code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def pad_to_len( arr: torch.tensor, target_len: int, *, left_pad: bool, eos_token: int, device: torch.device, ) -> torch.tensor: """Pad or truncate array to given length.""" if arr.shape[1] < target_len: shape_for_ones = list(arr.shape) shape_for_ones[1] = target_len - shape_for_ones[1] padded = ( torch.ones( shape_for_ones, device=device, dtype=torch.long, ) * eos_token ) if not left_pad: return torch.concatenate((arr, padded), dim=1) else: return torch.concatenate((padded, arr), dim=1) else: return arr[:, :target_len]
Pad or truncate array to given length.
pad_to_len
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def filter_and_truncate( outputs: torch.tensor, truncation_length: Optional[int], eos_token_mask: torch.tensor, ) -> torch.tensor: """Filter and truncate outputs to given length. Args: outputs: output tensor of shape [batch_size, output_len] truncation_length: Length to truncate the final output. If None, then no truncation is applied. eos_token_mask: EOS token mask of shape [batch_size, output_len] Returns: output tensor of shape [batch_size, truncation_length]. """ if truncation_length: outputs = outputs[:, :truncation_length] truncation_mask = torch.sum(eos_token_mask, dim=1) >= truncation_length return outputs[truncation_mask, :] return outputs
Filter and truncate outputs to given length. Args: outputs: output tensor of shape [batch_size, output_len] truncation_length: Length to truncate the final output. If None, then no truncation is applied. eos_token_mask: EOS token mask of shape [batch_size, output_len] Returns: output tensor of shape [batch_size, truncation_length].
filter_and_truncate
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def process_outputs_for_training( all_outputs: Sequence[torch.Tensor], logits_processor: logits_processing.SynthIDLogitsProcessor, tokenizer: Any, *, pos_truncation_length: Optional[int], neg_truncation_length: Optional[int], max_length: int, is_cv: bool, is_pos: bool, torch_device: torch.device, ) -> tuple[Sequence[torch.tensor], Sequence[torch.tensor]]: """Process raw model outputs into format understandable by the detector. Args: all_outputs: sequence of outputs of shape [batch_size, output_len]. logits_processor: logits processor used for watermarking. tokenizer: tokenizer used for the model. pos_truncation_length: Length to truncate the watermarked outputs. If None, then no truncation is applied. neg_truncation_length: Length to truncate the unwatermarked outputs. If None, then no truncation is applied. max_length: Length to pad truncated outputs so that all processed entries. have same shape. is_cv: Process given outputs for cross validation. is_pos: Process given outputs for positives. torch_device: torch device to use. Returns: Tuple of all_masks: list of masks of shape [batch_size, max_length]. all_g_values: list of g_values of shape [batch_size, max_length, depth]. """ all_masks = [] all_g_values = [] for outputs in tqdm.tqdm(all_outputs): # outputs is of shape [batch_size, output_len]. # output_len can differ from batch to batch. eos_token_mask = logits_processor.compute_eos_token_mask( input_ids=outputs, eos_token_id=tokenizer.eos_token_id, ) if is_pos or is_cv: # filter with length for positives for both train and CV. # We also filter for length when CV negatives are processed. outputs = filter_and_truncate( outputs, pos_truncation_length, eos_token_mask ) elif not is_pos and not is_cv: outputs = filter_and_truncate( outputs, neg_truncation_length, eos_token_mask ) # If no filtered outputs skip this batch. if outputs.shape[0] == 0: continue # All outputs are padded to max-length with eos-tokens. outputs = pad_to_len( outputs, max_length, left_pad=False, eos_token=tokenizer.eos_token_id, device=torch_device, ) # outputs shape [num_filtered_entries, max_length] eos_token_mask = logits_processor.compute_eos_token_mask( input_ids=outputs, eos_token_id=tokenizer.eos_token_id, ) context_repetition_mask = logits_processor.compute_context_repetition_mask( input_ids=outputs, ) # context_repetition_mask of shape [num_filtered_entries, max_length - # (ngram_len - 1)]. context_repetition_mask = pad_to_len( context_repetition_mask, max_length, left_pad=True, eos_token=0, device=torch_device, ) # We pad on left to get same max_length shape. # context_repetition_mask of shape [num_filtered_entries, max_length]. combined_mask = context_repetition_mask * eos_token_mask g_values = logits_processor.compute_g_values( input_ids=outputs, ) # g_values of shape [num_filtered_entries, max_length - (ngram_len - 1), # depth]. g_values = pad_to_len( g_values, max_length, left_pad=True, eos_token=0, device=torch_device ) # We pad on left to get same max_length shape. # g_values of shape [num_filtered_entries, max_length, depth]. all_masks.append(combined_mask) all_g_values.append(g_values) return all_masks, all_g_values
Process raw model outputs into format understandable by the detector. Args: all_outputs: sequence of outputs of shape [batch_size, output_len]. logits_processor: logits processor used for watermarking. tokenizer: tokenizer used for the model. pos_truncation_length: Length to truncate the watermarked outputs. If None, then no truncation is applied. neg_truncation_length: Length to truncate the unwatermarked outputs. If None, then no truncation is applied. max_length: Length to pad truncated outputs so that all processed entries. have same shape. is_cv: Process given outputs for cross validation. is_pos: Process given outputs for positives. torch_device: torch device to use. Returns: Tuple of all_masks: list of masks of shape [batch_size, max_length]. all_g_values: list of g_values of shape [batch_size, max_length, depth].
process_outputs_for_training
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def __call__(self, g_values: jnp.ndarray) -> jnp.ndarray: """Computes likelihoods given g-values and a mask. Args: g_values: g-values (all are 0 or 1) of shape [batch_size, seq_len, watermarking_depth, ...]. Returns: an array of shape [batch_size, seq_len, watermarking_depth] or [batch_size, seq_len, 1] corresponding to the likelihoods of the g-values given either the watermarked hypothesis or the unwatermarked hypothesis; i.e. either P(g|watermarked) or P(g|unwatermarked). """
Computes likelihoods given g-values and a mask. Args: g_values: g-values (all are 0 or 1) of shape [batch_size, seq_len, watermarking_depth, ...]. Returns: an array of shape [batch_size, seq_len, watermarking_depth] or [batch_size, seq_len, 1] corresponding to the likelihoods of the g-values given either the watermarked hypothesis or the unwatermarked hypothesis; i.e. either P(g|watermarked) or P(g|unwatermarked).
__call__
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def _compute_latents( self, g_values: jnp.ndarray ) -> tuple[jnp.ndarray, jnp.ndarray]: """Computes the unique token probability distribution given g-values. Args: g_values: Pseudorandom function values of shape [batch_size, seq_len, watermarking_depth]. Returns: p_one_unique_token and p_two_unique_tokens, both of shape [batch_size, seq_len, watermarking_depth]. p_one_unique_token[i,t,l] gives the probability of there being one unique token in a tournament match on layer l, on timestep t, for batch item i. p_one_unique_token[i,t,l] + p_two_unique_token[i,t,l] = 1. """ # Tile g-values to produce feature vectors for predicting the latents # for each layer in the tournament; our model for the latents psi is a # logistic regression model psi = sigmoid(delta * x + beta). x = jnp.repeat( jnp.expand_dims(g_values, axis=-2), self.watermarking_depth, axis=-2 ) # [batch_size, seq_len, watermarking_depth, watermarking_depth] x = jnp.tril( x, k=-1 ) # mask all elements above -1 diagonal for autoregressive factorization logits = ( jnp.einsum("ijkl,ijkl->ijk", self.delta, x) + self.beta ) # [batch_size, seq_len, watermarking_depth] p_two_unique_tokens = jax.nn.sigmoid(logits) p_one_unique_token = 1 - p_two_unique_tokens return p_one_unique_token, p_two_unique_tokens
Computes the unique token probability distribution given g-values. Args: g_values: Pseudorandom function values of shape [batch_size, seq_len, watermarking_depth]. Returns: p_one_unique_token and p_two_unique_tokens, both of shape [batch_size, seq_len, watermarking_depth]. p_one_unique_token[i,t,l] gives the probability of there being one unique token in a tournament match on layer l, on timestep t, for batch item i. p_one_unique_token[i,t,l] + p_two_unique_token[i,t,l] = 1.
_compute_latents
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def __call__(self, g_values: jnp.ndarray) -> jnp.ndarray: """Computes the likelihoods P(g_values|watermarked). Args: g_values: g-values (values 0 or 1) of shape [batch_size, seq_len, watermarking_depth] Returns: p(g_values|watermarked) of shape [batch_size, seq_len, watermarking_depth]. """ p_one_unique_token, p_two_unique_tokens = self._compute_latents(g_values) # P(g_tl | watermarked) is equal to # 0.5 * [ (g_tl+0.5) * p_two_unique_tokens + p_one_unique_token]. return 0.5 * ((g_values + 0.5) * p_two_unique_tokens + p_one_unique_token)
Computes the likelihoods P(g_values|watermarked). Args: g_values: g-values (values 0 or 1) of shape [batch_size, seq_len, watermarking_depth] Returns: p(g_values|watermarked) of shape [batch_size, seq_len, watermarking_depth].
__call__
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def _compute_posterior( likelihoods_watermarked: jnp.ndarray, likelihoods_unwatermarked: jnp.ndarray, mask: jnp.ndarray, prior: float, ) -> jnp.ndarray: """Compute posterior P(w|g) given likelihoods, mask and prior. Args: likelihoods_watermarked: shape [batch, length, depth]. Likelihoods P(g_values|watermarked) of g-values under watermarked model. likelihoods_unwatermarked: shape [batch, length, depth]. Likelihoods P(g_values|unwatermarked) of g-values under unwatermarked model. mask: A binary array shape [batch, length] indicating which g-values should be used. g-values with mask value 0 are discarded. prior: Prior probability P(w) that the text is watermarked. Returns: Posterior probability P(watermarked|g_values), shape [batch]. """ mask = jnp.expand_dims(mask, -1) prior = jnp.clip(prior, a_min=1e-5, a_max=1 - 1e-5) log_likelihoods_watermarked = jnp.log( jnp.clip(likelihoods_watermarked, a_min=1e-30, a_max=float("inf")) ) log_likelihoods_unwatermarked = jnp.log( jnp.clip(likelihoods_unwatermarked, a_min=1e-30, a_max=float("inf")) ) log_odds = log_likelihoods_watermarked - log_likelihoods_unwatermarked # Sum relative surprisals (log odds) across all token positions and layers. relative_surprisal_likelihood = jnp.einsum( "i...->i", log_odds * mask ) # [batch_size]. relative_surprisal_prior = jnp.log(prior) - jnp.log(1 - prior) # Combine prior and likelihood. relative_surprisal = ( relative_surprisal_prior + relative_surprisal_likelihood ) # [batch_size] # Compute the posterior probability P(w|g) = sigmoid(relative_surprisal). return jax.nn.sigmoid(relative_surprisal)
Compute posterior P(w|g) given likelihoods, mask and prior. Args: likelihoods_watermarked: shape [batch, length, depth]. Likelihoods P(g_values|watermarked) of g-values under watermarked model. likelihoods_unwatermarked: shape [batch, length, depth]. Likelihoods P(g_values|unwatermarked) of g-values under unwatermarked model. mask: A binary array shape [batch, length] indicating which g-values should be used. g-values with mask value 0 are discarded. prior: Prior probability P(w) that the text is watermarked. Returns: Posterior probability P(watermarked|g_values), shape [batch].
_compute_posterior
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def __call__( self, g_values: jnp.ndarray, mask: jnp.ndarray, ) -> jnp.ndarray: """Computes the watermarked posterior P(watermarked|g_values). Args: g_values: g-values (with values 0 or 1) of shape [batch_size, seq_len, watermarking_depth, ...] mask: A binary array shape [batch_size, seq_len] indicating which g-values should be used. g-values with mask value 0 are discarded. Returns: P(watermarked | g_values), of shape [batch_size]. """ likelihoods_watermarked = self.likelihood_model_watermarked(g_values) likelihoods_unwatermarked = self.likelihood_model_unwatermarked(g_values) return _compute_posterior( likelihoods_watermarked, likelihoods_unwatermarked, mask, self.prior )
Computes the watermarked posterior P(watermarked|g_values). Args: g_values: g-values (with values 0 or 1) of shape [batch_size, seq_len, watermarking_depth, ...] mask: A binary array shape [batch_size, seq_len] indicating which g-values should be used. g-values with mask value 0 are discarded. Returns: P(watermarked | g_values), of shape [batch_size].
__call__
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def loss_fn( params: Mapping[str, Any], detector_inputs: Any, w_true: jnp.ndarray, l2_batch_weight: float, detector_module: BayesianDetectorModule, ) -> jnp.ndarray: """Calculates loss for a batch of data given parameters.""" w_pred = detector_module.apply( params, *detector_inputs, method=detector_module.__call__ ) unweighted_l2 = detector_module.apply(params, method=detector_module.l2_loss) l2_loss = l2_batch_weight * unweighted_l2 return xentropy_loss(w_true, w_pred) + l2_loss
Calculates loss for a batch of data given parameters.
loss_fn
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def train( *, detector_module: BayesianDetectorModule, g_values: jnp.ndarray, mask: jnp.ndarray, watermarked: jnp.ndarray, epochs: int = 250, learning_rate: float = 1e-3, minibatch_size: int = 64, seed: int = 0, l2_weight: float = 0.0, shuffle: bool = True, g_values_val: Optional[jnp.ndarray] = None, mask_val: Optional[jnp.ndarray] = None, watermarked_val: Optional[jnp.ndarray] = None, verbose: bool = False, validation_metric: ValidationMetric = ValidationMetric.TPR_AT_FPR, ) -> tuple[Mapping[int, Mapping[str, PyTree]], float]: """Trains a Bayesian detector model. Args: detector_module: The detector module to train in-place. g_values: g-values of shape [num_train, seq_len, watermarking_depth]. mask: A binary array shape [num_train, seq_len] indicating which g-values should be used. g-values with mask value 0 are discarded. watermarked: A binary array of shape [num_train] indicating whether the example is watermarked (0: unwatermarked, 1: watermarked). epochs: Number of epochs to train for. learning_rate: Learning rate for optimizer. minibatch_size: Minibatch size for training. Note that a minibatch requires ~ 32 * minibatch_size * seq_len * watermarked_depth * watermarked_depth bits of memory. seed: Seed for parameter initialization. l2_weight: Weight to apply to L2 regularization for delta parameters. shuffle: Whether to shuffle before training. g_values_val: Validation g-values of shape [num_val, seq_len, watermarking_depth]. mask_val: Validation mask of shape [num_val, seq_len]. watermarked_val: Validation watermark labels of shape [num_val]. verbose: Boolean indicating verbosity of training. If true, the loss will be printed. Defaulted to False. validation_metric: validation metric to use. Returns: Tuple of training_history: Training history keyed by epoch number where the values are dictionaries containing the loss, validation loss, and model parameters, keyed by 'loss', 'val_loss', and 'params', respectively. min_val_loss: Minimum validation loss achieved during training. """ minibatch_inds = jnp.arange(0, len(g_values), minibatch_size) minibatch_inds_val = None if g_values_val is not None: minibatch_inds_val = jnp.arange(0, len(g_values_val), minibatch_size) rng = jax.random.PRNGKey(seed) param_rng, shuffle_rng = jax.random.split(rng) def coshuffle(*args): return [jax.random.permutation(shuffle_rng, x) for x in args] if shuffle: g_values, mask, watermarked = coshuffle(g_values, mask, watermarked) def update_fn_if_fpr_tpr(params): """Loss function for negative TPR@FPR=1% as the validation loss.""" tpr_ = tpr_at_fpr( params=params, detector_inputs=(g_values_val, mask_val), w_true=watermarked_val, minibatch_size=minibatch_size, detector_module=detector_module, ) return -tpr_ n_minibatches = len(g_values) / minibatch_size l2_batch_weight_train = l2_weight / n_minibatches l2_batch_weight_val = 0.0 loss_fn_train = functools.partial( loss_fn, l2_batch_weight=l2_batch_weight_train, detector_module=detector_module, ) loss_fn_jitted_val = jax.jit( functools.partial( loss_fn, l2_batch_weight=l2_batch_weight_val, detector_module=detector_module, ) ) @jax.jit def update(gvalues, masks, labels, params, opt_state): loss_fn_partialed = functools.partial( loss_fn_train, detector_inputs=(gvalues, masks), w_true=labels, ) loss, grads = jax.value_and_grad(loss_fn_partialed)(params) updates, opt_state = optimizer.update(grads, opt_state) params = optax.apply_updates(params, updates) return loss, params, opt_state def update_with_minibatches(gvalues, masks, labels, inds, params, opt_state): """Update params iff opt_state is not None and always returns the loss.""" losses = [] for start in inds: end = start + minibatch_size loss, params, opt_state = update( gvalues[start:end], masks[start:end], labels[start:end], params, opt_state, ) losses.append(loss) loss = jnp.mean(jnp.array(losses)) return loss, params, opt_state def validate_with_minibatches(gvalues, masks, labels, inds, params): """Update params iff opt_state is not None and always returns the loss.""" losses = [] for start in inds: end = start + minibatch_size loss = loss_fn_jitted_val( params, detector_inputs=(gvalues[start:end], masks[start:end]), w_true=labels[start:end], ) losses.append(loss) return jnp.mean(jnp.array(losses)) def update_fn(opt_state, params): """Updates the model parameters and returns the loss.""" loss, params, opt_state = update_with_minibatches( g_values, mask, watermarked, minibatch_inds, params, opt_state ) val_loss = None if g_values_val is not None: if validation_metric == ValidationMetric.TPR_AT_FPR: val_loss = update_fn_if_fpr_tpr(params) else: val_loss = validate_with_minibatches( g_values_val, mask_val, watermarked_val, minibatch_inds_val, params, ) return opt_state, params, loss, val_loss params = detector_module.params if params is None: params = detector_module.init(param_rng, g_values[:1], mask[:1]) optimizer = optax.adam(learning_rate=learning_rate) opt_state = optimizer.init(params) history = {} epochs_completed = 0 while epochs_completed < epochs: opt_state, params, loss, val_loss = update_fn(opt_state, params) epochs_completed += 1 history[epochs_completed] = { "loss": loss, "val_loss": val_loss, "params": params["params"], } if verbose: if val_loss is not None: print( f"Epoch {epochs_completed}: loss {loss} (train), {val_loss} (val)" ) else: print(f"Epoch {epochs_completed}: loss {loss} (train)") detector_module.params = params val_loss = np.squeeze( np.array([history[epoch]["val_loss"] for epoch in range(1, epochs + 1)]) ) best_val_epoch = np.argmin(val_loss) + 1 min_val_loss = val_loss[best_val_epoch - 1] print(f"Best val Epoch: {best_val_epoch}, min_val_loss: {min_val_loss}") detector_module.params = {"params": history[best_val_epoch]["params"]} return history, min_val_loss
Trains a Bayesian detector model. Args: detector_module: The detector module to train in-place. g_values: g-values of shape [num_train, seq_len, watermarking_depth]. mask: A binary array shape [num_train, seq_len] indicating which g-values should be used. g-values with mask value 0 are discarded. watermarked: A binary array of shape [num_train] indicating whether the example is watermarked (0: unwatermarked, 1: watermarked). epochs: Number of epochs to train for. learning_rate: Learning rate for optimizer. minibatch_size: Minibatch size for training. Note that a minibatch requires ~ 32 * minibatch_size * seq_len * watermarked_depth * watermarked_depth bits of memory. seed: Seed for parameter initialization. l2_weight: Weight to apply to L2 regularization for delta parameters. shuffle: Whether to shuffle before training. g_values_val: Validation g-values of shape [num_val, seq_len, watermarking_depth]. mask_val: Validation mask of shape [num_val, seq_len]. watermarked_val: Validation watermark labels of shape [num_val]. verbose: Boolean indicating verbosity of training. If true, the loss will be printed. Defaulted to False. validation_metric: validation metric to use. Returns: Tuple of training_history: Training history keyed by epoch number where the values are dictionaries containing the loss, validation loss, and model parameters, keyed by 'loss', 'val_loss', and 'params', respectively. min_val_loss: Minimum validation loss achieved during training.
train
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def update_fn_if_fpr_tpr(params): """Loss function for negative TPR@FPR=1% as the validation loss.""" tpr_ = tpr_at_fpr( params=params, detector_inputs=(g_values_val, mask_val), w_true=watermarked_val, minibatch_size=minibatch_size, detector_module=detector_module, ) return -tpr_
Loss function for negative TPR@FPR=1% as the validation loss.
update_fn_if_fpr_tpr
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def update_with_minibatches(gvalues, masks, labels, inds, params, opt_state): """Update params iff opt_state is not None and always returns the loss.""" losses = [] for start in inds: end = start + minibatch_size loss, params, opt_state = update( gvalues[start:end], masks[start:end], labels[start:end], params, opt_state, ) losses.append(loss) loss = jnp.mean(jnp.array(losses)) return loss, params, opt_state
Update params iff opt_state is not None and always returns the loss.
update_with_minibatches
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def validate_with_minibatches(gvalues, masks, labels, inds, params): """Update params iff opt_state is not None and always returns the loss.""" losses = [] for start in inds: end = start + minibatch_size loss = loss_fn_jitted_val( params, detector_inputs=(gvalues[start:end], masks[start:end]), w_true=labels[start:end], ) losses.append(loss) return jnp.mean(jnp.array(losses))
Update params iff opt_state is not None and always returns the loss.
validate_with_minibatches
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def update_fn(opt_state, params): """Updates the model parameters and returns the loss.""" loss, params, opt_state = update_with_minibatches( g_values, mask, watermarked, minibatch_inds, params, opt_state ) val_loss = None if g_values_val is not None: if validation_metric == ValidationMetric.TPR_AT_FPR: val_loss = update_fn_if_fpr_tpr(params) else: val_loss = validate_with_minibatches( g_values_val, mask_val, watermarked_val, minibatch_inds_val, params, ) return opt_state, params, loss, val_loss
Updates the model parameters and returns the loss.
update_fn
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def score(self, outputs: jnp.ndarray) -> jnp.ndarray: """Score the model output for possibility of being watermarked. Score is within [0, 1] where 0 is not watermarked and 1 is watermarked. Args: outputs: model output of shape [batch_size, output_len] Returns: scores of shape [batch_size] """ # eos mask is computed, skip first ngram_len - 1 tokens # eos_mask will be of shape [batch_size, output_len] eos_token_mask = self.logits_processor.compute_eos_token_mask( input_ids=outputs, eos_token_id=self.tokenizer.eos_token_id, )[:, self.logits_processor.ngram_len - 1 :] # context repetition mask is computed context_repetition_mask = ( self.logits_processor.compute_context_repetition_mask( input_ids=outputs, ) ) # context repetition mask shape [batch_size, output_len - (ngram_len - 1)] combined_mask = context_repetition_mask * eos_token_mask g_values = self.logits_processor.compute_g_values( input_ids=outputs, ) # g values shape [batch_size, output_len - (ngram_len - 1), depth] return self.detector_module.score( g_values.cpu().numpy(), combined_mask.cpu().numpy() )
Score the model output for possibility of being watermarked. Score is within [0, 1] where 0 is not watermarked and 1 is watermarked. Args: outputs: model output of shape [batch_size, output_len] Returns: scores of shape [batch_size]
score
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def process_raw_model_outputs( cls, *, tokenized_wm_outputs: Union[Sequence[np.ndarray], np.ndarray], tokenized_uwm_outputs: Union[Sequence[np.ndarray], np.ndarray], logits_processor: logits_processing.SynthIDLogitsProcessor, tokenizer: Any, torch_device: torch.device, test_size: float = 0.3, pos_truncation_length: Optional[int] = 200, neg_truncation_length: Optional[int] = 100, max_padded_length: int = 2300, ) -> tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray, jnp.ndarray, jnp.ndarray]: """Process raw models outputs into inputs we can train. Args: tokenized_wm_outputs: tokenized outputs of watermarked data. tokenized_uwm_outputs: tokenized outputs of unwatermarked data. logits_processor: logits processor used for watermarking. tokenizer: tokenizer used for the model. torch_device: torch device to use. test_size: test size to use for train-test split. pos_truncation_length: Length to truncate wm outputs. If None, no truncation is applied. neg_truncation_length: Length to truncate uwm outputs. If None, no truncation is applied. max_padded_length: Length to pad truncated outputs so that all processed entries have same shape. Returns: Tuple of train_g_values, train_masks, train_labels, cv_g_values, cv_masks, cv_labels """ # Split data into train and CV train_wm_outputs, cv_wm_outputs = model_selection.train_test_split( tokenized_wm_outputs, test_size=test_size ) train_uwm_outputs, cv_uwm_outputs = model_selection.train_test_split( tokenized_uwm_outputs, test_size=test_size ) # Process both train and CV data for training wm_masks_train, wm_g_values_train = process_outputs_for_training( [ torch.tensor(outputs, device=torch_device, dtype=torch.long) for outputs in train_wm_outputs ], logits_processor=logits_processor, tokenizer=tokenizer, pos_truncation_length=pos_truncation_length, neg_truncation_length=neg_truncation_length, max_length=max_padded_length, is_pos=True, is_cv=False, torch_device=torch_device, ) wm_masks_cv, wm_g_values_cv = process_outputs_for_training( [ torch.tensor(outputs, device=torch_device, dtype=torch.long) for outputs in cv_wm_outputs ], logits_processor=logits_processor, tokenizer=tokenizer, pos_truncation_length=pos_truncation_length, neg_truncation_length=neg_truncation_length, max_length=max_padded_length, is_pos=True, is_cv=True, torch_device=torch_device, ) uwm_masks_train, uwm_g_values_train = process_outputs_for_training( [ torch.tensor(outputs, device=torch_device, dtype=torch.long) for outputs in train_uwm_outputs ], logits_processor=logits_processor, tokenizer=tokenizer, pos_truncation_length=pos_truncation_length, neg_truncation_length=neg_truncation_length, max_length=max_padded_length, is_pos=False, is_cv=False, torch_device=torch_device, ) uwm_masks_cv, uwm_g_values_cv = process_outputs_for_training( [ torch.tensor(outputs, device=torch_device, dtype=torch.long) for outputs in cv_uwm_outputs ], logits_processor=logits_processor, tokenizer=tokenizer, pos_truncation_length=pos_truncation_length, neg_truncation_length=neg_truncation_length, max_length=max_padded_length, is_pos=False, is_cv=True, torch_device=torch_device, ) # We get list of data; here we concat all together to be passed to the # detector. wm_masks_train = torch.cat(wm_masks_train, dim=0) wm_g_values_train = torch.cat(wm_g_values_train, dim=0) wm_labels_train = torch.ones((wm_masks_train.shape[0],), dtype=torch.bool) wm_masks_cv = torch.cat(wm_masks_cv, dim=0) wm_g_values_cv = torch.cat(wm_g_values_cv, dim=0) wm_labels_cv = torch.ones((wm_masks_cv.shape[0],), dtype=torch.bool) uwm_masks_train = torch.cat(uwm_masks_train, dim=0) uwm_g_values_train = torch.cat(uwm_g_values_train, dim=0) uwm_labels_train = torch.zeros( (uwm_masks_train.shape[0],), dtype=torch.bool ) uwm_masks_cv = torch.cat(uwm_masks_cv, dim=0) uwm_g_values_cv = torch.cat(uwm_g_values_cv, dim=0) uwm_labels_cv = torch.zeros((uwm_masks_cv.shape[0],), dtype=torch.bool) # Concat pos and negatives data together. train_g_values = ( torch.cat((wm_g_values_train, uwm_g_values_train), dim=0).cpu().numpy() ) train_labels = ( torch.cat((wm_labels_train, uwm_labels_train), axis=0).cpu().numpy() ) train_masks = ( torch.cat((wm_masks_train, uwm_masks_train), axis=0).cpu().numpy() ) cv_g_values = ( torch.cat((wm_g_values_cv, uwm_g_values_cv), axis=0).cpu().numpy() ) cv_labels = torch.cat((wm_labels_cv, uwm_labels_cv), axis=0).cpu().numpy() cv_masks = torch.cat((wm_masks_cv, uwm_masks_cv), axis=0).cpu().numpy() # Free up GPU memory. del ( wm_g_values_train, wm_labels_train, wm_masks_train, wm_g_values_cv, wm_labels_cv, wm_masks_cv, ) gc.collect() torch.cuda.empty_cache() # Shuffle data. train_g_values = jnp.squeeze(train_g_values) train_labels = jnp.squeeze(train_labels) train_masks = jnp.squeeze(train_masks) cv_g_values = jnp.squeeze(cv_g_values) cv_labels = jnp.squeeze(cv_labels) cv_masks = jnp.squeeze(cv_masks) shuffled_idx = list(range(train_g_values.shape[0])) shuffled_idx = np.array(shuffled_idx) np.random.shuffle(shuffled_idx) train_g_values = train_g_values[shuffled_idx] train_labels = train_labels[shuffled_idx] train_masks = train_masks[shuffled_idx] shuffled_idx = list(range(cv_g_values.shape[0])) shuffled_idx = np.array(shuffled_idx) np.random.shuffle(shuffled_idx) cv_g_values = cv_g_values[shuffled_idx] cv_labels = cv_labels[shuffled_idx] cv_masks = cv_masks[shuffled_idx] return ( train_g_values, train_masks, train_labels, cv_g_values, cv_masks, cv_labels, )
Process raw models outputs into inputs we can train. Args: tokenized_wm_outputs: tokenized outputs of watermarked data. tokenized_uwm_outputs: tokenized outputs of unwatermarked data. logits_processor: logits processor used for watermarking. tokenizer: tokenizer used for the model. torch_device: torch device to use. test_size: test size to use for train-test split. pos_truncation_length: Length to truncate wm outputs. If None, no truncation is applied. neg_truncation_length: Length to truncate uwm outputs. If None, no truncation is applied. max_padded_length: Length to pad truncated outputs so that all processed entries have same shape. Returns: Tuple of train_g_values, train_masks, train_labels, cv_g_values, cv_masks, cv_labels
process_raw_model_outputs
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def train_best_detector_given_g_values( cls, *, train_g_values: jnp.ndarray, train_masks: jnp.ndarray, train_labels: jnp.ndarray, cv_g_values: jnp.ndarray, cv_masks: jnp.ndarray, cv_labels: jnp.ndarray, logits_processor: logits_processing.SynthIDLogitsProcessor, tokenizer: Any, n_epochs: int = 50, learning_rate: float = 2.1e-2, l2_weights: np.ndarray = np.logspace(-3, -2, num=4), verbose: bool = False, ) -> tuple["BayesianDetector", float]: """Train best detector given g_values, mask and labels.""" best_detector = None lowest_loss = float("inf") val_losses = [] for l2_weight in l2_weights: detector_module = BayesianDetectorModule( watermarking_depth=len(logits_processor.keys), ) _, min_val_loss = train( detector_module=detector_module, g_values=train_g_values, mask=train_masks, watermarked=train_labels, g_values_val=cv_g_values, mask_val=cv_masks, watermarked_val=cv_labels, learning_rate=learning_rate, l2_weight=l2_weight, epochs=n_epochs, verbose=verbose, ) val_losses.append(min_val_loss) if min_val_loss < lowest_loss: lowest_loss = min_val_loss best_detector = detector_module return cls(logits_processor, tokenizer, best_detector.params), lowest_loss
Train best detector given g_values, mask and labels.
train_best_detector_given_g_values
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def train_best_detector( cls, *, tokenized_wm_outputs: Union[Sequence[np.ndarray], np.ndarray], tokenized_uwm_outputs: Union[Sequence[np.ndarray], np.ndarray], logits_processor: logits_processing.SynthIDLogitsProcessor, tokenizer: Any, torch_device: torch.device, test_size: float = 0.3, pos_truncation_length: Optional[int] = 200, neg_truncation_length: Optional[int] = 100, max_padded_length: int = 2300, n_epochs: int = 50, learning_rate: float = 2.1e-2, l2_weights: np.ndarray = np.logspace(-3, -2, num=4), verbose: bool = False, ) -> tuple["BayesianDetector", float]: """Construct, train and return the best detector based on wm and uwm data. In practice, we have found that tuning pos_truncation_length, neg_truncation_length, n_epochs, learning_rate and l2_weights can help improve the performance of the detector. We recommend tuning these parameters for your data. Args: tokenized_wm_outputs: tokenized outputs of watermarked data. tokenized_uwm_outputs: tokenized outputs of unwatermarked data. logits_processor: logits processor used for watermarking. tokenizer: tokenizer used for the model. torch_device: torch device to use. test_size: test size to use for train-test split. pos_truncation_length: Length to truncate wm outputs. If None, no truncation is applied. neg_truncation_length: Length to truncate uwm outputs. If None, no truncation is done. max_padded_length: Length to pad truncated outputs so that all processed entries have same shape. n_epochs: Number of epochs to train the detector. learning_rate: Learning rate to use for training the detector. l2_weights: L2 weights to use for training the detector. verbose: Whether to print training progress. Returns: Tuple of trained detector and loss achieved on CV data. """ if torch_device.type in ("cuda", "tpu"): raise ValueError( "We have found the training unstable on CPUs; we are working on" " a fix. Use GPU or TPU for training." ) ( train_g_values, train_masks, train_labels, cv_g_values, cv_masks, cv_labels, ) = cls.process_raw_model_outputs( tokenized_wm_outputs=tokenized_wm_outputs, tokenized_uwm_outputs=tokenized_uwm_outputs, logits_processor=logits_processor, tokenizer=tokenizer, torch_device=torch_device, test_size=test_size, pos_truncation_length=pos_truncation_length, neg_truncation_length=neg_truncation_length, max_padded_length=max_padded_length, ) return cls.train_best_detector_given_g_values( train_g_values=train_g_values, train_masks=train_masks, train_labels=train_labels, cv_g_values=cv_g_values, cv_masks=cv_masks, cv_labels=cv_labels, logits_processor=logits_processor, tokenizer=tokenizer, verbose=verbose, n_epochs=n_epochs, learning_rate=learning_rate, l2_weights=l2_weights, )
Construct, train and return the best detector based on wm and uwm data. In practice, we have found that tuning pos_truncation_length, neg_truncation_length, n_epochs, learning_rate and l2_weights can help improve the performance of the detector. We recommend tuning these parameters for your data. Args: tokenized_wm_outputs: tokenized outputs of watermarked data. tokenized_uwm_outputs: tokenized outputs of unwatermarked data. logits_processor: logits processor used for watermarking. tokenizer: tokenizer used for the model. torch_device: torch device to use. test_size: test size to use for train-test split. pos_truncation_length: Length to truncate wm outputs. If None, no truncation is applied. neg_truncation_length: Length to truncate uwm outputs. If None, no truncation is done. max_padded_length: Length to pad truncated outputs so that all processed entries have same shape. n_epochs: Number of epochs to train the detector. learning_rate: Learning rate to use for training the detector. l2_weights: L2 weights to use for training the detector. verbose: Whether to print training progress. Returns: Tuple of trained detector and loss achieved on CV data.
train_best_detector
python
google-deepmind/synthid-text
src/synthid_text/detector_bayesian.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_bayesian.py
Apache-2.0
def mean_score( g_values: jnp.ndarray, mask: jnp.ndarray, ) -> jnp.ndarray: """Computes the Mean score. Args: g_values: g-values of shape [batch_size, seq_len, watermarking_depth]. mask: A binary array shape [batch_size, seq_len] indicating which g-values should be used. g-values with mask value 0 are discarded. Returns: Mean scores, of shape [batch_size]. This is the mean of the unmasked g-values. """ watermarking_depth = g_values.shape[-1] num_unmasked = jnp.sum(mask, axis=1) # shape [batch_size] return jnp.sum(g_values * jnp.expand_dims(mask, 2), axis=(1, 2)) / ( watermarking_depth * num_unmasked )
Computes the Mean score. Args: g_values: g-values of shape [batch_size, seq_len, watermarking_depth]. mask: A binary array shape [batch_size, seq_len] indicating which g-values should be used. g-values with mask value 0 are discarded. Returns: Mean scores, of shape [batch_size]. This is the mean of the unmasked g-values.
mean_score
python
google-deepmind/synthid-text
src/synthid_text/detector_mean.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_mean.py
Apache-2.0
def weighted_mean_score( g_values: jnp.ndarray, mask: jnp.ndarray, weights: Optional[jnp.ndarray] = None, ) -> jnp.ndarray: """Computes the Weighted Mean score. Args: g_values: g-values of shape [batch_size, seq_len, watermarking_depth]. mask: A binary array shape [batch_size, seq_len] indicating which g-values should be used. g-values with mask value 0 are discarded. weights: array of non-negative floats, shape [watermarking_depth]. The weights to be applied to the g-values. If not supplied, defaults to linearly decreasing weights from 10 to 1. Returns: Weighted Mean scores, of shape [batch_size]. This is the mean of the unmasked g-values, re-weighted using weights. """ watermarking_depth = g_values.shape[-1] if weights is None: weights = jnp.linspace(start=10, stop=1, num=watermarking_depth) # Normalise weights so they sum to watermarking_depth. weights *= watermarking_depth / jnp.sum(weights) # Apply weights to g-values. g_values *= jnp.expand_dims(weights, axis=(0, 1)) num_unmasked = jnp.sum(mask, axis=1) # shape [batch_size] return jnp.sum(g_values * jnp.expand_dims(mask, 2), axis=(1, 2)) / ( watermarking_depth * num_unmasked )
Computes the Weighted Mean score. Args: g_values: g-values of shape [batch_size, seq_len, watermarking_depth]. mask: A binary array shape [batch_size, seq_len] indicating which g-values should be used. g-values with mask value 0 are discarded. weights: array of non-negative floats, shape [watermarking_depth]. The weights to be applied to the g-values. If not supplied, defaults to linearly decreasing weights from 10 to 1. Returns: Weighted Mean scores, of shape [batch_size]. This is the mean of the unmasked g-values, re-weighted using weights.
weighted_mean_score
python
google-deepmind/synthid-text
src/synthid_text/detector_mean.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/detector_mean.py
Apache-2.0
def expected_mean_g_value( vocab_size: int, num_leaves: int = 2, ) -> float: """Compute expected mean g-value after watermarking, assuming uniform LM dist. This is the theoretical expected value for a single-layer of tournament watermarking, using a Bernoulli(0.5) g-value distribution and N=num_leaves samples, assuming that the LM distribution p_LM is uniform. Args: vocab_size: The size of the vocabulary. num_leaves: Number of leaves per node in the tournament tree (N in the paper). Returns: The expected mean g-value for watermarked text. """ if num_leaves == 2: # This equation is from Corollary 27 in Supplementary Information of paper, # in the case where p_LM is uniform. return 0.5 + 0.25 * (1 - (1 / vocab_size)) elif num_leaves == 3: # This case can be derived from Theorem 25 in Supplementary Information of # the paper, in the case where N=3 and p_LM is uniform. return 7 / 8 - (3 / (8 * vocab_size)) else: raise ValueError( f'Only 2 or 3 leaves are supported for the expected mean g-value' f' computation, but got {num_leaves}.' )
Compute expected mean g-value after watermarking, assuming uniform LM dist. This is the theoretical expected value for a single-layer of tournament watermarking, using a Bernoulli(0.5) g-value distribution and N=num_leaves samples, assuming that the LM distribution p_LM is uniform. Args: vocab_size: The size of the vocabulary. num_leaves: Number of leaves per node in the tournament tree (N in the paper). Returns: The expected mean g-value for watermarked text.
expected_mean_g_value
python
google-deepmind/synthid-text
src/synthid_text/g_value_expectations.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/g_value_expectations.py
Apache-2.0
def accumulate_hash( current_hash: torch.LongTensor, data: torch.LongTensor, multiplier: int = 6364136223846793005, increment: int = 1, ) -> torch.LongTensor: """Accumulate hash of data on current hash. Method uses adapted linear congruential generator with newlib/musl parameters. This function has following property - f(x, data[T]) = f(f(x, data[:T - 1]), data[T]) This function expects current_hash.shape and data.shape[:-1] to match/broadcastable. Args: current_hash: (shape,) data: (shape, tensor_len) multiplier: (int) multiplier of linear congruential generator increment: (int) increment of linear congruential generator Returns: updated hash (shape,) """ for i in range(data.shape[-1]): current_hash = torch.add(current_hash, data[..., i]) current_hash = torch.mul(current_hash, multiplier) current_hash = torch.add(current_hash, increment) return current_hash
Accumulate hash of data on current hash. Method uses adapted linear congruential generator with newlib/musl parameters. This function has following property - f(x, data[T]) = f(f(x, data[:T - 1]), data[T]) This function expects current_hash.shape and data.shape[:-1] to match/broadcastable. Args: current_hash: (shape,) data: (shape, tensor_len) multiplier: (int) multiplier of linear congruential generator increment: (int) increment of linear congruential generator Returns: updated hash (shape,)
accumulate_hash
python
google-deepmind/synthid-text
src/synthid_text/hashing_function.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/hashing_function.py
Apache-2.0
def update_scores( scores: torch.FloatTensor, g_values: torch.FloatTensor, ) -> torch.FloatTensor: """Updates scores using the g values. We assume that the scores are in the log space. Args: scores: Scores (batch_size, vocab_size). g_values: G values (batch_size, vocab_size, depth). Returns: Updated scores (batch_size, vocab_size). """ _, _, depth = g_values.shape device = scores.device probs = torch.softmax(scores, dim=1) for i in range(depth): g_values_at_depth = g_values[:, :, i] g_mass_at_depth = (g_values_at_depth * probs).sum(axis=1, keepdims=True) probs = probs * (1 + g_values_at_depth - g_mass_at_depth) log_probs = torch.log(probs) log_probs = torch.where( torch.isfinite(log_probs), log_probs, torch.tensor(-1e12, device=device) ) return log_probs
Updates scores using the g values. We assume that the scores are in the log space. Args: scores: Scores (batch_size, vocab_size). g_values: G values (batch_size, vocab_size, depth). Returns: Updated scores (batch_size, vocab_size).
update_scores
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def update_scores_distortionary( scores: torch.FloatTensor, g_values: torch.FloatTensor, num_leaves: int, ) -> torch.FloatTensor: """Update scores using the g values for distortionary tournament watermarking. We assume that the scores are in the log space. Args: scores: Scores (batch_size, vocab_size). g_values: G values (batch_size, vocab_size, depth). num_leaves: Number of leaves per node in the tournament tree. Returns: Updated scores (batch_size, vocab_size). """ _, _, depth = g_values.shape device = scores.device probs = torch.softmax(scores, dim=1) for i in range(depth): g_values_at_depth = g_values[:, :, i] g_mass_at_depth = (g_values_at_depth * probs).sum(axis=1, keepdims=True) coeff_not_in_g = (1 - g_mass_at_depth)**(num_leaves - 1) coeff_in_g = (1 - (1 - g_mass_at_depth)**(num_leaves)) / g_mass_at_depth coeffs = torch.where( torch.logical_and(g_values_at_depth == 1, probs > 0), coeff_in_g, coeff_not_in_g) probs = probs * coeffs log_probs = torch.log(probs) log_probs = torch.where( torch.isfinite(log_probs), log_probs, torch.tensor(-1e12, device=device) ) return log_probs
Update scores using the g values for distortionary tournament watermarking. We assume that the scores are in the log space. Args: scores: Scores (batch_size, vocab_size). g_values: G values (batch_size, vocab_size, depth). num_leaves: Number of leaves per node in the tournament tree. Returns: Updated scores (batch_size, vocab_size).
update_scores_distortionary
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def __init__( self, batch_size: int, ngram_len: int, context_history_size: int, device: torch.device, ): """Initializes the state. Args: batch_size: Batch size. ngram_len: Ngram length. context_history_size: Size of the tensor to keep track of seen contexts. device: Device to use. """ self.context = torch.zeros( (batch_size, ngram_len - 1), dtype=torch.int64, device=device, ) self.context_history = torch.zeros( (batch_size, context_history_size), dtype=torch.int64, device=device, ) self.num_calls = 0
Initializes the state. Args: batch_size: Batch size. ngram_len: Ngram length. context_history_size: Size of the tensor to keep track of seen contexts. device: Device to use.
__init__
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def __init__( self, *, ngram_len: int, keys: Sequence[int], sampling_table_size: int, sampling_table_seed: int, context_history_size: int, temperature: float, top_k: int, device: torch.device, skip_first_ngram_calls: bool = False, apply_top_k: bool = True, num_leaves: int = 2 ): """Initializes the logits processor. Args: ngram_len: Ngram length. keys: A sequence of watermarking keys, one for each depth. sampling_table_size: Size of the sampling table. sampling_table_seed: Random seed to generate the sampling table. context_history_size: Size of the tensor to keep track of seen contexts. temperature: Temperature to use for scaling the scores. top_k: Top k to use for sampling the scores. device: Device to use. skip_first_ngram_calls: Whether to skip first ngram calls. apply_top_k: Whether to apply top k to the scores. num_leaves: Number of leaves per node in the tournament tree. """ self.ngram_len = ngram_len self.keys = torch.tensor(keys, device=device) generator = torch.Generator(device=device).manual_seed(sampling_table_seed) # A random sampling table is pre-computed and modulo table size is applied # to map from a hash of ngram keys to g values, this is similar to the # hashtable implementation used in # https://github.com/facebookresearch/three_bricks. We note that the # hashing employed in this repository is different from that used to # watermark the Gemini App, and hence the detectors trained based on the # hashing in this repository will not transfer to text generated by # the Gemini App. self.sampling_table = torch.randint( low=0, high=2, size=(sampling_table_size,), generator=generator, device=device, ) self.context_history_size = context_history_size self.device = device self.state = None self.skip_first_ngram_calls = skip_first_ngram_calls self.apply_top_k = apply_top_k # Check validity of temperature. if not (isinstance(temperature, float) and temperature > 0): except_msg = ( f"`temperature` (={temperature}) has to be a strictly positive float," " otherwise your next token scores will be invalid." ) if isinstance(temperature, float) and temperature == 0.0: except_msg += ( " If you're looking for greedy decoding strategies, set" " `do_sample=False`." ) raise ValueError(except_msg) self.temperature = temperature self._num_leaves = num_leaves # Check validity of top_k. if not (isinstance(top_k, int) and top_k > 1): raise ValueError(f"`top_k` has to be > 1, but is {top_k}") self.top_k = top_k
Initializes the logits processor. Args: ngram_len: Ngram length. keys: A sequence of watermarking keys, one for each depth. sampling_table_size: Size of the sampling table. sampling_table_seed: Random seed to generate the sampling table. context_history_size: Size of the tensor to keep track of seen contexts. temperature: Temperature to use for scaling the scores. top_k: Top k to use for sampling the scores. device: Device to use. skip_first_ngram_calls: Whether to skip first ngram calls. apply_top_k: Whether to apply top k to the scores. num_leaves: Number of leaves per node in the tournament tree.
__init__
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def watermarked_call( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, ) -> tuple[torch.FloatTensor, torch.LongTensor, torch.FloatTensor]: """Calls the logits processor statefully. This function computes top_k internally and returns the indices mapping from top_k scores to dense scores. Args: input_ids: Input token ids (batch_size, inputs_len). scores: Scores (batch_size, vocab_size). Returns: Tuple of Watermarked updated scores (batch_size, top_k) Top k indices (batch_size, top_k). original scores for perplexity calculations (batch_size, top_k) """ self._check_input_ids_shape(input_ids) scores_processed = scores / self.temperature top_k_result = torch.topk(scores_processed, k=self.top_k, dim=1) batch_size, vocab_size = scores.shape if self.apply_top_k: scores_top_k = top_k_result.values # scores_top_k shape [batch_size, top_k] top_k_indices = top_k_result.indices # top_k_indices shape [batch_size, top_k] else: scores_top_k = scores_processed top_k_indices = torch.stack([ torch.arange(vocab_size, device=self.device) for _ in range(batch_size) ]) device = scores.device if str(device) != str(self.device): raise ValueError( "SynthIDLogitsProcessor received inputs with unexpected device.", ) if self.state is None: # Initialize watermarking state if it does not exist. self._init_state(batch_size) else: # Append last input id (which is the input id added in last call) to the # previous context so we have the context to be used for current # watermarking. self.state.context = torch.concat( (self.state.context, input_ids[:, -1:]), dim=1, ) self.state.context = self.state.context[:, 1:] assert self.state is not None self.state.num_calls += 1 # Don't watermark the first ngram_len - 1 tokens if set. if self.skip_first_ngram_calls and self.state.num_calls < self.ngram_len: return scores_top_k, top_k_indices, scores_top_k # 2. Generate random keys for each ngram key combination. ngram_keys, hash_result_with_just_context = self._compute_keys( self.state.context, top_k_indices ) # ngram_keys shape [batch_size, top_k, depth] # 3. Sample g values. g_values = self.sample_g_values(ngram_keys) # g_values shape [batch_size, top_k, depth] # 4. Modify scores. if self._num_leaves == 2: updated_scores = update_scores(scores_top_k, g_values) else: updated_scores = update_scores_distortionary( scores_top_k, g_values, self._num_leaves ) # updated scores shape [batch_size, top_k] # 5. Check if the current watermarking context was previously used, if # yes skip watermarking. hash_result_with_just_context = hash_result_with_just_context[:, None] is_repeated_context = ( self.state.context_history == hash_result_with_just_context ).any( dim=1, keepdim=True, ) self.state.context_history = torch.concat( (hash_result_with_just_context, self.state.context_history), dim=1, )[:, :-1] updated_watermarked_scores = torch.where( is_repeated_context, input=scores_top_k, other=updated_scores, ) return updated_watermarked_scores, top_k_indices, scores_top_k
Calls the logits processor statefully. This function computes top_k internally and returns the indices mapping from top_k scores to dense scores. Args: input_ids: Input token ids (batch_size, inputs_len). scores: Scores (batch_size, vocab_size). Returns: Tuple of Watermarked updated scores (batch_size, top_k) Top k indices (batch_size, top_k). original scores for perplexity calculations (batch_size, top_k)
watermarked_call
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def compute_ngram_keys( self, ngrams: torch.LongTensor, ) -> torch.LongTensor: """Computes random keys for each ngram and depth. Args: ngrams: Ngrams (batch_size, num_ngrams, ngram_len). Returns: ngram keys (batch_size, num_ngrams, depth). """ if len(ngrams.shape) != 3: raise ValueError( "Ngrams should be of shape (batch_size, num_ngrams, ngram_len), but" f" is {ngrams.shape}" ) if ngrams.shape[2] != self.ngram_len: raise ValueError( "Ngrams should be of shape (batch_size, num_ngrams, ngram_len)," f" where ngram_len is {self.ngram_len}, but is {ngrams.shape}" ) batch_size, _, _ = ngrams.shape hash_result = torch.ones(batch_size, device=self.device, dtype=torch.long) # hash_result shape [batch_size,] # ngrams shape [batch_size, num_ngrams, ngram_len] hash_result = torch.vmap( hashing_function.accumulate_hash, in_dims=(None, 1), out_dims=1 )(hash_result, ngrams) # hash_result shape [batch_size, num_ngrams] keys = self.keys[None, None, :, None] # hash_result shape [batch_size, num_ngrams] # keys shape [1, 1, depth, 1] hash_result = torch.vmap( hashing_function.accumulate_hash, in_dims=(None, 2), out_dims=2 )(hash_result, keys) # hash_result shape [batch_size, num_ngrams, depth] return hash_result
Computes random keys for each ngram and depth. Args: ngrams: Ngrams (batch_size, num_ngrams, ngram_len). Returns: ngram keys (batch_size, num_ngrams, depth).
compute_ngram_keys
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def _compute_keys( self, n_minus_1_grams: torch.LongTensor, indices: torch.LongTensor, ) -> tuple[torch.LongTensor, torch.LongTensor]: """Computes random keys for each ngram and depth. Args: n_minus_1_grams: Ngrams (batch_size, ngram_len - 1). indices: indices of the continuations (batch_size, num_indices) Returns: Ngram keys (batch_size, num_indices, depth). """ batch_size, _ = n_minus_1_grams.shape hash_result = torch.ones(batch_size, device=self.device, dtype=torch.long) # First hash n_minus_1 gram, for each batch entry we have a single # n_minus_1 gram context. # hash_result shape [batch_size] # n_minus_1_gram shape [batch_size, ngram_len - 1] hash_result_with_just_context = hashing_function.accumulate_hash( hash_result, n_minus_1_grams ) # hash_result shape [batch_size,] # Indices is of shape [batch_size, num_indices], so we make it # [batch_size, num_indices, 1] so we can vmap over num_indices dim. hash_result = torch.vmap( hashing_function.accumulate_hash, in_dims=(None, 1), out_dims=1 )(hash_result_with_just_context, indices[:, :, None]) # hash_result shape [batch_size, num_indices] # Basically we have a hash for each batch entry and each indices # Now we add watermarking keys to this hash. # keys are of shape [depth,] # We add batch, num_indices and data dimension to this making it # [1, 1, depth, 1]. # So we can vmap over the depth dimension for compute_hash keys = self.keys[None, None, :, None] hash_result = torch.vmap( hashing_function.accumulate_hash, in_dims=(None, 2), out_dims=2 )(hash_result, keys) # hash_result shape should be [batch_size, num_indices, depth] return hash_result, hash_result_with_just_context
Computes random keys for each ngram and depth. Args: n_minus_1_grams: Ngrams (batch_size, ngram_len - 1). indices: indices of the continuations (batch_size, num_indices) Returns: Ngram keys (batch_size, num_indices, depth).
_compute_keys
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def sample_g_values(self, ngram_keys: torch.LongTensor) -> torch.LongTensor: """Samples g values from Bernoulli distribution. It is not possible to pass random keys in a vectorized way in torch. Instead we pre-compute a random sampling table, and use apply modulo table size to map from ngram keys (int64) to g values. Args: ngram_keys: Random keys (batch_size, num_ngrams, depth). Returns: G values (batch_size, num_ngrams, depth). """ (sampling_table_size,) = self.sampling_table.shape sampling_table = self.sampling_table.reshape((1, 1, sampling_table_size)) ngram_keys = ngram_keys % sampling_table_size return torch.take_along_dim(sampling_table, indices=ngram_keys, dim=2)
Samples g values from Bernoulli distribution. It is not possible to pass random keys in a vectorized way in torch. Instead we pre-compute a random sampling table, and use apply modulo table size to map from ngram keys (int64) to g values. Args: ngram_keys: Random keys (batch_size, num_ngrams, depth). Returns: G values (batch_size, num_ngrams, depth).
sample_g_values
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def _check_input_ids_shape(self, input_ids: torch.LongTensor): """Checks the shape of input ids.""" if len(input_ids.shape) != 2: raise ValueError( "Input ids should be of shape (batch_size, input_len), but is" f" {input_ids.shape}" )
Checks the shape of input ids.
_check_input_ids_shape
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def compute_g_values( self, input_ids: torch.LongTensor, ) -> torch.LongTensor: """Computes g values for each ngram from the given sequence of tokens. Args: input_ids: Input token ids (batch_size, input_len). Returns: G values (batch_size, input_len - (ngram_len - 1), depth). """ self._check_input_ids_shape(input_ids) ngrams = input_ids.unfold(dimension=1, size=self.ngram_len, step=1) ngram_keys = self.compute_ngram_keys(ngrams) return self.sample_g_values(ngram_keys)
Computes g values for each ngram from the given sequence of tokens. Args: input_ids: Input token ids (batch_size, input_len). Returns: G values (batch_size, input_len - (ngram_len - 1), depth).
compute_g_values
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def compute_context_repetition_mask( self, input_ids: torch.LongTensor, ) -> torch.LongTensor: """Computes repetition mask. 0 and 1 stand for repeated and not repeated context n-1 grams respectively. Args: input_ids: Input token ids (batch_size, input_len). Returns: Repetitions mask (batch_size, input_len - (ngram_len - 1)). """ self._check_input_ids_shape(input_ids) batch_size, _ = input_ids.shape state = SynthIDState( batch_size=batch_size, ngram_len=self.ngram_len, context_history_size=self.context_history_size, device=self.device, ) contexts = input_ids[:, :-1].unfold( dimension=1, size=self.ngram_len - 1, step=1, ) _, num_contexts, _ = contexts.shape are_repeated_contexts = [] for i in range(num_contexts): context = contexts[:, i, :] hash_result = torch.ones(batch_size, device=self.device, dtype=torch.long) context_hash = hashing_function.accumulate_hash(hash_result, context)[ :, None ] is_repeated_context = (state.context_history == context_hash).any( dim=1, keepdim=True, ) are_repeated_contexts.append(is_repeated_context) state.context_history = torch.concat( (context_hash, state.context_history), dim=1, )[:, :-1] are_repeated_contexts = torch.concat(are_repeated_contexts, dim=1) return torch.logical_not(are_repeated_contexts)
Computes repetition mask. 0 and 1 stand for repeated and not repeated context n-1 grams respectively. Args: input_ids: Input token ids (batch_size, input_len). Returns: Repetitions mask (batch_size, input_len - (ngram_len - 1)).
compute_context_repetition_mask
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def compute_eos_token_mask( self, input_ids: torch.LongTensor, eos_token_id: int, ) -> torch.LongTensor: """Computes repetitions mask. 1 stands for ngrams that don't contain EOS tokens and vice versa. Args: input_ids: Input token ids (batch_size, input_len). eos_token_id: EOS token ID. Returns: EOS token mask (batch_size, input_len). """ self._check_input_ids_shape(input_ids) noneos_masks = [] all_eos_equated = input_ids == eos_token_id for eos_equated in all_eos_equated: nonzero_idx = torch.nonzero(eos_equated) noneos_mask = torch.ones_like(eos_equated) if nonzero_idx.shape[0] != 0: noneos_mask[nonzero_idx[0][0] :] = 0 noneos_masks.append(noneos_mask) return torch.stack(noneos_masks, dim=0)
Computes repetitions mask. 1 stands for ngrams that don't contain EOS tokens and vice versa. Args: input_ids: Input token ids (batch_size, input_len). eos_token_id: EOS token ID. Returns: EOS token mask (batch_size, input_len).
compute_eos_token_mask
python
google-deepmind/synthid-text
src/synthid_text/logits_processing.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing.py
Apache-2.0
def does_mean_g_value_matches_theoretical( vocab_size: int, ngram_len: int, batch_size: int, keys: Sequence[int], atol: float, device: torch.device, num_leaves: int = 2, ) -> tuple[float, float, bool]: """Tests that the mean g-value is close to theoretical value. SynthIDLogitsProcessor is tested on its own using random input tokens. Args: vocab_size: vocab size of the model. ngram_len: length of the ngram. batch_size: batch size of the model. keys: keys used for watermarking. atol: absolute tolerance for the mean g-value. device: device to use for the test. num_leaves: number of children per node in the tournament tree. Returns: A tuple of mean g-value, the expected mean g-value and the boolean result of the test. """ generator = torch.Generator(device=device).manual_seed(0) # Use 10**9 rather than vocab_size to ensure variety in (n-1)-grams. context = torch.randint( low=0, high=10**9, size=(batch_size, ngram_len - 1), dtype=torch.int64, generator=generator, device=device, ) context_history_size = 1024 logits_processor = logits_processing.SynthIDLogitsProcessor( ngram_len=ngram_len, keys=keys, sampling_table_size=2**16, sampling_table_seed=0, context_history_size=context_history_size, device=device, top_k=vocab_size, temperature=0.7, num_leaves=num_leaves, ) scores = torch.ones( (batch_size, vocab_size), dtype=torch.float64, device=device, ) # Init state of the logits processor. logits_processor.watermarked_call(context, scores) # insert context into the state. for idx in range(1, ngram_len - 1): _ = logits_processor.watermarked_call(context[:, :idx], scores) updated_scores, indices_mapping, _ = logits_processor.watermarked_call( context, scores ) probs = torch.nn.functional.softmax(updated_scores, dim=1) next_tokens = torch.multinomial( probs, num_samples=1, generator=generator, ) # Re-map to dense indices with indices_mapping. next_tokens = torch.vmap(torch.take, in_dims=0, out_dims=0)( indices_mapping, next_tokens ) ngrams = torch.concat((context, next_tokens), dim=1) g_values = logits_processor.compute_g_values(ngrams) mean_g_values = g_values.mean(dtype=torch.float64, dim=(0, 1)) expected_mean_g_value = g_value_expectations.expected_mean_g_value( vocab_size=vocab_size, num_leaves=num_leaves ) is_close = torch.all( torch.isclose( mean_g_values, torch.tensor( expected_mean_g_value, dtype=torch.float64, device=device ), atol=atol, rtol=0, ) ) return mean_g_values, expected_mean_g_value, is_close
Tests that the mean g-value is close to theoretical value. SynthIDLogitsProcessor is tested on its own using random input tokens. Args: vocab_size: vocab size of the model. ngram_len: length of the ngram. batch_size: batch size of the model. keys: keys used for watermarking. atol: absolute tolerance for the mean g-value. device: device to use for the test. num_leaves: number of children per node in the tournament tree. Returns: A tuple of mean g-value, the expected mean g-value and the boolean result of the test.
does_mean_g_value_matches_theoretical
python
google-deepmind/synthid-text
src/synthid_text/logits_processing_test.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing_test.py
Apache-2.0
def test_distributional_convergence(self): """Check if watermarked distribution converges to input distribution.""" vocab_size = 2 batch_size = 1500 num_keys = 1000 device = torch_testing.torch_device() temperature = 1.0 updated_softmaxes = 0 for _ in tqdm.tqdm(range(num_keys)): watermarking_config = immutabledict.immutabledict({ 'ngram_len': 5, 'keys': np.random.randint(0, 10**9, size=(1,), dtype=np.int64), 'sampling_table_size': 2**16, 'sampling_table_seed': 0, 'context_history_size': 1024, 'device': device, }) logits_processor = logits_processing.SynthIDLogitsProcessor( **watermarking_config, top_k=vocab_size, temperature=temperature, apply_top_k=False, ) ngrams = torch.randint( low=0, high=vocab_size, size=(batch_size, watermarking_config['ngram_len']), device=device, ) # Insert ngram-1 into logit_processor state. for idx in range(watermarking_config['ngram_len'] - 1): _ = logits_processor.watermarked_call( ngrams[:, :idx], torch.ones((batch_size, vocab_size), device=device) ) scores = torch.ones((batch_size, vocab_size), device=device) updated_scores, _, _ = logits_processor.watermarked_call(ngrams, scores) updated_softmaxes += ( torch.nn.functional.softmax(updated_scores, dim=1).cpu().numpy() ) updated_softmaxes = np.mean(updated_softmaxes, axis=0) / num_keys for softmax in updated_softmaxes: self.assertAlmostEqual(softmax, 0.5, delta=0.002)
Check if watermarked distribution converges to input distribution.
test_distributional_convergence
python
google-deepmind/synthid-text
src/synthid_text/logits_processing_test.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing_test.py
Apache-2.0
def test_bias_from_logits_processor( self, vocab_size, ngram_len, num_layers, atol, num_leaves: int = 2, ): """Check if watermarked distribution converges to input distribution.""" device = torch_testing.torch_device() mean, expected, passes = does_mean_g_value_matches_theoretical( vocab_size=vocab_size, ngram_len=ngram_len, batch_size=20_000, keys=[np.random.randint(0, 10**9) for _ in range(num_layers)], atol=atol, device=device, num_leaves=num_leaves, ) self.assertTrue(passes)
Check if watermarked distribution converges to input distribution.
test_bias_from_logits_processor
python
google-deepmind/synthid-text
src/synthid_text/logits_processing_test.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing_test.py
Apache-2.0
def set_up_logits_processor( self, batch_size, sequence_len, num_layers, ngram_len, top_k, vocab_size, ): """Setup function for all the tests.""" device = torch_testing.torch_device() watermarking_config = immutabledict.immutabledict({ 'ngram_len': ngram_len, 'keys': np.random.randint(low=0, high=2**16, size=(num_layers,)), 'sampling_table_size': 2**16, 'sampling_table_seed': 0, 'context_history_size': 512, 'device': device, }) logits_processor = logits_processing.SynthIDLogitsProcessor( **watermarking_config, top_k=top_k, temperature=1.0 ) sequences = torch.randint( low=0, high=vocab_size, size=(batch_size, sequence_len), device=device, ) return logits_processor, sequences, device
Setup function for all the tests.
set_up_logits_processor
python
google-deepmind/synthid-text
src/synthid_text/logits_processing_test.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/logits_processing_test.py
Apache-2.0
def _get_logits_warper( self, generation_config: transformers.GenerationConfig, **unused_kw, ) -> transformers.LogitsProcessorList: """Constructs and returns a list of warpers. This overrides the base class's implementation to control how we apply top_k and temperature. Only the SynthIDLogitsProcessor warper is constructed that performs top_k and temperature scaling before applying watermark. This is to improve the latency impact by watermarking by only considering the top_k indices for watermarking. Args: generation_config: Config used for generation with this model. Returns: List of logits processors to be applied at inference time. """ extra_params = {} # Add temperature to extra params if not ( generation_config.temperature is not None and 0.0 <= generation_config.temperature <= 1.0 ): raise ValueError( f"Invalid temperature {generation_config.temperature} when sampling" " with watermarking. Temperature should be between 0.0 and 1.0." ) extra_params["temperature"] = generation_config.temperature # Add top_k to extra params. if not ( generation_config.top_k is not None and generation_config.top_k >= 1 ): raise ValueError( f"Invalid top_k {generation_config.top_k} when sampling with" " watermarking. Top_k should >= 1." ) extra_params["top_k"] = generation_config.top_k return self._construct_warper_list(extra_params)
Constructs and returns a list of warpers. This overrides the base class's implementation to control how we apply top_k and temperature. Only the SynthIDLogitsProcessor warper is constructed that performs top_k and temperature scaling before applying watermark. This is to improve the latency impact by watermarking by only considering the top_k indices for watermarking. Args: generation_config: Config used for generation with this model. Returns: List of logits processors to be applied at inference time.
_get_logits_warper
python
google-deepmind/synthid-text
src/synthid_text/synthid_mixin.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/synthid_mixin.py
Apache-2.0
def _sample( self, input_ids: torch.LongTensor, logits_processor: transformers.LogitsProcessorList, stopping_criteria: transformers.StoppingCriteriaList, generation_config: transformers.GenerationConfig, synced_gpus: bool, streamer: Optional["transformers.BaseStreamer"], logits_warper: Optional[transformers.LogitsProcessorList] = None, **model_kwargs, ) -> Union[ transformers.generation.utils.GenerateNonBeamOutput, torch.LongTensor ]: r"""Sample sequence of tokens. Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. This function is copied and changed minimally from the HuggingFace repository to support watermarking implementation. This overrides the base class implementation to achieve watermarking of the logits before they are sampled. This is done specifically so as to preserve the top_k indices separately without making the logits dense with all the indices. This removes extra overhead of considering all possible indices for watermarking. Args: input_ids: The sequence used as a prompt for the generation. logits_processor: List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria: An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config: The generation configuration to be used as parametrization of the decoding method. synced_gpus: Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer: Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. logits_warper: List of instances of class derived from [`LogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in `generation_config`) **model_kwargs: Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Returns: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values pad_token_id = generation_config.pad_token_id output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate has_eos_stopping_criteria = any( hasattr(criteria, "eos_token_id") for criteria in stopping_criteria ) do_sample = generation_config.do_sample if do_sample and not isinstance( logits_warper, transformers.LogitsProcessorList ): raise ValueError( "`do_sample` is set to `True`, `logits_warper` must be a" f" `LogitsProcessorList` instance (it is {logits_warper})." ) if has_eos_stopping_criteria and pad_token_id is None: raise ValueError( "`stopping_criteria` is not empty, `pad_token_id` must be set in " "`generation_config`. See " "https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationConfig" "for more on how to configure the `pad_token_id`." ) # init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = ( () if (return_dict_in_generate and output_attentions) else None ) cross_attentions = ( () if (return_dict_in_generate and output_attentions) else None ) decoder_hidden_states = ( () if (return_dict_in_generate and output_hidden_states) else None ) # if model is an encoder-decoder, retrieve encoder attention weights and # hidden states encoder_attentions = None encoder_hidden_states = None if return_dict_in_generate and self.config.is_encoder_decoder: # pytype: disable=attribute-error encoder_attentions = ( model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None ) encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) # keep track of which sequences are already finished batch_size = input_ids.shape[0] this_peer_finished = False unfinished_sequences = torch.ones( batch_size, dtype=torch.long, device=input_ids.device ) model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) # pytype: disable=attribute-error while self._has_unfinished_sequences( # pytype: disable=attribute-error this_peer_finished, synced_gpus, device=input_ids.device ): # prepare model inputs model_inputs = self.prepare_inputs_for_generation( # pytype: disable=attribute-error input_ids, **model_kwargs ) # forward pass to get next token outputs = self( # pytype: disable=not-callable **model_inputs, return_dict=True, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) if synced_gpus and this_peer_finished: continue # don't waste resources running the code we don't need # Clone is needed to avoid keeping a hanging ref to outputs.logits which # may be very large for first iteration (the clone itself is always small) next_token_logits = outputs.logits[:, -1, :].clone() # pre-process distribution next_token_scores = logits_processor(input_ids, next_token_logits) indices_mapping = None unwatermarked_scores = None if do_sample: *regular_warpers, watermarking_logits_warper = logits_warper if not isinstance( watermarking_logits_warper, logits_processing.SynthIDLogitsProcessor, ): raise ValueError( "SynthIDLogitsProcessor should be the final warper in the list" " while watermarking." ) for logit_warper in regular_warpers: next_token_scores = logit_warper(input_ids, next_token_scores) # Watermark final scores with sparse top_k. next_token_scores, indices_mapping, unwatermarked_scores = ( watermarking_logits_warper.watermarked_call( input_ids, next_token_scores ) ) # token selection if do_sample: probs = torch.nn.functional.softmax(next_token_scores, dim=-1) next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: next_tokens = torch.argmax(next_token_scores, dim=-1) # Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: assert unwatermarked_scores is not None score = torch.gather( -torch.log(torch.nn.Softmax(dim=1)(unwatermarked_scores)), 1, next_tokens[:, None], ) scores += (score,) if output_logits: raw_logits += (next_token_logits,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder # pytype: disable=attribute-error else (outputs.attentions,) ) if self.config.is_encoder_decoder: # pytype: disable=attribute-error cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder # pytype: disable=attribute-error else (outputs.hidden_states,) ) assert indices_mapping is not None # re-mapping to dense indices with indices_mapping next_tokens = torch.vmap(torch.take, in_dims=0, out_dims=0)( indices_mapping, next_tokens ) # finished sentences should have their next token be a padding token if has_eos_stopping_criteria: next_tokens = next_tokens * unfinished_sequences + pad_token_id * ( 1 - unfinished_sequences ) # update generated ids, model inputs, and length for next step input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) if streamer is not None: streamer.put(next_tokens.cpu()) model_kwargs = self._update_model_kwargs_for_generation( # pytype: disable=attribute-error outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, # pytype: disable=attribute-error ) unfinished_sequences = unfinished_sequences & ~stopping_criteria( input_ids, scores ) this_peer_finished = unfinished_sequences.max() == 0 # This is needed to properly delete outputs.logits which may be very large # for first iteration. Otherwise a reference to outputs is kept which # keeps the logits alive in the next iteration del outputs if streamer is not None: streamer.end() if return_dict_in_generate: if self.config.is_encoder_decoder: # pytype: disable=attribute-error return transformers.generation.utils.GenerateEncoderDecoderOutput( sequences=input_ids, scores=scores, logits=raw_logits, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return transformers.generation.utils.GenerateDecoderOnlyOutput( sequences=input_ids, scores=scores, logits=raw_logits, attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return input_ids
Sample sequence of tokens. Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. This function is copied and changed minimally from the HuggingFace repository to support watermarking implementation. This overrides the base class implementation to achieve watermarking of the logits before they are sampled. This is done specifically so as to preserve the top_k indices separately without making the logits dense with all the indices. This removes extra overhead of considering all possible indices for watermarking. Args: input_ids: The sequence used as a prompt for the generation. logits_processor: List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria: An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config: The generation configuration to be used as parametrization of the decoding method. synced_gpus: Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer: Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. logits_warper: List of instances of class derived from [`LogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in `generation_config`) **model_kwargs: Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Returns: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`.
_sample
python
google-deepmind/synthid-text
src/synthid_text/synthid_mixin.py
https://github.com/google-deepmind/synthid-text/blob/master/src/synthid_text/synthid_mixin.py
Apache-2.0
def get_root(): """Get the project root directory. We require that all commands are run from the project root, i.e. the directory that contains setup.py, setup.cfg, and versioneer.py . """ root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): # allow 'python path/to/setup.py COMMAND' root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = ("Versioneer was unable to run the project root directory. " "Versioneer requires setup.py to be executed from " "its immediate directory (like 'python setup.py COMMAND'), " "or in a way that lets it use sys.argv[0] to find the root " "(like 'python path/to/setup.py COMMAND').") raise VersioneerBadRootError(err) try: # Certain runtime workflows (setup.py install/develop in a setuptools # tree) execute all dependencies in a single python process, so # "versioneer" may be imported multiple times, and python's shared # module-import table will cache the first one. So we can't use # os.path.dirname(__file__), as that will find whichever # versioneer.py was first imported, even in later projects. me = os.path.realpath(os.path.abspath(__file__)) me_dir = os.path.normcase(os.path.splitext(me)[0]) vsr_dir = os.path.normcase(os.path.splitext(versioneer_py)[0]) if me_dir != vsr_dir: print("Warning: build in %s is using versioneer.py from %s" % (os.path.dirname(me), versioneer_py)) except NameError: pass return root
Get the project root directory. We require that all commands are run from the project root, i.e. the directory that contains setup.py, setup.cfg, and versioneer.py .
get_root
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def get_config_from_root(root): """Read the project setup.cfg file to determine Versioneer config.""" # This might raise EnvironmentError (if setup.cfg is missing), or # configparser.NoSectionError (if it lacks a [versioneer] section), or # configparser.NoOptionError (if it lacks "VCS="). See the docstring at # the top of versioneer.py for instructions on writing your setup.cfg . setup_cfg = os.path.join(root, "setup.cfg") parser = configparser.SafeConfigParser() with open(setup_cfg, "r") as f: parser.readfp(f) VCS = parser.get("versioneer", "VCS") # mandatory def get(parser, name): if parser.has_option("versioneer", name): return parser.get("versioneer", name) return None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, "style") or "" cfg.versionfile_source = get(parser, "versionfile_source") cfg.versionfile_build = get(parser, "versionfile_build") cfg.tag_prefix = get(parser, "tag_prefix") if cfg.tag_prefix in ("''", '""'): cfg.tag_prefix = "" cfg.parentdir_prefix = get(parser, "parentdir_prefix") cfg.verbose = get(parser, "verbose") return cfg
Read the project setup.cfg file to determine Versioneer config.
get_config_from_root
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate
Decorator to mark a method as the handler for a particular VCS.
register_vcs_handler
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords
Extract version information from the given file.
git_get_keywords
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None}
Get version information from git keywords.
git_versions_from_keywords
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces
Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree.
git_pieces_from_vcs
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def do_vcs_install(manifest_in, versionfile_source, ipy): """Git-specific installation logic for Versioneer. For Git, this means creating/changing .gitattributes to mark _version.py for export-subst keyword substitution. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] files = [manifest_in, versionfile_source] if ipy: files.append(ipy) try: me = __file__ if me.endswith(".pyc") or me.endswith(".pyo"): me = os.path.splitext(me)[0] + ".py" versioneer_file = os.path.relpath(me) except NameError: versioneer_file = "versioneer.py" files.append(versioneer_file) present = False try: f = open(".gitattributes", "r") for line in f.readlines(): if line.strip().startswith(versionfile_source): if "export-subst" in line.strip().split()[1:]: present = True f.close() except EnvironmentError: pass if not present: f = open(".gitattributes", "a+") f.write("%s export-subst\n" % versionfile_source) f.close() files.append(".gitattributes") run_command(GITS, ["add", "--"] + files)
Git-specific installation logic for Versioneer. For Git, this means creating/changing .gitattributes to mark _version.py for export-subst keyword substitution.
do_vcs_install
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix")
Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory
versions_from_parentdir
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def versions_from_file(filename): """Try to determine the version from _version.py if present.""" try: with open(filename) as f: contents = f.read() except EnvironmentError: raise NotThisMethod("unable to read _version.py") mo = re.search(r"version_json = '''\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: mo = re.search(r"version_json = '''\r\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: raise NotThisMethod("no version_json in _version.py") return json.loads(mo.group(1))
Try to determine the version from _version.py if present.
versions_from_file
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def write_to_version_file(filename, versions): """Write the given version number to the given _version.py file.""" os.unlink(filename) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(",", ": ")) with open(filename, "w") as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (filename, versions["version"]))
Write the given version number to the given _version.py file.
write_to_version_file
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+"
Return a + if we don't already have one, else return a .
plus_or_dot
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered
Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty]
render_pep440
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered
TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE
render_pep440_pre
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered
TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0]
render_pep440_post
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered
TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0]
render_pep440_old
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered
TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix)
render_git_describe
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered
TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix)
render_git_describe_long
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")}
Render the given version pieces into the requested style.
render
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def get_versions(verbose=False): """Get the project version from whatever source is available. Returns dict with two keys: 'version' and 'full'. """ if "versioneer" in sys.modules: # see the discussion in cmdclass.py:get_cmdclass() del sys.modules["versioneer"] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, "please set [versioneer]VCS= in setup.cfg" handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, \ "please set versioneer.versionfile_source" assert cfg.tag_prefix is not None, "please set versioneer.tag_prefix" versionfile_abs = os.path.join(root, cfg.versionfile_source) # extract version from first of: _version.py, VCS command (e.g. 'git # describe'), parentdir. This is meant to work for developers using a # source checkout, for users of a tarball created by 'setup.py sdist', # and for users of a tarball/zipball created by 'git archive' or github's # download-from-tag feature or the equivalent in other VCSes. get_keywords_f = handlers.get("get_keywords") from_keywords_f = handlers.get("keywords") if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print("got version from expanded keyword %s" % ver) return ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print("got version from file %s %s" % (versionfile_abs, ver)) return ver except NotThisMethod: pass from_vcs_f = handlers.get("pieces_from_vcs") if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print("got version from VCS %s" % ver) return ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print("got version from parentdir %s" % ver) return ver except NotThisMethod: pass if verbose: print("unable to compute version") return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None}
Get the project version from whatever source is available. Returns dict with two keys: 'version' and 'full'.
get_versions
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def get_cmdclass(): """Get the custom setuptools/distutils subclasses used by Versioneer.""" if "versioneer" in sys.modules: del sys.modules["versioneer"] # this fixes the "python setup.py develop" case (also 'install' and # 'easy_install .'), in which subdependencies of the main project are # built (using setup.py bdist_egg) in the same python process. Assume # a main project A and a dependency B, which use different versions # of Versioneer. A's setup.py imports A's Versioneer, leaving it in # sys.modules by the time B's setup.py is executed, causing B to run # with the wrong versioneer. Setuptools wraps the sub-dep builds in a # sandbox that restores sys.modules to it's pre-build state, so the # parent is protected against the child's "import versioneer". By # removing ourselves from sys.modules here, before the child build # happens, we protect the child from the parent's versioneer too. # Also see https://github.com/warner/python-versioneer/issues/52 cmds = {} # we add "version" to both distutils and setuptools from distutils.core import Command class cmd_version(Command): description = "report generated version string" user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): vers = get_versions(verbose=True) print("Version: %s" % vers["version"]) print(" full-revisionid: %s" % vers.get("full-revisionid")) print(" dirty: %s" % vers.get("dirty")) print(" date: %s" % vers.get("date")) if vers["error"]: print(" error: %s" % vers["error"]) cmds["version"] = cmd_version # we override "build_py" in both distutils and setuptools # # most invocation pathways end up running build_py: # distutils/build -> build_py # distutils/install -> distutils/build ->.. # setuptools/bdist_wheel -> distutils/install ->.. # setuptools/bdist_egg -> distutils/install_lib -> build_py # setuptools/install -> bdist_egg ->.. # setuptools/develop -> ? # pip install: # copies source tree to a tempdir before running egg_info/etc # if .git isn't copied too, 'git describe' will fail # then does setup.py bdist_wheel, or sometimes setup.py install # setup.py egg_info -> ? # we override different "build_py" commands for both environments if "setuptools" in sys.modules: from setuptools.command.build_py import build_py as _build_py else: from distutils.command.build_py import build_py as _build_py class cmd_build_py(_build_py): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() _build_py.run(self) # now locate _version.py in the new build/ directory and replace # it with an updated value if cfg.versionfile_build: target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) cmds["build_py"] = cmd_build_py if "cx_Freeze" in sys.modules: # cx_freeze enabled? from cx_Freeze.dist import build_exe as _build_exe # nczeczulin reports that py2exe won't like the pep440-style string # as FILEVERSION, but it can be used for PRODUCTVERSION, e.g. # setup(console=[{ # "version": versioneer.get_version().split("+", 1)[0], # FILEVERSION # "product_version": versioneer.get_version(), # ... class cmd_build_exe(_build_exe): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() target_versionfile = cfg.versionfile_source print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) _build_exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) cmds["build_exe"] = cmd_build_exe del cmds["build_py"] if 'py2exe' in sys.modules: # py2exe enabled? try: from py2exe.distutils_buildexe import py2exe as _py2exe # py3 except ImportError: from py2exe.build_exe import py2exe as _py2exe # py2 class cmd_py2exe(_py2exe): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() target_versionfile = cfg.versionfile_source print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) _py2exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) cmds["py2exe"] = cmd_py2exe # we override different "sdist" commands for both environments if "setuptools" in sys.modules: from setuptools.command.sdist import sdist as _sdist else: from distutils.command.sdist import sdist as _sdist class cmd_sdist(_sdist): def run(self): versions = get_versions() self._versioneer_generated_versions = versions # unless we update this, the command will keep using the old # version self.distribution.metadata.version = versions["version"] return _sdist.run(self) def make_release_tree(self, base_dir, files): root = get_root() cfg = get_config_from_root(root) _sdist.make_release_tree(self, base_dir, files) # now locate _version.py in the new base_dir directory # (remembering that it may be a hardlink) and replace it with an # updated value target_versionfile = os.path.join(base_dir, cfg.versionfile_source) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, self._versioneer_generated_versions) cmds["sdist"] = cmd_sdist return cmds
Get the custom setuptools/distutils subclasses used by Versioneer.
get_cmdclass
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def do_setup(): """Main VCS-independent setup function for installing Versioneer.""" root = get_root() try: cfg = get_config_from_root(root) except (EnvironmentError, configparser.NoSectionError, configparser.NoOptionError) as e: if isinstance(e, (EnvironmentError, configparser.NoSectionError)): print("Adding sample versioneer config to setup.cfg", file=sys.stderr) with open(os.path.join(root, "setup.cfg"), "a") as f: f.write(SAMPLE_CONFIG) print(CONFIG_ERROR, file=sys.stderr) return 1 print(" creating %s" % cfg.versionfile_source) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) ipy = os.path.join(os.path.dirname(cfg.versionfile_source), "__init__.py") if os.path.exists(ipy): try: with open(ipy, "r") as f: old = f.read() except EnvironmentError: old = "" if INIT_PY_SNIPPET not in old: print(" appending to %s" % ipy) with open(ipy, "a") as f: f.write(INIT_PY_SNIPPET) else: print(" %s unmodified" % ipy) else: print(" %s doesn't exist, ok" % ipy) ipy = None # Make sure both the top-level "versioneer.py" and versionfile_source # (PKG/_version.py, used by runtime code) are in MANIFEST.in, so # they'll be copied into source distributions. Pip won't be able to # install the package without this. manifest_in = os.path.join(root, "MANIFEST.in") simple_includes = set() try: with open(manifest_in, "r") as f: for line in f: if line.startswith("include "): for include in line.split()[1:]: simple_includes.add(include) except EnvironmentError: pass # That doesn't cover everything MANIFEST.in can do # (http://docs.python.org/2/distutils/sourcedist.html#commands), so # it might give some false negatives. Appending redundant 'include' # lines is safe, though. if "versioneer.py" not in simple_includes: print(" appending 'versioneer.py' to MANIFEST.in") with open(manifest_in, "a") as f: f.write("include versioneer.py\n") else: print(" 'versioneer.py' already in MANIFEST.in") if cfg.versionfile_source not in simple_includes: print(" appending versionfile_source ('%s') to MANIFEST.in" % cfg.versionfile_source) with open(manifest_in, "a") as f: f.write("include %s\n" % cfg.versionfile_source) else: print(" versionfile_source already in MANIFEST.in") # Make VCS-specific changes. For git, this means creating/changing # .gitattributes to mark _version.py for export-subst keyword # substitution. do_vcs_install(manifest_in, cfg.versionfile_source, ipy) return 0
Main VCS-independent setup function for installing Versioneer.
do_setup
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def scan_setup_py(): """Validate the contents of setup.py against Versioneer's expectations.""" found = set() setters = False errors = 0 with open("setup.py", "r") as f: for line in f.readlines(): if "import versioneer" in line: found.add("import") if "versioneer.get_cmdclass()" in line: found.add("cmdclass") if "versioneer.get_version()" in line: found.add("get_version") if "versioneer.VCS" in line: setters = True if "versioneer.versionfile_source" in line: setters = True if len(found) != 3: print("") print("Your setup.py appears to be missing some important items") print("(but I might be wrong). Please make sure it has something") print("roughly like the following:") print("") print(" import versioneer") print(" setup( version=versioneer.get_version(),") print(" cmdclass=versioneer.get_cmdclass(), ...)") print("") errors += 1 if setters: print("You should remove lines like 'versioneer.VCS = ' and") print("'versioneer.versionfile_source = ' . This configuration") print("now lives in setup.cfg, and should be removed from setup.py") print("") errors += 1 return errors
Validate the contents of setup.py against Versioneer's expectations.
scan_setup_py
python
palantir/python-language-server
versioneer.py
https://github.com/palantir/python-language-server/blob/master/versioneer.py
MIT
def pyls_commands(config, workspace): """The list of command strings supported by the server. Returns: List[str]: The supported commands. """
The list of command strings supported by the server. Returns: List[str]: The supported commands.
pyls_commands
python
palantir/python-language-server
pyls/hookspecs.py
https://github.com/palantir/python-language-server/blob/master/pyls/hookspecs.py
MIT
def __getitem__(self, item): """Override getitem to fallback through multiple dispatchers.""" if self._shutdown and item != 'exit': # exit is the only allowed method during shutdown log.debug("Ignoring non-exit method during shutdown: %s", item) raise KeyError try: return super(PythonLanguageServer, self).__getitem__(item) except KeyError: # Fallback through extra dispatchers for dispatcher in self._dispatchers: try: return dispatcher[item] except KeyError: continue raise KeyError()
Override getitem to fallback through multiple dispatchers.
__getitem__
python
palantir/python-language-server
pyls/python_ls.py
https://github.com/palantir/python-language-server/blob/master/pyls/python_ls.py
MIT
def _hook(self, hook_name, doc_uri=None, **kwargs): """Calls hook_name and returns a list of results from all registered handlers""" workspace = self._match_uri_to_workspace(doc_uri) doc = workspace.get_document(doc_uri) if doc_uri else None hook_handlers = self.config.plugin_manager.subset_hook_caller(hook_name, self.config.disabled_plugins) return hook_handlers(config=self.config, workspace=workspace, document=doc, **kwargs)
Calls hook_name and returns a list of results from all registered handlers
_hook
python
palantir/python-language-server
pyls/python_ls.py
https://github.com/palantir/python-language-server/blob/master/pyls/python_ls.py
MIT
def urlparse(uri): """Parse and decode the parts of a URI.""" scheme, netloc, path, params, query, fragment = parse.urlparse(uri) return ( parse.unquote(scheme), parse.unquote(netloc), parse.unquote(path), parse.unquote(params), parse.unquote(query), parse.unquote(fragment) )
Parse and decode the parts of a URI.
urlparse
python
palantir/python-language-server
pyls/uris.py
https://github.com/palantir/python-language-server/blob/master/pyls/uris.py
MIT
def urlunparse(parts): """Unparse and encode parts of a URI.""" scheme, netloc, path, params, query, fragment = parts # Avoid encoding the windows drive letter colon if RE_DRIVE_LETTER_PATH.match(path): quoted_path = path[:3] + parse.quote(path[3:]) else: quoted_path = parse.quote(path) return parse.urlunparse(( parse.quote(scheme), parse.quote(netloc), quoted_path, parse.quote(params), parse.quote(query), parse.quote(fragment) ))
Unparse and encode parts of a URI.
urlunparse
python
palantir/python-language-server
pyls/uris.py
https://github.com/palantir/python-language-server/blob/master/pyls/uris.py
MIT
def to_fs_path(uri): """Returns the filesystem path of the given URI. Will handle UNC paths and normalize windows drive letters to lower-case. Also uses the platform specific path separator. Will *not* validate the path for invalid characters and semantics. Will *not* look at the scheme of this URI. """ # scheme://netloc/path;parameters?query#fragment scheme, netloc, path, _params, _query, _fragment = urlparse(uri) if netloc and path and scheme == 'file': # unc path: file://shares/c$/far/boo value = "//{}{}".format(netloc, path) elif RE_DRIVE_LETTER_PATH.match(path): # windows drive letter: file:///C:/far/boo value = path[1].lower() + path[2:] else: # Other path value = path if IS_WIN: value = value.replace('/', '\\') return value
Returns the filesystem path of the given URI. Will handle UNC paths and normalize windows drive letters to lower-case. Also uses the platform specific path separator. Will *not* validate the path for invalid characters and semantics. Will *not* look at the scheme of this URI.
to_fs_path
python
palantir/python-language-server
pyls/uris.py
https://github.com/palantir/python-language-server/blob/master/pyls/uris.py
MIT
def from_fs_path(path): """Returns a URI for the given filesystem path.""" scheme = 'file' params, query, fragment = '', '', '' path, netloc = _normalize_win_path(path) return urlunparse((scheme, netloc, path, params, query, fragment))
Returns a URI for the given filesystem path.
from_fs_path
python
palantir/python-language-server
pyls/uris.py
https://github.com/palantir/python-language-server/blob/master/pyls/uris.py
MIT
def uri_with(uri, scheme=None, netloc=None, path=None, params=None, query=None, fragment=None): """Return a URI with the given part(s) replaced. Parts are decoded / encoded. """ old_scheme, old_netloc, old_path, old_params, old_query, old_fragment = urlparse(uri) path, _netloc = _normalize_win_path(path) return urlunparse(( scheme or old_scheme, netloc or old_netloc, path or old_path, params or old_params, query or old_query, fragment or old_fragment ))
Return a URI with the given part(s) replaced. Parts are decoded / encoded.
uri_with
python
palantir/python-language-server
pyls/uris.py
https://github.com/palantir/python-language-server/blob/master/pyls/uris.py
MIT
def lock(method): """Define an atomic region over a method.""" @functools.wraps(method) def wrapper(self, *args, **kwargs): with self._lock: return method(self, *args, **kwargs) return wrapper
Define an atomic region over a method.
lock
python
palantir/python-language-server
pyls/workspace.py
https://github.com/palantir/python-language-server/blob/master/pyls/workspace.py
MIT
def source_roots(self, document_path): """Return the source roots for the given document.""" files = _utils.find_parents(self._root_path, document_path, ['setup.py', 'pyproject.toml']) or [] return list({os.path.dirname(project_file) for project_file in files}) or [self._root_path]
Return the source roots for the given document.
source_roots
python
palantir/python-language-server
pyls/workspace.py
https://github.com/palantir/python-language-server/blob/master/pyls/workspace.py
MIT
def word_at_position(self, position): """Get the word under the cursor returning the start and end positions.""" if position['line'] >= len(self.lines): return '' line = self.lines[position['line']] i = position['character'] # Split word in two start = line[:i] end = line[i:] # Take end of start and start of end to find word # These are guaranteed to match, even if they match the empty string m_start = RE_START_WORD.findall(start) m_end = RE_END_WORD.findall(end) return m_start[0] + m_end[-1]
Get the word under the cursor returning the start and end positions.
word_at_position
python
palantir/python-language-server
pyls/workspace.py
https://github.com/palantir/python-language-server/blob/master/pyls/workspace.py
MIT
def debounce(interval_s, keyed_by=None): """Debounce calls to this function until interval_s seconds have passed.""" def wrapper(func): timers = {} lock = threading.Lock() @functools.wraps(func) def debounced(*args, **kwargs): call_args = inspect.getcallargs(func, *args, **kwargs) key = call_args[keyed_by] if keyed_by else None def run(): with lock: del timers[key] return func(*args, **kwargs) with lock: old_timer = timers.get(key) if old_timer: old_timer.cancel() timer = threading.Timer(interval_s, run) timers[key] = timer timer.start() return debounced return wrapper
Debounce calls to this function until interval_s seconds have passed.
debounce
python
palantir/python-language-server
pyls/_utils.py
https://github.com/palantir/python-language-server/blob/master/pyls/_utils.py
MIT
def find_parents(root, path, names): """Find files matching the given names relative to the given path. Args: path (str): The file path to start searching up from. names (List[str]): The file/directory names to look for. root (str): The directory at which to stop recursing upwards. Note: The path MUST be within the root. """ if not root: return [] if not os.path.commonprefix((root, path)): log.warning("Path %s not in %s", path, root) return [] # Split the relative by directory, generate all the parent directories, then check each of them. # This avoids running a loop that has different base-cases for unix/windows # e.g. /a/b and /a/b/c/d/e.py -> ['/a/b', 'c', 'd'] dirs = [root] + os.path.relpath(os.path.dirname(path), root).split(os.path.sep) # Search each of /a/b/c, /a/b, /a while dirs: search_dir = os.path.join(*dirs) existing = list(filter(os.path.exists, [os.path.join(search_dir, n) for n in names])) if existing: return existing dirs.pop() # Otherwise nothing return []
Find files matching the given names relative to the given path. Args: path (str): The file path to start searching up from. names (List[str]): The file/directory names to look for. root (str): The directory at which to stop recursing upwards. Note: The path MUST be within the root.
find_parents
python
palantir/python-language-server
pyls/_utils.py
https://github.com/palantir/python-language-server/blob/master/pyls/_utils.py
MIT
def path_to_dot_name(path): """Given a path to a module, derive its dot-separated full name.""" directory = os.path.dirname(path) module_name, _ = os.path.splitext(os.path.basename(path)) full_name = [module_name] while os.path.exists(os.path.join(directory, '__init__.py')): this_directory = os.path.basename(directory) directory = os.path.dirname(directory) full_name = [this_directory] + full_name return '.'.join(full_name)
Given a path to a module, derive its dot-separated full name.
path_to_dot_name
python
palantir/python-language-server
pyls/_utils.py
https://github.com/palantir/python-language-server/blob/master/pyls/_utils.py
MIT
def merge_dicts(dict_a, dict_b): """Recursively merge dictionary b into dictionary a. If override_nones is True, then """ def _merge_dicts_(a, b): for key in set(a.keys()).union(b.keys()): if key in a and key in b: if isinstance(a[key], dict) and isinstance(b[key], dict): yield (key, dict(_merge_dicts_(a[key], b[key]))) elif b[key] is not None: yield (key, b[key]) else: yield (key, a[key]) elif key in a: yield (key, a[key]) elif b[key] is not None: yield (key, b[key]) return dict(_merge_dicts_(dict_a, dict_b))
Recursively merge dictionary b into dictionary a. If override_nones is True, then
merge_dicts
python
palantir/python-language-server
pyls/_utils.py
https://github.com/palantir/python-language-server/blob/master/pyls/_utils.py
MIT
def format_docstring(contents): """Python doc strings come in a number of formats, but LSP wants markdown. Until we can find a fast enough way of discovering and parsing each format, we can do a little better by at least preserving indentation. """ contents = contents.replace('\t', u'\u00A0' * 4) contents = contents.replace(' ', u'\u00A0' * 2) return contents
Python doc strings come in a number of formats, but LSP wants markdown. Until we can find a fast enough way of discovering and parsing each format, we can do a little better by at least preserving indentation.
format_docstring
python
palantir/python-language-server
pyls/_utils.py
https://github.com/palantir/python-language-server/blob/master/pyls/_utils.py
MIT
def clip_column(column, lines, line_number): """ Normalise the position as per the LSP that accepts character positions > line length https://microsoft.github.io/language-server-protocol/specification#position """ max_column = len(lines[line_number].rstrip('\r\n')) if len(lines) > line_number else 0 return min(column, max_column)
Normalise the position as per the LSP that accepts character positions > line length https://microsoft.github.io/language-server-protocol/specification#position
clip_column
python
palantir/python-language-server
pyls/_utils.py
https://github.com/palantir/python-language-server/blob/master/pyls/_utils.py
MIT
def position_to_jedi_linecolumn(document, position): """ Convert the LSP format 'line', 'character' to Jedi's 'line', 'column' https://microsoft.github.io/language-server-protocol/specification#position """ code_position = {} if position: code_position = {'line': position['line'] + 1, 'column': clip_column(position['character'], document.lines, position['line'])} return code_position
Convert the LSP format 'line', 'character' to Jedi's 'line', 'column' https://microsoft.github.io/language-server-protocol/specification#position
position_to_jedi_linecolumn
python
palantir/python-language-server
pyls/_utils.py
https://github.com/palantir/python-language-server/blob/master/pyls/_utils.py
MIT
def is_process_alive(pid): """Check whether the process with the given pid is still alive. Running `os.kill()` on Windows always exits the process, so it can't be used to check for an alive process. see: https://docs.python.org/3/library/os.html?highlight=os%20kill#os.kill Hence ctypes is used to check for the process directly via windows API avoiding any other 3rd-party dependency. Args: pid (int): process ID Returns: bool: False if the process is not alive or don't have permission to check, True otherwise. """ process = kernel32.OpenProcess(PROCESS_QUERY_INFROMATION, 0, pid) if process != 0: kernel32.CloseHandle(process) return True return False
Check whether the process with the given pid is still alive. Running `os.kill()` on Windows always exits the process, so it can't be used to check for an alive process. see: https://docs.python.org/3/library/os.html?highlight=os%20kill#os.kill Hence ctypes is used to check for the process directly via windows API avoiding any other 3rd-party dependency. Args: pid (int): process ID Returns: bool: False if the process is not alive or don't have permission to check, True otherwise.
is_process_alive
python
palantir/python-language-server
pyls/_utils.py
https://github.com/palantir/python-language-server/blob/master/pyls/_utils.py
MIT
def is_process_alive(pid): """Check whether the process with the given pid is still alive. Args: pid (int): process ID Returns: bool: False if the process is not alive or don't have permission to check, True otherwise. """ if pid < 0: return False try: os.kill(pid, 0) except OSError as e: return e.errno == errno.EPERM else: return True
Check whether the process with the given pid is still alive. Args: pid (int): process ID Returns: bool: False if the process is not alive or don't have permission to check, True otherwise.
is_process_alive
python
palantir/python-language-server
pyls/_utils.py
https://github.com/palantir/python-language-server/blob/master/pyls/_utils.py
MIT
def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords
Get the keywords needed to look up the version information.
get_keywords
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "" cfg.parentdir_prefix = "" cfg.versionfile_source = "pyls/_version.py" cfg.verbose = False return cfg
Create, populate and return the VersioneerConfig() object.
get_config
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate
Decorator to mark a method as the handler for a particular VCS.
register_vcs_handler
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix")
Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory
versions_from_parentdir
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords
Extract version information from the given file.
git_get_keywords
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None}
Get version information from git keywords.
git_versions_from_keywords
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces
Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree.
git_pieces_from_vcs
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+"
Return a + if we don't already have one, else return a .
plus_or_dot
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered
Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty]
render_pep440
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered
TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE
render_pep440_pre
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered
TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0]
render_pep440_post
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered
TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0]
render_pep440_old
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered
TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix)
render_git_describe
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered
TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix)
render_git_describe_long
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")}
Render the given version pieces into the requested style.
render
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None}
Get version information or return default if unable to do so.
get_versions
python
palantir/python-language-server
pyls/_version.py
https://github.com/palantir/python-language-server/blob/master/pyls/_version.py
MIT
def _binary_stdio(): """Construct binary stdio streams (not text mode). This seems to be different for Window/Unix Python2/3, so going by: https://stackoverflow.com/questions/2850893/reading-binary-data-from-stdin """ PY3K = sys.version_info >= (3, 0) if PY3K: # pylint: disable=no-member stdin, stdout = sys.stdin.buffer, sys.stdout.buffer else: # Python 2 on Windows opens sys.stdin in text mode, and # binary data that read from it becomes corrupted on \r\n if sys.platform == "win32": # set sys.stdin to binary mode # pylint: disable=no-member,import-error import os import msvcrt msvcrt.setmode(sys.stdin.fileno(), os.O_BINARY) msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY) stdin, stdout = sys.stdin, sys.stdout return stdin, stdout
Construct binary stdio streams (not text mode). This seems to be different for Window/Unix Python2/3, so going by: https://stackoverflow.com/questions/2850893/reading-binary-data-from-stdin
_binary_stdio
python
palantir/python-language-server
pyls/__main__.py
https://github.com/palantir/python-language-server/blob/master/pyls/__main__.py
MIT
def settings(self, document_path=None): """Settings are constructed from a few sources: 1. User settings, found in user's home directory 2. Plugin settings, reported by PyLS plugins 3. LSP settings, given to us from didChangeConfiguration 4. Project settings, found in config files in the current project. Since this function is nondeterministic, it is important to call settings.cache_clear() when the config is updated """ settings = {} sources = self._settings.get('configurationSources', DEFAULT_CONFIG_SOURCES) # Plugin configuration settings = _utils.merge_dicts(settings, self._plugin_settings) # LSP configuration settings = _utils.merge_dicts(settings, self._settings) # User configuration for source_name in reversed(sources): source = self._config_sources.get(source_name) if not source: continue source_conf = source.user_config() log.debug("Got user config from %s: %s", source.__class__.__name__, source_conf) settings = _utils.merge_dicts(settings, source_conf) # Project configuration for source_name in reversed(sources): source = self._config_sources.get(source_name) if not source: continue source_conf = source.project_config(document_path or self._root_path) log.debug("Got project config from %s: %s", source.__class__.__name__, source_conf) settings = _utils.merge_dicts(settings, source_conf) log.debug("With configuration: %s", settings) return settings
Settings are constructed from a few sources: 1. User settings, found in user's home directory 2. Plugin settings, reported by PyLS plugins 3. LSP settings, given to us from didChangeConfiguration 4. Project settings, found in config files in the current project. Since this function is nondeterministic, it is important to call settings.cache_clear() when the config is updated
settings
python
palantir/python-language-server
pyls/config/config.py
https://github.com/palantir/python-language-server/blob/master/pyls/config/config.py
MIT