code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def get_kinetics_frames(kinetics_anotation_file: str) -> dict:
"""Given the AVA-kinetics anotation file, return a lookup to map the video
id and the the set of timestamps involved of this video id.
Args:
kinetics_anotation_file (str): Path to the AVA-like anotation file for
the kinetics subset.
Returns:
dict: the dict keys are the kinetics videos' video id. The values are
the set of timestamps involved.
"""
with open(kinetics_anotation_file) as f:
anotated_frames = [i.split(',') for i in f.readlines()]
anotated_frames = [i for i in anotated_frames if len(i) == 7]
anotated_frames = [(i[0], int(float(i[1]))) for i in anotated_frames]
frame_lookup = defaultdict(set)
for video_id, timestamp in anotated_frames:
frame_lookup[video_id].add(timestamp)
return frame_lookup | Given the AVA-kinetics anotation file, return a lookup to map the video
id and the the set of timestamps involved of this video id.
Args:
kinetics_anotation_file (str): Path to the AVA-like anotation file for
the kinetics subset.
Returns:
dict: the dict keys are the kinetics videos' video id. The values are
the set of timestamps involved.
| get_kinetics_frames | python | open-mmlab/mmaction2 | tools/data/ava_kinetics/cut_kinetics.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ava_kinetics/cut_kinetics.py | Apache-2.0 |
def filter_missing_videos(kinetics_list: str, frame_lookup: dict) -> dict:
"""Given the kinetics700 dataset list, remove the video ids from the lookup
that are missing videos or frames.
Args:
kinetics_list (str): Path to the kinetics700 dataset list.
The content of the list should be:
```
Path_to_video1 label_1\n
Path_to_video2 label_2\n
...
Path_to_videon label_n\n
```
The start and end of the video must be contained in the filename.
For example:
```
class602/o3lCwWyyc_s_000012_000022.mp4\n
```
frame_lookup (dict): the dict from `get_kinetics_frames`.
Returns:
dict: the dict keys are the kinetics videos' video id. The values are
the a list of tuples:
(start_of_the_video, end_of_the_video, video_path)
"""
video_lookup = defaultdict(set)
with open(kinetics_list) as f:
for line in f.readlines():
video_path = line.split(' ')[0] # remove label information
video_name = video_path.split('/')[-1] # get the file name
video_name = video_name.split('.')[0] # remove file extensions
video_name = video_name.split('_')
video_id = '_'.join(video_name[:-2])
if video_id not in frame_lookup:
continue
start, end = int(video_name[-2]), int(video_name[-1])
frames = frame_lookup[video_id]
frames = [frame for frame in frames if start < frame < end]
if len(frames) == 0:
continue
start, end = max(start, min(frames) - 2), min(end, max(frames) + 2)
video_lookup[video_id].add((start, end, video_path))
# Some frame ids exist in multiple videos in the Kinetics dataset.
# The reason is the part of one video may fall into different categories.
# Remove the duplicated records
for video in video_lookup:
if len(video_lookup[video]) == 1:
continue
info_list = list(video_lookup[video])
removed_list = []
for i, info_i in enumerate(info_list):
start_i, end_i, _ = info_i
for j in range(i + 1, len(info_list)):
start_j, end_j, _ = info_list[j]
if start_i <= start_j and end_j <= end_i:
removed_list.append(j)
elif start_j <= start_i and end_i <= end_j:
removed_list.append(i)
new_list = []
for i, info in enumerate(info_list):
if i not in removed_list:
new_list.append(info)
video_lookup[video] = set(new_list)
return video_lookup | Given the kinetics700 dataset list, remove the video ids from the lookup
that are missing videos or frames.
Args:
kinetics_list (str): Path to the kinetics700 dataset list.
The content of the list should be:
```
Path_to_video1 label_1
Path_to_video2 label_2
...
Path_to_videon label_n
```
The start and end of the video must be contained in the filename.
For example:
```
class602/o3lCwWyyc_s_000012_000022.mp4
```
frame_lookup (dict): the dict from `get_kinetics_frames`.
Returns:
dict: the dict keys are the kinetics videos' video id. The values are
the a list of tuples:
(start_of_the_video, end_of_the_video, video_path)
| filter_missing_videos | python | open-mmlab/mmaction2 | tools/data/ava_kinetics/cut_kinetics.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ava_kinetics/cut_kinetics.py | Apache-2.0 |
def remove_failed_video(video_path: str) -> None:
"""Given the path to the video, delete the video if it cannot be read or if
the actual length of the video is 0.75 seconds shorter than expected."""
try:
v = decord.VideoReader(video_path)
fps = v.get_avg_fps()
num_frames = len(v)
x = video_path.split('.')[0].split('_')
time = int(x[-1]) - int(x[-2])
if num_frames < (time - 3 / 4) * fps:
os.remove(video_path)
except: # noqa: E722
os.remove(video_path)
return | Given the path to the video, delete the video if it cannot be read or if
the actual length of the video is 0.75 seconds shorter than expected. | remove_failed_video | python | open-mmlab/mmaction2 | tools/data/ava_kinetics/cut_kinetics.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ava_kinetics/cut_kinetics.py | Apache-2.0 |
def download(video_identifier,
output_filename,
num_attempts=5,
url_base='https://www.youtube.com/watch?v='):
"""Download a video from youtube if exists and is not blocked.
arguments:
---------
video_identifier: str
Unique YouTube video identifier (11 characters)
output_filename: str
File path where the video will be stored.
"""
# Defensive argument checking.
assert isinstance(video_identifier, str), 'video_identifier must be string'
assert isinstance(output_filename, str), 'output_filename must be string'
assert len(video_identifier) == 11, 'video_identifier must have length 11'
status = False
if not os.path.exists(output_filename):
command = [
'youtube-dl', '--quiet', '--no-warnings', '--no-check-certificate',
'-f', 'mp4', '-o',
'"%s"' % output_filename,
'"%s"' % (url_base + video_identifier)
]
command = ' '.join(command)
print(command)
attempts = 0
while True:
try:
subprocess.check_output(
command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError:
attempts += 1
if attempts == num_attempts:
return status, 'Fail'
else:
break
# Check if the video was successfully saved.
status = os.path.exists(output_filename)
return status, 'Downloaded' | Download a video from youtube if exists and is not blocked.
arguments:
---------
video_identifier: str
Unique YouTube video identifier (11 characters)
output_filename: str
File path where the video will be stored.
| download | python | open-mmlab/mmaction2 | tools/data/gym/download.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/gym/download.py | Apache-2.0 |
def construct_video_filename(item, trim_format, output_dir):
"""Given a dataset row, this function constructs the output filename for a
given video."""
youtube_id, start_time, end_time = item
start_time, end_time = int(start_time * 10), int(end_time * 10)
basename = '%s_%s_%s.mp4' % (youtube_id, trim_format % start_time,
trim_format % end_time)
output_filename = os.path.join(output_dir, basename)
return output_filename | Given a dataset row, this function constructs the output filename for a
given video. | construct_video_filename | python | open-mmlab/mmaction2 | tools/data/hvu/download.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/download.py | Apache-2.0 |
def download_clip(video_identifier,
output_filename,
start_time,
end_time,
tmp_dir='/tmp/hvu/.tmp_dir',
num_attempts=5,
url_base='https://www.youtube.com/watch?v='):
"""Download a video from youtube if exists and is not blocked.
arguments:
---------
video_identifier: str
Unique YouTube video identifier (11 characters)
output_filename: str
File path where the video will be stored.
start_time: float
Indicates the beginning time in seconds from where the video
will be trimmed.
end_time: float
Indicates the ending time in seconds of the trimmed video.
"""
# Defensive argument checking.
assert isinstance(video_identifier, str), 'video_identifier must be string'
assert isinstance(output_filename, str), 'output_filename must be string'
assert len(video_identifier) == 11, 'video_identifier must have length 11'
status = False
tmp_filename = os.path.join(tmp_dir, '%s.%%(ext)s' % uuid.uuid4())
if not os.path.exists(output_filename):
if not os.path.exists(tmp_filename):
command = [
'youtube-dl', '--quiet', '--no-warnings',
'--no-check-certificate', '-f', 'mp4', '-o',
'"%s"' % tmp_filename,
'"%s"' % (url_base + video_identifier)
]
command = ' '.join(command)
print(command)
attempts = 0
while True:
try:
subprocess.check_output(
command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError:
attempts += 1
if attempts == num_attempts:
return status, 'Downloading Failed'
else:
break
tmp_filename = glob.glob('%s*' % tmp_filename.split('.')[0])[0]
# Construct command to trim the videos (ffmpeg required).
command = [
'ffmpeg', '-i',
'"%s"' % tmp_filename, '-ss',
str(start_time), '-t',
str(end_time - start_time), '-c:v', 'libx264', '-c:a', 'copy',
'-threads', '1', '-loglevel', 'panic',
'"%s"' % output_filename
]
command = ' '.join(command)
try:
subprocess.check_output(
command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError:
return status, 'Trimming Failed'
# Check if the video was successfully saved.
status = os.path.exists(output_filename)
os.remove(tmp_filename)
return status, 'Downloaded' | Download a video from youtube if exists and is not blocked.
arguments:
---------
video_identifier: str
Unique YouTube video identifier (11 characters)
output_filename: str
File path where the video will be stored.
start_time: float
Indicates the beginning time in seconds from where the video
will be trimmed.
end_time: float
Indicates the ending time in seconds of the trimmed video.
| download_clip | python | open-mmlab/mmaction2 | tools/data/hvu/download.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/download.py | Apache-2.0 |
def parse_hvu_annotations(input_csv):
"""Returns a parsed DataFrame.
arguments:
---------
input_csv: str
Path to CSV file containing the following columns:
'Tags, youtube_id, time_start, time_end'
returns:
-------
dataset: List of tuples. Each tuple consists of
(youtube_id, time_start, time_end). The type of time is float.
"""
lines = open(input_csv).readlines()
lines = [x.strip().split(',')[1:] for x in lines[1:]]
lines = [(x[0], float(x[1]), float(x[2])) for x in lines]
return lines | Returns a parsed DataFrame.
arguments:
---------
input_csv: str
Path to CSV file containing the following columns:
'Tags, youtube_id, time_start, time_end'
returns:
-------
dataset: List of tuples. Each tuple consists of
(youtube_id, time_start, time_end). The type of time is float.
| parse_hvu_annotations | python | open-mmlab/mmaction2 | tools/data/hvu/download.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/download.py | Apache-2.0 |
def parse_directory(path,
rgb_prefix='img_',
flow_x_prefix='flow_x_',
flow_y_prefix='flow_y_',
level=1):
"""Parse directories holding extracted frames from standard benchmarks.
Args:
path (str): Directory path to parse frames.
rgb_prefix (str): Prefix of generated rgb frames name.
default: 'img_'.
flow_x_prefix (str): Prefix of generated flow x name.
default: `flow_x_`.
flow_y_prefix (str): Prefix of generated flow y name.
default: `flow_y_`.
level (int): Directory level for glob searching. Options are 1 and 2.
default: 1.
Returns:
dict: frame info dict with video id as key and tuple(path(str),
rgb_num(int), flow_x_num(int)) as value.
"""
print(f'parse frames under directory {path}')
if level == 1:
# Only search for one-level directory
def locate_directory(x):
return osp.basename(x)
frame_dirs = glob.glob(osp.join(path, '*'))
elif level == 2:
# search for two-level directory
def locate_directory(x):
return osp.join(osp.basename(osp.dirname(x)), osp.basename(x))
frame_dirs = glob.glob(osp.join(path, '*', '*'))
else:
raise ValueError('level can be only 1 or 2')
def count_files(directory, prefix_list):
"""Count file number with a given directory and prefix.
Args:
directory (str): Data directory to be search.
prefix_list (list): List or prefix.
Returns:
list (int): Number list of the file with the prefix.
"""
lst = os.listdir(directory)
cnt_list = [len(fnmatch.filter(lst, x + '*')) for x in prefix_list]
return cnt_list
# check RGB
frame_dict = {}
for i, frame_dir in enumerate(frame_dirs):
total_num = count_files(frame_dir,
(rgb_prefix, flow_x_prefix, flow_y_prefix))
dir_name = locate_directory(frame_dir)
num_x = total_num[1]
num_y = total_num[2]
if num_x != num_y:
raise ValueError(f'x and y direction have different number '
f'of flow images in video directory: {frame_dir}')
if i % 200 == 0:
print(f'{i} videos parsed')
frame_dict[dir_name] = (frame_dir, total_num[0], num_x)
print('frame directory analysis done')
return frame_dict | Parse directories holding extracted frames from standard benchmarks.
Args:
path (str): Directory path to parse frames.
rgb_prefix (str): Prefix of generated rgb frames name.
default: 'img_'.
flow_x_prefix (str): Prefix of generated flow x name.
default: `flow_x_`.
flow_y_prefix (str): Prefix of generated flow y name.
default: `flow_y_`.
level (int): Directory level for glob searching. Options are 1 and 2.
default: 1.
Returns:
dict: frame info dict with video id as key and tuple(path(str),
rgb_num(int), flow_x_num(int)) as value.
| parse_directory | python | open-mmlab/mmaction2 | tools/data/hvu/generate_file_list.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/generate_file_list.py | Apache-2.0 |
def count_files(directory, prefix_list):
"""Count file number with a given directory and prefix.
Args:
directory (str): Data directory to be search.
prefix_list (list): List or prefix.
Returns:
list (int): Number list of the file with the prefix.
"""
lst = os.listdir(directory)
cnt_list = [len(fnmatch.filter(lst, x + '*')) for x in prefix_list]
return cnt_list | Count file number with a given directory and prefix.
Args:
directory (str): Data directory to be search.
prefix_list (list): List or prefix.
Returns:
list (int): Number list of the file with the prefix.
| count_files | python | open-mmlab/mmaction2 | tools/data/hvu/generate_file_list.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/generate_file_list.py | Apache-2.0 |
def create_video_folders(dataset, output_dir, tmp_dir):
"""Creates a directory for each label name in the dataset."""
if 'label-name' not in dataset.columns:
this_dir = os.path.join(output_dir, 'test')
if not os.path.exists(this_dir):
os.makedirs(this_dir)
# I should return a dict but ...
return this_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
label_to_dir = {}
for label_name in dataset['label-name'].unique():
this_dir = os.path.join(output_dir, label_name)
if not os.path.exists(this_dir):
os.makedirs(this_dir)
label_to_dir[label_name] = this_dir
return label_to_dir | Creates a directory for each label name in the dataset. | create_video_folders | python | open-mmlab/mmaction2 | tools/data/kinetics/download.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/download.py | Apache-2.0 |
def construct_video_filename(row, label_to_dir, trim_format='%06d'):
"""Given a dataset row, this function constructs the output filename for a
given video."""
basename = '%s_%s_%s.mp4' % (row['video-id'],
trim_format % row['start-time'],
trim_format % row['end-time'])
if not isinstance(label_to_dir, dict):
dirname = label_to_dir
else:
dirname = label_to_dir[row['label-name']]
output_filename = os.path.join(dirname, basename)
return output_filename | Given a dataset row, this function constructs the output filename for a
given video. | construct_video_filename | python | open-mmlab/mmaction2 | tools/data/kinetics/download.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/download.py | Apache-2.0 |
def download_clip(video_identifier,
output_filename,
start_time,
end_time,
tmp_dir='/tmp/kinetics/.tmp_dir',
num_attempts=5,
url_base='https://www.youtube.com/watch?v='):
"""Download a video from youtube if exists and is not blocked.
arguments:
---------
video_identifier: str
Unique YouTube video identifier (11 characters)
output_filename: str
File path where the video will be stored.
start_time: float
Indicates the beginning time in seconds from where the video
will be trimmed.
end_time: float
Indicates the ending time in seconds of the trimmed video.
"""
# Defensive argument checking.
assert isinstance(video_identifier, str), 'video_identifier must be string'
assert isinstance(output_filename, str), 'output_filename must be string'
assert len(video_identifier) == 11, 'video_identifier must have length 11'
status = False
# Construct command line for getting the direct video link.
tmp_filename = os.path.join(tmp_dir, '%s.%%(ext)s' % uuid.uuid4())
if not os.path.exists(output_filename):
if not os.path.exists(tmp_filename):
command = [
'youtube-dl', '--quiet', '--no-warnings',
'--no-check-certificate', '-f', 'mp4', '-o',
'"%s"' % tmp_filename,
'"%s"' % (url_base + video_identifier)
]
command = ' '.join(command)
print(command)
attempts = 0
while True:
try:
subprocess.check_output(
command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as err:
attempts += 1
if attempts == num_attempts:
return status, err.output
else:
break
tmp_filename = glob.glob('%s*' % tmp_filename.split('.')[0])[0]
# Construct command to trim the videos (ffmpeg required).
command = [
'ffmpeg', '-i',
'"%s"' % tmp_filename, '-ss',
str(start_time), '-t',
str(end_time - start_time), '-c:v', 'libx264', '-c:a', 'copy',
'-threads', '1', '-loglevel', 'panic',
'"%s"' % output_filename
]
command = ' '.join(command)
try:
subprocess.check_output(
command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as err:
return status, err.output
# Check if the video was successfully saved.
status = os.path.exists(output_filename)
os.remove(tmp_filename)
return status, 'Downloaded' | Download a video from youtube if exists and is not blocked.
arguments:
---------
video_identifier: str
Unique YouTube video identifier (11 characters)
output_filename: str
File path where the video will be stored.
start_time: float
Indicates the beginning time in seconds from where the video
will be trimmed.
end_time: float
Indicates the ending time in seconds of the trimmed video.
| download_clip | python | open-mmlab/mmaction2 | tools/data/kinetics/download.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/download.py | Apache-2.0 |
def parse_kinetics_annotations(input_csv, ignore_is_cc=False):
"""Returns a parsed DataFrame.
arguments:
---------
input_csv: str
Path to CSV file containing the following columns:
'YouTube Identifier,Start time,End time,Class label'
returns:
-------
dataset: DataFrame
Pandas with the following columns:
'video-id', 'start-time', 'end-time', 'label-name'
"""
df = pd.read_csv(input_csv)
if 'youtube_id' in df.columns:
columns = OrderedDict([('youtube_id', 'video-id'),
('time_start', 'start-time'),
('time_end', 'end-time'),
('label', 'label-name')])
df.rename(columns=columns, inplace=True)
if ignore_is_cc:
df = df.loc[:, df.columns.tolist()[:-1]]
return df | Returns a parsed DataFrame.
arguments:
---------
input_csv: str
Path to CSV file containing the following columns:
'YouTube Identifier,Start time,End time,Class label'
returns:
-------
dataset: DataFrame
Pandas with the following columns:
'video-id', 'start-time', 'end-time', 'label-name'
| parse_kinetics_annotations | python | open-mmlab/mmaction2 | tools/data/kinetics/download.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/download.py | Apache-2.0 |
def _compress_images(input_output_pair, size=224):
"""Scale and downsample an input image to a given fps and size (shorter
side size).
This also removes the audio from the image.
"""
input_image_path, output_image_path = input_output_pair
try:
resize_image(input_image_path, output_image_path, size)
except Exception as e:
print(f'Caught Exception {e}') | Scale and downsample an input image to a given fps and size (shorter
side size).
This also removes the audio from the image.
| _compress_images | python | open-mmlab/mmaction2 | tools/data/msrvtt/compress.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/msrvtt/compress.py | Apache-2.0 |
def _compress_videos(input_output_pair, size=224, fps=3):
"""Scale and downsample an input video to a given fps and size (shorter
side size).
This also removes the audio from the video.
"""
input_file_path, output_file_path = input_output_pair
try:
command = [
'ffmpeg',
'-y', # (optional) overwrite output file if it exists
'-i',
input_file_path,
'-filter:v', # no audio
f"scale='if(gt(a,1),trunc(oh*a/2)*2,{size})':'if(gt(a,1),{size},trunc(ow*a/2)*2)'", # noqa: E501
'-map',
'0:v', # no audio
'-r',
str(fps), # frames per second
# '-g', str(16),
output_file_path,
]
subprocess.run(
command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
except Exception as e:
raise e | Scale and downsample an input video to a given fps and size (shorter
side size).
This also removes the audio from the video.
| _compress_videos | python | open-mmlab/mmaction2 | tools/data/msrvtt/compress.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/msrvtt/compress.py | Apache-2.0 |
def format_det_result():
"""convert test results to specified format in MultiSports competition."""
test_results = load(args.test_result)
annos = load(args.anno_path)
test_videos = annos['test_videos'][0]
resolutions = annos['resolution']
frm_dets = []
for pred in track(test_results, description='formating...'):
video_key = pred['video_id'].split('.mp4')[0]
frm_num = pred['timestamp']
bboxes = pred['pred_instances']['bboxes']
cls_scores = pred['pred_instances']['scores']
for bbox, cls_score in zip(bboxes, cls_scores):
video_idx = test_videos.index(video_key)
pred_label = np.argmax(cls_score)
score = cls_score[pred_label]
h, w = resolutions[video_key]
bbox *= np.array([w, h, w, h])
instance_result = np.array(
[video_idx, frm_num, pred_label, score, *bbox])
frm_dets.append(instance_result)
frm_dets = np.array(frm_dets)
video_tubes = link_tubes(annos, frm_dets, K=1)
dump(frm_dets, args.frm_out_path)
dump(video_tubes, args.tube_out_path) | convert test results to specified format in MultiSports competition. | format_det_result | python | open-mmlab/mmaction2 | tools/data/multisports/format_det_result.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/data/multisports/format_det_result.py | Apache-2.0 |
def mmaction2torchserve(
config_file: str,
checkpoint_file: str,
output_folder: str,
model_name: str,
label_file: str,
model_version: str = '1.0',
force: bool = False,
):
"""Converts MMAction2 model (config + checkpoint) to TorchServe `.mar`.
Args:
config_file (str): In MMAction2 config format.
checkpoint_file (str): In MMAction2 checkpoint format.
output_folder (str): Folder where `{model_name}.mar` will be created.
The file created will be in TorchServe archive format.
label_file (str): A txt file which contains the action category names.
model_name (str | None): If not None, used for naming the
`{model_name}.mar` file that will be created under `output_folder`.
If None, `{Path(checkpoint_file).stem}` will be used.
model_version (str): Model's version.
force (bool): If True, if there is an existing `{model_name}.mar` file
under `output_folder` it will be overwritten.
"""
mkdir_or_exist(output_folder)
config = Config.fromfile(config_file)
with TemporaryDirectory() as tmpdir:
config.dump(f'{tmpdir}/config.py')
shutil.copy(label_file, f'{tmpdir}/label_map.txt')
args = Namespace(
**{
'model_file': f'{tmpdir}/config.py',
'serialized_file': checkpoint_file,
'handler': f'{Path(__file__).parent}/mmaction_handler.py',
'model_name': model_name or Path(checkpoint_file).stem,
'version': model_version,
'export_path': output_folder,
'force': force,
'requirements_file': None,
'extra_files': f'{tmpdir}/label_map.txt',
'runtime': 'python',
'archive_format': 'default'
})
manifest = ModelExportUtils.generate_manifest_json(args)
package_model(args, manifest) | Converts MMAction2 model (config + checkpoint) to TorchServe `.mar`.
Args:
config_file (str): In MMAction2 config format.
checkpoint_file (str): In MMAction2 checkpoint format.
output_folder (str): Folder where `{model_name}.mar` will be created.
The file created will be in TorchServe archive format.
label_file (str): A txt file which contains the action category names.
model_name (str | None): If not None, used for naming the
`{model_name}.mar` file that will be created under `output_folder`.
If None, `{Path(checkpoint_file).stem}` will be used.
model_version (str): Model's version.
force (bool): If True, if there is an existing `{model_name}.mar` file
under `output_folder` it will be overwritten.
| mmaction2torchserve | python | open-mmlab/mmaction2 | tools/deployment/mmaction2torchserve.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/deployment/mmaction2torchserve.py | Apache-2.0 |
def load_video_infos(ann_file):
"""Load the video annotations.
Args:
ann_file (str): A json file path of the annotation file.
Returns:
list[dict]: A list containing annotations for videos.
"""
video_infos = []
anno_database = mmengine.load(ann_file)
for video_name in anno_database:
video_info = anno_database[video_name]
video_info['video_name'] = video_name
video_infos.append(video_info)
return video_infos | Load the video annotations.
Args:
ann_file (str): A json file path of the annotation file.
Returns:
list[dict]: A list containing annotations for videos.
| load_video_infos | python | open-mmlab/mmaction2 | tools/misc/bsn_proposal_generation.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/bsn_proposal_generation.py | Apache-2.0 |
def generate_proposals(ann_file, tem_results_dir, pgm_proposals_dir,
pgm_proposals_thread, **kwargs):
"""Generate proposals using multi-process.
Args:
ann_file (str): A json file path of the annotation file for
all videos to be processed.
tem_results_dir (str): Directory to read tem results
pgm_proposals_dir (str): Directory to save generated proposals.
pgm_proposals_thread (int): Total number of threads.
kwargs (dict): Keyword arguments for "generate_candidate_proposals".
"""
video_infos = load_video_infos(ann_file)
num_videos = len(video_infos)
num_videos_per_thread = num_videos // pgm_proposals_thread
processes = []
manager = mp.Manager()
result_dict = manager.dict()
kwargs['result_dict'] = result_dict
for tid in range(pgm_proposals_thread - 1):
tmp_video_list = range(tid * num_videos_per_thread,
(tid + 1) * num_videos_per_thread)
p = mp.Process(
target=generate_candidate_proposals,
args=(
tmp_video_list,
video_infos,
tem_results_dir,
),
kwargs=kwargs)
p.start()
processes.append(p)
tmp_video_list = range((pgm_proposals_thread - 1) * num_videos_per_thread,
num_videos)
p = mp.Process(
target=generate_candidate_proposals,
args=(
tmp_video_list,
video_infos,
tem_results_dir,
),
kwargs=kwargs)
p.start()
processes.append(p)
for p in processes:
p.join()
# save results
os.makedirs(pgm_proposals_dir, exist_ok=True)
prog_bar = mmengine.ProgressBar(num_videos)
header = 'tmin,tmax,tmin_score,tmax_score,score,match_iou,match_ioa'
for video_name in result_dict:
proposals = result_dict[video_name]
proposal_path = osp.join(pgm_proposals_dir, video_name + '.csv')
np.savetxt(
proposal_path,
proposals,
header=header,
delimiter=',',
comments='')
prog_bar.update() | Generate proposals using multi-process.
Args:
ann_file (str): A json file path of the annotation file for
all videos to be processed.
tem_results_dir (str): Directory to read tem results
pgm_proposals_dir (str): Directory to save generated proposals.
pgm_proposals_thread (int): Total number of threads.
kwargs (dict): Keyword arguments for "generate_candidate_proposals".
| generate_proposals | python | open-mmlab/mmaction2 | tools/misc/bsn_proposal_generation.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/bsn_proposal_generation.py | Apache-2.0 |
def generate_features(ann_file, tem_results_dir, pgm_proposals_dir,
pgm_features_dir, pgm_features_thread, **kwargs):
"""Generate proposals features using multi-process.
Args:
ann_file (str): A json file path of the annotation file for
all videos to be processed.
tem_results_dir (str): Directory to read tem results.
pgm_proposals_dir (str): Directory to read generated proposals.
pgm_features_dir (str): Directory to save generated features.
pgm_features_thread (int): Total number of threads.
kwargs (dict): Keyword arguments for "generate_bsp_feature".
"""
video_infos = load_video_infos(ann_file)
num_videos = len(video_infos)
num_videos_per_thread = num_videos // pgm_features_thread
processes = []
manager = mp.Manager()
feature_return_dict = manager.dict()
kwargs['result_dict'] = feature_return_dict
for tid in range(pgm_features_thread - 1):
tmp_video_list = range(tid * num_videos_per_thread,
(tid + 1) * num_videos_per_thread)
p = mp.Process(
target=generate_bsp_feature,
args=(
tmp_video_list,
video_infos,
tem_results_dir,
pgm_proposals_dir,
),
kwargs=kwargs)
p.start()
processes.append(p)
tmp_video_list = range((pgm_features_thread - 1) * num_videos_per_thread,
num_videos)
p = mp.Process(
target=generate_bsp_feature,
args=(
tmp_video_list,
video_infos,
tem_results_dir,
pgm_proposals_dir,
),
kwargs=kwargs)
p.start()
processes.append(p)
for p in processes:
p.join()
# save results
os.makedirs(pgm_features_dir, exist_ok=True)
prog_bar = mmengine.ProgressBar(num_videos)
for video_name in feature_return_dict.keys():
bsp_feature = feature_return_dict[video_name]
feature_path = osp.join(pgm_features_dir, video_name + '.npy')
np.save(feature_path, bsp_feature)
prog_bar.update() | Generate proposals features using multi-process.
Args:
ann_file (str): A json file path of the annotation file for
all videos to be processed.
tem_results_dir (str): Directory to read tem results.
pgm_proposals_dir (str): Directory to read generated proposals.
pgm_features_dir (str): Directory to save generated features.
pgm_features_thread (int): Total number of threads.
kwargs (dict): Keyword arguments for "generate_bsp_feature".
| generate_features | python | open-mmlab/mmaction2 | tools/misc/bsn_proposal_generation.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/bsn_proposal_generation.py | Apache-2.0 |
def flow_to_img(raw_flow, bound=20.):
"""Convert flow to gray image.
Args:
raw_flow (np.ndarray[float]): Estimated flow with the shape (w, h).
bound (float): Bound for the flow-to-image normalization. Default: 20.
Returns:
np.ndarray[uint8]: The result list of np.ndarray[uint8], with shape
(w, h).
"""
flow = np.clip(raw_flow, -bound, bound)
flow += bound
flow *= (255 / float(2 * bound))
flow = flow.astype(np.uint8)
return flow | Convert flow to gray image.
Args:
raw_flow (np.ndarray[float]): Estimated flow with the shape (w, h).
bound (float): Bound for the flow-to-image normalization. Default: 20.
Returns:
np.ndarray[uint8]: The result list of np.ndarray[uint8], with shape
(w, h).
| flow_to_img | python | open-mmlab/mmaction2 | tools/misc/flow_extraction.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/flow_extraction.py | Apache-2.0 |
def generate_flow(frames, method='tvl1'):
"""Estimate flow with given frames.
Args:
frames (list[np.ndarray[uint8]]): List of rgb frames, with shape
(w, h, 3).
method (str): Use which method to generate flow. Options are 'tvl1'
and 'farneback'. Default: 'tvl1'.
Returns:
list[np.ndarray[float]]: The result list of np.ndarray[float], with
shape (w, h, 2).
"""
assert method in ['tvl1', 'farneback']
gray_frames = [cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) for frame in frames]
if method == 'tvl1':
tvl1 = cv2.optflow.DualTVL1OpticalFlow_create()
def op(x, y):
return tvl1.calc(x, y, None)
elif method == 'farneback':
def op(x, y):
return cv2.calcOpticalFlowFarneback(x, y, None, 0.5, 3, 15, 3, 5,
1.2, 0)
gray_st = gray_frames[:-1]
gray_ed = gray_frames[1:]
flow = [op(x, y) for x, y in zip(gray_st, gray_ed)]
return flow | Estimate flow with given frames.
Args:
frames (list[np.ndarray[uint8]]): List of rgb frames, with shape
(w, h, 3).
method (str): Use which method to generate flow. Options are 'tvl1'
and 'farneback'. Default: 'tvl1'.
Returns:
list[np.ndarray[float]]: The result list of np.ndarray[float], with
shape (w, h, 2).
| generate_flow | python | open-mmlab/mmaction2 | tools/misc/flow_extraction.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/flow_extraction.py | Apache-2.0 |
def extract_dense_flow(path,
dest,
bound=20.,
save_rgb=False,
start_idx=0,
rgb_tmpl='img_{:05d}.jpg',
flow_tmpl='{}_{:05d}.jpg',
method='tvl1'):
"""Extract dense flow given video or frames, save them as gray-scale
images.
Args:
path (str): Location of the input video.
dest (str): The directory to store the extracted flow images.
bound (float): Bound for the flow-to-image normalization. Default: 20.
save_rgb (bool): Save extracted RGB frames. Default: False.
start_idx (int): The starting frame index if use frames as input, the
first image is path.format(start_idx). Default: 0.
rgb_tmpl (str): The template of RGB frame names, Default:
'img_{:05d}.jpg'.
flow_tmpl (str): The template of Flow frame names, Default:
'{}_{:05d}.jpg'.
method (str): Use which method to generate flow. Options are 'tvl1'
and 'farneback'. Default: 'tvl1'.
"""
frames = []
assert osp.exists(path)
video = cv2.VideoCapture(path)
flag, f = video.read()
while flag:
frames.append(f)
flag, f = video.read()
flow = generate_flow(frames, method=method)
flow_x = [flow_to_img(x[:, :, 0], bound) for x in flow]
flow_y = [flow_to_img(x[:, :, 1], bound) for x in flow]
if not osp.exists(dest):
os.system('mkdir -p ' + dest)
flow_x_names = [
osp.join(dest, flow_tmpl.format('x', ind + start_idx))
for ind in range(len(flow_x))
]
flow_y_names = [
osp.join(dest, flow_tmpl.format('y', ind + start_idx))
for ind in range(len(flow_y))
]
num_frames = len(flow)
for i in range(num_frames):
cv2.imwrite(flow_x_names[i], flow_x[i])
cv2.imwrite(flow_y_names[i], flow_y[i])
if save_rgb:
img_names = [
osp.join(dest, rgb_tmpl.format(ind + start_idx))
for ind in range(len(frames))
]
for frame, name in zip(frames, img_names):
cv2.imwrite(name, frame) | Extract dense flow given video or frames, save them as gray-scale
images.
Args:
path (str): Location of the input video.
dest (str): The directory to store the extracted flow images.
bound (float): Bound for the flow-to-image normalization. Default: 20.
save_rgb (bool): Save extracted RGB frames. Default: False.
start_idx (int): The starting frame index if use frames as input, the
first image is path.format(start_idx). Default: 0.
rgb_tmpl (str): The template of RGB frame names, Default:
'img_{:05d}.jpg'.
flow_tmpl (str): The template of Flow frame names, Default:
'{}_{:05d}.jpg'.
method (str): Use which method to generate flow. Options are 'tvl1'
and 'farneback'. Default: 'tvl1'.
| extract_dense_flow | python | open-mmlab/mmaction2 | tools/misc/flow_extraction.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/misc/flow_extraction.py | Apache-2.0 |
def make_grid(videos, names, rescale_factor=None):
"""Concat list of pictures into a single big picture, align height here."""
vis = Visualizer()
ori_shapes = [vid[0].shape[:2] for vid in videos]
if rescale_factor is not None:
videos = [[mmcv.imrescale(img, rescale_factor) for img in video]
for video in videos]
max_height = int(max(vid[0].shape[0] for vid in videos) * 1.4)
min_width = min(vid[0].shape[1] for vid in videos)
horizontal_gap = min_width // 10
img_scale = _get_adaptive_scale((max_height, min_width))
texts = []
text_positions = []
start_x = 0
for i, vid in enumerate(videos):
for j, img in enumerate(vid):
pad_height = (max_height - img.shape[0]) // 2
pad_width = horizontal_gap // 2
# make border
videos[i][j] = cv2.copyMakeBorder(
img,
pad_height,
max_height - img.shape[0] - pad_height +
int(img_scale * 30 * 2),
pad_width,
pad_width,
cv2.BORDER_CONSTANT,
value=(255, 255, 255))
texts.append(f'{names[i]}\n{ori_shapes[i]}')
text_positions.append(
[start_x + img.shape[1] // 2 + pad_width, max_height])
start_x += img.shape[1] + horizontal_gap
out_frames = []
for i in range(len(videos[0])):
imgs = [vid[i] for vid in videos]
display_img = np.concatenate(imgs, axis=1)
vis.set_image(display_img)
img_scale = _get_adaptive_scale(display_img.shape[:2])
vis.draw_texts(
texts,
positions=np.array(text_positions),
font_sizes=img_scale * 7,
colors='black',
horizontal_alignments='center',
font_families='monospace')
out_frames.append(vis.get_image())
return out_frames | Concat list of pictures into a single big picture, align height here. | make_grid | python | open-mmlab/mmaction2 | tools/visualizations/browse_dataset.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/visualizations/browse_dataset.py | Apache-2.0 |
def build_inputs(model: nn.Module,
video_path: str,
use_frames: bool = False) -> Dict:
"""build inputs for GradCAM.
Note that, building inputs for GradCAM is exactly the same as building
inputs for Recognizer test stage. Codes from `inference_recognizer`.
Args:
model (nn.Module): Recognizer model.
video_path (str): video file/url or rawframes directory.
use_frames (bool): whether to use rawframes as input.
Defaults to False.
Returns:
dict: Both GradCAM inputs and Recognizer test stage inputs,
including two keys, ``inputs`` and ``data_samples``.
"""
if not (osp.exists(video_path) or video_path.startswith('http')):
raise RuntimeError(f"'{video_path}' is missing")
if osp.isfile(video_path) and use_frames:
raise RuntimeError(
f"'{video_path}' is a video file, not a rawframe directory")
if osp.isdir(video_path) and not use_frames:
raise RuntimeError(
f"'{video_path}' is a rawframe directory, not a video file")
cfg = model.cfg
# build the data pipeline
test_pipeline = cfg.test_pipeline
test_pipeline = Compose(test_pipeline)
# prepare data
if use_frames:
filename_tmpl = cfg.test_dataloader.dataset.get(
'filename_tmpl', 'img_{:05}.jpg')
start_index = cfg.test_dataloader.dataset.get('start_index', 1)
data = dict(
frame_dir=video_path,
total_frames=len(os.listdir(video_path)),
label=-1,
start_index=start_index,
filename_tmpl=filename_tmpl,
modality='RGB')
else:
start_index = cfg.test_dataloader.dataset.get('start_index', 0)
data = dict(
filename=video_path,
label=-1,
start_index=start_index,
modality='RGB')
data = test_pipeline(data)
data = pseudo_collate([data])
return data | build inputs for GradCAM.
Note that, building inputs for GradCAM is exactly the same as building
inputs for Recognizer test stage. Codes from `inference_recognizer`.
Args:
model (nn.Module): Recognizer model.
video_path (str): video file/url or rawframes directory.
use_frames (bool): whether to use rawframes as input.
Defaults to False.
Returns:
dict: Both GradCAM inputs and Recognizer test stage inputs,
including two keys, ``inputs`` and ``data_samples``.
| build_inputs | python | open-mmlab/mmaction2 | tools/visualizations/vis_cam.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/visualizations/vis_cam.py | Apache-2.0 |
def _resize_frames(frame_list: List[np.ndarray],
scale: Optional[Tuple[int]] = None,
keep_ratio: bool = True,
interpolation: str = 'bilinear') -> List[np.ndarray]:
"""Resize frames according to given scale.
Codes are modified from `mmaction/datasets/transforms/processing.py`,
`Resize` class.
Args:
frame_list (list[np.ndarray]): Frames to be resized.
scale (tuple[int]): If keep_ratio is True, it serves as scaling
factor or maximum size: the image will be rescaled as large
as possible within the scale. Otherwise, it serves as (w, h)
of output size.
keep_ratio (bool): If set to True, Images will be resized without
changing the aspect ratio. Otherwise, it will resize images to a
given size. Defaults to True.
interpolation (str): Algorithm used for interpolation:
'nearest' | 'bilinear'. Defaults to ``'bilinear'``.
Returns:
list[np.ndarray]: Resized frames.
"""
if scale is None or (scale[0] == -1 and scale[1] == -1):
return frame_list
scale = tuple(scale)
max_long_edge = max(scale)
max_short_edge = min(scale)
if max_short_edge == -1:
scale = (np.inf, max_long_edge)
img_h, img_w, _ = frame_list[0].shape
if keep_ratio:
new_w, new_h = mmcv.rescale_size((img_w, img_h), scale)
else:
new_w, new_h = scale
frame_list = [
mmcv.imresize(img, (new_w, new_h), interpolation=interpolation)
for img in frame_list
]
return frame_list | Resize frames according to given scale.
Codes are modified from `mmaction/datasets/transforms/processing.py`,
`Resize` class.
Args:
frame_list (list[np.ndarray]): Frames to be resized.
scale (tuple[int]): If keep_ratio is True, it serves as scaling
factor or maximum size: the image will be rescaled as large
as possible within the scale. Otherwise, it serves as (w, h)
of output size.
keep_ratio (bool): If set to True, Images will be resized without
changing the aspect ratio. Otherwise, it will resize images to a
given size. Defaults to True.
interpolation (str): Algorithm used for interpolation:
'nearest' | 'bilinear'. Defaults to ``'bilinear'``.
Returns:
list[np.ndarray]: Resized frames.
| _resize_frames | python | open-mmlab/mmaction2 | tools/visualizations/vis_cam.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/visualizations/vis_cam.py | Apache-2.0 |
def plot_curve(lr_list, args, param_name, iters_per_epoch, by_epoch=True):
"""Plot learning rate vs iter graph."""
try:
import seaborn as sns
sns.set_style(args.style)
except ImportError:
pass
wind_w, wind_h = args.window_size.split('*')
wind_w, wind_h = int(wind_w), int(wind_h)
plt.figure(figsize=(wind_w, wind_h))
ax: plt.Axes = plt.subplot()
ax.plot(lr_list, linewidth=1)
if by_epoch:
ax.xaxis.tick_top()
ax.set_xlabel('Iters')
ax.xaxis.set_label_position('top')
sec_ax = ax.secondary_xaxis(
'bottom',
functions=(lambda x: x / iters_per_epoch,
lambda y: y * iters_per_epoch))
sec_ax.set_xlabel('Epochs')
else:
plt.xlabel('Iters')
plt.ylabel(param_name)
if args.title is None:
plt.title(f'{osp.basename(args.config)} {param_name} curve')
else:
plt.title(args.title) | Plot learning rate vs iter graph. | plot_curve | python | open-mmlab/mmaction2 | tools/visualizations/vis_scheduler.py | https://github.com/open-mmlab/mmaction2/blob/master/tools/visualizations/vis_scheduler.py | Apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.