + xpath_tags_0 + pad return pad + xpath_tags_0 + pad + xpath_tags_1 + pad def build_xpath_subs_with_special_tokens( self, xpath_subs_0: List[int], xpath_subs_1: Optional[List[int]] = None ) -> List[int]: pad = [self.pad_xpath_subs_seq] if len(xpath_subs_1) == 0: return pad + xpath_subs_0 + pad return pad + xpath_subs_0 + pad + xpath_subs_1 + pad def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Args: Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, xpaths: Union[List[List[int]], List[List[List[int]]]] = None, node_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with node-level xpaths and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (nodes of a single example or questions of a batch of examples) or a list of list of strings (batch of nodes). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). xpaths (`List[List[int]]`, `List[List[List[int]]]`): Node-level xpaths. node_labels (`List[int]`, `List[List[int]]`, *optional*): Node-level integer labels (for token classification tasks). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = nodes if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "Nodes must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be nodes if not isinstance(text, (list, tuple)): raise ValueError( "Nodes must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) nodes = text if text_pair is None else text_pair assert xpaths is not None, "You must provide corresponding xpaths" if is_batched: assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples" for nodes_example, xpaths_example in zip(nodes, xpaths): assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths" else: assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths" if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: Optional[bool] = None, xpaths: Optional[List[List[List[int]]]] = None, node_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: Optional[bool] = None, xpaths: Optional[List[List[List[int]]]] = None, node_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) batch_outputs = self._batch_prepare_for_model( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, batch_text_or_text_pairs, is_pair: Optional[bool] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Args: batch_ids_pairs: list of tokenized input ids or input ids pairs """ batch_outputs = {} for idx, example in enumerate(zip(batch_text_or_text_pairs, xpaths)): batch_text_or_text_pair, xpaths_example = example outputs = self.prepare_for_model( batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, batch_text_or_text_pair[1] if is_pair else None, xpaths_example, node_labels=node_labels[idx] if node_labels is not None else None, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward padding_side=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> List[int]: encoded_inputs = self.encode_plus( text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, `__call__` should be used instead. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a list of list of strings (nodes of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, xpaths=xpaths, text_pair=text_pair, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) return self.prepare_for_model( text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Node-level `xpaths` are turned into token-level `xpath_tags_seq` and `xpath_subs_seq`. If provided, node-level `node_labels` are turned into token-level `labels`. The node label is used for the first token of the node, while remaining tokens are labeled with -100, such that they will be ignored by the loss function. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a list of list of strings (nodes of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) tokens = [] pair_tokens = [] xpath_tags_seq = [] xpath_subs_seq = [] pair_xpath_tags_seq = [] pair_xpath_subs_seq = [] labels = [] if text_pair is None: if node_labels is None: # CASE 1: web page classification (training + inference) + CASE 2: token classification (inference) for word, xpath in zip(text, xpaths): if len(word) < 1: # skip empty nodes continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) else: # CASE 2: token classification (training) for word, xpath, label in zip(text, xpaths, node_labels): if len(word) < 1: # skip empty nodes continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) if self.only_label_first_subword: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) else: labels.extend([label] * len(word_tokens)) else: # CASE 3: web page question answering (inference) # text = question # text_pair = nodes tokens = self.tokenize(text) xpath_tags_seq = [self.pad_xpath_tags_seq for _ in range(len(tokens))] xpath_subs_seq = [self.pad_xpath_subs_seq for _ in range(len(tokens))] for word, xpath in zip(text_pair, xpaths): if len(word) < 1: # skip empty nodes continue word_tokens = self.tokenize(word) pair_tokens.extend(word_tokens) xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) pair_xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) pair_xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) # Create ids + pair_ids ids = self.convert_tokens_to_ids(tokens) pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Compute the total size of the returned encodings pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] overflowing_xpath_tags_seq = [] overflowing_xpath_subs_seq = [] overflowing_labels = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ( ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, labels, overflowing_tokens, overflowing_xpath_tags_seq, overflowing_xpath_subs_seq, overflowing_labels, ) = self.truncate_sequences( ids, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, pair_ids=pair_ids, pair_xpath_tags_seq=pair_xpath_tags_seq, pair_xpath_subs_seq=pair_xpath_subs_seq, labels=labels, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["overflowing_xpath_tags_seq"] = overflowing_xpath_tags_seq encoded_inputs["overflowing_xpath_subs_seq"] = overflowing_xpath_subs_seq encoded_inputs["overflowing_labels"] = overflowing_labels encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) xpath_tags_ids = self.build_xpath_tags_with_special_tokens(xpath_tags_seq, pair_xpath_tags_seq) xpath_subs_ids = self.build_xpath_subs_with_special_tokens(xpath_subs_seq, pair_xpath_subs_seq) if labels: labels = [self.pad_token_label] + labels + [self.pad_token_label] else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) xpath_tags_ids = xpath_tags_seq + pair_xpath_tags_seq if pair else xpath_tags_seq xpath_subs_ids = xpath_subs_seq + pair_xpath_subs_seq if pair else xpath_subs_seq # Build output dictionary encoded_inputs["input_ids"] = sequence encoded_inputs["xpath_tags_seq"] = xpath_tags_ids encoded_inputs["xpath_subs_seq"] = xpath_subs_ids if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) if labels: encoded_inputs["labels"] = labels # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def truncate_sequences( self, ids: List[int], xpath_tags_seq: List[List[int]], xpath_subs_seq: List[List[int]], pair_ids: Optional[List[int]] = None, pair_xpath_tags_seq: Optional[List[List[int]]] = None, pair_xpath_subs_seq: Optional[List[List[int]]] = None, labels: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, TruncationStrategy] = "longest_first", stride: int = 0, ) -> Tuple[List[int], List[int], List[int]]: """ Args: Truncates a sequence pair in-place following the strategy. ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. xpath_tags_seq (`List[List[int]]`): XPath tag IDs of the first sequence. xpath_subs_seq (`List[List[int]]`): XPath sub IDs of the first sequence. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_xpath_tags_seq (`List[List[int]]`, *optional*): XPath tag IDs of the second sequence. pair_xpath_subs_seq (`List[List[int]]`, *optional*): XPath sub IDs of the second sequence. num_tokens_to_remove (`int`, *optional*, defaults to 0): Number of tokens to remove using the truncation strategy. truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): The strategy to follow for truncation. Can be: - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). stride (`int`, *optional*, defaults to 0): If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. Returns: `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair of sequences (or a batch of pairs) is provided. """ if num_tokens_to_remove <= 0: return ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, [], [], [] if not isinstance(truncation_strategy, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation_strategy) overflowing_tokens = [] overflowing_xpath_tags_seq = [] overflowing_xpath_subs_seq = [] overflowing_labels = [] if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None ): if len(ids) > num_tokens_to_remove: window_len = min(len(ids), stride + num_tokens_to_remove) overflowing_tokens = ids[-window_len:] overflowing_xpath_tags_seq = xpath_tags_seq[-window_len:] overflowing_xpath_subs_seq = xpath_subs_seq[-window_len:] ids = ids[:-num_tokens_to_remove] xpath_tags_seq = xpath_tags_seq[:-num_tokens_to_remove] xpath_subs_seq = xpath_subs_seq[:-num_tokens_to_remove] labels = labels[:-num_tokens_to_remove] else: error_msg = ( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the first sequence has a length {len(ids)}. " ) if truncation_strategy == TruncationStrategy.ONLY_FIRST: error_msg = ( error_msg + "Please select another truncation strategy than " f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." ) logger.error(error_msg) elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: logger.warning( "Be aware, overflowing tokens are not returned for the setting you have chosen," f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " "truncation strategy. So the returned list will always be empty even if some " "tokens have been removed." ) for _ in range(num_tokens_to_remove): if pair_ids is None or len(ids) > len(pair_ids): ids = ids[:-1] xpath_tags_seq = xpath_tags_seq[:-1] xpath_subs_seq = xpath_subs_seq[:-1] labels = labels[:-1] else: pair_ids = pair_ids[:-1] pair_xpath_tags_seq = pair_xpath_tags_seq[:-1] pair_xpath_subs_seq = pair_xpath_subs_seq[:-1] elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: if len(pair_ids) > num_tokens_to_remove: window_len = min(len(pair_ids), stride + num_tokens_to_remove) overflowing_tokens = pair_ids[-window_len:] overflowing_xpath_tags_seq = pair_xpath_tags_seq[-window_len:] overflowing_xpath_subs_seq = pair_xpath_subs_seq[-window_len:] pair_ids = pair_ids[:-num_tokens_to_remove] pair_xpath_tags_seq = pair_xpath_tags_seq[:-num_tokens_to_remove] pair_xpath_subs_seq = pair_xpath_subs_seq[:-num_tokens_to_remove] else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the second sequence has a length {len(pair_ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " "for instance 'longest_first' or 'only_first'." ) return ( ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, labels, overflowing_tokens, overflowing_xpath_tags_seq, overflowing_xpath_subs_seq, overflowing_labels, ) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Args: Pad encoded inputs (on left/right and up to predefined length or max length in the batch) encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). padding_side: The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) padding_side = padding_side if padding_side is not None else self.padding_side if padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "xpath_tags_seq" in encoded_inputs: encoded_inputs["xpath_tags_seq"] = ( encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference ) if "xpath_subs_seq" in encoded_inputs: encoded_inputs["xpath_subs_seq"] = ( encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference ) if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "xpath_tags_seq" in encoded_inputs: encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[ "xpath_tags_seq" ] if "xpath_subs_seq" in encoded_inputs: encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[ "xpath_subs_seq" ] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(padding_side)) return encoded_inputs __all__ = ["MarkupLMTokenizer"] ```
================================================================================================================================================== SOURCE CODE FILE: tokenization_markuplm_fast.py LINES: 1 SIZE: 42.32 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\markuplm\tokenization_markuplm_fast.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fast tokenization class for MarkupLM. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus and _encode_plus, in which the Rust tokenizer is used. """ import json from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union from tokenizers import processors from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings from ...tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, AddedToken, BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, TextInputPair, TruncationStrategy, ) from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_markuplm import MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, MarkupLMTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class MarkupLMTokenizerFast(PreTrainedTokenizerFast): r""" Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). [`MarkupLMTokenizerFast`] can be used to turn HTML strings into to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = MarkupLMTokenizer def __init__( self, vocab_file, merges_file, tags_dict, tokenizer_file=None, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, max_depth=50, max_width=1000, pad_width=1001, pad_token_label=-100, only_label_first_subword=True, trim_offsets=False, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file=vocab_file, merges_file=merges_file, tags_dict=tags_dict, tokenizer_file=tokenizer_file, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, max_depth=max_depth, max_width=max_width, pad_width=pad_width, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, **kwargs, ) if trim_offsets: # Not implemented yet, because we need to chain two post processors which is not possible yet # We need to wait for https://github.com/huggingface/tokenizers/pull/1005 # With `trim_offsets=False` we don't need to do add `processors.ByteLevel(trim_offsets=False)` # because it's not doing anything raise NotImplementedError( "`trim_offsets=True` is not implemented for MarkupLMTokenizerFast. Please set it to False." ) self.tags_dict = tags_dict tokenizer_component = "post_processor" tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) if tokenizer_component_instance: state = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: state["sep"] = tuple(state["sep"]) if "cls" in state: state["cls"] = tuple(state["cls"]) changes_to_apply = False if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: state["add_prefix_space"] = add_prefix_space changes_to_apply = True if changes_to_apply: component_class = getattr(processors, state.pop("type")) new_value = component_class(**state) setattr(self.backend_tokenizer, tokenizer_component, new_value) # additional properties self.max_depth = max_depth self.max_width = max_width self.pad_width = pad_width self.unk_tag_id = len(self.tags_dict) self.pad_tag_id = self.unk_tag_id + 1 self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword def get_xpath_seq(self, xpath): """ Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of tag IDs and corresponding subscripts, taking into account max depth. """ xpath_tags_list = [] xpath_subs_list = [] xpath_units = xpath.split("/") for unit in xpath_units: if not unit.strip(): continue name_subs = unit.strip().split("[") tag_name = name_subs[0] sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1]) xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id)) xpath_subs_list.append(min(self.max_width, sub)) xpath_tags_list = xpath_tags_list[: self.max_depth] xpath_subs_list = xpath_subs_list[: self.max_depth] xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list)) xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list)) return xpath_tags_list, xpath_subs_list @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, xpaths: Union[List[List[int]], List[List[List[int]]]] = None, node_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with nodes, xpaths and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (words of a single example or questions of a batch of examples) or a list of list of strings (batch of words). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). xpaths (`List[List[int]]`, `List[List[List[int]]]`): Node-level xpaths. Each bounding box should be normalized to be on a 0-1000 scale. node_labels (`List[int]`, `List[List[int]]`, *optional*): Node-level integer labels (for token classification tasks). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = nodes if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "Nodes must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be nodes if not isinstance(text, (list, tuple)): raise ValueError( "Nodes must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) nodes = text if text_pair is None else text_pair assert xpaths is not None, "You must provide corresponding xpaths" if is_batched: assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples" for nodes_example, xpaths_example in zip(nodes, xpaths): assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths" else: assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths" if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: Optional[bool] = None, xpaths: Optional[List[List[List[int]]]] = None, node_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: batched_input = [(text, pair)] if pair else [text] encodings = self._tokenizer.encode_batch( batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs ) return encodings[0].tokens @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, `__call__` should be used instead. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a list of list of strings (words of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, xpaths=xpaths, text_pair=text_pair, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: Optional[bool] = None, xpaths: Optional[List[List[List[int]]]] = None, node_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: if not isinstance(batch_text_or_text_pairs, list): raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})") # Set the truncation and padding strategy and restore the initial configuration self.set_truncation_and_padding( padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, ) if is_pair: batch_text_or_text_pairs = [([text], text_pair) for text, text_pair in batch_text_or_text_pairs] encodings = self._tokenizer.encode_batch( batch_text_or_text_pairs, add_special_tokens=add_special_tokens, is_pretokenized=True, # we set this to True as MarkupLM always expects pretokenized inputs ) # Convert encoding to dict # `Tokens` is a tuple of (List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]], # List[EncodingFast]) with nested dimensions corresponding to batch, overflows, sequence length tokens_and_encodings = [ self._convert_encoding( encoding=encoding, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=True if node_labels is not None else return_offsets_mapping, # we use offsets to create the labels return_length=return_length, verbose=verbose, ) for encoding in encodings ] # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length) # (we say ~ because the number of overflow varies with the example in the batch) # # To match each overflowing sample with the original sample in the batch # we add an overflow_to_sample_mapping array (see below) sanitized_tokens = {} for key in tokens_and_encodings[0][0].keys(): stack = [e for item, _ in tokens_and_encodings for e in item[key]] sanitized_tokens[key] = stack sanitized_encodings = [e for _, item in tokens_and_encodings for e in item] # If returning overflowing tokens, we need to return a mapping # from the batch idx to the original sample if return_overflowing_tokens: overflow_to_sample_mapping = [] for i, (toks, _) in enumerate(tokens_and_encodings): overflow_to_sample_mapping += [i] * len(toks["input_ids"]) sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping for input_ids in sanitized_tokens["input_ids"]: self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose) # create the token-level xpaths tags and subscripts xpath_tags_seq = [] xpath_subs_seq = [] for batch_index in range(len(sanitized_tokens["input_ids"])): if return_overflowing_tokens: original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] else: original_index = batch_index xpath_tags_seq_example = [] xpath_subs_seq_example = [] for id, sequence_id, word_id in zip( sanitized_tokens["input_ids"][batch_index], sanitized_encodings[batch_index].sequence_ids, sanitized_encodings[batch_index].word_ids, ): if word_id is not None: if is_pair and sequence_id == 0: xpath_tags_seq_example.append(self.pad_xpath_tags_seq) xpath_subs_seq_example.append(self.pad_xpath_subs_seq) else: xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpaths[original_index][word_id]) xpath_tags_seq_example.extend([xpath_tags_list]) xpath_subs_seq_example.extend([xpath_subs_list]) else: if id in [self.cls_token_id, self.sep_token_id, self.pad_token_id]: xpath_tags_seq_example.append(self.pad_xpath_tags_seq) xpath_subs_seq_example.append(self.pad_xpath_subs_seq) else: raise ValueError("Id not recognized") xpath_tags_seq.append(xpath_tags_seq_example) xpath_subs_seq.append(xpath_subs_seq_example) sanitized_tokens["xpath_tags_seq"] = xpath_tags_seq sanitized_tokens["xpath_subs_seq"] = xpath_subs_seq # optionally, create the labels if node_labels is not None: labels = [] for batch_index in range(len(sanitized_tokens["input_ids"])): if return_overflowing_tokens: original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] else: original_index = batch_index labels_example = [] for id, offset, word_id in zip( sanitized_tokens["input_ids"][batch_index], sanitized_tokens["offset_mapping"][batch_index], sanitized_encodings[batch_index].word_ids, ): if word_id is not None: if self.only_label_first_subword: if offset[0] == 0: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels_example.append(node_labels[original_index][word_id]) else: labels_example.append(self.pad_token_label) else: labels_example.append(node_labels[original_index][word_id]) else: labels_example.append(self.pad_token_label) labels.append(labels_example) sanitized_tokens["labels"] = labels # finally, remove offsets if the user didn't want them if not return_offsets_mapping: del sanitized_tokens["offset_mapping"] return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors) def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[bool] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # make it a batched input # 2 options: # 1) only text, in case text must be a list of str # 2) text + text_pair, in which case text = str and text_pair a list of str batched_input = [(text, text_pair)] if text_pair else [text] batched_xpaths = [xpaths] batched_node_labels = [node_labels] if node_labels is not None else None batched_output = self._batch_encode_plus( batched_input, is_pair=bool(text_pair is not None), xpaths=batched_xpaths, node_labels=batched_node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Return tensor is None, then we can remove the leading batch axis # Overflowing tokens are returned as a batch of output so we keep them in this case if return_tensors is None and not return_overflowing_tokens: batched_output = BatchEncoding( { key: value[0] if len(value) > 0 and isinstance(value[0], list) else value for key, value in batched_output.items() }, batched_output.encodings, ) self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose) return batched_output def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Args: Pad encoded inputs (on left/right and up to predefined length or max length in the batch) encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). padding_side: The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) padding_side = padding_side if padding_side is not None else self.padding_side if padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "xpath_tags_seq" in encoded_inputs: encoded_inputs["xpath_tags_seq"] = ( encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference ) if "xpath_subs_seq" in encoded_inputs: encoded_inputs["xpath_subs_seq"] = ( encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference ) if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "xpath_tags_seq" in encoded_inputs: encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[ "xpath_tags_seq" ] if "xpath_subs_seq" in encoded_inputs: encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[ "xpath_subs_seq" ] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(padding_side)) return encoded_inputs def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) __all__ = ["MarkupLMTokenizerFast"] ```
=================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.03 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mask2former\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mask2former import * from .image_processing_mask2former import * from .modeling_mask2former import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
==================================================================================================================================================== SOURCE CODE FILE: configuration_mask2former.py LINES: 1 SIZE: 12.09 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mask2former\configuration_mask2former.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Meta Platforms, Inc.and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mask2Former model configuration""" from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import verify_backbone_config_arguments from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) class Mask2FormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Mask2FormerModel`]. It is used to instantiate a Mask2Former model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mask2Former [facebook/mask2former-swin-small-coco-instance](https://huggingface.co/facebook/mask2former-swin-small-coco-instance) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Currently, Mask2Former only supports the [Swin Transformer](swin) as backbone. Args: backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `SwinConfig()`): The configuration of the backbone model. If unset, the configuration corresponding to `swin-base-patch4-window12-384` will be used. backbone (`str`, *optional*): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, `False`): Whether to use pretrained weights for the backbone. use_timm_backbone (`bool`, *optional*, `False`): Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers library. backbone_kwargs (`dict`, *optional*): Keyword arguments to be passed to AutoBackbone when loading from a checkpoint e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. feature_size (`int`, *optional*, defaults to 256): The features (channels) of the resulting feature maps. mask_feature_size (`int`, *optional*, defaults to 256): The masks' features size, this value will also be used to specify the Feature Pyramid Network features' size. hidden_dim (`int`, *optional*, defaults to 256): Dimensionality of the encoder layers. encoder_feedforward_dim (`int`, *optional*, defaults to 1024): Dimension of feedforward network for deformable detr encoder used as part of pixel decoder. encoder_layers (`int`, *optional*, defaults to 6): Number of layers in the deformable detr encoder used as part of pixel decoder. decoder_layers (`int`, *optional*, defaults to 10): Number of layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder. dim_feedforward (`int`, *optional*, defaults to 2048): Feature dimension in feedforward network for transformer decoder. pre_norm (`bool`, *optional*, defaults to `False`): Whether to use pre-LayerNorm or not for transformer decoder. enforce_input_projection (`bool`, *optional*, defaults to `False`): Whether to add an input projection 1x1 convolution even if the input channels and hidden dim are identical in the Transformer decoder. common_stride (`int`, *optional*, defaults to 4): Parameter used for determining number of FPN levels used as part of pixel decoder. ignore_value (`int`, *optional*, defaults to 255): Category id to be ignored during training. num_queries (`int`, *optional*, defaults to 100): Number of queries for the decoder. no_object_weight (`int`, *optional*, defaults to 0.1): The weight to apply to the null (no object) class. class_weight (`int`, *optional*, defaults to 2.0): The weight for the cross entropy loss. mask_weight (`int`, *optional*, defaults to 5.0): The weight for the mask loss. dice_weight (`int`, *optional*, defaults to 5.0): The weight for the dice loss. train_num_points (`str` or `function`, *optional*, defaults to 12544): Number of points used for sampling during loss calculation. oversample_ratio (`float`, *optional*, defaults to 3.0): Oversampling parameter used for calculating no. of sampled points importance_sample_ratio (`float`, *optional*, defaults to 0.75): Ratio of points that are sampled via importance sampling. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. init_xavier_std (`float`, *optional*, defaults to 1.0): The scaling factor used for the Xavier initialization gain in the HM Attention map module. use_auxiliary_loss (`boolean``, *optional*, defaults to `True`): If `True` [`Mask2FormerForUniversalSegmentationOutput`] will contain the auxiliary losses computed using the logits from each decoder's stage. feature_strides (`List[int]`, *optional*, defaults to `[4, 8, 16, 32]`): Feature strides corresponding to features generated from backbone network. output_auxiliary_logits (`bool`, *optional*): Should the model output its `auxiliary_logits` or not. Examples: ```python >>> from transformers import Mask2FormerConfig, Mask2FormerModel >>> # Initializing a Mask2Former facebook/mask2former-swin-small-coco-instance configuration >>> configuration = Mask2FormerConfig() >>> # Initializing a model (with random weights) from the facebook/mask2former-swin-small-coco-instance style configuration >>> model = Mask2FormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "mask2former" backbones_supported = ["swin"] attribute_map = {"hidden_size": "hidden_dim"} def __init__( self, backbone_config: Optional[Dict] = None, feature_size: int = 256, mask_feature_size: int = 256, hidden_dim: int = 256, encoder_feedforward_dim: int = 1024, activation_function: str = "relu", encoder_layers: int = 6, decoder_layers: int = 10, num_attention_heads: int = 8, dropout: float = 0.0, dim_feedforward: int = 2048, pre_norm: bool = False, enforce_input_projection: bool = False, common_stride: int = 4, ignore_value: int = 255, num_queries: int = 100, no_object_weight: float = 0.1, class_weight: float = 2.0, mask_weight: float = 5.0, dice_weight: float = 5.0, train_num_points: int = 12544, oversample_ratio: float = 3.0, importance_sample_ratio: float = 0.75, init_std: float = 0.02, init_xavier_std: float = 1.0, use_auxiliary_loss: bool = True, feature_strides: List[int] = [4, 8, 16, 32], output_auxiliary_logits: Optional[bool] = None, backbone: Optional[str] = None, use_pretrained_backbone: bool = False, use_timm_backbone: bool = False, backbone_kwargs: Optional[Dict] = None, **kwargs, ): if backbone_config is None and backbone is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.") backbone_config = CONFIG_MAPPING["swin"]( image_size=224, num_channels=3, patch_size=4, embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7, drop_path_rate=0.3, use_absolute_embeddings=False, out_features=["stage1", "stage2", "stage3", "stage4"], ) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.pop("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) verify_backbone_config_arguments( use_timm_backbone=use_timm_backbone, use_pretrained_backbone=use_pretrained_backbone, backbone=backbone, backbone_config=backbone_config, backbone_kwargs=backbone_kwargs, ) # verify that the backbone is supported if backbone_config is not None and backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " f"Supported model types: {','.join(self.backbones_supported)}" ) self.backbone_config = backbone_config self.feature_size = feature_size self.mask_feature_size = mask_feature_size self.hidden_dim = hidden_dim self.encoder_feedforward_dim = encoder_feedforward_dim self.activation_function = activation_function self.encoder_layers = encoder_layers self.decoder_layers = decoder_layers self.num_attention_heads = num_attention_heads self.dropout = dropout self.dim_feedforward = dim_feedforward self.pre_norm = pre_norm self.enforce_input_projection = enforce_input_projection self.common_stride = common_stride self.ignore_value = ignore_value self.num_queries = num_queries self.no_object_weight = no_object_weight self.class_weight = class_weight self.mask_weight = mask_weight self.dice_weight = dice_weight self.train_num_points = train_num_points self.oversample_ratio = oversample_ratio self.importance_sample_ratio = importance_sample_ratio self.init_std = init_std self.init_xavier_std = init_xavier_std self.use_auxiliary_loss = use_auxiliary_loss self.feature_strides = feature_strides self.output_auxiliary_logits = output_auxiliary_logits self.num_hidden_layers = decoder_layers self.backbone = backbone self.use_pretrained_backbone = use_pretrained_backbone self.use_timm_backbone = use_timm_backbone self.backbone_kwargs = backbone_kwargs super().__init__(**kwargs) @classmethod def from_backbone_config(cls, backbone_config: PretrainedConfig, **kwargs): """Instantiate a [`Mask2FormerConfig`] (or a derived class) from a pre-trained backbone model configuration. Args: backbone_config ([`PretrainedConfig`]): The backbone configuration. Returns: [`Mask2FormerConfig`]: An instance of a configuration object """ return cls( backbone_config=backbone_config, **kwargs, ) __all__ = ["Mask2FormerConfig"] ```
======================================================================================================================================================= SOURCE CODE FILE: image_processing_mask2former.py LINES: 1 SIZE: 56.06 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mask2former\image_processing_mask2former.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Mask2Former.""" import math from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union import numpy as np from ...image_processing_utils import INIT_SERVICE_KWARGS, BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( PaddingMode, get_resize_output_image_size, pad, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_batched, is_scaled_image, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, TensorType, filter_out_non_signature_kwargs, is_torch_available, is_torch_tensor, logging, ) from ...utils.deprecation import deprecate_kwarg logger = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn # Copied from transformers.models.detr.image_processing_detr.max_across_indices def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] # Copied from transformers.models.detr.image_processing_detr.get_max_height_width def get_max_height_width( images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> List[int]: """ Get the maximum height and width across all images in a batch. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(images[0]) if input_data_format == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_data_format == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_data_format}") return (max_height, max_width) # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask def make_pixel_mask( image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask # Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle def binary_mask_to_rle(mask): """ Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format. Args: mask (`torch.Tensor` or `numpy.array`): A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target segment_id or class_id. Returns: `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE format. """ if is_torch_tensor(mask): mask = mask.numpy() pixels = mask.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return list(runs) # Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle def convert_segmentation_to_rle(segmentation): """ Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format. Args: segmentation (`torch.Tensor` or `numpy.array`): A segmentation map of shape `(height, width)` where each value denotes a segment or class id. Returns: `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id. """ segment_ids = torch.unique(segmentation) run_length_encodings = [] for idx in segment_ids: mask = torch.where(segmentation == idx, 1, 0) rle = binary_mask_to_rle(mask) run_length_encodings.append(rle) return run_length_encodings # Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels): """ Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and `labels`. Args: masks (`torch.Tensor`): A tensor of shape `(num_queries, height, width)`. scores (`torch.Tensor`): A tensor of shape `(num_queries)`. labels (`torch.Tensor`): A tensor of shape `(num_queries)`. object_mask_threshold (`float`): A number between 0 and 1 used to binarize the masks. Raises: `ValueError`: Raised when the first dimension doesn't match in all input tensors. Returns: `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region < `object_mask_threshold`. """ if not (masks.shape[0] == scores.shape[0] == labels.shape[0]): raise ValueError("mask, scores and labels must have the same shape!") to_keep = labels.ne(num_labels) & (scores > object_mask_threshold) return masks[to_keep], scores[to_keep], labels[to_keep] # Copied from transformers.models.detr.image_processing_detr.check_segment_validity def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8): # Get the mask associated with the k class mask_k = mask_labels == k mask_k_area = mask_k.sum() # Compute the area of all the stuff in query k original_area = (mask_probs[k] >= mask_threshold).sum() mask_exists = mask_k_area > 0 and original_area > 0 # Eliminate disconnected tiny segments if mask_exists: area_ratio = mask_k_area / original_area if not area_ratio.item() > overlap_mask_area_threshold: mask_exists = False return mask_exists, mask_k # Copied from transformers.models.detr.image_processing_detr.compute_segments def compute_segments( mask_probs, pred_scores, pred_labels, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_size: Tuple[int, int] = None, ): height = mask_probs.shape[1] if target_size is None else target_size[0] width = mask_probs.shape[2] if target_size is None else target_size[1] segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device) segments: List[Dict] = [] if target_size is not None: mask_probs = nn.functional.interpolate( mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False )[0] current_segment_id = 0 # Weigh each mask by its prediction score mask_probs *= pred_scores.view(-1, 1, 1) mask_labels = mask_probs.argmax(0) # [height, width] # Keep track of instances of each class stuff_memory_list: Dict[str, int] = {} for k in range(pred_labels.shape[0]): pred_class = pred_labels[k].item() should_fuse = pred_class in label_ids_to_fuse # Check if mask exists and large enough to be a segment mask_exists, mask_k = check_segment_validity( mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold ) if mask_exists: if pred_class in stuff_memory_list: current_segment_id = stuff_memory_list[pred_class] else: current_segment_id += 1 # Add current object segment to final segmentation map segmentation[mask_k] = current_segment_id segment_score = round(pred_scores[k].item(), 6) segments.append( { "id": current_segment_id, "label_id": pred_class, "was_fused": should_fuse, "score": segment_score, } ) if should_fuse: stuff_memory_list[pred_class] = current_segment_id return segmentation, segments # TODO: (Amy) Move to image_transforms # Copied from transformers.models.maskformer.image_processing_maskformer.convert_segmentation_map_to_binary_masks def convert_segmentation_map_to_binary_masks( segmentation_map: "np.ndarray", instance_id_to_semantic_id: Optional[Dict[int, int]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, ): if do_reduce_labels and ignore_index is None: raise ValueError("If `do_reduce_labels` is True, `ignore_index` must be provided.") if do_reduce_labels: segmentation_map = np.where(segmentation_map == 0, ignore_index, segmentation_map - 1) # Get unique ids (class or instance ids based on input) all_labels = np.unique(segmentation_map) # Drop background label if applicable if ignore_index is not None: all_labels = all_labels[all_labels != ignore_index] # Generate a binary mask for each object instance binary_masks = [(segmentation_map == i) for i in all_labels] # Stack the binary masks if binary_masks: binary_masks = np.stack(binary_masks, axis=0) else: binary_masks = np.zeros((0, *segmentation_map.shape)) # Convert instance ids to class ids if instance_id_to_semantic_id is not None: labels = np.zeros(all_labels.shape[0]) for label in all_labels: class_id = instance_id_to_semantic_id[label + 1 if do_reduce_labels else label] labels[all_labels == label] = class_id - 1 if do_reduce_labels else class_id else: labels = all_labels return binary_masks.astype(np.float32), labels.astype(np.int64) # Copied from transformers.models.maskformer.image_processing_maskformer.get_maskformer_resize_output_image_size with maskformer->mask2former def get_mask2former_resize_output_image_size( image: np.ndarray, size: Union[int, Tuple[int, int], List[int], Tuple[int]], max_size: Optional[int] = None, size_divisor: int = 0, default_to_square: bool = True, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Tuple[int, int]: """ Computes the output size given the desired size. Args: image (`np.ndarray`): The input image. size (`int` or `Tuple[int, int]` or `List[int]` or `Tuple[int]`): The size of the output image. max_size (`int`, *optional*): The maximum size of the output image. size_divisor (`int`, *optional*, defaults to 0): If `size_divisor` is given, the output image size will be divisible by the number. default_to_square (`bool`, *optional*, defaults to `True`): Whether to default to square if no size is provided. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If unset, will use the inferred format from the input. Returns: `Tuple[int, int]`: The output size. """ output_size = get_resize_output_image_size( input_image=image, size=size, default_to_square=default_to_square, max_size=max_size, input_data_format=input_data_format, ) if size_divisor > 0: height, width = output_size height = int(math.ceil(height / size_divisor) * size_divisor) width = int(math.ceil(width / size_divisor) * size_divisor) output_size = (height, width) return output_size class Mask2FormerImageProcessor(BaseImageProcessor): r""" Constructs a Mask2Former image processor. The image processor can be used to prepare image(s) and optional targets for the model. This image processor inherits from [`BaseImageProcessor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the input to a certain `size`. size (`int`, *optional*, defaults to 800): Resize the input to the given size. Only has an effect if `do_resize` is set to `True`. If size is a sequence like `(width, height)`, output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if `height > width`, then image will be rescaled to `(size * height / width, size)`. size_divisor (`int`, *optional*, defaults to 32): Some backbones need images divisible by a certain number. If not passed, it defaults to the value used in Swin Transformer. resample (`int`, *optional*, defaults to `Resampling.BILINEAR`): An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`, `PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`, `PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the input to a certain `scale`. rescale_factor (`float`, *optional*, defaults to `1/ 255`): Rescale the input by the given factor. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to normalize the input with mean and standard deviation. image_mean (`int`, *optional*, defaults to `[0.485, 0.456, 0.406]`): The sequence of means for each channel, to be used when normalizing images. Defaults to the ImageNet mean. image_std (`int`, *optional*, defaults to `[0.229, 0.224, 0.225]`): The sequence of standard deviations for each channel, to be used when normalizing images. Defaults to the ImageNet std. ignore_index (`int`, *optional*): Label to be assigned to background pixels in segmentation maps. If provided, segmentation map pixels denoted with 0 (background) will be replaced with `ignore_index`. do_reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to decrement all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by `ignore_index`. num_labels (`int`, *optional*): The number of labels in the segmentation map. """ model_input_names = ["pixel_values", "pixel_mask"] @deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.44.0") @deprecate_kwarg("size_divisibility", new_name="size_divisor", version="4.41.0") @deprecate_kwarg("max_size", version="4.27.0", warn_if_greater_or_equal_version=True) @filter_out_non_signature_kwargs(extra=["max_size", *INIT_SERVICE_KWARGS]) def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, size_divisor: int = 32, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, num_labels: Optional[int] = None, **kwargs, ): super().__init__(**kwargs) # We make max_size a private attribute so we can pass it as a default value in the preprocess method whilst # `size` can still be pass in as an int self._max_size = kwargs.pop("max_size", 1333) size = size if size is not None else {"shortest_edge": 800, "longest_edge": self._max_size} size = get_size_dict(size, max_size=self._max_size, default_to_square=False) self.do_resize = do_resize self.size = size self.resample = resample self.size_divisor = size_divisor self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.ignore_index = ignore_index self.do_reduce_labels = do_reduce_labels self.num_labels = num_labels @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is created using from_dict and kwargs e.g. `Mask2FormerImageProcessor.from_pretrained(checkpoint, max_size=800)` """ image_processor_dict = image_processor_dict.copy() if "max_size" in kwargs: image_processor_dict["max_size"] = kwargs.pop("max_size") if "size_divisibility" in kwargs: image_processor_dict["size_divisor"] = kwargs.pop("size_divisibility") if "reduce_labels" in image_processor_dict: image_processor_dict["do_reduce_labels"] = image_processor_dict.pop("reduce_labels") return super().from_dict(image_processor_dict, **kwargs) # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.to_dict def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. This method calls the superclass method and then removes the `_max_size` attribute from the dictionary. """ image_processor_dict = super().to_dict() image_processor_dict.pop("_max_size", None) return image_processor_dict @deprecate_kwarg("max_size", version="4.27.0", warn_if_greater_or_equal_version=True) # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.resize with get_maskformer_resize_output_image_size->get_mask2former_resize_output_image_size def resize( self, image: np.ndarray, size: Dict[str, int], size_divisor: int = 0, resample: PILImageResampling = PILImageResampling.BILINEAR, data_format=None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be min_size (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): The size of the output image. size_divisor (`int`, *optional*, defaults to 0): If `size_divisor` is given, the output image size will be divisible by the number. resample (`PILImageResampling` resampling filter, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use when resizing the image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ # Deprecated, backward compatibility max_size = kwargs.pop("max_size", None) size = get_size_dict(size, max_size=max_size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: size, max_size = size["shortest_edge"], size["longest_edge"] elif "height" in size and "width" in size: size = (size["height"], size["width"]) max_size = None else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) size = get_mask2former_resize_output_image_size( image=image, size=size, max_size=max_size, size_divisor=size_divisor, default_to_square=False, input_data_format=input_data_format, ) image = resize( image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs ) return image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.convert_segmentation_map_to_binary_masks def convert_segmentation_map_to_binary_masks( self, segmentation_map: "np.ndarray", instance_id_to_semantic_id: Optional[Dict[int, int]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, ): do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels ignore_index = ignore_index if ignore_index is not None else self.ignore_index return convert_segmentation_map_to_binary_masks( segmentation_map=segmentation_map, instance_id_to_semantic_id=instance_id_to_semantic_id, ignore_index=ignore_index, do_reduce_labels=do_reduce_labels, ) def __call__(self, images, segmentation_maps=None, **kwargs) -> BatchFeature: return self.preprocess(images, segmentation_maps=segmentation_maps, **kwargs) def _preprocess( self, image: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, size_divisor: Optional[int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if do_resize: image = self.resize( image, size=size, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format ) if do_rescale: image = self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format) return image def _preprocess_image( self, image: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, size_divisor: Optional[int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) if do_rescale and is_scaled_image(image): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) image = self._preprocess( image=image, do_resize=do_resize, size=size, size_divisor=size_divisor, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format, ) if data_format is not None: image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def _preprocess_mask( self, segmentation_map: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, size_divisor: int = 0, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single mask.""" segmentation_map = to_numpy_array(segmentation_map) # Add channel dimension if missing - needed for certain transformations if segmentation_map.ndim == 2: added_channel_dim = True segmentation_map = segmentation_map[None, ...] input_data_format = ChannelDimension.FIRST else: added_channel_dim = False if input_data_format is None: input_data_format = infer_channel_dimension_format(segmentation_map) # TODO: (Amy) # Remork segmentation map processing to include reducing labels and resizing which doesn't # drop segment IDs > 255. segmentation_map = self._preprocess( image=segmentation_map, do_resize=do_resize, resample=PILImageResampling.NEAREST, size=size, size_divisor=size_divisor, do_rescale=False, do_normalize=False, input_data_format=input_data_format, ) # Remove extra channel dimension if added for processing if added_channel_dim: segmentation_map = segmentation_map.squeeze(0) return segmentation_map @deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.44.0") @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, segmentation_maps: Optional[ImageInput] = None, instance_id_to_semantic_id: Optional[Dict[int, int]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, size_divisor: Optional[int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, ignore_index: Optional[int] = None, do_reduce_labels: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> BatchFeature: do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False, max_size=self._max_size) size_divisor = size_divisor if size_divisor is not None else self.size_divisor resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std ignore_index = ignore_index if ignore_index is not None else self.ignore_index do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if segmentation_maps is not None and not valid_images(segmentation_maps): raise ValueError( "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if not is_batched(images): images = [images] segmentation_maps = [segmentation_maps] if segmentation_maps is not None else None if segmentation_maps is not None and len(images) != len(segmentation_maps): raise ValueError("Images and segmentation maps must have the same length.") images = [ self._preprocess_image( image, do_resize=do_resize, size=size, size_divisor=size_divisor, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) for image in images ] if segmentation_maps is not None: segmentation_maps = [ self._preprocess_mask( segmentation_map, do_resize, size, size_divisor, input_data_format=input_data_format ) for segmentation_map in segmentation_maps ] encoded_inputs = self.encode_inputs( images, segmentation_maps, instance_id_to_semantic_id, ignore_index, do_reduce_labels, return_tensors, input_data_format=data_format, ) return encoded_inputs # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) return padded_image # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.pad def pad( self, images: List[np.ndarray], constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> BatchFeature: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: image (`np.ndarray`): Image to pad. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ pad_size = get_max_height_width(images, input_data_format=input_data_format) padded_images = [ self._pad_image( image, pad_size, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) for image in images ] data = {"pixel_values": padded_images} if return_pixel_mask: masks = [ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format) for image in images ] data["pixel_mask"] = masks return BatchFeature(data=data, tensor_type=return_tensors) def encode_inputs( self, pixel_values_list: List[ImageInput], segmentation_maps: ImageInput = None, instance_id_to_semantic_id: Optional[Union[List[Dict[int, int]], Dict[int, int]]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, return_tensors: Optional[Union[str, TensorType]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Pad images up to the largest image in a batch and create a corresponding `pixel_mask`. Mask2Former addresses semantic segmentation with a mask classification paradigm, thus input segmentation maps will be converted to lists of binary masks and their respective labels. Let's see an example, assuming `segmentation_maps = [[2,6,7,9]]`, the output will contain `mask_labels = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]` (four binary masks) and `class_labels = [2,6,7,9]`, the labels for each mask. Args: pixel_values_list (`List[ImageInput]`): List of images (pixel values) to be padded. Each image should be a tensor of shape `(channels, height, width)`. segmentation_maps (`ImageInput`, *optional*): The corresponding semantic segmentation maps with the pixel-wise annotations. (`bool`, *optional*, defaults to `True`): Whether or not to pad images up to the largest image in a batch and create a pixel mask. If left to the default, will return a pixel mask that is: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). instance_id_to_semantic_id (`List[Dict[int, int]]` or `Dict[int, int]`, *optional*): A mapping between object instance ids and class ids. If passed, `segmentation_maps` is treated as an instance segmentation map where each pixel represents an instance id. Can be provided as a single dictionary with a global/dataset-level mapping or as a list of dictionaries (one per image), to map instance ids in each image separately. return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of NumPy arrays. If set to `'pt'`, return PyTorch `torch.Tensor` objects. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **pixel_values** -- Pixel values to be fed to a model. - **pixel_mask** -- Pixel mask to be fed to a model (when `=True` or if `pixel_mask` is in `self.model_input_names`). - **mask_labels** -- Optional list of mask labels of shape `(labels, height, width)` to be fed to a model (when `annotations` are provided). - **class_labels** -- Optional list of class labels of shape `(labels)` to be fed to a model (when `annotations` are provided). They identify the labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`. """ ignore_index = self.ignore_index if ignore_index is None else ignore_index do_reduce_labels = self.do_reduce_labels if do_reduce_labels is None else do_reduce_labels pixel_values_list = [to_numpy_array(pixel_values) for pixel_values in pixel_values_list] if input_data_format is None: input_data_format = infer_channel_dimension_format(pixel_values_list[0]) encoded_inputs = self.pad( pixel_values_list, return_tensors=return_tensors, input_data_format=input_data_format ) if segmentation_maps is not None: mask_labels = [] class_labels = [] pad_size = get_max_height_width(pixel_values_list, input_data_format=input_data_format) # Convert to list of binary masks and labels for idx, segmentation_map in enumerate(segmentation_maps): segmentation_map = to_numpy_array(segmentation_map) if isinstance(instance_id_to_semantic_id, list): instance_id = instance_id_to_semantic_id[idx] else: instance_id = instance_id_to_semantic_id # Use instance2class_id mapping per image masks, classes = self.convert_segmentation_map_to_binary_masks( segmentation_map, instance_id, ignore_index=ignore_index, do_reduce_labels=do_reduce_labels ) # We add an axis to make them compatible with the transformations library # this will be removed in the future if masks.shape[0] > 0: masks = [mask[None, ...] for mask in masks] masks = [ self._pad_image(image=mask, output_size=pad_size, constant_values=ignore_index) for mask in masks ] masks = np.concatenate(masks, axis=0) else: masks = np.zeros((0, *pad_size), dtype=np.float32) mask_labels.append(torch.from_numpy(masks)) class_labels.append(torch.from_numpy(classes)) # we cannot batch them since they don't share a common class size encoded_inputs["mask_labels"] = mask_labels encoded_inputs["class_labels"] = class_labels return encoded_inputs def post_process_semantic_segmentation( self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None ) -> "torch.Tensor": """ Converts the output of [`Mask2FormerForUniversalSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`Mask2FormerForUniversalSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple[int, int]]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. Returns: `List[torch.Tensor]`: A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] # Scale back to preprocessed image size - (384, 384) for all models masks_queries_logits = torch.nn.functional.interpolate( masks_queries_logits, size=(384, 384), mode="bilinear", align_corners=False ) # Remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Semantic segmentation logits of shape (batch_size, num_classes, height, width) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) batch_size = class_queries_logits.shape[0] # Resize logits and compute semantic segmentation maps if target_sizes is not None: if batch_size != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) semantic_segmentation = [] for idx in range(batch_size): resized_logits = torch.nn.functional.interpolate( segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = segmentation.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation def post_process_instance_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, target_sizes: Optional[List[Tuple[int, int]]] = None, return_coco_annotation: Optional[bool] = False, return_binary_maps: Optional[bool] = False, ) -> List[Dict]: """ Converts the output of [`Mask2FormerForUniversalSegmentationOutput`] into instance segmentation predictions. Only supports PyTorch. If instances could overlap, set either return_coco_annotation or return_binary_maps to `True` to get the correct segmentation result. Args: outputs ([`Mask2FormerForUniversalSegmentation`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. return_coco_annotation (`bool`, *optional*, defaults to `False`): If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE) format. return_binary_maps (`bool`, *optional*, defaults to `False`): If set to `True`, segmentation maps are returned as a concatenated tensor of binary segmentation maps (one per detected instance). Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id`, or `List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to `True`, or a tensor of shape `(num_instances, height, width)` if return_binary_maps is set to `True`. Set to `None` if no mask if found above `threshold`. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- An integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if return_coco_annotation and return_binary_maps: raise ValueError("return_coco_annotation and return_binary_maps can not be both set to True.") # [batch_size, num_queries, num_classes+1] class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, height, width] masks_queries_logits = outputs.masks_queries_logits # Scale back to preprocessed image size - (384, 384) for all models masks_queries_logits = torch.nn.functional.interpolate( masks_queries_logits, size=(384, 384), mode="bilinear", align_corners=False ) device = masks_queries_logits.device num_classes = class_queries_logits.shape[-1] - 1 num_queries = class_queries_logits.shape[-2] # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(class_queries_logits.shape[0]): mask_pred = masks_queries_logits[i] mask_cls = class_queries_logits[i] scores = torch.nn.functional.softmax(mask_cls, dim=-1)[:, :-1] labels = torch.arange(num_classes, device=device).unsqueeze(0).repeat(num_queries, 1).flatten(0, 1) scores_per_image, topk_indices = scores.flatten(0, 1).topk(num_queries, sorted=False) labels_per_image = labels[topk_indices] topk_indices = torch.div(topk_indices, num_classes, rounding_mode="floor") mask_pred = mask_pred[topk_indices] pred_masks = (mask_pred > 0).float() # Calculate average mask prob mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * pred_masks.flatten(1)).sum(1) / ( pred_masks.flatten(1).sum(1) + 1e-6 ) pred_scores = scores_per_image * mask_scores_per_image pred_classes = labels_per_image segmentation = torch.zeros((384, 384)) - 1 if target_sizes is not None: segmentation = torch.zeros(target_sizes[i]) - 1 pred_masks = torch.nn.functional.interpolate( pred_masks.unsqueeze(0), size=target_sizes[i], mode="nearest" )[0] instance_maps, segments = [], [] current_segment_id = 0 for j in range(num_queries): score = pred_scores[j].item() if not torch.all(pred_masks[j] == 0) and score >= threshold: segmentation[pred_masks[j] == 1] = current_segment_id segments.append( { "id": current_segment_id, "label_id": pred_classes[j].item(), "was_fused": False, "score": round(score, 6), } ) current_segment_id += 1 instance_maps.append(pred_masks[j]) # Return segmentation map in run-length encoding (RLE) format if return_coco_annotation: segmentation = convert_segmentation_to_rle(segmentation) # Return a concatenated tensor of binary instance maps if return_binary_maps and len(instance_maps) != 0: segmentation = torch.stack(instance_maps, dim=0) results.append({"segmentation": segmentation, "segments_info": segments}) return results def post_process_panoptic_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_sizes: Optional[List[Tuple[int, int]]] = None, ) -> List[Dict]: """ Converts the output of [`Mask2FormerForUniversalSegmentationOutput`] into image panoptic segmentation predictions. Only supports PyTorch. Args: outputs ([`Mask2FormerForUniversalSegmentationOutput`]): The outputs from [`Mask2FormerForUniversalSegmentation`]. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. label_ids_to_fuse (`Set[int]`, *optional*): The labels in this state will have all their instances be fused together. For instance we could say there can only be one sky in an image, but several persons, so the label ID for sky would be in that set, but not the one for person. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction in batch. If left to None, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to the corresponding `target_sizes` entry. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- an integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. Multiple instances of the same class / label were fused and assigned a single `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if label_ids_to_fuse is None: logger.warning("`label_ids_to_fuse` unset. No instance will be fused.") label_ids_to_fuse = set() class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] # Scale back to preprocessed image size - (384, 384) for all models masks_queries_logits = torch.nn.functional.interpolate( masks_queries_logits, size=(384, 384), mode="bilinear", align_corners=False ) batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=label_ids_to_fuse, target_size=target_size, ) results.append({"segmentation": segmentation, "segments_info": segments}) return results __all__ = ["Mask2FormerImageProcessor"] ```
=============================================================================================================================================== SOURCE CODE FILE: modeling_mask2former.py LINES: 1 SIZE: 119.40 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mask2former\modeling_mask2former.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Mask2Former model.""" import math import warnings from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import numpy as np import torch from torch import Tensor, nn from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_scipy_available, replace_return_docstrings, requires_backends, ) from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions from ...modeling_utils import PreTrainedModel from ...pytorch_utils import is_torch_greater_or_equal_than_2_1 from ...utils import is_accelerate_available, logging from ...utils.backbone_utils import load_backbone from ...utils.import_utils import is_torchdynamo_compiling from .configuration_mask2former import Mask2FormerConfig if is_scipy_available(): from scipy.optimize import linear_sum_assignment if is_accelerate_available(): from accelerate import PartialState from accelerate.utils import reduce logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "Mask2FormerConfig" _CHECKPOINT_FOR_DOC = "facebook/mask2former-swin-small-coco-instance" _IMAGE_PROCESSOR_FOR_DOC = "Mask2FormerImageProcessor" @dataclass class Mask2FormerPixelDecoderOutput(ModelOutput): """ Mask2Former's pixel decoder module output, practically a Multi-Scale Deformable Attention based decoder. It returns the mask features and the multiscale features. Args: multi_scale_features (`tuple(torch.FloatTensor)`): Tuple of multi-scale features of scales [1/8, 1/16, 1/32] and shape `(batch_size, num_channels, height, width)`from the Multi-Scale Deformable Attenntion based Pixel Decoder. mask_features (`torch.FloatTensor`): Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel Decoder Layer. attentions (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights from pixel decoder. Returned when `output_attentions=True` is passed or when `config.output_attentions=True` """ multi_scale_features: Tuple[torch.FloatTensor] = None mask_features: Optional[torch.FloatTensor] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class Mask2FormerMaskedAttentionDecoderOutput(BaseModelOutputWithCrossAttentions): """ Base class for outputs of the Transformer decoder. This class adds two attributes to BaseModelOutputWithCrossAttentions for mask predictions logits and a tuple of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. Returned when `output_hidden_states=True`. attentions (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Returned when `output_attentions=True`. masks_queries_logits (`tuple(torch.FloatTensor)` of shape `(batch_size, num_queries, height, width)`): Tuple of mask predictions from all layers of the transformer decoder. intermediate_hidden_states (`tuple(torch.FloatTensor)` of shape `(num_queries, 1, hidden_size)`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. """ last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[torch.FloatTensor] = None masks_queries_logits: Tuple[torch.FloatTensor] = None intermediate_hidden_states: Tuple[torch.FloatTensor] = None @dataclass class Mask2FormerPixelLevelModuleOutput(ModelOutput): """ Mask2Former's pixel level module output. It returns the output of the encoder (optional) and all hidden states (multi-scale features) from the `decoder`. By default, the `encoder` is a Swin Backbone and the `decoder` is a Multi-Scale Deformable Attention based decoder. The `decoder_last_hidden_state` are the **per-pixel embeddings** while `decoder_hidden_states` refer to multi-scale feature maps produced using **multi-scaling strategy** defined in the paper. Args: encoder_last_hidden_state (`torch.FloatTensor`): Last hidden states (final feature map of shape `(batch_size, num_channels, height, width)`) of the last stage of the encoder. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden states (also called feature maps) of the model at the output of each stage. Returned if output_hidden_states is set to True. decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)): 1/4 scale features from the last Pixel Decoder Layer. decoder_hidden_states (`tuple(torch.FloatTensor)`): Tuple of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden states (also called feature maps) of the model at the output of each stage. """ encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_last_hidden_state: Optional[torch.FloatTensor] = None decoder_hidden_states: Tuple[torch.FloatTensor] = None @dataclass class Mask2FormerModelOutput(ModelOutput): """ Class for outputs of [`Mask2FormerModel`]. This class returns all the needed hidden states to compute the logits. Args: encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*): Last hidden states (final feature map) of the last stage of the encoder model (backbone). Returned when `output_hidden_states=True` is passed. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder model at the output of each stage. Returned when `output_hidden_states=True` is passed. pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*): Last hidden states (final feature map) of the last stage of the pixel decoder model. pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, , *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel decoder model at the output of each stage. Returned when `output_hidden_states=True` is passed. transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`): Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`. transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the transformer decoder at the output of each stage. Returned when `output_hidden_states=True` is passed. transformer_decoder_intermediate_states (`tuple(torch.FloatTensor)` of shape `(num_queries, 1, hidden_size)`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. masks_queries_logits (`tuple(torch.FloatTensor)` of shape `(batch_size, num_queries, height, width)`) Mask Predictions from each layer in the transformer decoder. attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed): Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Self attentions weights from transformer decoder. """ encoder_last_hidden_state: Optional[torch.FloatTensor] = None pixel_decoder_last_hidden_state: Optional[torch.FloatTensor] = None transformer_decoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None transformer_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None transformer_decoder_intermediate_states: Tuple[torch.FloatTensor] = None masks_queries_logits: Tuple[torch.FloatTensor] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class Mask2FormerForUniversalSegmentationOutput(ModelOutput): """ Class for outputs of [`Mask2FormerForUniversalSegmentationOutput`]. This output can be directly passed to [`~Mask2FormerImageProcessor.post_process_semantic_segmentation`] or [`~Mask2FormerImageProcessor.post_process_instance_segmentation`] or [`~Mask2FormerImageProcessor.post_process_panoptic_segmentation`] to compute final segmentation maps. Please, see [`~Mask2FormerImageProcessor] for details regarding usage. Args: loss (`torch.Tensor`, *optional*): The computed loss, returned when labels are present. class_queries_logits (`torch.FloatTensor`): A tensor of shape `(batch_size, num_queries, num_labels + 1)` representing the proposed classes for each query. Note the `+ 1` is needed because we incorporate the null class. masks_queries_logits (`torch.FloatTensor`): A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each query. auxiliary_logits (`List[Dict(str, torch.FloatTensor)]`, *optional*): List of class and mask predictions from each layer of the transformer decoder. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the encoder model (backbone). encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder model at the output of each stage. pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the pixel decoder model. pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel decoder model at the output of each stage. transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`): Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`. transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the transformer decoder at the output of each stage. attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Self and Cross Attentions weights from transformer decoder. """ loss: Optional[torch.FloatTensor] = None class_queries_logits: Optional[torch.FloatTensor] = None masks_queries_logits: Optional[torch.FloatTensor] = None auxiliary_logits: Optional[List[Dict[str, torch.FloatTensor]]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None pixel_decoder_last_hidden_state: Optional[torch.FloatTensor] = None transformer_decoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Adapted from https://github.com/facebookresearch/detectron2/blob/main/projects/PointRend/point_rend/point_features.py def sample_point( input_features: torch.Tensor, point_coordinates: torch.Tensor, add_dim=False, **kwargs ) -> torch.Tensor: """ A wrapper around `torch.nn.functional.grid_sample` to support 3D point_coordinates tensors. Args: input_features (`torch.Tensor` of shape (batch_size, channels, height, width)): A tensor that contains features map on a height * width grid point_coordinates (`torch.Tensor` of shape (batch_size, num_points, 2) or (batch_size, grid_height, grid_width,: 2)): A tensor that contains [0, 1] * [0, 1] normalized point coordinates add_dim (`bool`): boolean value to keep track of added dimension Returns: point_features (`torch.Tensor` of shape (batch_size, channels, num_points) or (batch_size, channels, height_grid, width_grid): A tensor that contains features for points in `point_coordinates`. """ if point_coordinates.dim() == 3: add_dim = True point_coordinates = point_coordinates.unsqueeze(2) # use nn.function.grid_sample to get features for points in `point_coordinates` via bilinear interpolation point_features = torch.nn.functional.grid_sample(input_features, 2.0 * point_coordinates - 1.0, **kwargs) if add_dim: point_features = point_features.squeeze(3) return point_features # Copied from transformers.models.maskformer.modeling_maskformer.dice_loss def dice_loss(inputs: Tensor, labels: Tensor, num_masks: int) -> Tensor: r""" Compute the DICE loss, similar to generalized IOU for masks as follows: $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x \cap y }{x \cup y + 1}} $$ In practice, since `labels` is a binary mask, (only 0s and 1s), dice can be computed as follow $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x * y }{x + y + 1}} $$ Args: inputs (`torch.Tensor`): A tensor representing a mask. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). num_masks (`int`): The number of masks present in the current batch, used for normalization. Returns: `torch.Tensor`: The computed loss. """ probs = inputs.sigmoid().flatten(1) numerator = 2 * (probs * labels).sum(-1) denominator = probs.sum(-1) + labels.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) loss = loss.sum() / num_masks return loss def sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor, num_masks: int) -> torch.Tensor: r""" Args: inputs (`torch.Tensor`): A float tensor of arbitrary shape. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). Returns: loss (`torch.Tensor`): The computed loss. """ criterion = nn.BCEWithLogitsLoss(reduction="none") cross_entropy_loss = criterion(inputs, labels) loss = cross_entropy_loss.mean(1).sum() / num_masks return loss # Copied from transformers.models.maskformer.modeling_maskformer.pair_wise_dice_loss def pair_wise_dice_loss(inputs: Tensor, labels: Tensor) -> Tensor: """ A pair wise version of the dice loss, see `dice_loss` for usage. Args: inputs (`torch.Tensor`): A tensor representing a mask labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). Returns: `torch.Tensor`: The computed loss between each pairs. """ inputs = inputs.sigmoid().flatten(1) numerator = 2 * torch.matmul(inputs, labels.T) # using broadcasting to get a [num_queries, NUM_CLASSES] matrix denominator = inputs.sum(-1)[:, None] + labels.sum(-1)[None, :] loss = 1 - (numerator + 1) / (denominator + 1) return loss def pair_wise_sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: r""" A pair wise version of the cross entropy loss, see `sigmoid_cross_entropy_loss` for usage. Args: inputs (`torch.Tensor`): A tensor representing a mask. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). Returns: loss (`torch.Tensor`): The computed loss between each pairs. """ height_and_width = inputs.shape[1] criterion = nn.BCEWithLogitsLoss(reduction="none") cross_entropy_loss_pos = criterion(inputs, torch.ones_like(inputs)) cross_entropy_loss_neg = criterion(inputs, torch.zeros_like(inputs)) loss_pos = torch.matmul(cross_entropy_loss_pos / height_and_width, labels.T) loss_neg = torch.matmul(cross_entropy_loss_neg / height_and_width, (1 - labels).T) loss = loss_pos + loss_neg return loss # Adapted from https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/matcher.py class Mask2FormerHungarianMatcher(nn.Module): """This class computes an assignment between the labels and the predictions of the network. For efficiency reasons, the labels don't include the no_object. Because of this, in general, there are more predictions than labels. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__( self, cost_class: float = 1.0, cost_mask: float = 1.0, cost_dice: float = 1.0, num_points: int = 12544 ): """Creates the matcher Params: cost_class (`float`, *optional*, defaults to 1.0): Relative weight of the classification error in the matching cost. cost_mask (`float`, *optional*, defaults to 1.0): This is the relative weight of the focal loss of the binary mask in the matching cost. cost_dice (`float`, *optional*, defaults to 1.0): This is the relative weight of the dice loss of the binary mask in the matching cost. num_points (`int`, *optional*, defaults to 12544): No. of points to sample on which the mask loss will be calculated. The same set of K points are uniformly sampled for all prediction and ground truth masks to construct the cost matrix for bipartite matching. """ super().__init__() if cost_class == 0 and cost_mask == 0 and cost_dice == 0: raise ValueError("All costs cant be 0") self.num_points = num_points self.cost_class = cost_class self.cost_mask = cost_mask self.cost_dice = cost_dice @torch.no_grad() def forward( self, masks_queries_logits: torch.Tensor, class_queries_logits: torch.Tensor, mask_labels: torch.Tensor, class_labels: torch.Tensor, ) -> List[Tuple[Tensor]]: """ Params: masks_queries_logits (`torch.Tensor`): A tensor of dim `batch_size, num_queries, num_labels` with the classification logits. class_queries_logits (`torch.Tensor`): A tensor of dim `batch_size, num_queries, height, width` with the predicted masks. class_labels (`torch.Tensor`): A tensor of dim `num_target_boxes` (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels. mask_labels (`torch.Tensor`): A tensor of dim `num_target_boxes, height, width` containing the target masks. Returns: matched_indices (`List[Tuple[Tensor]]`): A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected labels (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes). """ indices: List[Tuple[np.array]] = [] # iterate through batch size batch_size = masks_queries_logits.shape[0] for i in range(batch_size): pred_probs = class_queries_logits[i].softmax(-1) pred_mask = masks_queries_logits[i] # Compute the classification cost. Contrary to the loss, we don't use the NLL, but approximate it in 1 - proba[target class]. The 1 is a constant that doesn't change the matching, it can be ommitted. cost_class = -pred_probs[:, class_labels[i]] target_mask = mask_labels[i].to(pred_mask) target_mask = target_mask[:, None] pred_mask = pred_mask[:, None] # Sample ground truth and predicted masks point_coordinates = torch.rand(1, self.num_points, 2, device=pred_mask.device) target_coordinates = point_coordinates.repeat(target_mask.shape[0], 1, 1) target_mask = sample_point(target_mask, target_coordinates, align_corners=False).squeeze(1) pred_coordinates = point_coordinates.repeat(pred_mask.shape[0], 1, 1) pred_mask = sample_point(pred_mask, pred_coordinates, align_corners=False).squeeze(1) # compute the cross entropy loss between each mask pairs -> shape (num_queries, num_labels) cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask) # Compute the dice loss betwen each mask pairs -> shape (num_queries, num_labels) cost_dice = pair_wise_dice_loss(pred_mask, target_mask) # final cost matrix cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice # eliminate infinite values in cost_matrix to avoid the error ``ValueError: cost matrix is infeasible`` cost_matrix = torch.minimum(cost_matrix, torch.tensor(1e10)) cost_matrix = torch.maximum(cost_matrix, torch.tensor(-1e10)) cost_matrix = torch.nan_to_num(cost_matrix, 0) # do the assigmented using the hungarian algorithm in scipy assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.cpu()) indices.append(assigned_indices) # It could be stacked in one tensor matched_indices = [ (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices ] return matched_indices # Adapted from https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/criterion.py class Mask2FormerLoss(nn.Module): def __init__(self, config: Mask2FormerConfig, weight_dict: Dict[str, float]): """ The Mask2Former Loss. The loss is computed very similar to DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth masks and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and mask) Args: config (`Mask2FormerConfig`): The configuration for Mask2Former model also containing loss calculation specific parameters. weight_dict (`Dict[str, float]`): A dictionary of weights to be applied to the different losses. """ super().__init__() requires_backends(self, ["scipy"]) self.num_labels = config.num_labels self.weight_dict = weight_dict # Weight to apply to the null class self.eos_coef = config.no_object_weight empty_weight = torch.ones(self.num_labels + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) # pointwise mask loss parameters self.num_points = config.train_num_points self.oversample_ratio = config.oversample_ratio self.importance_sample_ratio = config.importance_sample_ratio self.matcher = Mask2FormerHungarianMatcher( cost_class=1.0, cost_dice=config.dice_weight, cost_mask=config.mask_weight, num_points=self.num_points, ) def _max_by_axis(self, sizes: List[List[int]]) -> List[int]: maxes = sizes[0] for sublist in sizes[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes # Adapted from nested_tensor_from_tensor_list() in original implementation def _pad_images_to_max_in_batch(self, tensors: List[Tensor]) -> Tuple[Tensor, Tensor]: # get the maximum size in the batch max_size = self._max_by_axis([list(tensor.shape) for tensor in tensors]) # compute final size batch_shape = [len(tensors)] + max_size batch_size, _, height, width = batch_shape dtype = tensors[0].dtype device = tensors[0].device padded_tensors = torch.zeros(batch_shape, dtype=dtype, device=device) padding_masks = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) # pad the tensors to the size of the biggest one for tensor, padded_tensor, padding_mask in zip(tensors, padded_tensors, padding_masks): padded_tensor[: tensor.shape[0], : tensor.shape[1], : tensor.shape[2]].copy_(tensor) padding_mask[: tensor.shape[1], : tensor.shape[2]] = False return padded_tensors, padding_masks def loss_labels( self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array] ) -> Dict[str, Tensor]: """Compute the losses related to the labels using cross entropy. Args: class_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, num_labels` class_labels (`List[torch.Tensor]`): List of class labels of shape `(labels)`. indices (`Tuple[np.array])`: The indices computed by the Hungarian matcher. Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key: - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels. """ pred_logits = class_queries_logits batch_size, num_queries, _ = pred_logits.shape criterion = nn.CrossEntropyLoss(weight=self.empty_weight) idx = self._get_predictions_permutation_indices(indices) # shape of (batch_size, num_queries) target_classes_o = torch.cat( [target[j] for target, (_, j) in zip(class_labels, indices)] ) # shape of (batch_size, num_queries) target_classes = torch.full( (batch_size, num_queries), fill_value=self.num_labels, dtype=torch.int64, device=pred_logits.device ) target_classes[idx] = target_classes_o # Permute target_classes (batch_size, num_queries, num_labels) -> (batch_size, num_labels, num_queries) pred_logits_transposed = pred_logits.transpose(1, 2) loss_ce = criterion(pred_logits_transposed, target_classes) losses = {"loss_cross_entropy": loss_ce} return losses def loss_masks( self, masks_queries_logits: torch.Tensor, mask_labels: List[torch.Tensor], indices: Tuple[np.array], num_masks: int, ) -> Dict[str, torch.Tensor]: """Compute the losses related to the masks using sigmoid_cross_entropy_loss and dice loss. Args: masks_queries_logits (`torch.Tensor`): A tensor of shape `(batch_size, num_queries, height, width)`. mask_labels (`torch.Tensor`): List of mask labels of shape `(labels, height, width)`. indices (`Tuple[np.array])`: The indices computed by the Hungarian matcher. num_masks (`int)`: The number of masks, used for normalization. Returns: losses (`Dict[str, Tensor]`): A dict of `torch.Tensor` containing two keys: - **loss_mask** -- The loss computed using sigmoid cross entropy loss on the predicted and ground truth. masks. - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth, masks. """ src_idx = self._get_predictions_permutation_indices(indices) tgt_idx = self._get_targets_permutation_indices(indices) # shape (batch_size * num_queries, height, width) pred_masks = masks_queries_logits[src_idx] # shape (batch_size, num_queries, height, width) # pad all and stack the targets to the num_labels dimension target_masks, _ = self._pad_images_to_max_in_batch(mask_labels) target_masks = target_masks[tgt_idx] # No need to upsample predictions as we are using normalized coordinates pred_masks = pred_masks[:, None] target_masks = target_masks[:, None] # Sample point coordinates with torch.no_grad(): point_coordinates = self.sample_points_using_uncertainty( pred_masks, lambda logits: self.calculate_uncertainty(logits), self.num_points, self.oversample_ratio, self.importance_sample_ratio, ) point_labels = sample_point(target_masks, point_coordinates, align_corners=False).squeeze(1) point_logits = sample_point(pred_masks, point_coordinates, align_corners=False).squeeze(1) losses = { "loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks), "loss_dice": dice_loss(point_logits, point_labels, num_masks), } del pred_masks del target_masks return losses def _get_predictions_permutation_indices(self, indices): # Permute predictions following indices batch_indices = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) predictions_indices = torch.cat([src for (src, _) in indices]) return batch_indices, predictions_indices def _get_targets_permutation_indices(self, indices): # Permute labels following indices batch_indices = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) target_indices = torch.cat([tgt for (_, tgt) in indices]) return batch_indices, target_indices def calculate_uncertainty(self, logits: torch.Tensor) -> torch.Tensor: """ In Mask2Former paper, uncertainty is estimated as L1 distance between 0.0 and the logit prediction in 'logits' for the foreground class in `classes`. Args: logits (`torch.Tensor`): A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is: the number of foreground classes. The values are logits. Returns: scores (`torch.Tensor`): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most uncertain locations having the highest uncertainty score. """ uncertainty_scores = -(torch.abs(logits)) return uncertainty_scores def sample_points_using_uncertainty( self, logits: torch.Tensor, uncertainty_function, num_points: int, oversample_ratio: int, importance_sample_ratio: float, ) -> torch.Tensor: """ This function is meant for sampling points in [0, 1] * [0, 1] coordinate space based on their uncertainty. The uncertainty is calculated for each point using the passed `uncertainty function` that takes points logit prediction as input. Args: logits (`float`): Logit predictions for P points. uncertainty_function: A function that takes logit predictions for P points and returns their uncertainties. num_points (`int`): The number of points P to sample. oversample_ratio (`int`): Oversampling parameter. importance_sample_ratio (`float`): Ratio of points that are sampled via importance sampling. Returns: point_coordinates (`torch.Tensor`): Coordinates for P sampled points. """ num_boxes = logits.shape[0] num_points_sampled = int(num_points * oversample_ratio) # Get random point coordinates point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device) # Get sampled prediction value for the point coordinates point_logits = sample_point(logits, point_coordinates, align_corners=False) # Calculate the uncertainties based on the sampled prediction values of the points point_uncertainties = uncertainty_function(point_logits) num_uncertain_points = int(importance_sample_ratio * num_points) num_random_points = num_points - num_uncertain_points idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device) idx += shift[:, None] point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2) if num_random_points > 0: point_coordinates = torch.cat( [point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)], dim=1, ) return point_coordinates def forward( self, masks_queries_logits: torch.Tensor, class_queries_logits: torch.Tensor, mask_labels: List[torch.Tensor], class_labels: List[torch.Tensor], auxiliary_predictions: Optional[Dict[str, torch.Tensor]] = None, ) -> Dict[str, torch.Tensor]: """ This performs the loss computation. Args: masks_queries_logits (`torch.Tensor`): A tensor of shape `(batch_size, num_queries, height, width)`. class_queries_logits (`torch.Tensor`): A tensor of shape `(batch_size, num_queries, num_labels)`. mask_labels (`torch.Tensor`): List of mask labels of shape `(labels, height, width)`. class_labels (`List[torch.Tensor]`): List of class labels of shape `(labels)`. auxiliary_predictions (`Dict[str, torch.Tensor]`, *optional*): if `use_auxiliary_loss` was set to `true` in [`Mask2FormerConfig`], then it contains the logits from the inner layers of the Mask2FormerMaskedAttentionDecoder. Returns: losses (`Dict[str, Tensor]`): A dict of `torch.Tensor` containing three keys: - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels. - **loss_mask** -- The loss computed using sigmoid cross_entropy loss on the predicted and ground truth masks. - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth masks. if `use_auxiliary_loss` was set to `true` in [`Mask2FormerConfig`], the dictionary contains additional losses for each auxiliary predictions. """ # retrieve the matching between the outputs of the last layer and the labels indices = self.matcher(masks_queries_logits, class_queries_logits, mask_labels, class_labels) # compute the average number of target masks for normalization purposes num_masks = self.get_num_masks(class_labels, device=class_labels[0].device) # get all the losses losses: Dict[str, Tensor] = { **self.loss_masks(masks_queries_logits, mask_labels, indices, num_masks), **self.loss_labels(class_queries_logits, class_labels, indices), } # in case of auxiliary losses, we repeat this process with the output of each intermediate layer. if auxiliary_predictions is not None: for idx, aux_outputs in enumerate(auxiliary_predictions): masks_queries_logits = aux_outputs["masks_queries_logits"] class_queries_logits = aux_outputs["class_queries_logits"] loss_dict = self.forward(masks_queries_logits, class_queries_logits, mask_labels, class_labels) loss_dict = {f"{key}_{idx}": value for key, value in loss_dict.items()} losses.update(loss_dict) return losses def get_num_masks(self, class_labels: torch.Tensor, device: torch.device) -> torch.Tensor: """ Computes the average number of target masks across the batch, for normalization purposes. """ num_masks = sum([len(classes) for classes in class_labels]) num_masks = torch.as_tensor(num_masks, dtype=torch.float, device=device) world_size = 1 if is_accelerate_available(): if PartialState._shared_state != {}: num_masks = reduce(num_masks) world_size = PartialState().num_processes num_masks = torch.clamp(num_masks / world_size, min=1) return num_masks # Copied from transformers.models.oneformer.modeling_oneformer.multi_scale_deformable_attention def multi_scale_deformable_attention( value: Tensor, value_spatial_shapes: Union[Tensor, List[Tuple]], sampling_locations: Tensor, attention_weights: Tensor, ) -> Tensor: batch_size, _, num_heads, hidden_dim = value.shape _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape value_list = value.split([height * width for height, width in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for level_id, (height, width) in enumerate(value_spatial_shapes): # batch_size, height*width, num_heads, hidden_dim # -> batch_size, height*width, num_heads*hidden_dim # -> batch_size, num_heads*hidden_dim, height*width # -> batch_size*num_heads, hidden_dim, height, width value_l_ = ( value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width) ) # batch_size, num_queries, num_heads, num_points, 2 # -> batch_size, num_heads, num_queries, num_points, 2 # -> batch_size*num_heads, num_queries, num_points, 2 sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1) # batch_size*num_heads, hidden_dim, num_queries, num_points sampling_value_l_ = nn.functional.grid_sample( value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False ) sampling_value_list.append(sampling_value_l_) # (batch_size, num_queries, num_heads, num_levels, num_points) # -> (batch_size, num_heads, num_queries, num_levels, num_points) # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points) attention_weights = attention_weights.transpose(1, 2).reshape( batch_size * num_heads, 1, num_queries, num_levels * num_points ) output = ( (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) .sum(-1) .view(batch_size, num_heads * hidden_dim, num_queries) ) return output.transpose(1, 2).contiguous() # Copied from transformers.models.maskformer.modeling_maskformer.MaskFormerSinePositionEmbedding with MaskFormer->Mask2Former class Mask2FormerSinePositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__( self, num_pos_feats: int = 64, temperature: int = 10000, normalize: bool = False, scale: Optional[float] = None ): super().__init__() if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize self.scale = 2 * math.pi if scale is None else scale def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor: if mask is None: mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) not_mask = (~mask).to(x.dtype) y_embed = not_mask.cumsum(1) x_embed = not_mask.cumsum(2) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.int64, device=x.device).type_as(x) dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos # Modified from transformers.models.detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention class Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention(nn.Module): """ Multiscale deformable attention as proposed in Deformable DETR. """ def __init__(self, embed_dim: int, num_heads: int, n_levels: int, n_points: int): super().__init__() if embed_dim % num_heads != 0: raise ValueError( f"embed_dim (d_model) must be divisible by num_heads, but got {embed_dim} and {num_heads}" ) dim_per_head = embed_dim // num_heads # check if dim_per_head is power of 2 if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0): warnings.warn( "You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the" " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA" " implementation." ) self.im2col_step = 128 self.d_model = embed_dim self.n_levels = n_levels self.n_heads = num_heads self.n_points = n_points self.sampling_offsets = nn.Linear(embed_dim, num_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(embed_dim, num_heads * n_levels * n_points) self.value_proj = nn.Linear(embed_dim, embed_dim) self.output_proj = nn.Linear(embed_dim, embed_dim) def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): return tensor if position_embeddings is None else tensor + position_embeddings def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states=None, encoder_attention_mask=None, position_embeddings: Optional[torch.Tensor] = None, reference_points=None, spatial_shapes_list=None, level_start_index=None, output_attentions: bool = False, ): # add position embeddings to the hidden states before projecting to queries and keys if position_embeddings is not None: hidden_states = self.with_pos_embed(hidden_states, position_embeddings) batch_size, num_queries, _ = hidden_states.shape batch_size, sequence_length, _ = encoder_hidden_states.shape total_elements = sum(height * width for height, width in spatial_shapes_list) if total_elements != sequence_length: raise ValueError( "Make sure to align the spatial shapes with the sequence length of the encoder hidden states" ) value = self.value_proj(encoder_hidden_states) if attention_mask is not None: # we invert the attention_mask value = value.masked_fill(attention_mask[..., None], float(0)) value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(hidden_states).view( batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2 ) attention_weights = self.attention_weights(hidden_states).view( batch_size, num_queries, self.n_heads, self.n_levels * self.n_points ) attention_weights = nn.functional.softmax(attention_weights, -1).view( batch_size, num_queries, self.n_heads, self.n_levels, self.n_points ) # batch_size, num_queries, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.tensor( [[shape[1], shape[0]] for shape in spatial_shapes_list], dtype=torch.long, device=reference_points.device, ) sampling_locations = ( reference_points[:, :, None, :, None, :] + sampling_offsets / offset_normalizer[None, None, None, :, None, :] ) elif reference_points.shape[-1] == 4: sampling_locations = ( reference_points[:, :, None, :, None, :2] + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 ) else: raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}") output = multi_scale_deformable_attention(value, spatial_shapes_list, sampling_locations, attention_weights) output = self.output_proj(output) return output, attention_weights class Mask2FormerPixelDecoderEncoderLayer(nn.Module): def __init__(self, config: Mask2FormerConfig): super().__init__() self.embed_dim = config.feature_size self.self_attn = Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, n_levels=3, n_points=4, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = nn.functional.relu self.activation_dropout = config.dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_feedforward_dim) self.fc2 = nn.Linear(config.encoder_feedforward_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: Optional[torch.Tensor] = None, reference_points=None, spatial_shapes_list=None, level_start_index=None, output_attentions: bool = False, ): """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Input to the layer. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Attention mask. position_embeddings (`torch.FloatTensor`, *optional*): Position embeddings, to be added to `hidden_states`. reference_points (`torch.FloatTensor`, *optional*): Reference points. spatial_shapes_list (`list` of `tuple`): Spatial shapes of the backbone feature maps as a list of tuples. level_start_index (`torch.LongTensor`, *optional*): Level start index. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Apply Multi-scale Deformable Attention Module on the multi-scale feature maps. hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes_list=spatial_shapes_list, level_start_index=level_start_index, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if self.training: if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights.transpose(1, 0),) return outputs # Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrEncoder with DeformableDetrEncoder->Mask2FormerPixelDecoderEncoderOnly class Mask2FormerPixelDecoderEncoderOnly(nn.Module): """ Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a [`Mask2FormerPixelDecoderEncoderLayer`]. The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers. Args: config: Mask2FormerConfig """ def __init__(self, config: Mask2FormerConfig): super().__init__() self.config = config self.dropout = config.dropout self.layers = nn.ModuleList( [Mask2FormerPixelDecoderEncoderLayer(config) for _ in range(config.encoder_layers)] ) @staticmethod def get_reference_points(spatial_shapes_list, valid_ratios, device): """ Get reference points for each feature map. Used in decoder. Args: spatial_shapes_list (`list` of `tuple`): Spatial shapes of the backbone feature maps as a list of tuples. valid_ratios (`torch.FloatTensor`): Valid ratios of each feature map, has shape of `(batch_size, num_feature_levels, 2)`. device (`torch.device`): Device on which to create the tensors. Returns: `torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)` """ reference_points_list = [] for lvl, (height, width) in enumerate(spatial_shapes_list): ref_y, ref_x = torch.meshgrid( torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device), torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device), indexing="ij", ) ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * height) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * width) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def forward( self, inputs_embeds=None, attention_mask=None, position_embeddings=None, spatial_shapes_list=None, level_start_index=None, valid_ratios=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: - 1 for pixel features that are real (i.e. **not masked**), - 0 for pixel features that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Position embeddings that are added to the queries and keys in each self-attention layer. spatial_shapes_list (`list` of `tuple`): Spatial shapes of each feature map as a list of tuples. level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`): Starting index of each feature map. valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`): Ratio of valid area in each feature level. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = inputs_embeds reference_points = self.get_reference_points(spatial_shapes_list, valid_ratios, device=inputs_embeds.device) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, encoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states.transpose(1, 0),) layer_outputs = encoder_layer( hidden_states, attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes_list=spatial_shapes_list, level_start_index=level_start_index, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states.transpose(1, 0),) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrModel with DeformableDetrModel->Mask2FormerPixelDecoder class Mask2FormerPixelDecoder(nn.Module): def __init__(self, config: Mask2FormerConfig, feature_channels): super().__init__() self.config = config feature_dim = config.feature_size mask_dim = config.mask_feature_size num_pos_features = feature_dim // 2 self.position_embedding = Mask2FormerSinePositionEmbedding(num_pos_feats=num_pos_features, normalize=True) self.num_feature_levels = 3 transformer_in_channels = feature_channels[-self.num_feature_levels :] self.transformer_feature_strides = config.feature_strides[-self.num_feature_levels :] self.feature_channels = feature_channels self.level_embed = nn.Parameter(torch.Tensor(self.num_feature_levels, feature_dim)) # Create input projection layers if self.num_feature_levels > 1: input_projections_list = [] for in_channels in transformer_in_channels[::-1]: input_projections_list.append( nn.Sequential( nn.Conv2d(in_channels, feature_dim, kernel_size=1), nn.GroupNorm(32, feature_dim), ) ) self.input_projections = nn.ModuleList(input_projections_list) else: self.input_projections = nn.ModuleList( [ nn.Sequential( nn.Conv2d(transformer_in_channels[-1], feature_dim, kernel_size=1), nn.GroupNorm(32, feature_dim), ) ] ) self.encoder = Mask2FormerPixelDecoderEncoderOnly(config) self.mask_projection = nn.Conv2d(feature_dim, mask_dim, kernel_size=1, stride=1, padding=0) # Extra FPN levels stride = min(self.transformer_feature_strides) self.common_stride = config.common_stride self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride)) lateral_convs = [] output_convs = [] for idx, in_channels in enumerate(self.feature_channels[: self.num_fpn_levels]): lateral_conv = nn.Sequential( nn.Conv2d(in_channels, feature_dim, kernel_size=1, bias=False), nn.GroupNorm(32, feature_dim), ) output_conv = nn.Sequential( nn.Conv2d(feature_dim, feature_dim, kernel_size=3, stride=1, padding=1, bias=False), nn.GroupNorm(32, feature_dim), nn.ReLU(), ) self.add_module("adapter_{}".format(idx + 1), lateral_conv) self.add_module("layer_{}".format(idx + 1), output_conv) lateral_convs.append(lateral_conv) output_convs.append(output_conv) # Order convolutional layers from low to high resolution self.lateral_convolutions = lateral_convs[::-1] self.output_convolutions = output_convs[::-1] def get_valid_ratio(self, mask, dtype=torch.float32): """Get the valid ratio of all feature maps.""" _, height, width = mask.shape valid_height = torch.sum(~mask[:, :, 0], 1) valid_width = torch.sum(~mask[:, 0, :], 1) valid_ratio_heigth = valid_height.to(dtype) / height valid_ratio_width = valid_width.to(dtype) / width valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1) return valid_ratio def forward( self, features, encoder_outputs=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # Apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) input_embeds = [] position_embeddings = [] for level, x in enumerate(features[::-1][: self.num_feature_levels]): input_embeds.append(self.input_projections[level](x)) position_embeddings.append(self.position_embedding(x)) masks = [ torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in input_embeds ] # Prepare encoder inputs (by flattening) spatial_shapes_list = [(embed.shape[2], embed.shape[3]) for embed in input_embeds] input_embeds_flat = torch.cat([embed.flatten(2).transpose(1, 2) for embed in input_embeds], 1) spatial_shapes = torch.as_tensor(spatial_shapes_list, dtype=torch.long, device=input_embeds_flat.device) masks_flat = torch.cat([mask.flatten(1) for mask in masks], 1) position_embeddings = [embed.flatten(2).transpose(1, 2) for embed in position_embeddings] level_pos_embed_flat = [x + self.level_embed[i].view(1, 1, -1) for i, x in enumerate(position_embeddings)] level_pos_embed_flat = torch.cat(level_pos_embed_flat, 1) level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack([self.get_valid_ratio(mask, dtype=input_embeds_flat.dtype) for mask in masks], 1) # Send input_embeds_flat + masks_flat + level_pos_embed_flat (backbone + proj layer output) through encoder if encoder_outputs is None: encoder_outputs = self.encoder( inputs_embeds=input_embeds_flat, attention_mask=masks_flat, position_embeddings=level_pos_embed_flat, spatial_shapes_list=spatial_shapes_list, level_start_index=level_start_index, valid_ratios=valid_ratios, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs.last_hidden_state batch_size = last_hidden_state.shape[0] # We compute level_start_index_list separately from the tensor version level_start_index # to avoid iterating over a tensor which breaks torch.compile/export. level_start_index_list = [0] for height, width in spatial_shapes_list[:-1]: level_start_index_list.append(level_start_index_list[-1] + height * width) split_sizes = [None] * self.num_feature_levels for i in range(self.num_feature_levels): if i < self.num_feature_levels - 1: split_sizes[i] = level_start_index_list[i + 1] - level_start_index_list[i] else: split_sizes[i] = last_hidden_state.shape[1] - level_start_index_list[i] encoder_output = torch.split(last_hidden_state, split_sizes, dim=1) # Compute final features outputs = [ x.transpose(1, 2).view(batch_size, -1, spatial_shapes_list[i][0], spatial_shapes_list[i][1]) for i, x in enumerate(encoder_output) ] # Append extra FPN levels to outputs, ordered from low to high resolution for idx, feature in enumerate(features[: self.num_fpn_levels][::-1]): lateral_conv = self.lateral_convolutions[idx] output_conv = self.output_convolutions[idx] current_fpn = lateral_conv(feature) # Following FPN implementation, we use nearest upsampling here out = current_fpn + nn.functional.interpolate( outputs[-1], size=current_fpn.shape[-2:], mode="bilinear", align_corners=False ) out = output_conv(out) outputs.append(out) num_cur_levels = 0 multi_scale_features = [] for out in outputs: if num_cur_levels < self.num_feature_levels: multi_scale_features.append(out) num_cur_levels += 1 return Mask2FormerPixelDecoderOutput( mask_features=self.mask_projection(outputs[-1]), multi_scale_features=tuple(multi_scale_features), attentions=encoder_outputs.attentions, ) class Mask2FormerPixelLevelModule(nn.Module): def __init__(self, config: Mask2FormerConfig): """ Pixel Level Module proposed in [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527). It runs the input image through a backbone and a pixel decoder, generating multi-scale feature maps and pixel embeddings. Args: config ([`Mask2FormerConfig`]): The configuration used to instantiate this model. """ super().__init__() self.encoder = load_backbone(config) self.decoder = Mask2FormerPixelDecoder(config, feature_channels=self.encoder.channels) def forward(self, pixel_values: Tensor, output_hidden_states: bool = False) -> Mask2FormerPixelLevelModuleOutput: backbone_features = self.encoder(pixel_values).feature_maps decoder_output = self.decoder(backbone_features, output_hidden_states=output_hidden_states) return Mask2FormerPixelLevelModuleOutput( encoder_last_hidden_state=backbone_features[-1], encoder_hidden_states=tuple(backbone_features) if output_hidden_states else None, decoder_last_hidden_state=decoder_output.mask_features, decoder_hidden_states=decoder_output.multi_scale_features, ) # Modified from transformers.models.detr.modeling_detr.DetrAttention with Detr->Mask2Former class Mask2FormerAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the DETR paper). """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): return tensor if position_embeddings is None else tensor + position_embeddings def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, key_value_states: Optional[torch.Tensor] = None, key_value_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" hidden_states = hidden_states.permute(1, 0, 2) if hidden_states is not None else None position_embeddings = position_embeddings.permute(1, 0, 2) if position_embeddings is not None else None key_value_states = key_value_states.permute(1, 0, 2) if key_value_states is not None else None key_value_position_embeddings = ( key_value_position_embeddings.permute(1, 0, 2) if key_value_position_embeddings is not None else None ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size, target_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if position_embeddings is not None: hidden_states_original = hidden_states hidden_states = self.with_pos_embed(hidden_states, position_embeddings) # add key-value position embeddings to the key value states if key_value_position_embeddings is not None: key_value_states_original = key_value_states key_value_states = self.with_pos_embed(key_value_states, key_value_position_embeddings) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention mask should be of size {(target_len, batch_size * self.num_heads, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights += attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, embed_dim) attn_output = self.out_proj(attn_output).permute(1, 0, 2) return attn_output, attn_weights_reshaped class Mask2FormerMaskedAttentionDecoderLayer(nn.Module): """ The Mask2FormerMaskedAttentionDecoderLayer is made up of self-attention, cross (masked) attention as well as FFN blocks. The cross attention block used as part of `Mask2FormerMaskedAttentionDecoderLayer` is actually a `masked attention` block that restricts the attention to localized features centered around predicted segments which leads to faster convergence and improved performance. The order of self and cross (i.e. masked) attention blocks have also been swapped in Mask2FormerMaskedAttentionDecoder compared to a standard DetrDecoder as an optimization improvement. Args: config (`Mask2FormerConfig`): The configuration used to initialize the Mask2FormerMaskedAttentionDecoder. """ def __init__(self, config: Mask2FormerConfig): super().__init__() self.config = config self.embed_dim = self.config.hidden_dim self.pre_norm = self.config.pre_norm self.self_attn = Mask2FormerAttention( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=config.dropout, is_decoder=True, ) self.dropout = self.config.dropout self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout = self.config.dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.cross_attn = nn.MultiheadAttention(self.embed_dim, self.config.num_attention_heads, self.config.dropout) self.cross_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, self.config.dim_feedforward) self.fc2 = nn.Linear(self.config.dim_feedforward, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post( self, hidden_states: torch.Tensor, level_index: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ): # Masked(Cross)-Attention Block cross_attn_weights = None self_attn_weights = None residual = hidden_states hidden_states, cross_attn_weights = self.cross_attn( query=self.with_pos_embed(hidden_states, query_position_embeddings), key=self.with_pos_embed(encoder_hidden_states[level_index], position_embeddings[level_index]), value=encoder_hidden_states[level_index], attn_mask=encoder_attention_mask, key_padding_mask=None, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.cross_attn_layer_norm(hidden_states) # Self Attention Block residual = hidden_states hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=query_position_embeddings, attention_mask=None, output_attentions=True, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs def forward_pre( self, hidden_states: torch.Tensor, level_index: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ): # Masked(Cross)-Attention Block cross_attn_weights = None self_attn_weights = None residual = hidden_states hidden_states = self.cross_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.cross_attn( query=self.with_pos_embed(hidden_states, query_position_embeddings), key=self.with_pos_embed(encoder_hidden_states[level_index], position_embeddings[level_index]), value=encoder_hidden_states[level_index], attn_mask=encoder_attention_mask, key_padding_mask=None, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Self Attention Block residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=query_position_embeddings, attention_mask=None, output_attentions=True, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs def forward( self, hidden_states: torch.Tensor, level_index: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ): """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(seq_len, batch, embed_dim)`. attention_mask (`torch.FloatTensor`): Attention mask of shape `(1, seq_len, tgt_len, src_len)`. position_embeddings (`torch.FloatTensor`, *optional*): Position embeddings that are added to the keys in the masked-attention layer. query_position_embeddings (`torch.FloatTensor`, *optional*): Position embeddings that are added to the queries and keys in the self-attention layer. encoder_hidden_states (`torch.FloatTensor`): Cross attention input to the layer of shape `(seq_len, batch, embed_dim)`. encoder_attention_mask (`torch.FloatTensor`): Encoder attention mask of size`(1, seq_len, tgt_len, src_len)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ if self.pre_norm: outputs = self.forward_pre( hidden_states=hidden_states, level_index=level_index, position_embeddings=position_embeddings, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) else: outputs = self.forward_post( hidden_states=hidden_states, level_index=level_index, position_embeddings=position_embeddings, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) return outputs class Mask2FormerMaskedAttentionDecoder(nn.Module): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Mask2FormerMaskedAttentionDecoderLayer`]. The decoder updates the query embeddings through multiple cross (masked) and self-attention layers. The decoder uses a new **masked attention** mechanism instead of the standard cross-attention, which extracts localized features by constraining cross-attention to within the foreground region of the predicted mask for each query, instead of attending to the full feature map. Args: config (`Mask2FormerConfig`): Configuration used to instantiate Mask2FormerMaskedAttentionDecoder. """ def __init__(self, config: Mask2FormerConfig): super().__init__() self.config = config self.mask_feature_size = config.mask_feature_size self.dropout = config.dropout self.layerdrop = config.dropout self.num_feature_levels = 3 # level embedding (3 scales) self.decoder_layers = config.decoder_layers - 1 self.layers = nn.ModuleList( [Mask2FormerMaskedAttentionDecoderLayer(self.config) for _ in range(self.decoder_layers)] ) self.layernorm = nn.LayerNorm(config.hidden_dim) self.mask_predictor = Mask2FormerMaskPredictor( hidden_size=config.hidden_dim, num_heads=config.num_attention_heads, mask_feature_size=self.mask_feature_size, ) self.gradient_checkpointing = False def forward( self, inputs_embeds: Optional[torch.Tensor] = None, multi_stage_positional_embeddings: Optional[torch.Tensor] = None, pixel_embeddings: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, feature_size_list: List = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`): The query embeddings that are passed into the decoder. multi_stage_positional_embeddings (`torch.FloatTensor` of shape `(height*width, batch_size, num_channels)`): Position embeddings that are added to the keys in each cross(masked)-attention layer. pixel_embeddings (`torch.FloatTensor`): Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel Decoder. query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`): , *optional*): Position embeddings that are added to the queries and keys in each self-attention layer. encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross(masked)-attention of the decoder. feature_size_list (`List[torch.Size]`): This is a list containing shapes (height & width) of multi-scale features from the Pixel Decoder. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is not None: hidden_states = inputs_embeds # intermediate hidden states with layernorm applied - required for predicting class logits intermediate = () # decoder layers all_hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None # intermediate mask predictions from transformer decoder layers intermediate_mask_predictions = () intermediate_hidden_states = self.layernorm(inputs_embeds) intermediate += (intermediate_hidden_states,) predicted_mask, attention_mask = self.mask_predictor( intermediate_hidden_states, pixel_embeddings, feature_size_list[0] ) intermediate_mask_predictions += (predicted_mask,) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = torch.rand([]) if self.training and (dropout_probability < self.layerdrop): continue if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, None, None, output_attentions, ) else: level_index = idx % self.num_feature_levels where = (attention_mask.sum(-1) != attention_mask.shape[-1]).to(attention_mask.dtype) # Multiply the attention mask instead of indexing to avoid issue in torch.export. attention_mask = attention_mask * where.unsqueeze(-1) layer_outputs = decoder_layer( hidden_states, level_index=level_index, position_embeddings=multi_stage_positional_embeddings, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, output_attentions=output_attentions, ) intermediate_hidden_states = self.layernorm(layer_outputs[0]) predicted_mask, attention_mask = self.mask_predictor( intermediate_hidden_states, pixel_embeddings, feature_size_list[(idx + 1) % self.num_feature_levels], ) intermediate_mask_predictions += (predicted_mask,) # add intermediate hidden states with layer norm applied which will be used for predicting class logits intermediate += (intermediate_hidden_states,) hidden_states = layer_outputs[0] if output_attentions: attentions += (layer_outputs[1],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) hidden_states = hidden_states.transpose(1, 0) if not return_dict: outputs = [hidden_states, all_hidden_states, attentions, intermediate, intermediate_mask_predictions] return tuple(v for v in outputs if v is not None) return Mask2FormerMaskedAttentionDecoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=attentions, intermediate_hidden_states=intermediate, masks_queries_logits=intermediate_mask_predictions, ) # Copied from transformers.models.maskformer.modeling_maskformer.PredictionBlock with MaskFormer->Mask2Former class Mask2FormerPredictionBlock(nn.Module): def __init__(self, in_dim: int, out_dim: int, activation: nn.Module) -> None: super().__init__() self.layers = [nn.Linear(in_dim, out_dim), activation] # Maintain submodule indexing as if part of a Sequential block for i, layer in enumerate(self.layers): self.add_module(str(i), layer) def forward(self, input: Tensor) -> Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class Mask2FormerMLPPredictionHead(nn.Module): def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int = 3): """ A classic Multi Layer Perceptron (MLP). Args: input_dim (`int`): The input dimensions. hidden_dim (`int`): The hidden dimensions. output_dim (`int`): The output dimensions. num_layers (int, *optional*, defaults to 3): The number of layers. """ super().__init__() in_dims = [input_dim] + [hidden_dim] * (num_layers - 1) out_dims = [hidden_dim] * (num_layers - 1) + [output_dim] self.layers = [] for i, (in_dim, out_dim) in enumerate(zip(in_dims, out_dims)): activation = nn.ReLU() if i < num_layers - 1 else nn.Identity() layer = Mask2FormerPredictionBlock(in_dim, out_dim, activation=activation) self.layers.append(layer) # Provide backwards compatibility from when the class inherited from nn.Sequential # In nn.Sequential subclasses, the name given to the layer is its index in the sequence. # In nn.Module subclasses they derived from the instance attribute they are assigned to e.g. # self.my_layer_name = Layer() # We can't give instance attributes integer names i.e. self.0 is not permitted and so need to register # explicitly self.add_module(str(i), layer) def forward(self, input: Tensor) -> Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class Mask2FormerMaskPredictor(nn.Module): def __init__(self, hidden_size: int, num_heads: int, mask_feature_size: torch.Tensor): """ This class is used to get the predicted mask for a given Mask2FormerMaskedAttentionDecoder layer. It also generates the binarized attention mask associated with the given predicted mask. The attention mask obtained using predicted mask of the (l-1)th decoder layer is fed to the cross(masked)-attention block of the next decoder layer as input. Args: hidden_size (`int`): The feature dimension of the Mask2FormerMaskedAttentionDecoder num_heads (`int`): The number of heads used in the Mask2FormerMaskedAttentionDecoder mask_feature_size (`torch.Tensor`): one of the output dimensions of the predicted masks for each query """ super().__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.mask_embedder = Mask2FormerMLPPredictionHead(self.hidden_size, self.hidden_size, mask_feature_size) def forward( self, outputs: torch.Tensor, pixel_embeddings: torch.Tensor, attention_mask_target_size: Optional[int] = None ): mask_embeddings = self.mask_embedder(outputs.transpose(0, 1)) is_tracing = torch.jit.is_tracing() or isinstance(outputs, torch.fx.Proxy) or is_torchdynamo_compiling() # Sum up over the channels if is_tracing and not is_torch_greater_or_equal_than_2_1: # Equivalent to einsum('bqc, bchw -> bqhw') but jit friendly batch_size, num_queries, num_channels = mask_embeddings.shape _, _, height, width = pixel_embeddings.shape outputs_mask = torch.zeros((batch_size, num_queries, height, width), device=mask_embeddings.device) for c in range(num_channels): outputs_mask += mask_embeddings[..., c][..., None, None] * pixel_embeddings[:, None, c] else: outputs_mask = torch.einsum("bqc, bchw -> bqhw", mask_embeddings, pixel_embeddings) attention_mask = nn.functional.interpolate( outputs_mask, size=attention_mask_target_size, mode="bilinear", align_corners=False ) attention_mask = attention_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1) attention_mask = (attention_mask.flatten(0, 1) < 0.5).bool() attention_mask = attention_mask.detach() return outputs_mask, attention_mask class Mask2FormerTransformerModule(nn.Module): """ The Mask2Former's transformer module. """ def __init__(self, in_features: int, config: Mask2FormerConfig): super().__init__() hidden_dim = config.hidden_dim self.num_feature_levels = 3 self.position_embedder = Mask2FormerSinePositionEmbedding(num_pos_feats=hidden_dim // 2, normalize=True) self.queries_embedder = nn.Embedding(config.num_queries, hidden_dim) self.queries_features = nn.Embedding(config.num_queries, hidden_dim) self.input_projections = [] for _ in range(self.num_feature_levels): if in_features != hidden_dim or config.enforce_input_projection: self.input_projections.append(nn.Conv2d(in_features, hidden_dim, kernel_size=1)) else: self.input_projections.append(nn.Sequential()) self.decoder = Mask2FormerMaskedAttentionDecoder(config=config) self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim) def forward( self, multi_scale_features: List[Tensor], mask_features: Tensor, output_hidden_states: bool = False, output_attentions: bool = False, ) -> Mask2FormerMaskedAttentionDecoderOutput: multi_stage_features = [] multi_stage_positional_embeddings = [] size_list = [] for i in range(self.num_feature_levels): size_list.append(multi_scale_features[i].shape[-2:]) multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2)) multi_stage_features.append( self.input_projections[i](multi_scale_features[i]).flatten(2) + self.level_embed.weight[i][None, :, None] ) # Flatten (batch_size, num_channels, height, width) -> (height*width, batch_size, num_channels) multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1) multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1) _, batch_size, _ = multi_stage_features[0].shape # [num_queries, batch_size, num_channels] query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1) query_features = self.queries_features.weight.unsqueeze(1).repeat(1, batch_size, 1) decoder_output = self.decoder( inputs_embeds=query_features, multi_stage_positional_embeddings=multi_stage_positional_embeddings, pixel_embeddings=mask_features, encoder_hidden_states=multi_stage_features, query_position_embeddings=query_embeddings, feature_size_list=size_list, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=True, ) return decoder_output MASK2FORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Mask2FormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MASK2FORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.preprocess`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of Detr's decoder attention layers. return_dict (`bool`, *optional*): Whether or not to return a [`~Mask2FormerModelOutput`] instead of a plain tuple. """ class Mask2FormerPreTrainedModel(PreTrainedModel): config_class = Mask2FormerConfig base_model_prefix = "model" main_input_name = "pixel_values" def _init_weights(self, module: nn.Module): xavier_std = self.config.init_xavier_std std = self.config.init_std if isinstance(module, Mask2FormerTransformerModule): if module.input_projections is not None: for input_projection in module.input_projections: if not isinstance(input_projection, nn.Sequential): nn.init.xavier_uniform_(input_projection.weight, gain=xavier_std) nn.init.constant_(input_projection.bias, 0) elif isinstance(module, Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention): nn.init.constant_(module.sampling_offsets.weight.data, 0.0) thetas = torch.arange(module.n_heads, dtype=torch.int64).float() * (2.0 * math.pi / module.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = ( (grid_init / grid_init.abs().max(-1, keepdim=True)[0]) .view(module.n_heads, 1, 1, 2) .repeat(1, module.n_levels, module.n_points, 1) ) for i in range(module.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) nn.init.constant_(module.attention_weights.weight.data, 0.0) nn.init.constant_(module.attention_weights.bias.data, 0.0) nn.init.xavier_uniform_(module.value_proj.weight.data) nn.init.constant_(module.value_proj.bias.data, 0.0) nn.init.xavier_uniform_(module.output_proj.weight.data) nn.init.constant_(module.output_proj.bias.data, 0.0) elif isinstance(module, Mask2FormerMaskedAttentionDecoderLayer): for p in module.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p, gain=xavier_std) elif isinstance(module, Mask2FormerPixelLevelModule): for submodule in module.modules(): if isinstance(submodule, (nn.Conv2d, nn.Linear)): submodule.weight.data.normal_(mean=0.0, std=std) if submodule.bias is not None: submodule.bias.data.zero_() elif isinstance(module, Mask2FormerPixelDecoder): for p in module.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) nn.init.normal_(module.level_embed, std=0) elif isinstance(module, Mask2FormerPixelDecoderEncoderOnly): for p in module.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if hasattr(module, "reference_points"): nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0) nn.init.constant_(module.reference_points.bias.data, 0.0) @add_start_docstrings( "The bare Mask2Former Model outputting raw hidden-states without any specific head on top.", MASK2FORMER_START_DOCSTRING, ) class Mask2FormerModel(Mask2FormerPreTrainedModel): main_input_name = "pixel_values" def __init__(self, config: Mask2FormerConfig): super().__init__(config) self.pixel_level_module = Mask2FormerPixelLevelModule(config) self.transformer_module = Mask2FormerTransformerModule(in_features=config.feature_size, config=config) self.post_init() @add_start_docstrings_to_model_forward(MASK2FORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Mask2FormerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, pixel_mask: Optional[Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Mask2FormerModelOutput: r""" Returns: `Mask2FormerModelOutput` Examples: ```python >>> import torch >>> from PIL import Image >>> import requests >>> from transformers import AutoImageProcessor, Mask2FormerModel >>> # load image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # load image preprocessor and Mask2FormerModel trained on COCO instance segmentation dataset >>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance") >>> model = Mask2FormerModel.from_pretrained("facebook/mask2former-swin-small-coco-instance") >>> inputs = image_processor(image, return_tensors="pt") >>> # forward pass >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # model outputs last hidden states of shape (batch_size, num_queries, hidden_size) >>> print(outputs.transformer_decoder_last_hidden_state.shape) torch.Size([1, 100, 256]) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, _, height, width = pixel_values.shape if pixel_mask is None: pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device) pixel_level_module_output = self.pixel_level_module( pixel_values=pixel_values, output_hidden_states=output_hidden_states ) transformer_module_output = self.transformer_module( multi_scale_features=pixel_level_module_output.decoder_hidden_states, mask_features=pixel_level_module_output.decoder_last_hidden_state, output_hidden_states=True, output_attentions=output_attentions, ) encoder_hidden_states = None pixel_decoder_hidden_states = None transformer_decoder_hidden_states = None transformer_decoder_intermediate_states = None if output_hidden_states: encoder_hidden_states = pixel_level_module_output.encoder_hidden_states pixel_decoder_hidden_states = pixel_level_module_output.decoder_hidden_states transformer_decoder_hidden_states = transformer_module_output.hidden_states transformer_decoder_intermediate_states = transformer_module_output.intermediate_hidden_states output = Mask2FormerModelOutput( encoder_last_hidden_state=pixel_level_module_output.encoder_last_hidden_state, pixel_decoder_last_hidden_state=pixel_level_module_output.decoder_last_hidden_state, transformer_decoder_last_hidden_state=transformer_module_output.last_hidden_state, encoder_hidden_states=encoder_hidden_states, pixel_decoder_hidden_states=pixel_decoder_hidden_states, transformer_decoder_hidden_states=transformer_decoder_hidden_states, transformer_decoder_intermediate_states=transformer_decoder_intermediate_states, attentions=transformer_module_output.attentions, masks_queries_logits=transformer_module_output.masks_queries_logits, ) if not return_dict: output = tuple(v for v in output.values() if v is not None) return output @add_start_docstrings( "The Mask2Former Model with heads on top for instance/semantic/panoptic segmentation.", MASK2FORMER_START_DOCSTRING, ) class Mask2FormerForUniversalSegmentation(Mask2FormerPreTrainedModel): main_input_name = "pixel_values" def __init__(self, config: Mask2FormerConfig): super().__init__(config) self.model = Mask2FormerModel(config) self.weight_dict: Dict[str, float] = { "loss_cross_entropy": config.class_weight, "loss_mask": config.mask_weight, "loss_dice": config.dice_weight, } self.class_predictor = nn.Linear(config.hidden_dim, config.num_labels + 1) self.criterion = Mask2FormerLoss(config=config, weight_dict=self.weight_dict) self.post_init() def get_loss_dict( self, masks_queries_logits: Tensor, class_queries_logits: Tensor, mask_labels: Tensor, class_labels: Tensor, auxiliary_predictions: Dict[str, Tensor], ) -> Dict[str, Tensor]: loss_dict: Dict[str, Tensor] = self.criterion( masks_queries_logits=masks_queries_logits, class_queries_logits=class_queries_logits, mask_labels=mask_labels, class_labels=class_labels, auxiliary_predictions=auxiliary_predictions, ) # weight each loss by `self.weight_dict[<LOSS_NAME>]` including auxiliary losses for key, weight in self.weight_dict.items(): for loss_key, loss in loss_dict.items(): if key in loss_key: loss *= weight return loss_dict def get_loss(self, loss_dict: Dict[str, Tensor]) -> Tensor: return sum(loss_dict.values()) def get_auxiliary_logits(self, classes: torch.Tensor, output_masks: torch.Tensor): auxiliary_logits: List[Dict(str, Tensor)] = [] for aux_binary_masks, aux_classes in zip(output_masks[:-1], classes[:-1]): auxiliary_logits.append({"masks_queries_logits": aux_binary_masks, "class_queries_logits": aux_classes}) return auxiliary_logits @add_start_docstrings_to_model_forward(MASK2FORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Mask2FormerForUniversalSegmentationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, mask_labels: Optional[List[Tensor]] = None, class_labels: Optional[List[Tensor]] = None, pixel_mask: Optional[Tensor] = None, output_hidden_states: Optional[bool] = None, output_auxiliary_logits: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Mask2FormerForUniversalSegmentationOutput: r""" mask_labels (`List[torch.Tensor]`, *optional*): List of mask labels of shape `(num_labels, height, width)` to be fed to a model class_labels (`List[torch.LongTensor]`, *optional*): list of target class labels of shape `(num_labels, height, width)` to be fed to a model. They identify the labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`. Returns: `Mask2FormerUniversalSegmentationOutput` Examples: Instance segmentation example: ```python >>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation >>> from PIL import Image >>> import requests >>> import torch >>> # Load Mask2Former trained on COCO instance segmentation dataset >>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance") >>> model = Mask2FormerForUniversalSegmentation.from_pretrained( ... "facebook/mask2former-swin-small-coco-instance" ... ) >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # Perform post-processing to get instance segmentation map >>> pred_instance_map = image_processor.post_process_instance_segmentation( ... outputs, target_sizes=[(image.height, image.width)] ... )[0] >>> print(pred_instance_map.shape) torch.Size([480, 640]) ``` Semantic segmentation example: ```python >>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation >>> from PIL import Image >>> import requests >>> import torch >>> # Load Mask2Former trained on ADE20k semantic segmentation dataset >>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-ade-semantic") >>> model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-small-ade-semantic") >>> url = ( ... "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" ... ) >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # Perform post-processing to get semantic segmentation map >>> pred_semantic_map = image_processor.post_process_semantic_segmentation( ... outputs, target_sizes=[(image.height, image.width)] ... )[0] >>> print(pred_semantic_map.shape) torch.Size([512, 683]) ``` Panoptic segmentation example: ```python >>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation >>> from PIL import Image >>> import requests >>> import torch >>> # Load Mask2Former trained on CityScapes panoptic segmentation dataset >>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-cityscapes-panoptic") >>> model = Mask2FormerForUniversalSegmentation.from_pretrained( ... "facebook/mask2former-swin-small-cityscapes-panoptic" ... ) >>> url = "https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # Perform post-processing to get panoptic segmentation map >>> pred_panoptic_map = image_processor.post_process_panoptic_segmentation( ... outputs, target_sizes=[(image.height, image.width)] ... )[0]["segmentation"] >>> print(pred_panoptic_map.shape) torch.Size([338, 676]) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( pixel_values=pixel_values, pixel_mask=pixel_mask, output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss, output_attentions=output_attentions, return_dict=True, ) loss, loss_dict, auxiliary_logits = None, None, None class_queries_logits = () for decoder_output in outputs.transformer_decoder_intermediate_states: class_prediction = self.class_predictor(decoder_output.transpose(0, 1)) class_queries_logits += (class_prediction,) masks_queries_logits = outputs.masks_queries_logits auxiliary_logits = self.get_auxiliary_logits(class_queries_logits, masks_queries_logits) if mask_labels is not None and class_labels is not None: loss_dict = self.get_loss_dict( masks_queries_logits=masks_queries_logits[-1], class_queries_logits=class_queries_logits[-1], mask_labels=mask_labels, class_labels=class_labels, auxiliary_predictions=auxiliary_logits, ) loss = self.get_loss(loss_dict) encoder_hidden_states = None pixel_decoder_hidden_states = None transformer_decoder_hidden_states = None if output_hidden_states: encoder_hidden_states = outputs.encoder_hidden_states pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states transformer_decoder_hidden_states = outputs.transformer_decoder_hidden_states output_auxiliary_logits = ( self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits ) if not output_auxiliary_logits: auxiliary_logits = None output = Mask2FormerForUniversalSegmentationOutput( loss=loss, class_queries_logits=class_queries_logits[-1], masks_queries_logits=masks_queries_logits[-1], auxiliary_logits=auxiliary_logits, encoder_last_hidden_state=outputs.encoder_last_hidden_state, pixel_decoder_last_hidden_state=outputs.pixel_decoder_last_hidden_state, transformer_decoder_last_hidden_state=outputs.transformer_decoder_last_hidden_state, encoder_hidden_states=encoder_hidden_states, pixel_decoder_hidden_states=pixel_decoder_hidden_states, transformer_decoder_hidden_states=transformer_decoder_hidden_states, attentions=outputs.attentions, ) if not return_dict: output = tuple(v for v in output.values() if v is not None) if loss is not None: output = (loss) + output return output __all__ = ["Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel"] ```
================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.16 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\maskformer\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_maskformer import * from .configuration_maskformer_swin import * from .feature_extraction_maskformer import * from .image_processing_maskformer import * from .modeling_maskformer import * from .modeling_maskformer_swin import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
================================================================================================================================================== SOURCE CODE FILE: configuration_maskformer.py LINES: 1 SIZE: 10.05 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\maskformer\configuration_maskformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Meta Platforms, Inc.and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MaskFormer model configuration""" from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import verify_backbone_config_arguments from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig logger = logging.get_logger(__name__) class MaskFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MaskFormerModel`]. It is used to instantiate a MaskFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MaskFormer [facebook/maskformer-swin-base-ade](https://huggingface.co/facebook/maskformer-swin-base-ade) architecture trained on [ADE20k-150](https://huggingface.co/datasets/scene_parse_150). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Currently, MaskFormer only supports the [Swin Transformer](swin) as backbone. Args: mask_feature_size (`int`, *optional*, defaults to 256): The masks' features size, this value will also be used to specify the Feature Pyramid Network features' size. no_object_weight (`float`, *optional*, defaults to 0.1): Weight to apply to the null (no object) class. use_auxiliary_loss(`bool`, *optional*, defaults to `False`): If `True` [`MaskFormerForInstanceSegmentationOutput`] will contain the auxiliary losses computed using the logits from each decoder's stage. backbone_config (`Dict`, *optional*): The configuration passed to the backbone, if unset, the configuration corresponding to `swin-base-patch4-window12-384` will be used. backbone (`str`, *optional*): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, `False`): Whether to use pretrained weights for the backbone. use_timm_backbone (`bool`, *optional*, `False`): Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers library. backbone_kwargs (`dict`, *optional*): Keyword arguments to be passed to AutoBackbone when loading from a checkpoint e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. decoder_config (`Dict`, *optional*): The configuration passed to the transformer decoder model, if unset the base config for `detr-resnet-50` will be used. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. init_xavier_std (`float`, *optional*, defaults to 1): The scaling factor used for the Xavier initialization gain in the HM Attention map module. dice_weight (`float`, *optional*, defaults to 1.0): The weight for the dice loss. cross_entropy_weight (`float`, *optional*, defaults to 1.0): The weight for the cross entropy loss. mask_weight (`float`, *optional*, defaults to 20.0): The weight for the mask loss. output_auxiliary_logits (`bool`, *optional*): Should the model output its `auxiliary_logits` or not. Raises: `ValueError`: Raised if the backbone model type selected is not in `["swin"]` or the decoder model type selected is not in `["detr"]` Examples: ```python >>> from transformers import MaskFormerConfig, MaskFormerModel >>> # Initializing a MaskFormer facebook/maskformer-swin-base-ade configuration >>> configuration = MaskFormerConfig() >>> # Initializing a model (with random weights) from the facebook/maskformer-swin-base-ade style configuration >>> model = MaskFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "maskformer" attribute_map = {"hidden_size": "mask_feature_size"} backbones_supported = ["resnet", "swin"] decoders_supported = ["detr"] def __init__( self, fpn_feature_size: int = 256, mask_feature_size: int = 256, no_object_weight: float = 0.1, use_auxiliary_loss: bool = False, backbone_config: Optional[Dict] = None, decoder_config: Optional[Dict] = None, init_std: float = 0.02, init_xavier_std: float = 1.0, dice_weight: float = 1.0, cross_entropy_weight: float = 1.0, mask_weight: float = 20.0, output_auxiliary_logits: Optional[bool] = None, backbone: Optional[str] = None, use_pretrained_backbone: bool = False, use_timm_backbone: bool = False, backbone_kwargs: Optional[Dict] = None, **kwargs, ): if backbone_config is None and backbone is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k backbone_config = SwinConfig( image_size=384, num_channels=3, patch_size=4, embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12, drop_path_rate=0.3, out_features=["stage1", "stage2", "stage3", "stage4"], ) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.pop("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) verify_backbone_config_arguments( use_timm_backbone=use_timm_backbone, use_pretrained_backbone=use_pretrained_backbone, backbone=backbone, backbone_config=backbone_config, backbone_kwargs=backbone_kwargs, ) # verify that the backbone is supported if backbone_config is not None and backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " f"Supported model types: {','.join(self.backbones_supported)}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 decoder_config = DetrConfig() else: # verify that the decoder is supported decoder_type = ( decoder_config.pop("model_type") if isinstance(decoder_config, dict) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"Transformer Decoder {decoder_type} not supported, please use one of" f" {','.join(self.decoders_supported)}" ) if isinstance(decoder_config, dict): config_class = CONFIG_MAPPING[decoder_type] decoder_config = config_class.from_dict(decoder_config) self.backbone_config = backbone_config self.decoder_config = decoder_config # main feature dimension for the model self.fpn_feature_size = fpn_feature_size self.mask_feature_size = mask_feature_size # initializer self.init_std = init_std self.init_xavier_std = init_xavier_std # Hungarian matcher && loss self.cross_entropy_weight = cross_entropy_weight self.dice_weight = dice_weight self.mask_weight = mask_weight self.use_auxiliary_loss = use_auxiliary_loss self.no_object_weight = no_object_weight self.output_auxiliary_logits = output_auxiliary_logits self.num_attention_heads = self.decoder_config.encoder_attention_heads self.num_hidden_layers = self.decoder_config.num_hidden_layers self.backbone = backbone self.use_pretrained_backbone = use_pretrained_backbone self.use_timm_backbone = use_timm_backbone self.backbone_kwargs = backbone_kwargs super().__init__(**kwargs) @classmethod def from_backbone_and_decoder_configs( cls, backbone_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs ): """Instantiate a [`MaskFormerConfig`] (or a derived class) from a pre-trained backbone model configuration and DETR model configuration. Args: backbone_config ([`PretrainedConfig`]): The backbone configuration. decoder_config ([`PretrainedConfig`]): The transformer decoder configuration to use. Returns: [`MaskFormerConfig`]: An instance of a configuration object """ return cls( backbone_config=backbone_config, decoder_config=decoder_config, **kwargs, ) __all__ = ["MaskFormerConfig"] ```
======================================================================================================================================================= SOURCE CODE FILE: configuration_maskformer_swin.py LINES: 1 SIZE: 7.08 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\maskformer\configuration_maskformer_swin.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MaskFormer Swin Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) class MaskFormerSwinConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MaskFormerSwinModel`]. It is used to instantiate a Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Swin [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. embed_dim (`int`, *optional*, defaults to 96): Dimensionality of patch embedding. depths (`List[int]`, *optional*, defaults to `[2, 2, 6, 2]`): Depth of each layer in the Transformer encoder. num_heads (`List[int]`, *optional*, defaults to `[3, 6, 12, 24]`): Number of attention heads in each layer of the Transformer encoder. window_size (`int`, *optional*, defaults to 7): Size of windows. mlp_ratio (`float`, *optional*, defaults to 4.0): Ratio of MLP hidden dimensionality to embedding dimensionality. qkv_bias (`bool`, *optional*, defaults to True): Whether or not a learnable bias should be added to the queries, keys and values. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings and encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. use_absolute_embeddings (`bool`, *optional*, defaults to False): Whether or not to add absolute position embeddings to the patch embeddings. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import MaskFormerSwinConfig, MaskFormerSwinModel >>> # Initializing a microsoft/swin-tiny-patch4-window7-224 style configuration >>> configuration = MaskFormerSwinConfig() >>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration >>> model = MaskFormerSwinModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "maskformer-swin" attribute_map = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, image_size=224, patch_size=4, num_channels=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, initializer_range=0.02, layer_norm_eps=1e-5, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_layers = len(depths) self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1)) self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) __all__ = ["MaskFormerSwinConfig"] ```
======================================================================================================================================================= SOURCE CODE FILE: feature_extraction_maskformer.py LINES: 1 SIZE: 1.23 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\maskformer\feature_extraction_maskformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for MaskFormer.""" import warnings from ...utils import logging from .image_processing_maskformer import MaskFormerImageProcessor logger = logging.get_logger(__name__) class MaskFormerFeatureExtractor(MaskFormerImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class MaskFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MaskFormerImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs) __all__ = ["MaskFormerFeatureExtractor"] ```
===================================================================================================================================================== SOURCE CODE FILE: image_processing_maskformer.py LINES: 1 SIZE: 56.93 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\maskformer\image_processing_maskformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for MaskFormer.""" import math import warnings from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Set, Tuple, Union import numpy as np from ...image_processing_utils import INIT_SERVICE_KWARGS, BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( PaddingMode, get_resize_output_image_size, pad, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, TensorType, filter_out_non_signature_kwargs, is_torch_available, is_torch_tensor, logging, ) from ...utils.deprecation import deprecate_kwarg logger = logging.get_logger(__name__) if TYPE_CHECKING: from transformers import MaskFormerForInstanceSegmentationOutput if is_torch_available(): import torch from torch import nn # Copied from transformers.models.detr.image_processing_detr.max_across_indices def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] # Copied from transformers.models.detr.image_processing_detr.get_max_height_width def get_max_height_width( images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> List[int]: """ Get the maximum height and width across all images in a batch. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(images[0]) if input_data_format == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_data_format == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_data_format}") return (max_height, max_width) # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask def make_pixel_mask( image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask # Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle def binary_mask_to_rle(mask): """ Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format. Args: mask (`torch.Tensor` or `numpy.array`): A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target segment_id or class_id. Returns: `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE format. """ if is_torch_tensor(mask): mask = mask.numpy() pixels = mask.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return list(runs) # Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle def convert_segmentation_to_rle(segmentation): """ Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format. Args: segmentation (`torch.Tensor` or `numpy.array`): A segmentation map of shape `(height, width)` where each value denotes a segment or class id. Returns: `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id. """ segment_ids = torch.unique(segmentation) run_length_encodings = [] for idx in segment_ids: mask = torch.where(segmentation == idx, 1, 0) rle = binary_mask_to_rle(mask) run_length_encodings.append(rle) return run_length_encodings # Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels): """ Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and `labels`. Args: masks (`torch.Tensor`): A tensor of shape `(num_queries, height, width)`. scores (`torch.Tensor`): A tensor of shape `(num_queries)`. labels (`torch.Tensor`): A tensor of shape `(num_queries)`. object_mask_threshold (`float`): A number between 0 and 1 used to binarize the masks. Raises: `ValueError`: Raised when the first dimension doesn't match in all input tensors. Returns: `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region < `object_mask_threshold`. """ if not (masks.shape[0] == scores.shape[0] == labels.shape[0]): raise ValueError("mask, scores and labels must have the same shape!") to_keep = labels.ne(num_labels) & (scores > object_mask_threshold) return masks[to_keep], scores[to_keep], labels[to_keep] # Copied from transformers.models.detr.image_processing_detr.check_segment_validity def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8): # Get the mask associated with the k class mask_k = mask_labels == k mask_k_area = mask_k.sum() # Compute the area of all the stuff in query k original_area = (mask_probs[k] >= mask_threshold).sum() mask_exists = mask_k_area > 0 and original_area > 0 # Eliminate disconnected tiny segments if mask_exists: area_ratio = mask_k_area / original_area if not area_ratio.item() > overlap_mask_area_threshold: mask_exists = False return mask_exists, mask_k # Copied from transformers.models.detr.image_processing_detr.compute_segments def compute_segments( mask_probs, pred_scores, pred_labels, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_size: Tuple[int, int] = None, ): height = mask_probs.shape[1] if target_size is None else target_size[0] width = mask_probs.shape[2] if target_size is None else target_size[1] segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device) segments: List[Dict] = [] if target_size is not None: mask_probs = nn.functional.interpolate( mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False )[0] current_segment_id = 0 # Weigh each mask by its prediction score mask_probs *= pred_scores.view(-1, 1, 1) mask_labels = mask_probs.argmax(0) # [height, width] # Keep track of instances of each class stuff_memory_list: Dict[str, int] = {} for k in range(pred_labels.shape[0]): pred_class = pred_labels[k].item() should_fuse = pred_class in label_ids_to_fuse # Check if mask exists and large enough to be a segment mask_exists, mask_k = check_segment_validity( mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold ) if mask_exists: if pred_class in stuff_memory_list: current_segment_id = stuff_memory_list[pred_class] else: current_segment_id += 1 # Add current object segment to final segmentation map segmentation[mask_k] = current_segment_id segment_score = round(pred_scores[k].item(), 6) segments.append( { "id": current_segment_id, "label_id": pred_class, "was_fused": should_fuse, "score": segment_score, } ) if should_fuse: stuff_memory_list[pred_class] = current_segment_id return segmentation, segments # TODO: (Amy) Move to image_transforms def convert_segmentation_map_to_binary_masks( segmentation_map: "np.ndarray", instance_id_to_semantic_id: Optional[Dict[int, int]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, ): if do_reduce_labels and ignore_index is None: raise ValueError("If `do_reduce_labels` is True, `ignore_index` must be provided.") if do_reduce_labels: segmentation_map = np.where(segmentation_map == 0, ignore_index, segmentation_map - 1) # Get unique ids (class or instance ids based on input) all_labels = np.unique(segmentation_map) # Drop background label if applicable if ignore_index is not None: all_labels = all_labels[all_labels != ignore_index] # Generate a binary mask for each object instance binary_masks = [(segmentation_map == i) for i in all_labels] # Stack the binary masks if binary_masks: binary_masks = np.stack(binary_masks, axis=0) else: binary_masks = np.zeros((0, *segmentation_map.shape)) # Convert instance ids to class ids if instance_id_to_semantic_id is not None: labels = np.zeros(all_labels.shape[0]) for label in all_labels: class_id = instance_id_to_semantic_id[label + 1 if do_reduce_labels else label] labels[all_labels == label] = class_id - 1 if do_reduce_labels else class_id else: labels = all_labels return binary_masks.astype(np.float32), labels.astype(np.int64) def get_maskformer_resize_output_image_size( image: np.ndarray, size: Union[int, Tuple[int, int], List[int], Tuple[int]], max_size: Optional[int] = None, size_divisor: int = 0, default_to_square: bool = True, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Tuple[int, int]: """ Computes the output size given the desired size. Args: image (`np.ndarray`): The input image. size (`int` or `Tuple[int, int]` or `List[int]` or `Tuple[int]`): The size of the output image. max_size (`int`, *optional*): The maximum size of the output image. size_divisor (`int`, *optional*, defaults to 0): If `size_divisor` is given, the output image size will be divisible by the number. default_to_square (`bool`, *optional*, defaults to `True`): Whether to default to square if no size is provided. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If unset, will use the inferred format from the input. Returns: `Tuple[int, int]`: The output size. """ output_size = get_resize_output_image_size( input_image=image, size=size, default_to_square=default_to_square, max_size=max_size, input_data_format=input_data_format, ) if size_divisor > 0: height, width = output_size height = int(math.ceil(height / size_divisor) * size_divisor) width = int(math.ceil(width / size_divisor) * size_divisor) output_size = (height, width) return output_size class MaskFormerImageProcessor(BaseImageProcessor): r""" Constructs a MaskFormer image processor. The image processor can be used to prepare image(s) and optional targets for the model. This image processor inherits from [`BaseImageProcessor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the input to a certain `size`. size (`int`, *optional*, defaults to 800): Resize the input to the given size. Only has an effect if `do_resize` is set to `True`. If size is a sequence like `(width, height)`, output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if `height > width`, then image will be rescaled to `(size * height / width, size)`. size_divisor (`int`, *optional*, defaults to 32): Some backbones need images divisible by a certain number. If not passed, it defaults to the value used in Swin Transformer. resample (`int`, *optional*, defaults to `Resampling.BILINEAR`): An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`, `PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`, `PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the input to a certain `scale`. rescale_factor (`float`, *optional*, defaults to `1/ 255`): Rescale the input by the given factor. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to normalize the input with mean and standard deviation. image_mean (`int`, *optional*, defaults to `[0.485, 0.456, 0.406]`): The sequence of means for each channel, to be used when normalizing images. Defaults to the ImageNet mean. image_std (`int`, *optional*, defaults to `[0.229, 0.224, 0.225]`): The sequence of standard deviations for each channel, to be used when normalizing images. Defaults to the ImageNet std. ignore_index (`int`, *optional*): Label to be assigned to background pixels in segmentation maps. If provided, segmentation map pixels denoted with 0 (background) will be replaced with `ignore_index`. do_reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to decrement all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by `ignore_index`. num_labels (`int`, *optional*): The number of labels in the segmentation map. """ model_input_names = ["pixel_values", "pixel_mask"] @deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.44.0") @deprecate_kwarg("size_divisibility", new_name="size_divisor", version="4.41.0") @deprecate_kwarg("max_size", version="4.27.0", warn_if_greater_or_equal_version=True) @filter_out_non_signature_kwargs(extra=["max_size", *INIT_SERVICE_KWARGS]) def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, size_divisor: int = 32, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, num_labels: Optional[int] = None, **kwargs, ): super().__init__(**kwargs) # We make max_size a private attribute so we can pass it as a default value in the preprocess method whilst # `size` can still be pass in as an int self._max_size = kwargs.pop("max_size", 1333) size = size if size is not None else {"shortest_edge": 800, "longest_edge": self._max_size} size = get_size_dict(size, max_size=self._max_size, default_to_square=False) self.do_resize = do_resize self.size = size self.resample = resample self.size_divisor = size_divisor self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.ignore_index = ignore_index self.do_reduce_labels = do_reduce_labels self.num_labels = num_labels @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is created using from_dict and kwargs e.g. `MaskFormerImageProcessor.from_pretrained(checkpoint, max_size=800)` """ image_processor_dict = image_processor_dict.copy() if "max_size" in kwargs: image_processor_dict["max_size"] = kwargs.pop("max_size") if "size_divisibility" in kwargs: image_processor_dict["size_divisor"] = kwargs.pop("size_divisibility") if "reduce_labels" in image_processor_dict: image_processor_dict["do_reduce_labels"] = image_processor_dict.pop("reduce_labels") return super().from_dict(image_processor_dict, **kwargs) def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. This method calls the superclass method and then removes the `_max_size` attribute from the dictionary. """ image_processor_dict = super().to_dict() image_processor_dict.pop("_max_size", None) return image_processor_dict @deprecate_kwarg("max_size", version="4.27.0", warn_if_greater_or_equal_version=True) def resize( self, image: np.ndarray, size: Dict[str, int], size_divisor: int = 0, resample: PILImageResampling = PILImageResampling.BILINEAR, data_format=None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be min_size (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): The size of the output image. size_divisor (`int`, *optional*, defaults to 0): If `size_divisor` is given, the output image size will be divisible by the number. resample (`PILImageResampling` resampling filter, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use when resizing the image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ # Deprecated, backward compatibility max_size = kwargs.pop("max_size", None) size = get_size_dict(size, max_size=max_size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: size, max_size = size["shortest_edge"], size["longest_edge"] elif "height" in size and "width" in size: size = (size["height"], size["width"]) max_size = None else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) size = get_maskformer_resize_output_image_size( image=image, size=size, max_size=max_size, size_divisor=size_divisor, default_to_square=False, input_data_format=input_data_format, ) image = resize( image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs ) return image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) def convert_segmentation_map_to_binary_masks( self, segmentation_map: "np.ndarray", instance_id_to_semantic_id: Optional[Dict[int, int]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, ): do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels ignore_index = ignore_index if ignore_index is not None else self.ignore_index return convert_segmentation_map_to_binary_masks( segmentation_map=segmentation_map, instance_id_to_semantic_id=instance_id_to_semantic_id, ignore_index=ignore_index, do_reduce_labels=do_reduce_labels, ) def __call__(self, images, segmentation_maps=None, **kwargs) -> BatchFeature: return self.preprocess(images, segmentation_maps=segmentation_maps, **kwargs) def _preprocess( self, image: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, size_divisor: Optional[int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if do_resize: image = self.resize( image, size=size, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format ) if do_rescale: image = self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format) return image def _preprocess_image( self, image: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, size_divisor: Optional[int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) if do_rescale and is_scaled_image(image): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) image = self._preprocess( image=image, do_resize=do_resize, size=size, size_divisor=size_divisor, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format, ) if data_format is not None: image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def _preprocess_mask( self, segmentation_map: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, size_divisor: int = 0, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single mask.""" segmentation_map = to_numpy_array(segmentation_map) # Add channel dimension if missing - needed for certain transformations if segmentation_map.ndim == 2: added_channel_dim = True segmentation_map = segmentation_map[None, ...] input_data_format = ChannelDimension.FIRST else: added_channel_dim = False if input_data_format is None: input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1) # TODO: (Amy) # Remork segmentation map processing to include reducing labels and resizing which doesn't # drop segment IDs > 255. segmentation_map = self._preprocess( image=segmentation_map, do_resize=do_resize, resample=PILImageResampling.NEAREST, size=size, size_divisor=size_divisor, do_rescale=False, do_normalize=False, input_data_format=input_data_format, ) # Remove extra channel dimension if added for processing if added_channel_dim: segmentation_map = segmentation_map.squeeze(0) return segmentation_map @deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.44.0") @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, segmentation_maps: Optional[ImageInput] = None, instance_id_to_semantic_id: Optional[Dict[int, int]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, size_divisor: Optional[int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, ignore_index: Optional[int] = None, do_reduce_labels: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> BatchFeature: do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False, max_size=self._max_size) size_divisor = size_divisor if size_divisor is not None else self.size_divisor resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std ignore_index = ignore_index if ignore_index is not None else self.ignore_index do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if segmentation_maps is not None and not valid_images(segmentation_maps): raise ValueError( "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) images = make_list_of_images(images) if segmentation_maps is not None: segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) if segmentation_maps is not None and len(images) != len(segmentation_maps): raise ValueError("Images and segmentation maps must have the same length.") images = [ self._preprocess_image( image, do_resize=do_resize, size=size, size_divisor=size_divisor, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) for image in images ] if segmentation_maps is not None: segmentation_maps = [ self._preprocess_mask( segmentation_map, do_resize, size, size_divisor, input_data_format=input_data_format ) for segmentation_map in segmentation_maps ] encoded_inputs = self.encode_inputs( images, segmentation_maps, instance_id_to_semantic_id, ignore_index, do_reduce_labels, return_tensors, input_data_format=data_format, ) return encoded_inputs # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) return padded_image # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.pad def pad( self, images: List[np.ndarray], constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> BatchFeature: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: image (`np.ndarray`): Image to pad. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ pad_size = get_max_height_width(images, input_data_format=input_data_format) padded_images = [ self._pad_image( image, pad_size, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) for image in images ] data = {"pixel_values": padded_images} if return_pixel_mask: masks = [ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format) for image in images ] data["pixel_mask"] = masks return BatchFeature(data=data, tensor_type=return_tensors) def encode_inputs( self, pixel_values_list: List[ImageInput], segmentation_maps: ImageInput = None, instance_id_to_semantic_id: Optional[Union[List[Dict[int, int]], Dict[int, int]]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, return_tensors: Optional[Union[str, TensorType]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Pad images up to the largest image in a batch and create a corresponding `pixel_mask`. MaskFormer addresses semantic segmentation with a mask classification paradigm, thus input segmentation maps will be converted to lists of binary masks and their respective labels. Let's see an example, assuming `segmentation_maps = [[2,6,7,9]]`, the output will contain `mask_labels = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]` (four binary masks) and `class_labels = [2,6,7,9]`, the labels for each mask. Args: pixel_values_list (`List[ImageInput]`): List of images (pixel values) to be padded. Each image should be a tensor of shape `(channels, height, width)`. segmentation_maps (`ImageInput`, *optional*): The corresponding semantic segmentation maps with the pixel-wise annotations. (`bool`, *optional*, defaults to `True`): Whether or not to pad images up to the largest image in a batch and create a pixel mask. If left to the default, will return a pixel mask that is: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). instance_id_to_semantic_id (`List[Dict[int, int]]` or `Dict[int, int]`, *optional*): A mapping between object instance ids and class ids. If passed, `segmentation_maps` is treated as an instance segmentation map where each pixel represents an instance id. Can be provided as a single dictionary with a global/dataset-level mapping or as a list of dictionaries (one per image), to map instance ids in each image separately. return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of NumPy arrays. If set to `'pt'`, return PyTorch `torch.Tensor` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **pixel_values** -- Pixel values to be fed to a model. - **pixel_mask** -- Pixel mask to be fed to a model (when `=True` or if `pixel_mask` is in `self.model_input_names`). - **mask_labels** -- Optional list of mask labels of shape `(labels, height, width)` to be fed to a model (when `annotations` are provided). - **class_labels** -- Optional list of class labels of shape `(labels)` to be fed to a model (when `annotations` are provided). They identify the labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`. """ ignore_index = self.ignore_index if ignore_index is None else ignore_index do_reduce_labels = self.do_reduce_labels if do_reduce_labels is None else do_reduce_labels pixel_values_list = [to_numpy_array(pixel_values) for pixel_values in pixel_values_list] if input_data_format is None: input_data_format = infer_channel_dimension_format(pixel_values_list[0]) encoded_inputs = self.pad( pixel_values_list, return_tensors=return_tensors, input_data_format=input_data_format ) if segmentation_maps is not None: mask_labels = [] class_labels = [] pad_size = get_max_height_width(pixel_values_list, input_data_format=input_data_format) # Convert to list of binary masks and labels for idx, segmentation_map in enumerate(segmentation_maps): segmentation_map = to_numpy_array(segmentation_map) if isinstance(instance_id_to_semantic_id, list): instance_id = instance_id_to_semantic_id[idx] else: instance_id = instance_id_to_semantic_id # Use instance2class_id mapping per image masks, classes = self.convert_segmentation_map_to_binary_masks( segmentation_map, instance_id, ignore_index=ignore_index, do_reduce_labels=do_reduce_labels ) # We add an axis to make them compatible with the transformations library # this will be removed in the future if masks.shape[0] > 0: masks = [mask[None, ...] for mask in masks] masks = [ self._pad_image( image=mask, output_size=pad_size, constant_values=ignore_index, input_data_format=ChannelDimension.FIRST, ) for mask in masks ] masks = np.concatenate(masks, axis=0) else: masks = np.zeros((0, *pad_size), dtype=np.float32) mask_labels.append(torch.from_numpy(masks)) class_labels.append(torch.from_numpy(classes)) # we cannot batch them since they don't share a common class size encoded_inputs["mask_labels"] = mask_labels encoded_inputs["class_labels"] = class_labels return encoded_inputs def post_process_segmentation( self, outputs: "MaskFormerForInstanceSegmentationOutput", target_size: Tuple[int, int] = None ) -> "torch.Tensor": """ Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into image segmentation predictions. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentationOutput`]): The outputs from [`MaskFormerForInstanceSegmentation`]. target_size (`Tuple[int, int]`, *optional*): If set, the `masks_queries_logits` will be resized to `target_size`. Returns: `torch.Tensor`: A tensor of shape (`batch_size, num_class_labels, height, width`). """ warnings.warn( "`post_process_segmentation` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_instance_segmentation`", FutureWarning, ) # class_queries_logits has shape [BATCH, QUERIES, CLASSES + 1] class_queries_logits = outputs.class_queries_logits # masks_queries_logits has shape [BATCH, QUERIES, HEIGHT, WIDTH] masks_queries_logits = outputs.masks_queries_logits if target_size is not None: masks_queries_logits = torch.nn.functional.interpolate( masks_queries_logits, size=target_size, mode="bilinear", align_corners=False, ) # remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] # mask probs has shape [BATCH, QUERIES, HEIGHT, WIDTH] masks_probs = masks_queries_logits.sigmoid() # now we want to sum over the queries, # $ out_{c,h,w} = \sum_q p_{q,c} * m_{q,h,w} $ # where $ softmax(p) \in R^{q, c} $ is the mask classes # and $ sigmoid(m) \in R^{q, h, w}$ is the mask probabilities # b(atch)q(uery)c(lasses), b(atch)q(uery)h(eight)w(idth) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) return segmentation def post_process_semantic_segmentation( self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None ) -> "torch.Tensor": """ Converts the output of [`MaskFormerForInstanceSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple[int, int]]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. Returns: `List[torch.Tensor]`: A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] # Remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Semantic segmentation logits of shape (batch_size, num_classes, height, width) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) batch_size = class_queries_logits.shape[0] # Resize logits and compute semantic segmentation maps if target_sizes is not None: if batch_size != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) semantic_segmentation = [] for idx in range(batch_size): resized_logits = torch.nn.functional.interpolate( segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = segmentation.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation def post_process_instance_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, target_sizes: Optional[List[Tuple[int, int]]] = None, return_coco_annotation: Optional[bool] = False, return_binary_maps: Optional[bool] = False, ) -> List[Dict]: """ Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into instance segmentation predictions. Only supports PyTorch. If instances could overlap, set either return_coco_annotation or return_binary_maps to `True` to get the correct segmentation result. Args: outputs ([`MaskFormerForInstanceSegmentation`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. return_coco_annotation (`bool`, *optional*, defaults to `False`): If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE) format. return_binary_maps (`bool`, *optional*, defaults to `False`): If set to `True`, segmentation maps are returned as a concatenated tensor of binary segmentation maps (one per detected instance). Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id`, or `List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to `True`, or a tensor of shape `(num_instances, height, width)` if return_binary_maps is set to `True`. Set to `None` if no mask if found above `threshold`. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- An integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if return_coco_annotation and return_binary_maps: raise ValueError("return_coco_annotation and return_binary_maps can not be both set to True.") # [batch_size, num_queries, num_classes+1] class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, height, width] masks_queries_logits = outputs.masks_queries_logits device = masks_queries_logits.device num_classes = class_queries_logits.shape[-1] - 1 num_queries = class_queries_logits.shape[-2] # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(class_queries_logits.shape[0]): mask_pred = masks_queries_logits[i] mask_cls = class_queries_logits[i] scores = torch.nn.functional.softmax(mask_cls, dim=-1)[:, :-1] labels = torch.arange(num_classes, device=device).unsqueeze(0).repeat(num_queries, 1).flatten(0, 1) scores_per_image, topk_indices = scores.flatten(0, 1).topk(num_queries, sorted=False) labels_per_image = labels[topk_indices] topk_indices = torch.div(topk_indices, num_classes, rounding_mode="floor") mask_pred = mask_pred[topk_indices] pred_masks = (mask_pred > 0).float() # Calculate average mask prob mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * pred_masks.flatten(1)).sum(1) / ( pred_masks.flatten(1).sum(1) + 1e-6 ) pred_scores = scores_per_image * mask_scores_per_image pred_classes = labels_per_image segmentation = torch.zeros(masks_queries_logits.shape[2:]) - 1 if target_sizes is not None: segmentation = torch.zeros(target_sizes[i]) - 1 pred_masks = torch.nn.functional.interpolate( pred_masks.unsqueeze(0), size=target_sizes[i], mode="nearest" )[0] instance_maps, segments = [], [] current_segment_id = 0 for j in range(num_queries): score = pred_scores[j].item() if not torch.all(pred_masks[j] == 0) and score >= threshold: segmentation[pred_masks[j] == 1] = current_segment_id segments.append( { "id": current_segment_id, "label_id": pred_classes[j].item(), "was_fused": False, "score": round(score, 6), } ) current_segment_id += 1 instance_maps.append(pred_masks[j]) # Return segmentation map in run-length encoding (RLE) format if return_coco_annotation: segmentation = convert_segmentation_to_rle(segmentation) # Return a concatenated tensor of binary instance maps if return_binary_maps and len(instance_maps) != 0: segmentation = torch.stack(instance_maps, dim=0) results.append({"segmentation": segmentation, "segments_info": segments}) return results def post_process_panoptic_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_sizes: Optional[List[Tuple[int, int]]] = None, ) -> List[Dict]: """ Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into image panoptic segmentation predictions. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentationOutput`]): The outputs from [`MaskFormerForInstanceSegmentation`]. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. label_ids_to_fuse (`Set[int]`, *optional*): The labels in this state will have all their instances be fused together. For instance we could say there can only be one sky in an image, but several persons, so the label ID for sky would be in that set, but not the one for person. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction in batch. If left to None, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to the corresponding `target_sizes` entry. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- an integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. Multiple instances of the same class / label were fused and assigned a single `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if label_ids_to_fuse is None: logger.warning("`label_ids_to_fuse` unset. No instance will be fused.") label_ids_to_fuse = set() class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=label_ids_to_fuse, target_size=target_size, ) results.append({"segmentation": segmentation, "segments_info": segments}) return results __all__ = ["MaskFormerImageProcessor"] ```
============================================================================================================================================= SOURCE CODE FILE: modeling_maskformer.py LINES: 2 SIZE: 88.92 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\maskformer\modeling_maskformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Meta Platforms, Inc.s and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MaskFormer model.""" import math from dataclasses import dataclass from numbers import Number from typing import Dict, List, Optional, Tuple import numpy as np import torch from torch import Tensor, nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutputWithCrossAttentions from ...modeling_utils import PreTrainedModel from ...pytorch_utils import is_torch_greater_or_equal_than_2_1 from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_accelerate_available, is_scipy_available, logging, replace_return_docstrings, requires_backends, ) from ...utils.backbone_utils import load_backbone from ...utils.import_utils import is_torchdynamo_compiling from ..detr import DetrConfig from .configuration_maskformer import MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig if is_accelerate_available(): from accelerate import PartialState from accelerate.utils import reduce if is_scipy_available(): from scipy.optimize import linear_sum_assignment logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MaskFormerConfig" _CHECKPOINT_FOR_DOC = "facebook/maskformer-swin-base-ade" @dataclass # Copied from transformers.models.detr.modeling_detr.DetrDecoderOutput class DetrDecoderOutput(BaseModelOutputWithCrossAttentions): """ Base class for outputs of the DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding losses. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm. """ intermediate_hidden_states: Optional[torch.FloatTensor] = None @dataclass class MaskFormerPixelLevelModuleOutput(ModelOutput): """ MaskFormer's pixel level module output. It returns both the last and (optionally) the hidden states from the `encoder` and `decoder`. By default, the `encoder` is a MaskFormerSwin Transformer and the `decoder` is a Feature Pyramid Network (FPN). The `encoder_last_hidden_state` are referred on the paper as **images features**, while `decoder_last_hidden_state` as **pixel embeddings** Args: encoder_last_hidden_state (`torch.FloatTensor` of shape`(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the encoder. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at the output of each stage. decoder_last_hidden_state (`torch.FloatTensor` of shape`(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the decoder. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at the output of each stage. """ encoder_last_hidden_state: Optional[torch.FloatTensor] = None decoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class MaskFormerPixelDecoderOutput(ModelOutput): """ MaskFormer's pixel decoder module output, practically a Feature Pyramid Network. It returns the last hidden state and (optionally) the hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, num_channels, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights from Detr's decoder after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class MaskFormerModelOutput(ModelOutput): """ Class for outputs of [`MaskFormerModel`]. This class returns all the needed hidden states to compute the logits. Args: encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the encoder model (backbone). pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the pixel decoder model (FPN). transformer_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Last hidden states (final feature map) of the last stage of the transformer decoder model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder model at the output of each stage. pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel decoder model at the output of each stage. transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the transformer decoder at the output of each stage. hidden_states `tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` containing `encoder_hidden_states`, `pixel_decoder_hidden_states` and `decoder_hidden_states` attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights from Detr's decoder after the attention softmax, used to compute the weighted average in the self-attention heads. """ encoder_last_hidden_state: Optional[torch.FloatTensor] = None pixel_decoder_last_hidden_state: Optional[torch.FloatTensor] = None transformer_decoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None transformer_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class MaskFormerForInstanceSegmentationOutput(ModelOutput): """ Class for outputs of [`MaskFormerForInstanceSegmentation`]. This output can be directly passed to [`~MaskFormerImageProcessor.post_process_semantic_segmentation`] or or [`~MaskFormerImageProcessor.post_process_instance_segmentation`] or [`~MaskFormerImageProcessor.post_process_panoptic_segmentation`] depending on the task. Please, see [`~MaskFormerImageProcessor] for details regarding usage. Args: loss (`torch.Tensor`, *optional*): The computed loss, returned when labels are present. class_queries_logits (`torch.FloatTensor`): A tensor of shape `(batch_size, num_queries, num_labels + 1)` representing the proposed classes for each query. Note the `+ 1` is needed because we incorporate the null class. masks_queries_logits (`torch.FloatTensor`): A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each query. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the encoder model (backbone). pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the pixel decoder model (FPN). transformer_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Last hidden states (final feature map) of the last stage of the transformer decoder model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder model at the output of each stage. pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel decoder model at the output of each stage. transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the transformer decoder at the output of each stage. hidden_states `tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` containing `encoder_hidden_states`, `pixel_decoder_hidden_states` and `decoder_hidden_states`. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights from Detr's decoder after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None class_queries_logits: Optional[torch.FloatTensor] = None masks_queries_logits: Optional[torch.FloatTensor] = None auxiliary_logits: Optional[torch.FloatTensor] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None pixel_decoder_last_hidden_state: Optional[torch.FloatTensor] = None transformer_decoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None transformer_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None def upsample_like(pixel_values: Tensor, like: Tensor, mode: str = "bilinear") -> Tensor: """ An utility function that upsamples `pixel_values` to match the dimension of `like`. Args: pixel_values (`torch.Tensor`): The tensor we wish to upsample. like (`torch.Tensor`): The tensor we wish to use as size target. mode (str, *optional*, defaults to `"bilinear"`): The interpolation mode. Returns: `torch.Tensor`: The upsampled tensor """ _, _, height, width = like.shape upsampled = nn.functional.interpolate(pixel_values, size=(height, width), mode=mode, align_corners=False) return upsampled # refactored from original implementation def dice_loss(inputs: Tensor, labels: Tensor, num_masks: int) -> Tensor: r""" Compute the DICE loss, similar to generalized IOU for masks as follows: $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x \cap y }{x \cup y + 1}} $$ In practice, since `labels` is a binary mask, (only 0s and 1s), dice can be computed as follow $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x * y }{x + y + 1}} $$ Args: inputs (`torch.Tensor`): A tensor representing a mask. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). num_masks (`int`): The number of masks present in the current batch, used for normalization. Returns: `torch.Tensor`: The computed loss. """ probs = inputs.sigmoid().flatten(1) numerator = 2 * (probs * labels).sum(-1) denominator = probs.sum(-1) + labels.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) loss = loss.sum() / num_masks return loss # refactored from original implementation def sigmoid_focal_loss( inputs: Tensor, labels: Tensor, num_masks: int, alpha: float = 0.25, gamma: float = 2 ) -> Tensor: r""" Focal loss proposed in [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) originally used in RetinaNet. The loss is computed as follows: $$ \mathcal{L}_{\text{focal loss} = -(1 - p_t)^{\gamma}\log{(p_t)} $$ where \\(CE(p_t) = -\log{(p_t)}}\\), CE is the standard Cross Entropy Loss Please refer to equation (1,2,3) of the paper for a better understanding. Args: inputs (`torch.Tensor`): A float tensor of arbitrary shape. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). num_masks (`int`): The number of masks present in the current batch, used for normalization. alpha (float, *optional*, defaults to 0.25): Weighting factor in range (0,1) to balance positive vs negative examples. gamma (float, *optional*, defaults to 2.0): Exponent of the modulating factor \\(1 - p_t\\) to balance easy vs hard examples. Returns: `torch.Tensor`: The computed loss. """ criterion = nn.BCEWithLogitsLoss(reduction="none") probs = inputs.sigmoid() cross_entropy_loss = criterion(inputs, labels) p_t = probs * labels + (1 - probs) * (1 - labels) loss = cross_entropy_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * labels + (1 - alpha) * (1 - labels) loss = alpha_t * loss loss = loss.mean(1).sum() / num_masks return loss # refactored from original implementation def pair_wise_dice_loss(inputs: Tensor, labels: Tensor) -> Tensor: """ A pair wise version of the dice loss, see `dice_loss` for usage. Args: inputs (`torch.Tensor`): A tensor representing a mask labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). Returns: `torch.Tensor`: The computed loss between each pairs. """ inputs = inputs.sigmoid().flatten(1) numerator = 2 * torch.matmul(inputs, labels.T) # using broadcasting to get a [num_queries, NUM_CLASSES] matrix denominator = inputs.sum(-1)[:, None] + labels.sum(-1)[None, :] loss = 1 - (numerator + 1) / (denominator + 1) return loss # refactored from original implementation def pair_wise_sigmoid_focal_loss(inputs: Tensor, labels: Tensor, alpha: float = 0.25, gamma: float = 2.0) -> Tensor: r""" A pair wise version of the focal loss, see `sigmoid_focal_loss` for usage. Args: inputs (`torch.Tensor`): A tensor representing a mask. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). alpha (float, *optional*, defaults to 0.25): Weighting factor in range (0,1) to balance positive vs negative examples. gamma (float, *optional*, defaults to 2.0): Exponent of the modulating factor \\(1 - p_t\\) to balance easy vs hard examples. Returns: `torch.Tensor`: The computed loss between each pairs. """ if alpha < 0: raise ValueError("alpha must be positive") height_and_width = inputs.shape[1] criterion = nn.BCEWithLogitsLoss(reduction="none") prob = inputs.sigmoid() cross_entropy_loss_pos = criterion(inputs, torch.ones_like(inputs)) focal_pos = ((1 - prob) ** gamma) * cross_entropy_loss_pos focal_pos *= alpha cross_entropy_loss_neg = criterion(inputs, torch.zeros_like(inputs)) focal_neg = (prob**gamma) * cross_entropy_loss_neg focal_neg *= 1 - alpha loss = torch.matmul(focal_pos, labels.T) + torch.matmul(focal_neg, (1 - labels).T) return loss / height_and_width # Copied from transformers.models.detr.modeling_detr.DetrAttention class DetrAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the DETR paper). """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor]): return tensor if object_queries is None else tensor + object_queries def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, key_value_states: Optional[torch.Tensor] = None, spatial_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size, target_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if object_queries is not None: hidden_states_original = hidden_states hidden_states = self.with_pos_embed(hidden_states, object_queries) # add key-value position embeddings to the key value states if spatial_position_embeddings is not None: key_value_states_original = key_value_states key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, target_len, source_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.detr.modeling_detr.DetrDecoderLayer class DetrDecoderLayer(nn.Module): def __init__(self, config: DetrConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = DetrAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = DetrAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, object_queries: Optional[torch.Tensor] = None, query_position_embeddings: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. object_queries (`torch.FloatTensor`, *optional*): object_queries that are added to the hidden states in the cross-attention layer. query_position_embeddings (`torch.FloatTensor`, *optional*): position embeddings that are added to the queries and keys in the self-attention layer. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, object_queries=query_position_embeddings, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, object_queries=query_position_embeddings, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, spatial_position_embeddings=object_queries, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs class DetrDecoder(nn.Module): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DetrDecoderLayer`]. The decoder updates the query embeddings through multiple self-attention and cross-attention layers. Some small tweaks for DETR: - object_queries and query_position_embeddings are added to the forward pass. - if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers. Args: config: DetrConfig """ def __init__(self, config: DetrConfig): super().__init__() self.config = config self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.layers = nn.ModuleList([DetrDecoderLayer(config) for _ in range(config.decoder_layers)]) # in DETR, the decoder uses layernorm after the last decoder layer output self.layernorm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False def forward( self, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, object_queries=None, query_position_embeddings=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The query embeddings that are passed into the decoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`: - 1 for queries that are **not masked**, - 0 for queries that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Position embeddings that are added to the queries and keys in each cross-attention layer. query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): , *optional*): Position embeddings that are added to the queries and keys in each self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is not None: hidden_states = inputs_embeds input_shape = inputs_embeds.size()[:-1] # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # optional intermediate hidden states intermediate = () if self.config.auxiliary_loss else None # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, None, encoder_hidden_states, encoder_attention_mask, None, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=None, object_queries=object_queries, query_position_embeddings=query_position_embeddings, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if self.config.auxiliary_loss: hidden_states = self.layernorm(hidden_states) intermediate += (hidden_states,) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # finally, apply layernorm hidden_states = self.layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) # stack intermediate decoder activations if self.config.auxiliary_loss: intermediate = torch.stack(intermediate) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate] if v is not None ) return DetrDecoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, intermediate_hidden_states=intermediate, ) # refactored from original implementation class MaskFormerHungarianMatcher(nn.Module): """This class computes an assignment between the labels and the predictions of the network. For efficiency reasons, the labels don't include the no_object. Because of this, in general, there are more predictions than labels. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__(self, cost_class: float = 1.0, cost_mask: float = 1.0, cost_dice: float = 1.0): """Creates the matcher Params: cost_class (float, *optional*, defaults to 1.0): This is the relative weight of the classification error in the matching cost. cost_mask (float, *optional*, defaults to 1.0): This is the relative weight of the focal loss of the binary mask in the matching cost. cost_dice (float, *optional*, defaults to 1.0): This is the relative weight of the dice loss of the binary mask in the matching cost """ super().__init__() if cost_class == 0 and cost_mask == 0 and cost_dice == 0: raise ValueError("All costs cant be 0") self.cost_class = cost_class self.cost_mask = cost_mask self.cost_dice = cost_dice @torch.no_grad() def forward(self, masks_queries_logits, class_queries_logits, mask_labels, class_labels) -> List[Tuple[Tensor]]: """Performs the matching Params: masks_queries_logits (`torch.Tensor`): A tensor` of dim `batch_size, num_queries, num_labels` with the classification logits. class_queries_logits (`torch.Tensor`): A tensor` of dim `batch_size, num_queries, height, width` with the predicted masks. class_labels (`torch.Tensor`): A tensor` of dim `num_target_boxes` (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels. mask_labels (`torch.Tensor`): A tensor` of dim `num_target_boxes, height, width` containing the target masks. Returns: `List[Tuple[Tensor]]`: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected labels (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes). """ indices: List[Tuple[np.array]] = [] preds_masks = masks_queries_logits preds_probs = class_queries_logits # iterate through batch size for pred_probs, pred_mask, target_mask, labels in zip(preds_probs, preds_masks, mask_labels, class_labels): # downsample the target mask, save memory target_mask = nn.functional.interpolate(target_mask[:, None], size=pred_mask.shape[-2:], mode="nearest") pred_probs = pred_probs.softmax(-1) # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be ommitted. cost_class = -pred_probs[:, labels] # flatten spatial dimension "q h w -> q (h w)" pred_mask_flat = pred_mask.flatten(1) # [num_queries, height*width] # same for target_mask "c h w -> c (h w)" target_mask_flat = target_mask[:, 0].flatten(1) # [num_total_labels, height*width] # compute the focal loss between each mask pairs -> shape (num_queries, num_labels) cost_mask = pair_wise_sigmoid_focal_loss(pred_mask_flat, target_mask_flat) # Compute the dice loss betwen each mask pairs -> shape (num_queries, num_labels) cost_dice = pair_wise_dice_loss(pred_mask_flat, target_mask_flat) # final cost matrix cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice # do the assigmented using the hungarian algorithm in scipy assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.cpu()) indices.append(assigned_indices) # It could be stacked in one tensor matched_indices = [ (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices ] return matched_indices def __repr__(self): head = "Matcher " + self.__class__.__name__ body = [ f"cost_class: {self.cost_class}", f"cost_mask: {self.cost_mask}", f"cost_dice: {self.cost_dice}", ] _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines) # copied and adapted from original implementation class MaskFormerLoss(nn.Module): def __init__( self, num_labels: int, matcher: MaskFormerHungarianMatcher, weight_dict: Dict[str, float], eos_coef: float, ): """ The MaskFormer Loss. The loss is computed very similar to DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth masks and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and mask) Args: num_labels (`int`): The number of classes. matcher (`MaskFormerHungarianMatcher`): A torch module that computes the assigments between the predictions and labels. weight_dict (`Dict[str, float]`): A dictionary of weights to be applied to the different losses. eos_coef (`float`): Weight to apply to the null class. """ super().__init__() requires_backends(self, ["scipy"]) self.num_labels = num_labels self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef empty_weight = torch.ones(self.num_labels + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) def _max_by_axis(self, the_list: List[List[int]]) -> List[int]: maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes def _pad_images_to_max_in_batch(self, tensors: List[Tensor]) -> Tuple[Tensor, Tensor]: # get the maximum size in the batch max_size = self._max_by_axis([list(tensor.shape) for tensor in tensors]) batch_size = len(tensors) # compute finel size batch_shape = [batch_size] + max_size b, _, h, w = batch_shape # get metadata dtype = tensors[0].dtype device = tensors[0].device padded_tensors = torch.zeros(batch_shape, dtype=dtype, device=device) padding_masks = torch.ones((b, h, w), dtype=torch.bool, device=device) # pad the tensors to the size of the biggest one for tensor, padded_tensor, padding_mask in zip(tensors, padded_tensors, padding_masks): padded_tensor[: tensor.shape[0], : tensor.shape[1], : tensor.shape[2]].copy_(tensor) padding_mask[: tensor.shape[1], : tensor.shape[2]] = False return padded_tensors, padding_masks def loss_labels( self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array] ) -> Dict[str, Tensor]: """Compute the losses related to the labels using cross entropy. Args: class_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, num_labels` class_labels (`List[torch.Tensor]`): List of class labels of shape `(labels)`. indices (`Tuple[np.array])`: The indices computed by the Hungarian matcher. Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key: - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels. """ pred_logits = class_queries_logits batch_size, num_queries, _ = pred_logits.shape criterion = nn.CrossEntropyLoss(weight=self.empty_weight) idx = self._get_predictions_permutation_indices(indices) # shape = (batch_size, num_queries) target_classes_o = torch.cat([target[j] for target, (_, j) in zip(class_labels, indices)]) # shape = (batch_size, num_queries) target_classes = torch.full( (batch_size, num_queries), fill_value=self.num_labels, dtype=torch.int64, device=pred_logits.device ) target_classes[idx] = target_classes_o # target_classes is a (batch_size, num_labels, num_queries), we need to permute pred_logits "b q c -> b c q" pred_logits_transposed = pred_logits.transpose(1, 2) loss_ce = criterion(pred_logits_transposed, target_classes) losses = {"loss_cross_entropy": loss_ce} return losses def loss_masks( self, masks_queries_logits: Tensor, mask_labels: List[Tensor], indices: Tuple[np.array], num_masks: int ) -> Dict[str, Tensor]: """Compute the losses related to the masks using focal and dice loss. Args: masks_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, height, width` mask_labels (`torch.Tensor`): List of mask labels of shape `(labels, height, width)`. indices (`Tuple[np.array])`: The indices computed by the Hungarian matcher. num_masks (`int)`: The number of masks, used for normalization. Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys: - **loss_mask** -- The loss computed using sigmoid focal loss on the predicted and ground truth masks. - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth masks. """ src_idx = self._get_predictions_permutation_indices(indices) tgt_idx = self._get_targets_permutation_indices(indices) # shape (batch_size * num_queries, height, width) pred_masks = masks_queries_logits[src_idx] # shape (batch_size, num_queries, height, width) # pad all and stack the targets to the num_labels dimension target_masks, _ = self._pad_images_to_max_in_batch(mask_labels) target_masks = target_masks[tgt_idx] # upsample predictions to the target size, we have to add one dim to use interpolate pred_masks = nn.functional.interpolate( pred_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False ) pred_masks = pred_masks[:, 0].flatten(1) target_masks = target_masks.flatten(1) losses = { "loss_mask": sigmoid_focal_loss(pred_masks, target_masks, num_masks), "loss_dice": dice_loss(pred_masks, target_masks, num_masks), } return losses def _get_predictions_permutation_indices(self, indices): # permute predictions following indices batch_indices = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) predictions_indices = torch.cat([src for (src, _) in indices]) return batch_indices, predictions_indices def _get_targets_permutation_indices(self, indices): # permute labels following indices batch_indices = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) target_indices = torch.cat([tgt for (_, tgt) in indices]) return batch_indices, target_indices def forward( self, masks_queries_logits: Tensor, class_queries_logits: Tensor, mask_labels: List[Tensor], class_labels: List[Tensor], auxiliary_predictions: Optional[Dict[str, Tensor]] = None, ) -> Dict[str, Tensor]: """ This performs the loss computation. Args: masks_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, height, width` class_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, num_labels` mask_labels (`torch.Tensor`): List of mask labels of shape `(labels, height, width)`. class_labels (`List[torch.Tensor]`): List of class labels of shape `(labels)`. auxiliary_predictions (`Dict[str, torch.Tensor]`, *optional*): if `use_auxiliary_loss` was set to `true` in [`MaskFormerConfig`], then it contains the logits from the inner layers of the Detr's Decoder. Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys: - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels. - **loss_mask** -- The loss computed using sigmoid focal loss on the predicted and ground truth masks. - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth masks. if `use_auxiliary_loss` was set to `true` in [`MaskFormerConfig`], the dictionary contains addional losses for each auxiliary predictions. """ # retrieve the matching between the outputs of the last layer and the labels indices = self.matcher(masks_queries_logits, class_queries_logits, mask_labels, class_labels) # compute the average number of target masks for normalization purposes num_masks: Number = self.get_num_masks(class_labels, device=class_labels[0].device) # get all the losses losses: Dict[str, Tensor] = { **self.loss_masks(masks_queries_logits, mask_labels, indices, num_masks), **self.loss_labels(class_queries_logits, class_labels, indices), } # in case of auxiliary losses, we repeat this process with the output of each intermediate layer. if auxiliary_predictions is not None: for idx, aux_outputs in enumerate(auxiliary_predictions): masks_queries_logits = aux_outputs["masks_queries_logits"] class_queries_logits = aux_outputs["class_queries_logits"] loss_dict = self.forward(masks_queries_logits, class_queries_logits, mask_labels, class_labels) loss_dict = {f"{key}_{idx}": value for key, value in loss_dict.items()} losses.update(loss_dict) return losses def get_num_masks(self, class_labels: torch.Tensor, device: torch.device) -> torch.Tensor: """ Computes the average number of target masks across the batch, for normalization purposes. """ num_masks = sum([len(classes) for classes in class_labels]) num_masks = torch.as_tensor(num_masks, dtype=torch.float, device=device) world_size = 1 if is_accelerate_available(): if PartialState._shared_state != {}: num_masks = reduce(num_masks) world_size = PartialState().num_processes num_masks = torch.clamp(num_masks / world_size, min=1) return num_masks class MaskFormerFPNConvLayer(nn.Module): def __init__(self, in_features: int, out_features: int, kernel_size: int = 3, padding: int = 1): """ A basic module that executes conv - norm - in sequence used in MaskFormer. Args: in_features (`int`): The number of input features (channels). out_features (`int`): The number of outputs features (channels). """ super().__init__() self.layers = [ nn.Conv2d(in_features, out_features, kernel_size=kernel_size, padding=padding, bias=False), nn.GroupNorm(32, out_features), nn.ReLU(inplace=True), ] for i, layer in enumerate(self.layers): # Provide backwards compatibility from when the class inherited from nn.Sequential # In nn.Sequential subclasses, the name given to the layer is its index in the sequence. # In nn.Module subclasses they derived from the instance attribute they are assigned to e.g. # self.my_layer_name = Layer() # We can't give instance attributes integer names i.e. self.0 is not permitted and so need to register # explicitly self.add_module(str(i), layer) def forward(self, input: Tensor) -> Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class MaskFormerFPNLayer(nn.Module): def __init__(self, in_features: int, lateral_features: int): """ A Feature Pyramid Network Layer (FPN) layer. It creates a feature map by aggregating features from the previous and backbone layer. Due to the spatial mismatch, the tensor coming from the previous layer is upsampled. Args: in_features (`int`): The number of input features (channels). lateral_features (`int`): The number of lateral features (channels). """ super().__init__() self.proj = nn.Sequential( nn.Conv2d(lateral_features, in_features, kernel_size=1, padding=0, bias=False), nn.GroupNorm(32, in_features), ) self.block = MaskFormerFPNConvLayer(in_features, in_features) def forward(self, down: Tensor, left: Tensor) -> Tensor: left = self.proj(left) down = nn.functional.interpolate(down, size=left.shape[-2:], mode="nearest") down += left down = self.block(down) return down class MaskFormerFPNModel(nn.Module): def __init__(self, in_features: int, lateral_widths: List[int], feature_size: int = 256): """ Feature Pyramid Network, given an input tensor and a set of feature map of different feature/spatial size, it creates a list of feature maps with the same feature size. Args: in_features (`int`): The number of input features (channels). lateral_widths (`List[int]`): A list with the features (channels) size of each lateral connection. feature_size (int, *optional*, defaults to 256): The features (channels) of the resulting feature maps. """ super().__init__() self.stem = MaskFormerFPNConvLayer(in_features, feature_size) self.layers = nn.Sequential( *[MaskFormerFPNLayer(feature_size, lateral_width) for lateral_width in lateral_widths[::-1]] ) def forward(self, features: List[Tensor]) -> List[Tensor]: fpn_features = [] last_feature = features[-1] other_features = features[:-1] output = self.stem(last_feature) for layer, left in zip(self.layers, other_features[::-1]): output = layer(output, left) fpn_features.append(output) return fpn_features class MaskFormerPixelDecoder(nn.Module): def __init__(self, *args, feature_size: int = 256, mask_feature_size: int = 256, **kwargs): r""" Pixel Decoder Module proposed in [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278). It first runs the backbone's features into a Feature Pyramid Network creating a list of feature maps. Then, it projects the last one to the correct `mask_size`. Args: feature_size (`int`, *optional*, defaults to 256): The feature size (channel dimension) of the FPN feature maps. mask_feature_size (`int`, *optional*, defaults to 256): The features (channels) of the target masks size \\(C_{\epsilon}\\) in the paper. """ super().__init__() self.fpn = MaskFormerFPNModel(*args, feature_size=feature_size, **kwargs) self.mask_projection = nn.Conv2d(feature_size, mask_feature_size, kernel_size=3, padding=1) def forward( self, features: List[Tensor], output_hidden_states: bool = False, return_dict: bool = True ) -> MaskFormerPixelDecoderOutput: fpn_features = self.fpn(features) # we use the last feature map last_feature_projected = self.mask_projection(fpn_features[-1]) if not return_dict: return (last_feature_projected, tuple(fpn_features)) if output_hidden_states else (last_feature_projected,) return MaskFormerPixelDecoderOutput( last_hidden_state=last_feature_projected, hidden_states=tuple(fpn_features) if output_hidden_states else () ) # copied and adapted from original implementation, also practically equal to DetrSinePositionEmbedding class MaskFormerSinePositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__( self, num_pos_feats: int = 64, temperature: int = 10000, normalize: bool = False, scale: Optional[float] = None ): super().__init__() if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize self.scale = 2 * math.pi if scale is None else scale def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor: if mask is None: mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) not_mask = (~mask).to(x.dtype) y_embed = not_mask.cumsum(1) x_embed = not_mask.cumsum(2) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.int64, device=x.device).type_as(x) dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PredictionBlock(nn.Module): def __init__(self, in_dim: int, out_dim: int, activation: nn.Module) -> None: super().__init__() self.layers = [nn.Linear(in_dim, out_dim), activation] # Maintain submodule indexing as if part of a Sequential block for i, layer in enumerate(self.layers): self.add_module(str(i), layer) def forward(self, input: Tensor) -> Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class MaskformerMLPPredictionHead(nn.Module): def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int = 3): """ A classic Multi Layer Perceptron (MLP). Args: input_dim (`int`): The input dimensions. hidden_dim (`int`): The hidden dimensions. output_dim (`int`): The output dimensions. num_layers (int, *optional*, defaults to 3): The number of layers. """ super().__init__() in_dims = [input_dim] + [hidden_dim] * (num_layers - 1) out_dims = [hidden_dim] * (num_layers - 1) + [output_dim] self.layers = [] for i, (in_dim, out_dim) in enumerate(zip(in_dims, out_dims)): activation = nn.ReLU() if i < num_layers - 1 else nn.Identity() layer = PredictionBlock(in_dim, out_dim, activation=activation) self.layers.append(layer) # Provide backwards compatibility from when the class inherited from nn.Sequential # In nn.Sequential subclasses, the name given to the layer is its index in the sequence. # In nn.Module subclasses they derived from the instance attribute they are assigned to e.g. # self.my_layer_name = Layer() # We can't give instance attributes integer names i.e. self.0 is not permitted and so need to register # explicitly self.add_module(str(i), layer) def forward(self, input: Tensor) -> Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class MaskFormerPixelLevelModule(nn.Module): def __init__(self, config: MaskFormerConfig): """ Pixel Level Module proposed in [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278). It runs the input image through a backbone and a pixel decoder, generating an image feature map and pixel embeddings. Args: config ([`MaskFormerConfig`]): The configuration used to instantiate this model. """ super().__init__() if getattr(config, "backbone_config") is not None and config.backbone_config.model_type == "swin": # for backwards compatibility backbone_config = config.backbone_config backbone_config = MaskFormerSwinConfig.from_dict(backbone_config.to_dict()) backbone_config.out_features = ["stage1", "stage2", "stage3", "stage4"] config.backbone_config = backbone_config self.encoder = load_backbone(config) feature_channels = self.encoder.channels self.decoder = MaskFormerPixelDecoder( in_features=feature_channels[-1], feature_size=config.fpn_feature_size, mask_feature_size=config.mask_feature_size, lateral_widths=feature_channels[:-1], ) def forward( self, pixel_values: Tensor, output_hidden_states: bool = False, return_dict: bool = True ) -> MaskFormerPixelLevelModuleOutput: features = self.encoder(pixel_values).feature_maps decoder_output = self.decoder(features, output_hidden_states, return_dict=return_dict) if not return_dict: last_hidden_state = decoder_output[0] outputs = (features[-1], last_hidden_state) if output_hidden_states: hidden_states = decoder_output[1] outputs = outputs + (tuple(features),) + (hidden_states,) return outputs return MaskFormerPixelLevelModuleOutput( # the last feature is actually the output from the last layer encoder_last_hidden_state=features[-1], decoder_last_hidden_state=decoder_output.last_hidden_state, encoder_hidden_states=tuple(features) if output_hidden_states else (), decoder_hidden_states=decoder_output.hidden_states if output_hidden_states else (), ) class MaskFormerTransformerModule(nn.Module): """ The MaskFormer's transformer module. """ def __init__(self, in_features: int, config: MaskFormerConfig): super().__init__() hidden_size = config.decoder_config.hidden_size should_project = in_features != hidden_size self.position_embedder = MaskFormerSinePositionEmbedding(num_pos_feats=hidden_size // 2, normalize=True) self.queries_embedder = nn.Embedding(config.decoder_config.num_queries, hidden_size) self.input_projection = nn.Conv2d(in_features, hidden_size, kernel_size=1) if should_project else None self.decoder = DetrDecoder(config=config.decoder_config) def forward( self, image_features: Tensor, output_hidden_states: bool = False, output_attentions: bool = False, return_dict: Optional[bool] = None, ) -> DetrDecoderOutput: if self.input_projection is not None: image_features = self.input_projection(image_features) object_queries = self.position_embedder(image_features) # repeat the queries "q c -> b q c" batch_size = image_features.shape[0] queries_embeddings = self.queries_embedder.weight.unsqueeze(0).repeat(batch_size, 1, 1) inputs_embeds = torch.zeros_like(queries_embeddings, requires_grad=self.training) # torch.export.export does no support requires_grad if self.training: inputs_embeds.requires_grad_(True) batch_size, num_channels, height, width = image_features.shape # rearrange both image_features and object_queries "b c h w -> b (h w) c" image_features = image_features.view(batch_size, num_channels, height * width).permute(0, 2, 1) object_queries = object_queries.view(batch_size, num_channels, height * width).permute(0, 2, 1) decoder_output: DetrDecoderOutput = self.decoder( inputs_embeds=inputs_embeds, attention_mask=None, encoder_hidden_states=image_features, encoder_attention_mask=None, object_queries=object_queries, query_position_embeddings=queries_embeddings, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return decoder_output MASKFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MaskFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MASKFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MaskFormerImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of Detr's decoder attention layers. return_dict (`bool`, *optional*): Whether or not to return a [`~MaskFormerModelOutput`] instead of a plain tuple. """ class MaskFormerPreTrainedModel(PreTrainedModel): config_class = MaskFormerConfig base_model_prefix = "model" main_input_name = "pixel_values" def _init_weights(self, module: nn.Module): xavier_std = self.config.init_xavier_std std = self.config.init_std if isinstance(module, MaskFormerTransformerModule): if module.input_projection is not None: nn.init.xavier_uniform_(module.input_projection.weight, gain=xavier_std) nn.init.constant_(module.input_projection.bias, 0) # FPN elif isinstance(module, MaskFormerFPNModel): nn.init.xavier_uniform_(module.stem.get_submodule("0").weight, gain=xavier_std) elif isinstance(module, MaskFormerFPNLayer): nn.init.xavier_uniform_(module.proj[0].weight, gain=xavier_std) elif isinstance(module, MaskFormerFPNConvLayer): nn.init.xavier_uniform_(module.get_submodule("0").weight, gain=xavier_std) # The MLP head elif isinstance(module, MaskformerMLPPredictionHead): # I was not able to find the correct initializer in the original implementation # we'll use xavier for submodule in module.modules(): if isinstance(submodule, nn.Linear): nn.init.xavier_uniform_(submodule.weight, gain=xavier_std) nn.init.constant_(submodule.bias, 0) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) # copied from DETR if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @add_start_docstrings( "The bare MaskFormer Model outputting raw hidden-states without any specific head on top.", MASKFORMER_START_DOCSTRING, ) class MaskFormerModel(MaskFormerPreTrainedModel): def __init__(self, config: MaskFormerConfig): super().__init__(config) self.pixel_level_module = MaskFormerPixelLevelModule(config) self.transformer_module = MaskFormerTransformerModule( in_features=self.pixel_level_module.encoder.channels[-1], config=config ) self.post_init() @add_start_docstrings_to_model_forward(MASKFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MaskFormerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, pixel_mask: Optional[Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> MaskFormerModelOutput: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, MaskFormerModel >>> from PIL import Image >>> import requests >>> # load MaskFormer fine-tuned on ADE20k semantic segmentation >>> image_processor = AutoImageProcessor.from_pretrained("facebook/maskformer-swin-base-ade") >>> model = MaskFormerModel.from_pretrained("facebook/maskformer-swin-base-ade") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(image, return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> # the decoder of MaskFormer outputs hidden states of shape (batch_size, num_queries, hidden_size) >>> transformer_decoder_last_hidden_state = outputs.transformer_decoder_last_hidden_state >>> list(transformer_decoder_last_hidden_state.shape) [1, 100, 256] ```""" if pixel_values is None: raise ValueError("You have to specify pixel_values") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, _, height, width = pixel_values.shape if pixel_mask is None: pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device) pixel_level_module_output = self.pixel_level_module( pixel_values, output_hidden_states, return_dict=return_dict ) image_features = pixel_level_module_output[0] pixel_embeddings = pixel_level_module_output[1] transformer_module_output = self.transformer_module(image_features, output_hidden_states, output_attentions) queries = transformer_module_output.last_hidden_state encoder_hidden_states = None pixel_decoder_hidden_states = None transformer_decoder_hidden_states = None hidden_states = None if output_hidden_states: encoder_hidden_states = pixel_level_module_output[2] pixel_decoder_hidden_states = pixel_level_module_output[3] transformer_decoder_hidden_states = transformer_module_output[1] hidden_states = encoder_hidden_states + pixel_decoder_hidden_states + transformer_decoder_hidden_states output = MaskFormerModelOutput( encoder_last_hidden_state=image_features, pixel_decoder_last_hidden_state=pixel_embeddings, transformer_decoder_last_hidden_state=queries, encoder_hidden_states=encoder_hidden_states, pixel_decoder_hidden_states=pixel_decoder_hidden_states, transformer_decoder_hidden_states=transformer_decoder_hidden_states, hidden_states=hidden_states, attentions=transformer_module_output.attentions, ) if not return_dict: output = tuple(v for v in output.values()) return output class MaskFormerForInstanceSegmentation(MaskFormerPreTrainedModel): def __init__(self, config: MaskFormerConfig): super().__init__(config) self.model = MaskFormerModel(config) hidden_size = config.decoder_config.hidden_size # + 1 because we add the "null" class self.class_predictor = nn.Linear(hidden_size, config.num_labels + 1) self.mask_embedder = MaskformerMLPPredictionHead(hidden_size, hidden_size, config.mask_feature_size) self.matcher = MaskFormerHungarianMatcher( cost_class=1.0, cost_dice=config.dice_weight, cost_mask=config.mask_weight ) self.weight_dict: Dict[str, float] = { "loss_cross_entropy": config.cross_entropy_weight, "loss_mask": config.mask_weight, "loss_dice": config.dice_weight, } self.criterion = MaskFormerLoss( config.num_labels, matcher=self.matcher, weight_dict=self.weight_dict, eos_coef=config.no_object_weight, ) self.post_init() def get_loss_dict( self, masks_queries_logits: Tensor, class_queries_logits: Tensor, mask_labels: Tensor, class_labels: Tensor, auxiliary_logits: Dict[str, Tensor], ) -> Dict[str, Tensor]: loss_dict: Dict[str, Tensor] = self.criterion( masks_queries_logits, class_queries_logits, mask_labels, class_labels, auxiliary_logits ) # weight each loss by `self.weight_dict[<LOSS_NAME>]` including auxiliary losses for key, weight in self.weight_dict.items(): for loss_key, loss in loss_dict.items(): if key in loss_key: loss *= weight return loss_dict def get_loss(self, loss_dict: Dict[str, Tensor]) -> Tensor: return sum(loss_dict.values()) def get_logits(self, outputs: MaskFormerModelOutput) -> Tuple[Tensor, Tensor, Dict[str, Tensor]]: pixel_embeddings = outputs.pixel_decoder_last_hidden_state # get the auxiliary predictions (one for each decoder's layer) auxiliary_logits: List[str, Tensor] = [] is_tracing = torch.jit.is_tracing() or isinstance(outputs, torch.fx.Proxy) or is_torchdynamo_compiling() # This code is a little bit cumbersome, an improvement can be to return a list of predictions. If we have auxiliary loss then we are going to return more than one element in the list if self.config.use_auxiliary_loss: stacked_transformer_decoder_outputs = torch.stack(outputs.transformer_decoder_hidden_states) classes = self.class_predictor(stacked_transformer_decoder_outputs) class_queries_logits = classes[-1] # get the masks mask_embeddings = self.mask_embedder(stacked_transformer_decoder_outputs) if is_tracing and not is_torch_greater_or_equal_than_2_1: # Equivalent to einsum('lbqc, bchw -> lbqhw') but jit friendly num_embeddings, batch_size, num_queries, num_channels = mask_embeddings.shape _, _, height, width = pixel_embeddings.shape binaries_masks = torch.zeros( (num_embeddings, batch_size, num_queries, height, width), device=mask_embeddings.device ) for c in range(num_channels): binaries_masks += mask_embeddings[..., c][..., None, None] * pixel_embeddings[None, :, None, c] else: binaries_masks = torch.einsum("lbqc, bchw -> lbqhw", mask_embeddings, pixel_embeddings) masks_queries_logits = binaries_masks[-1] # go til [:-1] because the last one is always used for aux_binary_masks, aux_classes in zip(binaries_masks[:-1], classes[:-1]): auxiliary_logits.append( {"masks_queries_logits": aux_binary_masks, "class_queries_logits": aux_classes} ) else: transformer_decoder_hidden_states = outputs.transformer_decoder_last_hidden_state classes = self.class_predictor(transformer_decoder_hidden_states) class_queries_logits = classes # get the masks mask_embeddings = self.mask_embedder(transformer_decoder_hidden_states) # sum up over the channels if is_tracing and not is_torch_greater_or_equal_than_2_1: # Equivalent to einsum('bqc, bchw -> bqhw') but jit friendly batch_size, num_queries, num_channels = mask_embeddings.shape _, _, height, width = pixel_embeddings.shape masks_queries_logits = torch.zeros( (batch_size, num_queries, height, width), device=mask_embeddings.device ) for c in range(num_channels): masks_queries_logits += mask_embeddings[..., c][..., None, None] * pixel_embeddings[:, None, c] else: masks_queries_logits = torch.einsum("bqc, bchw -> bqhw", mask_embeddings, pixel_embeddings) return class_queries_logits, masks_queries_logits, auxiliary_logits @add_start_docstrings_to_model_forward(MASKFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MaskFormerForInstanceSegmentationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, mask_labels: Optional[List[Tensor]] = None, class_labels: Optional[List[Tensor]] = None, pixel_mask: Optional[Tensor] = None, output_auxiliary_logits: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> MaskFormerForInstanceSegmentationOutput: r""" mask_labels (`List[torch.Tensor]`, *optional*): List of mask labels of shape `(num_labels, height, width)` to be fed to a model class_labels (`List[torch.LongTensor]`, *optional*): list of target class labels of shape `(num_labels, height, width)` to be fed to a model. They identify the labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`. Returns: Examples: Semantic segmentation example: ```python >>> from transformers import AutoImageProcessor, MaskFormerForInstanceSegmentation >>> from PIL import Image >>> import requests >>> # load MaskFormer fine-tuned on ADE20k semantic segmentation >>> image_processor = AutoImageProcessor.from_pretrained("facebook/maskformer-swin-base-ade") >>> model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-base-ade") >>> url = ( ... "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" ... ) >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # you can pass them to image_processor for postprocessing >>> predicted_semantic_map = image_processor.post_process_semantic_segmentation( ... outputs, target_sizes=[(image.height, image.width)] ... )[0] >>> # we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs) >>> list(predicted_semantic_map.shape) [512, 683] ``` Panoptic segmentation example: ```python >>> from transformers import AutoImageProcessor, MaskFormerForInstanceSegmentation >>> from PIL import Image >>> import requests >>> # load MaskFormer fine-tuned on COCO panoptic segmentation >>> image_processor = AutoImageProcessor.from_pretrained("facebook/maskformer-swin-base-coco") >>> model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-base-coco") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # you can pass them to image_processor for postprocessing >>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[(image.height, image.width)])[0] >>> # we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs) >>> predicted_panoptic_map = result["segmentation"] >>> list(predicted_panoptic_map.shape) [480, 640] ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict raw_outputs = self.model( pixel_values, pixel_mask, output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss, return_dict=return_dict, output_attentions=output_attentions, ) # We need to have raw_outputs optionally be returned as a dict to use torch.compile. For backwards # compatibility we convert to a dataclass for the rest of the model logic outputs = MaskFormerModelOutput( encoder_last_hidden_state=raw_outputs[0], pixel_decoder_last_hidden_state=raw_outputs[1], transformer_decoder_last_hidden_state=raw_outputs[2], encoder_hidden_states=raw_outputs[3] if output_hidden_states else None, pixel_decoder_hidden_states=raw_outputs[4] if output_hidden_states else None, transformer_decoder_hidden_states=raw_outputs[5] if output_hidden_states else None, hidden_states=raw_outputs[6] if output_hidden_states else None, attentions=raw_outputs[-1] if output_attentions else None, ) loss, loss_dict, auxiliary_logits = None, None, None class_queries_logits, masks_queries_logits, auxiliary_logits = self.get_logits(outputs) if mask_labels is not None and class_labels is not None: loss_dict: Dict[str, Tensor] = self.get_loss_dict( masks_queries_logits, class_queries_logits, mask_labels, class_labels, auxiliary_logits ) loss = self.get_loss(loss_dict) output_auxiliary_logits = ( self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits ) if not output_auxiliary_logits: auxiliary_logits = None if not return_dict: output = tuple( v for v in (loss, class_queries_logits, masks_queries_logits, auxiliary_logits, *outputs.values()) if v is not None ) return output return MaskFormerForInstanceSegmentationOutput( loss=loss, **outputs, class_queries_logits=class_queries_logits, masks_queries_logits=masks_queries_logits, auxiliary_logits=auxiliary_logits, ) __all__ = ["MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel"] ```
================================================================================================================================================== SOURCE CODE FILE: modeling_maskformer_swin.py LINES: 1 SIZE: 42.27 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\maskformer\modeling_maskformer_swin.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MaskFormer Swin Transformer. The reason Swin Transformer is implemented here is because MaskFormer uses the hidden states before downsampling, which is different from the default Swin Transformer.""" import collections.abc import math from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import Tensor, nn from ...activations import ACT2FN from ...file_utils import ModelOutput from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils import torch_int from ...utils.backbone_utils import BackboneMixin from .configuration_maskformer_swin import MaskFormerSwinConfig @dataclass class MaskFormerSwinModelOutputWithPooling(ModelOutput): """ Class for MaskFormerSwinModel's outputs that also contains the spatial dimensions of the hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state after a mean pooling operation. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. hidden_states_spatial_dimensions (`tuple(tuple(int, int))`, *optional*): A tuple containing the spatial dimension of each `hidden_state` needed to reshape the `hidden_states` to `batch, channels, height, width`. Due to padding, their spatial size cannot be inferred before the `forward` method. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: Optional[torch.FloatTensor] = None pooler_output: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_spatial_dimensions: Tuple[Tuple[int, int]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class MaskFormerSwinBaseModelOutput(ModelOutput): """ Class for SwinEncoder's outputs. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. hidden_states_spatial_dimensions (`tuple(tuple(int, int))`, *optional*): A tuple containing the spatial dimension of each `hidden_state` needed to reshape the `hidden_states` to `batch, channels, height, width`. Due to padding, their spatial size cannot inferred before the `forward` method. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_spatial_dimensions: Tuple[Tuple[int, int]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.swin.modeling_swin.window_partition def window_partition(input_feature, window_size): """ Partitions the given input into windows. """ batch_size, height, width, num_channels = input_feature.shape input_feature = input_feature.view( batch_size, height // window_size, window_size, width // window_size, window_size, num_channels ) windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.window_reverse def window_reverse(windows, window_size, height, width): """ Merges windows to produce higher resolution features. """ num_channels = windows.shape[-1] windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) return windows # Copied from transformers.models.swin.modeling_swin.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output class MaskFormerSwinEmbeddings(nn.Module): """ Construct the patch and position embeddings. """ def __init__(self, config): super().__init__() self.patch_embeddings = MaskFormerSwinPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.patch_grid = self.patch_embeddings.grid_size if config.use_absolute_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) else: self.position_embeddings = None self.norm = nn.LayerNorm(config.embed_dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.patch_size = config.patch_size # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def forward(self, pixel_values, interpolate_pos_encoding): _, num_channels, height, width = pixel_values.shape embeddings, output_dimensions = self.patch_embeddings(pixel_values) embeddings = self.norm(embeddings) if self.position_embeddings is not None: if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings with Swin->MaskFormerSwin class MaskFormerSwinPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.embed_dim image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def maybe_pad(self, pixel_values, height, width): if width % self.patch_size[1] != 0: pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) pixel_values = nn.functional.pad(pixel_values, pad_values) if height % self.patch_size[0] != 0: pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) pixel_values = nn.functional.pad(pixel_values, pad_values) return pixel_values def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: _, num_channels, height, width = pixel_values.shape # pad the input to be divisible by self.patch_size, if needed pixel_values = self.maybe_pad(pixel_values, height, width) embeddings = self.projection(pixel_values) _, _, height, width = embeddings.shape output_dimensions = (height, width) embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings, output_dimensions # Copied from transformers.models.swin.modeling_swin.SwinPatchMerging class MaskFormerSwinPatchMerging(nn.Module): """ Patch Merging Layer. Args: input_resolution (`Tuple[int]`): Resolution of input feature. dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): Normalization layer class. """ def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def maybe_pad(self, input_feature, height, width): should_pad = (height % 2 == 1) or (width % 2 == 1) if should_pad: pad_values = (0, 0, 0, width % 2, 0, height % 2) input_feature = nn.functional.pad(input_feature, pad_values) return input_feature def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: height, width = input_dimensions # `dim` is height * width batch_size, dim, num_channels = input_feature.shape input_feature = input_feature.view(batch_size, height, width, num_channels) # pad input to be disible by width and height, if needed input_feature = self.maybe_pad(input_feature, height, width) # [batch_size, height/2, width/2, num_channels] input_feature_0 = input_feature[:, 0::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_1 = input_feature[:, 1::2, 0::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_2 = input_feature[:, 0::2, 1::2, :] # [batch_size, height/2, width/2, num_channels] input_feature_3 = input_feature[:, 1::2, 1::2, :] # batch_size height/2 width/2 4*num_channels input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C input_feature = self.norm(input_feature) input_feature = self.reduction(input_feature) return input_feature # Copied from transformers.models.swin.modeling_swin.SwinDropPath with Swin->MaskFormerSwin class MaskFormerSwinDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->MaskFormerSwin class MaskFormerSwinSelfAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.window_size = ( window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) ) self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) ) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: batch_size, dim, num_channels = hidden_states.shape mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] relative_position_bias = relative_position_bias.view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() attention_scores = attention_scores + relative_position_bias.unsqueeze(0) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in MaskFormerSwinModel forward() function) mask_shape = attention_mask.shape[0] attention_scores = attention_scores.view( batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim ) attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->MaskFormerSwin class MaskFormerSwinSelfOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, dim) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->MaskFormerSwin class MaskFormerSwinAttention(nn.Module): def __init__(self, config, dim, num_heads, window_size): super().__init__() self.self = MaskFormerSwinSelfAttention(config, dim, num_heads, window_size) self.output = MaskFormerSwinSelfOutput(config, dim) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->MaskFormerSwin class MaskFormerSwinIntermediate(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->MaskFormerSwin class MaskFormerSwinOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class MaskFormerSwinLayer(nn.Module): def __init__(self, config, dim, input_resolution, num_heads, drop_path_rate=0.0, shift_size=0): super().__init__() self.shift_size = shift_size self.window_size = config.window_size self.input_resolution = input_resolution self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.attention = MaskFormerSwinAttention(config, dim, num_heads, self.window_size) self.drop_path = MaskFormerSwinDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.intermediate = MaskFormerSwinIntermediate(config, dim) self.output = MaskFormerSwinOutput(config, dim) def get_attn_mask(self, input_resolution): if self.shift_size > 0: # calculate attention mask for SW-MSA height, width = input_resolution img_mask = torch.zeros((1, height, width, 1)) height_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) width_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) count = 0 for height_slice in height_slices: for width_slice in width_slices: img_mask[:, height_slice, width_slice, :] = count count += 1 mask_windows = window_partition(img_mask, self.window_size) mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None return attn_mask def maybe_pad(self, hidden_states, height, width): pad_left = pad_top = 0 pad_rigth = (self.window_size - width % self.window_size) % self.window_size pad_bottom = (self.window_size - height % self.window_size) % self.window_size pad_values = (0, 0, pad_left, pad_rigth, pad_top, pad_bottom) hidden_states = nn.functional.pad(hidden_states, pad_values) return hidden_states, pad_values def forward(self, hidden_states, input_dimensions, head_mask=None, output_attentions=False): height, width = input_dimensions batch_size, dim, channels = hidden_states.size() shortcut = hidden_states hidden_states = self.layernorm_before(hidden_states) hidden_states = hidden_states.view(batch_size, height, width, channels) # pad hidden_states to multiples of window size hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) _, height_pad, width_pad, _ = hidden_states.shape # cyclic shift if self.shift_size > 0: shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_hidden_states = hidden_states # partition windows hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) attn_mask = self.get_attn_mask((height_pad, width_pad)) if attn_mask is not None: attn_mask = attn_mask.to(hidden_states_windows.device) self_attention_outputs = self.attention( hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) shifted_windows = window_reverse( attention_windows, self.window_size, height_pad, width_pad ) # B height' width' C # reverse cyclic shift if self.shift_size > 0: attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: attention_windows = shifted_windows was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_windows = attention_windows[:, :height, :width, :].contiguous() attention_windows = attention_windows.view(batch_size, height * width, channels) hidden_states = shortcut + self.drop_path(attention_windows) layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = hidden_states + self.output(layer_output) outputs = (layer_output,) + outputs return outputs class MaskFormerSwinStage(nn.Module): # Copied from transformers.models.swin.modeling_swin.SwinStage.__init__ with Swin->MaskFormerSwin def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): super().__init__() self.config = config self.dim = dim self.blocks = nn.ModuleList( [ MaskFormerSwinLayer( config=config, dim=dim, input_resolution=input_resolution, num_heads=num_heads, drop_path_rate=drop_path[i], shift_size=0 if (i % 2 == 0) else config.window_size // 2, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) else: self.downsample = None self.pointing = False def forward( self, hidden_states, input_dimensions, head_mask=None, output_attentions=False, output_hidden_states=False ): all_hidden_states = () if output_hidden_states else None height, width = input_dimensions for i, block_module in enumerate(self.blocks): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None block_hidden_states = block_module(hidden_states, input_dimensions, layer_head_mask, output_attentions) hidden_states = block_hidden_states[0] if output_hidden_states: all_hidden_states += (hidden_states,) if self.downsample is not None: height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 output_dimensions = (height, width, height_downsampled, width_downsampled) hidden_states = self.downsample(hidden_states, input_dimensions) else: output_dimensions = (height, width, height, width) return hidden_states, output_dimensions, all_hidden_states class MaskFormerSwinEncoder(nn.Module): # Copied from transformers.models.swin.modeling_swin.SwinEncoder.__init__ with Swin->MaskFormerSwin def __init__(self, config, grid_size): super().__init__() self.num_layers = len(config.depths) self.config = config dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] self.layers = nn.ModuleList( [ MaskFormerSwinStage( config=config, dim=int(config.embed_dim * 2**i_layer), input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), depth=config.depths[i_layer], num_heads=config.num_heads[i_layer], drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], downsample=MaskFormerSwinPatchMerging if (i_layer < self.num_layers - 1) else None, ) for i_layer in range(self.num_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states, input_dimensions, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_input_dimensions = () all_self_attentions = () if output_attentions else None if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) for i, layer_module in enumerate(self.layers): layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_hidden_states, output_dimensions, layer_all_hidden_states = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_hidden_states, output_dimensions, layer_all_hidden_states = layer_module( hidden_states, input_dimensions, layer_head_mask, output_attentions, output_hidden_states, ) input_dimensions = (output_dimensions[-2], output_dimensions[-1]) all_input_dimensions += (input_dimensions,) if output_hidden_states: all_hidden_states += (layer_all_hidden_states,) hidden_states = layer_hidden_states if output_attentions: all_self_attentions = all_self_attentions + (layer_all_hidden_states[1],) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return MaskFormerSwinBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, hidden_states_spatial_dimensions=all_input_dimensions, attentions=all_self_attentions, ) class MaskFormerSwinPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MaskFormerSwinConfig base_model_prefix = "model" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["MaskFormerSwinStage"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, MaskFormerSwinEmbeddings): if module.position_embeddings is not None: module.position_embeddings.data.zero_() elif isinstance(module, MaskFormerSwinSelfAttention): module.relative_position_bias_table.data.zero_() class MaskFormerSwinModel(MaskFormerSwinPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.num_layers = len(config.depths) self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1)) self.embeddings = MaskFormerSwinEmbeddings(config) self.encoder = MaskFormerSwinEncoder(config, self.embeddings.patch_grid) self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps) self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def forward( self, pixel_values=None, head_mask=None, output_attentions=None, output_hidden_states=None, interpolate_pos_encoding=False, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, len(self.config.depths)) embedding_output, input_dimensions = self.embeddings( pixel_values, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, input_dimensions, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs.last_hidden_state if return_dict else encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = None if self.pooler is not None: pooled_output = self.pooler(sequence_output.transpose(1, 2)) pooled_output = torch.flatten(pooled_output, 1) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] hidden_states_spatial_dimensions = (input_dimensions,) + encoder_outputs.hidden_states_spatial_dimensions return MaskFormerSwinModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, hidden_states_spatial_dimensions=hidden_states_spatial_dimensions, attentions=encoder_outputs.attentions, ) class MaskFormerSwinBackbone(MaskFormerSwinPreTrainedModel, BackboneMixin): """ MaskFormerSwin backbone, designed especially for the MaskFormer framework. This classes reshapes `hidden_states` from (`batch_size, sequence_length, hidden_size)` to (`batch_size, num_channels, height, width)`). It also adds additional layernorms after each stage. Args: config (`MaskFormerSwinConfig`): The configuration used by [`MaskFormerSwinModel`]. """ def __init__(self, config: MaskFormerSwinConfig): super().__init__(config) super()._init_backbone(config) self.model = MaskFormerSwinModel(config) if "stem" in self.out_features: raise ValueError("This backbone does not support 'stem' in the `out_features`.") self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))] self.hidden_states_norms = nn.ModuleList( [nn.LayerNorm(num_channels) for num_channels in self.num_features[1:]] ) # Initialize weights and apply final processing self.post_init() def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions outputs = self.model( pixel_values, output_hidden_states=True, output_attentions=output_attentions, return_dict=True ) # we skip the stem hidden_states = outputs.hidden_states[1:] # we need to reshape the hidden states to their original spatial dimensions # spatial dimensions contains all the heights and widths of each stage, including after the embeddings spatial_dimensions: Tuple[Tuple[int, int]] = outputs.hidden_states_spatial_dimensions feature_maps = () for i, (hidden_state, stage, (height, width)) in enumerate( zip(hidden_states, self.stage_names[1:], spatial_dimensions) ): norm = self.hidden_states_norms[i] # the last element corespond to the layer's last block output but before patch merging hidden_state_unpolled = hidden_state[-1] hidden_state_norm = norm(hidden_state_unpolled) # the pixel decoder (FPN) expects 3D tensors (features) batch_size, _, hidden_size = hidden_state_norm.shape # reshape "b (h w) d -> b d h w" hidden_state_permuted = ( hidden_state_norm.permute(0, 2, 1).view((batch_size, hidden_size, height, width)).contiguous() ) if stage in self.out_features: feature_maps += (hidden_state_permuted,) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) if output_attentions: output += (outputs.attentions,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) __all__ = ["MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel"] ```
=============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.98 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mbart50\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .tokenization_mbart50 import * from .tokenization_mbart50_fast import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
=========================================================================================================================================== SOURCE CODE FILE: tokenization_mbart50.py LINES: 1 SIZE: 15.96 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mbart50\tokenization_mbart50.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip class MBart50Tokenizer(PreTrainedTokenizer): """ Construct a MBart50 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. src_lang (`str`, *optional*): A string representing the source language. tgt_lang (`str`, *optional*): A string representing the target language. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Examples: ```python >>> from transformers import MBart50Tokenizer >>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") >>> # model(**model_inputs) should work ```""" vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file, src_lang=None, tgt_lang=None, eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or [] kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.sp_model_size = len(self.sp_model) self.lang_code_to_id = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES) } self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()} self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} super().__init__( src_lang=src_lang, tgt_lang=tgt_lang, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self._src_lang = src_lang if src_lang is not None else "en_XX" self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] self.tgt_lang = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def vocab_size(self) -> int: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__(self) -> Dict: state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def get_vocab(self) -> Dict: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] * len(self.suffix_tokens) if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An MBART-50 sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `[src_lang_code] X [eos]` - `labels`: (for decoder) `[tgt_lang_code] X [eos]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.lang_code_to_id[src_lang] self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.lang_code_to_id[tgt_lang] self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] __all__ = ["MBart50Tokenizer"] ```
================================================================================================================================================ SOURCE CODE FILE: tokenization_mbart50_fast.py LINES: 1 SIZE: 11.36 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mbart50\tokenization_mbart50_fast.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart50 import MBart50Tokenizer else: MBart50Tokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip class MBart50TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" MBART tokenizer for mBART-50 (backed by HuggingFace's *tokenizers* library). Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. src_lang (`str`, *optional*): A string representing the source language. tgt_lang (`str`, *optional*): A string representing the target language. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. Examples: ```python >>> from transformers import MBart50TokenizerFast >>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") >>> # model(**model_inputs) should work ```""" vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = MBart50Tokenizer prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file=None, src_lang=None, tgt_lang=None, tokenizer_file=None, eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or [] kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( vocab_file, src_lang=src_lang, tgt_lang=tgt_lang, tokenizer_file=tokenizer_file, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file self.lang_code_to_id = { lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES } self._src_lang = src_lang if src_lang is not None else "en_XX" self.tgt_lang = tgt_lang self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] self.set_src_lang_special_tokens(self._src_lang) @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang. An MBART-50 sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `[src_lang_code] X [eos]` - `labels`: (for decoder) `[tgt_lang_code] X [eos]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.convert_tokens_to_ids(src_lang) self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.convert_tokens_to_ids(tgt_lang) self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) __all__ = ["MBart50TokenizerFast"] ```
============================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.12 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mbart\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mbart import * from .modeling_flax_mbart import * from .modeling_mbart import * from .modeling_tf_mbart import * from .tokenization_mbart import * from .tokenization_mbart_fast import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
======================================================================================================================================== SOURCE CODE FILE: configuration_mbart.py LINES: 1 SIZE: 17.78 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mbart\configuration_mbart.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MBART model configuration""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging logger = logging.get_logger(__name__) class MBartConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MBartModel`]. It is used to instantiate an MBART model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MBART [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the MBART model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MBartModel`] or [`TFMBartModel`]. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. classifier_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for classifier. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(d_model). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models) forced_eos_token_id (`int`, *optional*, defaults to 2): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. Example: ```python >>> from transformers import MBartConfig, MBartModel >>> # Initializing a MBART facebook/mbart-large-cc25 style configuration >>> configuration = MBartConfig() >>> # Initializing a model (with random weights) from the facebook/mbart-large-cc25 style configuration >>> model = MBartModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mbart" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=50265, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, pad_token_id=1, bos_token_id=0, eos_token_id=2, forced_eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.classifier_dropout = classifier_dropout self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, forced_eos_token_id=forced_eos_token_id, **kwargs, ) # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig with Bart->MBart class MBartOnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") elif self.task == "causal-lm": # TODO: figure this case out. common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} else: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_outputs = super().outputs else: common_outputs = super(OnnxConfigWithPast, self).outputs if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _generate_dummy_inputs_for_default_and_seq2seq_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) # Generate decoder inputs decoder_seq_length = seq_length if not self.use_past else 1 decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, decoder_seq_length, is_pair, framework ) decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} common_inputs = dict(**encoder_inputs, **decoder_inputs) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, encoder_seq_length = common_inputs["input_ids"].shape decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads encoder_shape = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) decoder_past_length = decoder_seq_length + 3 decoder_shape = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) common_inputs["decoder_attention_mask"] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 ) common_inputs["past_key_values"] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(min_num_layers): common_inputs["past_key_values"].append( ( torch.zeros(decoder_shape), torch.zeros(decoder_shape), torch.zeros(encoder_shape), torch.zeros(encoder_shape), ) ) # TODO: test this. shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(min_num_layers, max_num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs def _generate_dummy_inputs_for_causal_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 num_encoder_layers, _ = self.num_layers num_encoder_attention_heads, _ = self.num_attention_heads past_shape = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) mask_dtype = common_inputs["attention_mask"].dtype common_inputs["attention_mask"] = torch.cat( [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) common_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) ] return common_inputs def _generate_dummy_inputs_for_sequence_classification_and_question_answering( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = tokenizer.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) return common_inputs def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) elif self.task == "causal-lm": common_inputs = self._generate_dummy_inputs_for_causal_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) else: common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) return common_inputs def _flatten_past_key_values_(self, flattened_output, name, idx, t): if self.task in ["default", "seq2seq-lm"]: flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) else: flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( flattened_output, name, idx, t ) __all__ = ["MBartConfig", "MBartOnnxConfig"] ```
======================================================================================================================================== SOURCE CODE FILE: modeling_flax_mbart.py LINES: 1 SIZE: 73.52 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mbart\modeling_flax_mbart.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flax MBart model.""" import math import random from functools import partial from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, FlaxSeq2SeqQuestionAnsweringModelOutput, FlaxSeq2SeqSequenceClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_mbart import MBartConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25" _CONFIG_FOR_DOC = "MBartConfig" MBART_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`MBartConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ MBART_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ MBART_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ MBART_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not have a single `decoder_start_token_id` in contrast to other Bart-like models. """ prev_output_tokens = jnp.array(input_ids).copy() if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` prev_output_tokens = jnp.where(prev_output_tokens == -100, pad_token_id, input_ids) index_of_eos = (jnp.where(prev_output_tokens != pad_token_id, 1, 0).sum(axis=-1) - 1).reshape(-1, 1) decoder_start_tokens = jnp.array( [prev_output_tokens[i, eos_idx] for i, eos_idx in enumerate(index_of_eos)], dtype=jnp.int32 ).squeeze() prev_output_tokens = prev_output_tokens.at[:, 1:].set(prev_output_tokens[:, :-1]) prev_output_tokens = prev_output_tokens.at[:, 0].set(decoder_start_tokens) return prev_output_tokens # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->MBart class FlaxMBartAttention(nn.Module): config: MBartConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slightly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class FlaxMBartEncoderLayer(nn.Module): config: MBartConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxMBartAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->MBart class FlaxMBartEncoderLayerCollection(nn.Module): config: MBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxMBartEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxMBartDecoderLayer(nn.Module): config: MBartConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxMBartAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxMBartAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->MBart class FlaxMBartDecoderLayerCollection(nn.Module): config: MBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxMBartDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartClassificationHead with Bart->MBart class FlaxMBartClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" config: MBartConfig inner_dim: int num_classes: int pooler_dropout: float dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense( self.inner_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.dropout = nn.Dropout(rate=self.pooler_dropout) self.out_proj = nn.Dense( self.num_classes, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def __call__(self, hidden_states: jnp.ndarray, deterministic: bool): hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.dense(hidden_states) hidden_states = jnp.tanh(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.out_proj(hidden_states) return hidden_states class FlaxMBartEncoder(nn.Module): config: MBartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 self.embed_positions = nn.Embed( self.config.max_position_embeddings + self.offset, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxMBartEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(position_ids + self.offset) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, ) class FlaxMBartDecoder(nn.Module): config: MBartConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 self.embed_positions = nn.Embed( self.config.max_position_embeddings + self.offset, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxMBartDecoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = self.embed_positions(position_ids + self.offset) hidden_states = inputs_embeds + positions hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->MBart class FlaxMBartModule(nn.Module): config: MBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.encoder = FlaxMBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxMBartDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxMBartPreTrainedModel(FlaxPreTrainedModel): config_class = MBartConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: MBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") # make sure initialization pass will work for FlaxMBartForSequenceClassificationModule input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel.init_cache with Bart->MBart def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(MBART_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=MBartConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(MBART_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=MBartConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxMBartAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare MBart Model transformer outputting raw hidden-states without any specific head on top.", MBART_START_DOCSTRING, ) class FlaxMBartModel(FlaxMBartPreTrainedModel): config: MBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxMBartModule append_call_sample_docstring(FlaxMBartModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->MBart class FlaxMBartForConditionalGenerationModule(nn.Module): config: MBartConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxMBartModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( "The MMBart Model with a language modeling head. Can be used for summarization.", MBART_START_DOCSTRING ) class FlaxMBartForConditionalGeneration(FlaxMBartPreTrainedModel): module_class = FlaxMBartForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(MBART_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=MBartConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxMBartAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias.astype(self.dtype) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_MBART_CONDITIONAL_GENERATION_DOCSTRING = r""" Returns: Summarization example: ```python >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration, MBartConfig >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") >>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5).sequences >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` Mask filling example: ```python >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") >>> # de_DE is the language symbol id <LID> for German >>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE" >>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="np")["input_ids"] >>> logits = model(input_ids).logits >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item() >>> probs = logits[0, masked_index].softmax(dim=0) >>> values, predictions = probs.topk(5) >>> tokenizer.decode(predictions).split() ``` """ overwrite_call_docstring( FlaxMBartForConditionalGeneration, MBART_INPUTS_DOCSTRING + FLAX_MBART_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxMBartForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForSequenceClassificationModule with Bart->MBart class FlaxMBartForSequenceClassificationModule(nn.Module): config: MBartConfig dtype: jnp.dtype = jnp.float32 num_labels: Optional[int] = None def setup(self): self.model = FlaxMBartModule(config=self.config, dtype=self.dtype) self.classification_head = FlaxMBartClassificationHead( config=self.config, inner_dim=self.config.d_model, num_classes=self.num_labels if self.num_labels is not None else self.config.num_labels, pooler_dropout=self.config.classifier_dropout, ) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] # last hidden state eos_mask = jnp.where(input_ids == self.config.eos_token_id, 1, 0) # The first condition is necessary to overcome jax._src.errors.ConcretizationTypeError during JIT compilation if not isinstance(eos_mask, jax.interpreters.partial_eval.DynamicJaxprTracer): if len(jnp.unique(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of <eos> tokens.") if any(eos_mask.sum(1) == 0): raise ValueError("There are missing <eos> tokens in input_ids") # Ensure to keep 1 only for the last <eos> token for each example eos_mask_noised = eos_mask + jnp.arange(eos_mask.shape[1]) * 1e-6 eos_mask = jnp.where(eos_mask_noised == eos_mask_noised.max(1).reshape(-1, 1), 1, 0) sentence_representation = jnp.einsum("ijk, ij -> ijk", hidden_states, eos_mask).sum(1) logits = self.classification_head(sentence_representation, deterministic=deterministic) if not return_dict: output = (logits,) + outputs[1:] return output return FlaxSeq2SeqSequenceClassifierOutput( logits=logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( """ MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MBART_START_DOCSTRING, ) class FlaxMBartForSequenceClassification(FlaxMBartPreTrainedModel): module_class = FlaxMBartForSequenceClassificationModule dtype = jnp.float32 append_call_sample_docstring( FlaxMBartForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqSequenceClassifierOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForQuestionAnsweringModule with Bart->MBart class FlaxMBartForQuestionAnsweringModule(nn.Module): config: MBartConfig dtype: jnp.dtype = jnp.float32 num_labels = 2 def setup(self): self.model = FlaxMBartModule(config=self.config, dtype=self.dtype) self.qa_outputs = nn.Dense( self.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = jnp.split(logits, logits.shape[-1], axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: output = (start_logits, end_logits) + outputs[1:] return output return FlaxSeq2SeqQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( """ MBart Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MBART_START_DOCSTRING, ) class FlaxMBartForQuestionAnswering(FlaxMBartPreTrainedModel): module_class = FlaxMBartForQuestionAnsweringModule dtype = jnp.float32 append_call_sample_docstring( FlaxMBartForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, ) __all__ = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] ```
=================================================================================================================================== SOURCE CODE FILE: modeling_mbart.py LINES: 1 SIZE: 99.53 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mbart\modeling_mbart.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MBART model.""" import copy import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_attn_mask_utils import ( _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, ) from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, Seq2SeqQuestionAnsweringModelOutput, Seq2SeqSequenceClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mbart import MBartConfig if is_flash_attn_available(): from ...modeling_flash_attention_utils import _flash_attention_forward logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25" _CONFIG_FOR_DOC = "MBartConfig" # Base model docstring _EXPECTED_OUTPUT_SHAPE = [1, 8, 1024] def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int): """ Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not have a single `decoder_start_token_id` in contrast to other Bart-like models. """ prev_output_tokens = input_ids.clone() if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` prev_output_tokens.masked_fill_(prev_output_tokens == -100, pad_token_id) index_of_eos = (prev_output_tokens.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1) decoder_start_tokens = prev_output_tokens.gather(1, index_of_eos).squeeze() prev_output_tokens[:, 1:] = prev_output_tokens[:, :-1].clone() prev_output_tokens[:, 0] = decoder_start_tokens return prev_output_tokens # Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->MBart class MBartLearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int): # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim) def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): """`input_ids' shape is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids.shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ).expand(bsz, -1) return super().forward(positions + self.offset) # Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->MBart class MBartScaledWordEmbedding(nn.Embedding): """ This module overrides nn.Embeddings' forward by multiplying with embeddings scale. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): super().__init__(num_embeddings, embedding_dim, padding_idx) self.embed_scale = embed_scale def forward(self, input_ids: torch.Tensor): return super().forward(input_ids) * self.embed_scale # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MBart class MBartAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[MBartConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->MBart class MBartFlashAttention2(MBartAttention): """ MBart flash attention module. This module inherits from `MBartAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask() def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # MBartFlashAttention2 attention does not support output_attentions if output_attentions: raise ValueError("MBartFlashAttention2 attention does not support output_attentions") # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, q_len, _ = hidden_states.size() # get query proj query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0].transpose(1, 2) value_states = past_key_value[1].transpose(1, 2) elif is_cross_attention: # cross_attentions key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) else: # self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout if self.training else 0.0, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Copied from transformers.models.bart.modeling_bart.BartSdpaAttention with Bart->MBart class MBartSdpaAttention(MBartAttention): def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" if output_attentions or layer_head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. logger.warning_once( "MBartModel is using MBartSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, key_value_states=key_value_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) query_states = self._shape(query_states, tgt_len, bsz) # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None, past_key_value MBART_ATTENTION_CLASSES = { "eager": MBartAttention, "sdpa": MBartSdpaAttention, "flash_attention_2": MBartFlashAttention2, } class MBartEncoderLayer(nn.Module): def __init__(self, config: MBartConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16: clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class MBartDecoderLayer(nn.Module): def __init__(self, config: MBartConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs # Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->MBart class MBartClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states class MBartPreTrainedModel(PreTrainedModel): config_class = MBartConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MBartDecoderLayer", "MBartEncoderLayer", "MBartAttention"] _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def dummy_inputs(self): pad_token = self.config.pad_token_id input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) dummy_inputs = { "attention_mask": input_ids.ne(pad_token), "input_ids": input_ids, } return dummy_inputs MBART_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MBartConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MBART_GENERATION_EXAMPLE = r""" Translation example: ```python >>> from transformers import AutoTokenizer, MBartForConditionalGeneration >>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro") >>> example_english_phrase = "42 is the answer" >>> inputs = tokenizer(example_english_phrase, return_tensors="pt") >>> # Translate >>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] '42 este răspuns' ``` Mask filling example: ```python >>> from transformers import AutoTokenizer, MBartForConditionalGeneration >>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") >>> # de_DE is the language symbol id <LID> for German >>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE" >>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"] >>> logits = model(input_ids).logits >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() >>> probs = logits[0, masked_index].softmax(dim=0) >>> values, predictions = probs.topk(5) >>> tokenizer.decode(predictions).split() ['nett', 'sehr', 'ganz', 'nicht', 'so'] ``` """ MBART_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class MBartEncoder(MBartPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`MBartEncoderLayer`]. Args: config: MBartConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.embed_tokens = MBartScaledWordEmbedding( config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale ) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = MBartLearnedPositionalEmbedding( config.max_position_embeddings, embed_dim, ) self.layers = nn.ModuleList([MBartEncoderLayer(config) for _ in range(config.encoder_layers)]) self.config = config self.layernorm_embedding = nn.LayerNorm(embed_dim) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def _backward_compatibility_gradient_checkpointing(self): # Override to not delete the attribute from the config if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False): self.gradient_checkpointing_enable() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_shape = input.shape input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) embed_pos = self.embed_positions(input) hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device) hidden_states = self.layernorm_embedding(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: if self.config._attn_implementation == "flash_attention_2": attention_mask = attention_mask if 0 in attention_mask else None elif self.config._attn_implementation == "sdpa" and head_mask is None and not output_attentions: # output_attentions=True & head_mask can not be supported when using SDPA, fall back to # the manual implementation that requires a 4D causal mask in all cases. # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype) else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class MBartDecoder(MBartPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`] Args: config: MBartConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = MBartScaledWordEmbedding( config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale ) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = MBartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, ) self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)]) self.config = config self.layernorm_embedding = nn.LayerNorm(config.d_model) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_shape = input.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if self.config._attn_implementation == "flash_attention_2": # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self.config._attn_implementation == "sdpa" and not output_attentions and cross_attn_head_mask is None: # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, input_shape, inputs_embeds, past_key_values_length, ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: if self.config._attn_implementation == "flash_attention_2": encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None elif self.config._attn_implementation == "sdpa" and cross_attn_head_mask is None and not output_attentions: # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1], ) else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input, past_key_values_length) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = self.layernorm_embedding(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {attn_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare MBART Model outputting raw hidden-states without any specific head on top.", MBART_START_DOCSTRING, ) class MBartModel(MBartPreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: MBartConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.shared = MBartScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale) self.encoder = MBartEncoder(config, self.shared) self.decoder = MBartDecoder(config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.get_input_embeddings()) self._tie_or_clone_weights(self.decoder.embed_tokens, self.get_input_embeddings()) @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqModelOutput, Tuple[torch.FloatTensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # different to other models, MBart automatically creates decoder_input_ids from # input_ids if no decoder_input_ids are provided if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models.", MBART_START_DOCSTRING, ) class MBartForConditionalGeneration(MBartPreTrainedModel, GenerationMixin): base_model_prefix = "model" _keys_to_ignore_on_load_missing = ["final_logits_bias"] _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: MBartConfig): super().__init__(config) self.model = MBartModel(config) self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_token_embeddings( self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True ) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing) self._resize_final_logits_bias(new_embeddings.weight.shape[0]) return new_embeddings def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(MBART_GENERATION_EXAMPLE) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( """ MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MBART_START_DOCSTRING, ) class MBartForSequenceClassification(MBartPreTrainedModel): _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"] def __init__(self, config: MBartConfig, **kwargs): super().__init__(config, **kwargs) self.model = MBartModel(config) self.classification_head = MBartClassificationHead( config.d_model, config.d_model, config.num_labels, config.classifier_dropout, ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.forward def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False if input_ids is None and inputs_embeds is not None: raise NotImplementedError( f"Passing input embeddings is currently not supported for {self.__class__.__name__}" ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] # last hidden state eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device) if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of <eos> tokens.") sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[ :, -1, : ] logits = self.classification_head(sentence_representation) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.config.num_labels == 1: self.config.problem_type = "regression" elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.config.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqSequenceClassifierOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( """ MBART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MBART_START_DOCSTRING, ) class MBartForQuestionAnswering(MBartPreTrainedModel): _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"] def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.model = MBartModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.bart.modeling_bart.BartForQuestionAnswering.forward def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if start_positions is not None and end_positions is not None: use_cache = False outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = ( start_logits, end_logits, ) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return Seq2SeqQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->MBart class MBartDecoderWrapper(MBartPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = MBartDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs) # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart, facebook/bart-base->facebook/mbart-large-cc25 class MBartForCausalLM(MBartPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.model = MBartDecoderWrapper(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: Example: ```python >>> from transformers import AutoTokenizer, MBartForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") >>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] >>> list(logits.shape) == expected_shape True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past __all__ = [ "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] ```
====================================================================================================================================== SOURCE CODE FILE: modeling_tf_mbart.py LINES: 1 SIZE: 72.54 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mbart\modeling_tf_mbart.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 MBart model.""" from __future__ import annotations import random from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) # Public API from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mbart import MBartConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25" _CONFIG_FOR_DOC = "MBartConfig" LARGE_NEGATIVE = -1e8 def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int): """ Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not have a single `decoder_start_token_id` in contrast to other Bart-like models. """ if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` input_ids = tf.where( input_ids == -100, tf.fill(shape_list(input_ids), tf.cast(pad_token_id, input_ids.dtype)), input_ids ) language_id_index = ( tf.reduce_sum(tf.cast(tf.math.not_equal(input_ids, pad_token_id), dtype=input_ids.dtype), axis=-1) - 1 ) language_id_index = tf.stack( [tf.range(shape_list(input_ids)[0], dtype=input_ids.dtype), language_id_index], axis=-1 ) languages_ids = tf.gather_nd(input_ids, language_id_index) shifted_input_ids = tf.concat([tf.expand_dims(languages_ids, axis=-1), input_ids[:, :-1]], axis=-1) return shifted_input_ids # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE # Copied from transformers.models.bart.modeling_tf_bart.TFBartLearnedPositionalEmbedding with Bart->MBart class TFMBartLearnedPositionalEmbedding(keras.layers.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs) def call( self, input_shape: Optional[tf.TensorShape] = None, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None, ): """Input is expected to be of size [bsz x seqlen].""" if position_ids is None: seq_len = input_shape[1] position_ids = tf.range(seq_len, delta=1, name="range") position_ids += past_key_values_length offset_dtype = position_ids.dtype if isinstance(position_ids, tf.Tensor) else tf.int32 return super().call(position_ids + tf.constant(self.offset, dtype=offset_dtype)) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->MBart class TFMBartAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) class TFMBartEncoderLayer(keras.layers.Layer): def __init__(self, config: MBartConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFMBartAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: Optional[bool] = False, ): """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(encoder_attention_heads,)* """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return hidden_states, self_attn_weights def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.encoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) class TFMBartDecoderLayer(keras.layers.Layer): def __init__(self, config: MBartConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFMBartAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFMBartAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)* encoder_attention_mask (`tf.Tensor`): encoder attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(decoder_attention_heads,)* cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. *(decoder_attention_heads,)* past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.decoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) class TFMBartPreTrainedModel(TFPreTrainedModel): config_class = MBartConfig base_model_prefix = "model" MBART_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`MBartConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ MBART_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ MBART_GENERATION_EXAMPLE = r""" Translation example: ```python >>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration >>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro") >>> example_english_phrase = "42 is the answer" >>> inputs = tokenizer(example_english_phrase, return_tensors="tf") >>> # Translate >>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] '42 este răspuns' ``` Mask filling example: ```python >>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration >>> import tensorflow as tf >>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") >>> # de_DE is the language symbol id <LID> for German >>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE" >>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="tf")["input_ids"] >>> logits = model(input_ids).logits >>> masked_index = tf.where(input_ids[0] == tokenizer.mask_token_id)[0, 0] >>> probs = tf.nn.softmax(logits[0, masked_index], axis=0) >>> values, predictions = tf.math.top_k(probs, 5) >>> tokenizer.decode(predictions).split() ['nett', 'sehr', 'ganz', 'nicht', 'so'] ``` """ @keras_serializable class TFMBartEncoder(keras.layers.Layer): config_class = MBartConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFMBartEncoderLayer`]. Args: config: MBartConfig """ def __init__(self, config: MBartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFMBartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFMBartEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") self.embed_dim = config.d_model def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, inputs_embeds: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) else: attention_mask = None encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layernorm_embedding", None) is not None: with tf.name_scope(self.layernorm_embedding.name): self.layernorm_embedding.build([None, None, self.embed_dim]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFMBartDecoder(keras.layers.Layer): config_class = MBartConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFMBartDecoderLayer`] Args: config: MBartConfig embed_tokens: output embedding """ def __init__(self, config: MBartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFMBartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFMBartDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids: TFModelInputType = None, inputs_embeds: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[ TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor] ]: r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 # embed positions if position_ids is None: positions = self.embed_positions(input_shape, past_key_values_length) else: positions = self.embed_positions(input_shape, position_ids=position_ids) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale hidden_states = inputs_embeds # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) hidden_states = self.layernorm_embedding(hidden_states + positions) hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layernorm_embedding", None) is not None: with tf.name_scope(self.layernorm_embedding.name): self.layernorm_embedding.build([None, None, self.config.d_model]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFMBartMainLayer(keras.layers.Layer): config_class = MBartConfig def __init__(self, config: MBartConfig, **kwargs): super().__init__(**kwargs) self.config = config self.shared = keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="model.shared", ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "model.shared" self.encoder = TFMBartEncoder(config, self.shared, name="encoder") self.decoder = TFMBartDecoder(config, self.shared, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared @unpack_inputs def call( self, input_ids: TFModelInputType = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFSeq2SeqModelOutput, tf.Tensor]: if decoder_input_ids is None and decoder_inputs_embeds is None: use_cache = False output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if decoder_input_ids is None and input_ids is not None: decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True # The shared/tied weights expect to be in the model base namespace # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than # the current one. with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): self.shared.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) @add_start_docstrings( "The bare MBART Model outputting raw hidden-states without any specific head on top.", MBART_START_DOCSTRING, ) class TFMBartModel(TFMBartPreTrainedModel): def __init__(self, config: MBartConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFMBartMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) # Copied from transformers.models.bart.modeling_tf_bart.BiasLayer class BiasLayer(keras.layers.Layer): """ Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, so all weights have to be registered in a layer. """ def __init__(self, shape, initializer, trainable, name, **kwargs): super().__init__(name=name, **kwargs) # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) def call(self, x): return x + self.bias @add_start_docstrings( "The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models.", MBART_START_DOCSTRING, ) class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFMBartMainLayer(config, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.bias_layer.bias} def set_bias(self, value): # Replaces the existing layers containing bias for correct (de)serialization. vocab_size = value["final_logits_bias"].shape[-1] self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False ) self.bias_layer.bias.assign(value["final_logits_bias"]) @unpack_inputs @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(MBART_GENERATION_EXAMPLE) def call( self, input_ids: TFModelInputType = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values: Tuple[Tuple[tf.Tensor]] = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: """ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ if labels is not None: labels = tf.where( labels == self.config.pad_token_id, tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), labels, ) use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past_key_values is not None: # no xla + past_key_values decoder_position_ids = past_key_values[0][0].shape[2] else: # no xla + no past_key_values decoder_position_ids = tf.range(decoder_input_ids.shape[1]) return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "bias_layer", None) is not None: with tf.name_scope(self.bias_layer.name): self.bias_layer.build(None) __all__ = ["TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel"] ```
======================================================================================================================================= SOURCE CODE FILE: tokenization_mbart.py LINES: 1 SIZE: 13.81 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mbart\tokenization_mbart.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] # fmt: skip class MBartTokenizer(PreTrainedTokenizer): """ Construct an MBART tokenizer. Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code> <tokens> <eos>` for target language documents. Examples: ```python >>> from transformers import MBartTokenizer >>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO") >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" >>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt") ```""" vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", tokenizer_file=None, src_lang=None, tgt_lang=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, additional_special_tokens=None, **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = ( AddedToken(mask_token, lstrip=True, normalized=False) if isinstance(mask_token, str) else mask_token ) self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.sp_model_size = len(self.sp_model) self.lang_code_to_id = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES) } self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()} self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _additional_special_tokens = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, tokenizer_file=None, src_lang=src_lang, tgt_lang=tgt_lang, additional_special_tokens=_additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self._src_lang = src_lang if src_lang is not None else "en_XX" self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] self.tgt_lang = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def vocab_size(self): return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] * len(self.suffix_tokens) if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An MBART sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `X [eos, src_lang_code]` - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang) -> None: """Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" self.cur_lang_code = self.lang_code_to_id[src_lang] self.prefix_tokens = [] self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] def set_tgt_lang_special_tokens(self, lang: str) -> None: """Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" self.cur_lang_code = self.lang_code_to_id[lang] self.prefix_tokens = [] self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] __all__ = ["MBartTokenizer"] ```
============================================================================================================================================ SOURCE CODE FILE: tokenization_mbart_fast.py LINES: 1 SIZE: 10.77 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mbart\tokenization_mbart_fast.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: MBartTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] # fmt: skip class MBartTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" MBART tokenizer (backed by HuggingFace's *tokenizers* library). Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code> <tokens> <eos>` for target language documents. Examples: ```python >>> from transformers import MBartTokenizerFast >>> tokenizer = MBartTokenizerFast.from_pretrained( ... "facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO" ... ) >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" >>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt") ```""" vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = MBartTokenizer prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", src_lang=None, tgt_lang=None, additional_special_tokens=None, **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token _additional_special_tokens = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) super().__init__( vocab_file=vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, src_lang=src_lang, tgt_lang=tgt_lang, additional_special_tokens=_additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file self.lang_code_to_id = { lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES } self._src_lang = src_lang if src_lang is not None else "en_XX" self.cur_lang_code = self.convert_tokens_to_ids(self._src_lang) self.tgt_lang = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang. An MBART sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `X [eos, src_lang_code]` - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang) -> None: """Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" self.cur_lang_code = self.convert_tokens_to_ids(src_lang) self.prefix_tokens = [] self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def set_tgt_lang_special_tokens(self, lang: str) -> None: """Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" self.cur_lang_code = self.convert_tokens_to_ids(lang) self.prefix_tokens = [] self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory.") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) __all__ = ["MBartTokenizerFast"] ```
===================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.98 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\megatron_bert\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_megatron_bert import * from .modeling_megatron_bert import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
======================================================================================================================================================== SOURCE CODE FILE: configuration_megatron_bert.py LINES: 1 SIZE: 6.35 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\megatron_bert\configuration_megatron_bert.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021- NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MEGATRON_BERT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class MegatronBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MegatronBertModel`]. It is used to instantiate a MEGATRON_BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT [nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 29056): Vocabulary size of the MEGATRON_BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MegatronBertModel`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`MegatronBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Examples: ```python >>> from transformers import MegatronBertConfig, MegatronBertModel >>> # Initializing a MEGATRON_BERT google-bert/bert-base-uncased style configuration >>> configuration = MegatronBertConfig() >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration >>> model = MegatronBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "megatron-bert" def __init__( self, vocab_size=29056, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache __all__ = ["MegatronBertConfig"] ```
=================================================================================================================================================== SOURCE CODE FILE: modeling_megatron_bert.py LINES: 1 SIZE: 80.90 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\megatron_bert\modeling_megatron_bert.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MegatronBERT model.""" import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_megatron_bert import MegatronBertConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MegatronBertConfig" _CHECKPOINT_FOR_DOC = "nvidia/megatron-bert-cased-345m" def load_tf_weights_in_megatron_bert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") logger.info("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model class MegatronBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file # In Megatron, layer-norm is applied after the 1st dropout. # self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings # Megatron BERT moves that layer norm after the drop-out (and to each layer). # embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->MegatronBert class MegatronBertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in MegatronBertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Based transformers.models.bert.modeling_bert.BertSelfOutput. Moved LayerNorm to MegatronBertAttention below. class MegatronBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return residual + hidden_states # Based transformers.models.bert.modeling_bert.BertAttention. Added LayerNorm. class MegatronBertAttention(nn.Module): def __init__(self, config): super().__init__() self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.self = MegatronBertSelfAttention(config) self.output = MegatronBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: ln_outputs = self.ln(hidden_states) self_outputs = self.self( ln_outputs, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->MegatronBert class MegatronBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Based on transformers.models.bert.modeling_bert.BertOutput. Moved LayerNorm to MegatronBertLayer below. class MegatronBertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return input_tensor + hidden_states # Based on transformers.models.bert.modeling_bert.BertLayer. Added LayerNorm. class MegatronBertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = MegatronBertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise TypeError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = MegatronBertAttention(config) self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.intermediate = MegatronBertIntermediate(config) self.output = MegatronBertOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise AttributeError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): ln_output = self.ln(attention_output) intermediate_output = self.intermediate(ln_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class MegatronBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([MegatronBertLayer(config) for _ in range(config.num_hidden_layers)]) # The final layer norm. We removed the 1st LN, moved LN to each hidden layer and this one # is simply the final LN (Transformer's BERT has it attached to each hidden layer). self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) # Because we moved the layer-norm at the end of the hidden layer, we have non-normali- # zed data here. If that's really needed, we must apply LN to match Transformer's BERT. hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Finalize the hidden states. hidden_states = self.ln(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->MegatronBert class MegatronBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->MegatronBert class MegatronBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->MegatronBert class MegatronBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MegatronBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->MegatronBert class MegatronBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MegatronBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->MegatronBert class MegatronBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->MegatronBert class MegatronBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = MegatronBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class MegatronBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MegatronBertConfig load_tf_weights = load_tf_weights_in_megatron_bert base_model_prefix = "bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, MegatronBertLMPredictionHead): module.bias.data.zero_() @dataclass # Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->MegatronBert class MegatronBertForPreTrainingOutput(ModelOutput): """ Output type of [`MegatronBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: Optional[torch.FloatTensor] = None seq_relationship_logits: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None MEGATRON_BERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MegatronBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MEGATRON_BERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MegatronBert Model transformer outputting raw hidden-states without any specific head on top.", MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertModel(MegatronBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MegatronBertEmbeddings(config) self.encoder = MegatronBertEncoder(config) self.pooler = MegatronBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ MegatronBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForPreTraining(MegatronBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config, add_binary_head=True): super().__init__(config) self.bert = MegatronBertModel(config) self.cls = MegatronBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MegatronBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MegatronBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, *optional*, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, MegatronBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForPreTraining.from_pretrained("nvidia/megatron-bert-cased-345m") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MegatronBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MegatronBert Model with a `language modeling` head on top for CLM fine-tuning.""", MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForCausalLM(MegatronBertPreTrainedModel, GenerationMixin): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `MegatronBertForCausalLM` as a standalone, add `is_decoder=True.`") self.bert = MegatronBertModel(config, add_pooling_layer=False) self.cls = MegatronBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, MegatronBertForCausalLM, MegatronBertConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForCausalLM.from_pretrained("nvidia/megatron-bert-cased-345m", is_decoder=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: lm_loss = self.loss_function( prediction_scores, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings("""MegatronBert Model with a `language modeling` head on top.""", MEGATRON_BERT_START_DOCSTRING) class MegatronBertForMaskedLM(MegatronBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `MegatronBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = MegatronBertModel(config, add_pooling_layer=False) self.cls = MegatronBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """MegatronBert Model with a `next sentence prediction (classification)` head on top.""", MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForNextSentencePrediction(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = MegatronBertModel(config) self.cls = MegatronBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, MegatronBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForNextSentencePrediction.from_pretrained("nvidia/megatron-bert-cased-345m") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MegatronBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForSequenceClassification(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MegatronBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MegatronBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForMultipleChoice(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = MegatronBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MegatronBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForTokenClassification(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MegatronBertModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MegatronBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForQuestionAnswering(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MegatronBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] ```
===================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.62 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\megatron_gpt2\__init__.py ENCODING: utf-8 ```py # Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ```
====================================================================================================================================================================== SOURCE CODE FILE: checkpoint_reshaping_and_interoperability.py LINES: 2 SIZE: 36.57 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\megatron_gpt2\checkpoint_reshaping_and_interoperability.py ENCODING: utf-8 ```py # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import importlib.util import json import os import re import sys import types import torch from huggingface_hub import split_torch_state_dict_into_shards from packaging import version from transformers import AutoTokenizer, GPT2Config from transformers.modeling_utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def add_checkpointing_args(parser): parser.add_argument("--megatron-path", type=str, default=None, help="Base directory of Megatron repository") parser.add_argument( "--convert_checkpoint_from_megatron_to_transformers", action="store_true", help=( "If True, convert a Megatron checkpoint to a Transformers checkpoint. " "If False, convert a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--load_path", type=str, required=True, help="Path to the checkpoint to convert.", ) parser.add_argument( "--save_path", type=str, required=True, help="Path to the converted checkpoint.", ) parser.add_argument("--print-checkpoint-structure", action="store_true") return parser def add_megatron_checkpoint_args(parser): parser.add_argument( "--target_tensor_model_parallel_size", type=int, default=1, help=( "The tensor model parallel size of the converted checkpoint. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--target_pipeline_model_parallel_size", type=int, default=1, help=( "The pipeline model parallel size of the converted checkpoint. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--target_data_parallel_size", type=int, default=1, help=( "The data parallel size of the converted checkpoint. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--target_params_dtype", type=str, default="fp32", help=( "The dtype of the converted checkpoint. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--make_vocab_size_divisible_by", type=int, default=128, help=( "Pad the vocab size to be divisible by this value. " "This is added for computational efficieny reasons. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) parser.add_argument( "--use_distributed_optimizer", action="store_true", help=( "If True, use the distributed optimizer. " "Only used when converting a Transformers checkpoint to a Megatron checkpoint." ), ) return parser def add_transformers_checkpoint_args(parser): parser.add_argument( "--tokenizer_name", type=str, default=None, help=( "The name of the pre-trained tokenizer to save. " "If not None, the tokenizer will be saved. " "Only used when converting a Megatron checkpoint to a Transformers checkpoint." ), ) parser.add_argument( "--max_shard_size", type=str, default="10GB", help=( "The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size " "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`). " "Only used when converting a Megatron checkpoint to a Transformers checkpoint." ), ) return parser # The simple map of names for "automated" rules. megatron_to_transformers = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } transformers_to_megatron = {v[1:-1]: k for k, v in megatron_to_transformers.items()} tensor_parallel_params = [ # megatron-lm layers to merge across tp ranks "self_attention.query_key_value.weight", "self_attention.query_key_value.bias", "self_attention.dense.weight", "mlp.dense_h_to_4h.weight", "mlp.dense_h_to_4h.bias", "mlp.dense_4h_to_h.weight", # deprecated "attention.query_key_value.weight", "attention.query_key_value.bias", "attention.dense.weight", # transformers layers to split across tp ranks "attn.c_attn.weight", "attn.c_attn.bias", "attn.c_proj.weight", "mlp.c_fc.weight", "mlp.c_fc.bias", "mlp.c_proj.weight", ] def recursive_print(name, val, spaces=0): """ Recursively print the structure of a checkpoint. This function is taken from `convert_megatron_gpt2_checkpoint.py` Args: name (str): the name of the current tensor parameter val (Tuple(int)): the shape of the current tensor parameter spaces (int): the number of spaces to print before the output for a nested structure """ # Format the message. if name is None: msg = None else: fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" msg = fmt.format(name) # Print and recurse (if needed). if isinstance(val, dict): if msg is not None: print(msg) for k in val.keys(): recursive_print(k, val[k], spaces + 2) elif isinstance(val, torch.Tensor): print(msg, ":", val.size()) else: print(msg, ":", val) def megatron_to_transformers_fix_query_key_value_ordering( param, checkpoint_version, num_splits, num_heads, hidden_size ): """ Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] for compatibility with later versions of NVIDIA Megatron-LM. The inverse operation is performed inside Megatron-LM to read checkpoints: https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 If param is the weight tensor of the self-attention block, the returned tensor will have to be transposed one more time to be read by HuggingFace GPT2. This function is taken from `convert_megatron_gpt2_checkpoint.py` Args: param (torch.Tensor): the tensor to permute checkpoint_version (int): the version of the checkpoint. num_splits (int): the number of projections, usually 3 for (Query, Key, Value) num_heads (int): the number of attention heads hidden_size (int): the hidden size per head """ input_shape = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 2) param = param.transpose(1, 2).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 1).contiguous() param = param.view(*input_shape) return param def transformers_to_megatron_fix_query_key_value_ordering( param, checkpoint_version, num_splits, num_heads, hidden_size ): """ Permutes layout of param tensor to the one compatible with respective NVIDIA Megatron-LM chekpoint versions. Input is [num_splits * num_heads * hidden_size, :] and output is [num_heads * hidden_size * num_splits, :] for version 1.0 and [num_heads * num_splits * hidden_size, :] for version 2.0 and later. If param is the weight tensor of the self-attention block, the param needs to be already transposed before calling this function. Args: param (torch.Tensor): the tensor to permute checkpoint_version (int): the version of the checkpoint. num_splits (int): the number of projections, usually 3 for (Query, Key, Value) num_heads (int): the number of attention heads hidden_size (int): the hidden size per head """ # Input is [num_splits * num_heads * hidden_size, :] input_shape = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:] param = param.view(*current_shape) param = param.transpose(0, 2) param = param.transpose(1, 2).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:] param = param.view(*current_shape) param = param.transpose(0, 1).contiguous() param = param.view(*input_shape) return param def merge_transformers_sharded_states(path, num_checkpoints): """ Merge sharded checkpoints from transformers into a single checkpoint. Args: path (str): the path to the sharded checkpoints num_checkpoints (int): the number of checkpoints to merge """ state_dict = {} for i in range(1, num_checkpoints + 1): checkpoint_path = os.path.join(path, f"pytorch_model-{i:05d}-of-{num_checkpoints:05d}.bin") current_chunk = torch.load(checkpoint_path, map_location="cpu") state_dict.update(current_chunk) return state_dict def get_megatron_sharded_states(args, tp_size, pp_size, pp_rank): """ Get sharded checkpoints from NVIDIA Megatron-LM checkpoint based on the provided tensor parallel size, pipeline parallel size and pipeline parallel rank. Args: args (argparse.Namespace): the arguments to the script tp_size (int): the tensor parallel size pp_size (int): the pipeline parallel size pp_rank (int): the pipeline parallel rank """ tp_state_dicts = [] for i in range(tp_size): sub_dir_name = f"mp_rank_{i:02d}" if pp_size == 1 else f"mp_rank_{i:02d}_{pp_rank:03d}" for checkpoint_name in ["model_optim_rng.pt", "model_rng.pt"]: checkpoint_path = os.path.join(args.load_path, sub_dir_name, checkpoint_name) if os.path.isfile(checkpoint_path): break state_dict = torch.load(checkpoint_path, map_location="cpu") tp_state_dicts.append(state_dict) return tp_state_dicts def get_element_from_dict_by_path(d, path): """ Get element from dictionary by path. If element is not present, recursively add empty dictionaries. Args: d (dict): the dictionary to get the element from path (list): the path to the element which is delimited by "." """ path = path.split(".") for k in path: if k not in d: d[k] = {} d = d[k] return d def convert_checkpoint_from_megatron_to_transformers(args): """ Convert NVIDIA Megatron-LM checkpoint to HuggingFace Transformers checkpoint. This handles Megatron checkpoints with different tensor parallelism and pipeline parallelism sizes. It saves the converted checkpoint into shards using HuggingFace Transformers checkpoint sharding functionality. This greatly extends the functionality of `convert_megatron_gpt2_checkpoint.py` Args: args (argparse.Namespace): the arguments to the script """ # Load Megatron-LM checkpoint arguments from the state dict sub_dirs = os.listdir(args.load_path) possible_sub_dirs = ["mp_rank_00", "mp_rank_00_000"] for sub_dir in possible_sub_dirs: if sub_dir in sub_dirs: rank0_checkpoint_name = os.listdir(os.path.join(args.load_path, sub_dir))[0] rank0_checkpoint_path = os.path.join(args.load_path, sub_dir, rank0_checkpoint_name) break print(f"Loading Megatron-LM checkpoint arguments from: {rank0_checkpoint_path}") state_dict = torch.load(rank0_checkpoint_path, map_location="cpu") megatron_args = state_dict.get("args", None) if megatron_args is None: raise ValueError( "Megatron-LM checkpoint does not contain arguments. This utility only supports Megatron-LM checkpoints" " containing all the megatron arguments. This is because it loads all config related to model" " architecture, the tensor and pipeline model parallel size from the checkpoint insead of user having to" " manually specify all the details. Please save Megatron-LM checkpoint along with all the megatron" " arguments to use this utility." ) # Create Transformers GPT2 config from Megatron-LM arguments if megatron_args is not None: if megatron_args.bias_gelu_fusion: activation_function = "gelu_fast" elif megatron_args.openai_gelu: activation_function = "gelu_new" else: activation_function = "gelu" else: # in the very early days this used to be "gelu_new" activation_function = "gelu_new" vocab_size = ( megatron_args.padded_vocab_size if getattr(megatron_args, "orig_vocab_size", None) is None else megatron_args.orig_vocab_size ) print(vocab_size) config = GPT2Config( vocab_size=vocab_size, n_positions=megatron_args.max_position_embeddings, n_embd=megatron_args.hidden_size, n_layer=megatron_args.num_layers, n_head=megatron_args.num_attention_heads, n_inner=megatron_args.ffn_hidden_size, activation_function=activation_function, resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, summary_type="cls_index", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, scale_attn_weights=True, use_cache=True, bos_token_id=vocab_size - 1, eos_token_id=vocab_size - 1, architectures=["GPT2LMHeadModel"], ) output_state_dict = {} checkpoint_version = state_dict.get("checkpoint_version", 0.0) tp_size = megatron_args.tensor_model_parallel_size pp_size = megatron_args.pipeline_model_parallel_size dtype = torch.float32 # The regex to extract layer names. layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)") # Convert. print("Converting") # Embeddings print("Converting embeddings") tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, 0) # Convert and store the position embeddings. position_embeddings = get_element_from_dict_by_path( tp_state_dicts[0], "model.language_model.embedding.position_embeddings.weight" ) output_state_dict["transformer.wpe.weight"] = position_embeddings.to(dtype) # Convert and store the word embeddings. word_embeddings = torch.cat( [ get_element_from_dict_by_path( tp_state_dicts[tp_rank], "model.language_model.embedding.word_embeddings.weight" ) for tp_rank in range(tp_size) ], dim=0, ) word_embeddings = word_embeddings[:vocab_size].to(dtype) output_state_dict["transformer.wte.weight"] = word_embeddings # Transformer Layers print("Converting transformer layers") # The number of heads. heads = config.n_head # The hidden_size per head. hidden_size_per_head = config.n_embd // config.n_head n_positions = config.n_positions num_layers = config.num_hidden_layers // pp_size for pp_rank in range(pp_size): if pp_size > 0: print(f"Converting pipeline parallel rank {pp_rank}") tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, pp_rank) # The transformer. path = ( "model.language_model.transformer" if "transformer" in get_element_from_dict_by_path(tp_state_dicts[0], "model.language_model").keys() else "model.language_model.encoder" ) # Extract the layers. for key, val in get_element_from_dict_by_path(tp_state_dicts[0], path).items(): # Match the name. m = layer_re.match(key) # Stop if that's not a layer if m is None: break # The index of the layer. layer_idx = int(m.group(1)) + pp_rank * num_layers # The name of the operation. op_name = m.group(2) # Is it a weight or a bias? weight_or_bias = m.group(3) # The name of the layer. layer_name = f"transformer.h.{layer_idx}" if op_name + "." + weight_or_bias not in tensor_parallel_params: params = val.to(dtype) else: dim = 1 if op_name in ["self_attention.dense", "mlp.dense_4h_to_h", "attention.dense"] else 0 params = torch.cat( [val] + [ get_element_from_dict_by_path(tp_state_dicts[tp_rank], f"{path}")[key] for tp_rank in range(1, tp_size) ], dim=dim, ).to(dtype) # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm"): ln_name = "ln_1" if op_name.startswith("input") else "ln_2" output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = params # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=dtype)).view( 1, 1, n_positions, n_positions ) output_state_dict[layer_name + ".attn.bias"] = causal_mask # Insert a "dummy" tensor for masked_bias. masked_bias = torch.tensor(-1e4, dtype=dtype) output_state_dict[layer_name + ".attn.masked_bias"] = masked_bias out_val = megatron_to_transformers_fix_query_key_value_ordering( params, checkpoint_version, 3, heads, hidden_size_per_head, ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. out_val = out_val.transpose(0, 1).contiguous() # Store. output_state_dict[layer_name + ".attn.c_attn.weight"] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": out_val = megatron_to_transformers_fix_query_key_value_ordering( params, checkpoint_version, 3, heads, hidden_size_per_head ) # Store. No change of shape. output_state_dict[layer_name + ".attn.c_attn.bias"] = out_val # Transpose the weights. elif weight_or_bias == "weight": out_name = megatron_to_transformers[op_name] output_state_dict[layer_name + out_name + "weight"] = params.transpose(0, 1) # Copy the bias. elif weight_or_bias == "bias": out_name = megatron_to_transformers[op_name] output_state_dict[layer_name + out_name + "bias"] = params if config.n_layer != (layer_idx + 1): raise ValueError(f"Expected {config.n_layer} layers but found {layer_idx + 1}") # The final layernorm. print("Converting final layernorm") params = get_element_from_dict_by_path(tp_state_dicts[0], str(path)) output_state_dict["transformer.ln_f.weight"] = params["final_layernorm.weight"].to(dtype) output_state_dict["transformer.ln_f.bias"] = params["final_layernorm.bias"].to(dtype) # For LM head, transformers' wants the matrix to weight embeddings. print("Converting LM head") output_state_dict["lm_head.weight"] = word_embeddings.to(dtype) # It should be done! print("Conversion from Megatron-LM to Transformers is done!") # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(None, output_state_dict) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if args.tokenizer_name is None: tokenizer_name = "openai-community/gpt2" else: tokenizer_name = args.tokenizer_name tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) tokenizer_class = type(tokenizer).__name__ config.tokenizer_class = tokenizer_class # Store the config to file. print("Saving config") config.save_pretrained(args.save_path) # Save tokenizer based on args if args.tokenizer_name is not None: print(f"Adding {tokenizer_class} tokenizer files") tokenizer.save_pretrained(args.save_path) # Store the state_dict to file. max_shard_size = int(args.max_shard_size) if args.max_shard_size.isdigit() else args.max_shard_size state_dict_split = split_torch_state_dict_into_shards(output_state_dict, max_shard_size=max_shard_size) shards = index = None for tensors in state_dict_split.filename_to_tensors.values(): shards = {tensor: state_dict[tensor] for tensor in tensors} if state_dict_split.is_sharded: index = { "metadata": state_dict_split.metadata, "weight_map": state_dict_split.tensor_to_filename, } # Save the model for shard_file, shard in shards.items(): torch.save(shard, os.path.join(args.save_path, shard_file)) if index is None: print(f"Model weights saved in {os.path.join(args.save_path, WEIGHTS_NAME)}") else: save_index_file = os.path.join(args.save_path, WEIGHTS_INDEX_NAME) # Save the index as well with open(save_index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) print( f"The model is bigger than the maximum size per checkpoint ({args.max_shard_size}) and is going to be " f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) def convert_checkpoint_from_transformers_to_megatron(args): """ Convert a checkpoint from HuggingFace Transformers to Megatron-LM. This allows converted checkpoints with variable tensor parallelism and pipeline parallelism sizes. It takes as input a checkpoint from HuggingFace Transformers which can have multiple shards. Args: args (argparse.Namespace): the arguments to the script """ os.makedirs(args.save_path, exist_ok=True) # Search in directory above this sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) if args.megatron_path is not None: sys.path.insert(0, args.megatron_path) megatron_exists = importlib.util.find_spec("megatron") is not None if megatron_exists: from megatron.core import package_info if version.parse(package_info.__version__) >= version.parse("0.6.0"): from megatron.training.tokenizer.tokenizer import _vocab_size_with_padding else: from megatron.tokenizer.tokenizer import _vocab_size_with_padding else: print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.") exit(1) # load the transformers model state dict and config sub_dirs = [x for x in os.listdir(args.load_path) if x.startswith("pytorch_model")] if len(sub_dirs) == 1: checkpoint_name = "pytorch_model.bin" state_dict = torch.load(os.path.join(args.load_path, checkpoint_name), map_location="cpu") else: num_checkpoints = len(sub_dirs) - 1 state_dict = merge_transformers_sharded_states(args.load_path, num_checkpoints) config = GPT2Config.from_pretrained(args.load_path) # Saving the tracker file tracker_filepath = os.path.join(args.save_path, "latest_checkpointed_iteration.txt") with open(tracker_filepath, "w") as f: f.write("release") # create `release` dir in args.load_path release_dir = os.path.join(args.save_path, "release") os.makedirs(release_dir, exist_ok=True) # megatron args megatron_args = { "orig_vocab_size": config.vocab_size, "max_position_embeddings": config.n_positions, "hidden_size": config.n_embd, "num_layers": config.n_layer, "num_attention_heads": config.n_head, "ffn_hidden_size": config.n_inner, "tensor_model_parallel_size": args.target_tensor_model_parallel_size, "pipeline_model_parallel_size": args.target_pipeline_model_parallel_size, "data_parallel_size": args.target_data_parallel_size, "make_vocab_size_divisible_by": args.make_vocab_size_divisible_by, "rank": 0, "tokenizer_type": "GPT2BPETokenizer", } if config.activation_function == "gelu": megatron_args["bias_gelu_fusion"] = False megatron_args["openai_gelu"] = False elif config.activation_function == "gelu_fast": megatron_args["bias_gelu_fusion"] = True megatron_args["openai_gelu"] = False elif config.activation_function == "gelu_new": megatron_args["bias_gelu_fusion"] = False megatron_args["openai_gelu"] = True margs = types.SimpleNamespace() for k, v in megatron_args.items(): setattr(margs, k, v) # params dtype if args.target_params_dtype == "fp16": dtype = torch.float16 elif args.target_params_dtype == "bf16": dtype = torch.bfloat16 else: dtype = torch.float32 setattr(margs, "params_dtype", dtype) # save dummy optim state dict dummy_optim_state_dict = {} dummy_optim_state_dict["optimizer"] = { "step": 0, "param_groups": [ { "lr": 0.0, "beta1": 0.0, "beta2": 0.0, "eps": 0.0, "weight_decay": 0.0, "correct_bias": False, "params": [], } ], } if args.use_distributed_optimizer: for i in range(args.target_pipeline_model_parallel_size): for j in range(args.target_tensor_model_parallel_size): for k in range(args.target_data_parallel_size): if args.target_pipeline_model_parallel_size == 1: checkpoint_dir = f"mp_rank_{j:02d}_{k:03d}" else: checkpoint_dir = f"mp_rank_{j:02d}_{i:03d}_{k:03d}" checkpoint_dir = os.path.join(release_dir, checkpoint_dir) os.makedirs(checkpoint_dir, exist_ok=True) torch.save( dummy_optim_state_dict, os.path.join(checkpoint_dir, "optim.pt"), ) # Convert. print("Converting") output_state_dict = [] for i in range(args.target_tensor_model_parallel_size): output_state_dict.append({}) # Embedding layer print("converting embedding layer") pos_embedding = state_dict["transformer.wpe.weight"].to(dtype) word_embedding = state_dict["transformer.wte.weight"].to(dtype) orig_vocab_size = config.vocab_size padded_vocab_size = _vocab_size_with_padding(orig_vocab_size, margs) setattr(margs, "padded_vocab_size", padded_vocab_size) # Cut out extra padding we don't need if orig_vocab_size > padded_vocab_size: full_word_embed = word_embedding[0:padded_vocab_size, :] # Expanding embedding to larger size by replicating final entry elif orig_vocab_size < padded_vocab_size: padding_size = padded_vocab_size - orig_vocab_size full_word_embed = torch.cat((word_embedding, word_embedding[-1].unsqueeze(0).expand(padding_size, -1))) # Same size! else: full_word_embed = word_embedding # Split into new tensor model parallel sizes out_word_embed = torch.chunk(full_word_embed, args.target_tensor_model_parallel_size, dim=0) for i in range(args.target_tensor_model_parallel_size): pos_emb_dict = get_element_from_dict_by_path( output_state_dict[i], "model.language_model.embedding.position_embeddings" ) pos_emb_dict["weight"] = pos_embedding word_emb_dict = get_element_from_dict_by_path( output_state_dict[i], "model.language_model.embedding.word_embeddings" ) word_emb_dict["weight"] = out_word_embed[i].clone() # Transformer layers print("converting transformer layers") if config.num_attention_heads % args.target_tensor_model_parallel_size != 0: raise ValueError( f"Number of attention heads ({config.num_attention_heads}) must be divisible by number of tensor parallelism" f" ({args.target_tensor_model_parallel_size})" ) if config.num_hidden_layers % args.target_pipeline_model_parallel_size != 0: raise ValueError( f"Number of layers ({config.num_hidden_layers}) must be divisible by number of pipeline parallelism" f" ({args.target_pipeline_model_parallel_size})" ) num_layers = config.num_hidden_layers // args.target_pipeline_model_parallel_size layer_re = re.compile(r"transformer.h\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)") # The number of heads. heads = config.n_head # The hidden_size per head. hidden_size_per_head = config.n_embd // config.n_head for pp_rank in range(args.target_pipeline_model_parallel_size): layer_offset = pp_rank * num_layers if pp_rank > 0: output_state_dict = [] for i in range(args.target_tensor_model_parallel_size): output_state_dict.append({}) for layer in range(num_layers): pp_layer_id = layer + layer_offset layers_to_copy = [ layer_name for layer_name in state_dict.keys() if layer_name.startswith(f"transformer.h.{pp_layer_id}.") ] for layer_name in layers_to_copy: m = layer_re.match(layer_name) # Stop if that's not a layer if m is None: break # The index of the layer. _ = int(m.group(1)) # The name of the operation. op_name = m.group(2) # Is it a weight or a bias? weight_or_bias = m.group(3) params = state_dict[layer_name].to(dtype) # handle layernorm if op_name.startswith("ln"): out_name = "input_layernorm" if op_name.endswith("1") else "post_attention_layernorm" layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}" # handle attention K, V, Q weights elif op_name.startswith("attn.c_attn") and weight_or_bias == "weight": # transformers stores D X (3*D) but Megatron-LM expects (3*D) X D. params = params.transpose(0, 1).contiguous() params = transformers_to_megatron_fix_query_key_value_ordering( params, 3.0, 3, heads, hidden_size_per_head, ) layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}" # handle attention K, V, Q bias elif op_name.startswith("attn.c_attn") and weight_or_bias == "bias": params = transformers_to_megatron_fix_query_key_value_ordering( params, 3.0, 3, heads, hidden_size_per_head, ) layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}" # handle attention and mlp weights elif weight_or_bias == "weight": out_name = transformers_to_megatron.get(op_name, None) if out_name is None: continue params = params.transpose(0, 1) layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}" # handle attention and mlp bias elif weight_or_bias == "bias": out_name = transformers_to_megatron.get(op_name, None) if out_name is None: continue layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}" # skip else: continue if op_name + "." + weight_or_bias in tensor_parallel_params: dim = 1 if op_name in ["attn.c_proj", "mlp.c_proj"] else 0 params = torch.chunk(params, args.target_tensor_model_parallel_size, dim=dim) for i in range(args.target_tensor_model_parallel_size): params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder") params_dict[layer_name] = ( params[i].clone() if (op_name + "." + weight_or_bias in tensor_parallel_params) else params ) if pp_rank == args.target_pipeline_model_parallel_size - 1: # handle final layernorm for weight_or_bias in ["weight", "bias"]: params = state_dict[f"transformer.ln_f.{weight_or_bias}"].to(dtype) layer_name = f"final_layernorm.{weight_or_bias}" for i in range(args.target_tensor_model_parallel_size): params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder") params_dict[layer_name] = params # add the LM head for i in range(args.target_tensor_model_parallel_size): params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.word_embeddings_for_head") params_dict["weight"] = out_word_embed[i].clone() # saving the state dict as per the tp_rank and pp_rank for tp_rank in range(args.target_tensor_model_parallel_size): output_state_dict[tp_rank]["checkpoint_version"] = 3.0 output_state_dict[tp_rank]["args"] = margs checkpoint_dir = ( f"mp_rank_{tp_rank:02d}" if args.target_pipeline_model_parallel_size == 1 else f"mp_rank_{tp_rank:02d}_{pp_rank:03d}" ) if args.use_distributed_optimizer: checkpoint_name = "model_rng.pt" else: checkpoint_name = "model_optim_rng.pt" output_state_dict[tp_rank]["optimizer"] = dummy_optim_state_dict["optimizer"] checkpoint_dir = os.path.join(release_dir, checkpoint_dir) os.makedirs(checkpoint_dir, exist_ok=True) checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name) if args.print_checkpoint_structure: print( f"Checkpoint structure of model state dict shard belonging to TP rank {tp_rank} and PP rank" f" {pp_rank}:" ) recursive_print(None, output_state_dict[tp_rank]) torch.save(output_state_dict[tp_rank], checkpoint_path) def main(): parser = argparse.ArgumentParser() parser = add_checkpointing_args(parser) parser = add_megatron_checkpoint_args(parser) parser = add_transformers_checkpoint_args(parser) args = parser.parse_args() if args.convert_checkpoint_from_megatron_to_transformers: convert_checkpoint_from_megatron_to_transformers(args) else: convert_checkpoint_from_transformers_to_megatron(args) if __name__ == "__main__": main() ```
=============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.05 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mgp_str\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mgp_str import * from .modeling_mgp_str import * from .processing_mgp_str import * from .tokenization_mgp_str import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================ SOURCE CODE FILE: configuration_mgp_str.py LINES: 1 SIZE: 5.67 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mgp_str\configuration_mgp_str.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MGP-STR model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class MgpstrConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`MgpstrModel`]. It is used to instantiate an MGP-STR model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MGP-STR [alibaba-damo/mgp-str-base](https://huggingface.co/alibaba-damo/mgp-str-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`List[int]`, *optional*, defaults to `[32, 128]`): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. max_token_length (`int`, *optional*, defaults to 27): The max number of output tokens. num_character_labels (`int`, *optional*, defaults to 38): The number of classes for character head . num_bpe_labels (`int`, *optional*, defaults to 50257): The number of classes for bpe head . num_wordpiece_labels (`int`, *optional*, defaults to 30522): The number of classes for wordpiece head . hidden_size (`int`, *optional*, defaults to 768): The embedding dimension. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. mlp_ratio (`float`, *optional*, defaults to 4.0): The ratio of mlp hidden dim to embedding dim. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. distilled (`bool`, *optional*, defaults to `False`): Model includes a distillation token and head as in DeiT models. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. drop_rate (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder. attn_drop_rate (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. drop_path_rate (`float`, *optional*, defaults to 0.0): The stochastic depth rate. output_a3_attentions (`bool`, *optional*, defaults to `False`): Whether or not the model should returns A^3 module attentions. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import MgpstrConfig, MgpstrForSceneTextRecognition >>> # Initializing a Mgpstr mgp-str-base style configuration >>> configuration = MgpstrConfig() >>> # Initializing a model (with random weights) from the mgp-str-base style configuration >>> model = MgpstrForSceneTextRecognition(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mgp-str" def __init__( self, image_size=[32, 128], patch_size=4, num_channels=3, max_token_length=27, num_character_labels=38, num_bpe_labels=50257, num_wordpiece_labels=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, mlp_ratio=4.0, qkv_bias=True, distilled=False, layer_norm_eps=1e-5, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, output_a3_attentions=False, initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.max_token_length = max_token_length self.num_character_labels = num_character_labels self.num_bpe_labels = num_bpe_labels self.num_wordpiece_labels = num_wordpiece_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.mlp_ratio = mlp_ratio self.distilled = distilled self.layer_norm_eps = layer_norm_eps self.drop_rate = drop_rate self.qkv_bias = qkv_bias self.attn_drop_rate = attn_drop_rate self.drop_path_rate = drop_path_rate self.output_a3_attentions = output_a3_attentions self.initializer_range = initializer_range __all__ = ["MgpstrConfig"] ```
======================================================================================================================================= SOURCE CODE FILE: modeling_mgp_str.py LINES: 1 SIZE: 21.49 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mgp_str\modeling_mgp_str.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 Alibaba Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MGP-STR model.""" import collections.abc from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mgp_str import MgpstrConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MgpstrConfig" _TOKENIZER_FOR_DOC = "MgpstrTokenizer" # Base docstring _CHECKPOINT_FOR_DOC = "alibaba-damo/mgp-str-base" # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Mgpstr class MgpstrDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) @dataclass class MgpstrModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: logits (`tuple(torch.FloatTensor)` of shape `(batch_size, config.num_character_labels)`): Tuple of `torch.FloatTensor` (one for the output of character of shape `(batch_size, config.max_token_length, config.num_character_labels)`, + one for the output of bpe of shape `(batch_size, config.max_token_length, config.num_bpe_labels)`, + one for the output of wordpiece of shape `(batch_size, config.max_token_length, config.num_wordpiece_labels)`) . Classification scores (before SoftMax) of character, bpe and wordpiece. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, config.max_token_length, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. a3_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_a3_attentions=True` is passed or when `config.output_a3_attentions=True`): Tuple of `torch.FloatTensor` (one for the attention of character, + one for the attention of bpe`, + one for the attention of wordpiece) of shape `(batch_size, config.max_token_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: Tuple[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None a3_attentions: Optional[Tuple[torch.FloatTensor]] = None class MgpstrEmbeddings(nn.Module): """2D Image to Patch Embedding""" def __init__(self, config: MgpstrConfig): super().__init__() image_size = ( config.image_size if isinstance(config.image_size, collections.abc.Iterable) else (config.image_size, config.image_size) ) patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) self.image_size = image_size self.patch_size = patch_size self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.num_tokens = 2 if config.distilled else 1 self.proj = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size) self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + self.num_tokens, config.hidden_size)) self.pos_drop = nn.Dropout(p=config.drop_rate) def forward(self, pixel_values): batch_size, channel, height, width = pixel_values.shape if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) patch_embeddings = self.proj(pixel_values) patch_embeddings = patch_embeddings.flatten(2).transpose(1, 2) # BCHW -> BNC cls_tokens = self.cls_token.expand(batch_size, -1, -1) embedding_output = torch.cat((cls_tokens, patch_embeddings), dim=1) embedding_output = embedding_output + self.pos_embed embedding_output = self.pos_drop(embedding_output) return embedding_output class MgpstrMlp(nn.Module): """MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__(self, config: MgpstrConfig, hidden_features): super().__init__() hidden_features = hidden_features or config.hidden_size self.fc1 = nn.Linear(config.hidden_size, hidden_features) self.act = nn.GELU() self.fc2 = nn.Linear(hidden_features, config.hidden_size) self.drop = nn.Dropout(config.drop_rate) def forward(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.drop(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = self.drop(hidden_states) return hidden_states class MgpstrAttention(nn.Module): def __init__(self, config: MgpstrConfig): super().__init__() self.num_heads = config.num_attention_heads head_dim = config.hidden_size // config.num_attention_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias) self.attn_drop = nn.Dropout(config.attn_drop_rate) self.proj = nn.Linear(config.hidden_size, config.hidden_size) self.proj_drop = nn.Dropout(config.drop_rate) def forward(self, hidden_states): batch_size, num, channel = hidden_states.shape qkv = ( self.qkv(hidden_states) .reshape(batch_size, num, 3, self.num_heads, channel // self.num_heads) .permute(2, 0, 3, 1, 4) ) query, key, value = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attention_probs = (query @ key.transpose(-2, -1)) * self.scale attention_probs = attention_probs.softmax(dim=-1) attention_probs = self.attn_drop(attention_probs) context_layer = (attention_probs @ value).transpose(1, 2).reshape(batch_size, num, channel) context_layer = self.proj(context_layer) context_layer = self.proj_drop(context_layer) return (context_layer, attention_probs) class MgpstrLayer(nn.Module): def __init__(self, config: MgpstrConfig, drop_path=None): super().__init__() self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attn = MgpstrAttention(config) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = MgpstrDropPath(drop_path) if drop_path is not None else nn.Identity() self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) mlp_hidden_dim = int(config.hidden_size * config.mlp_ratio) self.mlp = MgpstrMlp(config, mlp_hidden_dim) def forward(self, hidden_states): self_attention_outputs = self.attn(self.norm1(hidden_states)) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1] # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # second residual connection is done here layer_output = hidden_states + self.drop_path(self.mlp(self.norm2(hidden_states))) outputs = (layer_output, outputs) return outputs class MgpstrEncoder(nn.Module): def __init__(self, config: MgpstrConfig): super().__init__() # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] self.blocks = nn.Sequential( *[MgpstrLayer(config=config, drop_path=dpr[i]) for i in range(config.num_hidden_layers)] ) def forward(self, hidden_states, output_attentions=False, output_hidden_states=False, return_dict=True): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for _, blk in enumerate(self.blocks): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = blk(hidden_states) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class MgpstrA3Module(nn.Module): def __init__(self, config: MgpstrConfig): super().__init__() self.token_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.tokenLearner = nn.Sequential( nn.Conv2d(config.hidden_size, config.hidden_size, kernel_size=(1, 1), stride=1, groups=8, bias=False), nn.Conv2d(config.hidden_size, config.max_token_length, kernel_size=(1, 1), stride=1, bias=False), ) self.feat = nn.Conv2d( config.hidden_size, config.hidden_size, kernel_size=(1, 1), stride=1, groups=8, bias=False ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.token_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2).unsqueeze(-1) selected = self.tokenLearner(hidden_states) selected = selected.flatten(2) attentions = F.softmax(selected, dim=-1) feat = self.feat(hidden_states) feat = feat.flatten(2).transpose(1, 2) feat = torch.einsum("...si,...id->...sd", attentions, feat) a3_out = self.norm(feat) return (a3_out, attentions) class MgpstrPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MgpstrConfig base_model_prefix = "mgp_str" _no_split_modules = [] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, MgpstrEmbeddings): nn.init.trunc_normal_(module.pos_embed, mean=0.0, std=self.config.initializer_range) nn.init.trunc_normal_(module.cls_token, mean=0.0, std=self.config.initializer_range) elif isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) MGP_STR_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MgpstrConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MGP_STR_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MGP-STR Model transformer outputting raw hidden-states without any specific head on top.", MGP_STR_START_DOCSTRING, ) class MgpstrModel(MgpstrPreTrainedModel): def __init__(self, config: MgpstrConfig): super().__init__(config) self.config = config self.embeddings = MgpstrEmbeddings(config) self.encoder = MgpstrEncoder(config) def get_input_embeddings(self) -> nn.Module: return self.embeddings.proj @add_start_docstrings_to_model_forward(MGP_STR_INPUTS_DOCSTRING) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return encoder_outputs return BaseModelOutput( last_hidden_state=encoder_outputs.last_hidden_state, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ MGP-STR Model transformer with three classification heads on top (three A^3 modules and three linear layer on top of the transformer encoder output) for scene text recognition (STR) . """, MGP_STR_START_DOCSTRING, ) class MgpstrForSceneTextRecognition(MgpstrPreTrainedModel): config_class = MgpstrConfig main_input_name = "pixel_values" def __init__(self, config: MgpstrConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.mgp_str = MgpstrModel(config) self.char_a3_module = MgpstrA3Module(config) self.bpe_a3_module = MgpstrA3Module(config) self.wp_a3_module = MgpstrA3Module(config) self.char_head = nn.Linear(config.hidden_size, config.num_character_labels) self.bpe_head = nn.Linear(config.hidden_size, config.num_bpe_labels) self.wp_head = nn.Linear(config.hidden_size, config.num_wordpiece_labels) @add_start_docstrings_to_model_forward(MGP_STR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MgpstrModelOutput, config_class=MgpstrConfig) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_a3_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], MgpstrModelOutput]: r""" output_a3_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of a3 modules. See `a3_attentions` under returned tensors for more detail. Returns: Example: ```python >>> from transformers import ( ... MgpstrProcessor, ... MgpstrForSceneTextRecognition, ... ) >>> import requests >>> from PIL import Image >>> # load image from the IIIT-5k dataset >>> url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png" >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") >>> processor = MgpstrProcessor.from_pretrained("alibaba-damo/mgp-str-base") >>> pixel_values = processor(images=image, return_tensors="pt").pixel_values >>> model = MgpstrForSceneTextRecognition.from_pretrained("alibaba-damo/mgp-str-base") >>> # inference >>> outputs = model(pixel_values) >>> out_strs = processor.batch_decode(outputs.logits) >>> out_strs["generated_text"] '["ticket"]' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict mgp_outputs = self.mgp_str( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = mgp_outputs[0] char_a3_out, char_attention = self.char_a3_module(sequence_output) bpe_a3_out, bpe_attention = self.bpe_a3_module(sequence_output) wp_a3_out, wp_attention = self.wp_a3_module(sequence_output) char_logits = self.char_head(char_a3_out) bpe_logits = self.bpe_head(bpe_a3_out) wp_logits = self.wp_head(wp_a3_out) all_a3_attentions = (char_attention, bpe_attention, wp_attention) if output_a3_attentions else None all_logits = (char_logits, bpe_logits, wp_logits) if not return_dict: outputs = (all_logits, all_a3_attentions) + mgp_outputs[1:] return tuple(output for output in outputs if output is not None) return MgpstrModelOutput( logits=all_logits, hidden_states=mgp_outputs.hidden_states, attentions=mgp_outputs.attentions, a3_attentions=all_a3_attentions, ) __all__ = ["MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition"] ```
========================================================================================================================================= SOURCE CODE FILE: processing_mgp_str.py LINES: 1 SIZE: 9.13 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mgp_str\processing_mgp_str.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Processor class for MGP-STR.""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class DecodeType(ExplicitEnum): CHARACTER = "char" BPE = "bpe" WORDPIECE = "wp" SUPPORTED_ANNOTATION_FORMATS = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class MgpstrProcessor(ProcessorMixin): r""" Constructs a MGP-STR processor which wraps an image processor and MGP-STR tokenizers into a single [`MgpstrProcessor`] offers all the functionalities of `ViTImageProcessor`] and [`MgpstrTokenizer`]. See the [`~MgpstrProcessor.__call__`] and [`~MgpstrProcessor.batch_decode`] for more information. Args: image_processor (`ViTImageProcessor`, *optional*): An instance of `ViTImageProcessor`. The image processor is a required input. tokenizer ([`MgpstrTokenizer`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "char_tokenizer"] image_processor_class = ("ViTImageProcessor", "ViTImageProcessorFast") char_tokenizer_class = "MgpstrTokenizer" def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") self.char_tokenizer = tokenizer self.bpe_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") self.wp_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") super().__init__(image_processor, tokenizer) def __call__(self, text=None, images=None, return_tensors=None, **kwargs): """ When used in normal mode, this method forwards all its arguments to ViTImageProcessor's [`~ViTImageProcessor.__call__`] and returns its output. This method also forwards the `text` and `kwargs` arguments to MgpstrTokenizer's [`~MgpstrTokenizer.__call__`] if `text` is not `None` to encode the text. Please refer to the docstring of the above methods for more information. """ if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process.") if images is not None: inputs = self.image_processor(images, return_tensors=return_tensors, **kwargs) if text is not None: encodings = self.char_tokenizer(text, return_tensors=return_tensors, **kwargs) if text is None: return inputs elif images is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, sequences): """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `Dict[str, any]`: Dictionary of all the outputs of the decoded results. generated_text (`List[str]`): The final results after fusion of char, bpe, and wp. scores (`List[float]`): The final scores after fusion of char, bpe, and wp. char_preds (`List[str]`): The list of character decoded sentences. bpe_preds (`List[str]`): The list of bpe decoded sentences. wp_preds (`List[str]`): The list of wp decoded sentences. This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ char_preds, bpe_preds, wp_preds = sequences batch_size = char_preds.size(0) char_strs, char_scores = self._decode_helper(char_preds, "char") bpe_strs, bpe_scores = self._decode_helper(bpe_preds, "bpe") wp_strs, wp_scores = self._decode_helper(wp_preds, "wp") final_strs = [] final_scores = [] for i in range(batch_size): scores = [char_scores[i], bpe_scores[i], wp_scores[i]] strs = [char_strs[i], bpe_strs[i], wp_strs[i]] max_score_index = scores.index(max(scores)) final_strs.append(strs[max_score_index]) final_scores.append(scores[max_score_index]) out = {} out["generated_text"] = final_strs out["scores"] = final_scores out["char_preds"] = char_strs out["bpe_preds"] = bpe_strs out["wp_preds"] = wp_strs return out def _decode_helper(self, pred_logits, format): """ Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer. Args: pred_logits (`torch.Tensor`): List of model prediction logits. format (`Union[DecoderType, str]`): Type of model prediction. Must be one of ['char', 'bpe', 'wp']. Returns: `tuple`: dec_strs(`str`): The decode strings of model prediction. conf_scores(`List[float]`): The confidence score of model prediction. """ if format == DecodeType.CHARACTER: decoder = self.char_decode eos_token = 1 eos_str = "[s]" elif format == DecodeType.BPE: decoder = self.bpe_decode eos_token = 2 eos_str = "#" elif format == DecodeType.WORDPIECE: decoder = self.wp_decode eos_token = 102 eos_str = "[SEP]" else: raise ValueError(f"Format {format} is not supported.") dec_strs, conf_scores = [], [] batch_size = pred_logits.size(0) batch_max_length = pred_logits.size(1) _, preds_index = pred_logits.topk(1, dim=-1, largest=True, sorted=True) preds_index = preds_index.view(-1, batch_max_length)[:, 1:] preds_str = decoder(preds_index) preds_max_prob, _ = torch.nn.functional.softmax(pred_logits, dim=2).max(dim=2) preds_max_prob = preds_max_prob[:, 1:] for index in range(batch_size): pred_eos = preds_str[index].find(eos_str) pred = preds_str[index][:pred_eos] pred_index = preds_index[index].tolist() pred_eos_index = pred_index.index(eos_token) if eos_token in pred_index else -1 pred_max_prob = preds_max_prob[index][: pred_eos_index + 1] confidence_score = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(pred) conf_scores.append(confidence_score) return dec_strs, conf_scores def char_decode(self, sequences): """ Convert a list of lists of char token ids into a list of strings by calling char tokenizer. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `List[str]`: The list of char decoded sentences. """ decode_strs = [seq.replace(" ", "") for seq in self.char_tokenizer.batch_decode(sequences)] return decode_strs def bpe_decode(self, sequences): """ Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `List[str]`: The list of bpe decoded sentences. """ return self.bpe_tokenizer.batch_decode(sequences) def wp_decode(self, sequences): """ Convert a list of lists of word piece token ids into a list of strings by calling word piece tokenizer. Args: sequences (`torch.Tensor`): List of tokenized input ids. Returns: `List[str]`: The list of wp decoded sentences. """ decode_strs = [seq.replace(" ", "") for seq in self.wp_tokenizer.batch_decode(sequences)] return decode_strs __all__ = ["MgpstrProcessor"] ```
=========================================================================================================================================== SOURCE CODE FILE: tokenization_mgp_str.py LINES: 2 SIZE: 3.72 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mgp_str\tokenization_mgp_str.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MGT-STR CHAR.""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"} class MgpstrTokenizer(PreTrainedTokenizer): """ Construct a MGP-STR char tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. unk_token (`str`, *optional*, defaults to `"[GO]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"[GO]"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"[s]"`): The end of sequence token. pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"[GO]"`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. """ vocab_files_names = VOCAB_FILES_NAMES def __init__(self, vocab_file, unk_token="[GO]", bos_token="[GO]", eos_token="[s]", pad_token="[GO]", **kwargs): with open(vocab_file, encoding="utf-8") as vocab_handle: self.vocab = json.load(vocab_handle) self.decoder = {v: k for k, v in self.vocab.items()} super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): vocab = dict(self.vocab).copy() vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text): """Tokenize a string.""" char_tokens = [] for s in text: char_tokens.extend(s) return char_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,) __all__ = ["MgpstrTokenizer"] ```
============================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.97 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mimi\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mimi import * from .modeling_mimi import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
====================================================================================================================================== SOURCE CODE FILE: configuration_mimi.py LINES: 1 SIZE: 11.64 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mimi\configuration_mimi.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 Meta Platforms, Inc. and affiliates, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mimi model configuration""" import math import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class MimiConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`MimiModel`]. It is used to instantiate a Mimi model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [kyutai/mimi](https://huggingface.co/kyutai/mimi) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: sampling_rate (`int`, *optional*, defaults to 24000): The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz). frame_rate (`float`, *optional*, defaults to 12.5): Framerate of the model. audio_channels (`int`, *optional*, defaults to 1): Number of channels in the audio data. Either 1 for mono or 2 for stereo. hidden_size (`int`, *optional*, defaults to 512): Intermediate representation dimension. num_filters (`int`, *optional*, defaults to 64): Number of convolution kernels of first `MimiConv1d` down sampling layer. num_residual_layers (`int`, *optional*, defaults to 1): Number of residual layers. upsampling_ratios (`Sequence[int]`, *optional*): Kernel size and stride ratios. The encoder uses downsampling ratios instead of upsampling ratios, hence it will use the ratios in the reverse order to the ones specified here that must match the decoder order. If not specified, will defaults to `[8, 6, 5, 4]` kernel_size (`int`, *optional*, defaults to 7): Kernel size for the initial convolution. last_kernel_size (`int`, *optional*, defaults to 3): Kernel size for the last convolution layer. residual_kernel_size (`int`, *optional*, defaults to 3): Kernel size for the residual layers. dilation_growth_rate (`int`, *optional*, defaults to 2): How much to increase the dilation with each layer. use_causal_conv (`bool`, *optional*, defaults to `True`): Whether to use fully causal convolution. pad_mode (`str`, *optional*, defaults to `"constant"`): Padding mode for the convolutions. compress (`int`, *optional*, defaults to 2): Reduced dimensionality in residual branches. trim_right_ratio (`float`, *optional*, defaults to 1.0): Ratio for trimming at the right of the transposed convolution under the `use_causal_conv = True` setup. If equal to 1.0, it means that all the trimming is done at the right. codebook_size (`int`, *optional*, defaults to 2048): Number of discret codes in each codebooks. codebook_dim (`int`, *optional*, defaults to 256): Dimension of the unquantized codebook vectors. If not defined, uses `hidden_size`. num_quantizers (`int`, *optional*, defaults to 32): Number of quantizer channels, or codebooks, in the quantizer. use_conv_shortcut (`bool`, *optional*, defaults to `False`): Whether to use a convolutional layer as the 'skip' connection in the `MimiResnetBlock` block. If False, an identity function will be used, giving a generic residual connection. vector_quantization_hidden_dimension (`int`, *optional*, defaults to 256): Intermediate representation dimension in the residual vector quantization space. num_semantic_quantizers (`int`, *optional*, defaults to 1): Number of semantic quantizer channels, or codebooks, in the semantic quantizer. Must be lower than `num_quantizers`. upsample_groups (`int`, *optional*, defaults to 512): If `frame_rate!=encodec_frame_rate`, indicates the number of groups used in the upsampling operation to go from one rate to another. num_hidden_layers (`int`, *optional*, defaults to 8): Number of hidden layers in the Transformer models. intermediate_size (`int`, *optional*, defaults to 2048): Dimension of the MLP representations. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`): The attention head dimension. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 8000): The maximum sequence length that this model might ever be used with. Mimi's sliding window attention allows sequence of up to 8000 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the LayerNorm normalization layers. use_cache (`bool`, *optional*, defaults to `False`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. sliding_window (`int`, *optional*, defaults to 250): Sliding window attention window size. If not specified, will default to `250`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. layer_scale_initial_scale (`float`, *optional*, defaults to 0.01): Initiale scale of the residual rescaling operation done in the Transformer models. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. Example: ```python >>> from transformers import MimiModel, MimiConfig >>> # Initializing a "kyutai/mimi" style configuration >>> configuration = MimiConfig() >>> # Initializing a model (with random weights) from the "kyutai/mimi" style configuration >>> model = MimiModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mimi" def __init__( self, sampling_rate=24_000, frame_rate=12.5, audio_channels=1, hidden_size=512, num_filters=64, num_residual_layers=1, upsampling_ratios=None, kernel_size=7, last_kernel_size=3, residual_kernel_size=3, dilation_growth_rate=2, use_causal_conv=True, pad_mode="constant", compress=2, trim_right_ratio=1.0, codebook_size=2048, codebook_dim=256, num_quantizers=32, use_conv_shortcut=False, vector_quantization_hidden_dimension=256, num_semantic_quantizers=1, upsample_groups=512, num_hidden_layers=8, intermediate_size=2048, num_attention_heads=8, num_key_value_heads=8, head_dim=None, hidden_act="gelu", max_position_embeddings=8000, initializer_range=0.02, norm_eps=1e-5, use_cache=False, rope_theta=10000.0, sliding_window=250, attention_dropout=0.0, layer_scale_initial_scale=0.01, attention_bias=False, **kwargs, ): self.sampling_rate = sampling_rate self.frame_rate = frame_rate self.audio_channels = audio_channels self.hidden_size = hidden_size self.num_filters = num_filters self.num_residual_layers = num_residual_layers self.upsampling_ratios = upsampling_ratios if upsampling_ratios else [8, 6, 5, 4] self.kernel_size = kernel_size self.last_kernel_size = last_kernel_size self.residual_kernel_size = residual_kernel_size self.dilation_growth_rate = dilation_growth_rate self.use_causal_conv = use_causal_conv self.pad_mode = pad_mode self.compress = compress self.trim_right_ratio = trim_right_ratio self.codebook_size = codebook_size self.codebook_dim = codebook_dim if codebook_dim is not None else hidden_size self.num_quantizers = num_quantizers self.use_conv_shortcut = use_conv_shortcut self.vector_quantization_hidden_dimension = vector_quantization_hidden_dimension self.upsample_groups = upsample_groups self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.norm_eps = norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.sliding_window = sliding_window self.attention_dropout = attention_dropout self.head_dim = head_dim or hidden_size // num_attention_heads self.layer_scale_initial_scale = layer_scale_initial_scale self.attention_bias = attention_bias if num_semantic_quantizers >= self.num_quantizers: raise ValueError( f"The number of semantic quantizers should be lower than the total number of quantizers {self.num_quantizers}, but is currently {num_semantic_quantizers}." ) self.num_semantic_quantizers = num_semantic_quantizers super().__init__(**kwargs) @property def encodec_frame_rate(self) -> int: hop_length = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def num_codebooks(self) -> int: # alias to num_quantizers return self.num_quantizers __all__ = ["MimiConfig"] ```
================================================================================================================================= SOURCE CODE FILE: modeling_mimi.py LINES: 1 SIZE: 80.01 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mimi\modeling_mimi.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 Kyutai, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Mimi model.""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available from ...modeling_outputs import BaseModelOutputWithPast from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mimi import MimiConfig if is_flash_attn_available(): from ...modeling_flash_attention_utils import _flash_attention_forward logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MimiConfig" @dataclass class MimiOutput(ModelOutput): """ Args: audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*): Discret code embeddings computed using `model.encode`. audio_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*) Decoded audio values, obtained using the decoder part of Mimi. encoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). decoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). """ audio_codes: Optional[torch.LongTensor] = None audio_values: Optional[torch.FloatTensor] = None encoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None decoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None @dataclass class MimiEncoderOutput(ModelOutput): """ Args: audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*): Discret code embeddings computed using `model.encode`. encoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). """ audio_codes: Optional[torch.LongTensor] = None encoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None @dataclass class MimiDecoderOutput(ModelOutput): """ Args: audio_values (`torch.FloatTensor` of shape `(batch_size, segment_length)`, *optional*): Decoded audio values, obtained using the decoder part of Mimi. decoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). """ audio_values: Optional[torch.FloatTensor] = None decoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None class MimiConv1d(nn.Module): """Conv1d with asymmetric or causal padding and normalization.""" def __init__( self, config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, dilation: int = 1, groups: int = 1, pad_mode=None, bias: bool = True, ): super().__init__() self.causal = config.use_causal_conv self.pad_mode = config.pad_mode if pad_mode is None else pad_mode # warn user on unusual setup between dilation and stride if stride > 1 and dilation > 1: logger.warning( "MimiConv1d has been initialized with stride > 1 and dilation > 1" f" (kernel_size={kernel_size} stride={stride}, dilation={dilation})." ) self.conv = nn.Conv1d( in_channels, out_channels, kernel_size, stride, dilation=dilation, groups=groups, bias=bias ) kernel_size = self.conv.kernel_size[0] stride = torch.tensor(self.conv.stride[0], dtype=torch.int64) dilation = self.conv.dilation[0] # Effective kernel size with dilations. kernel_size = torch.tensor((kernel_size - 1) * dilation + 1, dtype=torch.int64) self.register_buffer("stride", stride, persistent=False) self.register_buffer("kernel_size", kernel_size, persistent=False) self.register_buffer("padding_total", kernel_size - stride, persistent=False) # Asymmetric padding required for odd strides self.padding_right = self.padding_total // 2 self.padding_left = self.padding_total - self.padding_right def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm weight_norm(self.conv) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.conv) # Copied from transformers.models.encodec.modeling_encodec.EncodecConv1d._get_extra_padding_for_conv1d def _get_extra_padding_for_conv1d( self, hidden_states: torch.Tensor, ) -> torch.Tensor: """See `pad_for_conv1d`.""" length = hidden_states.shape[-1] n_frames = (length - self.kernel_size + self.padding_total) / self.stride + 1 n_frames = torch.ceil(n_frames).to(torch.int64) - 1 ideal_length = n_frames * self.stride + self.kernel_size - self.padding_total return ideal_length - length @staticmethod # Copied from transformers.models.encodec.modeling_encodec.EncodecConv1d._pad1d def _pad1d(hidden_states: torch.Tensor, paddings: Tuple[int, int], mode: str = "zero", value: float = 0.0): """Tiny wrapper around torch.nn.functional.pad, just to allow for reflect padding on small input. If this is the case, we insert extra 0 padding to the right before the reflection happens. """ length = hidden_states.shape[-1] padding_left, padding_right = paddings if not mode == "reflect": return nn.functional.pad(hidden_states, paddings, mode, value) max_pad = max(padding_left, padding_right) extra_pad = 0 if length <= max_pad: extra_pad = max_pad - length + 1 hidden_states = nn.functional.pad(hidden_states, (0, extra_pad)) padded = nn.functional.pad(hidden_states, paddings, mode, value) end = padded.shape[-1] - extra_pad return padded[..., :end] def forward(self, hidden_states): extra_padding = self._get_extra_padding_for_conv1d(hidden_states) if self.causal: # Left padding for causal hidden_states = self._pad1d(hidden_states, (self.padding_total, extra_padding), mode=self.pad_mode) else: hidden_states = self._pad1d( hidden_states, (self.padding_left, self.padding_right + extra_padding), mode=self.pad_mode ) hidden_states = self.conv(hidden_states) return hidden_states class MimiConvTranspose1d(nn.Module): """ConvTranspose1d with asymmetric or causal padding and normalization.""" def __init__( self, config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias=True, ): super().__init__() self.causal = config.use_causal_conv self.trim_right_ratio = config.trim_right_ratio self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride, groups=groups, bias=bias) if not (self.causal or self.trim_right_ratio == 1.0): raise ValueError("`trim_right_ratio` != 1.0 only makes sense for causal convolutions") kernel_size = self.conv.kernel_size[0] stride = self.conv.stride[0] padding_total = kernel_size - stride # We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be # removed at the very end, when keeping only the right length for the output, # as removing it here would require also passing the length at the matching layer # in the encoder. if self.causal: # Trim the padding on the right according to the specified ratio # if trim_right_ratio = 1.0, trim everything from right self.padding_right = math.ceil(padding_total * self.trim_right_ratio) else: # Asymmetric padding required for odd strides self.padding_right = padding_total // 2 self.padding_left = padding_total - self.padding_right def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm weight_norm(self.conv) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.conv) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) # unpad end = hidden_states.shape[-1] - self.padding_right hidden_states = hidden_states[..., self.padding_left : end] return hidden_states # Copied from transformers.models.encodec.modeling_encodec.EncodecResnetBlock with Encodec->Mimi,EnCodec->Mimi class MimiResnetBlock(nn.Module): """ Residual block from SEANet model as used by Mimi. """ def __init__(self, config: MimiConfig, dim: int, dilations: List[int]): super().__init__() kernel_sizes = (config.residual_kernel_size, 1) if len(kernel_sizes) != len(dilations): raise ValueError("Number of kernel sizes should match number of dilations") hidden = dim // config.compress block = [] for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)): in_chs = dim if i == 0 else hidden out_chs = dim if i == len(kernel_sizes) - 1 else hidden block += [nn.ELU()] block += [MimiConv1d(config, in_chs, out_chs, kernel_size, dilation=dilation)] self.block = nn.ModuleList(block) if config.use_conv_shortcut: self.shortcut = MimiConv1d(config, dim, dim, kernel_size=1) else: self.shortcut = nn.Identity() def forward(self, hidden_states): residual = hidden_states for layer in self.block: hidden_states = layer(hidden_states) return self.shortcut(residual) + hidden_states class MimiEncoder(nn.Module): """SEANet encoder as used by Mimi.""" def __init__(self, config: MimiConfig): super().__init__() model = [MimiConv1d(config, config.audio_channels, config.num_filters, config.kernel_size)] scaling = 1 # Downsample to raw audio scale for ratio in reversed(config.upsampling_ratios): current_scale = scaling * config.num_filters # Add residual layers for j in range(config.num_residual_layers): model += [MimiResnetBlock(config, current_scale, [config.dilation_growth_rate**j, 1])] # Add downsampling layers model += [nn.ELU()] model += [MimiConv1d(config, current_scale, current_scale * 2, kernel_size=ratio * 2, stride=ratio)] scaling *= 2 model += [nn.ELU()] model += [MimiConv1d(config, scaling * config.num_filters, config.hidden_size, config.last_kernel_size)] self.layers = nn.ModuleList(model) # Copied from transformers.models.encodec.modeling_encodec.EncodecEncoder.forward def forward(self, hidden_states): for layer in self.layers: hidden_states = layer(hidden_states) return hidden_states class MimiLayerScale(nn.Module): """Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf). This rescales diagonally the residual outputs close to 0, with a learnt scale. """ def __init__(self, config): super().__init__() channels = config.hidden_size initial_scale = config.layer_scale_initial_scale self.scale = nn.Parameter(torch.full((channels,), initial_scale, requires_grad=True)) def forward(self, x: torch.Tensor): return self.scale * x # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Mimi class MimiRotaryEmbedding(nn.Module): def __init__(self, config: MimiConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class MimiMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) # Copied from transformers.models.clip.modeling_clip.CLIPMLP.forward def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) # copied from transformers.models.gemma.modeling_gemma.GemmaAttention with Gemma->Mimi # no longer copied after attention refactors class MimiAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: MimiConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = config.head_dim self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.scaling = 1 / math.sqrt(config.head_dim) if self.hidden_size % self.num_heads != 0: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) self.rotary_emb = MimiRotaryEmbedding(config) self.sliding_window = config.sliding_window # Ignore copy def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, -1) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # NO LONGER EXIST Copied from transformers.models.gemma.modeling_gemma.GemmaFlashAttention2 with Gemma->Mimi # TODO cyril: modular class MimiFlashAttention2(MimiAttention): """ Mimi flash attention module. This module inherits from `MimiAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if isinstance(past_key_value, StaticCache): raise ValueError( "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" ) output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (MimiRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, position_ids=position_ids, dropout=dropout_rate, sliding_window=getattr(self, "sliding_window", None), is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # NO LONGER EXIST Copied from transformers.models.gemma.modeling_gemma.GemmaSdpaAttention with Gemma->Mimi # TODO cyril: modular class MimiSdpaAttention(MimiAttention): """ Mimi attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `MimiAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from MimiAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "MimiModel is using MimiSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and causal_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, -1) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value MIMI_ATTENTION_CLASSES = { "eager": MimiAttention, "flash_attention_2": MimiFlashAttention2, "sdpa": MimiSdpaAttention, } class MimiTransformerLayer(nn.Module): def __init__(self, config: MimiConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MIMI_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = MimiMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) self.self_attn_layer_scale = MimiLayerScale(config) self.mlp_layer_scale = MimiLayerScale(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual + self.self_attn_layer_scale(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.mlp_layer_scale(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class MimiTransformerModel(nn.Module): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MimiTransformerLayer`] Args: config: MimiConfig """ def __init__(self, config: MimiConfig): super().__init__() self.layers = nn.ModuleList( [MimiTransformerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.gradient_checkpointing = False self.config = config def forward( self, hidden_states: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Embedded representation that will be contextualized by the model attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if use_cache and not isinstance(past_key_values, Cache): if past_key_values is None: past_key_values = DynamicCache() else: past_key_values = DynamicCache.from_legacy_cache(past_key_values) logger.warning_once( "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" ) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + hidden_states.shape[1], device=hidden_states.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = None if attention_mask is not None: causal_mask = self._update_causal_mask( attention_mask, hidden_states, cache_position, past_key_values, output_attentions ) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) # Copied from transformers.models.phi3.modeling_phi3.Phi3Model._update_causal_mask with Phi3->Mimi def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and past_key_values is not None: is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Mimi. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not (using_static_cache or using_sliding_window_cache) and not output_attentions ): if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, sliding_window=self.config.sliding_window, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] # SlidingWindowCache or StaticCache if using_sliding_window_cache or using_static_cache: target_length = past_key_values.get_max_cache_shape() # DynamicCache or no cache else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], config=self.config, past_key_values=past_key_values, ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.mistral.modeling_mistral.MistralModel._prepare_4d_causal_attention_mask_with_cache_position with Mistral->Mimi def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, config: MimiConfig, past_key_values: Cache, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to place the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. config (`MimiConfig`): The model's configuration class past_key_values (`Cache`): The cache class that is being used currently to generate """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) if config.sliding_window is not None: # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also # the check is needed to verify is current checkpoint was trained with sliding window or not if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: sliding_attend_mask = torch.arange(target_length, device=device) <= ( cache_position.reshape(-1, 1) - config.sliding_window ) diagonal_attend_mask.bitwise_or_(sliding_attend_mask) causal_mask *= diagonal_attend_mask causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.shape[-1] > target_length: attention_mask = attention_mask[:, :target_length] mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class MimiDecoder(nn.Module): """SEANet decoder as used by Mimi.""" def __init__(self, config: MimiConfig): super().__init__() scaling = int(2 ** len(config.upsampling_ratios)) model = [MimiConv1d(config, config.hidden_size, scaling * config.num_filters, config.kernel_size)] # Upsample to raw audio scale for ratio in config.upsampling_ratios: current_scale = scaling * config.num_filters # Add upsampling layers model += [nn.ELU()] model += [ MimiConvTranspose1d(config, current_scale, current_scale // 2, kernel_size=ratio * 2, stride=ratio) ] # Add residual layers for j in range(config.num_residual_layers): model += [MimiResnetBlock(config, current_scale // 2, (config.dilation_growth_rate**j, 1))] scaling //= 2 # Add final layers model += [nn.ELU()] model += [MimiConv1d(config, config.num_filters, config.audio_channels, config.last_kernel_size)] self.layers = nn.ModuleList(model) # Copied from transformers.models.encodec.modeling_encodec.EncodecDecoder.forward def forward(self, hidden_states): for layer in self.layers: hidden_states = layer(hidden_states) return hidden_states class MimiEuclideanCodebook(nn.Module): """Codebook with Euclidean distance.""" def __init__(self, config: MimiConfig, epsilon: float = 1e-5): super().__init__() embed = torch.zeros(config.codebook_size, config.codebook_dim) self.codebook_size = config.codebook_size self.register_buffer("initialized", torch.tensor([True], dtype=torch.float32)) self.register_buffer("cluster_usage", torch.ones(config.codebook_size)) self.register_buffer("embed_sum", embed) self._embed = None self.epsilon = epsilon @property def embed(self) -> torch.Tensor: if self._embed is None: self._embed = self.embed_sum / self.cluster_usage.clamp(min=self.epsilon)[:, None] return self._embed def quantize(self, hidden_states): # Projects each vector in `hidden_states` over the nearest centroid and return its index. # `hidden_states` should be `[N, D]` with `N` the number of input vectors and `D` the dimension. dists = torch.cdist(hidden_states[None], self.embed[None], p=2)[0] embed_ind = dists.argmin(dim=-1) return embed_ind # Copied from transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook.encode def encode(self, hidden_states): shape = hidden_states.shape # pre-process hidden_states = hidden_states.reshape((-1, shape[-1])) # quantize embed_ind = self.quantize(hidden_states) # post-process embed_ind = embed_ind.view(*shape[:-1]) return embed_ind # Copied from transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook.decode def decode(self, embed_ind): quantize = nn.functional.embedding(embed_ind, self.embed) return quantize # Copied from transformers.models.encodec.modeling_encodec.EncodecVectorQuantization with Encodec->Mimi class MimiVectorQuantization(nn.Module): """ Vector quantization implementation. Currently supports only euclidean distance. """ def __init__(self, config: MimiConfig): super().__init__() self.codebook = MimiEuclideanCodebook(config) def encode(self, hidden_states): hidden_states = hidden_states.permute(0, 2, 1) embed_in = self.codebook.encode(hidden_states) return embed_in def decode(self, embed_ind): quantize = self.codebook.decode(embed_ind) quantize = quantize.permute(0, 2, 1) return quantize class MimiResidualVectorQuantizer(nn.Module): """Residual Vector Quantizer.""" def __init__(self, config: MimiConfig, num_quantizers: Optional[int] = None): super().__init__() self.codebook_size = config.codebook_size self.frame_rate = config.frame_rate self.num_quantizers = num_quantizers if num_quantizers is not None else config.num_quantizers self.layers = nn.ModuleList([MimiVectorQuantization(config) for _ in range(self.num_quantizers)]) self.input_proj = None self.output_proj = None if config.vector_quantization_hidden_dimension != config.hidden_size: self.input_proj = torch.nn.Conv1d( config.hidden_size, config.vector_quantization_hidden_dimension, 1, bias=False ) self.output_proj = torch.nn.Conv1d( config.vector_quantization_hidden_dimension, config.hidden_size, 1, bias=False ) def encode(self, embeddings: torch.Tensor, num_quantizers: Optional[int] = None) -> torch.Tensor: """ Encode a given input tensor with the specified frame rate at the given number of quantizers / codebooks. The RVQ encode method sets the appropriate number of quantizers to use and returns indices for each quantizer. """ if self.input_proj is not None: embeddings = self.input_proj(embeddings) num_quantizers = num_quantizers if num_quantizers is not None else self.num_quantizers residual = embeddings all_indices = [] for layer in self.layers[:num_quantizers]: indices = layer.encode(residual) quantized = layer.decode(indices) residual = residual - quantized all_indices.append(indices) out_indices = torch.stack(all_indices) return out_indices def decode(self, codes: torch.Tensor) -> torch.Tensor: """Decode the given codes of shape [B, K, T] to the quantized representation.""" quantized_out = torch.tensor(0.0, device=codes.device) codes = codes.transpose(0, 1) for i, indices in enumerate(codes): layer = self.layers[i] quantized = layer.decode(indices) quantized_out = quantized_out + quantized if self.output_proj is not None: quantized_out = self.output_proj(quantized_out) return quantized_out class MimiSplitResidualVectorQuantizer(nn.Module): """Split Residual Vector Quantizer.""" def __init__(self, config: MimiConfig): super().__init__() self.codebook_size = config.codebook_size self.frame_rate = config.frame_rate self.max_num_quantizers = config.num_quantizers self.num_semantic_quantizers = config.num_semantic_quantizers self.num_acoustic_quantizers = config.num_quantizers - config.num_semantic_quantizers self.semantic_residual_vector_quantizer = MimiResidualVectorQuantizer(config, self.num_semantic_quantizers) self.acoustic_residual_vector_quantizer = MimiResidualVectorQuantizer(config, self.num_acoustic_quantizers) def encode(self, embeddings: torch.Tensor, num_quantizers: Optional[float] = None) -> torch.Tensor: """ Encode a given input tensor with the specified frame rate at the given number of quantizers / codebooks. The RVQ encode method sets the appropriate number of quantizers to use and returns indices for each quantizer. """ num_quantizers = self.max_num_quantizers if num_quantizers is None else num_quantizers if num_quantizers > self.max_num_quantizers: raise ValueError( f"The number of quantizers (i.e codebooks) asked should be lower than the total number of quantizers {self.max_num_quantizers}, but is currently {num_quantizers}." ) if num_quantizers < self.num_semantic_quantizers: raise ValueError( f"The number of quantizers (i.e codebooks) asked should be higher than the number of semantic quantizers {self.num_semantic_quantizers}, but is currently {num_quantizers}." ) # codes is [K, B, T], with T frames, K nb of codebooks. codes = self.semantic_residual_vector_quantizer.encode(embeddings) if num_quantizers > self.num_semantic_quantizers: acoustic_codes = self.acoustic_residual_vector_quantizer.encode( embeddings, num_quantizers=num_quantizers - self.num_semantic_quantizers ) codes = torch.cat([codes, acoustic_codes], dim=0) return codes def decode(self, codes: torch.Tensor) -> torch.Tensor: """Decode the given codes to the quantized representation.""" # The first num_semantic_quantizers codebooks are decoded using the semantic RVQ quantized_out = self.semantic_residual_vector_quantizer.decode(codes[:, : self.num_semantic_quantizers]) # The rest of the codebooks are decoded using the acoustic RVQ if codes.shape[1] > self.num_semantic_quantizers: quantized_out += self.acoustic_residual_vector_quantizer.decode(codes[:, self.num_semantic_quantizers :]) return quantized_out class MimiPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MimiConfig base_model_prefix = "mimi" main_input_name = "input_values" supports_gradient_checkpointing = True _no_split_modules = ["MimiDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True _supports_static_cache = True # Copied from transformers.models.encodec.modeling_encodec.EncodecPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LSTM): for name, param in module.named_parameters(): if "weight" in name: nn.init.xavier_uniform_(param) elif "bias" in name: nn.init.constant_(param, 0.0) MIMI_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MimiConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MIMI_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, channels, sequence_length)`, *optional*): Raw audio input converted to Float. padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked*. num_quantizers (`int`, *optional*): Number of quantizers (i.e codebooks) to use. By default, all quantizers are used. audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*): Discret code embeddings computed using `model.encode`. encoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). decoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The Mimi neural audio codec model.", MIMI_START_DOCSTRING, ) class MimiModel(MimiPreTrainedModel): def __init__(self, config: MimiConfig): super().__init__(config) self.config = config self.encoder = MimiEncoder(config) self.encoder_transformer = MimiTransformerModel(config) self.downsample = None self.upsample = None if config.frame_rate != config.encodec_frame_rate: self.downsample = MimiConv1d( config, config.hidden_size, config.hidden_size, kernel_size=2 * int(config.encodec_frame_rate / config.frame_rate), stride=2, bias=False, pad_mode="replicate", ) self.upsample = MimiConvTranspose1d( config, config.hidden_size, config.hidden_size, kernel_size=2 * int(config.encodec_frame_rate / config.frame_rate), stride=2, bias=False, groups=config.upsample_groups, ) self.decoder_transformer = MimiTransformerModel(config) self.decoder = MimiDecoder(config) self.quantizer = MimiSplitResidualVectorQuantizer(config) self.bits_per_codebook = int(math.log2(self.config.codebook_size)) if 2**self.bits_per_codebook != self.config.codebook_size: raise ValueError("The codebook_size must be a power of 2.") # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _encode_frame( self, input_values: torch.Tensor, num_quantizers: int, padding_mask: int, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, return_dict: Optional[bool] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Encodes the given input using the underlying VQVAE. The padding mask is required to compute the correct scale. """ embeddings = self.encoder(input_values) encoder_outputs = self.encoder_transformer( embeddings.transpose(1, 2), past_key_values=past_key_values, return_dict=return_dict ) if return_dict: past_key_values = encoder_outputs.get("past_key_values") elif len(encoder_outputs) > 1: past_key_values = encoder_outputs[1] embeddings = encoder_outputs[0].transpose(1, 2) embeddings = self.downsample(embeddings) codes = self.quantizer.encode(embeddings, num_quantizers) codes = codes.transpose(0, 1) return codes, past_key_values def encode( self, input_values: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, num_quantizers: Optional[float] = None, encoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], MimiEncoderOutput]: """ Encodes the input audio waveform into discrete codes. Args: input_values (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`): Float values of the input audio waveform. padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked*. num_quantizers (`int`, *optional*): Number of quantizers (i.e codebooks) to use. By default, all quantizers are used. encoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: `codebook` of shape `[batch_size, num_codebooks, frames]`, the discrete encoded codes for the input audio waveform. """ return_dict = return_dict if return_dict is not None else self.config.return_dict num_quantizers = self.config.num_quantizers if num_quantizers is None else num_quantizers if num_quantizers > self.config.num_quantizers: raise ValueError( f"The number of quantizers (i.e codebooks) asked should be lower than the total number of quantizers {self.config.num_quantizers}, but is currently {num_quantizers}." ) _, channels, input_length = input_values.shape if channels < 1 or channels > 2: raise ValueError(f"Number of audio channels must be 1 or 2, but got {channels}") if padding_mask is None: padding_mask = torch.ones_like(input_values).bool() encoded_frames, encoder_past_key_values = self._encode_frame( input_values, num_quantizers, padding_mask.bool(), past_key_values=encoder_past_key_values, return_dict=return_dict, ) if not return_dict: return ( encoded_frames, encoder_past_key_values, ) return MimiEncoderOutput(encoded_frames, encoder_past_key_values) def _decode_frame( self, codes: torch.Tensor, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, return_dict: Optional[bool] = None, ) -> torch.Tensor: embeddings = self.quantizer.decode(codes) embeddings = self.upsample(embeddings) decoder_outputs = self.decoder_transformer( embeddings.transpose(1, 2), past_key_values=past_key_values, return_dict=return_dict ) if return_dict: past_key_values = decoder_outputs.get("past_key_values") elif len(decoder_outputs) > 1: past_key_values = decoder_outputs[1] embeddings = decoder_outputs[0].transpose(1, 2) outputs = self.decoder(embeddings) return outputs, past_key_values def decode( self, audio_codes: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, decoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor, torch.Tensor], MimiDecoderOutput]: """ Decodes the given frames into an output audio waveform. Note that the output might be a bit bigger than the input. In that case, any extra steps at the end can be trimmed. Args: audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*): Discret code embeddings computed using `model.encode`. padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked*. decoder_past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't have their past key value states given to this model). return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ return_dict = return_dict if return_dict is not None else self.config.return_dict audio_values, decoder_past_key_values = self._decode_frame( audio_codes, past_key_values=decoder_past_key_values, return_dict=return_dict ) # truncate based on padding mask if padding_mask is not None and padding_mask.shape[-1] < audio_values.shape[-1]: audio_values = audio_values[..., : padding_mask.shape[-1]] if not return_dict: return ( audio_values, decoder_past_key_values, ) return MimiDecoderOutput(audio_values, decoder_past_key_values) @add_start_docstrings_to_model_forward(MIMI_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MimiOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, num_quantizers: Optional[int] = None, audio_codes: Optional[torch.Tensor] = None, encoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, decoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor, torch.Tensor], MimiOutput]: r""" Returns: Examples: ```python >>> from datasets import load_dataset >>> from transformers import AutoFeatureExtractor, MimiModel >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") >>> audio_sample = dataset["train"]["audio"][0]["array"] >>> model_id = "kyutai/mimi" >>> model = MimiModel.from_pretrained(model_id) >>> feature_extractor = AutoFeatureExtractor.from_pretrained(model_id) >>> inputs = feature_extractor(raw_audio=audio_sample, return_tensors="pt") >>> outputs = model(**inputs) >>> audio_codes = outputs.audio_codes >>> audio_values = outputs.audio_values ```""" return_dict = return_dict if return_dict is not None else self.config.return_dict if padding_mask is None: padding_mask = torch.ones_like(input_values).bool() if audio_codes is None: encoder_outputs = self.encode( input_values, padding_mask, num_quantizers, encoder_past_key_values, return_dict=return_dict ) audio_codes = encoder_outputs[0] if return_dict: encoder_past_key_values = encoder_outputs.get("past_key_values") elif len(encoder_outputs) > 1: encoder_past_key_values = encoder_outputs[1] decoder_outputs = self.decode(audio_codes, padding_mask, decoder_past_key_values, return_dict=return_dict) audio_values = decoder_outputs[0] if return_dict: decoder_past_key_values = decoder_outputs.get("past_key_values") elif len(decoder_outputs) > 1: decoder_past_key_values = decoder_outputs[1] if not return_dict: return (audio_codes, audio_values, encoder_past_key_values, decoder_past_key_values) return MimiOutput( audio_codes=audio_codes, audio_values=audio_values, encoder_past_key_values=encoder_past_key_values, decoder_past_key_values=decoder_past_key_values, ) __all__ = ["MimiModel", "MimiPreTrainedModel"] ```
================================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.01 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mistral3\__init__.py ENCODING: utf-8 ```py # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mistral3 import * from .modeling_mistral3 import * from .processing_mistral3 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================== SOURCE CODE FILE: configuration_mistral3.py LINES: 1 SIZE: 5.56 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mistral3\configuration_mistral3.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig from ..auto import CONFIG_MAPPING, AutoConfig class Mistral3Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Mistral3ForConditionalGeneration`]. It is used to instantiate an Mistral3 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of [mistralai/Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `PixtralVisionConfig`): The config object or dictionary of the vision backbone. text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MistralConfig`): The config object or dictionary of the text backbone. image_token_index (`int`, *optional*, defaults to 10): The image token index to encode the image prompt. projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function used by the multimodal projector. vision_feature_layer (`Union[int, List[int]]`, *optional*, defaults to -1): The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. multimodal_projector_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in the multimodal projector. spatial_merge_size (`int`, *optional*, defaults to 2): The downsampling factor for the spatial merge operation. Example: ```python >>> from transformers import Mistral3ForConditionalGeneration, Mistral3Config, PixtralVisionConfig, MistralConfig >>> # Initializing a Pixtral-vision config >>> vision_config = PixtralVisionConfig() >>> # Initializing a Mistral config >>> text_config = MistralConfig() >>> # Initializing a Mistral3 configuration >>> configuration = Mistral3Config(vision_config, text_config) >>> # Initializing a model from the mistral3.1 configuration >>> model = Mistral3ForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mistral3" sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig} is_composition = True def __init__( self, vision_config=None, text_config=None, image_token_index=10, projector_hidden_act="gelu", vision_feature_layer=-1, multimodal_projector_bias=False, spatial_merge_size=2, **kwargs, ): super().__init__(**kwargs) self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.vision_feature_layer = vision_feature_layer if isinstance(vision_config, dict): vision_config["model_type"] = vision_config["model_type"] if "model_type" in vision_config else "pixtral" vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: vision_config = CONFIG_MAPPING["pixtral"]( intermediate_size=4096, hidden_size=1024, patch_size=14, image_size=1540, num_hidden_layers=24, num_attention_heads=16, vocab_size=32000, head_dim=64, hidden_act="gelu", ) self.vision_config = vision_config if isinstance(text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "mistral" text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: text_config = CONFIG_MAPPING["mistral"]( attention_dropout=0.0, head_dim=128, hidden_act="silu", hidden_size=5120, initializer_range=0.02, intermediate_size=32768, max_position_embeddings=131072, model_type="mistral", num_attention_heads=32, num_hidden_layers=40, num_key_value_heads=8, rms_norm_eps=1e-05, rope_theta=1000000000.0, sliding_window=None, use_cache=True, vocab_size=131072, ) self.text_config = text_config self.multimodal_projector_bias = multimodal_projector_bias self.spatial_merge_size = spatial_merge_size __all__ = ["Mistral3Config"] ```
========================================================================================================================================= SOURCE CODE FILE: modeling_mistral3.py LINES: 1 SIZE: 27.33 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mistral3\modeling_mistral3.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/mistral3/modular_mistral3.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_mistral3.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch from torch import nn from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_outputs import ModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_torchdynamo_compiling, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from ..auto import AutoModel, AutoModelForCausalLM from .configuration_mistral3 import Mistral3Config _CONFIG_FOR_DOC = "Mistral3Config" class Mistral3RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Mistral3RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class Mistral3PatchMerger(nn.Module): """ Learned merging of spatial_merge_size ** 2 patches """ def __init__(self, config: Mistral3Config): super().__init__() self.config = config hidden_size = config.vision_config.hidden_size self.spatial_merge_size = config.spatial_merge_size self.patch_size = self.config.vision_config.patch_size self.merging_layer = nn.Linear(hidden_size * self.spatial_merge_size**2, hidden_size, bias=False) def forward(self, image_features: torch.Tensor, image_sizes: torch.Tensor) -> torch.Tensor: image_sizes = [ (image_size[0] // self.patch_size, image_size[1] // self.patch_size) for image_size in image_sizes ] tokens_per_image = [h * w for h, w in image_sizes] d = image_features.shape[-1] permuted_tensor = [] for image_index, image_tokens in enumerate(image_features.split(tokens_per_image)): # Reshape image_tokens into a 2D grid h, w = image_sizes[image_index] image_grid = image_tokens.view(h, w, d).permute(2, 0, 1).unsqueeze(0) grid = torch.nn.functional.unfold( image_grid, kernel_size=self.spatial_merge_size, stride=self.spatial_merge_size ) grid = grid.view(d * self.spatial_merge_size**2, -1).t() permuted_tensor.append(grid) image_features = torch.cat(permuted_tensor, dim=0) image_features = self.merging_layer(image_features) return image_features class Mistral3MultiModalProjector(nn.Module): def __init__(self, config: Mistral3Config): super().__init__() self.norm = Mistral3RMSNorm(config.vision_config.hidden_size) self.patch_merger = Mistral3PatchMerger(config) # We have hidden_size * the number of vision feature layers num_feature_layers = 1 if isinstance(config.vision_feature_layer, int) else len(config.vision_feature_layer) self.linear_1 = nn.Linear( config.vision_config.hidden_size * num_feature_layers, config.text_config.hidden_size, bias=config.multimodal_projector_bias, ) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear( config.text_config.hidden_size, config.text_config.hidden_size, bias=config.multimodal_projector_bias ) def forward(self, image_features: torch.Tensor, image_sizes: torch.Tensor): image_features = self.norm(image_features) image_features = self.patch_merger(image_features, image_sizes) hidden_states = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states @dataclass class Mistral3CausalLMOutputWithPast(ModelOutput): """ Base class for Mistral3 causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None MISTRAL3_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Mistral3Config`] or [`Mistral3VisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", MISTRAL3_START_DOCSTRING, ) class Mistral3PreTrainedModel(PreTrainedModel): config_class = Mistral3Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Mistral3VisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_cache_class = True _supports_flash_attn_2 = True _supports_sdpa = True _supports_quantized_cache = True _supports_static_cache = True def _init_weights(self, module): # important: this ported version of Mistral3 isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed - the original codebase # https://github.com/haotian-liu/Mistral3/tree/main/mistral3 should serve for that purpose std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() MISTRAL3_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`Mistral3Processor`] uses [`CLIPImageProcessor`] for processing images). attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. vision_feature_layer (`Union[int, List[int]], *optional*, defaults to -2`): The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( """The MISTRAL3 model which consists of a vision backbone and a language model.""", MISTRAL3_START_DOCSTRING, ) class Mistral3ForConditionalGeneration(Mistral3PreTrainedModel, GenerationMixin): def __init__(self, config: Mistral3Config): super().__init__(config) self.vision_tower = AutoModel.from_config(config.vision_config) self.multi_modal_projector = Mistral3MultiModalProjector(config) self.vocab_size = config.text_config.vocab_size self.language_model = AutoModelForCausalLM.from_config(config.text_config) if self.language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys] self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def get_image_features( self, pixel_values: torch.FloatTensor, vision_feature_layer: Union[int, List[int]], image_sizes: torch.Tensor, **kwargs, ): """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`): The tensors corresponding to the input images. vision_feature_layer (`Union[int, List[int]]`): The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. image_sizes (`torch.Tensor`): Tensor containing the image sizes as returned by the processor. Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). """ kwargs = {k: v for k, v in kwargs.items() if v is not None} # this is not memory efficient at all (output_hidden_states=True) will save all the hidden states. image_outputs = self.vision_tower(pixel_values, image_sizes=image_sizes, output_hidden_states=True, **kwargs) # If we have one vision feature layer, return the corresponding hidden states, # otherwise, select the hidden states of each feature layer and concatenate them if isinstance(vision_feature_layer, int): selected_image_feature = image_outputs.hidden_states[vision_feature_layer] else: hs_pool = [image_outputs.hidden_states[layer_idx] for layer_idx in vision_feature_layer] selected_image_feature = torch.cat(hs_pool, dim=-1) image_features = self.multi_modal_projector(selected_image_feature.squeeze(0), image_sizes) return image_features @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(MISTRAL3_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Mistral3CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[Union[int, List[int]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, image_sizes: Optional[torch.Tensor] = None, **lm_kwargs, ) -> Union[Tuple, Mistral3CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Mistral3ForConditionalGeneration >>> model = Mistral3ForConditionalGeneration.from_pretrained("mistralai/Mistral-Small-3.1-24B-Instruct-2503") >>> processor = AutoProcessor.from_pretrained("mistralai/Mistral-Small-3.1-24B-Instruct-2503") >>> prompt = "<s>[INST][IMG]What is the image?[/INST]" >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_new_tokens=15) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "What is the image?The image depicts two cats lying on a pink blanket." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if pixel_values is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" ) if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: image_features = self.get_image_features( pixel_values=pixel_values, vision_feature_layer=vision_feature_layer, image_sizes=image_sizes, ) special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1) special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device) if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel(): n_image_tokens = (input_ids == self.config.image_token_index).sum() n_image_features = image_features.shape[0] * image_features.shape[1] raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, logits_to_keep=logits_to_keep, **lm_kwargs, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return Mistral3CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, cache_position=None, logits_to_keep=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = self.language_model.prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, logits_to_keep=logits_to_keep, **kwargs, ) if cache_position[0] == 0: # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model model_inputs["pixel_values"] = pixel_values return model_inputs __all__ = ["Mistral3PreTrainedModel", "Mistral3ForConditionalGeneration"] ```
======================================================================================================================================== SOURCE CODE FILE: modular_mistral3.py LINES: 1 SIZE: 12.96 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mistral3\modular_mistral3.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import torch from torch import nn from ...activations import ACT2FN from ...utils import is_torchdynamo_compiling, logging from ..llava.modeling_llava import LlavaCausalLMOutputWithPast, LlavaForConditionalGeneration from ..mistral.modeling_mistral import MistralRMSNorm from .configuration_mistral3 import Mistral3Config logger = logging.get_logger(__name__) class Mistral3RMSNorm(MistralRMSNorm): pass class Mistral3PatchMerger(nn.Module): """ Learned merging of spatial_merge_size ** 2 patches """ def __init__(self, config: Mistral3Config): super().__init__() self.config = config hidden_size = config.vision_config.hidden_size self.spatial_merge_size = config.spatial_merge_size self.patch_size = self.config.vision_config.patch_size self.merging_layer = nn.Linear(hidden_size * self.spatial_merge_size**2, hidden_size, bias=False) def forward(self, image_features: torch.Tensor, image_sizes: torch.Tensor) -> torch.Tensor: image_sizes = [ (image_size[0] // self.patch_size, image_size[1] // self.patch_size) for image_size in image_sizes ] tokens_per_image = [h * w for h, w in image_sizes] d = image_features.shape[-1] permuted_tensor = [] for image_index, image_tokens in enumerate(image_features.split(tokens_per_image)): # Reshape image_tokens into a 2D grid h, w = image_sizes[image_index] image_grid = image_tokens.view(h, w, d).permute(2, 0, 1).unsqueeze(0) grid = torch.nn.functional.unfold( image_grid, kernel_size=self.spatial_merge_size, stride=self.spatial_merge_size ) grid = grid.view(d * self.spatial_merge_size**2, -1).t() permuted_tensor.append(grid) image_features = torch.cat(permuted_tensor, dim=0) image_features = self.merging_layer(image_features) return image_features class Mistral3MultiModalProjector(nn.Module): def __init__(self, config: Mistral3Config): super().__init__() self.norm = Mistral3RMSNorm(config.vision_config.hidden_size) self.patch_merger = Mistral3PatchMerger(config) # We have hidden_size * the number of vision feature layers num_feature_layers = 1 if isinstance(config.vision_feature_layer, int) else len(config.vision_feature_layer) self.linear_1 = nn.Linear( config.vision_config.hidden_size * num_feature_layers, config.text_config.hidden_size, bias=config.multimodal_projector_bias, ) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear( config.text_config.hidden_size, config.text_config.hidden_size, bias=config.multimodal_projector_bias ) def forward(self, image_features: torch.Tensor, image_sizes: torch.Tensor): image_features = self.norm(image_features) image_features = self.patch_merger(image_features, image_sizes) hidden_states = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states class Mistral3CausalLMOutputWithPast(LlavaCausalLMOutputWithPast): pass class Mistral3ForConditionalGeneration(LlavaForConditionalGeneration): def get_image_features( self, pixel_values: torch.FloatTensor, vision_feature_layer: Union[int, List[int]], image_sizes: torch.Tensor, **kwargs, ): """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`): The tensors corresponding to the input images. vision_feature_layer (`Union[int, List[int]]`): The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. image_sizes (`torch.Tensor`): Tensor containing the image sizes as returned by the processor. Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). """ kwargs = {k: v for k, v in kwargs.items() if v is not None} # this is not memory efficient at all (output_hidden_states=True) will save all the hidden states. image_outputs = self.vision_tower(pixel_values, image_sizes=image_sizes, output_hidden_states=True, **kwargs) # If we have one vision feature layer, return the corresponding hidden states, # otherwise, select the hidden states of each feature layer and concatenate them if isinstance(vision_feature_layer, int): selected_image_feature = image_outputs.hidden_states[vision_feature_layer] else: hs_pool = [image_outputs.hidden_states[layer_idx] for layer_idx in vision_feature_layer] selected_image_feature = torch.cat(hs_pool, dim=-1) image_features = self.multi_modal_projector(selected_image_feature.squeeze(0), image_sizes) return image_features def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[Union[int, List[int]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, image_sizes: Optional[torch.Tensor] = None, **lm_kwargs, ) -> Union[Tuple, Mistral3CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Mistral3ForConditionalGeneration >>> model = Mistral3ForConditionalGeneration.from_pretrained("mistralai/Mistral-Small-3.1-24B-Instruct-2503") >>> processor = AutoProcessor.from_pretrained("mistralai/Mistral-Small-3.1-24B-Instruct-2503") >>> prompt = "<s>[INST][IMG]What is the image?[/INST]" >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_new_tokens=15) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "What is the image?The image depicts two cats lying on a pink blanket." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if pixel_values is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" ) if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: image_features = self.get_image_features( pixel_values=pixel_values, vision_feature_layer=vision_feature_layer, image_sizes=image_sizes, ) special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1) special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device) if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel(): n_image_tokens = (input_ids == self.config.image_token_index).sum() n_image_features = image_features.shape[0] * image_features.shape[1] raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, logits_to_keep=logits_to_keep, **lm_kwargs, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return Mistral3CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) __all__ = [ "Mistral3PreTrainedModel", # noqa "Mistral3ForConditionalGeneration", ] ```
=============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 3.17 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mistral\__init__.py ENCODING: utf-8 ```py # Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = { "configuration_mistral": ["MistralConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mistral"] = [ "MistralForCausalLM", "MistralForQuestionAnswering", "MistralModel", "MistralPreTrainedModel", "MistralForSequenceClassification", "MistralForTokenClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_mistral"] = [ "FlaxMistralForCausalLM", "FlaxMistralModel", "FlaxMistralPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_mistral"] = [ "TFMistralModel", "TFMistralForCausalLM", "TFMistralForSequenceClassification", "TFMistralPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mistral import MistralConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mistral import ( MistralForCausalLM, MistralForQuestionAnswering, MistralForSequenceClassification, MistralForTokenClassification, MistralModel, MistralPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mistral import ( FlaxMistralForCausalLM, FlaxMistralModel, FlaxMistralPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mistral import ( TFMistralForCausalLM, TFMistralForSequenceClassification, TFMistralModel, TFMistralPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) ```
============================================================================================================================================ SOURCE CODE FILE: configuration_mistral.py LINES: 1 SIZE: 7.58 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mistral\configuration_mistral.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mistral model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class MistralConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MistralModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 14336): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`): The attention head dimension. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to `4096*32`): The maximum sequence length that this model might ever be used with. Mistral's sliding window attention allows sequence of up to 4096*32 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. sliding_window (`int`, *optional*, defaults to 4096): Sliding window attention window size. If not specified, will default to `4096`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ```python >>> from transformers import MistralModel, MistralConfig >>> # Initializing a Mistral 7B style configuration >>> configuration = MistralConfig() >>> # Initializing a model from the Mistral 7B style configuration >>> model = MistralModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mistral" keys_to_ignore_at_inference = ["past_key_values"] # Default tensor parallel plan for base model `MistralModel` base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, head_dim=None, hidden_act="silu", max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=10000.0, sliding_window=4096, attention_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window self.head_dim = head_dim or hidden_size // num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_dropout = attention_dropout super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) ```
============================================================================================================================================ SOURCE CODE FILE: modeling_flax_mistral.py LINES: 1 SIZE: 30.94 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mistral\modeling_flax_mistral.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flax Mistral model.""" from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPast, FlaxCausalLMOutput, FlaxCausalLMOutputWithCrossAttentions, ) from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, logging from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward from .configuration_mistral import MistralConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MistralConfig" _REAL_CHECKPOINT_FOR_DOC = "mistralai/Mistral-7B-v0.1" _CHECKPOINT_FOR_DOC = "ksmcg/Mistral-tiny" MISTRAL_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`MistralConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16`, or `jax.numpy.bfloat16`. This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ MISTRAL_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaRMSNorm with Llama->Mistral class FlaxMistralRMSNorm(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.epsilon = self.config.rms_norm_eps self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size) def __call__(self, hidden_states): variance = jnp.asarray(hidden_states, dtype=jnp.float32) variance = jnp.power(variance, 2) variance = variance.mean(-1, keepdims=True) # use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt` hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon) return self.weight * jnp.asarray(hidden_states, dtype=self.dtype) # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaRotaryEmbedding with Llama->Mistral class FlaxMistralRotaryEmbedding(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): head_dim = self.config.hidden_size // self.config.num_attention_heads self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim) def __call__(self, key, query, position_ids): sincos = self.sincos[position_ids] sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1) key = apply_rotary_pos_emb(key, sin_pos, cos_pos) query = apply_rotary_pos_emb(query, sin_pos, cos_pos) key = jnp.asarray(key, dtype=self.dtype) query = jnp.asarray(query, dtype=self.dtype) return key, query # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaMLP with Llama->Mistral class FlaxMistralMLP(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.hidden_size inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim kernel_init = jax.nn.initializers.normal(self.config.initializer_range) self.act = ACT2FN[self.config.hidden_act] self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) def __call__(self, hidden_states): up_proj_states = self.up_proj(hidden_states) gate_states = self.act(self.gate_proj(hidden_states)) hidden_states = self.down_proj(up_proj_states * gate_states) return hidden_states # Copied from transformers.models.llama.modeling_flax_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(tensor, sin_pos, cos_pos): return (tensor * cos_pos) + (rotate_half(tensor) * sin_pos) # Copied from transformers.models.llama.modeling_flax_llama.create_sinusoidal_positions def create_sinusoidal_positions(num_pos, dim): inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) freqs = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32") emb = np.concatenate((freqs, freqs), axis=-1) out = np.concatenate((np.sin(emb)[:, None, :], np.cos(emb)[:, None, :]), axis=-1) return jnp.array(out[:, :, :num_pos]) # Copied from transformers.models.llama.modeling_flax_llama.rotate_half def rotate_half(tensor): """Rotates half the hidden dims of the input.""" rotate_half_tensor = jnp.concatenate( (-tensor[..., tensor.shape[-1] // 2 :], tensor[..., : tensor.shape[-1] // 2]), axis=-1 ) return rotate_half_tensor class FlaxMistralAttention(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): config = self.config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.attention_softmax_in_fp32 = self.dtype is not jnp.float32 self.rope_theta = config.rope_theta if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Dense(self.num_heads * self.head_dim, use_bias=False, dtype=self.dtype) self.k_proj = nn.Dense(self.num_key_value_heads * self.head_dim, use_bias=False, dtype=self.dtype) self.v_proj = nn.Dense(self.num_key_value_heads * self.head_dim, use_bias=False, dtype=self.dtype) self.o_proj = nn.Dense(self.hidden_size, use_bias=False, dtype=self.dtype) casual_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool") self.causal_mask = jnp.triu(casual_mask, k=-config.sliding_window) self.rotary_emb = FlaxMistralRotaryEmbedding(config, dtype=self.dtype) def _split_heads(self, hidden_states, num_heads): return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,)) @nn.compact # Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slightly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, deterministic: bool = True, output_attentions: bool = False, init_cache: bool = False, ) -> Tuple[jnp.ndarray, jnp.ndarray]: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states, self.num_heads) key_states = self._split_heads(key_states, self.num_key_value_heads) value_states = self._split_heads(value_states, self.num_key_value_heads) key_states, query_states = self.rotary_emb(key_states, query_states, position_ids) query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] batch_size = hidden_states.shape[0] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) if self.has_variable("cache", "cached_key") or init_cache: key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) key_states = jnp.repeat(key_states, self.num_key_value_groups, axis=2) value_states = jnp.repeat(value_states, self.num_key_value_groups, axis=2) attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) # usual dot product attention attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, deterministic=deterministic, dropout_rate=self.config.attention_dropout, dtype=attention_dtype, ) if self.attention_softmax_in_fp32: attn_weights = attn_weights.astype(self.dtype) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.o_proj(attn_output) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaDecoderLayer with Llama->Mistral class FlaxMistralDecoderLayer(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.input_layernorm = FlaxMistralRMSNorm(self.config, dtype=self.dtype) self.self_attn = FlaxMistralAttention(self.config, dtype=self.dtype) self.post_attention_layernorm = FlaxMistralRMSNorm(self.config, dtype=self.dtype) self.mlp = FlaxMistralMLP(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, ): residual = hidden_states hidden_states = self.input_layernorm(hidden_states) outputs = self.self_attn( hidden_states, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) # residual connection attn_output = outputs[0] hidden_states = residual + attn_output residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + hidden_states return (hidden_states,) + outputs[1:] # Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel with GPTNeo->Mistral, GPT_NEO->MISTRAL, transformer->model class FlaxMistralPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MistralConfig base_model_prefix = "model" module_class: nn.Module = None def __init__( self, config: MistralConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length)) attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def __call__( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, past_key_values: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_ids.shape if position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.") position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxMistralAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, False, output_attentions, output_hidden_states, return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaLayerCollection with Llama->Mistral class FlaxMistralLayerCollection(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.blocks = [ FlaxMistralDecoderLayer(self.config, dtype=self.dtype, name=str(i)) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for block in self.blocks: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = block( hidden_states, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) # this contains possible `None` values - `FlaxMistralModule` will filter them out outputs = (hidden_states, all_hidden_states, all_attentions) return outputs # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModule with Llama->Mistral class FlaxMistralModule(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.hidden_size = self.config.hidden_size embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range) self.embed_tokens = nn.Embed( self.config.vocab_size, self.hidden_size, embedding_init=embedding_init, dtype=self.dtype, ) self.layers = FlaxMistralLayerCollection(self.config, dtype=self.dtype) self.norm = FlaxMistralRMSNorm(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask=None, position_ids=None, deterministic=True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): input_embeds = self.embed_tokens(input_ids.astype("i4")) outputs = self.layers( input_embeds, position_ids=position_ids, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.norm(hidden_states) if output_hidden_states: all_hidden_states = outputs[1] + (hidden_states,) outputs = (hidden_states, all_hidden_states) + outputs[2:] else: outputs = (hidden_states,) + outputs[1:] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=outputs[1], attentions=outputs[-1], ) @add_start_docstrings( "The bare Mistral Model transformer outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class FlaxMistralModel(FlaxMistralPreTrainedModel): module_class = FlaxMistralModule append_call_sample_docstring( FlaxMistralModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPast, _CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaForCausalLMModule with Llama->Mistral class FlaxMistralForCausalLMModule(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.model = FlaxMistralModule(self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) def __call__( self, input_ids, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): outputs = self.model( input_ids, position_ids=position_ids, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) @add_start_docstrings( """ The Mistral Model transformer with a language modeling head (linear layer) on top. """, MISTRAL_START_DOCSTRING, ) # Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJForCausalLM with GPTJ->Mistral class FlaxMistralForCausalLM(FlaxMistralPreTrainedModel): module_class = FlaxMistralForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since Mistral uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxMistralForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) ```
======================================================================================================================================= SOURCE CODE FILE: modeling_mistral.py LINES: 2 SIZE: 49.12 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mistral\modeling_mistral.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/mistral/modular_mistral.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_mistral.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 from functools import partial from typing import Callable, List, Optional, Tuple, Union import torch from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import ( LossKwargs, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, can_return_tuple, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from .configuration_mistral import MistralConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "mistralai/Mistral-7B-v0.1" _CONFIG_FOR_DOC = "MistralConfig" class MistralMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class MistralAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: MistralConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=getattr(self.config, "sliding_window", None), # main diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class MistralRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ MistralRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class MistralDecoderLayer(nn.Module): def __init__(self, config: MistralConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MistralAttention(config=config, layer_idx=layer_idx) self.mlp = MistralMLP(config) self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class MistralRotaryEmbedding(nn.Module): def __init__(self, config: MistralConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) MISTRAL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MistralConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Mistral Model outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class MistralPreTrainedModel(PreTrainedModel): config_class = MistralConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MistralDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True _supports_attention_backend = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() MISTRAL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare Mistral Model outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class MistralModel(MistralPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] Args: config: MistralConfig """ def __init__(self, config: MistralConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = MistralRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache if not isinstance(past_key_values, (type(None), Cache)): raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( partial(decoder_layer.__call__, **flash_attn_kwargs), hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and past_key_values is not None: is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not (using_static_cache or using_sliding_window_cache) and not output_attentions ): if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, sliding_window=self.config.sliding_window, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] # SlidingWindowCache or StaticCache if using_sliding_window_cache or using_static_cache: target_length = past_key_values.get_max_cache_shape() # DynamicCache or no cache else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], config=self.config, past_key_values=past_key_values, ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, config: MistralConfig, past_key_values: Cache, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to place the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. config (`MistralConfig`): The model's configuration class past_key_values (`Cache`): The cache class that is being used currently to generate """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) if config.sliding_window is not None: # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also # the check is needed to verify is current checkpoint was trained with sliding window or not if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: sliding_attend_mask = torch.arange(target_length, device=device) <= ( cache_position.reshape(-1, 1) - config.sliding_window ) diagonal_attend_mask.bitwise_or_(sliding_attend_mask) causal_mask *= diagonal_attend_mask causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.shape[-1] > target_length: attention_mask = attention_mask[:, :target_length] mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... class MistralForCausalLM(MistralPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config): super().__init__(config) self.model = MistralModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @can_return_tuple @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, MistralForCausalLM >>> model = MistralForCausalLM.from_pretrained("meta-mistral/Mistral-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-mistral/Mistral-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The Mistral Model transformer with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MISTRAL_START_DOCSTRING, ) class MistralForTokenClassification(MistralPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = MistralModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> TokenClassifierOutput: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The Mistral Model transformer with a sequence classification head on top (linear layer). [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, MISTRAL_START_DOCSTRING, ) class MistralForSequenceClassification(MistralPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = MistralModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> SequenceClassifierOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) hidden_states = transformer_outputs.last_hidden_state logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The Mistral Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MISTRAL_START_DOCSTRING, ) class MistralForQuestionAnswering(MistralPreTrainedModel): base_model_prefix = "model" def __init__(self, config): super().__init__(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) self.model = MistralModel(config) # diff with Llama: transformer->model # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, **kwargs, ) -> QuestionAnsweringModelOutput: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() loss = None if start_positions is not None and end_positions is not None: loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs) return QuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) ```
========================================================================================================================================== SOURCE CODE FILE: modeling_tf_mistral.py LINES: 1 SIZE: 43.94 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mistral\modeling_tf_mistral.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 Mistral model.""" import math import warnings from typing import List, Optional, Tuple, Union import tensorflow as tf from ...modeling_tf_outputs import ( TFBaseModelOutputWithPast, TFCausalLMOutputWithPast, TFSequenceClassifierOutputWithPast, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, get_tf_activation, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_mistral import MistralConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MistralConfig" def _make_causal_mask(input_ids_shape, dtype, past_key_values_length=0): """ Make causal mask used for bi-directional self-attention, supporting both static and dynamic shapes. """ bsz, tgt_len = input_ids_shape # Create a matrix where only the lower triangle and diagonal are filled with zeros (causal mask) mask = tf.fill((tgt_len, tgt_len), tf.dtypes.as_dtype(dtype).min) mask_cond = tf.range(tgt_len) mask = tf.where(mask_cond[:, None] >= mask_cond[None, :], 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length), dtype=dtype), mask], axis=-1) if bsz is None: # When batch size is dynamic, expand and tile # so we can compile a functional model mask = tf.expand_dims(mask, 0) mask = tf.expand_dims(mask, 0) # shape: (1, 1, tgt_len, tgt_len + past_key_values_length) mask = tf.tile(mask, [bsz, 1, 1, 1]) else: # When batch size is static, directly use broadcast_to mask = tf.broadcast_to(mask[None, None, :, :], (bsz, 1, tgt_len, tgt_len + past_key_values_length)) return mask def _expand_mask(mask, dtype, tgt_len=None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = shape_list(mask) tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = tf.expand_dims(tf.expand_dims(mask, 1), 1) expanded_mask = tf.broadcast_to(expanded_mask, [bsz, 1, tgt_len, src_len]) inverted_mask = 1.0 - tf.cast(expanded_mask, dtype) return tf.where( tf.cast(inverted_mask, bool), tf.fill(dims=shape_list(inverted_mask), value=tf.float32.min), inverted_mask ) class TFMistralRMSNorm(keras.layers.Layer): def __init__(self, hidden_size, eps=1e-6, **kwargs): """ TFMistralRMSNorm is equivalent to T5LayerNorm """ super().__init__(**kwargs) self.hidden_size = hidden_size self.variance_epsilon = eps def build(self, input_shape=None): self.weight = self.add_weight( name="weight", shape=self.hidden_size, initializer="ones", ) if self.built: return self.built = True def call(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = tf.cast(hidden_states, tf.float32) variance = tf.reduce_mean(tf.square(hidden_states), axis=-1, keepdims=True) hidden_states = tf.divide(hidden_states, tf.sqrt(variance + self.variance_epsilon)) return self.weight * tf.cast(hidden_states, input_dtype) # Verification: https://colab.research.google.com/gist/ariG23498/f8d8131b795a131b93d99e70ee93c192/scratchpad.ipynb class TFMistralRotaryEmbedding(keras.layers.Layer): def __init__(self, dim, max_position_embeddings=2048, base=10000, **kwargs): super().__init__(**kwargs) self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base self.inv_freq = 1.0 / (self.base ** (tf.range(start=0, limit=self.dim, delta=2, dtype=tf.float32) / self.dim)) def call(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] t = tf.cast(tf.range(seq_len, dtype=tf.int64), self.inv_freq.dtype) freqs = tf.einsum("i,j->ij", t, self.inv_freq) emb = tf.concat([freqs, freqs], axis=-1) cos_values = tf.cast(tf.cos(emb), x.dtype) sin_values = tf.cast(tf.sin(emb), x.dtype) cos_values = cos_values[:seq_len] cos_values = tf.cast(cos_values, dtype=x.dtype) sin_values = sin_values[:seq_len] sin_values = tf.cast(sin_values, dtype=x.dtype) return (cos_values, sin_values) def rotate_half(x): """Rotates half the hidden dims of the input.""" mid_length = shape_list(x)[-1] // 2 x1 = x[..., :mid_length] x2 = x[..., mid_length:] return tf.concat([-x2, x1], axis=-1) # Verification: https://colab.research.google.com/gist/ariG23498/bb8474baeb33f4ae6ed7d77da5f7e7a4/scratchpad.ipynb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`tf.Tensor`): The query tensor. k (`tf.Tensor`): The key tensor. cos (`tf.Tensor`): The cosine part of the rotary embedding. sin (`tf.Tensor`): The sine part of the rotary embedding. position_ids (`tf.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(tf.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = tf.expand_dims(tf.gather(cos, position_ids), unsqueeze_dim) sin = tf.expand_dims(tf.gather(sin, position_ids), unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class TFMistralMLP(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = keras.layers.Dense(self.intermediate_size, use_bias=False, name="gate_proj") self.up_proj = keras.layers.Dense(self.intermediate_size, use_bias=False, name="up_proj") self.down_proj = keras.layers.Dense(self.hidden_size, use_bias=False, name="down_proj") self.act_fn = get_tf_activation(config.hidden_act) def call(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "gate_proj", None) is not None: with tf.name_scope(self.gate_proj.name): self.gate_proj.build((self.hidden_size,)) if getattr(self, "up_proj", None) is not None: with tf.name_scope(self.up_proj.name): self.up_proj.build((self.hidden_size,)) if getattr(self, "down_proj", None) is not None: with tf.name_scope(self.down_proj.name): self.down_proj.build((self.intermediate_size,)) # Verification: https://colab.research.google.com/gist/ariG23498/556d443d491966763ce2e7eee336efed/scratchpad.ipynb def repeat_kv(hidden_states: tf.Tensor, n_rep: int) -> tf.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = shape_list(hidden_states) if n_rep == 1: return hidden_states hidden_states = tf.expand_dims(hidden_states, 2) hidden_states = tf.repeat(hidden_states, repeats=n_rep, axis=2) return tf.reshape(hidden_states, (batch, num_key_value_heads * n_rep, slen, head_dim)) class TFMistralAttention(keras.layers.Layer): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". """ def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None, **kwargs): super().__init__(**kwargs) self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.attention_dropout = config.attention_dropout if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = keras.layers.Dense(self.num_heads * self.head_dim, use_bias=False, name="q_proj") self.k_proj = keras.layers.Dense(self.num_key_value_heads * self.head_dim, use_bias=False, name="k_proj") self.v_proj = keras.layers.Dense(self.num_key_value_heads * self.head_dim, use_bias=False, name="v_proj") self.o_proj = keras.layers.Dense(self.hidden_size, use_bias=False, name="o_proj") self.rotary_emb = TFMistralRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, name="rotary_emb", ) self.dropout = keras.layers.Dropout(rate=self.attention_dropout) def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): tensor = tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)) tensor = tf.transpose(tensor, perm=(0, 2, 1, 3)) return tensor def call( self, hidden_states: tf.Tensor, attention_mask: Optional[tf.Tensor] = None, position_ids: Optional[tf.Tensor] = None, past_key_value: Optional[Tuple[tf.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, training=None, **kwargs, ) -> Tuple[tf.Tensor, Optional[tf.Tensor], Optional[Tuple[tf.Tensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) bsz, q_len, _ = shape_list(hidden_states) query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = tf.transpose( tf.reshape(query_states, (bsz, q_len, self.num_heads, self.head_dim)), perm=(0, 2, 1, 3) ) key_states = tf.transpose( tf.reshape(key_states, (bsz, q_len, self.num_key_value_heads, self.head_dim)), perm=(0, 2, 1, 3) ) value_states = tf.transpose( tf.reshape(value_states, (bsz, q_len, self.num_key_value_heads, self.head_dim)), perm=(0, 2, 1, 3) ) kv_seq_len = shape_list(key_states)[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb( x=value_states, seq_len=kv_seq_len, ) query_states, key_states = apply_rotary_pos_emb( q=query_states, k=key_states, cos=cos, sin=sin, position_ids=position_ids, ) if past_key_value is not None: # resue k, v, self_attention key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) past_key_value = (key_states, value_states) if use_cache else None # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = tf.matmul(query_states, key_states, transpose_b=True) / math.sqrt(self.head_dim) if attention_mask is not None: attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = tf.cast(attn_weights, query_states.dtype) attn_weights = self.dropout( attn_weights, training=training, ) attn_output = tf.matmul(attn_weights, value_states) attn_output = tf.transpose(attn_output, perm=(0, 2, 1, 3)) attn_output = tf.reshape(attn_output, (bsz, q_len, self.hidden_size)) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build((self.hidden_size,)) if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build((self.hidden_size,)) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build((self.hidden_size,)) if getattr(self, "o_proj", None) is not None: with tf.name_scope(self.o_proj.name): self.o_proj.build((self.num_heads * self.head_dim,)) class TFMistralDecoderLayer(keras.layers.Layer): def __init__(self, config: MistralConfig, layer_idx: int, **kwargs): super().__init__(**kwargs) self.hidden_size = config.hidden_size self.self_attn = TFMistralAttention(config, layer_idx, name="self_attn") self.mlp = TFMistralMLP(config, name="mlp") self.input_layernorm = TFMistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps, name="input_layernorm") self.post_attention_layernorm = TFMistralRMSNorm( config.hidden_size, eps=config.rms_norm_eps, name="post_attention_layernorm" ) def call( self, hidden_states: tf.Tensor, attention_mask: Optional[tf.Tensor] = None, position_ids: Optional[tf.Tensor] = None, past_key_value: Optional[Tuple[tf.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs, ) -> Tuple[tf.Tensor, Optional[Tuple[tf.Tensor, tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states """ if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) if getattr(self, "input_layernorm", None) is not None: with tf.name_scope(self.input_layernorm.name): self.input_layernorm.build(None) if getattr(self, "post_attention_layernorm", None) is not None: with tf.name_scope(self.post_attention_layernorm.name): self.post_attention_layernorm.build(None) @keras_serializable class TFMistralMainLayer(keras.layers.Layer): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] Args: config: MistralConfig """ config_class = MistralConfig def __init__(self, config: MistralConfig, **kwargs): super().__init__(**kwargs) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size # TF and PT Embedding check: https://colab.research.google.com/gist/ariG23498/2b9826818875c9c4968c79cb19f55f2c/scratchpad.ipynb self.embed_tokens = keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.hidden_size, name="embed_tokens", ) self.layers = [ TFMistralDecoderLayer(config, layer_idx, name=f"layers.{layer_idx}") for layer_idx in range(config.num_hidden_layers) ] self._attn_implementation = config._attn_implementation self.norm = TFMistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps, name="norm") self.config = config def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None # if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask @unpack_inputs def call( self, input_ids: Optional[tf.Tensor] = None, attention_mask: Optional[tf.Tensor] = None, position_ids: Optional[tf.Tensor] = None, past_key_values: Optional[List[tf.Tensor]] = None, inputs_embeds: Optional[tf.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFBaseModelOutputWithPast]: # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = shape_list(input_ids) elif inputs_embeds is not None: batch_size, seq_length, _ = shape_list(inputs_embeds) else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = shape_list(past_key_values[0][0])[2] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: position_ids = tf.range( start=past_key_values_length, limit=seq_length + past_key_values_length, dtype=tf.int64 ) position_ids = tf.reshape(tf.expand_dims(position_ids, 0), (-1, seq_length)) else: position_ids = tf.cast(tf.reshape(position_ids, (-1, seq_length)), tf.int64) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = self.embed_tokens(input_ids) if attention_mask is None: attention_mask = tf.ones((batch_size, seq_length_with_past), dtype=tf.bool) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return TFBaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_tokens", None) is not None: with tf.name_scope(self.embed_tokens.name): self.embed_tokens.build(None) if getattr(self, "norm", None) is not None: with tf.name_scope(self.norm.name): self.norm.build(None) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) MISTRAL_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `model` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`MistralConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Mistral Model outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class TFMistralPreTrainedModel(TFPreTrainedModel): config_class = MistralConfig base_model_prefix = "model" MISTRAL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(tf.Tensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. One formats is allowed: - Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Mistral Model outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class TFMistralModel(TFMistralPreTrainedModel): def __init__(self, config: MistralConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFMistralMainLayer(config, name="model") @unpack_inputs @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def call( self, input_ids: Optional[tf.Tensor] = None, attention_mask: Optional[tf.Tensor] = None, position_ids: Optional[tf.Tensor] = None, past_key_values: Optional[List[tf.Tensor]] = None, inputs_embeds: Optional[tf.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFBaseModelOutputWithPast]: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) class TFMistralForCausalLM(TFMistralPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFMistralMainLayer(config, name="model") self.vocab_size = config.vocab_size self.lm_head = keras.layers.Dense( config.vocab_size, use_bias=False, kernel_initializer=get_initializer(config.initializer_range), name="lm_head", ) self.config = config def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @unpack_inputs @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def call( self, input_ids: Optional[tf.Tensor] = None, attention_mask: Optional[tf.Tensor] = None, position_ids: Optional[tf.Tensor] = None, past_key_values: Optional[List[tf.Tensor]] = None, inputs_embeds: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFCausalLMOutputWithPast]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = tf.cast(logits, tf.float32) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels, shifted_logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): # Omit tokens covered by past_key_values if past_key_values: input_ids = tf.expand_dims(input_ids[:, -1], -1) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True) if past_key_values: position_ids = tf.expand_dims(position_ids[:, -1], -1) return { "input_ids": input_ids, "attention_mask": attention_mask, "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), } def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build((self.config.hidden_size,)) @add_start_docstrings( """ The Mistral Model transformer with a sequence classification head on top (linear layer). [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, MISTRAL_START_DOCSTRING, ) class TFMistralForSequenceClassification(TFMistralPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.model = TFMistralMainLayer(config, name="model") self.score = keras.layers.Dense( self.num_labels, use_bias=False, kernel_initializer=get_initializer(config.initializer_range), name="score", ) self.config = config def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @unpack_inputs @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def call( self, input_ids: Optional[tf.Tensor] = None, attention_mask: Optional[tf.Tensor] = None, position_ids: Optional[tf.Tensor] = None, past_key_values: Optional[List[tf.Tensor]] = None, inputs_embeds: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSequenceClassifierOutputWithPast]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ transformer_outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) logits_shape = shape_list(logits) batch_size = logits_shape[0] if self.config.pad_token_id is None: last_non_pad_token = tf.fill((batch_size,), value=logits_shape[1] - 1) else: if input_ids is not None: token_indices = tf.range(shape_list(input_ids)[-1]) non_pad_mask = tf.cast(input_ids != self.config.pad_token_id, token_indices.dtype) last_non_pad_token = tf.reduce_max(token_indices * non_pad_mask, axis=-1) else: last_non_pad_token = tf.fill((batch_size,), value=logits_shape[1] - 1) logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) loss = None pooled_logits = tf.gather(logits, last_non_pad_token, batch_dims=1, axis=1) if labels is not None: if self.config.pad_token_id is None and logits_shape[0] != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") loss = self.hf_compute_loss(tf.reshape(labels, [-1]), tf.reshape(pooled_logits, [-1, self.num_labels])) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "score", None) is not None: with tf.name_scope(self.score.name): self.score.build((self.config.hidden_size,)) ```
====================================================================================================================================== SOURCE CODE FILE: modular_mistral.py LINES: 1 SIZE: 15.45 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mistral\modular_mistral.py ENCODING: utf-8 ```py from typing import Callable, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...cache_utils import Cache, SlidingWindowCache, StaticCache from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import BaseModelOutputWithPast, QuestionAnsweringModelOutput from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...processing_utils import Unpack from ...utils import logging from ..llama.modeling_llama import ( LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaForQuestionAnswering, LlamaForSequenceClassification, LlamaForTokenClassification, LlamaMLP, LlamaModel, apply_rotary_pos_emb, eager_attention_forward, ) from .configuration_mistral import MistralConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "mistralai/Mistral-7B-v0.1" class MistralMLP(LlamaMLP): def __init__(self, config): super().__init__(config) self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) class MistralAttention(LlamaAttention): def __init__(self, config: MistralConfig, layer_idx: int): super().__init__() self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=getattr(self.config, "sliding_window", None), # main diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class MistralDecoderLayer(LlamaDecoderLayer): def __init__(self, config: MistralConfig, layer_idx: int): super().__init__(config, layer_idx) self.self_attn = MistralAttention(config=config, layer_idx=layer_idx) self.mlp = MistralMLP(config) class MistralModel(LlamaModel): def __init__(self, config: MistralConfig): super().__init__(config) self.layers = nn.ModuleList( [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and past_key_values is not None: is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not (using_static_cache or using_sliding_window_cache) and not output_attentions ): if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, sliding_window=self.config.sliding_window, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] # SlidingWindowCache or StaticCache if using_sliding_window_cache or using_static_cache: target_length = past_key_values.get_max_cache_shape() # DynamicCache or no cache else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], config=self.config, past_key_values=past_key_values, ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, config: MistralConfig, past_key_values: Cache, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to place the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. config (`MistralConfig`): The model's configuration class past_key_values (`Cache`): The cache class that is being used currently to generate """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) if config.sliding_window is not None: # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also # the check is needed to verify is current checkpoint was trained with sliding window or not if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: sliding_attend_mask = torch.arange(target_length, device=device) <= ( cache_position.reshape(-1, 1) - config.sliding_window ) diagonal_attend_mask.bitwise_or_(sliding_attend_mask) causal_mask *= diagonal_attend_mask causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.shape[-1] > target_length: attention_mask = attention_mask[:, :target_length] mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class MistralForCausalLM(LlamaForCausalLM): pass class MistralForTokenClassification(LlamaForTokenClassification): pass class MistralForSequenceClassification(LlamaForSequenceClassification): pass class MistralForQuestionAnswering(LlamaForQuestionAnswering): base_model_prefix = "model" def __init__(self, config): super().__init__(config) self.model = MistralModel(config) # diff with Llama: transformer->model del self.transformer def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, **kwargs, ) -> QuestionAnsweringModelOutput: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() loss = None if start_positions is not None and end_positions is not None: loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs) return QuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) ```
=============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.85 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mixtral\__init__.py ENCODING: utf-8 ```py # Copyright 2023 Mixtral AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _import_structure = { "configuration_mixtral": ["MixtralConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mixtral"] = [ "MixtralForCausalLM", "MixtralForQuestionAnswering", "MixtralModel", "MixtralPreTrainedModel", "MixtralForSequenceClassification", "MixtralForTokenClassification", ] if TYPE_CHECKING: from .configuration_mixtral import MixtralConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mixtral import ( MixtralForCausalLM, MixtralForQuestionAnswering, MixtralForSequenceClassification, MixtralForTokenClassification, MixtralModel, MixtralPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) ```
============================================================================================================================================ SOURCE CODE FILE: configuration_mixtral.py LINES: 1 SIZE: 8.90 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mixtral\configuration_mixtral.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mixtral model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class MixtralConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1. [mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B) [mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MixtralModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 14336): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`): The attention head dimension. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to `4096*32`): The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention allows sequence of up to 4096*32 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to 1000000.0): The base period of the RoPE embeddings. sliding_window (`int`, *optional*): Sliding window attention window size. If not specified, will default to `4096`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. num_experts_per_tok (`int`, *optional*, defaults to 2): The number of experts to route per-token, can be also interpreted as the `top-k` routing parameter num_local_experts (`int`, *optional*, defaults to 8): Number of experts per Sparse MLP layer. output_router_logits (`bool`, *optional*, defaults to `False`): Whether or not the router logits should be returned by the model. Enabeling this will also allow the model to output the auxiliary loss. See [here]() for more details router_aux_loss_coef (`float`, *optional*, defaults to 0.001): The aux loss factor for the total loss. router_jitter_noise (`float`, *optional*, defaults to 0.0): Amount of noise to add to the router. ```python >>> from transformers import MixtralModel, MixtralConfig >>> # Initializing a Mixtral 7B style configuration >>> configuration = MixtralConfig() >>> # Initializing a model from the Mixtral 7B style configuration >>> model = MixtralModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mixtral" keys_to_ignore_at_inference = ["past_key_values"] base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.block_sparse_moe.gate": "colwise_rep", # we need to replicate here to correctly route experts "layers.*.block_sparse_moe.experts.*.w1": "colwise", "layers.*.block_sparse_moe.experts.*.w2": "rowwise", "layers.*.block_sparse_moe.experts.*.w3": "colwise", } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, head_dim=None, hidden_act="silu", max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=1e6, sliding_window=None, attention_dropout=0.0, num_experts_per_tok=2, num_local_experts=8, output_router_logits=False, router_aux_loss_coef=0.001, router_jitter_noise=0.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_dropout = attention_dropout self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads self.num_experts_per_tok = num_experts_per_tok self.num_local_experts = num_local_experts self.output_router_logits = output_router_logits self.router_aux_loss_coef = router_aux_loss_coef self.router_jitter_noise = router_jitter_noise super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) ```
======================================================================================================================================= SOURCE CODE FILE: modeling_mixtral.py LINES: 2 SIZE: 59.69 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mixtral\modeling_mixtral.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/mixtral/modular_mixtral.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_mixtral.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn.functional as F from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, MoeCausalLMOutputWithPast, MoeModelOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import ( LossKwargs, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, can_return_tuple, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from .configuration_mixtral import MixtralConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "mistralai/Mixtral-8x7B-v0.1" _CONFIG_FOR_DOC = "MixtralConfig" class MixtralBlockSparseTop2MLP(nn.Module): def __init__(self, config: MixtralConfig): super().__init__() self.ffn_dim = config.intermediate_size self.hidden_dim = config.hidden_size self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states): current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) current_hidden_states = self.w2(current_hidden_states) return current_hidden_states class MixtralSparseMoeBlock(nn.Module): """ This implementation is strictly equivalent to standard MoE with full capacity (no dropped tokens). It's faster since it formulates MoE operations in terms of block-sparse operations to accommodate imbalanced assignments of tokens to experts, whereas standard MoE either (1) drop tokens at the cost of reduced performance or (2) set capacity factor to number of experts and thus waste computation and memory on padding. """ def __init__(self, config): super().__init__() self.hidden_dim = config.hidden_size self.ffn_dim = config.intermediate_size self.num_experts = config.num_local_experts self.top_k = config.num_experts_per_tok # gating self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)]) # Jitter parameters self.jitter_noise = config.router_jitter_noise def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: """ """ batch_size, sequence_length, hidden_dim = hidden_states.shape if self.training and self.jitter_noise > 0: hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be sollicitated expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits class MixtralRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ MixtralRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class MixtralAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: MixtralConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=getattr(self.config, "sliding_window", None), # main diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class MixtralDecoderLayer(nn.Module): def __init__(self, config: MixtralConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MixtralAttention(config, layer_idx) self.block_sparse_moe = MixtralSparseMoeBlock(config) self.input_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, router_logits = self.block_sparse_moe(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if output_router_logits: outputs += (router_logits,) return outputs class MixtralRotaryEmbedding(nn.Module): def __init__(self, config: MixtralConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) MIXTRAL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MixtralConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Mixtral Model outputting raw hidden-states without any specific head on top.", MIXTRAL_START_DOCSTRING, ) class MixtralPreTrainedModel(PreTrainedModel): config_class = MixtralConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MixtralDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported) _supports_attention_backend = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() MIXTRAL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare Mixtral Model outputting raw hidden-states without any specific head on top.", MIXTRAL_START_DOCSTRING, ) class MixtralModel(MixtralPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`] Args: config: MixtralConfig """ def __init__(self, config: MixtralConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [MixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = MixtralRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> MoeModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if use_cache and past_key_values is None: past_key_values = DynamicCache() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( partial(decoder_layer.__call__, **flash_attn_kwargs), hidden_states, causal_mask, position_ids, past_key_values, output_attentions, output_router_logits, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if output_router_logits: all_router_logits += (layer_outputs[-1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, ) def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and past_key_values is not None: is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not (using_static_cache or using_sliding_window_cache) and not output_attentions ): if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, sliding_window=self.config.sliding_window, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] # SlidingWindowCache or StaticCache if using_sliding_window_cache or using_static_cache: target_length = past_key_values.get_max_cache_shape() # DynamicCache or no cache else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], config=self.config, past_key_values=past_key_values, ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, config: MixtralConfig, past_key_values: Cache, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to place the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. config (`MixtralConfig`): The model's configuration class past_key_values (`Cache`): The cache class that is being used currently to generate """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) if config.sliding_window is not None: # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also # the check is needed to verify is current checkpoint was trained with sliding window or not if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: sliding_attend_mask = torch.arange(target_length, device=device) <= ( cache_position.reshape(-1, 1) - config.sliding_window ) diagonal_attend_mask.bitwise_or_(sliding_attend_mask) causal_mask *= diagonal_attend_mask causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.shape[-1] > target_length: attention_mask = attention_mask[:, :target_length] mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... def load_balancing_loss_func( gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], None], num_experts: Optional[int] = None, top_k=2, attention_mask: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, int]: r""" Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: gate_logits: Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of shape [batch_size X sequence_length, num_experts]. num_experts: Number of experts top_k: The number of experts to route per-token, can be also interpreted as the `top-k` routing parameter. attention_mask (`torch.Tensor`, *optional*): The attention_mask used in forward function shape [batch_size X sequence_length] if not None. Returns: The auxiliary loss. """ if gate_logits is None or not isinstance(gate_logits, tuple): return 0 if isinstance(gate_logits, tuple): compute_device = gate_logits[0].device concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) if attention_mask is None: # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.mean(expert_mask.float(), dim=0) # Compute the average probability of routing to these experts router_prob_per_expert = torch.mean(routing_weights, dim=0) else: batch_size, sequence_length = attention_mask.shape num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask expert_attention_mask = ( attention_mask[None, :, :, None, None] .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) .reshape(-1, top_k, num_experts) .to(compute_device) ) # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( expert_attention_mask, dim=0 ) # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert router_per_expert_attention_mask = ( attention_mask[None, :, :, None] .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) .reshape(-1, num_experts) .to(compute_device) ) # Compute the average probability of routing to these experts router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( router_per_expert_attention_mask, dim=0 ) overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) return overall_loss * num_experts class MixtralForCausalLM(MixtralPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config): super().__init__(config) self.model = MixtralModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.router_aux_loss_coef = config.router_aux_loss_coef self.num_experts = config.num_local_experts self.num_experts_per_tok = config.num_experts_per_tok # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @can_return_tuple @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> MoeCausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, MixtralForCausalLM >>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1") >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: MoeModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits, self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) @add_start_docstrings( """ The Mixtral Model transformer with a sequence classification head on top (linear layer). [`MixtralForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, MIXTRAL_START_DOCSTRING, ) class MixtralForSequenceClassification(MixtralPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = MixtralModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> SequenceClassifierOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) hidden_states = transformer_outputs.last_hidden_state logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The Mixtral Model transformer with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MIXTRAL_START_DOCSTRING, ) class MixtralForTokenClassification(MixtralPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = MixtralModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> TokenClassifierOutput: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The Mixtral Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MIXTRAL_START_DOCSTRING, ) class MixtralForQuestionAnswering(MixtralPreTrainedModel): base_model_prefix = "model" def __init__(self, config): super().__init__(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) self.model = MixtralModel(config) # diff with Llama: transformer->model # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, **kwargs, ) -> QuestionAnsweringModelOutput: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() loss = None if start_positions is not None and end_positions is not None: loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs) return QuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) ```
====================================================================================================================================== SOURCE CODE FILE: modular_mixtral.py LINES: 2 SIZE: 23.54 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mixtral\modular_mixtral.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Mixtral model.""" from functools import partial from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...cache_utils import DynamicCache from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import ( MoeCausalLMOutputWithPast, MoeModelOutputWithPast, ) from ...processing_utils import Unpack from ...utils import ( LossKwargs, logging, ) from ..mistral.modeling_mistral import ( MistralAttention, MistralForCausalLM, MistralForQuestionAnswering, MistralForSequenceClassification, MistralForTokenClassification, MistralModel, MistralPreTrainedModel, MistralRMSNorm, MistralRotaryEmbedding, ) from .configuration_mixtral import MixtralConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "mistralai/Mixtral-8x7B-v0.1" _CONFIG_FOR_DOC = "MixtralConfig" def load_balancing_loss_func( gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], None], num_experts: Optional[int] = None, top_k=2, attention_mask: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, int]: r""" Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: gate_logits: Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of shape [batch_size X sequence_length, num_experts]. num_experts: Number of experts top_k: The number of experts to route per-token, can be also interpreted as the `top-k` routing parameter. attention_mask (`torch.Tensor`, *optional*): The attention_mask used in forward function shape [batch_size X sequence_length] if not None. Returns: The auxiliary loss. """ if gate_logits is None or not isinstance(gate_logits, tuple): return 0 if isinstance(gate_logits, tuple): compute_device = gate_logits[0].device concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) if attention_mask is None: # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.mean(expert_mask.float(), dim=0) # Compute the average probability of routing to these experts router_prob_per_expert = torch.mean(routing_weights, dim=0) else: batch_size, sequence_length = attention_mask.shape num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask expert_attention_mask = ( attention_mask[None, :, :, None, None] .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) .reshape(-1, top_k, num_experts) .to(compute_device) ) # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( expert_attention_mask, dim=0 ) # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert router_per_expert_attention_mask = ( attention_mask[None, :, :, None] .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) .reshape(-1, num_experts) .to(compute_device) ) # Compute the average probability of routing to these experts router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( router_per_expert_attention_mask, dim=0 ) overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) return overall_loss * num_experts class MixtralBlockSparseTop2MLP(nn.Module): def __init__(self, config: MixtralConfig): super().__init__() self.ffn_dim = config.intermediate_size self.hidden_dim = config.hidden_size self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states): current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) current_hidden_states = self.w2(current_hidden_states) return current_hidden_states class MixtralSparseMoeBlock(nn.Module): """ This implementation is strictly equivalent to standard MoE with full capacity (no dropped tokens). It's faster since it formulates MoE operations in terms of block-sparse operations to accommodate imbalanced assignments of tokens to experts, whereas standard MoE either (1) drop tokens at the cost of reduced performance or (2) set capacity factor to number of experts and thus waste computation and memory on padding. """ def __init__(self, config): super().__init__() self.hidden_dim = config.hidden_size self.ffn_dim = config.intermediate_size self.num_experts = config.num_local_experts self.top_k = config.num_experts_per_tok # gating self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)]) # Jitter parameters self.jitter_noise = config.router_jitter_noise def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: """ """ batch_size, sequence_length, hidden_dim = hidden_states.shape if self.training and self.jitter_noise > 0: hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be sollicitated expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits class MixtralRMSNorm(MistralRMSNorm): pass class MixtralAttention(MistralAttention): pass class MixtralDecoderLayer(nn.Module): def __init__(self, config: MixtralConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MixtralAttention(config, layer_idx) self.block_sparse_moe = MixtralSparseMoeBlock(config) self.input_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, router_logits = self.block_sparse_moe(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if output_router_logits: outputs += (router_logits,) return outputs class MixtralRotaryEmbedding(MistralRotaryEmbedding): pass class MixtralPreTrainedModel(MistralPreTrainedModel): _supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported) class MixtralModel(MistralModel): def __init__(self, config: MixtralConfig): super().__init__(config) self.layers = nn.ModuleList( [MixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> MoeModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if use_cache and past_key_values is None: past_key_values = DynamicCache() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( partial(decoder_layer.__call__, **flash_attn_kwargs), hidden_states, causal_mask, position_ids, past_key_values, output_attentions, output_router_logits, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if output_router_logits: all_router_logits += (layer_outputs[-1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, ) class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... class MixtralForCausalLM(MistralForCausalLM): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = MixtralModel(config) self.router_aux_loss_coef = config.router_aux_loss_coef self.num_experts = config.num_local_experts self.num_experts_per_tok = config.num_experts_per_tok def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> MoeCausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, MixtralForCausalLM >>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1") >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: MoeModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits, self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) class MixtralForSequenceClassification(MistralForSequenceClassification): pass class MixtralForTokenClassification(MistralForTokenClassification): pass class MixtralForQuestionAnswering(MistralForQuestionAnswering): pass ```
============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.05 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mllama\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mllama import * from .image_processing_mllama import * from .modeling_mllama import * from .processing_mllama import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
========================================================================================================================================== SOURCE CODE FILE: configuration_mllama.py LINES: 1 SIZE: 17.72 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mllama\configuration_mllama.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mllama model configuration""" from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...modeling_rope_utils import rope_config_validation from ...utils import logging logger = logging.get_logger(__name__) class MllamaVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MllamaVisionModel`]. It is used to instantiate an Mllama vision model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mllama-11B. e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1280): Dimensionality of the encoder layers and the pooler layer. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_global_layers (`int`, *optional*, defaults to 8): Number of global layers in the Transformer encoder. Vision model has a second transformer encoder, called global. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input image. intermediate_size (`int`, *optional*, defaults to 5120): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. vision_output_dim (`int`, *optional*, defaults to 7680): Dimensionality of the vision model output. Includes output of transformer encoder with intermediate layers and global transformer encoder. image_size (`int`, *optional*, defaults to 448): The size (resolution) of each image *tile*. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. max_num_tiles (`int`, *optional*, defaults to 4): Maximum number of tiles for image splitting. intermediate_layers_indices (`List[int]`, *optional*, defaults to [3, 7, 15, 23, 30]): Indices of intermediate layers of transformer encoder from which to extract and output features. These output features are concatenated with final hidden state of transformer encoder. supported_aspect_ratios (`List[List[int]]`, *optional*): List of supported aspect ratios for image splitting. If not specified, the default supported aspect ratios are [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]] for `max_num_tiles=4`. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import MllamaVisionConfig, MllamaVisionModel >>> # Initializing a Llama config >>> config = MllamaVisionConfig() >>> # Initializing a vision model from the mllama-11b style configuration >>> model = MllamaVisionModel(config) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mllama_vision_model" base_config_key = "vision_config" def __init__( self, hidden_size: int = 1280, hidden_act: str = "gelu", num_hidden_layers: int = 32, num_global_layers: int = 8, num_attention_heads: int = 16, num_channels: int = 3, intermediate_size: int = 5120, vision_output_dim: int = 7680, image_size: int = 448, patch_size: int = 14, norm_eps: float = 1e-5, max_num_tiles: int = 4, intermediate_layers_indices: Optional[List[int]] = None, supported_aspect_ratios: Optional[List[List[int]]] = None, initializer_range: float = 0.02, **kwargs, ): if supported_aspect_ratios is None: if max_num_tiles != 4: raise ValueError("max_num_tiles must be 4 for default supported aspect ratios") supported_aspect_ratios = [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]] if intermediate_layers_indices is None: intermediate_layers_indices = [3, 7, 15, 23, 30] self.hidden_size = hidden_size self.hidden_act = hidden_act self.num_hidden_layers = num_hidden_layers self.num_channels = num_channels self.intermediate_size = intermediate_size self.image_size = image_size self.vision_output_dim = vision_output_dim self.patch_size = patch_size self.intermediate_layers_indices = intermediate_layers_indices self.num_global_layers = num_global_layers self.max_num_tiles = max_num_tiles self.norm_eps = norm_eps self.attention_heads = num_attention_heads self.supported_aspect_ratios = supported_aspect_ratios self.initializer_range = initializer_range super().__init__(**kwargs) @property def max_aspect_ratio_id(self) -> int: return len(self.supported_aspect_ratios) class MllamaTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MllamaTextModel`]. It is used to instantiate an Mllama text model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mllama-11B. e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 128256): Vocabulary size of the Mllama text model. Defines the maximum number of different tokens that can be represented by the `inputs_ids` passed when calling [`MllamaTextModel`]. hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. hidden_act (`str` or `Callable`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the encoder and pooler. num_hidden_layers (`int`, *optional*, defaults to 40): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If not specified, will default to `num_attention_heads`. intermediate_size (`int`, *optional*, defaults to 14336): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. rope_theta (`float`, *optional*, defaults to `500000.0`): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. max_position_embeddings (`int`, *optional*, defaults to 131072): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings cross_attention_layers (`List[int]`, *optional*): Indices of the cross attention layers. If not specified, will default to [3, 8, 13, 18, 23, 28, 33, 38]. dropout (`float`, *optional*, defaults to 0): The dropout probability for self- and cross-attention layers. bos_token_id (`int`, *optional*, defaults to 128000): The id of the beginning of sentence token. eos_token_id (`int`, *optional*, defaults to 128001): The id of the end of sentence token. pad_token_id (`int`, *optional*, defaults to 128004): The id of the padding token. Example: ```python >>> from transformers import MllamaTextModel, MllamaTextConfig >>> # Initializing a Mllama text config >>> config = MllamaTextConfig() >>> # Initializing a model from the Mllama text configuration >>> model = MllamaTextModel(config) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mllama_text_model" base_config_key = "text_config" def __init__( self, vocab_size: int = 128256, hidden_size: int = 4096, hidden_act: str = "silu", num_hidden_layers: int = 40, num_attention_heads: int = 32, num_key_value_heads: int = 8, intermediate_size: int = 14_336, rope_theta: float = 500_000, rope_scaling: Optional[Dict] = None, rms_norm_eps: float = 1e-5, max_position_embeddings: int = 131_072, initializer_range: float = 0.02, use_cache: bool = True, tie_word_embeddings: bool = False, cross_attention_layers: Optional[List[int]] = None, dropout: float = 0, bos_token_id: int = 128000, eos_token_id: int = 128001, pad_token_id: Optional[int] = 128004, **kwargs, ): if cross_attention_layers is None: cross_attention_layers = [3, 8, 13, 18, 23, 28, 33, 38] self.vocab_size = vocab_size self.num_hidden_layers = num_hidden_layers self.cross_attention_layers = cross_attention_layers self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.initializer_range = initializer_range self.use_cache = use_cache self.rope_theta = rope_theta self.rms_norm_eps = rms_norm_eps self.intermediate_size = intermediate_size self.dropout = dropout self.hidden_act = hidden_act self.rope_scaling = rope_scaling self.max_position_embeddings = max_position_embeddings rope_config_validation(self) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) class MllamaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mllama-9B. e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`): The config object or dictionary of the vision backbone. text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`): The config object or dictionary of the text backbone. image_token_index (`int`, *optional*, defaults to 128256): The image token index to encode the image prompt. Example: ```python >>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig >>> # Initializing a CLIP-vision config >>> vision_config = MllamaVisionConfig() >>> # Initializing a Llama config >>> text_config = MllamaTextConfig() >>> # Initializing a mllama-11b style configuration >>> configuration = MllamaConfig(vision_config, text_config) >>> # Initializing a model from the mllama-11b style configuration >>> model = MllamaForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mllama" sub_configs = {"text_config": MllamaTextConfig, "vision_config": MllamaVisionConfig} def __init__( self, vision_config=None, text_config=None, image_token_index=128256, **kwargs, ): if vision_config is None: self.vision_config = MllamaVisionConfig() logger.info("vision_config is None, using default mllama vision config") elif isinstance(vision_config, dict): self.vision_config = MllamaVisionConfig(**vision_config) elif isinstance(vision_config, MllamaVisionConfig): self.vision_config = vision_config self.image_token_index = image_token_index if text_config is None: self.text_config = MllamaTextConfig() logger.info("text_config is None, using default mllama text config") elif isinstance(text_config, dict): self.text_config = MllamaTextConfig(**text_config) elif isinstance(text_config, MllamaTextConfig): self.text_config = text_config super().__init__(**kwargs) __all__ = ["MllamaConfig"] ```
============================================================================================================================================= SOURCE CODE FILE: image_processing_mllama.py LINES: 1 SIZE: 37.35 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mllama\image_processing_mllama.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import ( PaddingMode, get_image_size, pad, resize, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_vision_available, make_nested_list_of_images, to_numpy_array, validate_preprocess_arguments, ) from ...utils import TensorType, logging if is_vision_available(): import PIL from PIL import Image logger = logging.get_logger(__name__) @lru_cache(maxsize=10) def get_all_supported_aspect_ratios(max_image_tiles: int) -> List[Tuple[int, int]]: """ Computes all allowed aspect ratios for a given maximum number of input tiles. This function calculates all possible arrangements of tiles that can be formed within the constraint of the maximum number of tiles. Each arrangement is represented by its aspect ratio (width/height) and the corresponding tile configuration. Args: max_image_tiles (`int`): The maximum number of tiles allowed. Returns: `List[Tuple[int, int]]`: A list of tuples, each tuple representing a valid (width, height) configuration in terms of number of tiles. Example: >>> get_all_supported_aspect_ratios(4) [(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), (4, 1)] """ aspect_ratios = [] for width in range(1, max_image_tiles + 1): for height in range(1, max_image_tiles + 1): if width * height <= max_image_tiles: aspect_ratios.append((width, height)) return aspect_ratios def get_image_size_fit_to_canvas( image_height: int, image_width: int, canvas_height: int, canvas_width: int, tile_size: int, ) -> Tuple[int, int]: """ Calculates the new size of an image to fit within a canvas while maintaining aspect ratio. This function calculates the optimal size for an image to fit within a canvas defined by canvas_height and canvas_width, while ensuring that the image dimensions are not smaller than tile_size. If the image is larger than the canvas, the returned size will fit within the canvas. If the image already fits within the canvas, the size remains unchanged. The aspect ratio of the original image is preserved as much as possible. Args: image_height (`int`): The height of the original image. image_width (`int`): The width of the original image. canvas_height (`int`): The height of the canvas. canvas_width (`int`): The width of the canvas. tile_size (`int`): The tile size. Returns: `Tuple[int, int]`: A tuple containing the new height and width of the image. """ # Set target image size in between `tile_size` and canvas_size target_width = np.clip(image_width, tile_size, canvas_width) target_height = np.clip(image_height, tile_size, canvas_height) scale_h = target_height / image_height scale_w = target_width / image_width if scale_w < scale_h: new_width = target_width # minimum height is 1 to avoid invalid height of 0 new_height = min(math.floor(image_height * scale_w) or 1, target_height) else: new_height = target_height # minimum width is 1 to avoid invalid width of 0 new_width = min(math.floor(image_width * scale_h) or 1, target_width) return new_height, new_width @lru_cache(maxsize=100) def get_optimal_tiled_canvas( image_height: int, image_width: int, max_image_tiles: int, tile_size: int, ) -> Tuple[int, int]: r""" Determines the best canvas based on image and tile size and maximum number of tiles. First, calculates possible resolutions based on the maximum number of tiles and tile size. For example for max_image_tiles=2, tile_size=100, possible tile arrangements are: [(1, 1), (1, 2), (2, 1)] and corresponding canvas sizes are: [(100, 100), (100, 200), (200, 100)] For each possible resolution, calculates the scaling factors for width and height, and selects the smallest one, which is the limiting side. E.g. to match the canvas you can upscale height by 2x, and width by 1.5x, therefore, the maximum upscaling you can do is min(2, 1.5) = 1.5. If upscaling is possible (any of the scaling factors is greater than 1), then picks the smallest upscaling factor > 1. If upscaling is not possible, then picks the largest scaling factor <= 1, i.e. reduce downscaling as much as possible. If there are multiple resolutions with the same max scale, we pick the one with the lowest area, to minimize padding. E.g., the same image can be upscaled to 224x224 and 224x448, but the latter has more padding. Example of canvases made from tiles: To visualize how the image can fit onto different tile grids, let's try fitting an ASCII cat into the tiles. Here's an ASCII cat image you want to fit into the tiles: /\_/\ ( o.o ) > ^ < If `num_tiles=6`, possible tile grids would look like this: **2x3 Canvas (2 tiles wide, 3 tiles tall)**: -> total of 6 tiles +-------+-------+ | /\_/\ | 0 | <- Cat image split across two tiles horizontally +-------+-------+ | > ^ < | 0 | <- Remaining part of the cat occupies the left tile +-------+-------+ |( o.o )| 0 | +-------+-------+ **3x2 Canvas (3 tiles wide, 2 tiles tall)**: -> total of 6 tiles +-------+-------+-------+ | /\_/\ |( o.o )| 0 | <- Cat image occupies the first two tiles, 1 tile remains empty +-------+-------+-------+ | > ^ < | 0 | 0 | <- Remaining part of the cat occupies the left tile +-------+-------+-------+ **1x6 Canvas (1 tile wide, 6 tiles tall)**: -> total of 6 tiles +-------+ | /\_/\ | <- Top part of the cat +-------+ |( o.o )| <- Middle part of the cat +-------+ | > ^ < | <- Bottom part of the cat +-------+ | 0 | +-------+ | 0 | +-------+ | 0 | +-------+ Given that the tiles you get depend on the chosen aspect ratio, you have to add embedding in the modeling code to help it know if it got a 3x2 or a 1x6 or a 2x3 aspect ratio. The function tests these arrangements to find the smallest canvas where the image fits. If multiple canvases fit, it selects the one where the dimensions are closest to the image size. In this case the first canvas is the closest to the original image. You then feed all of the tiles to the model: +-------+-------+-------+-------+-------+-------+ - | /\_/\ |( o.o )| > ^ < | 0 | 0 | 0 | <- Last canvas +-------+-------+-------+-------+-------+-------+ +-------+-------+-------+-------+-------+-------+ - | /\_/\ | 0 |( o.o )| 0 | > ^ < | 0 | <- First canvas +-------+-------+-------+-------+-------+-------+ +-------+-------+-------+-------+-------+-------+ - | /\_/\ |( o.o )| 0 | > ^ < | 0 | 0 | <- second canvas +-------+-------+-------+-------+-------+-------+ For each tile, you have num_channels (usually RGB so 3), tile_width, tile_height Args: image_height (`int`): The height of the image. image_width (`int`): The width of the image. max_image_tiles (`int`): The maximum number of tiles any image can be split into. tile_size (`int`): The tile size. Returns: `Tuple[int, int]`: The best canvas resolution [height, width] for the given image. """ possible_tile_arrangements = get_all_supported_aspect_ratios(max_image_tiles) possible_canvas_sizes = np.array(possible_tile_arrangements) * tile_size # get all possible resolutions heights/widths target_heights, target_widths = np.array(possible_canvas_sizes).T # get scaling factors to resize the image without distortion scale_h = target_heights / image_height scale_w = target_widths / image_width # get the min scale between width and height (limiting side -> no distortion) scales = np.where(scale_w > scale_h, scale_h, scale_w) # filter only scales that allow upscaling upscaling_options = scales[scales >= 1] if len(upscaling_options) > 0: selected_scale = np.min(upscaling_options) else: # no upscaling possible, # get the minimum downscaling (max scale for scales<1) downscaling_options = scales[scales < 1] selected_scale = np.max(downscaling_options) # get all resolutions that support this scaling factor, # e.g. you can upscale to 224x224, 224x448, 224x672 without distortion chosen_canvas = possible_canvas_sizes[scales == selected_scale] # if there are multiple resolutions, # get the one with minimum area to reduce padding if len(chosen_canvas) > 1: areas = chosen_canvas[:, 0] * chosen_canvas[:, 1] optimal_idx = np.argmin(areas) optimal_canvas = chosen_canvas[optimal_idx] else: optimal_canvas = chosen_canvas[0] return optimal_canvas def split_to_tiles(image: np.ndarray, num_tiles_height: int, num_tiles_width: int) -> np.ndarray: """ Split an image into a specified number of tiles along its width and height dimensions. Args: image (`np.ndarray`): Input image with shape (num_channels, height, width). num_tiles_height (`int`): Number of tiles to split the image into along its height. num_tiles_width (`int`): Number of tiles to split the image into along its width. Returns: `np.ndarray`: Array of image tiles with shape (num_tiles_width * num_tiles_height, num_channels, tile_height, tile_width). """ num_channels, height, width = image.shape tile_height = height // num_tiles_height tile_width = width // num_tiles_width image = image.reshape(num_channels, num_tiles_height, tile_height, num_tiles_width, tile_width) # Permute to (num_tiles_height, num_tiles_width, num_channels, tile_height, tile_width) image = image.transpose(1, 3, 0, 2, 4) # Reshape into the desired output shape (num_tiles_width * num_tiles_height, num_channels, tile_height, tile_width) image = image.reshape(num_tiles_width * num_tiles_height, num_channels, tile_height, tile_width) return np.ascontiguousarray(image) def build_aspect_ratio_mask(aspect_ratios: List[List[Tuple[int, int]]], max_image_tiles: int) -> np.ndarray: """ Builds a mask for the aspect ratios of the images. Args: aspect_ratios (`List[List[Tuple[int, int]]]`): A list of lists containing aspect ratios for each image in the batch. Each aspect ratio is represented as a tuple of (width, height) in terms of number of tiles. max_image_tiles (`int`): The maximum number of tiles any image can be split into. Returns: `np.ndarray`: A 3D numpy array of shape (batch_size, max_num_images, max_image_tiles). The mask contains 1s for valid tiles and 0s for padding. """ batch_size = len(aspect_ratios) max_num_images = max([len(row) for row in aspect_ratios]) aspect_ratio_mask = np.zeros((batch_size, max_num_images, max_image_tiles), dtype=np.int64) # Set the first tile to 1 for all aspect ratios # because in original implementation aspect ratios are padded with (1, 1), # but original code examples are not built to handle batches, so we might remove it later aspect_ratio_mask[:, :, 0] = 1 # Set the aspect ratio mask for the rest of the tiles for i, sample_aspect_ratios in enumerate(aspect_ratios): for j, (num_tiles_w, num_tiles_h) in enumerate(sample_aspect_ratios): aspect_ratio_mask[i, j, : num_tiles_w * num_tiles_h] = 1 return aspect_ratio_mask def pack_images( batch_images: List[List[np.ndarray]], max_image_tiles: int, ) -> Tuple[np.ndarray, List[List[int]]]: """ Stack a list of lists of images with variable lengths into a numpy array, applying zero padding as needed. Each list in the input represents a batch sample, and each image within a list is expected to be pre-split into tiles. The resulting array will have a shape of (batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width). Args: batch_images (`List[List[np.ndarray]]`): A list of lists of image tiles. Each inner list represents a batch sample containing multiple images, where each image is pre-split into tiles. The shape of each tile array is (num_tiles, channels, tile_height, tile_width). max_image_tiles (int): The maximum number of tiles any image was potantially split. Returns: `Tuple[np.ndarray, List[List[int]]]`: A tuple containing: - stacked_images (`np.ndarray`): A numpy array of stacked images with shape (batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width). - all_num_tiles (`List[List[int]]`): A list of lists containing the number of tiles for each image in each batch sample. """ # Determine output shape batch_size = len(batch_images) max_num_images = max([len(images) for images in batch_images]) shapes = [image.shape for images in batch_images for image in images] _, channels, tile_height, tile_width = shapes[0] # Initialize the stacked images array with zeros stacked_images = np.zeros( (batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width), dtype=np.float32, ) # Fill the stacked images array with the tiled images from the batch all_num_tiles = [] for i, images in enumerate(batch_images): num_sample_tiles = [] for j, image in enumerate(images): num_tiles = image.shape[0] stacked_images[i, j, :num_tiles] = image num_sample_tiles.append(num_tiles) all_num_tiles.append(num_sample_tiles) return stacked_images, all_num_tiles def pack_aspect_ratios(aspect_ratios: List[List[Tuple[int, int]]], pad_value: int = 1) -> np.ndarray: """ Stack a list of aspect ratios into a numpy array. Args: aspect_ratios (`List[List[Tuple[int, int]]]`): A list of aspect ratios. pad_value (`int`, *optional*, defaults to 1): The value to pad the aspect ratios with. Returns: `np.ndarray`: The aspect ratios stacked into a numpy array with shape (batch_size, max_num_images, 2). """ batch_size = len(aspect_ratios) max_num_images = max([len(row) for row in aspect_ratios]) aspect_ratios_stacked = np.full((batch_size, max_num_images, 2), pad_value, dtype=np.int64) for i, row in enumerate(aspect_ratios): if len(row) > 0: aspect_ratios_stacked[i, : len(row)] = np.array(row) return aspect_ratios_stacked def convert_aspect_ratios_to_ids(aspect_ratios: List[List[Tuple[int, int]]], max_image_tiles: int) -> np.ndarray: """ Convert aspect ratio tuples to unique ids. For batch padding we use 0, because there might be different number of images in each batch. The aspect ratio ids start from 1, with 1 corresponding to the first supported aspect ratio. Args: aspect_ratios (`List[List[Tuple[int, int]]]`): A list of aspect ratios for each image in the batch. max_image_tiles (`int`): The maximum number of tiles any image can be split into. Returns: `np.ndarray`: The aspect ratios ids as a numpy array with shape (batch_size, max_num_images). Each id corresponds to the index of the aspect ratio in the list of supported aspect ratios, offset by 1 (so 0 can be used for padding). """ batch_size = len(aspect_ratios) max_num_images = max([len(row) for row in aspect_ratios]) supported_aspect_ratios = get_all_supported_aspect_ratios(max_image_tiles) aspect_ratios_ids = np.zeros((batch_size, max_num_images), dtype=np.int64) for i, sample_aspect_ratios in enumerate(aspect_ratios): for j, (num_tiles_h, num_tiles_w) in enumerate(sample_aspect_ratios): aspect_ratios_ids[i, j] = supported_aspect_ratios.index((num_tiles_h, num_tiles_w)) + 1 return aspect_ratios_ids def to_channel_dimension_format( image: np.ndarray, channel_dim: Union[ChannelDimension, str], input_channel_dim: Optional[Union[ChannelDimension, str]] = None, ) -> np.ndarray: """ Converts `image` to the channel dimension format specified by `channel_dim`. Args: image (`numpy.ndarray`): The image to have its channel dimension set. channel_dim (`ChannelDimension`): The channel dimension format to use. input_channel_dim (`ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. Returns: `np.ndarray`: The image with the channel dimension set to `channel_dim`. """ if not isinstance(image, np.ndarray): raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}") if input_channel_dim is None: input_channel_dim = infer_channel_dimension_format(image) target_channel_dim = ChannelDimension(channel_dim) if input_channel_dim == target_channel_dim: return image if target_channel_dim == ChannelDimension.FIRST: image = image.transpose((2, 0, 1)) elif target_channel_dim == ChannelDimension.LAST: image = image.transpose((1, 2, 0)) else: raise ValueError("Unsupported channel dimension format: {}".format(channel_dim)) return image # Copied from transformers.models.idefics2.image_processing_idefics2.convert_to_rgb def convert_to_rgb(image: ImageInput) -> ImageInput: """ Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image as is. Args: image (Image): The image to convert. """ if not isinstance(image, PIL.Image.Image): return image # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background # for transparent images. The call to `alpha_composite` handles this case if image.mode == "RGB": return image image_rgba = image.convert("RGBA") background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) alpha_composite = Image.alpha_composite(background, image_rgba) alpha_composite = alpha_composite.convert("RGB") return alpha_composite def _validate_size(size: Dict[str, int]) -> None: if not ("height" in size and "width" in size): raise ValueError(f"Argument `size` must be a dictionary with keys 'height' and 'width'. Got: {size}") if size["height"] != size["width"]: raise ValueError(f"Argument `size` must have the same height and width, got {size}") def _validate_mllama_preprocess_arguments(do_resize, size, do_pad, max_image_tiles): if not do_pad: raise ValueError("MllamaImageProcessor doesn't support `do_pad=False` mode.") if not do_resize: raise ValueError("MllamaImageProcessor doesn't support `do_resize=False` mode.") if max_image_tiles is None or max_image_tiles <= 0: raise ValueError(f"MllamaImageProcessor `max_image_tiles` must be a positive integer, got {max_image_tiles}.") _validate_size(size) class MllamaImageProcessor(BaseImageProcessor): """ Constructs a Mllama image processor. Args: do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. This is useful if the input image is of a different format e.g. RGBA. Only has an effect if the input image is in the PIL format. do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image tile. Should be a dictionary containing 'height' and 'width' keys, both with integer values. The height and width values should be equal. resample (`int`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to 0.0): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_pad (`bool`, *optional*, defaults to `True`): Whether or not to pad the images to the largest height and width in the batch. max_image_tiles (`int`, *optional*, defaults to 4): The maximum number of tiles to split the image into. """ model_input_names = ["pixel_values", "num_tiles", "aspect_ratio_ids", "aspect_ratio_mask"] def __init__( self, do_convert_rgb: bool = True, do_resize: bool = True, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: bool = True, max_image_tiles: int = 4, **kwargs, ) -> None: super().__init__(**kwargs) self.do_convert_rgb = do_convert_rgb self.do_resize = do_resize self.size = size if size is not None else {"height": 224, "width": 224} self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.do_pad = do_pad self.max_image_tiles = max_image_tiles _validate_mllama_preprocess_arguments(self.do_resize, self.size, self.do_pad, self.max_image_tiles) def preprocess( self, images: ImageInput, do_convert_rgb: Optional[bool] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: Optional[PILImageResampling] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = None, max_image_tiles: Optional[int] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, return_tensors: Optional[Union[str, TensorType]] = None, ): """ Preprocess a batch of images. Args: images (`ImageInput`): A list of images to preprocess. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image tile. Should be a dictionary containing 'height' and 'width' keys, both with integer values. The height and width values should be equal. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_pad (`bool`, *optional*, defaults to `self.do_pad`): Whether or not to pad the images to the largest height and width in the batch. max_image_tiles (`int`, *optional*, defaults to `self.max_image_tiles`): The maximum number of tiles to split the image into. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. Returns: `BatchFeature` of the following structure: - **pixel_values** (`TensorType`): The preprocessed pixel values. - **aspect_ratio_ids** (`TensorType`): The aspect ratio ids of the images. - **num_tiles** (`List[List[int]]`): The number of tiles for each image in the batch. """ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_pad = do_pad if do_pad is not None else self.do_pad max_image_tiles = max_image_tiles if max_image_tiles is not None else self.max_image_tiles validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) # extra validation _validate_mllama_preprocess_arguments(do_resize, size, do_pad, max_image_tiles) images_list = make_nested_list_of_images(images) if self.do_convert_rgb: images_list = [[convert_to_rgb(image) for image in images] for images in images_list] batch_images = [] batch_aspect_ratios = [] # iterate over batch samples for images in images_list: sample_images = [] sample_aspect_ratios = [] # iterate over images in a batch sample for image in images: # default PIL images to channels_last if input_data_format is None and isinstance(image, PIL.Image.Image): input_data_format = ChannelDimension.LAST # convert to numpy array for processing image = to_numpy_array(image) # convert images to channels first format for faster processing # LAST is slower for `pad` and not supported by `split_to_tiles` data_format = ChannelDimension.FIRST image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) # do_resize=False is not supported, validated image, aspect_ratio = self.resize( image=image, size=size, resample=resample, max_image_tiles=max_image_tiles, input_data_format=data_format, data_format=data_format, ) # do_pad=False is not supported, validated image = self.pad( image=image, size=size, aspect_ratio=aspect_ratio, input_data_format=data_format, data_format=data_format, ) if do_rescale: image = self.rescale( image=image, scale=rescale_factor, input_data_format=data_format, data_format=data_format, ) if do_normalize: image = self.normalize( image=image, mean=image_mean, std=image_std, input_data_format=data_format, data_format=data_format, ) num_tiles_height, num_tiles_width = aspect_ratio image = split_to_tiles(image, num_tiles_height, num_tiles_width) sample_images.append(image) sample_aspect_ratios.append((num_tiles_height, num_tiles_width)) batch_images.append(sample_images) batch_aspect_ratios.append(sample_aspect_ratios) images, num_tiles = pack_images(batch_images, max_image_tiles) aspect_ratio_ids = convert_aspect_ratios_to_ids(batch_aspect_ratios, max_image_tiles=max_image_tiles) aspect_ratio_mask = build_aspect_ratio_mask(batch_aspect_ratios, max_image_tiles=max_image_tiles) # images (np.ndarray) with shape (batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width) # aspect_ratio_ids (np.ndarray) with shape (batch_size, max_num_images) - aspect ratio ids for each image, padded to max_num_images with 0 # num_tiles (List[List[int]]) with (batch_size, num_images_in_batch) - real number of tiles for each image, not padded # aspect_ratio_mask (np.ndarray) with shape (batch_size, max_num_images, max_image_tiles) - number of tiles for each image, padded to max_num_images with 0 encoded_inputs = BatchFeature( data={ "pixel_values": images, "aspect_ratio_ids": aspect_ratio_ids, "aspect_ratio_mask": aspect_ratio_mask, }, tensor_type=return_tensors, ) encoded_inputs["num_tiles"] = num_tiles return encoded_inputs def pad( self, image: np.ndarray, size: Dict[str, int], aspect_ratio: Tuple[int, int], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pad an image to the `size` x `aspect_ratio`. For example, if size is {height: 224, width: 224} and aspect ratio is (1, 2), the image will be padded to 224x448. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. aspect_ratio (`Tuple[int, int]`): The aspect ratio of the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. Returns: `np.ndarray`: The padded image. """ _validate_size(size) image_height, image_width = get_image_size(image, channel_dim=input_data_format) num_tiles_height, num_tiles_width = aspect_ratio padded_height = num_tiles_height * size["height"] padded_width = num_tiles_width * size["width"] pad_size = ((0, padded_height - image_height), (0, padded_width - image_width)) image = pad( image, pad_size, mode=PaddingMode.CONSTANT, constant_values=0, data_format=data_format, input_data_format=input_data_format, ) return image def resize( self, image: np.ndarray, size: Dict[str, int], max_image_tiles: int, resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Union[np.ndarray, Tuple[int, int]]: """ Resizes an image to fit within a tiled canvas while maintaining its aspect ratio. The optimal canvas size is calculated based on the maximum number of tiles and the tile size. The function first determines the best tile arrangement for the image, then resizes the image to fit within this canvas. The resized image and the number of tiles along the height and width dimensions are returned. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. max_image_tiles (`int`): The maximum number of tiles to split the image into. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. Returns: `Union[np.ndarray, Tuple[int, int]]`: The resized image and a tuple containing the number of tiles along the height and width dimensions. """ _validate_size(size) image_height, image_width = get_image_size(image, channel_dim=input_data_format) tile_size = size["height"] canvas_height, canvas_width = get_optimal_tiled_canvas( image_height=image_height, image_width=image_width, max_image_tiles=max_image_tiles, tile_size=tile_size, ) num_tiles_height = canvas_height // tile_size num_tiles_width = canvas_width // tile_size new_height, new_width = get_image_size_fit_to_canvas( image_height=image_height, image_width=image_width, canvas_height=canvas_height, canvas_width=canvas_width, tile_size=tile_size, ) image = resize( image, (new_height, new_width), resample=resample, data_format=data_format, input_data_format=input_data_format, ) return image, (num_tiles_height, num_tiles_width) __all__ = ["MllamaImageProcessor"] ```
===================================================================================================================================== SOURCE CODE FILE: modeling_mllama.py LINES: 3 SIZE: 104.26 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mllama\modeling_mllama.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Mllama model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from ... import PreTrainedModel from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, StaticCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, CausalLMOutputWithPast from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_flex_attn_available, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from .configuration_mllama import MllamaConfig, MllamaTextConfig, MllamaVisionConfig if is_torch_flex_attn_available(): from torch.nn.attention.flex_attention import BlockMask from ...integrations.flex_attention import make_flex_block_causal_mask logger = logging.get_logger(__name__) def _prepare_cross_attention_mask( cross_attention_mask: torch.Tensor, num_vision_tokens: int, dtype: str, ) -> Tuple[torch.Tensor, torch.Tensor]: # reshape so it can be used by attn module batch_size, text_total_length, *_ = cross_attention_mask.shape cross_attention_mask = cross_attention_mask.repeat_interleave(num_vision_tokens, dim=3) cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1) cross_attention_mask = cross_attention_mask.unsqueeze(1) # invert the mask inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype) cross_attention_mask = inverted_cross_attn_mask.masked_fill( inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min ) # apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's # last dimension contains negative infinity values, otherwise it's 1 negative_inf_value = torch.finfo(dtype).min full_text_row_masked_out_mask = ( (cross_attention_mask != negative_inf_value).any(dim=-1).type_as(cross_attention_mask)[..., None] ) cross_attention_mask *= full_text_row_masked_out_mask return cross_attention_mask, full_text_row_masked_out_mask def _prepare_aspect_ratio_attention_mask( aspect_ratio_mask: torch.Tensor, num_patches: int, target_length: int, dtype: torch.dtype, ) -> torch.Tensor: # Expand aspect ratio mask to target_length batch_size, max_num_tiles = aspect_ratio_mask.shape attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1, 1).to(dtype) attention_mask = attention_mask.repeat(1, 1, target_length, 1) # Mask padding patches pad_patches = target_length - num_patches attention_mask[:, :, -pad_patches:] = 0 # Invert the mask (0 -> 1, 1 -> 0) attention_mask = 1 - attention_mask # Reshape to 2D and create 4D attention mask # (batch_size, 1, max_num_tiles * target_length, max_num_tiles * target_length) attention_mask = attention_mask.reshape(batch_size, max_num_tiles * target_length, 1) attention_mask = attention_mask @ attention_mask.transpose(-1, -2) * torch.finfo(dtype).min attention_mask = attention_mask.unsqueeze(1) return attention_mask class MllamaPrecomputedAspectRatioEmbedding(nn.Module): def __init__(self, config: MllamaVisionConfig, is_gated: bool = True): super().__init__() self.max_num_tiles = config.max_num_tiles self.hidden_size = config.hidden_size self.max_aspect_ratio_id = config.max_aspect_ratio_id self.is_gated = is_gated self.embedding = nn.Embedding(self.max_aspect_ratio_id + 1, self.max_num_tiles * self.hidden_size) if is_gated: self.gate = nn.Parameter(torch.zeros(1)) def forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor: embeddings = self.embedding(aspect_ratio_ids) embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size) if self.is_gated: embeddings = embeddings * self.gate.tanh() hidden_state = hidden_state + embeddings return hidden_state class MllamaPrecomputedPositionEmbedding(nn.Module): def __init__(self, config: MllamaVisionConfig): super().__init__() self.max_num_tiles = config.max_num_tiles self.max_aspect_ratio_id = config.max_aspect_ratio_id self.num_patches = (config.image_size // config.patch_size) ** 2 + 1 self.hidden_size = config.hidden_size self.scale = config.hidden_size**-0.5 self.gate = nn.Parameter(torch.zeros(1)) # position embedding position_embedding = torch.randn(self.num_patches, self.hidden_size) self.embedding = nn.Parameter(self.scale * position_embedding) # tile position embedding self.tile_embedding = nn.Embedding( self.max_aspect_ratio_id + 1, self.max_num_tiles * self.num_patches * self.hidden_size ) def forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor: # position embeddings gated_position_embedding = (1 - self.gate.tanh()) * self.embedding hidden_state = hidden_state + gated_position_embedding.view(1, 1, self.num_patches, self.hidden_size) # precomputed tile position embeddings tile_position_embedding = self.tile_embedding(aspect_ratio_ids) batch_size = hidden_state.shape[0] tile_position_embedding = tile_position_embedding.reshape( batch_size, self.max_num_tiles, self.num_patches, self.hidden_size ) gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding hidden_state = hidden_state + gated_tile_position_embedding return hidden_state # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->MllamaVision class MllamaVisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class MllamaVisionAttention(nn.Module): def __init__(self, config: MllamaVisionConfig): super().__init__() self.embed_dim = config.hidden_size self.num_heads = config.attention_heads self.head_dim = config.hidden_size // config.attention_heads self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.embed_dim, bias=False) def forward( self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: query = self.q_proj(hidden_state) key = self.k_proj(hidden_state) value = self.v_proj(hidden_state) batch_size, q_seq_len, _ = query.shape _, kv_seq_len, _ = key.shape query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim).transpose(1, 2) key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2) value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2) attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(batch_size, q_seq_len, -1) output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return output, attn_weights class MllamaVisionSdpaAttention(MllamaVisionAttention): # Adapted from MllamaVisionAttention def forward( self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, ) -> torch.Tensor: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. if output_attentions: logger.warning_once( "MllamaModel is using MllamaVisionSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_state=hidden_state, attention_mask=attention_mask, output_attentions=output_attentions, ) query = self.q_proj(hidden_state) key = self.k_proj(hidden_state) value = self.v_proj(hidden_state) batch_size, q_seq_len, _ = query.shape _, kv_seq_len, _ = key.shape query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim) key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim) value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(batch_size, q_seq_len, -1) output = self.o_proj(attn_output) return output, None MLLAMA_VISION_ATTENTION_CLASSES = {"eager": MllamaVisionAttention, "sdpa": MllamaVisionSdpaAttention} class MllamaVisionEncoderLayer(nn.Module): def __init__(self, config: MllamaVisionConfig, is_gated: bool = False): super().__init__() self.hidden_size = config.hidden_size self.num_attention_heads = config.attention_heads self.is_gated = is_gated self.intermediate_size = config.intermediate_size self.self_attn = MLLAMA_VISION_ATTENTION_CLASSES[config._attn_implementation](config) self.mlp = MllamaVisionMLP(config) self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.norm_eps) self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.norm_eps) if is_gated: self.gate_attn = nn.Parameter(torch.ones(1) * math.pi / 4) self.gate_ffn = nn.Parameter(torch.ones(1) * math.pi / 4) def forward( self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, ): # Self Attention residual = hidden_state hidden_state = self.input_layernorm(hidden_state) hidden_state, attn_weights = self.self_attn(hidden_state, attention_mask=attention_mask) if self.is_gated: hidden_state = self.gate_attn.tanh() * hidden_state hidden_state = residual + hidden_state # Feed forward residual = hidden_state hidden_state = self.post_attention_layernorm(hidden_state) hidden_state = self.mlp(hidden_state) if self.is_gated: hidden_state = self.gate_ffn.tanh() * hidden_state hidden_state = residual + hidden_state outputs = (hidden_state,) if output_attentions: outputs += (attn_weights,) return outputs class MllamaVisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`MllamaEncoderLayer`]. Args: config: MllamaConfig """ def __init__(self, config: MllamaVisionConfig, num_layers=32, is_gated=False): super().__init__() self.config = config self.layers = nn.ModuleList([MllamaVisionEncoderLayer(config, is_gated) for _ in range(num_layers)]) self.gradient_checkpointing = False self.config = config def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_state=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = layer_outputs[0] if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MllamaText class MllamaTextRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ MllamaTextRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class MllamaTextCrossAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: Optional[MllamaTextConfig] = None, layer_idx: Optional[int] = None, ): super().__init__() self.config = config self.num_heads = self.config.num_attention_heads self.num_key_value_heads = self.config.num_key_value_heads self.dropout = config.dropout self.hidden_size = config.hidden_size self.head_dim = config.hidden_size // self.num_heads self.layer_idx = layer_idx self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.q_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps) self.k_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, cross_attention_states: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) query_states = self.q_norm(query_states) if cross_attention_states is not None: key_states = self.k_proj(cross_attention_states) value_states = self.v_proj(cross_attention_states) key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) key_states = self.k_norm(key_states) if past_key_value is not None: # if we have a new image + new tokens, we only computed key_states on that new image # we still update the cross key states, past_image, new_image. And use it! key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) elif cache_position[0] != 0: key_states, value_states = ( past_key_value.key_cache[self.layer_idx], past_key_value.value_cache[self.layer_idx], ) else: raise ValueError( "Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!" ) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class MllamaTextCrossSdpaAttention(MllamaTextCrossAttention): """ Mllama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `MllamaTextCrossAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from MllamaTextCrossAttention.forward def forward( self, hidden_states: torch.Tensor, cross_attention_states: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "MllamaModel is using MllamaTextCrossSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, cross_attention_states=cross_attention_states, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) query_states = self.q_norm(query_states) if cross_attention_states is not None: key_states = self.k_proj(cross_attention_states) value_states = self.v_proj(cross_attention_states) key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) if past_key_value is not None: # if we have a new image + new tokens, we only computed key_states on that new image # we still update the cross key states, past_image, new_image. And use it! key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) elif cache_position[0] != 0: key_states, value_states = ( past_key_value.key_cache[self.layer_idx], past_key_value.value_cache[self.layer_idx], ) else: raise ValueError( "Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!" ) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) key_states = self.k_norm(key_states) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. is_causal = True if attention_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class MllamaTextSelfAttention(nn.Module): def __init__(self, config: MllamaTextConfig, layer_idx: int): super().__init__() self.config = config self.num_heads = config.num_attention_heads self.dropout = config.dropout self.hidden_size = config.hidden_size self.num_key_value_heads = config.num_key_value_heads self.head_dim = config.hidden_size // self.num_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.rope_theta = config.rope_theta self.layer_idx = layer_idx self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: torch.Tensor, output_attentions: bool = False, use_cache: bool = False, past_key_value=None, cache_position=None, **kwargs, ): bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, -1) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class MllamaTextSelfSdpaAttention(MllamaTextSelfAttention): # Adapted from MllamaTextSelfAttention def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: torch.Tensor, output_attentions: bool = False, use_cache: bool = False, past_key_value=None, cache_position=None, **kwargs, ): if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "MllamaModel is using MllamaTextSelfSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_embeddings=position_embeddings, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and causal_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, -1) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value MLLAMA_TEXT_CROSS_ATTENTION_CLASSES = {"eager": MllamaTextCrossAttention, "sdpa": MllamaTextCrossSdpaAttention} MLLAMA_TEXT_ATTENTION_CLASSES = {"eager": MllamaTextSelfAttention, "sdpa": MllamaTextSelfSdpaAttention} # Copied from transformers.models.gemma2.modeling_gemma2.Gemma2MLP with Gemma2->MllamaText class MllamaTextMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) # Ignore copy self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj # Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer class MllamaSelfAttentionDecoderLayer(nn.Module): def __init__(self, config: MllamaTextConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MLLAMA_TEXT_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = MllamaTextMLP(config) self.input_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layer_idx = layer_idx def forward( self, hidden_states: torch.Tensor, cross_attention_states: Optional[torch.Tensor] = None, cross_attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class MllamaCrossAttentionDecoderLayer(torch.nn.Module): """Cross-attention transformer block with tanh-gated attention and feedforward.""" def __init__(self, config: MllamaTextConfig, layer_idx: int) -> None: super().__init__() self.layer_idx = layer_idx self.cross_attn = MLLAMA_TEXT_CROSS_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) self.input_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.cross_attn_attn_gate = torch.nn.Parameter(torch.zeros(1)) self.mlp = MllamaTextMLP(config) self.post_attention_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.cross_attn_mlp_gate = torch.nn.Parameter(torch.zeros(1)) def forward( self, hidden_states: torch.Tensor, cross_attention_states: torch.Tensor, cross_attention_mask: torch.Tensor, attention_mask: torch.Tensor, full_text_row_masked_out_mask: Tuple[torch.Tensor, torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states, attn_weights, past_key_value = self.cross_attn( hidden_states=hidden_states, attention_mask=cross_attention_mask, cross_attention_states=cross_attention_states, past_key_value=past_key_value, output_attentions=output_attentions, cache_position=cache_position, ) hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) if full_text_row_masked_out_mask is not None: hidden_states = full_text_row_masked_out_mask[:, 0] * hidden_states # type: ignore hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) if use_cache: outputs += (past_key_value,) return outputs class MllamaRotaryEmbedding(nn.Module): def __init__(self, config: MllamaTextConfig, device=None): super().__init__() self.rope_type = config.rope_scaling["rope_type"] self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) class MllamaPreTrainedModel(PreTrainedModel): config_class = MllamaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = [ "MllamaVisionEncoderLayer", "MllamaCrossAttentionDecoderLayer", "MllamaSelfAttentionDecoderLayer", ] _supports_cache_class = True _supports_static_cache = False # static cache cannot have different shapes for each layer _supports_sdpa = True _supports_quantized_cache = True def _init_weights(self, module): std = self.config.get_text_config().initializer_range if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.Parameter): module.data.normal_(mean=0.0, std=std) elif isinstance(module, MllamaVisionModel): nn.init.normal_(module.class_embedding.data, std=std) elif isinstance(module, MllamaPrecomputedPositionEmbedding): nn.init.normal_(module.embedding.data, std=std) elif isinstance(module, MllamaVisionEncoderLayer) and module.is_gated: nn.init.normal_(module.gate_attn.data, std=std) nn.init.normal_(module.gate_ffn.data, std=std) # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None if self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask) if isinstance(attention_mask, BlockMask): return attention_mask # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to place the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask MLLAMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MllamaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MLLAMA_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, max_num_images, max_num_tiles, channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MllamaImageProcessor.__call__`] for details ([]`MllamaProcessor`] uses [`MllamaImageProcessor`] for processing images). aspect_ratio_mask (`torch.Tensor` of shape `(batch_size, max_num_images, max_num_tiles)`, *optional*): Mask to avoid performing attention on padding tiles. Mask values selected in `[0, 1]`: - 1 for tiles that are **not masked**, - 0 for tiles that are **masked**. aspect_ratio_ids (`torch.Tensor` of shape `(batch_size, max_num_images)`, *optional*): Aspect ratio ids used to select the appropriate precomputed tile embeddings based on the aspect ratio of each input image. These ids correspond to indices in the model's list of supported aspect ratios, offset by 1. For example, if the model supports aspect ratios [[1, 1], [1, 2], [2, 1]]: - An image with aspect ratio [1, 1] would have ID 1 - An image with aspect ratio [1, 2] would have ID 2 - An image with aspect ratio [2, 1] would have ID 3 The id 0 is reserved for padding (i.e., no image). If an image has aspect ratio [1, 2], that means it was split into 2 tiles horizontally, and its `aspect_ratio_id` would be 2. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ MLLAMA_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attention_mask (`torch.Tensor` of shape `(batch_size, seq_length, max_num_images, max_num_tiles)`, *optional*): Cross-attention mask to control the interaction between text tokens and image tiles. This 4D tensor defines which image tiles each text token should attend to. For each text token (in seq_length): - 1 indicates the token **should attend** to the corresponding image tile - 0 indicates the token **should not attend** to the corresponding image tile cross_attention_states (`torch.FloatTensor`, *optional*): Output of the vision model, used for cross-attention. This tensor contains the processed image features that the language model will attend to. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ MLLAMA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, max_num_images, max_num_tiles, channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MllamaImageProcessor.__call__`] for details ([]`MllamaProcessor`] uses [`MllamaImageProcessor`] for processing images). aspect_ratio_mask (`torch.Tensor` of shape `(batch_size, max_num_images, max_num_tiles)`, *optional*): Mask to avoid performing attention on padding tiles. Mask values selected in `[0, 1]`: - 1 for tiles that are **not masked**, - 0 for tiles that are **masked**. aspect_ratio_ids (`torch.Tensor` of shape `(batch_size, max_num_images)`, *optional*): Aspect ratio ids used to select the appropriate precomputed tile embeddings based on the aspect ratio of each input image. These ids correspond to indices in the model's list of supported aspect ratios, offset by 1. For example, if the model supports aspect ratios [[1, 1], [1, 2], [2, 1]]: - An image with aspect ratio [1, 1] would have ID 1 - An image with aspect ratio [1, 2] would have ID 2 - An image with aspect ratio [2, 1] would have ID 3 The id 0 is reserved for padding (i.e., no image). If an image has aspect ratio [1, 2], that means it was split into 2 tiles horizontally, and its `aspect_ratio_id` would be 2. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attention_mask (`torch.Tensor` of shape `(batch_size, seq_length, max_num_images, max_num_tiles)`, *optional*): Cross-attention mask to control the interaction between text tokens and image tiles. This 4D tensor defines which image tiles each text token should attend to. For each text token (in seq_length): - 1 indicates the token **should attend** to the corresponding image tile - 0 indicates the token **should not attend** to the corresponding image tile cross_attention_states (`torch.FloatTensor`, *optional*): Output of the vision model, used for cross-attention. This tensor contains the processed image features that the language model will attend to. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( """The Mllama Vision Model which consists of two vision encoders.""", MLLAMA_START_DOCSTRING, ) class MllamaVisionModel(MllamaPreTrainedModel): config_class = MllamaVisionConfig base_model_prefix = "vision_model" def __init__(self, config: MllamaVisionConfig): super().__init__(config) self.image_size = config.image_size self.patch_size = config.patch_size self.max_num_tiles = config.max_num_tiles self.hidden_size = config.hidden_size self.num_channels = config.num_channels self.intermediate_layers_indices = config.intermediate_layers_indices self.num_patches = (self.image_size // self.patch_size) ** 2 + 1 self.scale = config.hidden_size**-0.5 self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.hidden_size, kernel_size=self.patch_size, stride=self.patch_size, padding="valid", bias=False, ) self.class_embedding = nn.Parameter(self.scale * torch.randn(self.hidden_size)) self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(config) self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True) self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True) # layer norms self.layernorm_pre = nn.LayerNorm(self.hidden_size) self.layernorm_post = nn.LayerNorm(self.hidden_size) # encoders self.transformer = MllamaVisionEncoder(config, config.num_hidden_layers, is_gated=False) self.global_transformer = MllamaVisionEncoder(config, config.num_global_layers, is_gated=True) self.post_init() def get_input_embeddings(self): """ This function is used to fetch the first embedding layer to activate grads on inputs. """ return self.patch_embedding def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor: batch_size, _, hidden_size = hidden_state.shape class_embedding = self.class_embedding.expand(batch_size, 1, hidden_size) hidden_state = torch.cat([class_embedding, hidden_state], dim=1) return hidden_state @add_start_docstrings_to_model_forward(MLLAMA_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class="MllamaVisionConfig") def forward( self, pixel_values: torch.Tensor, aspect_ratio_ids: torch.Tensor, aspect_ratio_mask: torch.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]: r""" Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, MllamaVisionModel >>> checkpoint = "meta-llama/Llama-3.2-11B-Vision" >>> model = MllamaVisionModel.from_pretrained(checkpoint) >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> output = model(**inputs) >>> print(output.last_hidden_state.shape) torch.Size([1, 1, 4, 1025, 7680]) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_concurrent_media, num_tiles, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(batch_size * num_concurrent_media * num_tiles, num_channels, height, width) aspect_ratio_ids = aspect_ratio_ids.reshape(batch_size * num_concurrent_media, -1) # Patch embedding target_dtype = self.patch_embedding.weight.dtype target_device = self.patch_embedding.weight.device patch_embeds = self.patch_embedding(pixel_values.to(target_device, target_dtype)) hidden_state = patch_embeds.flatten(2).transpose(1, 2) # Tile embeddings _, num_patches, dim = hidden_state.shape hidden_state = hidden_state.reshape(batch_size * num_concurrent_media, num_tiles, -1, dim) hidden_state = self.pre_tile_positional_embedding(hidden_state, aspect_ratio_ids) # Add cls token hidden_state = hidden_state.reshape(batch_size * num_concurrent_media * num_tiles, num_patches, dim) hidden_state = self.apply_class_embedding(hidden_state) num_patches += 1 # Position embeddings hidden_state = hidden_state.reshape(batch_size * num_concurrent_media, num_tiles, num_patches, dim) hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids) hidden_state = self.layernorm_pre(hidden_state) # Compute the number of tokens to pad num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8 # Compute padding tuple for pad function padding = (0, 0, 0, num_padding_patches) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2) # Pad the tensor hidden_state = F.pad(hidden_state, padding, mode="constant", value=0) slice_index = -num_padding_patches if num_padding_patches > 0 else None # Prepare attention mask attention_mask = aspect_ratio_mask.reshape(batch_size * num_concurrent_media, -1) attention_mask = _prepare_aspect_ratio_attention_mask( aspect_ratio_mask=attention_mask, num_patches=self.num_patches, target_length=hidden_state.shape[2], dtype=self.dtype, ) # Apply encoder hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim) output = self.transformer( hidden_state, attention_mask=attention_mask, output_hidden_states=True, output_attentions=output_attentions, ) hidden_state = output[0] hidden_state = self.layernorm_post(hidden_state) # Apply global encoder hidden_state = hidden_state.reshape( batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, dim ) hidden_state = self.post_tile_positional_embedding(hidden_state, aspect_ratio_ids) hidden_state = hidden_state.reshape( batch_size * num_concurrent_media, num_tiles * (num_patches + num_padding_patches), dim ) global_output = self.global_transformer( hidden_state, attention_mask=attention_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) hidden_state = global_output[0] # Remove padding form hidden state hidden_state = hidden_state.reshape( batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, dim ) hidden_state = hidden_state[:, :, :slice_index] hidden_state = hidden_state.reshape(batch_size, num_concurrent_media, num_tiles, num_patches, dim) # Collect intermediate layer outputs from encoder output all_intermediate_hidden_states = [output[1][i] for i in self.intermediate_layers_indices] intermediate_hidden_states = torch.stack(all_intermediate_hidden_states, dim=-1) # Remove padding from intermediate hidden states intermediate_hidden_states = intermediate_hidden_states.reshape( batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, -1 ) intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index] intermediate_hidden_states = intermediate_hidden_states.reshape( batch_size, num_concurrent_media, num_tiles, num_patches, -1 ) # Concatenate final hidden state and intermediate hidden states hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1) if output_hidden_states: hidden_states = tuple(all_intermediate_hidden_states) + tuple(global_output[1]) else: hidden_states = None if output_attentions: # global transformer in contrast to `self.transformer` doesn't always return hidden states so we might go index out-of-range global_attn = tuple(global_output[2]) if output_hidden_states else tuple(global_output[1]) attentions = tuple(output[2]) + global_attn else: attentions = None if not return_dict: return tuple(v for v in [hidden_state, hidden_states, attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_state, hidden_states=hidden_states, attentions=attentions, ) @add_start_docstrings( """The Mllama Text Model which consists of transformer with self and cross attention layers.""", MLLAMA_START_DOCSTRING, ) class MllamaTextModel(MllamaPreTrainedModel): config_class = MllamaTextConfig base_model_prefix = "language_model.model" def __init__(self, config: MllamaTextConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size + 8, config.hidden_size, self.padding_idx) self.cross_attention_layers = config.cross_attention_layers layers = [] for layer_idx in range(config.num_hidden_layers): if layer_idx in self.cross_attention_layers: layers.append(MllamaCrossAttentionDecoderLayer(config, layer_idx)) else: layers.append(MllamaSelfAttentionDecoderLayer(config, layer_idx)) self.layers = nn.ModuleList(layers) self.norm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = MllamaRotaryEmbedding(config=config) self.gradient_checkpointing = False self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MLLAMA_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class="MllamaTextConfig") def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, cross_attention_states: Optional[torch.FloatTensor] = None, cross_attention_mask: Optional[torch.Tensor] = None, full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: """ Returns: Example: ```python >>> from transformers import AutoProcessor, MllamaTextModel >>> checkpoint = "meta-llama/Llama-3.2-11B-Vision" >>> model = MllamaTextModel.from_pretrained(checkpoint) >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> text = "<|image|>If I had to write a haiku for this one" >>> inputs = processor(text=text, return_tensors="pt") >>> output = model(**inputs) >>> print(output.last_hidden_state.shape) torch.Size([1, 13, 4096]) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) # For text-only path we should skip cross attention layers. # Let's check if the layer is cross attention layer and if we have cross attention states # or cached cross attention states. is_cross_attention_layer = idx in self.cross_attention_layers is_cross_attention_cache_empty = past_key_values is None or ( past_key_values is not None and past_key_values.get_seq_length(idx) == 0 ) if is_cross_attention_layer and cross_attention_states is None and is_cross_attention_cache_empty: continue if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, cross_attention_states, cross_attention_mask, causal_mask, full_text_row_masked_out_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, cross_attention_states=cross_attention_states, cross_attention_mask=cross_attention_mask, attention_mask=causal_mask, full_text_row_masked_out_mask=full_text_row_masked_out_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) @add_start_docstrings( """The Mllama Text Model with a language modeling head on top.""", MLLAMA_START_DOCSTRING, ) class MllamaForCausalLM(MllamaPreTrainedModel, GenerationMixin): config_class = MllamaTextConfig _supports_static_cache = True # only the LLM without cross attn can do compile base_model_prefix = "language_model" _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config.get_text_config()) self.text_config = config.get_text_config() self.vocab_size = self.text_config.vocab_size self.model = MllamaTextModel._from_config(self.text_config) self.lm_head = nn.Linear(self.text_config.hidden_size, self.vocab_size, bias=False) self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig") def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, cross_attention_states: Optional[torch.LongTensor] = None, cross_attention_mask: Optional[torch.LongTensor] = None, full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **loss_kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, MllamaForCausalLM >>> model = MllamaForCausalLM.from_pretrained("Llama-3.2-11B-Vision") >>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision") >>> prompt = "If I had to write a haiku, it would be:" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6) >>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] >>> print(result) If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful. I love the idea of snowflakes gently falling, each one ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, cross_attention_states=cross_attention_states, attention_mask=attention_mask, position_ids=position_ids, cross_attention_mask=cross_attention_mask, full_text_row_masked_out_mask=full_text_row_masked_out_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]).float() loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """The Mllama model which consists of a vision encoder and a language model.""", MLLAMA_START_DOCSTRING, ) class MllamaForConditionalGeneration(MllamaPreTrainedModel, GenerationMixin): _supports_quantized_cache = False # quant cache not supported in encoder-decoder setting def __init__(self, config: MllamaConfig): super().__init__(config) self.vocab_size = config.text_config.vocab_size self.hidden_size = config.text_config.hidden_size self.max_num_tiles = config.vision_config.max_num_tiles self.vision_output_dim = config.vision_config.vision_output_dim self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.vision_model = MllamaVisionModel._from_config(config.vision_config) self.language_model = MllamaForCausalLM._from_config(config.text_config) if self.language_model._tied_weights_keys is not None: self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys] self.multi_modal_projector = nn.Linear( config.vision_config.vision_output_dim, config.text_config.hidden_size, bias=True, ) self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="MllamaConfig") def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, aspect_ratio_mask: Optional[torch.Tensor] = None, aspect_ratio_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_mask: Optional[torch.Tensor] = None, cross_attention_states: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **loss_kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, MllamaForConditionalGeneration >>> checkpoint = "meta-llama/Llama-3.2-11B-Vision" >>> model = MllamaForConditionalGeneration.from_pretrained(checkpoint) >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> prompt = "<|image|>If I had to write a haiku for this one" >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=prompt, images=image, return_tensors="pt") >>> # Generate >>> output = model.generate(**inputs, max_new_tokens=15) >>> prompt_len = inputs.input_ids.shape[-1] >>> generated_ids = output[:, prompt_len:] >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) >>> print(generated_text) [', it would be:.\\nA stop sign in Chinatown.\\n'] ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if pixel_values is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" ) if pixel_values is not None and cross_attention_states is not None: raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously") if pixel_values is not None: if aspect_ratio_ids is None: raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided") # get vision tokens from vision model vision_outputs = self.vision_model( pixel_values=pixel_values, aspect_ratio_ids=aspect_ratio_ids, aspect_ratio_mask=aspect_ratio_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) cross_attention_states = vision_outputs[0] cross_attention_states = self.multi_modal_projector(cross_attention_states).reshape( -1, cross_attention_states.shape[-2], self.hidden_size ) if cross_attention_mask is not None: cross_attention_mask, full_text_row_masked_out_mask = _prepare_cross_attention_mask( cross_attention_mask, num_vision_tokens=self.vision_model.num_patches, dtype=self.dtype, ) else: full_text_row_masked_out_mask = None if cross_attention_mask is not None and cache_position is not None: cross_attention_mask = cross_attention_mask[:, :, cache_position] full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position] outputs = self.language_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, cross_attention_states=cross_attention_states, cross_attention_mask=cross_attention_mask, full_text_row_masked_out_mask=full_text_row_masked_out_mask, past_key_values=past_key_values, use_cache=use_cache, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, cache_position=cache_position, logits_to_keep=logits_to_keep, **loss_kwargs, ) # Temporary fix to calculate the loss in main class, as the model's vocab size may be resized loss = None logits = outputs[0] if labels is not None: loss = self.loss_function(logits, labels, self.config.get_text_config().vocab_size, **loss_kwargs) if not return_dict: return (loss,) + outputs if loss is not None else outputs return CausalLMOutputWithPast( loss=loss, logits=outputs.logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids=None, inputs_embeds=None, attention_mask=None, position_ids=None, pixel_values=None, aspect_ratio_ids=None, aspect_ratio_mask=None, cross_attention_mask=None, past_key_values=None, use_cache=False, cache_position=None, logits_to_keep=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case. # (we can't check exception 3 while compiling) if past_key_values is not None: if ( inputs_embeds is not None # Exception 1 or cache_position[-1] >= input_ids.shape[1] # Exception 3 ): input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] # TODO: we have no attention_mask so this won't work, check if we really won't need attention mask and find another way if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. position_ids = position_ids.clone(memory_format=torch.contiguous_format) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and cache_position[0] == 0: model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} else: # The clone here is for the same reason as for `position_ids`. model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} if logits_to_keep is not None: model_inputs["logits_to_keep"] = logits_to_keep model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, "cross_attention_mask": cross_attention_mask, } ) # If we're in pre-fill or cacheless decoding step, then we need pixel_values and aspect ratios # to compute image hidden states, otherwise they are cached within each cross attn layer if cache_position[0] == 0: model_inputs["pixel_values"] = pixel_values model_inputs["aspect_ratio_ids"] = aspect_ratio_ids model_inputs["aspect_ratio_mask"] = aspect_ratio_mask return model_inputs def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs): cross_attention_mask_prev = model_kwargs.get("cross_attention_mask", None) model_kwargs = super()._update_model_kwargs_for_generation( outputs=outputs, model_kwargs=model_kwargs, is_encoder_decoder=is_encoder_decoder, **kwargs, ) # add cross-attn mask for new token if cross_attention_mask_prev is not None: model_kwargs["cross_attention_mask"] = torch.cat( [cross_attention_mask_prev, cross_attention_mask_prev[:, -1:, ...]], dim=1 ) return model_kwargs __all__ = [ "MllamaForConditionalGeneration", "MllamaForCausalLM", "MllamaTextModel", "MllamaVisionModel", "MllamaPreTrainedModel", ] ```
======================================================================================================================================= SOURCE CODE FILE: processing_mllama.py LINES: 1 SIZE: 17.30 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mllama\processing_mllama.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Processor class for Mllama.""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput, make_nested_list_of_images from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack from ...tokenization_utils_base import ( PreTokenizedInput, TextInput, ) class MllamaImagesKwargs(ImagesKwargs, total=False): max_image_tiles: Optional[int] class MllamaProcessorKwargs(ProcessingKwargs, total=False): images_kwargs: MllamaImagesKwargs _defaults = { "image_kwargs": { "max_image_tiles": 4, }, } def get_cross_attention_token_mask(input_ids: List[int], image_token_id: int) -> List[List[int]]: """ Generate a cross-attention token mask for image tokens in the input sequence. This function identifies the positions of image tokens in the input sequence and creates a mask that defines which subsequent tokens each image token should attend to. Args: input_ids (List[int]): A list of token ids representing the input sequence. image_token_id (int): The id of the token used to represent images in the sequence. Returns: List[List[int]]: A list of [start, end] pairs, where each pair represents the range of tokens an image token should attend to. Notes: - If no image tokens are present, an empty list is returned. - For a single image token, it attends to all subsequent tokens until the end of the sequence. - For multiple image tokens, each attends to tokens up to the next image token or the end of the sequence. - Consecutive image tokens are treated as a group and attend to all subsequent tokens together. """ image_token_locations = [i for i, token in enumerate(input_ids) if token == image_token_id] if len(image_token_locations) == 0: return [] # only one image present, unmask until end of sequence if len(image_token_locations) == 1: return [[image_token_locations[0], -1]] vision_masks = [[loc1, loc2] for loc1, loc2 in zip(image_token_locations[:-1], image_token_locations[1:])] # last image will attend to all subsequent text vision_masks.append([image_token_locations[-1], len(input_ids)]) # if there are two or more consecutive vision tokens, # they should all attend to all subsequent # text present last_mask_end = vision_masks[-1][1] for vision_mask in vision_masks[::-1]: if vision_mask[0] == vision_mask[1] - 1: vision_mask[1] = last_mask_end last_mask_end = vision_mask[1] return vision_masks def convert_sparse_cross_attention_mask_to_dense( cross_attention_token_mask: List[List[List[int]]], num_tiles: List[List[int]], max_num_tiles: int, length: int, ) -> np.ndarray: """ Convert the cross attention mask indices to a cross attention mask 4D array. This function takes a sparse representation of cross attention masks and converts it to a dense 4D numpy array. The sparse representation is a nested list structure that defines attention ranges for each image in each batch item. Args: cross_attention_token_mask (List[List[List[int]]]): A nested list structure where: - The outer list represents the batch dimension. - The middle list represents different images within each batch item. - The inner list contains pairs of integers [start, end] representing token ranges for each image. num_tiles (List[List[int]]): A nested list structure specifying the number of tiles for each image in each batch item. max_num_tiles (int): The maximum possible number of tiles. length (int): The total sequence length of the input. Returns: np.ndarray: A 4D numpy array of shape (batch_size, length, max_num_images, max_num_tiles) The array contains `1` where attention is allowed and `0` where it is not. Note: - Special handling is done for cases where the end token is -1, which is interpreted as attending to the end of the sequence. """ batch_size = len(cross_attention_token_mask) max_num_images = max([len(masks) for masks in cross_attention_token_mask]) cross_attention_mask = np.zeros( shape=(batch_size, length, max_num_images, max_num_tiles), dtype=np.int64, ) for sample_idx, (sample_masks, sample_num_tiles) in enumerate(zip(cross_attention_token_mask, num_tiles)): for mask_idx, (locations, mask_num_tiles) in enumerate(zip(sample_masks, sample_num_tiles)): if len(locations) == 2: start, end = locations end = min(end, length) if end == -1: end = length cross_attention_mask[sample_idx, start:end, mask_idx, :mask_num_tiles] = 1 return cross_attention_mask def build_string_from_input(prompt: str, bos_token: str, image_token: str) -> str: """ Builds a string from the input prompt by adding `bos_token` if not already present. Args: prompt (`str`): The input prompt string. bos_token (`str`): The beginning of sentence token to be added. image_token (`str`): The image token used to identify the start of an image sequence. Returns: str: The modified prompt string with the `bos_token` added if necessary. Examples: >>> build_string_from_input("Hello world", "<begin_of_text>", "<|image|>") '<begin_of_text>Hello world' >>> build_string_from_input("<|image|>Hello world", "<begin_of_text>", "<|image|>") '<|image|><begin_of_text>Hello world' >>> build_string_from_input("<begin_of_text>Hello world", "<begin_of_text>", "<|image|>") '<begin_of_text>Hello world' """ if bos_token in prompt: return prompt num_image_tokens_on_start = 0 while prompt.startswith(image_token): prompt = prompt[len(image_token) :] num_image_tokens_on_start += 1 return f"{image_token * num_image_tokens_on_start}{bos_token}{prompt}" class MllamaProcessor(ProcessorMixin): r""" Constructs a Mllama processor which wraps [`MllamaImageProcessor`] and [`PretrainedTokenizerFast`] into a single processor that inherits both the image processor and tokenizer functionalities. See the [`~MllamaProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information. The preferred way of passing kwargs is as a dictionary per modality, see usage example below. ```python from transformers import MllamaProcessor from PIL import Image processor = MllamaProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision") processor( images=your_pil_image, text=["<|image|>If I had to write a haiku for this one"], images_kwargs = {"size": {"height": 448, "width": 448}}, text_kwargs = {"padding": "right"}, common_kwargs = {"return_tensors": "pt"}, ) ``` Args: image_processor ([`MllamaImageProcessor`]): The image processor is a required input. tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`]): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["chat_template"] image_processor_class = "MllamaImageProcessor" tokenizer_class = "PreTrainedTokenizerFast" def __init__(self, image_processor, tokenizer, chat_template=None): if not hasattr(tokenizer, "image_token"): self.image_token = "<|image|>" self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token) else: self.image_token = tokenizer.image_token self.image_token_id = tokenizer.image_token_id self.python_token = "<|python_tag|>" self.python_token_id = tokenizer.convert_tokens_to_ids(self.python_token) self.bos_token = tokenizer.bos_token super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: Optional[ImageInput] = None, text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, audio=None, videos=None, **kwargs: Unpack[MllamaProcessorKwargs], ) -> BatchFeature: """ Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` arguments to MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. TODO: add aspect_ratio_ids and aspect_ratio_mask and cross_attention_mask """ if text is None and images is None: raise ValueError("You must specify either text or images.") output_kwargs = self._merge_kwargs( MllamaProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) text_kwargs = output_kwargs["text_kwargs"] images_kwargs = output_kwargs["images_kwargs"] common_kwargs = output_kwargs["common_kwargs"] data = {} if text is not None: if isinstance(text, str): text = [text] elif not (isinstance(text, (list, tuple)) and all(isinstance(t, str) for t in text)): raise ValueError("Invalid input text. Please provide a string, or a list of strings") n_images_in_text = [t.count(self.image_token) for t in text] text = [build_string_from_input(text_item, self.bos_token, self.image_token) for text_item in text] _ = text_kwargs.pop("padding_side", None) # hack until padding-side is an accepted kwarg by tokenizers encoding = self.tokenizer(text, **text_kwargs) data.update(encoding) n_images_in_images = [0] if images is not None: images = make_nested_list_of_images(images) n_images_in_images = [len(sample) for sample in images] if text is not None: if any(batch_img == 0 for batch_img in n_images_in_text) and not all( batch_img == 0 for batch_img in n_images_in_text ): raise ValueError( "If a batch of text is provided, there should be either no images or at least one image per sample" ) if sum(n_images_in_text) > 0 and n_images_in_images != n_images_in_text: if images is None: raise ValueError("No image were provided, but there are image tokens in the prompt") else: add_message = "" if sum(n_images_in_images) == sum(n_images_in_text): add_message = "Make sure to pass your images as a nested list, where each sub-list holds images per batch" raise ValueError( f"The number of image tokens in each text ({n_images_in_text}) should be the same as the " f"number of provided images per batch ({n_images_in_images}). {add_message}" ) if images is not None: image_features = self.image_processor(images, **images_kwargs) num_tiles = image_features.pop("num_tiles") data.update(image_features) # Create cross attention mask if images is not None and text is not None: cross_attention_token_mask = [ get_cross_attention_token_mask(token_ids, self.image_token_id) for token_ids in encoding["input_ids"] ] cross_attention_mask = convert_sparse_cross_attention_mask_to_dense( cross_attention_token_mask, num_tiles=num_tiles, max_num_tiles=self.image_processor.max_image_tiles, length=max(len(input_ids) for input_ids in encoding["input_ids"]), ) data["cross_attention_mask"] = cross_attention_mask return_tensors = common_kwargs.pop("return_tensors", None) batch_feature = BatchFeature(data=data, tensor_type=return_tensors) return batch_feature def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def post_process_image_text_to_text( self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs ): """ Post-process the output of the model to decode the text. Args: generated_outputs (`torch.Tensor` or `np.ndarray`): The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` or `(sequence_length,)`. skip_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method. Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method. **kwargs: Additional arguments to be passed to the tokenizer's `batch_decode method`. Returns: `List[str]`: The decoded text. """ return self.tokenizer.batch_decode( generated_outputs, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names # Remove `num_tiles`, it is popped and used only when processing. Make a copy of list when remocing # otherwise `self.image_processor.model_input_names` is also modified image_processor_input_names = [name for name in image_processor_input_names if name != "num_tiles"] return list(tokenizer_input_names + image_processor_input_names + ["cross_attention_mask"]) __all__ = ["MllamaProcessor"] ```
============================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.93 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mluke\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .tokenization_mluke import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
======================================================================================================================================= SOURCE CODE FILE: tokenization_mluke.py LINES: 2 SIZE: 80.17 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mluke\tokenization_mluke.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 Studio Ousia and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """Tokenization classes for mLUKE.""" import itertools import json import os from collections.abc import Mapping from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, AddedToken, BatchEncoding, EncodedInput, PaddingStrategy, TensorType, TextInput, TextInputPair, TruncationStrategy, to_py_obj, ) from ...utils import add_end_docstrings, is_tf_tensor, is_torch_tensor, logging logger = logging.get_logger(__name__) EntitySpan = Tuple[int, int] EntitySpanInput = List[EntitySpan] Entity = str EntityInput = List[Entity] SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "entity_vocab_file": "entity_vocab.json"} ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" return_token_type_ids (`bool`, *optional*): Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are token type IDs?](../glossary#token-type-ids) return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_overflowing_tokens (`bool`, *optional*, defaults to `False`): Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overflowing tokens. return_special_tokens_mask (`bool`, *optional*, defaults to `False`): Whether or not to return special tokens mask information. return_offsets_mapping (`bool`, *optional*, defaults to `False`): Whether or not to return `(char_start, char_end)` for each token. This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using Python's tokenizer, this method will raise `NotImplementedError`. return_length (`bool`, *optional*, defaults to `False`): Whether or not to return the lengths of the encoded inputs. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. **kwargs: passed to the `self.tokenize()` method Return: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or if *"token_type_ids"* is in `self.model_input_names`). [What are token type IDs?](../glossary#token-type-ids) - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **entity_ids** -- List of entity ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **entity_position_ids** -- List of entity positions in the input sequence to be fed to a model. - **entity_token_type_ids** -- List of entity token type ids to be fed to a model (when `return_token_type_ids=True` or if *"entity_token_type_ids"* is in `self.model_input_names`). [What are token type IDs?](../glossary#token-type-ids) - **entity_attention_mask** -- List of indices specifying which entities should be attended to by the model (when `return_attention_mask=True` or if *"entity_attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **entity_start_positions** -- List of the start positions of entities in the word token sequence (when `task="entity_span_classification"`). - **entity_end_positions** -- List of the end positions of entities in the word token sequence (when `task="entity_span_classification"`). - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and `return_overflowing_tokens=True`). - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and `return_overflowing_tokens=True`). - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). - **length** -- The length of the inputs (when `return_length=True`) """ class MLukeTokenizer(PreTrainedTokenizer): """ Adapted from [`XLMRobertaTokenizer`] and [`LukeTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. entity_vocab_file (`str`): Path to the entity vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. task (`str`, *optional*): Task for which you want to prepare sequences. One of `"entity_classification"`, `"entity_pair_classification"`, or `"entity_span_classification"`. If you specify this argument, the entity sequence is automatically created based on the given entity span(s). max_entity_length (`int`, *optional*, defaults to 32): The maximum length of `entity_ids`. max_mention_length (`int`, *optional*, defaults to 30): The maximum number of tokens inside an entity span. entity_token_1 (`str`, *optional*, defaults to `<ent>`): The special token used to represent an entity span in a word token sequence. This token is only used when `task` is set to `"entity_classification"` or `"entity_pair_classification"`. entity_token_2 (`str`, *optional*, defaults to `<ent2>`): The special token used to represent an entity span in a word token sequence. This token is only used when `task` is set to `"entity_pair_classification"`. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, entity_vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", task=None, max_entity_length=32, max_mention_length=30, entity_token_1="<ent>", entity_token_2="<ent2>", entity_unk_token="[UNK]", entity_pad_token="[PAD]", entity_mask_token="[MASK]", entity_mask2_token="[MASK2]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token # we add 2 special tokens for downstream tasks # for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778 entity_token_1 = ( AddedToken(entity_token_1, lstrip=False, rstrip=False) if isinstance(entity_token_1, str) else entity_token_1 ) entity_token_2 = ( AddedToken(entity_token_2, lstrip=False, rstrip=False) if isinstance(entity_token_2, str) else entity_token_2 ) additional_special_tokens = kwargs.pop("additional_special_tokens", []) additional_special_tokens += [entity_token_1, entity_token_2] self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle: self.entity_vocab = json.load(entity_vocab_handle) for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]: if entity_special_token not in self.entity_vocab: raise ValueError( f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. " f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}." ) self.entity_unk_token_id = self.entity_vocab[entity_unk_token] self.entity_pad_token_id = self.entity_vocab[entity_pad_token] self.entity_mask_token_id = self.entity_vocab[entity_mask_token] self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token] self.task = task if task is None or task == "entity_span_classification": self.max_entity_length = max_entity_length elif task == "entity_classification": self.max_entity_length = 1 elif task == "entity_pair_classification": self.max_entity_length = 2 else: raise ValueError( f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification'," " 'entity_span_classification'] only." ) self.max_mention_length = max_mention_length super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, task=task, max_entity_length=max_entity_length, max_mention_length=max_mention_length, entity_token_1=entity_token_1, entity_token_2=entity_token_2, entity_unk_token=entity_unk_token, entity_pad_token=entity_pad_token, entity_mask_token=entity_mask_token, entity_mask2_token=entity_mask2_token, additional_special_tokens=additional_special_tokens, **kwargs, ) @property # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.vocab_size def vocab_size(self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_vocab def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._tokenize def _tokenize(self, text: str) -> List[str]: # TODO check if the t5/llama PR also applies here return self.sp_model.encode(text, out_type=str) # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.__call__ def __call__( self, text: Union[TextInput, List[TextInput]], text_pair: Optional[Union[TextInput, List[TextInput]]] = None, entity_spans: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None, entity_spans_pair: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None, entities: Optional[Union[EntityInput, List[EntityInput]]] = None, entities_pair: Optional[Union[EntityInput, List[EntityInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, is_split_into_words: Optional[bool] = False, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences, depending on the task you want to prepare them for. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this tokenizer does not support tokenization based on pretokenized strings. text_pair (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this tokenizer does not support tokenization based on pretokenized strings. entity_spans (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*): The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each with two integers denoting character-based start and end positions of entities. If you specify `"entity_classification"` or `"entity_pair_classification"` as the `task` argument in the constructor, the length of each sequence must be 1 or 2, respectively. If you specify `entities`, the length of each sequence must be equal to the length of each sequence of `entities`. entity_spans_pair (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*): The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each with two integers denoting character-based start and end positions of entities. If you specify the `task` argument in the constructor, this argument is ignored. If you specify `entities_pair`, the length of each sequence must be equal to the length of each sequence of `entities_pair`. entities (`List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of each sequence must be equal to the length of each sequence of `entity_spans`. If you specify `entity_spans` without specifying this argument, the entity sequence or the batch of entity sequences is automatically constructed by filling it with the [MASK] entity. entities_pair (`List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of each sequence must be equal to the length of each sequence of `entity_spans_pair`. If you specify `entity_spans_pair` without specifying this argument, the entity sequence or the batch of entity sequences is automatically constructed by filling it with the [MASK] entity. max_entity_length (`int`, *optional*): The maximum length of `entity_ids`. """ # Input type checking for clearer error is_valid_single_text = isinstance(text, str) is_valid_batch_text = isinstance(text, (list, tuple)) and (len(text) == 0 or (isinstance(text[0], str))) if not (is_valid_single_text or is_valid_batch_text): raise ValueError("text input must be of type `str` (single example) or `List[str]` (batch).") is_valid_single_text_pair = isinstance(text_pair, str) is_valid_batch_text_pair = isinstance(text_pair, (list, tuple)) and ( len(text_pair) == 0 or isinstance(text_pair[0], str) ) if not (text_pair is None or is_valid_single_text_pair or is_valid_batch_text_pair): raise ValueError("text_pair input must be of type `str` (single example) or `List[str]` (batch).") is_batched = bool(isinstance(text, (list, tuple))) if is_batched: batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text if entities is None: batch_entities_or_entities_pairs = None else: batch_entities_or_entities_pairs = ( list(zip(entities, entities_pair)) if entities_pair is not None else entities ) if entity_spans is None: batch_entity_spans_or_entity_spans_pairs = None else: batch_entity_spans_or_entity_spans_pairs = ( list(zip(entity_spans, entity_spans_pair)) if entity_spans_pair is not None else entity_spans ) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs, batch_entities_or_entities_pairs=batch_entities_or_entities_pairs, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, max_entity_length=max_entity_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, entity_spans=entity_spans, entity_spans_pair=entity_spans_pair, entities=entities, entities_pair=entities_pair, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, max_entity_length=max_entity_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._encode_plus def _encode_plus( self, text: Union[TextInput], text_pair: Optional[Union[TextInput]] = None, entity_spans: Optional[EntitySpanInput] = None, entity_spans_pair: Optional[EntitySpanInput] = None, entities: Optional[EntityInput] = None, entities_pair: Optional[EntityInput] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, is_split_into_words: Optional[bool] = False, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) if is_split_into_words: raise NotImplementedError("is_split_into_words is not supported in this tokenizer.") ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) = self._create_input_sequence( text=text, text_pair=text_pair, entities=entities, entities_pair=entities_pair, entity_spans=entity_spans, entity_spans_pair=entity_spans_pair, **kwargs, ) # prepare_for_model will create the attention_mask and token_type_ids return self.prepare_for_model( first_ids, pair_ids=second_ids, entity_ids=first_entity_ids, pair_entity_ids=second_entity_ids, entity_token_spans=first_entity_token_spans, pair_entity_token_spans=second_entity_token_spans, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_encode_plus def _batch_encode_plus( self, batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]], batch_entity_spans_or_entity_spans_pairs: Optional[ Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]] ] = None, batch_entities_or_entities_pairs: Optional[ Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]] ] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, is_split_into_words: Optional[bool] = False, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) if is_split_into_words: raise NotImplementedError("is_split_into_words is not supported in this tokenizer.") # input_ids is a list of tuples (one for each example in the batch) input_ids = [] entity_ids = [] entity_token_spans = [] for index, text_or_text_pair in enumerate(batch_text_or_text_pairs): if not isinstance(text_or_text_pair, (list, tuple)): text, text_pair = text_or_text_pair, None else: text, text_pair = text_or_text_pair entities, entities_pair = None, None if batch_entities_or_entities_pairs is not None: entities_or_entities_pairs = batch_entities_or_entities_pairs[index] if entities_or_entities_pairs: if isinstance(entities_or_entities_pairs[0], str): entities, entities_pair = entities_or_entities_pairs, None else: entities, entities_pair = entities_or_entities_pairs entity_spans, entity_spans_pair = None, None if batch_entity_spans_or_entity_spans_pairs is not None: entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index] if len(entity_spans_or_entity_spans_pairs) > 0 and isinstance( entity_spans_or_entity_spans_pairs[0], list ): entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs else: entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) = self._create_input_sequence( text=text, text_pair=text_pair, entities=entities, entities_pair=entities_pair, entity_spans=entity_spans, entity_spans_pair=entity_spans_pair, **kwargs, ) input_ids.append((first_ids, second_ids)) entity_ids.append((first_entity_ids, second_entity_ids)) entity_token_spans.append((first_entity_token_spans, second_entity_token_spans)) batch_outputs = self._batch_prepare_for_model( input_ids, batch_entity_ids_pairs=entity_ids, batch_entity_token_spans_pairs=entity_token_spans, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._check_entity_input_format def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]): if not isinstance(entity_spans, list): raise TypeError("entity_spans should be given as a list") elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple): raise ValueError( "entity_spans should be given as a list of tuples containing the start and end character indices" ) if entities is not None: if not isinstance(entities, list): raise ValueError("If you specify entities, they should be given as a list") if len(entities) > 0 and not isinstance(entities[0], str): raise ValueError("If you specify entities, they should be given as a list of entity names") if len(entities) != len(entity_spans): raise ValueError("If you specify entities, entities and entity_spans must be the same length") # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._create_input_sequence def _create_input_sequence( self, text: Union[TextInput], text_pair: Optional[Union[TextInput]] = None, entities: Optional[EntityInput] = None, entities_pair: Optional[EntityInput] = None, entity_spans: Optional[EntitySpanInput] = None, entity_spans_pair: Optional[EntitySpanInput] = None, **kwargs, ) -> Tuple[list, list, list, list, list, list]: def get_input_ids(text): tokens = self.tokenize(text, **kwargs) return self.convert_tokens_to_ids(tokens) def get_input_ids_and_entity_token_spans(text, entity_spans): if entity_spans is None: return get_input_ids(text), None cur = 0 input_ids = [] entity_token_spans = [None] * len(entity_spans) split_char_positions = sorted(frozenset(itertools.chain(*entity_spans))) char_pos2token_pos = {} for split_char_position in split_char_positions: orig_split_char_position = split_char_position if ( split_char_position > 0 and text[split_char_position - 1] == " " ): # whitespace should be prepended to the following token split_char_position -= 1 if cur != split_char_position: input_ids += get_input_ids(text[cur:split_char_position]) cur = split_char_position char_pos2token_pos[orig_split_char_position] = len(input_ids) input_ids += get_input_ids(text[cur:]) entity_token_spans = [ (char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans ] return input_ids, entity_token_spans first_ids, second_ids = None, None first_entity_ids, second_entity_ids = None, None first_entity_token_spans, second_entity_token_spans = None, None if self.task is None: if entity_spans is None: first_ids = get_input_ids(text) else: self._check_entity_input_format(entities, entity_spans) first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) if entities is None: first_entity_ids = [self.entity_mask_token_id] * len(entity_spans) else: first_entity_ids = [self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities] if text_pair is not None: if entity_spans_pair is None: second_ids = get_input_ids(text_pair) else: self._check_entity_input_format(entities_pair, entity_spans_pair) second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans( text_pair, entity_spans_pair ) if entities_pair is None: second_entity_ids = [self.entity_mask_token_id] * len(entity_spans_pair) else: second_entity_ids = [ self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities_pair ] elif self.task == "entity_classification": if not (isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple)): raise ValueError( "Entity spans should be a list containing a single tuple " "containing the start and end character indices of an entity" ) first_entity_ids = [self.entity_mask_token_id] first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) # add special tokens to input ids entity_token_start, entity_token_end = first_entity_token_spans[0] first_ids = ( first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:] ) first_ids = ( first_ids[:entity_token_start] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_start:] ) first_entity_token_spans = [(entity_token_start, entity_token_end + 2)] elif self.task == "entity_pair_classification": if not ( isinstance(entity_spans, list) and len(entity_spans) == 2 and isinstance(entity_spans[0], tuple) and isinstance(entity_spans[1], tuple) ): raise ValueError( "Entity spans should be provided as a list of two tuples, " "each tuple containing the start and end character indices of an entity" ) head_span, tail_span = entity_spans first_entity_ids = [self.entity_mask_token_id, self.entity_mask2_token_id] first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) head_token_span, tail_token_span = first_entity_token_spans token_span_with_special_token_ids = [ (head_token_span, self.additional_special_tokens_ids[0]), (tail_token_span, self.additional_special_tokens_ids[1]), ] if head_token_span[0] < tail_token_span[0]: first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2) first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4) token_span_with_special_token_ids = reversed(token_span_with_special_token_ids) else: first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4) first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2) for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids: first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:] first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:] elif self.task == "entity_span_classification": if not (isinstance(entity_spans, list) and len(entity_spans) > 0 and isinstance(entity_spans[0], tuple)): raise ValueError( "Entity spans should be provided as a list of tuples, " "each tuple containing the start and end character indices of an entity" ) first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) first_entity_ids = [self.entity_mask_token_id] * len(entity_spans) else: raise ValueError(f"Task {self.task} not supported") return ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_prepare_for_model def _batch_prepare_for_model( self, batch_ids_pairs: List[Tuple[List[int], None]], batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]], batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens Args: batch_ids_pairs: list of tokenized input ids or input ids pairs batch_entity_ids_pairs: list of entity ids or entity ids pairs batch_entity_token_spans_pairs: list of entity spans or entity spans pairs max_entity_length: The maximum length of the entity sequence. """ batch_outputs = {} for input_ids, entity_ids, entity_token_span_pairs in zip( batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs ): first_ids, second_ids = input_ids first_entity_ids, second_entity_ids = entity_ids first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs outputs = self.prepare_for_model( first_ids, second_ids, entity_ids=first_entity_ids, pair_entity_ids=second_entity_ids, entity_token_spans=first_entity_token_spans, pair_entity_token_spans=second_entity_token_spans, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward padding_side=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.prepare_for_model def prepare_for_model( self, ids: List[int], pair_ids: Optional[List[int]] = None, entity_ids: Optional[List[int]] = None, pair_entity_ids: Optional[List[int]] = None, entity_token_spans: Optional[List[Tuple[int, int]]] = None, pair_entity_token_spans: Optional[List[Tuple[int, int]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id, entity id and entity span, or a pair of sequences of inputs ids, entity ids, entity spans so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Args: ids (`List[int]`): Tokenized input ids of the first sequence. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. entity_ids (`List[int]`, *optional*): Entity ids of the first sequence. pair_entity_ids (`List[int]`, *optional*): Entity ids of the second sequence. entity_token_spans (`List[Tuple[int, int]]`, *optional*): Entity spans of the first sequence. pair_entity_token_spans (`List[Tuple[int, int]]`, *optional*): Entity spans of the second sequence. max_entity_length (`int`, *optional*): The maximum length of the entity sequence. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) # Compute lengths pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} # Compute the total size of the returned word encodings total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length and max_entity_length overflowing_tokens = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: # truncate words up to max_length ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) entity_token_offset = 1 # 1 * <s> token pair_entity_token_offset = len(ids) + 3 # 1 * <s> token & 2 * <sep> tokens else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) entity_token_offset = 0 pair_entity_token_offset = len(ids) # Build output dictionary encoded_inputs["input_ids"] = sequence if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) # Set max entity length if not max_entity_length: max_entity_length = self.max_entity_length if entity_ids is not None: total_entity_len = 0 num_invalid_entities = 0 valid_entity_ids = [ent_id for ent_id, span in zip(entity_ids, entity_token_spans) if span[1] <= len(ids)] valid_entity_token_spans = [span for span in entity_token_spans if span[1] <= len(ids)] total_entity_len += len(valid_entity_ids) num_invalid_entities += len(entity_ids) - len(valid_entity_ids) valid_pair_entity_ids, valid_pair_entity_token_spans = None, None if pair_entity_ids is not None: valid_pair_entity_ids = [ ent_id for ent_id, span in zip(pair_entity_ids, pair_entity_token_spans) if span[1] <= len(pair_ids) ] valid_pair_entity_token_spans = [span for span in pair_entity_token_spans if span[1] <= len(pair_ids)] total_entity_len += len(valid_pair_entity_ids) num_invalid_entities += len(pair_entity_ids) - len(valid_pair_entity_ids) if num_invalid_entities != 0: logger.warning( f"{num_invalid_entities} entities are ignored because their entity spans are invalid due to the" " truncation of input tokens" ) if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and total_entity_len > max_entity_length: # truncate entities up to max_entity_length valid_entity_ids, valid_pair_entity_ids, overflowing_entities = self.truncate_sequences( valid_entity_ids, pair_ids=valid_pair_entity_ids, num_tokens_to_remove=total_entity_len - max_entity_length, truncation_strategy=truncation_strategy, stride=stride, ) valid_entity_token_spans = valid_entity_token_spans[: len(valid_entity_ids)] if valid_pair_entity_token_spans is not None: valid_pair_entity_token_spans = valid_pair_entity_token_spans[: len(valid_pair_entity_ids)] if return_overflowing_tokens: encoded_inputs["overflowing_entities"] = overflowing_entities encoded_inputs["num_truncated_entities"] = total_entity_len - max_entity_length final_entity_ids = valid_entity_ids + valid_pair_entity_ids if valid_pair_entity_ids else valid_entity_ids encoded_inputs["entity_ids"] = list(final_entity_ids) entity_position_ids = [] entity_start_positions = [] entity_end_positions = [] for token_spans, offset in ( (valid_entity_token_spans, entity_token_offset), (valid_pair_entity_token_spans, pair_entity_token_offset), ): if token_spans is not None: for start, end in token_spans: start += offset end += offset position_ids = list(range(start, end))[: self.max_mention_length] position_ids += [-1] * (self.max_mention_length - end + start) entity_position_ids.append(position_ids) entity_start_positions.append(start) entity_end_positions.append(end - 1) encoded_inputs["entity_position_ids"] = entity_position_ids if self.task == "entity_span_classification": encoded_inputs["entity_start_positions"] = entity_start_positions encoded_inputs["entity_end_positions"] = entity_end_positions if return_token_type_ids: encoded_inputs["entity_token_type_ids"] = [0] * len(encoded_inputs["entity_ids"]) # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, max_entity_length=max_entity_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.pad def pad( self, encoded_inputs: Union[ BatchEncoding, List[BatchEncoding], Dict[str, EncodedInput], Dict[str, List[EncodedInput]], List[Dict[str, EncodedInput]], ], padding: Union[bool, str, PaddingStrategy] = True, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, verbose: bool = True, ) -> BatchEncoding: """ Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`) .. note:: If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the specific device of your tensors however. Args: encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`): Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str, List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see the note above for the return type. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). max_entity_length (`int`, *optional*): The maximum length of the entity sequence. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). padding_side: The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. """ # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping): encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()} # The model's main input name, usually `input_ids`, has be passed for padding if self.model_input_names[0] not in encoded_inputs: raise ValueError( "You should supply an encoding or a list of encodings to this method " f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}" ) required_input = encoded_inputs[self.model_input_names[0]] if not required_input: if return_attention_mask: encoded_inputs["attention_mask"] = [] return encoded_inputs # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch first_element = required_input[0] if isinstance(first_element, (list, tuple)): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. index = 0 while len(required_input[index]) == 0: index += 1 if index < len(required_input): first_element = required_input[index][0] # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do. if not isinstance(first_element, (int, list, tuple)): if is_tf_tensor(first_element): return_tensors = "tf" if return_tensors is None else return_tensors elif is_torch_tensor(first_element): return_tensors = "pt" if return_tensors is None else return_tensors elif isinstance(first_element, np.ndarray): return_tensors = "np" if return_tensors is None else return_tensors else: raise ValueError( f"type of {first_element} unknown: {type(first_element)}. " "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in encoded_inputs.items(): encoded_inputs[key] = to_py_obj(value) # Convert padding_strategy in PaddingStrategy padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies( padding=padding, max_length=max_length, verbose=verbose ) if max_entity_length is None: max_entity_length = self.max_entity_length required_input = encoded_inputs[self.model_input_names[0]] if required_input and not isinstance(required_input[0], (list, tuple)): encoded_inputs = self._pad( encoded_inputs, max_length=max_length, max_entity_length=max_entity_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) return BatchEncoding(encoded_inputs, tensor_type=return_tensors) batch_size = len(required_input) if any(len(v) != batch_size for v in encoded_inputs.values()): raise ValueError("Some items in the output dictionary have a different batch size than others.") if padding_strategy == PaddingStrategy.LONGEST: max_length = max(len(inputs) for inputs in required_input) max_entity_length = ( max(len(inputs) for inputs in encoded_inputs["entity_ids"]) if "entity_ids" in encoded_inputs else 0 ) padding_strategy = PaddingStrategy.MAX_LENGTH batch_outputs = {} for i in range(batch_size): inputs = {k: v[i] for k, v in encoded_inputs.items()} outputs = self._pad( inputs, max_length=max_length, max_entity_length=max_entity_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) return BatchEncoding(batch_outputs, tensor_type=return_tensors) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._pad def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, max_entity_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[str] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. max_entity_length: The maximum length of the entity sequence. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). padding_side: The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ entities_provided = bool("entity_ids" in encoded_inputs) # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if padding_strategy == PaddingStrategy.LONGEST: max_length = len(encoded_inputs["input_ids"]) if entities_provided: max_entity_length = len(encoded_inputs["entity_ids"]) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of if ( entities_provided and max_entity_length is not None and pad_to_multiple_of is not None and (max_entity_length % pad_to_multiple_of != 0) ): max_entity_length = ((max_entity_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and ( len(encoded_inputs["input_ids"]) != max_length or (entities_provided and len(encoded_inputs["entity_ids"]) != max_entity_length) ) # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) if entities_provided and return_attention_mask and "entity_attention_mask" not in encoded_inputs: encoded_inputs["entity_attention_mask"] = [1] * len(encoded_inputs["entity_ids"]) if needs_to_be_padded: difference = max_length - len(encoded_inputs["input_ids"]) padding_side = padding_side if padding_side is not None else self.padding_side if entities_provided: entity_difference = max_entity_length - len(encoded_inputs["entity_ids"]) if padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if entities_provided: encoded_inputs["entity_attention_mask"] = ( encoded_inputs["entity_attention_mask"] + [0] * entity_difference ) if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"] + [0] * difference if entities_provided: encoded_inputs["entity_token_type_ids"] = ( encoded_inputs["entity_token_type_ids"] + [0] * entity_difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference if entities_provided: encoded_inputs["entity_ids"] = ( encoded_inputs["entity_ids"] + [self.entity_pad_token_id] * entity_difference ) encoded_inputs["entity_position_ids"] = ( encoded_inputs["entity_position_ids"] + [[-1] * self.max_mention_length] * entity_difference ) if self.task == "entity_span_classification": encoded_inputs["entity_start_positions"] = ( encoded_inputs["entity_start_positions"] + [0] * entity_difference ) encoded_inputs["entity_end_positions"] = ( encoded_inputs["entity_end_positions"] + [0] * entity_difference ) elif padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if entities_provided: encoded_inputs["entity_attention_mask"] = [0] * entity_difference + encoded_inputs[ "entity_attention_mask" ] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [0] * difference + encoded_inputs["token_type_ids"] if entities_provided: encoded_inputs["entity_token_type_ids"] = [0] * entity_difference + encoded_inputs[ "entity_token_type_ids" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] if entities_provided: encoded_inputs["entity_ids"] = [self.entity_pad_token_id] * entity_difference + encoded_inputs[ "entity_ids" ] encoded_inputs["entity_position_ids"] = [ [-1] * self.max_mention_length ] * entity_difference + encoded_inputs["entity_position_ids"] if self.task == "entity_span_classification": encoded_inputs["entity_start_positions"] = [0] * entity_difference + encoded_inputs[ "entity_start_positions" ] encoded_inputs["entity_end_positions"] = [0] * entity_difference + encoded_inputs[ "entity_end_positions" ] else: raise ValueError("Invalid padding strategy:" + str(padding_side)) return encoded_inputs def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) entity_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"] ) with open(entity_vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return out_vocab_file, entity_vocab_file # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] __all__ = ["MLukeTokenizer"] ```
================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.11 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilebert\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mobilebert import * from .modeling_mobilebert import * from .modeling_tf_mobilebert import * from .tokenization_mobilebert import * from .tokenization_mobilebert_fast import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
================================================================================================================================================== SOURCE CODE FILE: configuration_mobilebert.py LINES: 1 SIZE: 8.08 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilebert\configuration_mobilebert.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MobileBERT model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class MobileBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`]. hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 512): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): The ID of the token in the word embedding to use as padding. embedding_size (`int`, *optional*, defaults to 128): The dimension of the word embedding vectors. trigram_input (`bool`, *optional*, defaults to `True`): Use a convolution of trigram as input. use_bottleneck (`bool`, *optional*, defaults to `True`): Whether to use bottleneck in BERT. intra_bottleneck_size (`int`, *optional*, defaults to 128): Size of bottleneck layer output. use_bottleneck_attention (`bool`, *optional*, defaults to `False`): Whether to use attention inputs from the bottleneck transformation. key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`): Whether to use the same linear transformation for query&key in the bottleneck. num_feedforward_networks (`int`, *optional*, defaults to 4): Number of FFNs in a block. normalization_type (`str`, *optional*, defaults to `"no_norm"`): The normalization type in MobileBERT. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import MobileBertConfig, MobileBertModel >>> # Initializing a MobileBERT configuration >>> configuration = MobileBertConfig() >>> # Initializing a model (with random weights) from the configuration above >>> model = MobileBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "mobilebert" def __init__( self, vocab_size=30522, hidden_size=512, num_hidden_layers=24, num_attention_heads=4, intermediate_size=512, hidden_act="relu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, embedding_size=128, trigram_input=True, use_bottleneck=True, intra_bottleneck_size=128, use_bottleneck_attention=False, key_query_shared_bottleneck=True, num_feedforward_networks=4, normalization_type="no_norm", classifier_activation=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.embedding_size = embedding_size self.trigram_input = trigram_input self.use_bottleneck = use_bottleneck self.intra_bottleneck_size = intra_bottleneck_size self.use_bottleneck_attention = use_bottleneck_attention self.key_query_shared_bottleneck = key_query_shared_bottleneck self.num_feedforward_networks = num_feedforward_networks self.normalization_type = normalization_type self.classifier_activation = classifier_activation if self.use_bottleneck: self.true_hidden_size = intra_bottleneck_size else: self.true_hidden_size = hidden_size self.classifier_dropout = classifier_dropout # Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Bert->MobileBert class MobileBertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] ) __all__ = ["MobileBertConfig", "MobileBertOnnxConfig"] ```
============================================================================================================================================= SOURCE CODE FILE: modeling_mobilebert.py LINES: 1 SIZE: 69.42 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilebert\modeling_mobilebert.py ENCODING: utf-8 ```py # MIT License # # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "mrm8488/mobilebert-finetuned-ner" _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" _TOKEN_CLASS_EXPECTED_LOSS = 0.03 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "csarron/mobilebert-uncased-squad-v2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 3.98 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 13 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "lordtt13/emo-mobilebert" _SEQ_CLASS_EXPECTED_OUTPUT = "'others'" _SEQ_CLASS_EXPECTED_LOSS = "4.72" def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.replace("ffn_layer", "ffn") name = name.replace("FakeLayerNorm", "LayerNorm") name = name.replace("extra_output_weights", "dense/kernel") name = name.replace("bert", "mobilebert") name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert pointer.shape == array.shape, ( f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class NoNorm(nn.Module): def __init__(self, feat_size, eps=None): super().__init__() self.bias = nn.Parameter(torch.zeros(feat_size)) self.weight = nn.Parameter(torch.ones(feat_size)) def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: return input_tensor * self.weight + self.bias NORM2FN = {"layer_norm": nn.LayerNorm, "no_norm": NoNorm} class MobileBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.hidden_size = config.hidden_size self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) embed_dim_multiplier = 3 if self.trigram_input else 1 embedded_input_size = self.embedding_size * embed_dim_multiplier self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = torch.cat( [ nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0.0), inputs_embeds, nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0.0), ], dim=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) # Add positional embeddings and token type embeddings, then layer # normalize and perform dropout. position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MobileBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.true_hidden_size, self.all_head_size) self.key = nn.Linear(config.true_hidden_size, self.all_head_size) self.value = nn.Linear( config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class MobileBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) if not self.use_bottleneck: layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = MobileBertSelfAttention(config) self.output = MobileBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, layer_input: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, ) # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. attention_output = self.output(self_outputs[0], layer_input) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class MobileBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class OutputBottleneck(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) else: self.bottleneck = OutputBottleneck(config) def forward( self, intermediate_states: torch.Tensor, residual_tensor_1: torch.Tensor, residual_tensor_2: torch.Tensor ) -> torch.Tensor: layer_output = self.dense(intermediate_states) if not self.use_bottleneck: layer_output = self.dropout(layer_output) layer_output = self.LayerNorm(layer_output + residual_tensor_1) else: layer_output = self.LayerNorm(layer_output + residual_tensor_1) layer_output = self.bottleneck(layer_output, residual_tensor_2) return layer_output class BottleneckLayer(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size) self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: layer_input = self.dense(hidden_states) layer_input = self.LayerNorm(layer_input) return layer_input class Bottleneck(nn.Module): def __init__(self, config): super().__init__() self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.input = BottleneckLayer(config) if self.key_query_shared_bottleneck: self.attention = BottleneckLayer(config) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) class FFNOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class FFNLayer(nn.Module): def __init__(self, config): super().__init__() self.intermediate = MobileBertIntermediate(config) self.output = FFNOutput(config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: intermediate_output = self.intermediate(hidden_states) layer_outputs = self.output(intermediate_output, hidden_states) return layer_outputs class MobileBertLayer(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = MobileBertAttention(config) self.intermediate = MobileBertIntermediate(config) self.output = MobileBertOutput(config) if self.use_bottleneck: self.bottleneck = Bottleneck(config) if config.num_feedforward_networks > 1: self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 self_attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] s = (attention_output,) outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output, hidden_states) outputs = ( (layer_output,) + outputs + ( torch.tensor(1000), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) return outputs class MobileBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class MobileBertPooler(nn.Module): def __init__(self, config): super().__init__() self.do_activate = config.classifier_activation if self.do_activate: self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) pooled_output = torch.tanh(pooled_output) return pooled_output class MobileBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class MobileBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MobileBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self) -> None: self.decoder.bias = self.bias def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.transform(hidden_states) hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) hidden_states += self.decoder.bias return hidden_states class MobileBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class MobileBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output: torch.Tensor, pooled_output: torch.Tensor) -> Tuple[torch.Tensor]: prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class MobileBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig load_tf_weights = load_tf_weights_in_mobilebert base_model_prefix = "mobilebert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, (nn.LayerNorm, NoNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, MobileBertLMPredictionHead): module.bias.data.zero_() @dataclass class MobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`MobileBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: Optional[torch.FloatTensor] = None seq_relationship_logits: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class MobileBertModel(MobileBertPreTrainedModel): """ https://arxiv.org/pdf/2004.02984.pdf """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MobileBertEmbeddings(config) self.encoder = MobileBertEncoder(config) self.pooler = MobileBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class MobileBertForPreTraining(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[torch.FloatTensor] = None, return_dict: Optional[torch.FloatTensor] = None, ) -> Union[Tuple, MobileBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) >>> # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) class MobileBertForMaskedLM(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.cls = MobileBertOnlyMLMHead(config) self.config = config # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class MobileBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top.""", MOBILEBERT_START_DOCSTRING, ) class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`. - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> loss = outputs.loss >>> logits = outputs.logits ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_score = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_score,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing class MobileBertForSequenceClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering with Bert->MobileBert all-casing class MobileBertForQuestionAnswering(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice with Bert->MobileBert all-casing class MobileBertForMultipleChoice(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification with Bert->MobileBert all-casing class MobileBertForTokenClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] ```
================================================================================================================================================ SOURCE CODE FILE: modeling_tf_mobilebert.py LINES: 1 SIZE: 82.14 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilebert\modeling_tf_mobilebert.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 MobileBERT model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFNextSentencePredictorOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFNextSentencePredictionLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "vumichien/mobilebert-finetuned-ner" _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" _TOKEN_CLASS_EXPECTED_LOSS = 0.03 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "vumichien/mobilebert-uncased-squad-v2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 3.98 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 13 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "vumichien/emo-mobilebert" _SEQ_CLASS_EXPECTED_OUTPUT = "'others'" _SEQ_CLASS_EXPECTED_LOSS = "4.72" # Copied from transformers.models.bert.modeling_tf_bert.TFBertPreTrainingLoss class TFMobileBertPreTrainingLoss: """ Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss computation. """ def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0]) # make sure only labels that are not equal to -100 # are taken into account for the loss computation lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype) masked_lm_losses = unmasked_lm_losses * lm_loss_mask reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask) # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1]) ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype) masked_ns_loss = unmasked_ns_loss * ns_loss_mask reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask) return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,)) class TFMobileBertIntermediate(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.intermediate_size, name="dense") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) class TFLayerNorm(keras.layers.LayerNormalization): def __init__(self, feat_size, *args, **kwargs): self.feat_size = feat_size super().__init__(*args, **kwargs) def build(self, input_shape=None): super().build([None, None, self.feat_size]) class TFNoNorm(keras.layers.Layer): def __init__(self, feat_size, epsilon=None, **kwargs): super().__init__(**kwargs) self.feat_size = feat_size def build(self, input_shape): self.bias = self.add_weight("bias", shape=[self.feat_size], initializer="zeros") self.weight = self.add_weight("weight", shape=[self.feat_size], initializer="ones") super().build(input_shape) def call(self, inputs: tf.Tensor): return inputs * self.weight + self.bias NORM2FN = {"layer_norm": TFLayerNorm, "no_norm": TFNoNorm} class TFMobileBertEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.embedding_transformation = keras.layers.Dense(config.hidden_size, name="embedding_transformation") # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.embedded_input_size = self.embedding_size * (3 if self.trigram_input else 1) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) if self.built: return self.built = True if getattr(self, "embedding_transformation", None) is not None: with tf.name_scope(self.embedding_transformation.name): self.embedding_transformation.build([None, None, self.embedded_input_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = tf.concat( [ tf.pad(inputs_embeds[:, 1:], ((0, 0), (0, 1), (0, 0))), inputs_embeds, tf.pad(inputs_embeds[:, :-1], ((0, 0), (1, 0), (0, 0))), ], axis=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFMobileBertSelfAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads}" ) self.num_attention_heads = config.num_attention_heads self.output_attentions = config.output_attentions assert config.hidden_size % config.num_attention_heads == 0 self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.config = config def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call( self, query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=False ): batch_size = shape_list(attention_mask)[0] mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFMobileBertModel call() function) attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( context_layer, (batch_size, -1, self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.true_hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.true_hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build( [ None, None, self.config.true_hidden_size if self.config.use_bottleneck_attention else self.config.hidden_size, ] ) class TFMobileBertSelfOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, residual_tensor, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFMobileBertAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self = TFMobileBertSelfAttention(config, name="self") self.mobilebert_output = TFMobileBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=False, ): self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=training ) attention_output = self.mobilebert_output(self_outputs[0], layer_input, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None) class TFOutputBottleneck(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, residual_tensor, training=False): layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs, training=training) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFMobileBertOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) else: self.bottleneck = TFOutputBottleneck(config, name="bottleneck") self.config = config def call(self, hidden_states, residual_tensor_1, residual_tensor_2, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) else: hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) hidden_states = self.bottleneck(hidden_states, residual_tensor_2) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None) class TFBottleneckLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.intra_bottleneck_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.intra_bottleneck_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.config = config def call(self, inputs): hidden_states = self.dense(inputs) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFBottleneck(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.bottleneck_input = TFBottleneckLayer(config, name="input") if self.key_query_shared_bottleneck: self.attention = TFBottleneckLayer(config, name="attention") def call(self, hidden_states): # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.bottleneck_input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bottleneck_input", None) is not None: with tf.name_scope(self.bottleneck_input.name): self.bottleneck_input.build(None) if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) class TFFFNOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.true_hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.config = config def call(self, hidden_states, residual_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFFFNLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFFFNOutput(config, name="output") def call(self, hidden_states): intermediate_output = self.intermediate(hidden_states) layer_outputs = self.mobilebert_output(intermediate_output, hidden_states) return layer_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None) class TFMobileBertLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = TFMobileBertAttention(config, name="attention") self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFMobileBertOutput(config, name="output") if self.use_bottleneck: self.bottleneck = TFBottleneck(config, name="bottleneck") if config.num_feedforward_networks > 1: self.ffn = [TFFFNLayer(config, name=f"ffn.{i}") for i in range(config.num_feedforward_networks - 1)] def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=training, ) attention_output = attention_outputs[0] s = (attention_output,) if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.mobilebert_output(intermediate_output, attention_output, hidden_states, training=training) outputs = ( (layer_output,) + attention_outputs[1:] + ( tf.constant(0), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None) if getattr(self, "ffn", None) is not None: for layer in self.ffn: with tf.name_scope(layer.name): layer.build(None) class TFMobileBertEncoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = [TFMobileBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, training=training ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) class TFMobileBertPooler(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.do_activate = config.classifier_activation if self.do_activate: self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFMobileBertPredictionHeadTransform(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) class TFMobileBertLMPredictionHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.transform = TFMobileBertPredictionHeadTransform(config, name="transform") self.config = config def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") self.dense = self.add_weight( shape=(self.config.hidden_size - self.config.embedding_size, self.config.vocab_size), initializer="zeros", trainable=True, name="dense/weight", ) self.decoder = self.add_weight( shape=(self.config.vocab_size, self.config.embedding_size), initializer="zeros", trainable=True, name="decoder/weight", ) if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self): return self def set_output_embeddings(self, value): self.decoder = value self.config.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = tf.matmul(hidden_states, tf.concat([tf.transpose(self.decoder), self.dense], axis=0)) hidden_states = hidden_states + self.bias return hidden_states class TFMobileBertMLMHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.predictions = TFMobileBertLMPredictionHead(config, name="predictions") def call(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) @keras_serializable class TFMobileBertMainLayer(keras.layers.Layer): config_class = MobileBertConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFMobileBertEmbeddings(config, name="embeddings") self.encoder = TFMobileBertEncoder(config, name="encoder") self.pooler = TFMobileBertPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFMobileBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig base_model_prefix = "mobilebert" @dataclass class TFMobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`TFMobileBertForPreTraining`]. Args: prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None prediction_logits: Optional[tf.Tensor] = None seq_relationship_logits: Optional[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class TFMobileBertModel(TFMobileBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: outputs = self.mobilebert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel, TFMobileBertPreTrainingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") self.seq_relationship = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMobileBertForPreTrainingOutput]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2] ```""" outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: d_labels = {"labels": labels} d_labels["next_sentence_label"] = next_sentence_label total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score)) if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return TFMobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) if getattr(self, "seq_relationship", None) is not None: with tf.name_scope(self.seq_relationship.name): self.seq_relationship.build(None) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "cls.predictions.decoder.weight": return tf_weight, "mobilebert.embeddings.word_embeddings.weight" else: return (tf_weight,) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"seq_relationship___cls", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMaskedLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.predictions(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "cls.predictions.decoder.weight": return tf_weight, "mobilebert.embeddings.word_embeddings.weight" else: return (tf_weight,) class TFMobileBertOnlyNSPHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.seq_relationship = keras.layers.Dense(2, name="seq_relationship") self.config = config def call(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "seq_relationship", None) is not None: with tf.name_scope(self.seq_relationship.name): self.seq_relationship.build([None, None, self.config.hidden_size]) @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top.""", MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextSentencePredictionLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"predictions___cls", r"cls.predictions"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFNextSentencePredictorOutput]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForNextSentencePrediction >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf") >>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0] ```""" outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = ( None if next_sentence_label is None else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores) ) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return TFNextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "cls", None) is not None: with tf.name_scope(self.cls.name): self.cls.build(None) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFQuestionAnsweringModelOutput]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions, "end_position": end_positions} loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMultipleChoiceModelOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.mobilebert( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFTokenClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) __all__ = [ "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] ```
================================================================================================================================================= SOURCE CODE FILE: tokenization_mobilebert.py LINES: 3 SIZE: 20.80 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilebert\tokenization_mobilebert.py ENCODING: utf-8 ```py # coding=utf-8 # # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MobileBERT.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # Copied from transformers.models.bert.tokenization_bert.BertTokenizer with BERT->MobileBERT,Bert->MobileBert class MobileBertTokenizer(PreTrainedTokenizer): r""" Construct a MobileBERT tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original MobileBERT). clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, clean_up_tokenization_spaces=True, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = MobileBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text, split_special_tokens=False): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens if not split_special_tokens else None ): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A MobileBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer: """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer: """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens __all__ = ["MobileBertTokenizer"] ```
====================================================================================================================================================== SOURCE CODE FILE: tokenization_mobilebert_fast.py LINES: 1 SIZE: 7.65 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilebert\tokenization_mobilebert_fast.py ENCODING: utf-8 ```py # coding=utf-8 # # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MobileBERT.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with BERT->MobileBERT,Bert->MobileBert class MobileBertTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" MobileBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original MobileBERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = MobileBertTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) self.do_lower_case = do_lower_case def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A MobileBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1 is not None: output += token_ids_1 + [self.sep_token_id] return output def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) __all__ = ["MobileBertTokenizerFast"] ```
==================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.08 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilenet_v1\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mobilenet_v1 import * from .feature_extraction_mobilenet_v1 import * from .image_processing_mobilenet_v1 import * from .modeling_mobilenet_v1 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
====================================================================================================================================================== SOURCE CODE FILE: configuration_mobilenet_v1.py LINES: 1 SIZE: 4.81 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilenet_v1\configuration_mobilenet_v1.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MobileNetV1 model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class MobileNetV1Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileNetV1Model`]. It is used to instantiate a MobileNetV1 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileNetV1 [google/mobilenet_v1_1.0_224](https://huggingface.co/google/mobilenet_v1_1.0_224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. depth_multiplier (`float`, *optional*, defaults to 1.0): Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32 channels. This is sometimes also called "alpha" or "width multiplier". min_depth (`int`, *optional*, defaults to 8): All layers will have at least this many channels. hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`): The non-linear activation function (function or string) in the Transformer encoder and convolution layers. tf_padding (`bool`, *optional*, defaults to `True`): Whether to use TensorFlow padding rules on the convolution layers. classifier_dropout_prob (`float`, *optional*, defaults to 0.999): The dropout ratio for attached classifiers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 0.001): The epsilon used by the layer normalization layers. Example: ```python >>> from transformers import MobileNetV1Config, MobileNetV1Model >>> # Initializing a "mobilenet_v1_1.0_224" style configuration >>> configuration = MobileNetV1Config() >>> # Initializing a model from the "mobilenet_v1_1.0_224" style configuration >>> model = MobileNetV1Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mobilenet_v1" def __init__( self, num_channels=3, image_size=224, depth_multiplier=1.0, min_depth=8, hidden_act="relu6", tf_padding=True, classifier_dropout_prob=0.999, initializer_range=0.02, layer_norm_eps=0.001, **kwargs, ): super().__init__(**kwargs) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero.") self.num_channels = num_channels self.image_size = image_size self.depth_multiplier = depth_multiplier self.min_depth = min_depth self.hidden_act = hidden_act self.tf_padding = tf_padding self.classifier_dropout_prob = classifier_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps class MobileNetV1OnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})]) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})]) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) @property def atol_for_validation(self) -> float: return 1e-4 __all__ = ["MobileNetV1Config", "MobileNetV1OnnxConfig"] ```
=========================================================================================================================================================== SOURCE CODE FILE: feature_extraction_mobilenet_v1.py LINES: 1 SIZE: 1.24 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilenet_v1\feature_extraction_mobilenet_v1.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for MobileNetV1.""" import warnings from ...utils import logging from .image_processing_mobilenet_v1 import MobileNetV1ImageProcessor logger = logging.get_logger(__name__) class MobileNetV1FeatureExtractor(MobileNetV1ImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class MobileNetV1FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileNetV1ImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs) __all__ = ["MobileNetV1FeatureExtractor"] ```
========================================================================================================================================================= SOURCE CODE FILE: image_processing_mobilenet_v1.py LINES: 1 SIZE: 14.93 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilenet_v1\image_processing_mobilenet_v1.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for MobileNetV1.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, filter_out_non_signature_kwargs, logging logger = logging.get_logger(__name__) class MobileNetV1ImageProcessor(BaseImageProcessor): r""" Constructs a MobileNetV1 image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize: Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 256} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size) self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD # Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ default_to_square = True if "shortest_edge" in size: size = size["shortest_edge"] default_to_square = False elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") output_size = get_resize_output_image_size( image, size=size, default_to_square=default_to_square, input_data_format=input_data_format, ) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: Optional[bool] = None, crop_size: Dict[str, int] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size) do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) all_images = [] for image in images: if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize( image=image, mean=image_mean, std=image_std, input_data_format=input_data_format ) all_images.append(image) images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in all_images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) __all__ = ["MobileNetV1ImageProcessor"] ```
================================================================================================================================================= SOURCE CODE FILE: modeling_mobilenet_v1.py LINES: 1 SIZE: 18.31 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilenet_v1\modeling_mobilenet_v1.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MobileNetV1 model.""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_v1 import MobileNetV1Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MobileNetV1Config" # Base docstring _CHECKPOINT_FOR_DOC = "google/mobilenet_v1_1.0_224" _EXPECTED_OUTPUT_SHAPE = [1, 1024, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "google/mobilenet_v1_1.0_224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" def _build_tf_to_pytorch_map(model, config, tf_weights=None): """ A map of modules from TF to PyTorch. """ tf_to_pt_map = {} if isinstance(model, MobileNetV1ForImageClassification): backbone = model.mobilenet_v1 else: backbone = model prefix = "MobilenetV1/Conv2d_0/" tf_to_pt_map[prefix + "weights"] = backbone.conv_stem.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = backbone.conv_stem.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = backbone.conv_stem.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.normalization.running_var for i in range(13): tf_index = i + 1 pt_index = i * 2 pointer = backbone.layer[pt_index] prefix = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" tf_to_pt_map[prefix + "depthwise_weights"] = pointer.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = pointer.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = pointer.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.normalization.running_var pointer = backbone.layer[pt_index + 1] prefix = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" tf_to_pt_map[prefix + "weights"] = pointer.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = pointer.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = pointer.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.normalization.running_var if isinstance(model, MobileNetV1ForImageClassification): prefix = "MobilenetV1/Logits/Conv2d_1c_1x1/" tf_to_pt_map[prefix + "weights"] = model.classifier.weight tf_to_pt_map[prefix + "biases"] = model.classifier.bias return tf_to_pt_map def load_tf_weights_in_mobilenet_v1(model, config, tf_checkpoint_path): """Load TensorFlow checkpoints in a PyTorch model.""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model init_vars = tf.train.list_variables(tf_checkpoint_path) tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_checkpoint_path, name) tf_weights[name] = array # Build TF to PyTorch weights loading map tf_to_pt_map = _build_tf_to_pytorch_map(model, config, tf_weights) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}") if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping") continue array = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise") array = np.transpose(array, (2, 3, 0, 1)) elif "weights" in name: logger.info("Transposing") if len(pointer.shape) == 2: # copying into linear layer array = array.squeeze().transpose() else: array = np.transpose(array, (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") logger.info(f"Initialize PyTorch weight {name} {array.shape}") pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + "/RMSProp", None) tf_weights.pop(name + "/RMSProp_1", None) tf_weights.pop(name + "/ExponentialMovingAverage", None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") return model def apply_tf_padding(features: torch.Tensor, conv_layer: nn.Conv2d) -> torch.Tensor: """ Apply TensorFlow-style "SAME" padding to a convolution layer. See the notes at: https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2 """ in_height, in_width = features.shape[-2:] stride_height, stride_width = conv_layer.stride kernel_height, kernel_width = conv_layer.kernel_size if in_height % stride_height == 0: pad_along_height = max(kernel_height - stride_height, 0) else: pad_along_height = max(kernel_height - (in_height % stride_height), 0) if in_width % stride_width == 0: pad_along_width = max(kernel_width - stride_width, 0) else: pad_along_width = max(kernel_width - (in_width % stride_width), 0) pad_left = pad_along_width // 2 pad_right = pad_along_width - pad_left pad_top = pad_along_height // 2 pad_bottom = pad_along_height - pad_top padding = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(features, padding, "constant", 0.0) class MobileNetV1ConvLayer(nn.Module): def __init__( self, config: MobileNetV1Config, in_channels: int, out_channels: int, kernel_size: int, stride: Optional[int] = 1, groups: Optional[int] = 1, bias: bool = False, use_normalization: Optional[bool] = True, use_activation: Optional[bool or str] = True, ) -> None: super().__init__() self.config = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") padding = 0 if config.tf_padding else int((kernel_size - 1) / 2) self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=config.layer_norm_eps, momentum=0.9997, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: if self.config.tf_padding: features = apply_tf_padding(features, self.convolution) features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features class MobileNetV1PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileNetV1Config load_tf_weights = load_tf_weights_in_mobilenet_v1 base_model_prefix = "mobilenet_v1" main_input_name = "pixel_values" supports_gradient_checkpointing = False _no_split_modules = [] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.BatchNorm2d): module.bias.data.zero_() module.weight.data.fill_(1.0) MOBILENET_V1_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILENET_V1_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.", MOBILENET_V1_START_DOCSTRING, ) class MobileNetV1Model(MobileNetV1PreTrainedModel): def __init__(self, config: MobileNetV1Config, add_pooling_layer: bool = True): super().__init__(config) self.config = config depth = 32 out_channels = max(int(depth * config.depth_multiplier), config.min_depth) self.conv_stem = MobileNetV1ConvLayer( config, in_channels=config.num_channels, out_channels=out_channels, kernel_size=3, stride=2, ) strides = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] self.layer = nn.ModuleList() for i in range(13): in_channels = out_channels if strides[i] == 2 or i == 0: depth *= 2 out_channels = max(int(depth * config.depth_multiplier), config.min_depth) self.layer.append( MobileNetV1ConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=strides[i], groups=in_channels, ) ) self.layer.append( MobileNetV1ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, ) ) self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): raise NotImplementedError @add_start_docstrings_to_model_forward(MOBILENET_V1_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.conv_stem(pixel_values) all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) last_hidden_state = hidden_states if self.pooler is not None: pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1) else: pooled_output = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=all_hidden_states, ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, MOBILENET_V1_START_DOCSTRING, ) class MobileNetV1ForImageClassification(MobileNetV1PreTrainedModel): def __init__(self, config: MobileNetV1Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilenet_v1 = MobileNetV1Model(config) last_hidden_size = self.mobilenet_v1.layer[-1].convolution.out_channels # Classifier head self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True) self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILENET_V1_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilenet_v1(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(self.dropout(pooled_output)) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) __all__ = [ "MobileNetV1ForImageClassification", "MobileNetV1Model", "MobileNetV1PreTrainedModel", "load_tf_weights_in_mobilenet_v1", ] ```
==================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.08 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilenet_v2\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mobilenet_v2 import * from .feature_extraction_mobilenet_v2 import * from .image_processing_mobilenet_v2 import * from .modeling_mobilenet_v2 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
====================================================================================================================================================== SOURCE CODE FILE: configuration_mobilenet_v2.py LINES: 1 SIZE: 6.67 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilenet_v2\configuration_mobilenet_v2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MobileNetV2 model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class MobileNetV2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileNetV2Model`]. It is used to instantiate a MobileNetV2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileNetV2 [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. depth_multiplier (`float`, *optional*, defaults to 1.0): Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32 channels. This is sometimes also called "alpha" or "width multiplier". depth_divisible_by (`int`, *optional*, defaults to 8): The number of channels in each layer will always be a multiple of this number. min_depth (`int`, *optional*, defaults to 8): All layers will have at least this many channels. expand_ratio (`float`, *optional*, defaults to 6.0): The number of output channels of the first layer in each block is input channels times expansion ratio. output_stride (`int`, *optional*, defaults to 32): The ratio between the spatial resolution of the input and output feature maps. By default the model reduces the input dimensions by a factor of 32. If `output_stride` is 8 or 16, the model uses dilated convolutions on the depthwise layers instead of regular convolutions, so that the feature maps never become more than 8x or 16x smaller than the input image. first_layer_is_expansion (`bool`, *optional*, defaults to `True`): True if the very first convolution layer is also the expansion layer for the first expansion block. finegrained_output (`bool`, *optional*, defaults to `True`): If true, the number of output channels in the final convolution layer will stay large (1280) even if `depth_multiplier` is less than 1. hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`): The non-linear activation function (function or string) in the Transformer encoder and convolution layers. tf_padding (`bool`, *optional*, defaults to `True`): Whether to use TensorFlow padding rules on the convolution layers. classifier_dropout_prob (`float`, *optional*, defaults to 0.8): The dropout ratio for attached classifiers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 0.001): The epsilon used by the layer normalization layers. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. Example: ```python >>> from transformers import MobileNetV2Config, MobileNetV2Model >>> # Initializing a "mobilenet_v2_1.0_224" style configuration >>> configuration = MobileNetV2Config() >>> # Initializing a model from the "mobilenet_v2_1.0_224" style configuration >>> model = MobileNetV2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mobilenet_v2" def __init__( self, num_channels=3, image_size=224, depth_multiplier=1.0, depth_divisible_by=8, min_depth=8, expand_ratio=6.0, output_stride=32, first_layer_is_expansion=True, finegrained_output=True, hidden_act="relu6", tf_padding=True, classifier_dropout_prob=0.8, initializer_range=0.02, layer_norm_eps=0.001, semantic_loss_ignore_index=255, **kwargs, ): super().__init__(**kwargs) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero.") self.num_channels = num_channels self.image_size = image_size self.depth_multiplier = depth_multiplier self.depth_divisible_by = depth_divisible_by self.min_depth = min_depth self.expand_ratio = expand_ratio self.output_stride = output_stride self.first_layer_is_expansion = first_layer_is_expansion self.finegrained_output = finegrained_output self.hidden_act = hidden_act self.tf_padding = tf_padding self.classifier_dropout_prob = classifier_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.semantic_loss_ignore_index = semantic_loss_ignore_index class MobileNetV2OnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})]) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})]) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) @property def atol_for_validation(self) -> float: return 1e-4 __all__ = ["MobileNetV2Config", "MobileNetV2OnnxConfig"] ```
=========================================================================================================================================================== SOURCE CODE FILE: feature_extraction_mobilenet_v2.py LINES: 1 SIZE: 1.24 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilenet_v2\feature_extraction_mobilenet_v2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for MobileNetV2.""" import warnings from ...utils import logging from .image_processing_mobilenet_v2 import MobileNetV2ImageProcessor logger = logging.get_logger(__name__) class MobileNetV2FeatureExtractor(MobileNetV2ImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class MobileNetV2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileNetV2ImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs) __all__ = ["MobileNetV2FeatureExtractor"] ```
========================================================================================================================================================= SOURCE CODE FILE: image_processing_mobilenet_v2.py LINES: 1 SIZE: 17.23 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilenet_v2\image_processing_mobilenet_v2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for MobileNetV2.""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, filter_out_non_signature_kwargs, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class MobileNetV2ImageProcessor(BaseImageProcessor): r""" Constructs a MobileNetV2 image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize: Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 256} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD # Copied from transformers.models.mobilenet_v1.image_processing_mobilenet_v1.MobileNetV1ImageProcessor.resize def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ default_to_square = True if "shortest_edge" in size: size = size["shortest_edge"] default_to_square = False elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") output_size = get_resize_output_image_size( image, size=size, default_to_square=default_to_square, input_data_format=input_data_format, ) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: Optional[bool] = None, crop_size: Dict[str, int] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) all_images = [] for image in images: if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize( image=image, mean=image_mean, std=image_std, input_data_format=input_data_format ) all_images.append(image) images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in all_images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) # Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->MobileNetV2 def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): """ Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`MobileNetV2ForSemanticSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple]` of length `batch_size`, *optional*): List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ # TODO: add support for other frameworks logits = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(target_sizes): target_sizes = target_sizes.numpy() semantic_segmentation = [] for idx in range(len(logits)): resized_logits = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = logits.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation __all__ = ["MobileNetV2ImageProcessor"] ```
================================================================================================================================================= SOURCE CODE FILE: modeling_mobilenet_v2.py LINES: 1 SIZE: 33.86 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilenet_v2\modeling_mobilenet_v2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MobileNetV2 model.""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilenet_v2 import MobileNetV2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MobileNetV2Config" # Base docstring _CHECKPOINT_FOR_DOC = "google/mobilenet_v2_1.0_224" _EXPECTED_OUTPUT_SHAPE = [1, 1280, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "google/mobilenet_v2_1.0_224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" def _build_tf_to_pytorch_map(model, config, tf_weights=None): """ A map of modules from TF to PyTorch. """ tf_to_pt_map = {} if isinstance(model, (MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation)): backbone = model.mobilenet_v2 else: backbone = model # Use the EMA weights if available def ema(x): return x + "/ExponentialMovingAverage" if x + "/ExponentialMovingAverage" in tf_weights else x prefix = "MobilenetV2/Conv/" tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_stem.first_conv.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.first_conv.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.first_conv.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.first_conv.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.first_conv.normalization.running_var prefix = "MobilenetV2/expanded_conv/depthwise/" tf_to_pt_map[ema(prefix + "depthwise_weights")] = backbone.conv_stem.conv_3x3.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.conv_3x3.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.conv_3x3.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.conv_3x3.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.conv_3x3.normalization.running_var prefix = "MobilenetV2/expanded_conv/project/" tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_stem.reduce_1x1.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.reduce_1x1.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.reduce_1x1.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.reduce_1x1.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.reduce_1x1.normalization.running_var for i in range(16): tf_index = i + 1 pt_index = i pointer = backbone.layer[pt_index] prefix = f"MobilenetV2/expanded_conv_{tf_index}/expand/" tf_to_pt_map[ema(prefix + "weights")] = pointer.expand_1x1.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.expand_1x1.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.expand_1x1.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.expand_1x1.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.expand_1x1.normalization.running_var prefix = f"MobilenetV2/expanded_conv_{tf_index}/depthwise/" tf_to_pt_map[ema(prefix + "depthwise_weights")] = pointer.conv_3x3.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.conv_3x3.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.conv_3x3.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.conv_3x3.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.conv_3x3.normalization.running_var prefix = f"MobilenetV2/expanded_conv_{tf_index}/project/" tf_to_pt_map[ema(prefix + "weights")] = pointer.reduce_1x1.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.reduce_1x1.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.reduce_1x1.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.reduce_1x1.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.reduce_1x1.normalization.running_var prefix = "MobilenetV2/Conv_1/" tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_1x1.convolution.weight tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_1x1.normalization.bias tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_1x1.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_1x1.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_1x1.normalization.running_var if isinstance(model, MobileNetV2ForImageClassification): prefix = "MobilenetV2/Logits/Conv2d_1c_1x1/" tf_to_pt_map[ema(prefix + "weights")] = model.classifier.weight tf_to_pt_map[ema(prefix + "biases")] = model.classifier.bias if isinstance(model, MobileNetV2ForSemanticSegmentation): prefix = "image_pooling/" tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_pool.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_pool.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_pool.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = model.segmentation_head.conv_pool.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = ( model.segmentation_head.conv_pool.normalization.running_var ) prefix = "aspp0/" tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_aspp.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_aspp.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_aspp.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = model.segmentation_head.conv_aspp.normalization.running_mean tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = ( model.segmentation_head.conv_aspp.normalization.running_var ) prefix = "concat_projection/" tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_projection.convolution.weight tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_projection.normalization.bias tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_projection.normalization.weight tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = ( model.segmentation_head.conv_projection.normalization.running_mean ) tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = ( model.segmentation_head.conv_projection.normalization.running_var ) prefix = "logits/semantic/" tf_to_pt_map[ema(prefix + "weights")] = model.segmentation_head.classifier.convolution.weight tf_to_pt_map[ema(prefix + "biases")] = model.segmentation_head.classifier.convolution.bias return tf_to_pt_map def load_tf_weights_in_mobilenet_v2(model, config, tf_checkpoint_path): """Load TensorFlow checkpoints in a PyTorch model.""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model init_vars = tf.train.list_variables(tf_checkpoint_path) tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_checkpoint_path, name) tf_weights[name] = array # Build TF to PyTorch weights loading map tf_to_pt_map = _build_tf_to_pytorch_map(model, config, tf_weights) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}") if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping") continue array = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise") array = np.transpose(array, (2, 3, 0, 1)) elif "weights" in name: logger.info("Transposing") if len(pointer.shape) == 2: # copying into linear layer array = array.squeeze().transpose() else: array = np.transpose(array, (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") logger.info(f"Initialize PyTorch weight {name} {array.shape}") pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + "/RMSProp", None) tf_weights.pop(name + "/RMSProp_1", None) tf_weights.pop(name + "/ExponentialMovingAverage", None) tf_weights.pop(name + "/Momentum", None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") return model def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: """ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the original TensorFlow repo. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_value < 0.9 * value: new_value += divisor return int(new_value) def apply_depth_multiplier(config: MobileNetV2Config, channels: int) -> int: return make_divisible(int(round(channels * config.depth_multiplier)), config.depth_divisible_by, config.min_depth) def apply_tf_padding(features: torch.Tensor, conv_layer: nn.Conv2d) -> torch.Tensor: """ Apply TensorFlow-style "SAME" padding to a convolution layer. See the notes at: https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2 """ in_height = int(features.shape[-2]) in_width = int(features.shape[-1]) stride_height, stride_width = conv_layer.stride kernel_height, kernel_width = conv_layer.kernel_size dilation_height, dilation_width = conv_layer.dilation if in_height % stride_height == 0: pad_along_height = max(kernel_height - stride_height, 0) else: pad_along_height = max(kernel_height - (in_height % stride_height), 0) if in_width % stride_width == 0: pad_along_width = max(kernel_width - stride_width, 0) else: pad_along_width = max(kernel_width - (in_width % stride_width), 0) pad_left = pad_along_width // 2 pad_right = pad_along_width - pad_left pad_top = pad_along_height // 2 pad_bottom = pad_along_height - pad_top padding = ( pad_left * dilation_width, pad_right * dilation_width, pad_top * dilation_height, pad_bottom * dilation_height, ) return nn.functional.pad(features, padding, "constant", 0.0) class MobileNetV2ConvLayer(nn.Module): def __init__( self, config: MobileNetV2Config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, layer_norm_eps: Optional[float] = None, ) -> None: super().__init__() self.config = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") padding = 0 if config.tf_padding else int((kernel_size - 1) / 2) * dilation self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=config.layer_norm_eps if layer_norm_eps is None else layer_norm_eps, momentum=0.997, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: if self.config.tf_padding: features = apply_tf_padding(features, self.convolution) features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features class MobileNetV2InvertedResidual(nn.Module): def __init__( self, config: MobileNetV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1 ) -> None: super().__init__() expanded_channels = make_divisible( int(round(in_channels * config.expand_ratio)), config.depth_divisible_by, config.min_depth ) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = MobileNetV2ConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileNetV2ConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, ) self.reduce_1x1 = MobileNetV2ConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: residual = features features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return residual + features if self.use_residual else features class MobileNetV2Stem(nn.Module): def __init__(self, config: MobileNetV2Config, in_channels: int, expanded_channels: int, out_channels: int) -> None: super().__init__() # The very first layer is a regular 3x3 convolution with stride 2 that expands to 32 channels. # All other expansion layers use the expansion factor to compute the number of output channels. self.first_conv = MobileNetV2ConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=3, stride=2, ) if config.first_layer_is_expansion: self.expand_1x1 = None else: self.expand_1x1 = MobileNetV2ConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileNetV2ConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=1, groups=expanded_channels, ) self.reduce_1x1 = MobileNetV2ConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: features = self.first_conv(features) if self.expand_1x1 is not None: features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return features class MobileNetV2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileNetV2Config load_tf_weights = load_tf_weights_in_mobilenet_v2 base_model_prefix = "mobilenet_v2" main_input_name = "pixel_values" supports_gradient_checkpointing = False _no_split_modules = [] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.BatchNorm2d): module.bias.data.zero_() module.weight.data.fill_(1.0) MOBILENET_V2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILENET_V2_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV2ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileNetV2 model outputting raw hidden-states without any specific head on top.", MOBILENET_V2_START_DOCSTRING, ) class MobileNetV2Model(MobileNetV2PreTrainedModel): def __init__(self, config: MobileNetV2Config, add_pooling_layer: bool = True): super().__init__(config) self.config = config # Output channels for the projection layers channels = [16, 24, 24, 32, 32, 32, 64, 64, 64, 64, 96, 96, 96, 160, 160, 160, 320] channels = [apply_depth_multiplier(config, x) for x in channels] # Strides for the depthwise layers strides = [2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1] self.conv_stem = MobileNetV2Stem( config, in_channels=config.num_channels, expanded_channels=apply_depth_multiplier(config, 32), out_channels=channels[0], ) current_stride = 2 # first conv layer has stride 2 dilation = 1 self.layer = nn.ModuleList() for i in range(16): # Keep making the feature maps smaller or use dilated convolution? if current_stride == config.output_stride: layer_stride = 1 layer_dilation = dilation dilation *= strides[i] # larger dilation starts in next block else: layer_stride = strides[i] layer_dilation = 1 current_stride *= layer_stride self.layer.append( MobileNetV2InvertedResidual( config, in_channels=channels[i], out_channels=channels[i + 1], stride=layer_stride, dilation=layer_dilation, ) ) if config.finegrained_output and config.depth_multiplier < 1.0: output_channels = 1280 else: output_channels = apply_depth_multiplier(config, 1280) self.conv_1x1 = MobileNetV2ConvLayer( config, in_channels=channels[-1], out_channels=output_channels, kernel_size=1, ) self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): raise NotImplementedError @add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.conv_stem(pixel_values) all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) last_hidden_state = self.conv_1x1(hidden_states) if self.pooler is not None: pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1) else: pooled_output = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=all_hidden_states, ) @add_start_docstrings( """ MobileNetV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, MOBILENET_V2_START_DOCSTRING, ) class MobileNetV2ForImageClassification(MobileNetV2PreTrainedModel): def __init__(self, config: MobileNetV2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilenet_v2 = MobileNetV2Model(config) last_hidden_size = self.mobilenet_v2.conv_1x1.convolution.out_channels # Classifier head self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True) self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilenet_v2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(self.dropout(pooled_output)) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) class MobileNetV2DeepLabV3Plus(nn.Module): """ The neural network from the paper "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation" https://arxiv.org/abs/1802.02611 """ def __init__(self, config: MobileNetV2Config) -> None: super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(output_size=1) self.conv_pool = MobileNetV2ConvLayer( config, in_channels=apply_depth_multiplier(config, 320), out_channels=256, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", layer_norm_eps=1e-5, ) self.conv_aspp = MobileNetV2ConvLayer( config, in_channels=apply_depth_multiplier(config, 320), out_channels=256, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", layer_norm_eps=1e-5, ) self.conv_projection = MobileNetV2ConvLayer( config, in_channels=512, out_channels=256, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", layer_norm_eps=1e-5, ) self.dropout = nn.Dropout2d(config.classifier_dropout_prob) self.classifier = MobileNetV2ConvLayer( config, in_channels=256, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, ) def forward(self, features: torch.Tensor) -> torch.Tensor: spatial_size = features.shape[-2:] features_pool = self.avg_pool(features) features_pool = self.conv_pool(features_pool) features_pool = nn.functional.interpolate( features_pool, size=spatial_size, mode="bilinear", align_corners=True ) features_aspp = self.conv_aspp(features) features = torch.cat([features_pool, features_aspp], dim=1) features = self.conv_projection(features) features = self.dropout(features) features = self.classifier(features) return features @add_start_docstrings( """ MobileNetV2 model with a semantic segmentation head on top, e.g. for Pascal VOC. """, MOBILENET_V2_START_DOCSTRING, ) class MobileNetV2ForSemanticSegmentation(MobileNetV2PreTrainedModel): def __init__(self, config: MobileNetV2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilenet_v2 = MobileNetV2Model(config, add_pooling_layer=False) self.segmentation_head = MobileNetV2DeepLabV3Plus(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, MobileNetV2ForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") >>> model = MobileNetV2ForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") outputs = self.mobilenet_v2( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states[-1]) loss = None if labels is not None: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, ) __all__ = [ "MobileNetV2ForImageClassification", "MobileNetV2ForSemanticSegmentation", "MobileNetV2Model", "MobileNetV2PreTrainedModel", "load_tf_weights_in_mobilenet_v2", ] ```
================================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.11 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilevit\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mobilevit import * from .feature_extraction_mobilevit import * from .image_processing_mobilevit import * from .modeling_mobilevit import * from .modeling_tf_mobilevit import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
================================================================================================================================================ SOURCE CODE FILE: configuration_mobilevit.py LINES: 1 SIZE: 7.41 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilevit\configuration_mobilevit.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MobileViT model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class MobileViTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileViTModel`]. It is used to instantiate a MobileViT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileViT [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 256): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 2): The size (resolution) of each patch. hidden_sizes (`List[int]`, *optional*, defaults to `[144, 192, 240]`): Dimensionality (hidden size) of the Transformer encoders at each stage. neck_hidden_sizes (`List[int]`, *optional*, defaults to `[16, 32, 64, 96, 128, 160, 640]`): The number of channels for the feature maps of the backbone. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. mlp_ratio (`float`, *optional*, defaults to 2.0): The ratio of the number of channels in the output of the MLP to the number of channels in the input. expand_ratio (`float`, *optional*, defaults to 4.0): Expansion factor for the MobileNetv2 layers. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the Transformer encoder and convolution layers. conv_kernel_size (`int`, *optional*, defaults to 3): The size of the convolutional kernel in the MobileViT layer. output_stride (`int`, *optional*, defaults to 32): The ratio of the spatial resolution of the output to the resolution of the input image. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the Transformer encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for attached classifiers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. aspp_out_channels (`int`, *optional*, defaults to 256): Number of output channels used in the ASPP layer for semantic segmentation. atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`): Dilation (atrous) factors used in the ASPP layer for semantic segmentation. aspp_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the ASPP layer for semantic segmentation. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. Example: ```python >>> from transformers import MobileViTConfig, MobileViTModel >>> # Initializing a mobilevit-small style configuration >>> configuration = MobileViTConfig() >>> # Initializing a model from the mobilevit-small style configuration >>> model = MobileViTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mobilevit" def __init__( self, num_channels=3, image_size=256, patch_size=2, hidden_sizes=[144, 192, 240], neck_hidden_sizes=[16, 32, 64, 96, 128, 160, 640], num_attention_heads=4, mlp_ratio=2.0, expand_ratio=4.0, hidden_act="silu", conv_kernel_size=3, output_stride=32, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.0, classifier_dropout_prob=0.1, initializer_range=0.02, layer_norm_eps=1e-5, qkv_bias=True, aspp_out_channels=256, atrous_rates=[6, 12, 18], aspp_dropout_prob=0.1, semantic_loss_ignore_index=255, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.hidden_sizes = hidden_sizes self.neck_hidden_sizes = neck_hidden_sizes self.num_attention_heads = num_attention_heads self.mlp_ratio = mlp_ratio self.expand_ratio = expand_ratio self.hidden_act = hidden_act self.conv_kernel_size = conv_kernel_size self.output_stride = output_stride self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.classifier_dropout_prob = classifier_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias # decode head attributes for semantic segmentation self.aspp_out_channels = aspp_out_channels self.atrous_rates = atrous_rates self.aspp_dropout_prob = aspp_dropout_prob self.semantic_loss_ignore_index = semantic_loss_ignore_index class MobileViTOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})]) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})]) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) @property def atol_for_validation(self) -> float: return 1e-4 __all__ = ["MobileViTConfig", "MobileViTOnnxConfig"] ```
===================================================================================================================================================== SOURCE CODE FILE: feature_extraction_mobilevit.py LINES: 1 SIZE: 1.22 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilevit\feature_extraction_mobilevit.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for MobileViT.""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor logger = logging.get_logger(__name__) class MobileViTFeatureExtractor(MobileViTImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs) __all__ = ["MobileViTFeatureExtractor"] ```
=================================================================================================================================================== SOURCE CODE FILE: image_processing_mobilevit.py LINES: 1 SIZE: 21.12 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilevit\image_processing_mobilevit.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for MobileViT.""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, get_resize_output_image_size, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import ( TensorType, filter_out_non_signature_kwargs, is_torch_available, is_torch_tensor, is_vision_available, logging, ) if is_vision_available(): import PIL if is_torch_available(): import torch logger = logging.get_logger(__name__) class MobileViTImageProcessor(BaseImageProcessor): r""" Constructs a MobileViT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Controls the size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`): Desired output size `(size["height"], size["width"])` when applying center-cropping. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_flip_channel_order (`bool`, *optional*, defaults to `True`): Whether to flip the color channels from RGB to BGR. Can be overridden by the `do_flip_channel_order` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_flip_channel_order: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_flip_channel_order = do_flip_channel_order # Copied from transformers.models.mobilenet_v1.image_processing_mobilenet_v1.MobileNetV1ImageProcessor.resize with PILImageResampling.BICUBIC->PILImageResampling.BILINEAR def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ default_to_square = True if "shortest_edge" in size: size = size["shortest_edge"] default_to_square = False elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") output_size = get_resize_output_image_size( image, size=size, default_to_square=default_to_square, input_data_format=input_data_format, ) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def flip_channel_order( self, image: np.ndarray, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Flip the color channels from RGB to BGR or vice versa. Args: image (`np.ndarray`): The image, represented as a numpy array. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ return flip_channel_order(image, data_format=data_format, input_data_format=input_data_format) def __call__(self, images, segmentation_maps=None, **kwargs): """ Preprocesses a batch of images and optionally segmentation maps. Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be passed in as positional arguments. """ return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs) def _preprocess( self, image: ImageInput, do_resize: bool, do_rescale: bool, do_center_crop: bool, do_flip_channel_order: bool, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, rescale_factor: Optional[float] = None, crop_size: Optional[Dict[str, int]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) if do_flip_channel_order: image = self.flip_channel_order(image, input_data_format=input_data_format) return image def _preprocess_image( self, image: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_center_crop: Optional[bool] = None, crop_size: Dict[str, int] = None, do_flip_channel_order: Optional[bool] = None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) if do_rescale and is_scaled_image(image): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) image = self._preprocess( image=image, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_center_crop=do_center_crop, crop_size=crop_size, do_flip_channel_order=do_flip_channel_order, input_data_format=input_data_format, ) image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def _preprocess_mask( self, segmentation_map: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, do_center_crop: Optional[bool] = None, crop_size: Dict[str, int] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single mask.""" segmentation_map = to_numpy_array(segmentation_map) # Add channel dimension if missing - needed for certain transformations if segmentation_map.ndim == 2: added_channel_dim = True segmentation_map = segmentation_map[None, ...] input_data_format = ChannelDimension.FIRST else: added_channel_dim = False if input_data_format is None: input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1) segmentation_map = self._preprocess( image=segmentation_map, do_resize=do_resize, size=size, resample=PILImageResampling.NEAREST, do_rescale=False, do_center_crop=do_center_crop, crop_size=crop_size, do_flip_channel_order=False, input_data_format=input_data_format, ) # Remove extra channel dimension if added for processing if added_channel_dim: segmentation_map = segmentation_map.squeeze(0) segmentation_map = segmentation_map.astype(np.int64) return segmentation_map @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, segmentation_maps: Optional[ImageInput] = None, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_center_crop: Optional[bool] = None, crop_size: Dict[str, int] = None, do_flip_channel_order: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. segmentation_maps (`ImageInput`, *optional*): Segmentation map to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image by rescale factor. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop if `do_center_crop` is set to `True`. do_flip_channel_order (`bool`, *optional*, defaults to `self.do_flip_channel_order`): Whether to flip the channel order of the image. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_flip_channel_order = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) if segmentation_maps is not None: segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if segmentation_maps is not None and not valid_images(segmentation_maps): raise ValueError( "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) images = [ self._preprocess_image( image=img, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_center_crop=do_center_crop, crop_size=crop_size, do_flip_channel_order=do_flip_channel_order, data_format=data_format, input_data_format=input_data_format, ) for img in images ] data = {"pixel_values": images} if segmentation_maps is not None: segmentation_maps = [ self._preprocess_mask( segmentation_map=segmentation_map, do_resize=do_resize, size=size, do_center_crop=do_center_crop, crop_size=crop_size, input_data_format=input_data_format, ) for segmentation_map in segmentation_maps ] data["labels"] = segmentation_maps return BatchFeature(data=data, tensor_type=return_tensors) # Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->MobileViT def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): """ Converts the output of [`MobileViTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`MobileViTForSemanticSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple]` of length `batch_size`, *optional*): List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ # TODO: add support for other frameworks logits = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(target_sizes): target_sizes = target_sizes.numpy() semantic_segmentation = [] for idx in range(len(logits)): resized_logits = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = logits.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation __all__ = ["MobileViTImageProcessor"] ```
=========================================================================================================================================== SOURCE CODE FILE: modeling_mobilevit.py LINES: 1 SIZE: 39.33 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilevit\modeling_mobilevit.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE """PyTorch MobileViT model.""" import math from typing import Dict, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, torch_int, ) from .configuration_mobilevit import MobileViTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MobileViTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "apple/mobilevit-small" _EXPECTED_OUTPUT_SHAPE = [1, 640, 8, 8] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "apple/mobilevit-small" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: """ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the original TensorFlow repo. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_value < 0.9 * value: new_value += divisor return int(new_value) class MobileViTConvLayer(nn.Module): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, ) -> None: super().__init__() padding = int((kernel_size - 1) / 2) * dilation if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features class MobileViTInvertedResidual(nn.Module): """ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, dilation: int = 1 ) -> None: super().__init__() expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileViTConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, ) self.reduce_1x1 = MobileViTConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: residual = features features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return residual + features if self.use_residual else features class MobileViTMobileNetLayer(nn.Module): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1 ) -> None: super().__init__() self.layer = nn.ModuleList() for i in range(num_stages): layer = MobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if i == 0 else 1, ) self.layer.append(layer) in_channels = out_channels def forward(self, features: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: features = layer_module(features) return features class MobileViTSelfAttention(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() if hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size {hidden_size} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class MobileViTSelfOutput(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class MobileViTAttention(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() self.attention = MobileViTSelfAttention(config, hidden_size) self.output = MobileViTSelfOutput(config, hidden_size) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: self_outputs = self.attention(hidden_states) attention_output = self.output(self_outputs) return attention_output class MobileViTIntermediate(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.dense = nn.Linear(hidden_size, intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class MobileViTOutput(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.dense = nn.Linear(intermediate_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class MobileViTTransformerLayer(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.attention = MobileViTAttention(config, hidden_size) self.intermediate = MobileViTIntermediate(config, hidden_size, intermediate_size) self.output = MobileViTOutput(config, hidden_size, intermediate_size) self.layernorm_before = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: attention_output = self.attention(self.layernorm_before(hidden_states)) hidden_states = attention_output + hidden_states layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output, hidden_states) return layer_output class MobileViTTransformer(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, num_stages: int) -> None: super().__init__() self.layer = nn.ModuleList() for _ in range(num_stages): transformer_layer = MobileViTTransformerLayer( config, hidden_size=hidden_size, intermediate_size=int(hidden_size * config.mlp_ratio), ) self.layer.append(transformer_layer) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: hidden_states = layer_module(hidden_states) return hidden_states class MobileViTLayer(nn.Module): """ MobileViT block: https://arxiv.org/abs/2110.02178 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, hidden_size: int, num_stages: int, dilation: int = 1, ) -> None: super().__init__() self.patch_width = config.patch_size self.patch_height = config.patch_size if stride == 2: self.downsampling_layer = MobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if dilation == 1 else 1, dilation=dilation // 2 if dilation > 1 else 1, ) in_channels = out_channels else: self.downsampling_layer = None self.conv_kxk = MobileViTConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, ) self.conv_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=hidden_size, kernel_size=1, use_normalization=False, use_activation=False, ) self.transformer = MobileViTTransformer( config, hidden_size=hidden_size, num_stages=num_stages, ) self.layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) self.conv_projection = MobileViTConvLayer( config, in_channels=hidden_size, out_channels=in_channels, kernel_size=1 ) self.fusion = MobileViTConvLayer( config, in_channels=2 * in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size ) def unfolding(self, features: torch.Tensor) -> Tuple[torch.Tensor, Dict]: patch_width, patch_height = self.patch_width, self.patch_height patch_area = int(patch_width * patch_height) batch_size, channels, orig_height, orig_width = features.shape new_height = ( torch_int(torch.ceil(orig_height / patch_height) * patch_height) if torch.jit.is_tracing() else int(math.ceil(orig_height / patch_height) * patch_height) ) new_width = ( torch_int(torch.ceil(orig_width / patch_width) * patch_width) if torch.jit.is_tracing() else int(math.ceil(orig_width / patch_width) * patch_width) ) interpolate = False if new_width != orig_width or new_height != orig_height: # Note: Padding can be done, but then it needs to be handled in attention function. features = nn.functional.interpolate( features, size=(new_height, new_width), mode="bilinear", align_corners=False ) interpolate = True # number of patches along width and height num_patch_width = new_width // patch_width num_patch_height = new_height // patch_height num_patches = num_patch_height * num_patch_width # convert from shape (batch_size, channels, orig_height, orig_width) # to the shape (batch_size * patch_area, num_patches, channels) patches = features.reshape( batch_size * channels * num_patch_height, patch_height, num_patch_width, patch_width ) patches = patches.transpose(1, 2) patches = patches.reshape(batch_size, channels, num_patches, patch_area) patches = patches.transpose(1, 3) patches = patches.reshape(batch_size * patch_area, num_patches, -1) info_dict = { "orig_size": (orig_height, orig_width), "batch_size": batch_size, "channels": channels, "interpolate": interpolate, "num_patches": num_patches, "num_patches_width": num_patch_width, "num_patches_height": num_patch_height, } return patches, info_dict def folding(self, patches: torch.Tensor, info_dict: Dict) -> torch.Tensor: patch_width, patch_height = self.patch_width, self.patch_height patch_area = int(patch_width * patch_height) batch_size = info_dict["batch_size"] channels = info_dict["channels"] num_patches = info_dict["num_patches"] num_patch_height = info_dict["num_patches_height"] num_patch_width = info_dict["num_patches_width"] # convert from shape (batch_size * patch_area, num_patches, channels) # back to shape (batch_size, channels, orig_height, orig_width) features = patches.contiguous().view(batch_size, patch_area, num_patches, -1) features = features.transpose(1, 3) features = features.reshape( batch_size * channels * num_patch_height, num_patch_width, patch_height, patch_width ) features = features.transpose(1, 2) features = features.reshape( batch_size, channels, num_patch_height * patch_height, num_patch_width * patch_width ) if info_dict["interpolate"]: features = nn.functional.interpolate( features, size=info_dict["orig_size"], mode="bilinear", align_corners=False ) return features def forward(self, features: torch.Tensor) -> torch.Tensor: # reduce spatial dimensions if needed if self.downsampling_layer: features = self.downsampling_layer(features) residual = features # local representation features = self.conv_kxk(features) features = self.conv_1x1(features) # convert feature map to patches patches, info_dict = self.unfolding(features) # learn global representations patches = self.transformer(patches) patches = self.layernorm(patches) # convert patches back to feature maps features = self.folding(patches, info_dict) features = self.conv_projection(features) features = self.fusion(torch.cat((residual, features), dim=1)) return features class MobileViTEncoder(nn.Module): def __init__(self, config: MobileViTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList() self.gradient_checkpointing = False # segmentation architectures like DeepLab and PSPNet modify the strides # of the classification backbones dilate_layer_4 = dilate_layer_5 = False if config.output_stride == 8: dilate_layer_4 = True dilate_layer_5 = True elif config.output_stride == 16: dilate_layer_5 = True dilation = 1 layer_1 = MobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[0], out_channels=config.neck_hidden_sizes[1], stride=1, num_stages=1, ) self.layer.append(layer_1) layer_2 = MobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[1], out_channels=config.neck_hidden_sizes[2], stride=2, num_stages=3, ) self.layer.append(layer_2) layer_3 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[2], out_channels=config.neck_hidden_sizes[3], stride=2, hidden_size=config.hidden_sizes[0], num_stages=2, ) self.layer.append(layer_3) if dilate_layer_4: dilation *= 2 layer_4 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[3], out_channels=config.neck_hidden_sizes[4], stride=2, hidden_size=config.hidden_sizes[1], num_stages=4, dilation=dilation, ) self.layer.append(layer_4) if dilate_layer_5: dilation *= 2 layer_5 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[4], out_channels=config.neck_hidden_sizes[5], stride=2, hidden_size=config.hidden_sizes[2], num_stages=3, dilation=dilation, ) self.layer.append(layer_5) def forward( self, hidden_states: torch.Tensor, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, ) else: hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) class MobileViTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileViTConfig base_model_prefix = "mobilevit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["MobileViTLayer"] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) MOBILEVIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEVIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileViTImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileViT model outputting raw hidden-states without any specific head on top.", MOBILEVIT_START_DOCSTRING, ) class MobileViTModel(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig, expand_output: bool = True): super().__init__(config) self.config = config self.expand_output = expand_output self.conv_stem = MobileViTConvLayer( config, in_channels=config.num_channels, out_channels=config.neck_hidden_sizes[0], kernel_size=3, stride=2, ) self.encoder = MobileViTEncoder(config) if self.expand_output: self.conv_1x1_exp = MobileViTConvLayer( config, in_channels=config.neck_hidden_sizes[5], out_channels=config.neck_hidden_sizes[6], kernel_size=1, ) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer_index, heads in heads_to_prune.items(): mobilevit_layer = self.encoder.layer[layer_index] if isinstance(mobilevit_layer, MobileViTLayer): for transformer_layer in mobilevit_layer.transformer.layer: transformer_layer.attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.conv_stem(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.expand_output: last_hidden_state = self.conv_1x1_exp(encoder_outputs[0]) # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels) pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False) else: last_hidden_state = encoder_outputs[0] pooled_output = None if not return_dict: output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,) return output + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ MobileViT model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, MOBILEVIT_START_DOCSTRING, ) class MobileViTForImageClassification(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevit = MobileViTModel(config) # Classifier head self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True) self.classifier = ( nn.Linear(config.neck_hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(self.dropout(pooled_output)) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) class MobileViTASPPPooling(nn.Module): def __init__(self, config: MobileViTConfig, in_channels: int, out_channels: int) -> None: super().__init__() self.global_pool = nn.AdaptiveAvgPool2d(output_size=1) self.conv_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", ) def forward(self, features: torch.Tensor) -> torch.Tensor: spatial_size = features.shape[-2:] features = self.global_pool(features) features = self.conv_1x1(features) features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False) return features class MobileViTASPP(nn.Module): """ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig) -> None: super().__init__() in_channels = config.neck_hidden_sizes[-2] out_channels = config.aspp_out_channels if len(config.atrous_rates) != 3: raise ValueError("Expected 3 values for atrous_rates") self.convs = nn.ModuleList() in_projection = MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", ) self.convs.append(in_projection) self.convs.extend( [ MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=3, dilation=rate, use_activation="relu", ) for rate in config.atrous_rates ] ) pool_layer = MobileViTASPPPooling(config, in_channels, out_channels) self.convs.append(pool_layer) self.project = MobileViTConvLayer( config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu" ) self.dropout = nn.Dropout(p=config.aspp_dropout_prob) def forward(self, features: torch.Tensor) -> torch.Tensor: pyramid = [] for conv in self.convs: pyramid.append(conv(features)) pyramid = torch.cat(pyramid, dim=1) pooled_features = self.project(pyramid) pooled_features = self.dropout(pooled_features) return pooled_features class MobileViTDeepLabV3(nn.Module): """ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig) -> None: super().__init__() self.aspp = MobileViTASPP(config) self.dropout = nn.Dropout2d(config.classifier_dropout_prob) self.classifier = MobileViTConvLayer( config, in_channels=config.aspp_out_channels, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: features = self.aspp(hidden_states[-1]) features = self.dropout(features) features = self.classifier(features) return features @add_start_docstrings( """ MobileViT model with a semantic segmentation head on top, e.g. for Pascal VOC. """, MOBILEVIT_START_DOCSTRING, ) class MobileViTForSemanticSegmentation(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevit = MobileViTModel(config, expand_output=False) self.segmentation_head = MobileViTDeepLabV3(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from transformers import AutoImageProcessor, MobileViTForSemanticSegmentation >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-small") >>> model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") outputs = self.mobilevit( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states) loss = None if labels is not None: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, ) __all__ = [ "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] ```
============================================================================================================================================== SOURCE CODE FILE: modeling_tf_mobilevit.py LINES: 2 SIZE: 53.55 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilevit\modeling_tf_mobilevit.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE """TensorFlow 2.0 MobileViT model.""" from __future__ import annotations from typing import Dict, Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFImageClassifierOutputWithNoAttention, TFSemanticSegmenterOutputWithNoAttention, ) from ...modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import logging from .configuration_mobilevit import MobileViTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MobileViTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "apple/mobilevit-small" _EXPECTED_OUTPUT_SHAPE = [1, 640, 8, 8] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "apple/mobilevit-small" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: """ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the original TensorFlow repo. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_value < 0.9 * value: new_value += divisor return int(new_value) class TFMobileViTConvLayer(keras.layers.Layer): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, **kwargs, ) -> None: super().__init__(**kwargs) logger.warning( f"\n{self.__class__.__name__} has backpropagation operations that are NOT supported on CPU. If you wish " "to train/fine-tune this model, you need a GPU or a TPU" ) padding = int((kernel_size - 1) / 2) * dilation self.padding = keras.layers.ZeroPadding2D(padding) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") self.convolution = keras.layers.Conv2D( filters=out_channels, kernel_size=kernel_size, strides=stride, padding="VALID", dilation_rate=dilation, groups=groups, use_bias=bias, name="convolution", ) if use_normalization: self.normalization = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.1, name="normalization") else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = get_tf_activation(use_activation) elif isinstance(config.hidden_act, str): self.activation = get_tf_activation(config.hidden_act) else: self.activation = config.hidden_act else: self.activation = None self.in_channels = in_channels self.out_channels = out_channels def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: padded_features = self.padding(features) features = self.convolution(padded_features) if self.normalization is not None: features = self.normalization(features, training=training) if self.activation is not None: features = self.activation(features) return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convolution", None) is not None: with tf.name_scope(self.convolution.name): self.convolution.build([None, None, None, self.in_channels]) if getattr(self, "normalization", None) is not None: if hasattr(self.normalization, "name"): with tf.name_scope(self.normalization.name): self.normalization.build([None, None, None, self.out_channels]) class TFMobileViTInvertedResidual(keras.layers.Layer): """ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, dilation: int = 1, **kwargs ) -> None: super().__init__(**kwargs) expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1, name="expand_1x1" ) self.conv_3x3 = TFMobileViTConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, name="conv_3x3", ) self.reduce_1x1 = TFMobileViTConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, name="reduce_1x1", ) def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: residual = features features = self.expand_1x1(features, training=training) features = self.conv_3x3(features, training=training) features = self.reduce_1x1(features, training=training) return residual + features if self.use_residual else features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "expand_1x1", None) is not None: with tf.name_scope(self.expand_1x1.name): self.expand_1x1.build(None) if getattr(self, "conv_3x3", None) is not None: with tf.name_scope(self.conv_3x3.name): self.conv_3x3.build(None) if getattr(self, "reduce_1x1", None) is not None: with tf.name_scope(self.reduce_1x1.name): self.reduce_1x1.build(None) class TFMobileViTMobileNetLayer(keras.layers.Layer): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.layers = [] for i in range(num_stages): layer = TFMobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if i == 0 else 1, name=f"layer.{i}", ) self.layers.append(layer) in_channels = out_channels def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: for layer_module in self.layers: features = layer_module(features, training=training) return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer_module in self.layers: with tf.name_scope(layer_module.name): layer_module.build(None) class TFMobileViTSelfAttention(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, **kwargs) -> None: super().__init__(**kwargs) if hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size {hidden_size} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size scale = tf.cast(self.attention_head_size, dtype=tf.float32) self.scale = tf.math.sqrt(scale) self.query = keras.layers.Dense(self.all_head_size, use_bias=config.qkv_bias, name="query") self.key = keras.layers.Dense(self.all_head_size, use_bias=config.qkv_bias, name="key") self.value = keras.layers.Dense(self.all_head_size, use_bias=config.qkv_bias, name="value") self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.hidden_size = hidden_size def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor: batch_size = tf.shape(x)[0] x = tf.reshape(x, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: batch_size = tf.shape(hidden_states)[0] key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(self.query(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = attention_scores / self.scale # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape(context_layer, shape=(batch_size, -1, self.all_head_size)) return context_layer def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.hidden_size]) class TFMobileViTSelfOutput(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, **kwargs) -> None: super().__init__(**kwargs) self.dense = keras.layers.Dense(hidden_size, name="dense") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.hidden_size]) class TFMobileViTAttention(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, **kwargs) -> None: super().__init__(**kwargs) self.attention = TFMobileViTSelfAttention(config, hidden_size, name="attention") self.dense_output = TFMobileViTSelfOutput(config, hidden_size, name="output") def prune_heads(self, heads): raise NotImplementedError def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: self_outputs = self.attention(hidden_states, training=training) attention_output = self.dense_output(self_outputs, training=training) return attention_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) class TFMobileViTIntermediate(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int, **kwargs) -> None: super().__init__(**kwargs) self.dense = keras.layers.Dense(intermediate_size, name="dense") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.hidden_size]) class TFMobileViTOutput(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int, **kwargs) -> None: super().__init__(**kwargs) self.dense = keras.layers.Dense(hidden_size, name="dense") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.intermediate_size = intermediate_size def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = hidden_states + input_tensor return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.intermediate_size]) class TFMobileViTTransformerLayer(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int, **kwargs) -> None: super().__init__(**kwargs) self.attention = TFMobileViTAttention(config, hidden_size, name="attention") self.intermediate = TFMobileViTIntermediate(config, hidden_size, intermediate_size, name="intermediate") self.mobilevit_output = TFMobileViTOutput(config, hidden_size, intermediate_size, name="output") self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: attention_output = self.attention(self.layernorm_before(hidden_states), training=training) hidden_states = attention_output + hidden_states layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.mobilevit_output(layer_output, hidden_states, training=training) return layer_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "mobilevit_output", None) is not None: with tf.name_scope(self.mobilevit_output.name): self.mobilevit_output.build(None) if getattr(self, "layernorm_before", None) is not None: with tf.name_scope(self.layernorm_before.name): self.layernorm_before.build([None, None, self.hidden_size]) if getattr(self, "layernorm_after", None) is not None: with tf.name_scope(self.layernorm_after.name): self.layernorm_after.build([None, None, self.hidden_size]) class TFMobileViTTransformer(keras.layers.Layer): def __init__(self, config: MobileViTConfig, hidden_size: int, num_stages: int, **kwargs) -> None: super().__init__(**kwargs) self.layers = [] for i in range(num_stages): transformer_layer = TFMobileViTTransformerLayer( config, hidden_size=hidden_size, intermediate_size=int(hidden_size * config.mlp_ratio), name=f"layer.{i}", ) self.layers.append(transformer_layer) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: for layer_module in self.layers: hidden_states = layer_module(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer_module in self.layers: with tf.name_scope(layer_module.name): layer_module.build(None) class TFMobileViTLayer(keras.layers.Layer): """ MobileViT block: https://arxiv.org/abs/2110.02178 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, hidden_size: int, num_stages: int, dilation: int = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.patch_width = config.patch_size self.patch_height = config.patch_size if stride == 2: self.downsampling_layer = TFMobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if dilation == 1 else 1, dilation=dilation // 2 if dilation > 1 else 1, name="downsampling_layer", ) in_channels = out_channels else: self.downsampling_layer = None self.conv_kxk = TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, name="conv_kxk", ) self.conv_1x1 = TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=hidden_size, kernel_size=1, use_normalization=False, use_activation=False, name="conv_1x1", ) self.transformer = TFMobileViTTransformer( config, hidden_size=hidden_size, num_stages=num_stages, name="transformer" ) self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") self.conv_projection = TFMobileViTConvLayer( config, in_channels=hidden_size, out_channels=in_channels, kernel_size=1, name="conv_projection" ) self.fusion = TFMobileViTConvLayer( config, in_channels=2 * in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, name="fusion", ) self.hidden_size = hidden_size def unfolding(self, features: tf.Tensor) -> Tuple[tf.Tensor, Dict]: patch_width, patch_height = self.patch_width, self.patch_height patch_area = tf.cast(patch_width * patch_height, "int32") batch_size = tf.shape(features)[0] orig_height = tf.shape(features)[1] orig_width = tf.shape(features)[2] channels = tf.shape(features)[3] new_height = tf.cast(tf.math.ceil(orig_height / patch_height) * patch_height, "int32") new_width = tf.cast(tf.math.ceil(orig_width / patch_width) * patch_width, "int32") interpolate = new_width != orig_width or new_height != orig_height if interpolate: # Note: Padding can be done, but then it needs to be handled in attention function. features = tf.image.resize(features, size=(new_height, new_width), method="bilinear") # number of patches along width and height num_patch_width = new_width // patch_width num_patch_height = new_height // patch_height num_patches = num_patch_height * num_patch_width # convert from shape (batch_size, orig_height, orig_width, channels) # to the shape (batch_size * patch_area, num_patches, channels) features = tf.transpose(features, [0, 3, 1, 2]) patches = tf.reshape( features, (batch_size * channels * num_patch_height, patch_height, num_patch_width, patch_width) ) patches = tf.transpose(patches, [0, 2, 1, 3]) patches = tf.reshape(patches, (batch_size, channels, num_patches, patch_area)) patches = tf.transpose(patches, [0, 3, 2, 1]) patches = tf.reshape(patches, (batch_size * patch_area, num_patches, channels)) info_dict = { "orig_size": (orig_height, orig_width), "batch_size": batch_size, "channels": channels, "interpolate": interpolate, "num_patches": num_patches, "num_patches_width": num_patch_width, "num_patches_height": num_patch_height, } return patches, info_dict def folding(self, patches: tf.Tensor, info_dict: Dict) -> tf.Tensor: patch_width, patch_height = self.patch_width, self.patch_height patch_area = int(patch_width * patch_height) batch_size = info_dict["batch_size"] channels = info_dict["channels"] num_patches = info_dict["num_patches"] num_patch_height = info_dict["num_patches_height"] num_patch_width = info_dict["num_patches_width"] # convert from shape (batch_size * patch_area, num_patches, channels) # back to shape (batch_size, channels, orig_height, orig_width) features = tf.reshape(patches, (batch_size, patch_area, num_patches, -1)) features = tf.transpose(features, perm=(0, 3, 2, 1)) features = tf.reshape( features, (batch_size * channels * num_patch_height, num_patch_width, patch_height, patch_width) ) features = tf.transpose(features, perm=(0, 2, 1, 3)) features = tf.reshape( features, (batch_size, channels, num_patch_height * patch_height, num_patch_width * patch_width) ) features = tf.transpose(features, perm=(0, 2, 3, 1)) if info_dict["interpolate"]: features = tf.image.resize(features, size=info_dict["orig_size"], method="bilinear") return features def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: # reduce spatial dimensions if needed if self.downsampling_layer: features = self.downsampling_layer(features, training=training) residual = features # local representation features = self.conv_kxk(features, training=training) features = self.conv_1x1(features, training=training) # convert feature map to patches patches, info_dict = self.unfolding(features) # learn global representations patches = self.transformer(patches, training=training) patches = self.layernorm(patches) # convert patches back to feature maps features = self.folding(patches, info_dict) features = self.conv_projection(features, training=training) features = self.fusion(tf.concat([residual, features], axis=-1), training=training) return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv_kxk", None) is not None: with tf.name_scope(self.conv_kxk.name): self.conv_kxk.build(None) if getattr(self, "conv_1x1", None) is not None: with tf.name_scope(self.conv_1x1.name): self.conv_1x1.build(None) if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.hidden_size]) if getattr(self, "conv_projection", None) is not None: with tf.name_scope(self.conv_projection.name): self.conv_projection.build(None) if getattr(self, "fusion", None) is not None: with tf.name_scope(self.fusion.name): self.fusion.build(None) if getattr(self, "downsampling_layer", None) is not None: with tf.name_scope(self.downsampling_layer.name): self.downsampling_layer.build(None) class TFMobileViTEncoder(keras.layers.Layer): def __init__(self, config: MobileViTConfig, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.layers = [] # segmentation architectures like DeepLab and PSPNet modify the strides # of the classification backbones dilate_layer_4 = dilate_layer_5 = False if config.output_stride == 8: dilate_layer_4 = True dilate_layer_5 = True elif config.output_stride == 16: dilate_layer_5 = True dilation = 1 layer_1 = TFMobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[0], out_channels=config.neck_hidden_sizes[1], stride=1, num_stages=1, name="layer.0", ) self.layers.append(layer_1) layer_2 = TFMobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[1], out_channels=config.neck_hidden_sizes[2], stride=2, num_stages=3, name="layer.1", ) self.layers.append(layer_2) layer_3 = TFMobileViTLayer( config, in_channels=config.neck_hidden_sizes[2], out_channels=config.neck_hidden_sizes[3], stride=2, hidden_size=config.hidden_sizes[0], num_stages=2, name="layer.2", ) self.layers.append(layer_3) if dilate_layer_4: dilation *= 2 layer_4 = TFMobileViTLayer( config, in_channels=config.neck_hidden_sizes[3], out_channels=config.neck_hidden_sizes[4], stride=2, hidden_size=config.hidden_sizes[1], num_stages=4, dilation=dilation, name="layer.3", ) self.layers.append(layer_4) if dilate_layer_5: dilation *= 2 layer_5 = TFMobileViTLayer( config, in_channels=config.neck_hidden_sizes[4], out_channels=config.neck_hidden_sizes[5], stride=2, hidden_size=config.hidden_sizes[2], num_stages=3, dilation=dilation, name="layer.4", ) self.layers.append(layer_5) def call( self, hidden_states: tf.Tensor, output_hidden_states: bool = False, return_dict: bool = True, training: bool = False, ) -> Union[tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layers): hidden_states = layer_module(hidden_states, training=training) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return TFBaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer_module in self.layers: with tf.name_scope(layer_module.name): layer_module.build(None) @keras_serializable class TFMobileViTMainLayer(keras.layers.Layer): config_class = MobileViTConfig def __init__(self, config: MobileViTConfig, expand_output: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.expand_output = expand_output self.conv_stem = TFMobileViTConvLayer( config, in_channels=config.num_channels, out_channels=config.neck_hidden_sizes[0], kernel_size=3, stride=2, name="conv_stem", ) self.encoder = TFMobileViTEncoder(config, name="encoder") if self.expand_output: self.conv_1x1_exp = TFMobileViTConvLayer( config, in_channels=config.neck_hidden_sizes[5], out_channels=config.neck_hidden_sizes[6], kernel_size=1, name="conv_1x1_exp", ) self.pooler = keras.layers.GlobalAveragePooling2D(data_format="channels_first", name="pooler") def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutputWithPooling]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) embedding_output = self.conv_stem(pixel_values, training=training) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training ) if self.expand_output: last_hidden_state = self.conv_1x1_exp(encoder_outputs[0]) # Change to NCHW output format to have uniformity in the modules last_hidden_state = tf.transpose(last_hidden_state, perm=[0, 3, 1, 2]) # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels) pooled_output = self.pooler(last_hidden_state) else: last_hidden_state = encoder_outputs[0] # Change to NCHW output format to have uniformity in the modules last_hidden_state = tf.transpose(last_hidden_state, perm=[0, 3, 1, 2]) pooled_output = None if not return_dict: output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,) # Change to NCHW output format to have uniformity in the modules if not self.expand_output: remaining_encoder_outputs = encoder_outputs[1:] remaining_encoder_outputs = tuple( [tf.transpose(h, perm=(0, 3, 1, 2)) for h in remaining_encoder_outputs[0]] ) remaining_encoder_outputs = (remaining_encoder_outputs,) return output + remaining_encoder_outputs else: return output + encoder_outputs[1:] # Change the other hidden state outputs to NCHW as well if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) return TFBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv_stem", None) is not None: with tf.name_scope(self.conv_stem.name): self.conv_stem.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build([None, None, None, None]) if getattr(self, "conv_1x1_exp", None) is not None: with tf.name_scope(self.conv_1x1_exp.name): self.conv_1x1_exp.build(None) class TFMobileViTPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileViTConfig base_model_prefix = "mobilevit" main_input_name = "pixel_values" MOBILEVIT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`MobileViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEVIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileViTImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. """ @add_start_docstrings( "The bare MobileViT model outputting raw hidden-states without any specific head on top.", MOBILEVIT_START_DOCSTRING, ) class TFMobileViTModel(TFMobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig, expand_output: bool = True, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.expand_output = expand_output self.mobilevit = TFMobileViTMainLayer(config, expand_output=expand_output, name="mobilevit") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutputWithPooling]: output = self.mobilevit(pixel_values, output_hidden_states, return_dict, training=training) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilevit", None) is not None: with tf.name_scope(self.mobilevit.name): self.mobilevit.build(None) @add_start_docstrings( """ MobileViT model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, MOBILEVIT_START_DOCSTRING, ) class TFMobileViTForImageClassification(TFMobileViTPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: MobileViTConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilevit = TFMobileViTMainLayer(config, name="mobilevit") # Classifier head self.dropout = keras.layers.Dropout(config.classifier_dropout_prob) self.classifier = ( keras.layers.Dense(config.num_labels, name="classifier") if config.num_labels > 0 else tf.identity ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, labels: tf.Tensor | None = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[tuple, TFImageClassifierOutputWithNoAttention]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevit( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(self.dropout(pooled_output, training=training)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilevit", None) is not None: with tf.name_scope(self.mobilevit.name): self.mobilevit.build(None) if getattr(self, "classifier", None) is not None: if hasattr(self.classifier, "name"): with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.neck_hidden_sizes[-1]]) class TFMobileViTASPPPooling(keras.layers.Layer): def __init__(self, config: MobileViTConfig, in_channels: int, out_channels: int, **kwargs) -> None: super().__init__(**kwargs) self.global_pool = keras.layers.GlobalAveragePooling2D(keepdims=True, name="global_pool") self.conv_1x1 = TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", name="conv_1x1", ) def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: spatial_size = shape_list(features)[1:-1] features = self.global_pool(features) features = self.conv_1x1(features, training=training) features = tf.image.resize(features, size=spatial_size, method="bilinear") return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "global_pool", None) is not None: with tf.name_scope(self.global_pool.name): self.global_pool.build([None, None, None, None]) if getattr(self, "conv_1x1", None) is not None: with tf.name_scope(self.conv_1x1.name): self.conv_1x1.build(None) class TFMobileViTASPP(keras.layers.Layer): """ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig, **kwargs) -> None: super().__init__(**kwargs) in_channels = config.neck_hidden_sizes[-2] out_channels = config.aspp_out_channels if len(config.atrous_rates) != 3: raise ValueError("Expected 3 values for atrous_rates") self.convs = [] in_projection = TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", name="convs.0", ) self.convs.append(in_projection) self.convs.extend( [ TFMobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=3, dilation=rate, use_activation="relu", name=f"convs.{i + 1}", ) for i, rate in enumerate(config.atrous_rates) ] ) pool_layer = TFMobileViTASPPPooling( config, in_channels, out_channels, name=f"convs.{len(config.atrous_rates) + 1}" ) self.convs.append(pool_layer) self.project = TFMobileViTConvLayer( config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", name="project", ) self.dropout = keras.layers.Dropout(config.aspp_dropout_prob) def call(self, features: tf.Tensor, training: bool = False) -> tf.Tensor: # since the hidden states were transposed to have `(batch_size, channels, height, width)` # layout we transpose them back to have `(batch_size, height, width, channels)` layout. features = tf.transpose(features, perm=[0, 2, 3, 1]) pyramid = [] for conv in self.convs: pyramid.append(conv(features, training=training)) pyramid = tf.concat(pyramid, axis=-1) pooled_features = self.project(pyramid, training=training) pooled_features = self.dropout(pooled_features, training=training) return pooled_features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "project", None) is not None: with tf.name_scope(self.project.name): self.project.build(None) if getattr(self, "convs", None) is not None: for conv in self.convs: with tf.name_scope(conv.name): conv.build(None) class TFMobileViTDeepLabV3(keras.layers.Layer): """ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig, **kwargs) -> None: super().__init__(**kwargs) self.aspp = TFMobileViTASPP(config, name="aspp") self.dropout = keras.layers.Dropout(config.classifier_dropout_prob) self.classifier = TFMobileViTConvLayer( config, in_channels=config.aspp_out_channels, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, name="classifier", ) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: features = self.aspp(hidden_states[-1], training=training) features = self.dropout(features, training=training) features = self.classifier(features, training=training) return features def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "aspp", None) is not None: with tf.name_scope(self.aspp.name): self.aspp.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None) @add_start_docstrings( """ MobileViT model with a semantic segmentation head on top, e.g. for Pascal VOC. """, MOBILEVIT_START_DOCSTRING, ) class TFMobileViTForSemanticSegmentation(TFMobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig, **kwargs) -> None: super().__init__(config, **kwargs) self.num_labels = config.num_labels self.mobilevit = TFMobileViTMainLayer(config, expand_output=False, name="mobilevit") self.segmentation_head = TFMobileViTDeepLabV3(config, name="segmentation_head") def hf_compute_loss(self, logits, labels): # upsample logits to the images' original size # `labels` is of shape (batch_size, height, width) label_interp_shape = shape_list(labels)[1:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") def masked_loss(real, pred): unmasked_loss = loss_fct(real, pred) mask = tf.cast(real != self.config.semantic_loss_ignore_index, dtype=unmasked_loss.dtype) masked_loss = unmasked_loss * mask # Reduction strategy in the similar spirit with # https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210 reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) return masked_loss(labels, upsampled_logits) @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSemanticSegmenterOutputWithNoAttention, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFSemanticSegmenterOutputWithNoAttention]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFMobileViTForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-small") >>> model = TFMobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and not self.config.num_labels > 1: raise ValueError("The number of labels should be greater than one") outputs = self.mobilevit( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, training=training, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states, training=training) loss = None if labels is not None: loss = self.hf_compute_loss(logits=logits, labels=labels) # make logits of shape (batch_size, num_labels, height, width) to # keep them consistent across APIs logits = tf.transpose(logits, perm=[0, 3, 1, 2]) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilevit", None) is not None: with tf.name_scope(self.mobilevit.name): self.mobilevit.build(None) if getattr(self, "segmentation_head", None) is not None: with tf.name_scope(self.segmentation_head.name): self.segmentation_head.build(None) __all__ = [ "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] ```
=================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.98 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilevitv2\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_mobilevitv2 import * from .modeling_mobilevitv2 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
==================================================================================================================================================== SOURCE CODE FILE: configuration_mobilevitv2.py LINES: 1 SIZE: 6.98 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilevitv2\configuration_mobilevitv2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MobileViTV2 model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class MobileViTV2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileViTV2Model`]. It is used to instantiate a MobileViTV2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileViTV2 [apple/mobilevitv2-1.0](https://huggingface.co/apple/mobilevitv2-1.0) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 256): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 2): The size (resolution) of each patch. expand_ratio (`float`, *optional*, defaults to 2.0): Expansion factor for the MobileNetv2 layers. hidden_act (`str` or `function`, *optional*, defaults to `"swish"`): The non-linear activation function (function or string) in the Transformer encoder and convolution layers. conv_kernel_size (`int`, *optional*, defaults to 3): The size of the convolutional kernel in the MobileViTV2 layer. output_stride (`int`, *optional*, defaults to 32): The ratio of the spatial resolution of the output to the resolution of the input image. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for attached classifiers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. aspp_out_channels (`int`, *optional*, defaults to 512): Number of output channels used in the ASPP layer for semantic segmentation. atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`): Dilation (atrous) factors used in the ASPP layer for semantic segmentation. aspp_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the ASPP layer for semantic segmentation. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. n_attn_blocks (`List[int]`, *optional*, defaults to `[2, 4, 3]`): The number of attention blocks in each MobileViTV2Layer base_attn_unit_dims (`List[int]`, *optional*, defaults to `[128, 192, 256]`): The base multiplier for dimensions of attention blocks in each MobileViTV2Layer width_multiplier (`float`, *optional*, defaults to 1.0): The width multiplier for MobileViTV2. ffn_multiplier (`int`, *optional*, defaults to 2): The FFN multiplier for MobileViTV2. attn_dropout (`float`, *optional*, defaults to 0.0): The dropout in the attention layer. ffn_dropout (`float`, *optional*, defaults to 0.0): The dropout between FFN layers. Example: ```python >>> from transformers import MobileViTV2Config, MobileViTV2Model >>> # Initializing a mobilevitv2-small style configuration >>> configuration = MobileViTV2Config() >>> # Initializing a model from the mobilevitv2-small style configuration >>> model = MobileViTV2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mobilevitv2" def __init__( self, num_channels=3, image_size=256, patch_size=2, expand_ratio=2.0, hidden_act="swish", conv_kernel_size=3, output_stride=32, classifier_dropout_prob=0.1, initializer_range=0.02, layer_norm_eps=1e-5, aspp_out_channels=512, atrous_rates=[6, 12, 18], aspp_dropout_prob=0.1, semantic_loss_ignore_index=255, n_attn_blocks=[2, 4, 3], base_attn_unit_dims=[128, 192, 256], width_multiplier=1.0, ffn_multiplier=2, attn_dropout=0.0, ffn_dropout=0.0, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.expand_ratio = expand_ratio self.hidden_act = hidden_act self.conv_kernel_size = conv_kernel_size self.output_stride = output_stride self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.n_attn_blocks = n_attn_blocks self.base_attn_unit_dims = base_attn_unit_dims self.width_multiplier = width_multiplier self.ffn_multiplier = ffn_multiplier self.ffn_dropout = ffn_dropout self.attn_dropout = attn_dropout self.classifier_dropout_prob = classifier_dropout_prob # decode head attributes for semantic segmentation self.aspp_out_channels = aspp_out_channels self.atrous_rates = atrous_rates self.aspp_dropout_prob = aspp_dropout_prob self.semantic_loss_ignore_index = semantic_loss_ignore_index class MobileViTV2OnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})]) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})]) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) @property def atol_for_validation(self) -> float: return 1e-4 __all__ = ["MobileViTV2Config", "MobileViTV2OnnxConfig"] ```
=============================================================================================================================================== SOURCE CODE FILE: modeling_mobilevitv2.py LINES: 1 SIZE: 37.46 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\mobilevitv2\modeling_mobilevitv2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE """PyTorch MobileViTV2 model.""" from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilevitv2 import MobileViTV2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MobileViTV2Config" # Base docstring _CHECKPOINT_FOR_DOC = "apple/mobilevitv2-1.0-imagenet1k-256" _EXPECTED_OUTPUT_SHAPE = [1, 512, 8, 8] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "apple/mobilevitv2-1.0-imagenet1k-256" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" # Copied from transformers.models.mobilevit.modeling_mobilevit.make_divisible def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: """ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the original TensorFlow repo. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_value < 0.9 * value: new_value += divisor return int(new_value) def clip(value: float, min_val: float = float("-inf"), max_val: float = float("inf")) -> float: return max(min_val, min(max_val, value)) # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTConvLayer with MobileViT->MobileViTV2 class MobileViTV2ConvLayer(nn.Module): def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, ) -> None: super().__init__() padding = int((kernel_size - 1) / 2) * dilation if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTInvertedResidual with MobileViT->MobileViTV2 class MobileViTV2InvertedResidual(nn.Module): """ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 """ def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1 ) -> None: super().__init__() expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileViTV2ConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, ) self.reduce_1x1 = MobileViTV2ConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: residual = features features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return residual + features if self.use_residual else features # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTMobileNetLayer with MobileViT->MobileViTV2 class MobileViTV2MobileNetLayer(nn.Module): def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1 ) -> None: super().__init__() self.layer = nn.ModuleList() for i in range(num_stages): layer = MobileViTV2InvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if i == 0 else 1, ) self.layer.append(layer) in_channels = out_channels def forward(self, features: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: features = layer_module(features) return features class MobileViTV2LinearSelfAttention(nn.Module): """ This layer applies a self-attention with linear complexity, as described in MobileViTV2 paper: https://arxiv.org/abs/2206.02680 Args: config (`MobileVitv2Config`): Model configuration object embed_dim (`int`): `input_channels` from an expected input of size :math:`(batch_size, input_channels, height, width)` """ def __init__(self, config: MobileViTV2Config, embed_dim: int) -> None: super().__init__() self.qkv_proj = MobileViTV2ConvLayer( config=config, in_channels=embed_dim, out_channels=1 + (2 * embed_dim), bias=True, kernel_size=1, use_normalization=False, use_activation=False, ) self.attn_dropout = nn.Dropout(p=config.attn_dropout) self.out_proj = MobileViTV2ConvLayer( config=config, in_channels=embed_dim, out_channels=embed_dim, bias=True, kernel_size=1, use_normalization=False, use_activation=False, ) self.embed_dim = embed_dim def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # (batch_size, embed_dim, num_pixels_in_patch, num_patches) --> (batch_size, 1+2*embed_dim, num_pixels_in_patch, num_patches) qkv = self.qkv_proj(hidden_states) # Project hidden_states into query, key and value # Query --> [batch_size, 1, num_pixels_in_patch, num_patches] # value, key --> [batch_size, embed_dim, num_pixels_in_patch, num_patches] query, key, value = torch.split(qkv, split_size_or_sections=[1, self.embed_dim, self.embed_dim], dim=1) # apply softmax along num_patches dimension context_scores = torch.nn.functional.softmax(query, dim=-1) context_scores = self.attn_dropout(context_scores) # Compute context vector # [batch_size, embed_dim, num_pixels_in_patch, num_patches] x [batch_size, 1, num_pixels_in_patch, num_patches] -> [batch_size, embed_dim, num_pixels_in_patch, num_patches] context_vector = key * context_scores # [batch_size, embed_dim, num_pixels_in_patch, num_patches] --> [batch_size, embed_dim, num_pixels_in_patch, 1] context_vector = torch.sum(context_vector, dim=-1, keepdim=True) # combine context vector with values # [batch_size, embed_dim, num_pixels_in_patch, num_patches] * [batch_size, embed_dim, num_pixels_in_patch, 1] --> [batch_size, embed_dim, num_pixels_in_patch, num_patches] out = torch.nn.functional.relu(value) * context_vector.expand_as(value) out = self.out_proj(out) return out class MobileViTV2FFN(nn.Module): def __init__( self, config: MobileViTV2Config, embed_dim: int, ffn_latent_dim: int, ffn_dropout: float = 0.0, ) -> None: super().__init__() self.conv1 = MobileViTV2ConvLayer( config=config, in_channels=embed_dim, out_channels=ffn_latent_dim, kernel_size=1, stride=1, bias=True, use_normalization=False, use_activation=True, ) self.dropout1 = nn.Dropout(ffn_dropout) self.conv2 = MobileViTV2ConvLayer( config=config, in_channels=ffn_latent_dim, out_channels=embed_dim, kernel_size=1, stride=1, bias=True, use_normalization=False, use_activation=False, ) self.dropout2 = nn.Dropout(ffn_dropout) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.conv1(hidden_states) hidden_states = self.dropout1(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.dropout2(hidden_states) return hidden_states class MobileViTV2TransformerLayer(nn.Module): def __init__( self, config: MobileViTV2Config, embed_dim: int, ffn_latent_dim: int, dropout: float = 0.0, ) -> None: super().__init__() self.layernorm_before = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps) self.attention = MobileViTV2LinearSelfAttention(config, embed_dim) self.dropout1 = nn.Dropout(p=dropout) self.layernorm_after = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps) self.ffn = MobileViTV2FFN(config, embed_dim, ffn_latent_dim, config.ffn_dropout) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: layernorm_1_out = self.layernorm_before(hidden_states) attention_output = self.attention(layernorm_1_out) hidden_states = attention_output + hidden_states layer_output = self.layernorm_after(hidden_states) layer_output = self.ffn(layer_output) layer_output = layer_output + hidden_states return layer_output class MobileViTV2Transformer(nn.Module): def __init__(self, config: MobileViTV2Config, n_layers: int, d_model: int) -> None: super().__init__() ffn_multiplier = config.ffn_multiplier ffn_dims = [ffn_multiplier * d_model] * n_layers # ensure that dims are multiple of 16 ffn_dims = [int((d // 16) * 16) for d in ffn_dims] self.layer = nn.ModuleList() for block_idx in range(n_layers): transformer_layer = MobileViTV2TransformerLayer( config, embed_dim=d_model, ffn_latent_dim=ffn_dims[block_idx] ) self.layer.append(transformer_layer) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: hidden_states = layer_module(hidden_states) return hidden_states class MobileViTV2Layer(nn.Module): """ MobileViTV2 layer: https://arxiv.org/abs/2206.02680 """ def __init__( self, config: MobileViTV2Config, in_channels: int, out_channels: int, attn_unit_dim: int, n_attn_blocks: int = 2, dilation: int = 1, stride: int = 2, ) -> None: super().__init__() self.patch_width = config.patch_size self.patch_height = config.patch_size cnn_out_dim = attn_unit_dim if stride == 2: self.downsampling_layer = MobileViTV2InvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if dilation == 1 else 1, dilation=dilation // 2 if dilation > 1 else 1, ) in_channels = out_channels else: self.downsampling_layer = None # Local representations self.conv_kxk = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, groups=in_channels, ) self.conv_1x1 = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=cnn_out_dim, kernel_size=1, use_normalization=False, use_activation=False, ) # Global representations self.transformer = MobileViTV2Transformer(config, d_model=attn_unit_dim, n_layers=n_attn_blocks) # self.layernorm = MobileViTV2LayerNorm2D(attn_unit_dim, eps=config.layer_norm_eps) self.layernorm = nn.GroupNorm(num_groups=1, num_channels=attn_unit_dim, eps=config.layer_norm_eps) # Fusion self.conv_projection = MobileViTV2ConvLayer( config, in_channels=cnn_out_dim, out_channels=in_channels, kernel_size=1, use_normalization=True, use_activation=False, ) def unfolding(self, feature_map: torch.Tensor) -> Tuple[torch.Tensor, Tuple[int, int]]: batch_size, in_channels, img_height, img_width = feature_map.shape patches = nn.functional.unfold( feature_map, kernel_size=(self.patch_height, self.patch_width), stride=(self.patch_height, self.patch_width), ) patches = patches.reshape(batch_size, in_channels, self.patch_height * self.patch_width, -1) return patches, (img_height, img_width) def folding(self, patches: torch.Tensor, output_size: Tuple[int, int]) -> torch.Tensor: batch_size, in_dim, patch_size, n_patches = patches.shape patches = patches.reshape(batch_size, in_dim * patch_size, n_patches) feature_map = nn.functional.fold( patches, output_size=output_size, kernel_size=(self.patch_height, self.patch_width), stride=(self.patch_height, self.patch_width), ) return feature_map def forward(self, features: torch.Tensor) -> torch.Tensor: # reduce spatial dimensions if needed if self.downsampling_layer: features = self.downsampling_layer(features) # local representation features = self.conv_kxk(features) features = self.conv_1x1(features) # convert feature map to patches patches, output_size = self.unfolding(features) # learn global representations patches = self.transformer(patches) patches = self.layernorm(patches) # convert patches back to feature maps # [batch_size, patch_height, patch_width, input_dim] --> [batch_size, input_dim, patch_height, patch_width] features = self.folding(patches, output_size) features = self.conv_projection(features) return features class MobileViTV2Encoder(nn.Module): def __init__(self, config: MobileViTV2Config) -> None: super().__init__() self.config = config self.layer = nn.ModuleList() self.gradient_checkpointing = False # segmentation architectures like DeepLab and PSPNet modify the strides # of the classification backbones dilate_layer_4 = dilate_layer_5 = False if config.output_stride == 8: dilate_layer_4 = True dilate_layer_5 = True elif config.output_stride == 16: dilate_layer_5 = True dilation = 1 layer_0_dim = make_divisible( clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16 ) layer_1_dim = make_divisible(64 * config.width_multiplier, divisor=16) layer_2_dim = make_divisible(128 * config.width_multiplier, divisor=8) layer_3_dim = make_divisible(256 * config.width_multiplier, divisor=8) layer_4_dim = make_divisible(384 * config.width_multiplier, divisor=8) layer_5_dim = make_divisible(512 * config.width_multiplier, divisor=8) layer_1 = MobileViTV2MobileNetLayer( config, in_channels=layer_0_dim, out_channels=layer_1_dim, stride=1, num_stages=1, ) self.layer.append(layer_1) layer_2 = MobileViTV2MobileNetLayer( config, in_channels=layer_1_dim, out_channels=layer_2_dim, stride=2, num_stages=2, ) self.layer.append(layer_2) layer_3 = MobileViTV2Layer( config, in_channels=layer_2_dim, out_channels=layer_3_dim, attn_unit_dim=make_divisible(config.base_attn_unit_dims[0] * config.width_multiplier, divisor=8), n_attn_blocks=config.n_attn_blocks[0], ) self.layer.append(layer_3) if dilate_layer_4: dilation *= 2 layer_4 = MobileViTV2Layer( config, in_channels=layer_3_dim, out_channels=layer_4_dim, attn_unit_dim=make_divisible(config.base_attn_unit_dims[1] * config.width_multiplier, divisor=8), n_attn_blocks=config.n_attn_blocks[1], dilation=dilation, ) self.layer.append(layer_4) if dilate_layer_5: dilation *= 2 layer_5 = MobileViTV2Layer( config, in_channels=layer_4_dim, out_channels=layer_5_dim, attn_unit_dim=make_divisible(config.base_attn_unit_dims[2] * config.width_multiplier, divisor=8), n_attn_blocks=config.n_attn_blocks[2], dilation=dilation, ) self.layer.append(layer_5) def forward( self, hidden_states: torch.Tensor, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, ) else: hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTPreTrainedModel with MobileViT->MobileViTV2,mobilevit->mobilevitv2 class MobileViTV2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileViTV2Config base_model_prefix = "mobilevitv2" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["MobileViTV2Layer"] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) MOBILEVITV2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileViTV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEVITV2_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileViTImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileViTV2 model outputting raw hidden-states without any specific head on top.", MOBILEVITV2_START_DOCSTRING, ) class MobileViTV2Model(MobileViTV2PreTrainedModel): def __init__(self, config: MobileViTV2Config, expand_output: bool = True): super().__init__(config) self.config = config self.expand_output = expand_output layer_0_dim = make_divisible( clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16 ) self.conv_stem = MobileViTV2ConvLayer( config, in_channels=config.num_channels, out_channels=layer_0_dim, kernel_size=3, stride=2, use_normalization=True, use_activation=True, ) self.encoder = MobileViTV2Encoder(config) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer_index, heads in heads_to_prune.items(): mobilevitv2_layer = self.encoder.layer[layer_index] if isinstance(mobilevitv2_layer, MobileViTV2Layer): for transformer_layer in mobilevitv2_layer.transformer.layer: transformer_layer.attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.conv_stem(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.expand_output: last_hidden_state = encoder_outputs[0] # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels) pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False) else: last_hidden_state = encoder_outputs[0] pooled_output = None if not return_dict: output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,) return output + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ MobileViTV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, MOBILEVITV2_START_DOCSTRING, ) class MobileViTV2ForImageClassification(MobileViTV2PreTrainedModel): def __init__(self, config: MobileViTV2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevitv2 = MobileViTV2Model(config) out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension # Classifier head self.classifier = ( nn.Linear(in_features=out_channels, out_features=config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevitv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTASPPPooling with MobileViT->MobileViTV2 class MobileViTV2ASPPPooling(nn.Module): def __init__(self, config: MobileViTV2Config, in_channels: int, out_channels: int) -> None: super().__init__() self.global_pool = nn.AdaptiveAvgPool2d(output_size=1) self.conv_1x1 = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", ) def forward(self, features: torch.Tensor) -> torch.Tensor: spatial_size = features.shape[-2:] features = self.global_pool(features) features = self.conv_1x1(features) features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False) return features class MobileViTV2ASPP(nn.Module): """ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTV2Config) -> None: super().__init__() encoder_out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension in_channels = encoder_out_channels out_channels = config.aspp_out_channels if len(config.atrous_rates) != 3: raise ValueError("Expected 3 values for atrous_rates") self.convs = nn.ModuleList() in_projection = MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", ) self.convs.append(in_projection) self.convs.extend( [ MobileViTV2ConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=3, dilation=rate, use_activation="relu", ) for rate in config.atrous_rates ] ) pool_layer = MobileViTV2ASPPPooling(config, in_channels, out_channels) self.convs.append(pool_layer) self.project = MobileViTV2ConvLayer( config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu" ) self.dropout = nn.Dropout(p=config.aspp_dropout_prob) def forward(self, features: torch.Tensor) -> torch.Tensor: pyramid = [] for conv in self.convs: pyramid.append(conv(features)) pyramid = torch.cat(pyramid, dim=1) pooled_features = self.project(pyramid) pooled_features = self.dropout(pooled_features) return pooled_features # Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTDeepLabV3 with MobileViT->MobileViTV2 class MobileViTV2DeepLabV3(nn.Module): """ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTV2Config) -> None: super().__init__() self.aspp = MobileViTV2ASPP(config) self.dropout = nn.Dropout2d(config.classifier_dropout_prob) self.classifier = MobileViTV2ConvLayer( config, in_channels=config.aspp_out_channels, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: features = self.aspp(hidden_states[-1]) features = self.dropout(features) features = self.classifier(features) return features @add_start_docstrings( """ MobileViTV2 model with a semantic segmentation head on top, e.g. for Pascal VOC. """, MOBILEVITV2_START_DOCSTRING, ) class MobileViTV2ForSemanticSegmentation(MobileViTV2PreTrainedModel): def __init__(self, config: MobileViTV2Config) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevitv2 = MobileViTV2Model(config, expand_output=False) self.segmentation_head = MobileViTV2DeepLabV3(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from transformers import AutoImageProcessor, MobileViTV2ForSemanticSegmentation >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") >>> model = MobileViTV2ForSemanticSegmentation.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") outputs = self.mobilevitv2( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states) loss = None if labels is not None: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, ) __all__ = [ "MobileViTV2ForImageClassification", "MobileViTV2ForSemanticSegmentation", "MobileViTV2Model", "MobileViTV2PreTrainedModel", ] ```
================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.98 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\modernbert\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_modernbert import * from .modeling_modernbert import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
================================================================================================================================================== SOURCE CODE FILE: configuration_modernbert.py LINES: 1 SIZE: 11.17 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\modernbert\configuration_modernbert.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/modernbert/modular_modernbert.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_modernbert.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Literal from ...configuration_utils import PretrainedConfig class ModernBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ModernBertModel`]. It is used to instantiate an ModernBert model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ModernBERT-base. e.g. [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50368): Vocabulary size of the ModernBert model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ModernBertModel`] hidden_size (`int`, *optional*, defaults to 768): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 1152): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 22): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer decoder. hidden_activation (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the decoder. Will default to `"gelu"` if not specified. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_cutoff_factor (`float`, *optional*, defaults to 2.0): The cutoff factor for the truncated_normal_initializer for initializing all weight matrices. norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. norm_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in the normalization layers. pad_token_id (`int`, *optional*, defaults to 50283): Padding token id. eos_token_id (`int`, *optional*, defaults to 50282): End of stream token id. bos_token_id (`int`, *optional*, defaults to 50281): Beginning of stream token id. cls_token_id (`int`, *optional*, defaults to 50281): Classification token id. sep_token_id (`int`, *optional*, defaults to 50282): Separation token id. global_rope_theta (`float`, *optional*, defaults to 160000.0): The base period of the global RoPE embeddings. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. global_attn_every_n_layers (`int`, *optional*, defaults to 3): The number of layers between global attention layers. local_attention (`int`, *optional*, defaults to 128): The window size for local attention. local_rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the local RoPE embeddings. embedding_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the embeddings. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in the MLP layers. mlp_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the MLP layers. decoder_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the decoder layers. classifier_pooling (`str`, *optional*, defaults to `"cls"`): The pooling method for the classifier. Should be either `"cls"` or `"mean"`. In local attention layers, the CLS token doesn't attend to all tokens on long sequences. classifier_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the classifier. classifier_bias (`bool`, *optional*, defaults to `False`): Whether to use bias in the classifier. classifier_activation (`str`, *optional*, defaults to `"gelu"`): The activation function for the classifier. deterministic_flash_attn (`bool`, *optional*, defaults to `False`): Whether to use deterministic flash attention. If `False`, inference will be faster but not deterministic. sparse_prediction (`bool`, *optional*, defaults to `False`): Whether to use sparse prediction for the masked language model instead of returning the full dense logits. sparse_pred_ignore_index (`int`, *optional*, defaults to -100): The index to ignore for the sparse prediction. reference_compile (`bool`, *optional*): Whether to compile the layers of the model which were compiled during pretraining. If `None`, then parts of the model will be compiled if 1) `triton` is installed, 2) the model is not on MPS, 3) the model is not shared between devices, and 4) the model is not resized after initialization. If `True`, then the model may be faster in some scenarios. repad_logits_with_grad (`bool`, *optional*, defaults to `False`): When True, ModernBertForMaskedLM keeps track of the logits' gradient when repadding for output. This only applies when using Flash Attention 2 with passed labels. Otherwise output logits always have a gradient. Examples: ```python >>> from transformers import ModernBertModel, ModernBertConfig >>> # Initializing a ModernBert style configuration >>> configuration = ModernBertConfig() >>> # Initializing a model from the modernbert-base style configuration >>> model = ModernBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "modernbert" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50368, hidden_size=768, intermediate_size=1152, num_hidden_layers=22, num_attention_heads=12, hidden_activation="gelu", max_position_embeddings=8192, initializer_range=0.02, initializer_cutoff_factor=2.0, norm_eps=1e-5, norm_bias=False, pad_token_id=50283, eos_token_id=50282, bos_token_id=50281, cls_token_id=50281, sep_token_id=50282, global_rope_theta=160000.0, attention_bias=False, attention_dropout=0.0, global_attn_every_n_layers=3, local_attention=128, local_rope_theta=10000.0, embedding_dropout=0.0, mlp_bias=False, mlp_dropout=0.0, decoder_bias=True, classifier_pooling: Literal["cls", "mean"] = "cls", classifier_dropout=0.0, classifier_bias=False, classifier_activation="gelu", deterministic_flash_attn=False, sparse_prediction=False, sparse_pred_ignore_index=-100, reference_compile=None, repad_logits_with_grad=False, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, cls_token_id=cls_token_id, sep_token_id=sep_token_id, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.initializer_range = initializer_range self.initializer_cutoff_factor = initializer_cutoff_factor self.norm_eps = norm_eps self.norm_bias = norm_bias self.global_rope_theta = global_rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.hidden_activation = hidden_activation self.global_attn_every_n_layers = global_attn_every_n_layers self.local_attention = local_attention self.local_rope_theta = local_rope_theta self.embedding_dropout = embedding_dropout self.mlp_bias = mlp_bias self.mlp_dropout = mlp_dropout self.decoder_bias = decoder_bias self.classifier_pooling = classifier_pooling self.classifier_dropout = classifier_dropout self.classifier_bias = classifier_bias self.classifier_activation = classifier_activation self.deterministic_flash_attn = deterministic_flash_attn self.sparse_prediction = sparse_prediction self.sparse_pred_ignore_index = sparse_pred_ignore_index self.reference_compile = reference_compile self.repad_logits_with_grad = repad_logits_with_grad if self.classifier_pooling not in ["cls", "mean"]: raise ValueError( f'Invalid value for `classifier_pooling`, should be either "cls" or "mean", but is {self.classifier_pooling}.' ) def to_dict(self): output = super().to_dict() output.pop("reference_compile", None) return output __all__ = ["ModernBertConfig"] ```