code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def forward(self, x: Tensor) -> Tensor: """Forward call for LGTE. Args: x (torch.Tensor): The input tensor with shape (B, C, L) """ x = x.permute(2, 0, 1) mask = self.mask.repeat(x.size(1), 1, 1, 1) L = x.shape[0] x = self.atten(x, attn_mask=mask.reshape(-1, L, L)) x = self.norm1(x) x = self.ffn(x) x = self.norm2(x) x = x.permute(1, 2, 0) return x
Forward call for LGTE. Args: x (torch.Tensor): The input tensor with shape (B, C, L)
forward
python
open-mmlab/mmaction2
mmaction/models/localizers/tcanet.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/tcanet.py
Apache-2.0
def StartEndRegressor(sample_num: int, feat_dim: int) -> nn.Module: """Start and End Regressor in the Temporal Boundary Regressor. Args: sample_num (int): number of samples for the start & end. feat_dim (int): feature dimension. Returns: A pytorch module that works as the start and end regressor. The input of the module should have a shape of (B, feat_dim * 2, sample_num). """ hidden_dim = 128 regressor = nn.Sequential( nn.Conv1d( feat_dim * 2, hidden_dim * 2, kernel_size=3, padding=1, groups=8, stride=2), nn.ReLU(inplace=True), nn.Conv1d( hidden_dim * 2, hidden_dim * 2, kernel_size=3, padding=1, groups=8, stride=2), nn.ReLU(inplace=True), nn.Conv1d(hidden_dim * 2, 2, kernel_size=sample_num // 4, groups=2), nn.Flatten()) return regressor
Start and End Regressor in the Temporal Boundary Regressor. Args: sample_num (int): number of samples for the start & end. feat_dim (int): feature dimension. Returns: A pytorch module that works as the start and end regressor. The input of the module should have a shape of (B, feat_dim * 2, sample_num).
StartEndRegressor
python
open-mmlab/mmaction2
mmaction/models/localizers/tcanet.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/tcanet.py
Apache-2.0
def CenterWidthRegressor(temporal_len: int, feat_dim: int) -> nn.Module: """Center Width in the Temporal Boundary Regressor. Args: temporal_len (int): temporal dimension of the inputs. feat_dim (int): feature dimension. Returns: A pytorch module that works as the start and end regressor. The input of the module should have a shape of (B, feat_dim, temporal_len). """ hidden_dim = 512 regressor = nn.Sequential( nn.Conv1d( feat_dim, hidden_dim, kernel_size=3, padding=1, groups=4, stride=2), nn.ReLU(inplace=True), nn.Conv1d( hidden_dim, hidden_dim, kernel_size=3, padding=1, groups=4, stride=2), nn.ReLU(inplace=True), nn.Conv1d( hidden_dim, hidden_dim, kernel_size=temporal_len // 4, groups=4), nn.ReLU(inplace=True), nn.Conv1d(hidden_dim, 3, kernel_size=1)) return regressor
Center Width in the Temporal Boundary Regressor. Args: temporal_len (int): temporal dimension of the inputs. feat_dim (int): feature dimension. Returns: A pytorch module that works as the start and end regressor. The input of the module should have a shape of (B, feat_dim, temporal_len).
CenterWidthRegressor
python
open-mmlab/mmaction2
mmaction/models/localizers/tcanet.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/tcanet.py
Apache-2.0
def forward(self, inputs, data_samples, mode, **kwargs): """The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[:obj:`ActionDataSample`], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor. """ if not isinstance(input, Tensor): inputs = torch.stack(inputs) if mode == 'tensor': return self._forward(inputs, **kwargs) if mode == 'predict': return self.predict(inputs, data_samples, **kwargs) elif mode == 'loss': return self.loss(inputs, data_samples, **kwargs) else: raise RuntimeError(f'Invalid mode "{mode}". ' 'Only supports loss, predict and tensor mode')
The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[:obj:`ActionDataSample`], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor.
forward
python
open-mmlab/mmaction2
mmaction/models/localizers/tcanet.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/tcanet.py
Apache-2.0
def _forward(self, x): """Define the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ x = self.x_1d_b_f(x) for layer in self.lgtes: x = layer(x) return x
Define the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module.
_forward
python
open-mmlab/mmaction2
mmaction/models/localizers/tcanet.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/tcanet.py
Apache-2.0
def __init__(self, pre_nms_thresh, pre_nms_top_n, nms_thresh, fpn_post_nms_top_n, min_size, num_classes, is_first_stage): """ Arguments: pre_nms_thresh (float) pre_nms_top_n (int) nms_thresh (float) fpn_post_nms_top_n (int) min_size (int) num_classes (int) box_coder (BoxCoder) """ super(FCOSPostProcessor, self).__init__() self.pre_nms_thresh = pre_nms_thresh self.pre_nms_top_n = pre_nms_top_n self.nms_thresh = nms_thresh self.fpn_post_nms_top_n = fpn_post_nms_top_n self.min_size = min_size self.num_classes = num_classes self.innerness_threshold = 0.15 self.downsample_scale = 32 self.is_first_stage = is_first_stage
Arguments: pre_nms_thresh (float) pre_nms_top_n (int) nms_thresh (float) fpn_post_nms_top_n (int) min_size (int) num_classes (int) box_coder (BoxCoder)
__init__
python
open-mmlab/mmaction2
mmaction/models/localizers/drn/drn_utils/inference.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/drn/drn_utils/inference.py
Apache-2.0
def forward_for_single_feature_map(self, locations, box_cls, box_regression, level, iou_scores): """ Arguments: anchors: list[BoxList] box_cls: tensor of size N, A * C, H, W box_regression: tensor of size N, A * 4, H, W """ N, C, T = box_cls.shape # put in the same format as locations box_cls = box_cls.permute(0, 2, 1).contiguous().sigmoid() iou_scores = iou_scores.permute(0, 2, 1).contiguous().sigmoid() box_regression = box_regression.permute(0, 2, 1) # centerness = centerness.permute(0, 2, 1) # centerness = centerness.reshape(N, -1).sigmoid() # inner = inner.squeeze().sigmoid() candidate_inds = (box_cls > self.pre_nms_thresh) pre_nms_top_n = candidate_inds.view(N, -1).sum(1) pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n) # multiply the classification scores with centerness scores # box_cls = box_cls * centerness[:, :, None] # box_cls = box_cls + centerness[:, :, None] if not self.is_first_stage: box_cls = box_cls * iou_scores results = [] for i in range(N): # per_centerness = centerness[i] per_box_cls = box_cls[i] per_candidate_inds = candidate_inds[i] per_box_cls = per_box_cls[per_candidate_inds] per_candidate_nonzeros = per_candidate_inds.nonzero() per_box_loc = per_candidate_nonzeros[:, 0] per_class = per_candidate_nonzeros[:, 1] + 1 per_box_regression = box_regression[i] per_box_regression = per_box_regression[per_box_loc] per_locations = locations[per_box_loc] # per_centerness = per_centerness[per_box_loc] per_pre_nms_top_n = pre_nms_top_n[i] if per_candidate_inds.sum().item() > per_pre_nms_top_n.item(): per_box_cls, top_k_indices = \ per_box_cls.topk(per_pre_nms_top_n, sorted=False) per_class = per_class[top_k_indices] per_box_regression = per_box_regression[top_k_indices] per_locations = per_locations[top_k_indices] # per_centerness = per_centerness[top_k_indices] detections = torch.stack([ per_locations - per_box_regression[:, 0], per_locations + per_box_regression[:, 1], ], dim=1) / self.downsample_scale detections[:, 0].clamp_(min=0, max=1) detections[:, 1].clamp_(min=0, max=1) # remove small boxes p_start, p_end = detections.unbind(dim=1) duration = p_end - p_start keep = (duration >= self.min_size).nonzero().squeeze(1) detections = detections[keep] temp_dict = {} temp_dict['detections'] = detections temp_dict['labels'] = per_class temp_dict['scores'] = torch.sqrt(per_box_cls) temp_dict['level'] = [level] # temp_dict['centerness'] = per_centerness temp_dict['locations'] = per_locations / 32 results.append(temp_dict) return results
Arguments: anchors: list[BoxList] box_cls: tensor of size N, A * C, H, W box_regression: tensor of size N, A * 4, H, W
forward_for_single_feature_map
python
open-mmlab/mmaction2
mmaction/models/localizers/drn/drn_utils/inference.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/drn/drn_utils/inference.py
Apache-2.0
def forward(self, locations, box_cls, box_regression, iou_scores): """ Arguments: anchors: list[list[BoxList]] box_cls: list[tensor] box_regression: list[tensor] image_sizes: list[(h, w)] Returns: boxlists (list[BoxList]): the post-processed anchors, after applying box decoding and NMS """ sampled_boxes = [] for i, (l, o, b, iou_s) in enumerate( zip(locations, box_cls, box_regression, iou_scores)): sampled_boxes.append( self.forward_for_single_feature_map(l, o, b, i, iou_s)) boxlists = list(zip(*sampled_boxes)) # boxlists = [cat_boxlist(boxlist) for boxlist in boxlists] boxlists = self.select_over_all_levels(boxlists) return boxlists
Arguments: anchors: list[list[BoxList]] box_cls: list[tensor] box_regression: list[tensor] image_sizes: list[(h, w)] Returns: boxlists (list[BoxList]): the post-processed anchors, after applying box decoding and NMS
forward
python
open-mmlab/mmaction2
mmaction/models/localizers/drn/drn_utils/inference.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/drn/drn_utils/inference.py
Apache-2.0
def generate_candidate_proposals(video_list, video_infos, tem_results_dir, temporal_scale, peak_threshold, tem_results_ext='.csv', result_dict=None): """Generate Candidate Proposals with given temporal evaluation results. Each proposal file will contain: 'tmin,tmax,tmin_score,tmax_score,score,match_iou,match_ioa'. Args: video_list (list[int]): List of video indexes to generate proposals. video_infos (list[dict]): List of video_info dict that contains 'video_name', 'duration_frame', 'duration_second', 'feature_frame', and 'annotations'. tem_results_dir (str): Directory to load temporal evaluation results. temporal_scale (int): The number (scale) on temporal axis. peak_threshold (float): The threshold for proposal generation. tem_results_ext (str): File extension for temporal evaluation model output. Default: '.csv'. result_dict (dict | None): The dict to save the results. Default: None. Returns: dict: A dict contains video_name as keys and proposal list as value. If result_dict is not None, save the results to it. """ if tem_results_ext != '.csv': raise NotImplementedError('Only support csv format now.') tscale = temporal_scale tgap = 1. / tscale proposal_dict = {} for video_index in video_list: video_name = video_infos[video_index]['video_name'] tem_path = osp.join(tem_results_dir, video_name + tem_results_ext) tem_results = np.loadtxt( tem_path, dtype=np.float32, delimiter=',', skiprows=1) start_scores = tem_results[:, 1] end_scores = tem_results[:, 2] max_start = max(start_scores) max_end = max(end_scores) start_bins = np.zeros(len(start_scores)) start_bins[[0, -1]] = 1 end_bins = np.zeros(len(end_scores)) end_bins[[0, -1]] = 1 for idx in range(1, tscale - 1): if start_scores[idx] > start_scores[ idx + 1] and start_scores[idx] > start_scores[idx - 1]: start_bins[idx] = 1 elif start_scores[idx] > (peak_threshold * max_start): start_bins[idx] = 1 if end_scores[idx] > end_scores[ idx + 1] and end_scores[idx] > end_scores[idx - 1]: end_bins[idx] = 1 elif end_scores[idx] > (peak_threshold * max_end): end_bins[idx] = 1 tmin_list = [] tmin_score_list = [] tmax_list = [] tmax_score_list = [] for idx in range(tscale): if start_bins[idx] == 1: tmin_list.append(tgap / 2 + tgap * idx) tmin_score_list.append(start_scores[idx]) if end_bins[idx] == 1: tmax_list.append(tgap / 2 + tgap * idx) tmax_score_list.append(end_scores[idx]) new_props = [] for tmax, tmax_score in zip(tmax_list, tmax_score_list): for tmin, tmin_score in zip(tmin_list, tmin_score_list): if tmin >= tmax: break new_props.append([tmin, tmax, tmin_score, tmax_score]) new_props = np.stack(new_props) score = (new_props[:, 2] * new_props[:, 3]).reshape(-1, 1) new_props = np.concatenate((new_props, score), axis=1) new_props = new_props[new_props[:, -1].argsort()[::-1]] video_info = video_infos[video_index] video_frame = video_info['duration_frame'] video_second = video_info['duration_second'] feature_frame = video_info['feature_frame'] corrected_second = float(feature_frame) / video_frame * video_second gt_tmins = [] gt_tmaxs = [] for annotations in video_info['annotations']: gt_tmins.append(annotations['segment'][0] / corrected_second) gt_tmaxs.append(annotations['segment'][1] / corrected_second) new_iou_list = [] new_ioa_list = [] for new_prop in new_props: new_iou = max( temporal_iou(new_prop[0], new_prop[1], gt_tmins, gt_tmaxs)) new_ioa = max( temporal_iop(new_prop[0], new_prop[1], gt_tmins, gt_tmaxs)) new_iou_list.append(new_iou) new_ioa_list.append(new_ioa) new_iou_list = np.array(new_iou_list).reshape(-1, 1) new_ioa_list = np.array(new_ioa_list).reshape(-1, 1) new_props = np.concatenate((new_props, new_iou_list), axis=1) new_props = np.concatenate((new_props, new_ioa_list), axis=1) proposal_dict[video_name] = new_props if result_dict is not None: result_dict[video_name] = new_props return proposal_dict
Generate Candidate Proposals with given temporal evaluation results. Each proposal file will contain: 'tmin,tmax,tmin_score,tmax_score,score,match_iou,match_ioa'. Args: video_list (list[int]): List of video indexes to generate proposals. video_infos (list[dict]): List of video_info dict that contains 'video_name', 'duration_frame', 'duration_second', 'feature_frame', and 'annotations'. tem_results_dir (str): Directory to load temporal evaluation results. temporal_scale (int): The number (scale) on temporal axis. peak_threshold (float): The threshold for proposal generation. tem_results_ext (str): File extension for temporal evaluation model output. Default: '.csv'. result_dict (dict | None): The dict to save the results. Default: None. Returns: dict: A dict contains video_name as keys and proposal list as value. If result_dict is not None, save the results to it.
generate_candidate_proposals
python
open-mmlab/mmaction2
mmaction/models/localizers/utils/bsn_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/bsn_utils.py
Apache-2.0
def generate_bsp_feature(video_list, video_infos, tem_results_dir, pgm_proposals_dir, top_k=1000, bsp_boundary_ratio=0.2, num_sample_start=8, num_sample_end=8, num_sample_action=16, num_sample_interp=3, tem_results_ext='.csv', pgm_proposal_ext='.csv', result_dict=None): """Generate Boundary-Sensitive Proposal Feature with given proposals. Args: video_list (list[int]): List of video indexes to generate bsp_feature. video_infos (list[dict]): List of video_info dict that contains 'video_name'. tem_results_dir (str): Directory to load temporal evaluation results. pgm_proposals_dir (str): Directory to load proposals. top_k (int): Number of proposals to be considered. Default: 1000 bsp_boundary_ratio (float): Ratio for proposal boundary (start/end). Default: 0.2. num_sample_start (int): Num of samples for actionness in start region. Default: 8. num_sample_end (int): Num of samples for actionness in end region. Default: 8. num_sample_action (int): Num of samples for actionness in center region. Default: 16. num_sample_interp (int): Num of samples for interpolation for each sample point. Default: 3. tem_results_ext (str): File extension for temporal evaluation model output. Default: '.csv'. pgm_proposal_ext (str): File extension for proposals. Default: '.csv'. result_dict (dict | None): The dict to save the results. Default: None. Returns: bsp_feature_dict (dict): A dict contains video_name as keys and bsp_feature as value. If result_dict is not None, save the results to it. """ if tem_results_ext != '.csv' or pgm_proposal_ext != '.csv': raise NotImplementedError('Only support csv format now.') bsp_feature_dict = {} for video_index in video_list: video_name = video_infos[video_index]['video_name'] # Load temporal evaluation results tem_path = osp.join(tem_results_dir, video_name + tem_results_ext) tem_results = np.loadtxt( tem_path, dtype=np.float32, delimiter=',', skiprows=1) score_action = tem_results[:, 0] seg_tmins = tem_results[:, 3] seg_tmaxs = tem_results[:, 4] video_scale = len(tem_results) video_gap = seg_tmaxs[0] - seg_tmins[0] video_extend = int(video_scale / 4 + 10) # Load proposals results proposal_path = osp.join(pgm_proposals_dir, video_name + pgm_proposal_ext) pgm_proposals = np.loadtxt( proposal_path, dtype=np.float32, delimiter=',', skiprows=1) pgm_proposals = pgm_proposals[:top_k] # Generate temporal sample points boundary_zeros = np.zeros([video_extend]) score_action = np.concatenate( (boundary_zeros, score_action, boundary_zeros)) begin_tp = [] middle_tp = [] end_tp = [] for i in range(video_extend): begin_tp.append(-video_gap / 2 - (video_extend - 1 - i) * video_gap) end_tp.append(video_gap / 2 + seg_tmaxs[-1] + i * video_gap) for i in range(video_scale): middle_tp.append(video_gap / 2 + i * video_gap) t_points = begin_tp + middle_tp + end_tp bsp_feature = [] for pgm_proposal in pgm_proposals: tmin = pgm_proposal[0] tmax = pgm_proposal[1] tlen = tmax - tmin # Temporal range for start tmin_0 = tmin - tlen * bsp_boundary_ratio tmin_1 = tmin + tlen * bsp_boundary_ratio # Temporal range for end tmax_0 = tmax - tlen * bsp_boundary_ratio tmax_1 = tmax + tlen * bsp_boundary_ratio # Generate features at start boundary tlen_start = (tmin_1 - tmin_0) / (num_sample_start - 1) tlen_start_sample = tlen_start / num_sample_interp t_new = [ tmin_0 - tlen_start / 2 + tlen_start_sample * i for i in range(num_sample_start * num_sample_interp + 1) ] y_new_start_action = np.interp(t_new, t_points, score_action) y_new_start = [ np.mean(y_new_start_action[i * num_sample_interp:(i + 1) * num_sample_interp + 1]) for i in range(num_sample_start) ] # Generate features at end boundary tlen_end = (tmax_1 - tmax_0) / (num_sample_end - 1) tlen_end_sample = tlen_end / num_sample_interp t_new = [ tmax_0 - tlen_end / 2 + tlen_end_sample * i for i in range(num_sample_end * num_sample_interp + 1) ] y_new_end_action = np.interp(t_new, t_points, score_action) y_new_end = [ np.mean(y_new_end_action[i * num_sample_interp:(i + 1) * num_sample_interp + 1]) for i in range(num_sample_end) ] # Generate features for action tlen_action = (tmax - tmin) / (num_sample_action - 1) tlen_action_sample = tlen_action / num_sample_interp t_new = [ tmin - tlen_action / 2 + tlen_action_sample * i for i in range(num_sample_action * num_sample_interp + 1) ] y_new_action = np.interp(t_new, t_points, score_action) y_new_action = [ np.mean(y_new_action[i * num_sample_interp:(i + 1) * num_sample_interp + 1]) for i in range(num_sample_action) ] feature = np.concatenate([y_new_action, y_new_start, y_new_end]) bsp_feature.append(feature) bsp_feature = np.array(bsp_feature) bsp_feature_dict[video_name] = bsp_feature if result_dict is not None: result_dict[video_name] = bsp_feature return bsp_feature_dict
Generate Boundary-Sensitive Proposal Feature with given proposals. Args: video_list (list[int]): List of video indexes to generate bsp_feature. video_infos (list[dict]): List of video_info dict that contains 'video_name'. tem_results_dir (str): Directory to load temporal evaluation results. pgm_proposals_dir (str): Directory to load proposals. top_k (int): Number of proposals to be considered. Default: 1000 bsp_boundary_ratio (float): Ratio for proposal boundary (start/end). Default: 0.2. num_sample_start (int): Num of samples for actionness in start region. Default: 8. num_sample_end (int): Num of samples for actionness in end region. Default: 8. num_sample_action (int): Num of samples for actionness in center region. Default: 16. num_sample_interp (int): Num of samples for interpolation for each sample point. Default: 3. tem_results_ext (str): File extension for temporal evaluation model output. Default: '.csv'. pgm_proposal_ext (str): File extension for proposals. Default: '.csv'. result_dict (dict | None): The dict to save the results. Default: None. Returns: bsp_feature_dict (dict): A dict contains video_name as keys and bsp_feature as value. If result_dict is not None, save the results to it.
generate_bsp_feature
python
open-mmlab/mmaction2
mmaction/models/localizers/utils/bsn_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/bsn_utils.py
Apache-2.0
def temporal_iou(proposal_min, proposal_max, gt_min, gt_max): """Compute IoU score between a groundtruth bbox and the proposals. Args: proposal_min (list[float]): List of temporal anchor min. proposal_max (list[float]): List of temporal anchor max. gt_min (float): Groundtruth temporal box min. gt_max (float): Groundtruth temporal box max. Returns: list[float]: List of iou scores. """ len_anchors = proposal_max - proposal_min int_tmin = np.maximum(proposal_min, gt_min) int_tmax = np.minimum(proposal_max, gt_max) inter_len = np.maximum(int_tmax - int_tmin, 0.) union_len = len_anchors - inter_len + gt_max - gt_min jaccard = np.divide(inter_len, union_len) return jaccard
Compute IoU score between a groundtruth bbox and the proposals. Args: proposal_min (list[float]): List of temporal anchor min. proposal_max (list[float]): List of temporal anchor max. gt_min (float): Groundtruth temporal box min. gt_max (float): Groundtruth temporal box max. Returns: list[float]: List of iou scores.
temporal_iou
python
open-mmlab/mmaction2
mmaction/models/localizers/utils/proposal_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/proposal_utils.py
Apache-2.0
def temporal_iop(proposal_min, proposal_max, gt_min, gt_max): """Compute IoP score between a groundtruth bbox and the proposals. Compute the IoP which is defined as the overlap ratio with groundtruth proportional to the duration of this proposal. Args: proposal_min (list[float]): List of temporal anchor min. proposal_max (list[float]): List of temporal anchor max. gt_min (float): Groundtruth temporal box min. gt_max (float): Groundtruth temporal box max. Returns: list[float]: List of intersection over anchor scores. """ len_anchors = np.array(proposal_max - proposal_min) int_tmin = np.maximum(proposal_min, gt_min) int_tmax = np.minimum(proposal_max, gt_max) inter_len = np.maximum(int_tmax - int_tmin, 0.) scores = np.divide(inter_len, len_anchors) return scores
Compute IoP score between a groundtruth bbox and the proposals. Compute the IoP which is defined as the overlap ratio with groundtruth proportional to the duration of this proposal. Args: proposal_min (list[float]): List of temporal anchor min. proposal_max (list[float]): List of temporal anchor max. gt_min (float): Groundtruth temporal box min. gt_max (float): Groundtruth temporal box max. Returns: list[float]: List of intersection over anchor scores.
temporal_iop
python
open-mmlab/mmaction2
mmaction/models/localizers/utils/proposal_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/proposal_utils.py
Apache-2.0
def soft_nms(proposals, alpha, low_threshold, high_threshold, top_k): """Soft NMS for temporal proposals. Args: proposals (np.ndarray): Proposals generated by network. alpha (float): Alpha value of Gaussian decaying function. low_threshold (float): Low threshold for soft nms. high_threshold (float): High threshold for soft nms. top_k (int): Top k values to be considered. Returns: np.ndarray: The updated proposals. """ proposals = proposals[proposals[:, -1].argsort()[::-1]] tstart = list(proposals[:, 0]) tend = list(proposals[:, 1]) tscore = list(proposals[:, -1]) rstart = [] rend = [] rscore = [] while len(tscore) > 0 and len(rscore) <= top_k: max_index = np.argmax(tscore) max_width = tend[max_index] - tstart[max_index] iou_list = temporal_iou(tstart[max_index], tend[max_index], np.array(tstart), np.array(tend)) iou_exp_list = np.exp(-np.square(iou_list) / alpha) for idx, _ in enumerate(tscore): if idx != max_index: current_iou = iou_list[idx] if current_iou > low_threshold + (high_threshold - low_threshold) * max_width: tscore[idx] = tscore[idx] * iou_exp_list[idx] rstart.append(tstart[max_index]) rend.append(tend[max_index]) rscore.append(tscore[max_index]) tstart.pop(max_index) tend.pop(max_index) tscore.pop(max_index) rstart = np.array(rstart).reshape(-1, 1) rend = np.array(rend).reshape(-1, 1) rscore = np.array(rscore).reshape(-1, 1) new_proposals = np.concatenate((rstart, rend, rscore), axis=1) return new_proposals
Soft NMS for temporal proposals. Args: proposals (np.ndarray): Proposals generated by network. alpha (float): Alpha value of Gaussian decaying function. low_threshold (float): Low threshold for soft nms. high_threshold (float): High threshold for soft nms. top_k (int): Top k values to be considered. Returns: np.ndarray: The updated proposals.
soft_nms
python
open-mmlab/mmaction2
mmaction/models/localizers/utils/proposal_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/proposal_utils.py
Apache-2.0
def post_processing(result, video_info, soft_nms_alpha, soft_nms_low_threshold, soft_nms_high_threshold, post_process_top_k, feature_extraction_interval): """Post process for temporal proposals generation. Args: result (np.ndarray): Proposals generated by network. video_info (dict): Meta data of video. Required keys are 'duration_frame', 'duration_second'. soft_nms_alpha (float): Alpha value of Gaussian decaying function. soft_nms_low_threshold (float): Low threshold for soft nms. soft_nms_high_threshold (float): High threshold for soft nms. post_process_top_k (int): Top k values to be considered. feature_extraction_interval (int): Interval used in feature extraction. Returns: list[dict]: The updated proposals, e.g. [{'score': 0.9, 'segment': [0, 1]}, {'score': 0.8, 'segment': [0, 2]}, ...]. """ if len(result) > 1: result = soft_nms(result, soft_nms_alpha, soft_nms_low_threshold, soft_nms_high_threshold, post_process_top_k) result = result[result[:, -1].argsort()[::-1]] video_duration = float( video_info['duration_frame'] // feature_extraction_interval * feature_extraction_interval ) / video_info['duration_frame'] * video_info['duration_second'] proposal_list = [] for j in range(min(post_process_top_k, len(result))): proposal = {} proposal['score'] = float(result[j, -1]) proposal['segment'] = [ max(0, result[j, 0]) * video_duration, min(1, result[j, 1]) * video_duration ] proposal_list.append(proposal) return proposal_list
Post process for temporal proposals generation. Args: result (np.ndarray): Proposals generated by network. video_info (dict): Meta data of video. Required keys are 'duration_frame', 'duration_second'. soft_nms_alpha (float): Alpha value of Gaussian decaying function. soft_nms_low_threshold (float): Low threshold for soft nms. soft_nms_high_threshold (float): High threshold for soft nms. post_process_top_k (int): Top k values to be considered. feature_extraction_interval (int): Interval used in feature extraction. Returns: list[dict]: The updated proposals, e.g. [{'score': 0.9, 'segment': [0, 1]}, {'score': 0.8, 'segment': [0, 2]}, ...].
post_processing
python
open-mmlab/mmaction2
mmaction/models/localizers/utils/proposal_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/proposal_utils.py
Apache-2.0
def forward(self, *args, **kwargs): """Defines the computation performed at every call. Args: *args: The positional arguments for the corresponding loss. **kwargs: The keyword arguments for the corresponding loss. Returns: torch.Tensor: The calculated loss. """ ret = self._forward(*args, **kwargs) if isinstance(ret, dict): for k in ret: if 'loss' in k: ret[k] *= self.loss_weight else: ret *= self.loss_weight return ret
Defines the computation performed at every call. Args: *args: The positional arguments for the corresponding loss. **kwargs: The keyword arguments for the corresponding loss. Returns: torch.Tensor: The calculated loss.
forward
python
open-mmlab/mmaction2
mmaction/models/losses/base.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/base.py
Apache-2.0
def forward(self, reg_score, label, threshold=0.5, ratio_range=(1.05, 21), eps=1e-5): """Calculate Binary Logistic Regression Loss. Args: reg_score (torch.Tensor): Predicted score by model. label (torch.Tensor): Groundtruth labels. threshold (float): Threshold for positive instances. Default: 0.5. ratio_range (tuple): Lower bound and upper bound for ratio. Default: (1.05, 21) eps (float): Epsilon for small value. Default: 1e-5. Returns: torch.Tensor: Returned binary logistic loss. """ return binary_logistic_regression_loss(reg_score, label, threshold, ratio_range, eps)
Calculate Binary Logistic Regression Loss. Args: reg_score (torch.Tensor): Predicted score by model. label (torch.Tensor): Groundtruth labels. threshold (float): Threshold for positive instances. Default: 0.5. ratio_range (tuple): Lower bound and upper bound for ratio. Default: (1.05, 21) eps (float): Epsilon for small value. Default: 1e-5. Returns: torch.Tensor: Returned binary logistic loss.
forward
python
open-mmlab/mmaction2
mmaction/models/losses/binary_logistic_regression_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/binary_logistic_regression_loss.py
Apache-2.0
def tem_loss(pred_start, pred_end, gt_start, gt_end): """Calculate Temporal Evaluation Module Loss. This function calculate the binary_logistic_regression_loss for start and end respectively and returns the sum of their losses. Args: pred_start (torch.Tensor): Predicted start score by BMN model. pred_end (torch.Tensor): Predicted end score by BMN model. gt_start (torch.Tensor): Groundtruth confidence score for start. gt_end (torch.Tensor): Groundtruth confidence score for end. Returns: torch.Tensor: Returned binary logistic loss. """ loss_start = binary_logistic_regression_loss(pred_start, gt_start) loss_end = binary_logistic_regression_loss(pred_end, gt_end) loss = loss_start + loss_end return loss
Calculate Temporal Evaluation Module Loss. This function calculate the binary_logistic_regression_loss for start and end respectively and returns the sum of their losses. Args: pred_start (torch.Tensor): Predicted start score by BMN model. pred_end (torch.Tensor): Predicted end score by BMN model. gt_start (torch.Tensor): Groundtruth confidence score for start. gt_end (torch.Tensor): Groundtruth confidence score for end. Returns: torch.Tensor: Returned binary logistic loss.
tem_loss
python
open-mmlab/mmaction2
mmaction/models/losses/bmn_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/bmn_loss.py
Apache-2.0
def pem_reg_loss(pred_score, gt_iou_map, mask, high_temporal_iou_threshold=0.7, low_temporal_iou_threshold=0.3): """Calculate Proposal Evaluation Module Regression Loss. Args: pred_score (torch.Tensor): Predicted temporal_iou score by BMN. gt_iou_map (torch.Tensor): Groundtruth temporal_iou score. mask (torch.Tensor): Boundary-Matching mask. high_temporal_iou_threshold (float): Higher threshold of temporal_iou. Default: 0.7. low_temporal_iou_threshold (float): Higher threshold of temporal_iou. Default: 0.3. Returns: torch.Tensor: Proposal evaluation regression loss. """ u_hmask = (gt_iou_map > high_temporal_iou_threshold).float() u_mmask = ((gt_iou_map <= high_temporal_iou_threshold) & (gt_iou_map > low_temporal_iou_threshold)).float() u_lmask = ((gt_iou_map <= low_temporal_iou_threshold) & (gt_iou_map > 0.)).float() u_lmask = u_lmask * mask num_h = torch.sum(u_hmask) num_m = torch.sum(u_mmask) num_l = torch.sum(u_lmask) r_m = num_h / num_m u_smmask = torch.rand_like(gt_iou_map) u_smmask = u_mmask * u_smmask u_smmask = (u_smmask > (1. - r_m)).float() r_l = num_h / num_l u_slmask = torch.rand_like(gt_iou_map) u_slmask = u_lmask * u_slmask u_slmask = (u_slmask > (1. - r_l)).float() weights = u_hmask + u_smmask + u_slmask loss = F.mse_loss(pred_score * weights, gt_iou_map * weights) loss = 0.5 * torch.sum( loss * torch.ones_like(weights)) / torch.sum(weights) return loss
Calculate Proposal Evaluation Module Regression Loss. Args: pred_score (torch.Tensor): Predicted temporal_iou score by BMN. gt_iou_map (torch.Tensor): Groundtruth temporal_iou score. mask (torch.Tensor): Boundary-Matching mask. high_temporal_iou_threshold (float): Higher threshold of temporal_iou. Default: 0.7. low_temporal_iou_threshold (float): Higher threshold of temporal_iou. Default: 0.3. Returns: torch.Tensor: Proposal evaluation regression loss.
pem_reg_loss
python
open-mmlab/mmaction2
mmaction/models/losses/bmn_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/bmn_loss.py
Apache-2.0
def pem_cls_loss(pred_score, gt_iou_map, mask, threshold=0.9, ratio_range=(1.05, 21), eps=1e-5): """Calculate Proposal Evaluation Module Classification Loss. Args: pred_score (torch.Tensor): Predicted temporal_iou score by BMN. gt_iou_map (torch.Tensor): Groundtruth temporal_iou score. mask (torch.Tensor): Boundary-Matching mask. threshold (float): Threshold of temporal_iou for positive instances. Default: 0.9. ratio_range (tuple): Lower bound and upper bound for ratio. Default: (1.05, 21) eps (float): Epsilon for small value. Default: 1e-5 Returns: torch.Tensor: Proposal evaluation classification loss. """ pmask = (gt_iou_map > threshold).float() nmask = (gt_iou_map <= threshold).float() nmask = nmask * mask num_positive = max(torch.sum(pmask), 1) num_entries = num_positive + torch.sum(nmask) ratio = num_entries / num_positive ratio = torch.clamp(ratio, ratio_range[0], ratio_range[1]) coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio loss_pos = coef_1 * torch.log(pred_score + eps) * pmask loss_neg = coef_0 * torch.log(1.0 - pred_score + eps) * nmask loss = -1 * torch.sum(loss_pos + loss_neg) / num_entries return loss
Calculate Proposal Evaluation Module Classification Loss. Args: pred_score (torch.Tensor): Predicted temporal_iou score by BMN. gt_iou_map (torch.Tensor): Groundtruth temporal_iou score. mask (torch.Tensor): Boundary-Matching mask. threshold (float): Threshold of temporal_iou for positive instances. Default: 0.9. ratio_range (tuple): Lower bound and upper bound for ratio. Default: (1.05, 21) eps (float): Epsilon for small value. Default: 1e-5 Returns: torch.Tensor: Proposal evaluation classification loss.
pem_cls_loss
python
open-mmlab/mmaction2
mmaction/models/losses/bmn_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/bmn_loss.py
Apache-2.0
def forward(self, pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, bm_mask, weight_tem=1.0, weight_pem_reg=10.0, weight_pem_cls=1.0): """Calculate Boundary Matching Network Loss. Args: pred_bm (torch.Tensor): Predicted confidence score for boundary matching map. pred_start (torch.Tensor): Predicted confidence score for start. pred_end (torch.Tensor): Predicted confidence score for end. gt_iou_map (torch.Tensor): Groundtruth score for boundary matching map. gt_start (torch.Tensor): Groundtruth temporal_iou score for start. gt_end (torch.Tensor): Groundtruth temporal_iou score for end. bm_mask (torch.Tensor): Boundary-Matching mask. weight_tem (float): Weight for tem loss. Default: 1.0. weight_pem_reg (float): Weight for pem regression loss. Default: 10.0. weight_pem_cls (float): Weight for pem classification loss. Default: 1.0. Returns: tuple([torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]): (loss, tem_loss, pem_reg_loss, pem_cls_loss). Loss is the bmn loss, tem_loss is the temporal evaluation loss, pem_reg_loss is the proposal evaluation regression loss, pem_cls_loss is the proposal evaluation classification loss. """ pred_bm_reg = pred_bm[:, 0].contiguous() pred_bm_cls = pred_bm[:, 1].contiguous() gt_iou_map = gt_iou_map * bm_mask pem_reg_loss = self.pem_reg_loss(pred_bm_reg, gt_iou_map, bm_mask) pem_cls_loss = self.pem_cls_loss(pred_bm_cls, gt_iou_map, bm_mask) tem_loss = self.tem_loss(pred_start, pred_end, gt_start, gt_end) loss = ( weight_tem * tem_loss + weight_pem_reg * pem_reg_loss + weight_pem_cls * pem_cls_loss) return loss, tem_loss, pem_reg_loss, pem_cls_loss
Calculate Boundary Matching Network Loss. Args: pred_bm (torch.Tensor): Predicted confidence score for boundary matching map. pred_start (torch.Tensor): Predicted confidence score for start. pred_end (torch.Tensor): Predicted confidence score for end. gt_iou_map (torch.Tensor): Groundtruth score for boundary matching map. gt_start (torch.Tensor): Groundtruth temporal_iou score for start. gt_end (torch.Tensor): Groundtruth temporal_iou score for end. bm_mask (torch.Tensor): Boundary-Matching mask. weight_tem (float): Weight for tem loss. Default: 1.0. weight_pem_reg (float): Weight for pem regression loss. Default: 10.0. weight_pem_cls (float): Weight for pem classification loss. Default: 1.0. Returns: tuple([torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]): (loss, tem_loss, pem_reg_loss, pem_cls_loss). Loss is the bmn loss, tem_loss is the temporal evaluation loss, pem_reg_loss is the proposal evaluation regression loss, pem_cls_loss is the proposal evaluation classification loss.
forward
python
open-mmlab/mmaction2
mmaction/models/losses/bmn_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/bmn_loss.py
Apache-2.0
def _forward(self, cls_score: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor: """Forward function. Args: cls_score (torch.Tensor): The class score. label (torch.Tensor): The ground truth label. kwargs: Any keyword argument to be used to calculate CrossEntropy loss. Returns: torch.Tensor: The returned CrossEntropy loss. """ if cls_score.size() == label.size(): # calculate loss for soft label assert cls_score.dim() == 2, 'Only support 2-dim soft label' assert len(kwargs) == 0, \ ('For now, no extra args are supported for soft label, ' f'but get {kwargs}') lsm = F.log_softmax(cls_score, 1) if self.class_weight is not None: self.class_weight = self.class_weight.to(cls_score.device) lsm = lsm * self.class_weight.unsqueeze(0) loss_cls = -(label * lsm).sum(1) # default reduction 'mean' if self.class_weight is not None: # Use weighted average as pytorch CrossEntropyLoss does. # For more information, please visit https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html # noqa loss_cls = loss_cls.sum() / torch.sum( self.class_weight.unsqueeze(0) * label) else: loss_cls = loss_cls.mean() else: # calculate loss for hard label if self.class_weight is not None: assert 'weight' not in kwargs, \ "The key 'weight' already exists." kwargs['weight'] = self.class_weight.to(cls_score.device) loss_cls = F.cross_entropy(cls_score, label, **kwargs) return loss_cls
Forward function. Args: cls_score (torch.Tensor): The class score. label (torch.Tensor): The ground truth label. kwargs: Any keyword argument to be used to calculate CrossEntropy loss. Returns: torch.Tensor: The returned CrossEntropy loss.
_forward
python
open-mmlab/mmaction2
mmaction/models/losses/cross_entropy_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/cross_entropy_loss.py
Apache-2.0
def _forward(self, cls_score: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor: """Forward function. Args: cls_score (torch.Tensor): The class score. label (torch.Tensor): The ground truth label. kwargs: Any keyword argument to be used to calculate bce loss with logits. Returns: torch.Tensor: The returned bce loss with logits. """ if self.class_weight is not None: assert 'weight' not in kwargs, "The key 'weight' already exists." kwargs['weight'] = self.class_weight.to(cls_score.device) loss_cls = F.binary_cross_entropy_with_logits(cls_score, label, **kwargs) return loss_cls
Forward function. Args: cls_score (torch.Tensor): The class score. label (torch.Tensor): The ground truth label. kwargs: Any keyword argument to be used to calculate bce loss with logits. Returns: torch.Tensor: The returned bce loss with logits.
_forward
python
open-mmlab/mmaction2
mmaction/models/losses/cross_entropy_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/cross_entropy_loss.py
Apache-2.0
def _forward(self, cls_score: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor: """Forward function. Args: cls_score (torch.Tensor): The class score. label (torch.Tensor): The ground truth label. kwargs: Any keyword argument to be used to calculate bce loss with logits. Returns: torch.Tensor: The returned bce loss with logits. """ weights = torch.tensor(self.weights).float().to(cls_score.device) label_one_hot = F.one_hot(label, self.num_classes).float() weights = weights.unsqueeze(0) weights = weights.repeat(label_one_hot.shape[0], 1) * label_one_hot weights = weights.sum(1) weights = weights.unsqueeze(1) weights = weights.repeat(1, self.num_classes) BCELoss = F.binary_cross_entropy_with_logits( input=cls_score, target=label_one_hot, reduction='none') modulator = 1.0 if self.gamma: modulator = torch.exp(-self.gamma * label_one_hot * cls_score - self.gamma * torch.log(1 + torch.exp(-1.0 * cls_score))) loss = modulator * BCELoss weighted_loss = weights * loss focal_loss = torch.sum(weighted_loss) focal_loss /= torch.sum(label_one_hot) return focal_loss
Forward function. Args: cls_score (torch.Tensor): The class score. label (torch.Tensor): The ground truth label. kwargs: Any keyword argument to be used to calculate bce loss with logits. Returns: torch.Tensor: The returned bce loss with logits.
_forward
python
open-mmlab/mmaction2
mmaction/models/losses/cross_entropy_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/cross_entropy_loss.py
Apache-2.0
def _forward(self, cls_score, label, mask, category_mask): """Forward function. Args: cls_score (torch.Tensor): The class score. label (torch.Tensor): The ground truth label. mask (torch.Tensor): The mask of tags. 0 indicates that the category of this tag is missing in the label of the video. category_mask (torch.Tensor): The category mask. For each sample, it's a tensor with length `len(self.categories)`, denotes that if the category is labeled for this video. Returns: torch.Tensor: The returned CrossEntropy loss. """ if self.loss_type == 'all': loss_cls = F.binary_cross_entropy_with_logits( cls_score, label, reduction='none') if self.with_mask: w_loss_cls = mask * loss_cls w_loss_cls = torch.sum(w_loss_cls, dim=1) if self.reduction == 'mean': w_loss_cls = w_loss_cls / torch.sum(mask, dim=1) w_loss_cls = torch.mean(w_loss_cls) return dict(loss_cls=w_loss_cls) if self.reduction == 'sum': loss_cls = torch.sum(loss_cls, dim=-1) return dict(loss_cls=torch.mean(loss_cls)) if self.loss_type == 'individual': losses = {} loss_weights = {} for name, num, start_idx in zip(self.categories, self.category_nums, self.category_startidx): category_score = cls_score[:, start_idx:start_idx + num] category_label = label[:, start_idx:start_idx + num] category_loss = F.binary_cross_entropy_with_logits( category_score, category_label, reduction='none') if self.reduction == 'mean': category_loss = torch.mean(category_loss, dim=1) elif self.reduction == 'sum': category_loss = torch.sum(category_loss, dim=1) idx = self.categories.index(name) if self.with_mask: category_mask_i = category_mask[:, idx].reshape(-1) # there should be at least one sample which contains tags # in this category if torch.sum(category_mask_i) < 0.5: losses[f'{name}_LOSS'] = torch.tensor( .0, device=get_device()) loss_weights[f'{name}_LOSS'] = .0 continue category_loss = torch.sum(category_loss * category_mask_i) category_loss = category_loss / torch.sum(category_mask_i) else: category_loss = torch.mean(category_loss) # We name the loss of each category as 'LOSS', since we only # want to monitor them, not backward them. We will also provide # the loss used for backward in the losses dictionary losses[f'{name}_LOSS'] = category_loss loss_weights[f'{name}_LOSS'] = self.category_loss_weights[idx] loss_weight_sum = sum(loss_weights.values()) loss_weights = { k: v / loss_weight_sum for k, v in loss_weights.items() } loss_cls = sum([losses[k] * loss_weights[k] for k in losses]) losses['loss_cls'] = loss_cls # We also trace the loss weights losses.update({ k + '_weight': torch.tensor(v).to(losses[k].device) for k, v in loss_weights.items() }) # Note that the loss weights are just for reference. return losses else: raise ValueError("loss_type should be 'all' or 'individual', " f'but got {self.loss_type}')
Forward function. Args: cls_score (torch.Tensor): The class score. label (torch.Tensor): The ground truth label. mask (torch.Tensor): The mask of tags. 0 indicates that the category of this tag is missing in the label of the video. category_mask (torch.Tensor): The category mask. For each sample, it's a tensor with length `len(self.categories)`, denotes that if the category is labeled for this video. Returns: torch.Tensor: The returned CrossEntropy loss.
_forward
python
open-mmlab/mmaction2
mmaction/models/losses/hvu_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/hvu_loss.py
Apache-2.0
def forward(ctx, pred, labels, is_positive, ohem_ratio, group_size): """Calculate OHEM hinge loss. Args: pred (torch.Tensor): Predicted completeness score. labels (torch.Tensor): Groundtruth class label. is_positive (int): Set to 1 when proposals are positive and set to -1 when proposals are incomplete. ohem_ratio (float): Ratio of hard examples. group_size (int): Number of proposals sampled per video. Returns: torch.Tensor: Returned class-wise hinge loss. """ num_samples = pred.size(0) if num_samples != len(labels): raise ValueError(f'Number of samples should be equal to that ' f'of labels, but got {num_samples} samples and ' f'{len(labels)} labels.') losses = torch.zeros(num_samples, device=pred.device) slopes = torch.zeros(num_samples, device=pred.device) for i in range(num_samples): losses[i] = max(0, 1 - is_positive * pred[i, labels[i] - 1]) slopes[i] = -is_positive if losses[i] != 0 else 0 losses = losses.view(-1, group_size).contiguous() sorted_losses, indices = torch.sort(losses, dim=1, descending=True) keep_length = int(group_size * ohem_ratio) loss = torch.zeros(1, device=pred.device) for i in range(losses.size(0)): loss += sorted_losses[i, :keep_length].sum() ctx.loss_index = indices[:, :keep_length] ctx.labels = labels ctx.slopes = slopes ctx.shape = pred.size() ctx.group_size = group_size ctx.num_groups = losses.size(0) return loss
Calculate OHEM hinge loss. Args: pred (torch.Tensor): Predicted completeness score. labels (torch.Tensor): Groundtruth class label. is_positive (int): Set to 1 when proposals are positive and set to -1 when proposals are incomplete. ohem_ratio (float): Ratio of hard examples. group_size (int): Number of proposals sampled per video. Returns: torch.Tensor: Returned class-wise hinge loss.
forward
python
open-mmlab/mmaction2
mmaction/models/losses/ohem_hinge_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/ohem_hinge_loss.py
Apache-2.0
def backward(ctx, grad_output): """Defines a formula for differentiating the operation with backward mode automatic differentiation.""" labels = ctx.labels slopes = ctx.slopes grad_in = torch.zeros(ctx.shape, device=ctx.slopes.device) for group in range(ctx.num_groups): for idx in ctx.loss_index[group]: loc = idx + group * ctx.group_size grad_in[loc, labels[loc] - 1] = ( slopes[loc] * grad_output.data[0]) return torch.autograd.Variable(grad_in), None, None, None, None
Defines a formula for differentiating the operation with backward mode automatic differentiation.
backward
python
open-mmlab/mmaction2
mmaction/models/losses/ohem_hinge_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/ohem_hinge_loss.py
Apache-2.0
def forward(self, activity_score, completeness_score, bbox_pred, proposal_type, labels, bbox_targets, train_cfg): """Calculate Boundary Matching Network Loss. Args: activity_score (torch.Tensor): Predicted activity score. completeness_score (torch.Tensor): Predicted completeness score. bbox_pred (torch.Tensor): Predicted interval center and span of positive proposals. proposal_type (torch.Tensor): Type index slices of proposals. labels (torch.Tensor): Groundtruth class label. bbox_targets (torch.Tensor): Groundtruth center and span of positive proposals. train_cfg (dict): Config for training. Returns: dict([torch.Tensor, torch.Tensor, torch.Tensor]): (loss_activity, loss_completeness, loss_reg). Loss_activity is the activity loss, loss_completeness is the class-wise completeness loss, loss_reg is the class-wise regression loss. """ self.sampler = train_cfg.ssn.sampler self.loss_weight = train_cfg.ssn.loss_weight losses = dict() proposal_type = proposal_type.view(-1) labels = labels.view(-1) activity_indexer = ((proposal_type == 0) + (proposal_type == 2)).nonzero().squeeze(1) completeness_indexer = ((proposal_type == 0) + (proposal_type == 1)).nonzero().squeeze(1) total_ratio = ( self.sampler.positive_ratio + self.sampler.background_ratio + self.sampler.incomplete_ratio) positive_per_video = int(self.sampler.num_per_video * (self.sampler.positive_ratio / total_ratio)) background_per_video = int( self.sampler.num_per_video * (self.sampler.background_ratio / total_ratio)) incomplete_per_video = ( self.sampler.num_per_video - positive_per_video - background_per_video) losses['loss_activity'] = self.activity_loss(activity_score, labels, activity_indexer) losses['loss_completeness'] = self.completeness_loss( completeness_score, labels, completeness_indexer, positive_per_video, incomplete_per_video, ohem_ratio=positive_per_video / incomplete_per_video) losses['loss_completeness'] *= self.loss_weight.comp_loss_weight if bbox_pred is not None: regression_indexer = (proposal_type == 0).nonzero().squeeze(1) bbox_targets = bbox_targets.view(-1, 2) losses['loss_reg'] = self.classwise_regression_loss( bbox_pred, labels, bbox_targets, regression_indexer) losses['loss_reg'] *= self.loss_weight.reg_loss_weight return losses
Calculate Boundary Matching Network Loss. Args: activity_score (torch.Tensor): Predicted activity score. completeness_score (torch.Tensor): Predicted completeness score. bbox_pred (torch.Tensor): Predicted interval center and span of positive proposals. proposal_type (torch.Tensor): Type index slices of proposals. labels (torch.Tensor): Groundtruth class label. bbox_targets (torch.Tensor): Groundtruth center and span of positive proposals. train_cfg (dict): Config for training. Returns: dict([torch.Tensor, torch.Tensor, torch.Tensor]): (loss_activity, loss_completeness, loss_reg). Loss_activity is the activity loss, loss_completeness is the class-wise completeness loss, loss_reg is the class-wise regression loss.
forward
python
open-mmlab/mmaction2
mmaction/models/losses/ssn_loss.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/losses/ssn_loss.py
Apache-2.0
def forward(self, hidden_states: torch.Tensor): """forward function. Args: hidden_states (torch.Tensor): The input. Shape: [b,t,l,c] Returns: TODO """ b = hidden_states.shape[0] output = einops.rearrange(hidden_states, 'b t l c -> (b l) t c') output = self.layernorm_before(output) output = self.attention(output) output = einops.rearrange(output[0], '(b l) t c -> b t l c', b=b) return hidden_states + self.drop_path(output[0]) * self.scale
forward function. Args: hidden_states (torch.Tensor): The input. Shape: [b,t,l,c] Returns: TODO
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/beit3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/beit3d.py
Apache-2.0
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None ) -> torch.Tensor: """ Args: pixel_values (torch.Tensor): The input image patches. Shape: [B, T, C, H, W]. """ t = pixel_values.shape[1] pixel_values = einops.rearrange(pixel_values, 'b t c h w -> (b t) c h w') embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.size() # [(b t) l c] cls_tokens = self.cls_token.expand(batch_size, -1, -1) if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1 - w) + mask_tokens * w if self.prompt_tokens is not None: prompt_tokens = self.prompt_tokens.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings, prompt_tokens), dim=1) else: embeddings = torch.cat((cls_tokens, embeddings), dim=1) # [B*T, L, C] if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = einops.rearrange(embeddings, '(b t) l c -> b t l c', t=t) if self.temporal_position_embeddings is not None: if t <= self.temporal_position_embeddings.shape[1]: embeddings = embeddings + \ self.temporal_position_embeddings[:, :t] else: tpe = interpolate_temporal_pos_embed( self.temporal_position_embeddings, t) embeddings = embeddings + tpe embeddings = self.dropout(embeddings) return embeddings
Args: pixel_values (torch.Tensor): The input image patches. Shape: [B, T, C, H, W].
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/beit3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/beit3d.py
Apache-2.0
def load_tf_weights_in_bert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" logger = MMLogger.get_current_instance() try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info('Converting TensorFlow checkpoint from {}'.format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info('Loading TF weight {} with shape {}'.format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split('/') # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any(n in [ 'adam_v', 'adam_m', 'AdamWeightDecayOptimizer', 'AdamWeightDecayOptimizer_1', 'global_step', ] for n in name): logger.info('Skipping {}'.format('/'.join(name))) continue pointer = model for m_name in name: if re.fullmatch(r'[A-Za-z]+_\d+', m_name): scope_names = re.split(r'_(\d+)', m_name) else: scope_names = [m_name] if scope_names[0] == 'kernel' or scope_names[0] == 'gamma': pointer = getattr(pointer, 'weight') elif scope_names[0] == 'output_bias' or scope_names[0] == 'beta': pointer = getattr(pointer, 'bias') elif scope_names[0] == 'output_weights': pointer = getattr(pointer, 'weight') elif scope_names[0] == 'squad': pointer = getattr(pointer, 'classifier') else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info('Skipping {}'.format('/'.join(name))) continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == '_embeddings': pointer = getattr(pointer, 'weight') elif m_name == 'kernel': array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info('Initialize PyTorch weight {}'.format(name)) pointer.data = torch.from_numpy(array) return model
Load tf checkpoints in a pytorch model.
load_tf_weights_in_bert
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/modeling_bert.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py
Apache-2.0
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor: """Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (:obj:`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (:obj:`Tuple[int]`): The shape of the input to the model. device: (:obj:`torch.device`): The device of the input to the model. Returns: :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = ( seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]) # in case past_key_values are used we need to add a prefix ones mask to the causal mask # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) if causal_mask.shape[1] < attention_mask.shape[1]: prefix_seq_len = attention_mask.shape[ 1] - causal_mask.shape[1] causal_mask = torch.cat( [ torch.ones( (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype, ), causal_mask, ], axis=-1, ) extended_attention_mask = ( causal_mask[:, None, :, :] * attention_mask[:, None, None, :]) else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( 'Wrong shape for input_ids (shape {}) or attention_mask (shape {})' .format(input_shape, attention_mask.shape)) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (:obj:`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (:obj:`Tuple[int]`): The shape of the input to the model. device: (:obj:`torch.device`): The device of the input to the model. Returns: :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
get_extended_attention_mask
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/modeling_bert.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py
Apache-2.0
def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, is_decoder=False, mode='multi_modal', normalize_attention=True, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError( 'You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape device = inputs_embeds.device elif encoder_embeds is not None: input_shape = encoder_embeds.size()[:-1] batch_size, seq_length = input_shape device = encoder_embeds.device else: raise ValueError( 'You have to specify either input_ids or inputs_embeds or encoder_embeds' ) # past_key_values_length past_key_values_length = ( past_key_values[0][0].shape[2] if past_key_values is not None else 0) if attention_mask is None: attention_mask = torch.ones( ((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros( input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, device, is_decoder) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if type(encoder_hidden_states) == list: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[ 0].size() else: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size( ) encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if type(encoder_attention_mask) == list: encoder_extended_attention_mask = [ self.invert_attention_mask(mask) for mask in encoder_attention_mask ] elif encoder_attention_mask is None: encoder_attention_mask = torch.ones( encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask( encoder_attention_mask) else: encoder_extended_attention_mask = self.invert_attention_mask( encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if encoder_embeds is None: embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) else: embedding_output = encoder_embeds encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, mode=mode, normalize_attention=normalize_attention, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler( sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`).
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/modeling_bert.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py
Apache-2.0
def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: Example:: >>> from transformers import BertTokenizer, BertForPreTraining >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = BertForPreTraining.from_pretrained('bert-base-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls( sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct( seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss, ) + output) if total_loss is not None else output return BertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: Example:: >>> from transformers import BertTokenizer, BertForPreTraining >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = BertForPreTraining.from_pretrained('bert-base-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/modeling_bert.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py
Apache-2.0
def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, is_decoder=True, reduction='mean', mode='multi_modal', normalize_attention=True, soft_labels=None, alpha=0, return_logits=False, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Returns: Example:: >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') >>> config = BertConfig.from_pretrained("bert-base-cased") >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, is_decoder=is_decoder, mode=mode, normalize_attention=normalize_attention, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) if return_logits: return prediction_scores[:, :-1, :].contiguous() lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, : -1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss(reduction=reduction) lm_loss = loss_fct( shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1) if soft_labels is not None: loss_distill = -torch.sum( F.log_softmax(shifted_prediction_scores, dim=1) * soft_labels, dim=-1) loss_distill = (loss_distill * (labels != -100)).sum(1) lm_loss = (1 - alpha) * lm_loss + alpha * loss_distill if not return_dict: output = (prediction_scores, ) + outputs[2:] return ((lm_loss, ) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, )
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Returns: Example:: >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') >>> config = BertConfig.from_pretrained("bert-base-cased") >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/modeling_bert.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py
Apache-2.0
def tie_aux_decoder_weights(self, module, aux_modules): """Tie decoder weights of all `aux_modules` to `module`, (not bias)""" for m in aux_modules: m.predictions.decoder.weight = module.predictions.decoder.weight
Tie decoder weights of all `aux_modules` to `module`, (not bias)
tie_aux_decoder_weights
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/modeling_bert.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py
Apache-2.0
def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, is_decoder=False, mode='multi_modal', normalize_attention=True, soft_labels=None, alpha=0, return_logits=False, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_embeds=encoder_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, is_decoder=is_decoder, mode=mode, normalize_attention=normalize_attention, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) if return_logits: return prediction_scores masked_lm_loss = None masked_lm_loss_aux = 0.0 if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if soft_labels is not None: loss_distill = -torch.sum( F.log_softmax(prediction_scores, dim=1) * soft_labels, dim=-1) loss_distill = loss_distill[labels != -100].mean() masked_lm_loss = (1 - alpha) * masked_lm_loss + alpha * loss_distill if not return_dict: output = (prediction_scores, ) + outputs[2:] return ((masked_lm_loss, ) + output) if masked_lm_loss is not None else output # changed from MaskedLMOutput to MaskedLMOutputWithDistill return MaskedLMOutputWithDistill( loss=masked_lm_loss, loss_aux=masked_lm_loss_aux, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/modeling_bert.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py
Apache-2.0
def forward(self, x: torch.Tensor): """forward. Args: x (torch.Tensor): input features. Shape: [bs, nframes, l, c]. l = 1 + h*w Returns: features after adapter. The same shape as input. """ if x.shape[1] == 1: # for single frame, return itself. return x shortcut = x x = self.linear1(x) cls = x[:, :, :1, :] tokens = x[:, :, 1:, :] tokens = einops.rearrange( tokens, 'b t (h w) c -> b c t h w', h=self.h).contiguous() tokens = self.conv(tokens) tokens = einops.rearrange(tokens, 'b c t h w -> b t (h w) c') x = torch.cat([cls, tokens], dim=2) # [b, t, 1+h*w, c] x = self.act(x) x = self.linear2(x) return shortcut + self.scale * self.droppath(x)
forward. Args: x (torch.Tensor): input features. Shape: [bs, nframes, l, c]. l = 1 + h*w Returns: features after adapter. The same shape as input.
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/temporal_model.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py
Apache-2.0
def __init__(self, input_dim=768, droppath_rate=0.1): """ Kwargs: input_dim (int): The input feature dimension. """ super().__init__() self._input_dim = input_dim self.temporal_attn = MultiheadAttention( input_dim, num_heads=input_dim // 64) self.norm = LayerNorm(input_dim, eps=1e-12) self.linear = Linear(input_dim, input_dim) self.droppath = DropPath(droppath_rate) self.scale = nn.parameter.Parameter(torch.zeros([]))
Kwargs: input_dim (int): The input feature dimension.
__init__
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/temporal_model.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py
Apache-2.0
def forward(self, x: torch.Tensor): """forward. Args: x (torch.Tensor): input features. Shape: [bs, nframes, l, c]. l = 1 + h*w Returns: features after adapter. The same shape as input. """ if x.shape[1] == 1: # for single frame, return itself. return x shortcut = x x = einops.rearrange(x, 'b t l c -> t (b l) c') x = self.norm(x) x = self.temporal_attn(x, x, x)[0] x = einops.rearrange(x, 't (b l) c -> b t l c', b=shortcut.shape[0]) return shortcut + self.scale * self.droppath(x)
forward. Args: x (torch.Tensor): input features. Shape: [bs, nframes, l, c]. l = 1 + h*w Returns: features after adapter. The same shape as input.
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/temporal_model.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py
Apache-2.0
def __init__(self, input_dim=768, droppath_rate=0.1, window_size=(2, 2)): """ Kwargs: input_dim (int): The input feature dimension. """ super().__init__() self._input_dim = input_dim self.temporal_attn = MultiheadAttention( input_dim, num_heads=input_dim // 64) self.norm = LayerNorm(input_dim, eps=1e-12) self.droppath = DropPath(droppath_rate) self.scale = nn.parameter.Parameter(torch.zeros([])) self.wh, self.ww = window_size
Kwargs: input_dim (int): The input feature dimension.
__init__
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/temporal_model.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py
Apache-2.0
def forward(self, x: torch.Tensor): """forward. Args: x (torch.Tensor): input features. Shape: [bs, nframes, l, c]. l = 1 + h*w Returns: features after adapter. The same shape as input. """ if x.shape[1] == 1: # for single frame, return itself. return x shortcut = x h = w = int(math.sqrt(x.shape[2] - 1)) cls_token = x[:, :, :1, :] x = einops.rearrange( x[:, :, 1:, :], 'b t (nh wh nw ww) c -> (t wh ww) (b nh nw) c', nh=h // self.wh, wh=self.wh, nw=w // self.ww, ww=self.ww, ) x = self.norm(x) x = self.temporal_attn(x, x, x)[0] x = einops.rearrange( x, '(t wh ww) (b nh nw) c -> b t (nh wh nw ww) c', wh=self.wh, ww=self.ww, nh=h // self.wh, nw=w // self.ww, ) # add back cls token. x = torch.concat([cls_token, x], dim=2) return shortcut + self.scale * self.droppath(x)
forward. Args: x (torch.Tensor): input features. Shape: [bs, nframes, l, c]. l = 1 + h*w Returns: features after adapter. The same shape as input.
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/temporal_model.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py
Apache-2.0
def __init__(self, input_dim=768, droppath_rate=0.1, num_prompts=1): """ Kwargs: input_dim (int): The input feature dimension. """ super().__init__() d_model = input_dim self.message_fc = nn.Linear(d_model, d_model) self.message_ln = LayerNorm(d_model, eps=1e-12) self.message_attn = nn.MultiheadAttention(d_model, d_model // 64) self.num_prompts = num_prompts self.droppath = DropPath(droppath_rate)
Kwargs: input_dim (int): The input feature dimension.
__init__
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/temporal_model.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py
Apache-2.0
def forward(self, x: torch.Tensor): """forward. Args: x (torch.Tensor): input features. Shape: [bs, nframes, l, c]. l = 1 + h*w Returns: features after adapter. The same shape as input. """ if x.shape[1] == 1: # for single frame, return itself. return x msg_token = self.message_ln(self.message_fc(x[:, :, 0, :])) # [b, t, c] msg_token = rearrange(msg_token, 'b t c -> t b c') msg_token = msg_token + self.droppath( self.message_attn(msg_token, msg_token, msg_token)[0]) msg_token = rearrange(msg_token, 't b c -> b t c') # replace the last prompt token with msg_token. x = torch.cat([x[:, :, :-1, :], msg_token.unsqueeze(2)], dim=2) # [b, t, l+1, c] return x
forward. Args: x (torch.Tensor): input features. Shape: [bs, nframes, l, c]. l = 1 + h*w Returns: features after adapter. The same shape as input.
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/temporal_model.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py
Apache-2.0
def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]: """Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
build_inputs_with_special_tokens
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/tokenizer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/tokenizer.py
Apache-2.0
def all_gather_concat(data: torch.Tensor) -> torch.Tensor: """Gather tensors with different first-dimension size and concat to one tenosr. Note: Only the first dimension should be different. Args: data (Tensor): Tensor to be gathered. Returns: torch.Tensor: The concatenated tenosr. """ if dist.get_world_size() == 1: return data data_size = torch.tensor(data.size(0), device=data.device) sizes_list = dist.all_gather(data_size) total_length = sum(sizes_list) max_length = max(sizes_list) size_diff = max_length.item() - data_size.item() if size_diff: padding = torch.zeros( size_diff, *data.size()[1:], device=data.device, dtype=data.dtype) data = torch.cat((data, padding)) gather_list = dist.all_gather(data) # gather all data according to the default DDP sampler. For instance, # 8 samples on 2 GPUs, GPU0: [0,2,4,6], GPU1: [1,3,5,7], will be gathered # as [0,1,2,3,4,5,6,7] all_data = [] for gather_batch in zip(*gather_list): all_data.extend(gather_batch) return torch.stack(all_data)[:total_length]
Gather tensors with different first-dimension size and concat to one tenosr. Note: Only the first dimension should be different. Args: data (Tensor): Tensor to be gathered. Returns: torch.Tensor: The concatenated tenosr.
all_gather_concat
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/utils.py
Apache-2.0
def interpolate_pos_embed_beit(state_dict, new_model): """interpolate the positional embeddings. The spatial pe is relative and temporal pe is absolute. additional temporal pe is padded with 0. Args: state_dict (dict): The state_dict. new_model (nn.Module): The created model. Returns: dict. The state_dict with updated positional embeddings. """ state_dict = interpolate_pos_relative_bias_beit( state_dict_old=state_dict, state_dict_new=new_model.state_dict(), patch_shape_new=new_model.vision_encoder.embeddings.patch_embeddings. patch_shape, ) # absolute temporal pos bias temporal_pe_key = 'vision_encoder.embeddings.temporal_position_embeddings' if temporal_pe_key in state_dict: logger = MMLogger.get_current_instance() logger.info( f'interpolate temporal positional embeddings: {temporal_pe_key}') state_dict[temporal_pe_key] = load_temp_embed_with_mismatch( temp_embed_old=state_dict[temporal_pe_key], temp_embed_new=new_model.state_dict()[temporal_pe_key], ) return state_dict
interpolate the positional embeddings. The spatial pe is relative and temporal pe is absolute. additional temporal pe is padded with 0. Args: state_dict (dict): The state_dict. new_model (nn.Module): The created model. Returns: dict. The state_dict with updated positional embeddings.
interpolate_pos_embed_beit
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/utils.py
Apache-2.0
def load_temp_embed_with_mismatch(temp_embed_old, temp_embed_new, add_zero=True): """Add/Remove extra temporal_embeddings as needed. https://arxiv.org/abs/2104.00650 shows adding zero paddings works. temp_embed_old: (1, num_frames_old, 1, d) temp_embed_new: (1, num_frames_new, 1, d) add_zero: bool, if True, add zero, else, interpolate trained embeddings. """ # TODO zero pad num_frms_new = temp_embed_new.shape[1] num_frms_old = temp_embed_old.shape[1] logger = MMLogger.get_current_instance() logger.info( f'Load temporal_embeddings, lengths: {num_frms_old}-->{num_frms_new}') if num_frms_new > num_frms_old: if add_zero: temp_embed_new[:, :num_frms_old] \ = temp_embed_old # untrained embeddings are zeros. else: temp_embed_new = interpolate_temporal_pos_embed( temp_embed_old, num_frms_new) elif num_frms_new < num_frms_old: temp_embed_new = temp_embed_old[:, :num_frms_new] else: # = temp_embed_new = temp_embed_old return temp_embed_new
Add/Remove extra temporal_embeddings as needed. https://arxiv.org/abs/2104.00650 shows adding zero paddings works. temp_embed_old: (1, num_frames_old, 1, d) temp_embed_new: (1, num_frames_new, 1, d) add_zero: bool, if True, add zero, else, interpolate trained embeddings.
load_temp_embed_with_mismatch
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/utils.py
Apache-2.0
def interpolate_pos_relative_bias_beit(state_dict_old, state_dict_new, patch_shape_new): """ Args: state_dict_old: loaded state dict state_dict_new: state dict for model with new image size patch_shape_new: new model patch_shape ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py # noqa: E501 """ all_keys = list(state_dict_old.keys()) for key in all_keys: if 'relative_position_index' in key: state_dict_old.pop(key) if 'relative_position_bias_table' in key: rel_pos_bias = state_dict_old[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = state_dict_new[key].size() dst_patch_shape = patch_shape_new if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * ( dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens)**0.5) dst_size = int((dst_num_pos - num_extra_tokens)**0.5) if src_size != dst_size: extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r**n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q**(i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to( rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) state_dict_old[key] = new_rel_pos_bias return state_dict_old
Args: state_dict_old: loaded state dict state_dict_new: state dict for model with new image size patch_shape_new: new model patch_shape ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py # noqa: E501
interpolate_pos_relative_bias_beit
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/utils.py
Apache-2.0
def loss(self, inputs: torch.Tensor, data_samples: SampleList, **kwargs) -> dict: """Calculate losses from a batch of inputs and data samples."""
Calculate losses from a batch of inputs and data samples.
loss
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu.py
Apache-2.0
def forward(self, inputs, data_samples, mode: str = 'loss'): """The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (torch.Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[``ActionDataSample], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor. """ if mode == 'tensor': return self.extract_feat(inputs, data_samples) elif mode == 'loss': return self.loss(inputs, data_samples) elif mode == 'predict': return self.predict(inputs, data_samples) else: raise RuntimeError(f'Invalid mode "{mode}".')
The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (torch.Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[``ActionDataSample], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor.
forward
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu.py
Apache-2.0
def encode_vision(self, image): """encode image / videos as features. Args: image (torch.Tensor): The input images. Returns: tuple. - vision_embeds (torch.Tensor): The features of all patches. Shape: [B,T,L,C]. - pooled_vision_embeds (torch.Tensor): The pooled features. Shape: [B,T,C]. """ output_dict = self.vision_encoder(image) vision_embeds = self.vision_layernorm(output_dict.last_hidden_state) pooled_vision_embeds = output_dict.pooler_output return vision_embeds, pooled_vision_embeds
encode image / videos as features. Args: image (torch.Tensor): The input images. Returns: tuple. - vision_embeds (torch.Tensor): The features of all patches. Shape: [B,T,L,C]. - pooled_vision_embeds (torch.Tensor): The pooled features. Shape: [B,T,C].
encode_vision
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu.py
Apache-2.0
def encode_text(self, text): """encode text. Args: text (dict): The output of huggingface's `PreTrainedTokenizer`. contains keys: - input_ids (torch.Tensor): Token ids to be fed to a model. Shape: [B,L]. - attention_mask (torch.Tensor): The mask indicate padded tokens. Shape: [B,L]. 0 is padded token. - other keys refer to "https://huggingface.co/docs/transformers/v4.21.2/en/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__". # noqa: E501 Returns: tuple. - text_embeds (torch.Tensor): The features of all tokens. Shape: [B,L,C]. - pooled_text_embeds (torch.Tensor): The pooled features. Shape: [B,C]. """ text_output = self.text_encoder( text.input_ids, attention_mask=text.attention_mask, return_dict=True, mode='text', ) text_embeds = text_output.last_hidden_state pooled_text_embeds = text_embeds[:, 0] return text_embeds, pooled_text_embeds
encode text. Args: text (dict): The output of huggingface's `PreTrainedTokenizer`. contains keys: - input_ids (torch.Tensor): Token ids to be fed to a model. Shape: [B,L]. - attention_mask (torch.Tensor): The mask indicate padded tokens. Shape: [B,L]. 0 is padded token. - other keys refer to "https://huggingface.co/docs/transformers/v4.21.2/en/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__". # noqa: E501 Returns: tuple. - text_embeds (torch.Tensor): The features of all tokens. Shape: [B,L,C]. - pooled_text_embeds (torch.Tensor): The pooled features. Shape: [B,C].
encode_text
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu.py
Apache-2.0
def loss( self, inputs: torch.Tensor, data_samples: Optional[List[ActionDataSample]] = None, ) -> Dict[str, torch.tensor]: """Calculate losses from a batch of inputs and data samples. Args: inputs (dict): A batch of inputs. The input tensor with of at least one modality. For image, the value is a tensor of shape (N, C, ...) in general. For text, the value is a dict of tokenized text inputs. data_samples (Optional[List[DataSample]]): The annotation data of every samples. Defaults to None. Returns: Dict[str, torch.tensor]: a dictionary of loss components of """ output = self.extract_feat(inputs, data_samples) text_embeds = output['text_embeds'] text_attn_mask = output['text_attn_mask'] image_embeds = output['image_embeds'] image_feat = output['image_feat'] text_feat = output['text_feat'] image_atts = torch.ones( image_embeds.size()[:-1], dtype=torch.long).to(self.device) # ITC Loss # B*world_size, D image_feat_all = torch.cat(dist.all_gather(image_feat)) # B*world_size, D text_feat_all = torch.cat(dist.all_gather(text_feat)) # image to text similarity # B, B*world_size sim_i2t = torch.einsum('mld,nd->mln', image_feat, text_feat_all).mean(1) / self.temp # text-image similarity # B, B*world_size sim_t2i = torch.einsum('md,nld->mln', text_feat, image_feat_all).mean(1) / self.temp rank = dist.get_rank() bs = inputs.size(0) itc_targets = torch.linspace( rank * bs, rank * bs + bs - 1, bs, dtype=int).to(self.device) itc_loss = (F.cross_entropy(sim_i2t, itc_targets) + F.cross_entropy(sim_t2i, itc_targets)) / 2 # prepare for itm output_pos = self.text_encoder( encoder_embeds=text_embeds, attention_mask=text_attn_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, mode='fusion', ) idx = torch.tensor([i.gt_video_id for i in data_samples]).view(-1, 1) bs = idx.size(0) if self.negative_all_rank: idxs = torch.cat(dist.all_gather(idx)) image_feat_world = torch.cat(dist.all_gather(image_feat)) text_feat_world = torch.cat(dist.all_gather(text_feat)) att_mask_world = torch.cat(dist.all_gather(text_attn_mask)) text_embeds_world = torch.cat(all_gather_with_grad(text_embeds)) image_embeds_world = torch.cat(all_gather_with_grad(image_embeds)) else: idxs = idx image_feat_world = image_feat.detach() text_feat_world = text_feat.detach() image_embeds_world = image_embeds text_embeds_world = text_embeds att_mask_world = text_attn_mask with torch.no_grad(): # compute sample similarity sim_i2t = torch.einsum('mld,nd->mln', image_feat, text_feat_world).mean(1) / self.temp sim_t2i = torch.einsum('md,nld->mln', text_feat, image_feat_world).mean(1) / self.temp mask = torch.eq(idx, idxs.t()).to(self.device) weights_i2t = F.softmax(sim_i2t + 1e-4, dim=1) weights_i2t.masked_fill_(mask, 0) weights_t2i = F.softmax(sim_t2i + 1e-4, dim=1) weights_t2i.masked_fill_(mask, 0) # select a negative image for each text neg_idx = torch.multinomial(weights_t2i, 1).squeeze() image_embeds_neg = image_embeds_world[neg_idx] # select a negative text for each image neg_idx = torch.multinomial(weights_i2t, 1).squeeze() text_embeds_neg = text_embeds_world[neg_idx] text_atts_neg = att_mask_world[neg_idx] text_embeds_all = torch.cat([text_embeds, text_embeds_neg], dim=0) text_atts_all = torch.cat([text_attn_mask, text_atts_neg], dim=0) image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0) image_atts_all = torch.cat([image_atts, image_atts], dim=0) output_neg = self.text_encoder( encoder_embeds=text_embeds_all, attention_mask=text_atts_all, encoder_hidden_states=image_embeds_all, encoder_attention_mask=image_atts_all, return_dict=True, mode='fusion', ) vl_embeddings = torch.cat( [ output_pos.last_hidden_state[:, 0, :], output_neg.last_hidden_state[:, 0, :], ], dim=0, ) itm_targets = torch.ones((3 * bs, ), dtype=torch.long, device=inputs.device) itm_targets[bs:] = 0 itm_logit = self.itm_head(vl_embeddings) itm_loss = F.cross_entropy(itm_logit, itm_targets) return dict(itc_loss=itc_loss, itm_loss=itm_loss)
Calculate losses from a batch of inputs and data samples. Args: inputs (dict): A batch of inputs. The input tensor with of at least one modality. For image, the value is a tensor of shape (N, C, ...) in general. For text, the value is a dict of tokenized text inputs. data_samples (Optional[List[DataSample]]): The annotation data of every samples. Defaults to None. Returns: Dict[str, torch.tensor]: a dictionary of loss components of
loss
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu_ret.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret.py
Apache-2.0
def extract_feat( self, images: torch.Tensor = None, data_samples: List[ActionDataSample] = None, return_texts=True, ) -> Dict[str, torch.Tensor]: """Extract features from the input dict. Args: images (tensor, optional): The images to extract features. Defaults to None. data_samples (list, optional): The data samples containing texts to extract features. Defaults to None. return_texts (bool): Whether to return the tokenized text and the corresponding attention masks. Defaults to True. Returns: Tuple[torch.Tensor]: The output features. If multimodal_backbone is not exist, tuple of torch.Tensor will be returned. """ if data_samples is not None: texts = self.preprocess_text(data_samples) else: texts = None assert images is not None or texts is not None, \ 'At least single modality should be passed as inputs.' results = {} if texts is not None and return_texts: results.update({ 'text_ids': texts.input_ids, 'text_attn_mask': texts.attention_mask, }) # extract image features if images is not None: image_embeds, pooled_image_embeds = self.encode_vision(images) # concat temporal embeds image_embeds = rearrange(image_embeds, 'b t l c -> b (t l) c').contiguous() results['image_embeds'] = image_embeds results['image_feat'] = F.normalize( self.vision_proj(pooled_image_embeds), dim=-1) # extract text features if texts is not None: texts_output = self.text_encoder( texts.input_ids, attention_mask=texts.attention_mask, return_dict=True, mode='text') text_embeds = texts_output.last_hidden_state pooled_text_feat = text_embeds[:, 0] results['text_embeds'] = text_embeds results['text_feat'] = F.normalize( self.text_proj(pooled_text_feat), dim=-1) return results
Extract features from the input dict. Args: images (tensor, optional): The images to extract features. Defaults to None. data_samples (list, optional): The data samples containing texts to extract features. Defaults to None. return_texts (bool): Whether to return the tokenized text and the corresponding attention masks. Defaults to True. Returns: Tuple[torch.Tensor]: The output features. If multimodal_backbone is not exist, tuple of torch.Tensor will be returned.
extract_feat
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu_ret.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret.py
Apache-2.0
def compute_score_matrix_i2t(self, img_feats, img_embeds, text_feats, text_embeds, text_atts): """Compare the score matrix for image-to-text retrieval. Every image should compare to all the text features. Args: img_feats (torch.Tensor): The input img feats tensor with shape (M, C). M stands for numbers of samples on a single GPU. img_embeds (torch.Tensor): The input img embeds tensor with shape (M, C). M stands for numbers of samples on a single GPU. text_feats (torch.Tensor): The input text feats tensor with shape (N, C). N stands for numbers of all samples on all GPUs. text_embeds (torch.Tensor): The input tensor with shape (N, C). text_atts (torch.Tensor): The input tensor with shape (N, C). Returns: torch.Tensor: Score matrix of image-to-text retrieval. """ # compute i2t sim matrix sim_matrix_i2t = torch.einsum('mld,nd->mln', img_feats, text_feats).mean(1) if self.fast_match: return sim_matrix_i2t score_matrix_i2t = torch.full((img_feats.size(0), text_feats.size(0)), -100.0).to(self.device) for i in track_on_main_process( range(img_feats.size(0)), 'Compute I2T scores...'): sims = sim_matrix_i2t[i] topk_sim, topk_idx = sims.topk(k=self.topk, dim=0) topk_bz = 32 encoder_output = img_embeds[i].repeat(topk_bz, 1, 1) encoder_att = torch.ones( encoder_output.size()[:-1], dtype=torch.long).to(self.device) for j in range(0, self.topk // topk_bz): batch_topk = topk_idx[j * topk_bz:(j + 1) * topk_bz] output = self.text_encoder( encoder_embeds=text_embeds[batch_topk], attention_mask=text_atts[batch_topk], encoder_hidden_states=encoder_output, encoder_attention_mask=encoder_att, return_dict=True, mode='fusion') score = self.itm_head(output.last_hidden_state[:, 0, :])[:, 1] score_matrix_i2t[i, batch_topk] = score return score_matrix_i2t
Compare the score matrix for image-to-text retrieval. Every image should compare to all the text features. Args: img_feats (torch.Tensor): The input img feats tensor with shape (M, C). M stands for numbers of samples on a single GPU. img_embeds (torch.Tensor): The input img embeds tensor with shape (M, C). M stands for numbers of samples on a single GPU. text_feats (torch.Tensor): The input text feats tensor with shape (N, C). N stands for numbers of all samples on all GPUs. text_embeds (torch.Tensor): The input tensor with shape (N, C). text_atts (torch.Tensor): The input tensor with shape (N, C). Returns: torch.Tensor: Score matrix of image-to-text retrieval.
compute_score_matrix_i2t
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu_ret.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret.py
Apache-2.0
def compute_score_matrix_t2i(self, img_feats, img_embeds, text_feats, text_embeds, text_atts): """Compare the score matrix for text-to-image retrieval. Every text should compare to all the image features. Args: img_feats (torch.Tensor): The input img feats tensor with shape (M, C). M stands for numbers of samples on a single GPU. img_embeds (torch.Tensor): The input img embeds tensor with shape (M, C). M stands for numbers of samples on a single GPU. text_feats (torch.Tensor): The input text feats tensor with shape (N, C). N stands for numbers of all samples on all GPUs. text_embeds (torch.Tensor): The input tensor with shape (M, C). text_atts (torch.Tensor): The input tensor with shape (M, C). Returns: torch.Tensor: Score matrix of text-to-image retrieval. """ # compute t2i sim matrix sim_matrix_t2i = torch.einsum('md,nld->mln', text_feats, img_feats).mean(1) if self.fast_match: return sim_matrix_t2i score_matrix_t2i = torch.full((text_feats.size(0), img_feats.size(0)), -100.0).to(self.device) for i in track_on_main_process( range(text_feats.size(0)), 'Compute T2I scores...'): sims = sim_matrix_t2i[i] topk_sim, topk_idx = sims.topk(k=self.topk, dim=0) topk_bz = 32 for j in range(0, self.topk // topk_bz): batch_topk = topk_idx[j * topk_bz:(j + 1) * topk_bz] encoder_output = img_embeds[batch_topk] encoder_att = torch.ones( encoder_output.size()[:-1], dtype=torch.long).to(self.device) output = self.text_encoder( encoder_embeds=text_embeds[i].repeat(topk_bz, 1, 1), attention_mask=text_atts[i].repeat(topk_bz, 1), encoder_hidden_states=encoder_output, encoder_attention_mask=encoder_att, return_dict=True, mode='fusion') score = self.itm_head(output.last_hidden_state[:, 0, :])[:, 1] score_matrix_t2i[i, batch_topk] = score return score_matrix_t2i
Compare the score matrix for text-to-image retrieval. Every text should compare to all the image features. Args: img_feats (torch.Tensor): The input img feats tensor with shape (M, C). M stands for numbers of samples on a single GPU. img_embeds (torch.Tensor): The input img embeds tensor with shape (M, C). M stands for numbers of samples on a single GPU. text_feats (torch.Tensor): The input text feats tensor with shape (N, C). N stands for numbers of all samples on all GPUs. text_embeds (torch.Tensor): The input tensor with shape (M, C). text_atts (torch.Tensor): The input tensor with shape (M, C). Returns: torch.Tensor: Score matrix of text-to-image retrieval.
compute_score_matrix_t2i
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu_ret.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret.py
Apache-2.0
def _get_predictions(self, result: torch.Tensor, data_samples: List[ActionDataSample], mode: str = 'i2t'): """Post-process the output of retriever. Args: result (torch.Tensor): Score matrix of single retrieve, either from image or text. data_samples (List[ActionDataSample], optional): The annotation data of every samples. mode (str): Retrieve mode, either `i2t` for image to text, or `t2i` text to image. Defaults to `i2t`. Returns: List[ActionDataSample]: the raw data_samples with the predicted results. """ # create data sample if not exists if data_samples is None: data_samples = [ActionDataSample() for _ in range(result.size(0))] elif mode == 't2i': # Process data samples to align with the num of texts. new_data_samples = [] for sample in data_samples: if isinstance(sample.text, (list, tuple)): texts = sample.text else: texts = [sample.text] for i, text in enumerate(texts): new_sample = ActionDataSample(text=text) if 'gt_video_id' in sample: new_sample.gt_label = sample.gt_video_id[i] new_data_samples.append(new_sample) assert len(new_data_samples) == result.size(0) data_samples = new_data_samples elif mode == 'i2t': for sample in data_samples: if 'gt_text_id' in sample: sample.gt_label = sample.gt_text_id else: raise ValueError(f'Type {mode} is not supported.') for data_sample, score in zip(data_samples, result): idx = score.argmax(keepdim=True).detach() data_sample.set_pred_score(score) data_sample.set_pred_label(idx) return data_samples
Post-process the output of retriever. Args: result (torch.Tensor): Score matrix of single retrieve, either from image or text. data_samples (List[ActionDataSample], optional): The annotation data of every samples. mode (str): Retrieve mode, either `i2t` for image to text, or `t2i` text to image. Defaults to `i2t`. Returns: List[ActionDataSample]: the raw data_samples with the predicted results.
_get_predictions
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu_ret.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret.py
Apache-2.0
def predict(self, inputs, data_samples, **kwargs): """Predict captions from a batch of inputs. Args: images (torch.Tensor): The input images tensor with shape (N, C, ...) in general. data_samples (List[DataSample], optional): The annotation data of every samples. Defaults to None. **kwargs: Other keyword arguments accepted by the ``predict`` Returns: List[ActionDataSample]: Return list of data samples. """ num_options_per_q = len(data_samples[0].caption_options) for sample in data_samples: sample.text = sample.caption_options output = self.extract_feat(inputs, data_samples) text_embeds = output['text_embeds'] text_attn_mask = output['text_attn_mask'] image_embeds = output['image_embeds'] image_feat = output['image_feat'] text_feat = output['text_feat'] # compute similarity between vision feat and caption feat text_feat = rearrange( text_feat, '(b n) c -> b c n', n=num_options_per_q) sim = torch.matmul(image_feat.mean(1, keepdim=True), text_feat).squeeze(1) / self.temp sim = F.softmax(sim, dim=1).flatten() # cross-modal encode encoder_output = image_embeds.repeat_interleave( num_options_per_q, dim=0) image_atts = torch.ones( encoder_output.size()[:-1], dtype=torch.long).to(inputs.device) output = self.text_encoder( encoder_embeds=text_embeds, attention_mask=text_attn_mask, encoder_hidden_states=encoder_output, encoder_attention_mask=image_atts, return_dict=True, mode='fusion', ) itm_embeds = output.last_hidden_state[:, 0] # [CLS] itm_score = F.softmax(self.itm_head(itm_embeds), dim=1)[:, 1] # [bs*5] score = itm_score * self.score_weight + sim * self.similarity_weight pred_answers = score.view(-1, num_options_per_q).max(1)[1].cpu() # assemble predictions ensemble_scores = score.view(-1, num_options_per_q).cpu() # (bsz, 5) out_data_samples = [] for data_sample, ensemble_score, pred_ans in \ zip(data_samples, ensemble_scores, pred_answers): data_sample.pred_label = pred_ans.item() data_sample.score = ensemble_score.numpy() out_data_samples.append(data_sample) return out_data_samples
Predict captions from a batch of inputs. Args: images (torch.Tensor): The input images tensor with shape (N, C, ...) in general. data_samples (List[DataSample], optional): The annotation data of every samples. Defaults to None. **kwargs: Other keyword arguments accepted by the ``predict`` Returns: List[ActionDataSample]: Return list of data samples.
predict
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu_ret_mc.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret_mc.py
Apache-2.0
def loss(self, inputs, data_samples): """Calculate losses from a batch of inputs and data samples. Args: inputs (dict): A batch of inputs. The input tensor with of at least one modality. For image, the value is a tensor of shape (N, C, ...) in general. For text, the value is a dict of tokenized text inputs. data_samples (Optional[List[DataSample]]): The annotation data of every samples. Defaults to None. Returns: Dict[str, torch.tensor]: a dictionary of loss components of """ questions, question_output = self.forward_encoder(inputs, data_samples) weights = torch.cat( [torch.tensor(sample.gt_answer_weight) for sample in data_samples], dim=0).to(inputs.device) raw_answers = [] for sample in data_samples: raw_answers.extend(sample.gt_answer) answer_count = torch.tensor([ len(sample.gt_answer) for sample in data_samples ]).to(inputs.device) answers = [a + ' ' + '[SEP]' for a in raw_answers] answers = self.tokenizer( answers, padding='max_length', truncation=True, max_length=self.max_answer_len, return_tensors='pt').to(inputs.device) answer_targets = answers.input_ids.masked_fill( answers.input_ids == self.tokenizer.pad_token_id, -100) question_states = [] question_atts = [] for b, n in enumerate(answer_count): question_states += [question_output.last_hidden_state[b]] * n question_atts += [questions.attention_mask[b]] * n question_states = torch.stack(question_states, 0).to(inputs.device) question_atts = torch.stack(question_atts, 0).to(inputs.device) answer_output = self.text_decoder( answers.input_ids, attention_mask=answers.attention_mask, encoder_hidden_states=question_states, encoder_attention_mask=question_atts, labels=answer_targets, return_dict=True, reduction='none', ) loss = weights * answer_output.loss loss = loss.sum() / inputs.size(0) return dict(loss=loss)
Calculate losses from a batch of inputs and data samples. Args: inputs (dict): A batch of inputs. The input tensor with of at least one modality. For image, the value is a tensor of shape (N, C, ...) in general. For text, the value is a dict of tokenized text inputs. data_samples (Optional[List[DataSample]]): The annotation data of every samples. Defaults to None. Returns: Dict[str, torch.tensor]: a dictionary of loss components of
loss
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu_vqa.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_vqa.py
Apache-2.0
def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k): """ question_states: (bsz, Lq, d) answer_ids: answer input id after tokenization, (#answers, La) """ num_ques = question_states.size(0) start_ids = answer_ids[0, 0].repeat(num_ques, 1) # bos token start_output = self.text_decoder( start_ids, encoder_hidden_states=question_states, encoder_attention_mask=question_atts, return_dict=True, reduction='none', ) logits = start_output.logits[:, 0, :] # first token's logit # topk_probs: top-k probability # topk_ids: [num_question, k] answer_first_token = answer_ids[:, 1] prob_first_token = F.softmax( logits, dim=1).index_select( dim=1, index=answer_first_token) topk_probs, topk_ids = prob_first_token.topk(k, dim=1) # answer input: [num_question*k, answer_len] input_ids = [] input_atts = [] for b, topk_id in enumerate(topk_ids): input_ids.append(answer_ids.index_select(dim=0, index=topk_id)) input_atts.append(answer_atts.index_select(dim=0, index=topk_id)) input_ids = torch.cat(input_ids, dim=0) input_atts = torch.cat(input_atts, dim=0) targets_ids = input_ids.masked_fill( input_ids == self.tokenizer.pad_token_id, -100) question_states = question_states.repeat_interleave(k, dim=0) question_atts = question_atts.repeat_interleave(k, dim=0) output = self.text_decoder( input_ids, attention_mask=input_atts, encoder_hidden_states=question_states, encoder_attention_mask=question_atts, labels=targets_ids, return_dict=True, reduction='none', ) answer_loss = output.loss answer_loss = answer_loss.view(input_ids.size(0), -1) # topk_prob: first token probability topk_probs = topk_probs.view(-1, 1) log_probs = torch.cat([topk_probs.log(), -answer_loss], dim=1) # re-calculate log probabilities for the answer sequences # using chain rule log_probs_sum = log_probs.sum(1) log_probs_sum = log_probs_sum.view(num_ques, k) topk_probs = F.softmax(log_probs_sum, dim=-1) # get top-k after re-ranking topk_probs, rerank_id = topk_probs.topk(k, dim=1) topk_ids = torch.gather(topk_ids, 1, rerank_id) return topk_ids, topk_probs
question_states: (bsz, Lq, d) answer_ids: answer input id after tokenization, (#answers, La)
rank_answer
python
open-mmlab/mmaction2
mmaction/models/multimodal/vindlu/vindlu_vqa.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_vqa.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" if self.downsample_position == 'before': x = self.pool(x) x = self.conv(x) else: x = self.conv(x) x = self.pool(x) return x
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/necks/tpn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py
Apache-2.0
def forward(self, x: Tuple[torch.Tensor]) -> torch.Tensor: """Defines the computation performed at every call.""" out = [self.downsamples[i](feature) for i, feature in enumerate(x)] out = torch.cat(out, 1) out = self.fusion_conv(out) return out
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/necks/tpn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py
Apache-2.0
def forward(self, x: Tuple[torch.Tensor]) -> list: """Defines the computation performed at every call.""" out = [] for i, _ in enumerate(x): if isinstance(self.spatial_modulation[i], nn.ModuleList): out_ = x[i] for op in self.spatial_modulation[i]: out_ = op(out_) out.append(out_) else: out.append(self.spatial_modulation[i](x[i])) return out
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/necks/tpn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" x = self.conv(x) x = self.pool(x) return x
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/necks/tpn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py
Apache-2.0
def init_weights(self) -> None: """Default init_weights for conv(msra) and norm in ConvModule.""" for m in self.modules(): if isinstance(m, nn.Conv3d): xavier_init(m, distribution='uniform') if isinstance(m, nn.BatchNorm3d): constant_init(m, 1) if self.aux_head is not None: self.aux_head.init_weights()
Default init_weights for conv(msra) and norm in ConvModule.
init_weights
python
open-mmlab/mmaction2
mmaction/models/necks/tpn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py
Apache-2.0
def forward(self, x: Tuple[torch.Tensor], data_samples: Optional[SampleList] = None) -> tuple: """Defines the computation performed at every call.""" loss_aux = dict() # Calculate auxiliary loss if `self.aux_head` # and `data_samples` are not None. if self.aux_head is not None and data_samples is not None: loss_aux = self.aux_head.loss(x[-2], data_samples) # Spatial Modulation spatial_modulation_outs = self.spatial_modulation(x) # Temporal Modulation temporal_modulation_outs = [] for i, temporal_modulation in enumerate(self.temporal_modulation_ops): temporal_modulation_outs.append( temporal_modulation(spatial_modulation_outs[i])) outs = [out.clone() for out in temporal_modulation_outs] if len(self.upsample_ops) != 0: for i in range(self.num_tpn_stages - 1, 0, -1): outs[i - 1] = outs[i - 1] + self.upsample_ops[i - 1](outs[i]) # Get top-down outs top_down_outs = self.level_fusion_1(outs) # Build bottom-up flow using downsample operation if self.flow_type == 'parallel': outs = [out.clone() for out in temporal_modulation_outs] if len(self.downsample_ops) != 0: for i in range(self.num_tpn_stages - 1): outs[i + 1] = outs[i + 1] + self.downsample_ops[i](outs[i]) # Get bottom-up outs botton_up_outs = self.level_fusion_2(outs) # fuse two pyramid outs outs = self.pyramid_fusion( torch.cat([top_down_outs, botton_up_outs], 1)) return outs, loss_aux
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/necks/tpn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/necks/tpn.py
Apache-2.0
def loss(self, inputs: torch.Tensor, data_samples: SampleList, **kwargs) -> dict: """Calculate losses from a batch of inputs and data samples. Args: inputs (torch.Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. data_samples (List[``ActionDataSample``]): The batch data samples. It usually includes information such as ``gt_label``. Returns: dict: A dictionary of loss components. """ feats, loss_kwargs = \ self.extract_feat(inputs, data_samples=data_samples) # loss_aux will be a empty dict if `self.with_neck` is False. loss_aux = loss_kwargs.get('loss_aux', dict()) loss_cls = self.cls_head.loss(feats, data_samples, **loss_kwargs) losses = merge_dict(loss_cls, loss_aux) return losses
Calculate losses from a batch of inputs and data samples. Args: inputs (torch.Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. data_samples (List[``ActionDataSample``]): The batch data samples. It usually includes information such as ``gt_label``. Returns: dict: A dictionary of loss components.
loss
python
open-mmlab/mmaction2
mmaction/models/recognizers/base.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py
Apache-2.0
def predict(self, inputs: torch.Tensor, data_samples: SampleList, **kwargs) -> SampleList: """Predict results from a batch of inputs and data samples with post- processing. Args: inputs (torch.Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. data_samples (List[``ActionDataSample``]): The batch data samples. It usually includes information such as ``gt_label``. Returns: List[``ActionDataSample``]: Return the recognition results. The returns value is ``ActionDataSample``, which usually contains ``pred_scores``. And the ``pred_scores`` usually contains following keys. - item (torch.Tensor): Classification scores, has a shape (num_classes, ) """ feats, predict_kwargs = self.extract_feat(inputs, test_mode=True) predictions = self.cls_head.predict(feats, data_samples, **predict_kwargs) return predictions
Predict results from a batch of inputs and data samples with post- processing. Args: inputs (torch.Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. data_samples (List[``ActionDataSample``]): The batch data samples. It usually includes information such as ``gt_label``. Returns: List[``ActionDataSample``]: Return the recognition results. The returns value is ``ActionDataSample``, which usually contains ``pred_scores``. And the ``pred_scores`` usually contains following keys. - item (torch.Tensor): Classification scores, has a shape (num_classes, )
predict
python
open-mmlab/mmaction2
mmaction/models/recognizers/base.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py
Apache-2.0
def _forward(self, inputs: torch.Tensor, stage: str = 'backbone', **kwargs) -> ForwardResults: """Network forward process. Usually includes backbone, neck and head forward without any post-processing. Args: inputs (torch.Tensor): Raw Inputs of the recognizer. stage (str): Which stage to output the features. Returns: Union[tuple, torch.Tensor]: Features from ``backbone`` or ``neck`` or ``head`` forward. """ feats, _ = self.extract_feat(inputs, stage=stage) return feats
Network forward process. Usually includes backbone, neck and head forward without any post-processing. Args: inputs (torch.Tensor): Raw Inputs of the recognizer. stage (str): Which stage to output the features. Returns: Union[tuple, torch.Tensor]: Features from ``backbone`` or ``neck`` or ``head`` forward.
_forward
python
open-mmlab/mmaction2
mmaction/models/recognizers/base.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py
Apache-2.0
def forward(self, inputs: torch.Tensor, data_samples: OptSampleList = None, mode: str = 'tensor', **kwargs) -> ForwardResults: """The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (torch.Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[``ActionDataSample], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor. """ if mode == 'tensor': return self._forward(inputs, **kwargs) if mode == 'predict': return self.predict(inputs, data_samples, **kwargs) elif mode == 'loss': return self.loss(inputs, data_samples, **kwargs) else: raise RuntimeError(f'Invalid mode "{mode}". ' 'Only supports loss, predict and tensor mode')
The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (torch.Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[``ActionDataSample], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor.
forward
python
open-mmlab/mmaction2
mmaction/models/recognizers/base.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py
Apache-2.0
def extract_feat(self, inputs: torch.Tensor, stage: str = 'neck', data_samples: SampleList = None, test_mode: bool = False) -> tuple: """Extract features of different stages. Args: inputs (Tensor): The input data. stage (str): Which stage to output the feature. Defaults to ``neck``. data_samples (List[:obj:`ActionDataSample`]): Action data samples, which are only needed in training. Defaults to None. test_mode: (bool): Whether in test mode. Defaults to False. Returns: Tensor: The extracted features. dict: A dict recording the kwargs for downstream pipeline. These keys are usually included: ``num_segs``, ``fcn_test``, ``loss_aux``. """ # Record the kwargs required by `loss` and `predict`. loss_predict_kwargs = dict() num_segs = inputs.shape[1] loss_predict_kwargs['num_segs'] = num_segs # [N, num_crops * num_segs, C, H, W] -> # [N * num_crops * num_segs, C, H, W] # `num_crops` is calculated by: # 1) `twice_sample` in `SampleFrames` # 2) `num_sample_positions` in `DenseSampleFrames` # 3) `ThreeCrop/TenCrop` in `test_pipeline` # 4) `num_clips` in `SampleFrames` or its subclass if `clip_len != 1` inputs = inputs.view((-1, ) + inputs.shape[2:]) def forward_once(batch_imgs): # Extract features through backbone. if (hasattr(self.backbone, 'features') and self.backbone_from == 'torchvision'): x = self.backbone.features(batch_imgs) elif self.backbone_from == 'timm': x = self.backbone.forward_features(batch_imgs) elif self.backbone_from in ['mmcls', 'mmpretrain']: x = self.backbone(batch_imgs) if isinstance(x, tuple): assert len(x) == 1 x = x[0] else: x = self.backbone(batch_imgs) if self.backbone_from in ['torchvision', 'timm']: if not self.feature_shape: # Transformer-based feature shape: B x L x C. if len(x.shape) == 3: self.feature_shape = 'NLC' # Resnet-based feature shape: B x C x Hs x Ws. elif len(x.shape) == 4: self.feature_shape = 'NCHW' if self.feature_shape == 'NHWC': x = nn.AdaptiveAvgPool2d(1)(x.permute(0, 3, 1, 2)) # B x C x 1 x 1 elif self.feature_shape == 'NCHW': x = nn.AdaptiveAvgPool2d(1)(x) # B x C x 1 x 1 elif self.feature_shape == 'NLC': x = nn.AdaptiveAvgPool1d(1)(x.transpose(1, 2)) # B x C x 1 x = x.reshape((x.shape[0], -1)) # B x C x = x.reshape(x.shape + (1, 1)) # B x C x 1 x 1 return x # Check settings of `fcn_test`. fcn_test = False if test_mode: if self.test_cfg is not None and self.test_cfg.get( 'fcn_test', False): fcn_test = True num_segs = self.test_cfg.get('num_segs', self.backbone.num_segments) loss_predict_kwargs['fcn_test'] = fcn_test # inference with batch size of `max_testing_views` if set if self.test_cfg is not None and self.test_cfg.get( 'max_testing_views', False): max_testing_views = self.test_cfg.get('max_testing_views') assert isinstance(max_testing_views, int) # backbone specify num_segments num_segments = self.backbone.get('num_segments') if num_segments is not None: assert max_testing_views % num_segments == 0, \ 'make sure that max_testing_views is a multiple of ' \ 'num_segments, but got {max_testing_views} and '\ '{num_segments}' total_views = inputs.shape[0] view_ptr = 0 feats = [] while view_ptr < total_views: batch_imgs = inputs[view_ptr:view_ptr + max_testing_views] feat = forward_once(batch_imgs) if self.with_neck: feat, _ = self.neck(feat) feats.append(feat) view_ptr += max_testing_views def recursively_cat(feats): # recursively traverse feats until it's a tensor, # then concat out_feats = [] for e_idx, elem in enumerate(feats[0]): batch_elem = [feat[e_idx] for feat in feats] if not isinstance(elem, torch.Tensor): batch_elem = recursively_cat(batch_elem) else: batch_elem = torch.cat(batch_elem) out_feats.append(batch_elem) return tuple(out_feats) if isinstance(feats[0], tuple): x = recursively_cat(feats) else: x = torch.cat(feats) else: x = forward_once(inputs) else: x = forward_once(inputs) # Return features extracted through backbone. if stage == 'backbone': return x, loss_predict_kwargs loss_aux = dict() if self.with_neck: # x is a tuple with multiple feature maps. x = [ each.reshape((-1, num_segs) + each.shape[1:]).transpose(1, 2).contiguous() for each in x ] x, loss_aux = self.neck(x, data_samples=data_samples) if not fcn_test: x = x.squeeze(2) loss_predict_kwargs['num_segs'] = 1 elif fcn_test: # full convolution (fcn) testing when no neck # [N * num_crops * num_segs, C', H', W'] -> # [N * num_crops, C', num_segs, H', W'] x = x.reshape((-1, num_segs) + x.shape[1:]).transpose(1, 2).contiguous() loss_predict_kwargs['loss_aux'] = loss_aux # Return features extracted through neck. if stage == 'neck': return x, loss_predict_kwargs # Return raw logits through head. if self.with_cls_head and stage == 'head': # [N * num_crops, num_classes] x = self.cls_head(x, **loss_predict_kwargs) return x, loss_predict_kwargs
Extract features of different stages. Args: inputs (Tensor): The input data. stage (str): Which stage to output the feature. Defaults to ``neck``. data_samples (List[:obj:`ActionDataSample`]): Action data samples, which are only needed in training. Defaults to None. test_mode: (bool): Whether in test mode. Defaults to False. Returns: Tensor: The extracted features. dict: A dict recording the kwargs for downstream pipeline. These keys are usually included: ``num_segs``, ``fcn_test``, ``loss_aux``.
extract_feat
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer2d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer2d.py
Apache-2.0
def extract_feat(self, inputs: Tensor, stage: str = 'neck', data_samples: OptSampleList = None, test_mode: bool = False) -> tuple: """Extract features of different stages. Args: inputs (torch.Tensor): The input data. stage (str): Which stage to output the feature. Defaults to ``'neck'``. data_samples (list[:obj:`ActionDataSample`], optional): Action data samples, which are only needed in training. Defaults to None. test_mode (bool): Whether in test mode. Defaults to False. Returns: torch.Tensor: The extracted features. dict: A dict recording the kwargs for downstream pipeline. These keys are usually included: ``loss_aux``. """ # Record the kwargs required by `loss` and `predict` loss_predict_kwargs = dict() num_segs = inputs.shape[1] # [N, num_crops, C, T, H, W] -> # [N * num_crops, C, T, H, W] # `num_crops` is calculated by: # 1) `twice_sample` in `SampleFrames` # 2) `num_sample_positions` in `DenseSampleFrames` # 3) `ThreeCrop/TenCrop` in `test_pipeline` # 4) `num_clips` in `SampleFrames` or its subclass if `clip_len != 1` inputs = inputs.view((-1, ) + inputs.shape[2:]) # Check settings of test if test_mode: if self.test_cfg is not None: loss_predict_kwargs['fcn_test'] = self.test_cfg.get( 'fcn_test', False) if self.test_cfg is not None and self.test_cfg.get( 'max_testing_views', False): max_testing_views = self.test_cfg.get('max_testing_views') assert isinstance(max_testing_views, int) total_views = inputs.shape[0] assert num_segs == total_views, ( 'max_testing_views is only compatible ' 'with batch_size == 1') view_ptr = 0 feats = [] while view_ptr < total_views: batch_imgs = inputs[view_ptr:view_ptr + max_testing_views] feat = self.backbone(batch_imgs) if self.with_neck: feat, _ = self.neck(feat) feats.append(feat) view_ptr += max_testing_views def recursively_cat(feats): # recursively traverse feats until it's a tensor, # then concat out_feats = [] for e_idx, elem in enumerate(feats[0]): batch_elem = [feat[e_idx] for feat in feats] if not isinstance(elem, torch.Tensor): batch_elem = recursively_cat(batch_elem) else: batch_elem = torch.cat(batch_elem) out_feats.append(batch_elem) return tuple(out_feats) if isinstance(feats[0], tuple): x = recursively_cat(feats) else: x = torch.cat(feats) else: x = self.backbone(inputs) if self.with_neck: x, _ = self.neck(x) return x, loss_predict_kwargs else: # Return features extracted through backbone x = self.backbone(inputs) if stage == 'backbone': return x, loss_predict_kwargs loss_aux = dict() if self.with_neck: x, loss_aux = self.neck(x, data_samples=data_samples) # Return features extracted through neck loss_predict_kwargs['loss_aux'] = loss_aux if stage == 'neck': return x, loss_predict_kwargs # Return raw logits through head. if self.with_cls_head and stage == 'head': x = self.cls_head(x, **loss_predict_kwargs) return x, loss_predict_kwargs
Extract features of different stages. Args: inputs (torch.Tensor): The input data. stage (str): Which stage to output the feature. Defaults to ``'neck'``. data_samples (list[:obj:`ActionDataSample`], optional): Action data samples, which are only needed in training. Defaults to None. test_mode (bool): Whether in test mode. Defaults to False. Returns: torch.Tensor: The extracted features. dict: A dict recording the kwargs for downstream pipeline. These keys are usually included: ``loss_aux``.
extract_feat
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer3d.py
Apache-2.0
def extract_feat(self, inputs: Dict[str, torch.Tensor], stage: str = 'backbone', data_samples: OptSampleList = None, test_mode: bool = False) -> Tuple: """Extract features. Args: inputs (dict[str, torch.Tensor]): The multi-modal input data. stage (str): Which stage to output the feature. Defaults to ``'backbone'``. data_samples (list[:obj:`ActionDataSample`], optional): Action data samples, which are only needed in training. Defaults to None. test_mode (bool): Whether in test mode. Defaults to False. Returns: tuple[torch.Tensor]: The extracted features. dict: A dict recording the kwargs for downstream pipeline. """ # [N, num_views, C, T, H, W] -> # [N * num_views, C, T, H, W] for m, m_data in inputs.items(): m_data = m_data.reshape((-1, ) + m_data.shape[2:]) inputs[m] = m_data # Record the kwargs required by `loss` and `predict` loss_predict_kwargs = dict() x = self.backbone(**inputs) if stage == 'backbone': return x, loss_predict_kwargs if self.with_cls_head and stage == 'head': x = self.cls_head(x, **loss_predict_kwargs) return x, loss_predict_kwargs
Extract features. Args: inputs (dict[str, torch.Tensor]): The multi-modal input data. stage (str): Which stage to output the feature. Defaults to ``'backbone'``. data_samples (list[:obj:`ActionDataSample`], optional): Action data samples, which are only needed in training. Defaults to None. test_mode (bool): Whether in test mode. Defaults to False. Returns: tuple[torch.Tensor]: The extracted features. dict: A dict recording the kwargs for downstream pipeline.
extract_feat
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer3d_mm.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer3d_mm.py
Apache-2.0
def extract_feat(self, batch_inputs: Tensor, stage: str = 'backbone', **kwargs) -> tuple: """Extract features of different stages. Args: batch_inputs (Tensor): The input data. stage (str): Which stage to output the feature. Defaults to ``backbone``. Returns: Tensor: The extracted features. dict: A dict recording the kwargs for downstream pipeline. This will be an empty dict in audio recognizer. """ # Record the kwargs required by `loss` and `predict` loss_predict_kwargs = dict() batch_inputs = batch_inputs.view((-1, ) + batch_inputs.shape[2:]) x = self.backbone(batch_inputs) if stage == 'backbone': return x, loss_predict_kwargs if self.with_cls_head and stage == 'head': x = self.cls_head(x, **loss_predict_kwargs) return x, loss_predict_kwargs
Extract features of different stages. Args: batch_inputs (Tensor): The input data. stage (str): Which stage to output the feature. Defaults to ``backbone``. Returns: Tensor: The extracted features. dict: A dict recording the kwargs for downstream pipeline. This will be an empty dict in audio recognizer.
extract_feat
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer_audio.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_audio.py
Apache-2.0
def extract_feat(self, inputs: torch.Tensor, stage: str = 'backbone', **kwargs) -> Tuple: """Extract features at the given stage. Args: inputs (torch.Tensor): The input skeleton with shape of `(B, num_clips, num_person, clip_len, num_joints, 3 or 2)`. stage (str): The stage to output the features. Defaults to ``'backbone'``. Returns: tuple: THe extracted features and a dict recording the kwargs for downstream pipeline, which is an empty dict for the GCN-based recognizer. """ # Record the kwargs required by `loss` and `predict` loss_predict_kwargs = dict() bs, nc = inputs.shape[:2] inputs = inputs.reshape((bs * nc, ) + inputs.shape[2:]) x = self.backbone(inputs) if stage == 'backbone': return x, loss_predict_kwargs if self.with_cls_head and stage == 'head': x = self.cls_head(x, **loss_predict_kwargs) return x, loss_predict_kwargs
Extract features at the given stage. Args: inputs (torch.Tensor): The input skeleton with shape of `(B, num_clips, num_person, clip_len, num_joints, 3 or 2)`. stage (str): The stage to output the features. Defaults to ``'backbone'``. Returns: tuple: THe extracted features and a dict recording the kwargs for downstream pipeline, which is an empty dict for the GCN-based recognizer.
extract_feat
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer_gcn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_gcn.py
Apache-2.0
def forward(self, *data_samples, mode: str, **kwargs) -> ForwardResults: """The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: data_samples: should be a sequence of ``SampleList`` if ``mode="predict"`` or ``mode="loss"``. Each ``SampleList`` is the annotation data of one data source. It should be a single torch tensor if ``mode="tensor"``. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor. """ if mode == 'loss' or mode == 'predict': if mode == 'loss': return self.loss(data_samples) return self.predict(data_samples) elif mode == 'tensor': assert isinstance(data_samples, torch.Tensor) data_ndim = data_samples.ndim if data_ndim not in [4, 5]: info = f'Input is a {data_ndim}D tensor. ' info += 'Only 4D (BCHW) or 5D (BCTHW) tensors are supported!' raise ValueError(info) return self._forward(data_samples, **kwargs)
The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: data_samples: should be a sequence of ``SampleList`` if ``mode="predict"`` or ``mode="loss"``. Each ``SampleList`` is the annotation data of one data source. It should be a single torch tensor if ``mode="tensor"``. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor.
forward
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer_omni.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py
Apache-2.0
def loss(self, data_samples: Sequence[SampleList]) -> dict: """Calculate losses from a batch of inputs and data samples. Args: data_samples (Sequence[SampleList]): a sequence of SampleList. Each SampleList contains data samples from the same data source. Returns: dict: A dictionary of loss components. """ loss_dict = {} for idx, data in enumerate(data_samples): inputs, data_samples = data['inputs'], data['data_samples'] feats = self.extract_feat(inputs) loss_cls = self.cls_head.loss(feats, data_samples) for key in loss_cls: loss_dict[key + f'_{idx}'] = loss_cls[key] return loss_dict
Calculate losses from a batch of inputs and data samples. Args: data_samples (Sequence[SampleList]): a sequence of SampleList. Each SampleList contains data samples from the same data source. Returns: dict: A dictionary of loss components.
loss
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer_omni.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py
Apache-2.0
def predict(self, data_samples: Sequence[SampleList]) -> SampleList: """Predict results from a batch of inputs and data samples with post- processing. Args: data_samples (Sequence[SampleList]): a sequence of SampleList. Each SampleList contains data samples from the same data source. Returns: List[``ActionDataSample``]: Return the recognition results. The returns value is ``ActionDataSample``, which usually contains ``pred_scores``. And the ``pred_scores`` usually contains following keys. - item (torch.Tensor): Classification scores, has a shape (num_classes, ) """ assert len(data_samples) == 1 feats = self.extract_feat(data_samples[0]['inputs'], test_mode=True) predictions = self.cls_head.predict(feats, data_samples[0]['data_samples']) return predictions
Predict results from a batch of inputs and data samples with post- processing. Args: data_samples (Sequence[SampleList]): a sequence of SampleList. Each SampleList contains data samples from the same data source. Returns: List[``ActionDataSample``]: Return the recognition results. The returns value is ``ActionDataSample``, which usually contains ``pred_scores``. And the ``pred_scores`` usually contains following keys. - item (torch.Tensor): Classification scores, has a shape (num_classes, )
predict
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer_omni.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py
Apache-2.0
def _forward(self, inputs: torch.Tensor, stage: str = 'backbone', **kwargs) -> ForwardResults: """Network forward process. Usually includes backbone, neck and head forward without any post-processing. Args: inputs (torch.Tensor): Raw Inputs of the recognizer. stage (str): Which stage to output the features. Returns: Union[tuple, torch.Tensor]: Features from ``backbone`` or ``head`` forward. """ feats, _ = self.extract_feat(inputs, stage=stage) return feats
Network forward process. Usually includes backbone, neck and head forward without any post-processing. Args: inputs (torch.Tensor): Raw Inputs of the recognizer. stage (str): Which stage to output the features. Returns: Union[tuple, torch.Tensor]: Features from ``backbone`` or ``head`` forward.
_forward
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer_omni.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py
Apache-2.0
def _run_forward(self, data: Union[dict, tuple, list], mode: str) -> Union[Dict[str, torch.Tensor], list]: """Unpacks data for :meth:`forward` Args: data (dict or tuple or list): Data sampled from dataset. mode (str): Mode of forward. Returns: dict or list: Results of training or testing mode. """ if isinstance(data, dict): data = [data] results = self(*data, mode=mode) elif isinstance(data, (list, tuple)): results = self(*data, mode=mode) else: raise TypeError return results
Unpacks data for :meth:`forward` Args: data (dict or tuple or list): Data sampled from dataset. mode (str): Mode of forward. Returns: dict or list: Results of training or testing mode.
_run_forward
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer_omni.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py
Apache-2.0
def extract_feat(self, inputs: torch.Tensor, stage: str = 'backbone', test_mode: bool = False) -> tuple: """Extract features of different stages. Args: inputs (torch.Tensor): The input data. stage (str): Which stage to output the feature. Defaults to ``'backbone'``. test_mode (bool): Whether in test mode. Defaults to False. Returns: torch.Tensor: The extracted features. dict: A dict recording the kwargs for downstream pipeline. These keys are usually included: ``loss_aux``. """ if len(inputs.shape) == 6: inputs = inputs.view((-1, ) + inputs.shape[2:]) # Check settings of test if test_mode: x = self.backbone(inputs) return x else: # Return features extracted through backbone x = self.backbone(inputs) if stage == 'backbone': return x x = self.cls_head(x) return x
Extract features of different stages. Args: inputs (torch.Tensor): The input data. stage (str): Which stage to output the feature. Defaults to ``'backbone'``. test_mode (bool): Whether in test mode. Defaults to False. Returns: torch.Tensor: The extracted features. dict: A dict recording the kwargs for downstream pipeline. These keys are usually included: ``loss_aux``.
extract_feat
python
open-mmlab/mmaction2
mmaction/models/recognizers/recognizer_omni.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py
Apache-2.0
def loss(self, x: Union[Tensor, Tuple[Tensor]], rpn_results_list: InstanceList, data_samples: SampleList, **kwargs) -> dict: """Perform forward propagation and loss calculation of the detection roi on the features of the upstream network. Args: x (Tensor or Tuple[Tensor]): The image features extracted by the upstream network. rpn_results_list (List[:obj:`InstanceData`]): List of region proposals. data_samples (List[:obj:`ActionDataSample`]): The batch data samples. Returns: Dict[str, Tensor]: A dictionary of loss components. """ assert len(rpn_results_list) == len(data_samples) batch_gt_instances = [] for data_sample in data_samples: batch_gt_instances.append(data_sample.gt_instances) # assign gts and sample proposals num_imgs = len(data_samples) sampling_results = [] for i in range(num_imgs): # rename rpn_results.bboxes to rpn_results.priors rpn_results = rpn_results_list[i] rpn_results.priors = rpn_results.pop('bboxes') assign_result = self.bbox_assigner.assign(rpn_results, batch_gt_instances[i], None) sampling_result = self.bbox_sampler.sample(assign_result, rpn_results, batch_gt_instances[i]) sampling_results.append(sampling_result) # LFB needs meta_info: 'img_key' batch_img_metas = [ data_samples.metainfo for data_samples in data_samples ] losses = dict() # bbox head forward and loss bbox_results = self.bbox_loss(x, sampling_results, batch_img_metas) losses.update(bbox_results['loss_bbox']) return losses
Perform forward propagation and loss calculation of the detection roi on the features of the upstream network. Args: x (Tensor or Tuple[Tensor]): The image features extracted by the upstream network. rpn_results_list (List[:obj:`InstanceData`]): List of region proposals. data_samples (List[:obj:`ActionDataSample`]): The batch data samples. Returns: Dict[str, Tensor]: A dictionary of loss components.
loss
python
open-mmlab/mmaction2
mmaction/models/roi_heads/roi_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_head.py
Apache-2.0
def _bbox_forward(self, x: Union[Tensor, Tuple[Tensor]], rois: Tensor, batch_img_metas: List[dict], **kwargs) -> dict: """Box head forward function used in both training and testing. Args: x (Tensor or Tuple[Tensor]): The image features extracted by the upstream network. rois (Tensor): RoIs with the shape (n, 5) where the first column indicates batch id of each RoI. batch_img_metas (List[dict]): List of image information. Returns: dict[str, Tensor]: Usually returns a dictionary with keys: - `cls_score` (Tensor): Classification scores. - `bbox_pred` (Tensor): Box energies / deltas. - `bbox_feats` (Tensor): Extract bbox RoI features. """ bbox_feats, global_feat = self.bbox_roi_extractor(x, rois) if self.with_shared_head: bbox_feats = self.shared_head( bbox_feats, feat=global_feat, rois=rois, img_metas=batch_img_metas) cls_score = self.bbox_head(bbox_feats) bbox_results = dict(cls_score=cls_score, bbox_feats=bbox_feats) return bbox_results
Box head forward function used in both training and testing. Args: x (Tensor or Tuple[Tensor]): The image features extracted by the upstream network. rois (Tensor): RoIs with the shape (n, 5) where the first column indicates batch id of each RoI. batch_img_metas (List[dict]): List of image information. Returns: dict[str, Tensor]: Usually returns a dictionary with keys: - `cls_score` (Tensor): Classification scores. - `bbox_pred` (Tensor): Box energies / deltas. - `bbox_feats` (Tensor): Extract bbox RoI features.
_bbox_forward
python
open-mmlab/mmaction2
mmaction/models/roi_heads/roi_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_head.py
Apache-2.0
def bbox_loss(self, x: Union[Tensor, Tuple[Tensor]], sampling_results: List[SamplingResult], batch_img_metas: List[dict], **kwargs) -> dict: """Perform forward propagation and loss calculation of the bbox head on the features of the upstream network. Args: x (Tensor or Tuple[Tensor]): The image features extracted by the upstream network. sampling_results (List[SamplingResult]): Sampling results. batch_img_metas (List[dict]): List of image information. Returns: dict[str, Tensor]: Usually returns a dictionary with keys: - `cls_score` (Tensor): Classification scores. - `bbox_pred` (Tensor): Box energies / deltas. - `bbox_feats` (Tensor): Extract bbox RoI features. - `loss_bbox` (dict): A dictionary of bbox loss components. """ rois = bbox2roi([res.priors for res in sampling_results]) bbox_results = self._bbox_forward(x, rois, batch_img_metas) bbox_loss_and_target = self.bbox_head.loss_and_target( cls_score=bbox_results['cls_score'], rois=rois, sampling_results=sampling_results, rcnn_train_cfg=self.train_cfg) bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox']) return bbox_results
Perform forward propagation and loss calculation of the bbox head on the features of the upstream network. Args: x (Tensor or Tuple[Tensor]): The image features extracted by the upstream network. sampling_results (List[SamplingResult]): Sampling results. batch_img_metas (List[dict]): List of image information. Returns: dict[str, Tensor]: Usually returns a dictionary with keys: - `cls_score` (Tensor): Classification scores. - `bbox_pred` (Tensor): Box energies / deltas. - `bbox_feats` (Tensor): Extract bbox RoI features. - `loss_bbox` (dict): A dictionary of bbox loss components.
bbox_loss
python
open-mmlab/mmaction2
mmaction/models/roi_heads/roi_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_head.py
Apache-2.0
def predict(self, x: Union[Tensor, Tuple[Tensor]], rpn_results_list: InstanceList, data_samples: SampleList, **kwargs) -> InstanceList: """Perform forward propagation of the roi head and predict detection results on the features of the upstream network. Args: x (Tensor or Tuple[Tensor]): The image features extracted by the upstream network. rpn_results_list (List[:obj:`InstanceData`]): list of region proposals. data_samples (List[:obj:`ActionDataSample`]): The batch data samples. Returns: List[obj:`InstanceData`]: Detection results of each image. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). """ assert self.with_bbox, 'Bbox head must be implemented.' batch_img_metas = [ data_samples.metainfo for data_samples in data_samples ] if isinstance(x, tuple): x_shape = x[0].shape else: x_shape = x.shape assert x_shape[0] == 1, 'only accept 1 sample at test mode' assert x_shape[0] == len(batch_img_metas) == len(rpn_results_list) results_list = self.predict_bbox( x, batch_img_metas, rpn_results_list, rcnn_test_cfg=self.test_cfg) return results_list
Perform forward propagation of the roi head and predict detection results on the features of the upstream network. Args: x (Tensor or Tuple[Tensor]): The image features extracted by the upstream network. rpn_results_list (List[:obj:`InstanceData`]): list of region proposals. data_samples (List[:obj:`ActionDataSample`]): The batch data samples. Returns: List[obj:`InstanceData`]: Detection results of each image. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
predict
python
open-mmlab/mmaction2
mmaction/models/roi_heads/roi_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_head.py
Apache-2.0
def predict_bbox(self, x: Tuple[Tensor], batch_img_metas: List[dict], rpn_results_list: InstanceList, rcnn_test_cfg: ConfigType) -> InstanceList: """Perform forward propagation of the bbox head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. rpn_results_list (list[:obj:`InstanceData`]): List of region proposals. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. Returns: list[:obj:`InstanceData`]: Detection results of each image after the post process. Each item usually contains following keys: - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). """ proposals = [res.bboxes for res in rpn_results_list] rois = bbox2roi(proposals) bbox_results = self._bbox_forward(x, rois, batch_img_metas) # split batch bbox prediction back to each image cls_scores = bbox_results['cls_score'] num_proposals_per_img = tuple(len(p) for p in proposals) rois = rois.split(num_proposals_per_img, 0) cls_scores = cls_scores.split(num_proposals_per_img, 0) result_list = self.bbox_head.predict_by_feat( rois=rois, cls_scores=cls_scores, batch_img_metas=batch_img_metas, rcnn_test_cfg=rcnn_test_cfg) return result_list
Perform forward propagation of the bbox head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. rpn_results_list (list[:obj:`InstanceData`]): List of region proposals. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. Returns: list[:obj:`InstanceData`]: Detection results of each image after the post process. Each item usually contains following keys: - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
predict_bbox
python
open-mmlab/mmaction2
mmaction/models/roi_heads/roi_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_head.py
Apache-2.0
def forward(self, x: Tensor) -> Tensor: """Computes the classification logits given ROI features.""" if self.dropout_before_pool and self.dropout_ratio > 0: x = self.dropout(x) x = self.temporal_pool(x) x = self.spatial_pool(x) if not self.dropout_before_pool and self.dropout_ratio > 0: x = self.dropout(x) x = x.view(x.size(0), -1) cls_score = self.fc_cls(x) return cls_score
Computes the classification logits given ROI features.
forward
python
open-mmlab/mmaction2
mmaction/models/roi_heads/bbox_heads/bbox_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py
Apache-2.0
def get_recall_prec(pred_vec: Tensor, target_vec: Tensor) -> tuple: """Computes the Recall/Precision for both multi-label and single label scenarios. Note that the computation calculates the micro average. Note, that in both cases, the concept of correct/incorrect is the same. Args: pred_vec (tensor[N x C]): each element is either 0 or 1 target_vec (tensor[N x C]): each element is either 0 or 1 - for single label it is expected that only one element is on (1) although this is not enforced. """ correct = pred_vec & target_vec recall = correct.sum(1) / target_vec.sum(1).float() # Enforce Float prec = correct.sum(1) / (pred_vec.sum(1) + 1e-6) return recall.mean(), prec.mean()
Computes the Recall/Precision for both multi-label and single label scenarios. Note that the computation calculates the micro average. Note, that in both cases, the concept of correct/incorrect is the same. Args: pred_vec (tensor[N x C]): each element is either 0 or 1 target_vec (tensor[N x C]): each element is either 0 or 1 - for single label it is expected that only one element is on (1) although this is not enforced.
get_recall_prec
python
open-mmlab/mmaction2
mmaction/models/roi_heads/bbox_heads/bbox_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py
Apache-2.0
def topk_accuracy(self, pred: Tensor, target: Tensor, thr: float = 0.5) -> tuple: """Computes the Top-K Accuracies for both single and multi-label scenarios.""" # Define Target vector: target_bool = target > 0.5 # Branch on Multilabel for computing output classification if self.multilabel: pred = pred.sigmoid() else: pred = pred.softmax(dim=1) # Compute at threshold (K=1 for single) if self.multilabel: pred_bool = pred > thr else: pred_bool = self.topk_to_matrix(pred, 1) recall_thr, prec_thr = self.get_recall_prec(pred_bool, target_bool) # Compute at various K recalls_k, precs_k = [], [] for k in self.topk: pred_bool = self.topk_to_matrix(pred, k) recall, prec = self.get_recall_prec(pred_bool, target_bool) recalls_k.append(recall) precs_k.append(prec) # Return all return recall_thr, prec_thr, recalls_k, precs_k
Computes the Top-K Accuracies for both single and multi-label scenarios.
topk_accuracy
python
open-mmlab/mmaction2
mmaction/models/roi_heads/bbox_heads/bbox_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py
Apache-2.0
def loss_and_target(self, cls_score: Tensor, rois: Tensor, sampling_results: List[SamplingResult], rcnn_train_cfg: ConfigDict, **kwargs) -> dict: """Calculate the loss based on the features extracted by the bbox head. Args: cls_score (Tensor): Classification prediction results of all class, has shape (batch_size * num_proposals_single_image, num_classes) rois (Tensor): RoIs with the shape (batch_size * num_proposals_single_image, 5) where the first column indicates batch id of each RoI. sampling_results (List[obj:SamplingResult]): Assign results of all images in a batch after sampling. rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN. Returns: dict: A dictionary of loss components. """ cls_targets = self.get_targets(sampling_results, rcnn_train_cfg) labels, _ = cls_targets losses = dict() # Only use the cls_score if cls_score is not None: if self.background_class: labels = labels[:, 1:] # Get valid labels (ignore first one) cls_score = cls_score[:, 1:] pos_inds = torch.sum(labels, dim=-1) > 0 cls_score = cls_score[pos_inds] labels = labels[pos_inds] # Compute First Recall/Precisions # This has to be done first before normalising the label-space. recall_thr, prec_thr, recall_k, prec_k = self.topk_accuracy( cls_score, labels, thr=0.5) losses['recall@thr=0.5'] = recall_thr losses['prec@thr=0.5'] = prec_thr for i, k in enumerate(self.topk): losses[f'recall@top{k}'] = recall_k[i] losses[f'prec@top{k}'] = prec_k[i] # If Single-label, need to ensure that target labels sum to 1: ie # that they are valid probabilities. if not self.multilabel and self.background_class: labels = labels / labels.sum(dim=1, keepdim=True) # Select Loss function based on single/multi-label # NB. Both losses auto-compute sigmoid/softmax on prediction if self.multilabel: loss_func = F.binary_cross_entropy_with_logits else: loss_func = cross_entropy_loss # Compute loss loss = loss_func(cls_score, labels, reduction='none') pt = torch.exp(-loss) F_loss = self.focal_alpha * (1 - pt)**self.focal_gamma * loss losses['loss_action_cls'] = torch.mean(F_loss) return dict(loss_bbox=losses, bbox_targets=cls_targets)
Calculate the loss based on the features extracted by the bbox head. Args: cls_score (Tensor): Classification prediction results of all class, has shape (batch_size * num_proposals_single_image, num_classes) rois (Tensor): RoIs with the shape (batch_size * num_proposals_single_image, 5) where the first column indicates batch id of each RoI. sampling_results (List[obj:SamplingResult]): Assign results of all images in a batch after sampling. rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN. Returns: dict: A dictionary of loss components.
loss_and_target
python
open-mmlab/mmaction2
mmaction/models/roi_heads/bbox_heads/bbox_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py
Apache-2.0
def predict_by_feat(self, rois: Tuple[Tensor], cls_scores: Tuple[Tensor], batch_img_metas: List[dict], rcnn_test_cfg: Optional[ConfigDict] = None, **kwargs) -> InstanceList: """Transform a batch of output features extracted from the head into bbox results. Args: rois (tuple[Tensor]): Tuple of boxes to be transformed. Each has shape (num_boxes, 5). last dimension 5 arrange as (batch_index, x1, y1, x2, y2). cls_scores (tuple[Tensor]): Tuple of box scores, each has shape (num_boxes, num_classes + 1). bbox_preds (tuple[Tensor]): Tuple of box energies / deltas, each has shape (num_boxes, num_classes * 4). batch_img_metas (list[dict]): List of image information. rcnn_test_cfg (obj:`ConfigDict`, optional): `test_cfg` of R-CNN. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[:obj:`InstanceData`]: Instance segmentation results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). """ result_list = [] for img_id in range(len(batch_img_metas)): img_meta = batch_img_metas[img_id] results = self._predict_by_feat_single( roi=rois[img_id], cls_score=cls_scores[img_id], img_meta=img_meta, rcnn_test_cfg=rcnn_test_cfg, **kwargs) result_list.append(results) return result_list
Transform a batch of output features extracted from the head into bbox results. Args: rois (tuple[Tensor]): Tuple of boxes to be transformed. Each has shape (num_boxes, 5). last dimension 5 arrange as (batch_index, x1, y1, x2, y2). cls_scores (tuple[Tensor]): Tuple of box scores, each has shape (num_boxes, num_classes + 1). bbox_preds (tuple[Tensor]): Tuple of box energies / deltas, each has shape (num_boxes, num_classes * 4). batch_img_metas (list[dict]): List of image information. rcnn_test_cfg (obj:`ConfigDict`, optional): `test_cfg` of R-CNN. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[:obj:`InstanceData`]: Instance segmentation results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
predict_by_feat
python
open-mmlab/mmaction2
mmaction/models/roi_heads/bbox_heads/bbox_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py
Apache-2.0
def _predict_by_feat_single(self, roi: Tensor, cls_score: Tensor, img_meta: dict, rcnn_test_cfg: Optional[ConfigDict] = None, **kwargs) -> InstanceData: """Transform a single image's features extracted from the head into bbox results. Args: roi (Tensor): Boxes to be transformed. Has shape (num_boxes, 5). last dimension 5 arrange as (batch_index, x1, y1, x2, y2). cls_score (Tensor): Box scores, has shape (num_boxes, num_classes + 1). bbox_pred (Tensor): Box energies / deltas. has shape (num_boxes, num_classes * 4). img_meta (dict): image information. rescale (bool): If True, return boxes in original image space. Defaults to False. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head. Defaults to None Returns: :obj:`InstanceData`: Detection results of each image\ Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). """ results = InstanceData() # might be used by testing w. augmentation if isinstance(cls_score, list): cls_score = sum(cls_score) / float(len(cls_score)) # Handle Multi/Single Label if cls_score is not None: if self.multilabel: scores = cls_score.sigmoid() else: scores = cls_score.softmax(dim=-1) else: scores = None bboxes = roi[:, 1:] assert bboxes.shape[-1] == 4 # First reverse the flip img_h, img_w = img_meta['img_shape'] if img_meta.get('flip', False): bboxes_ = bboxes.clone() bboxes_[:, 0] = img_w - 1 - bboxes[:, 2] bboxes_[:, 2] = img_w - 1 - bboxes[:, 0] bboxes = bboxes_ # Then normalize the bbox to [0, 1] bboxes[:, 0::2] /= img_w bboxes[:, 1::2] /= img_h def _bbox_crop_undo(bboxes, crop_quadruple): decropped = bboxes.clone() if crop_quadruple is not None: x1, y1, tw, th = crop_quadruple decropped[:, 0::2] = bboxes[..., 0::2] * tw + x1 decropped[:, 1::2] = bboxes[..., 1::2] * th + y1 return decropped crop_quadruple = img_meta.get('crop_quadruple', np.array([0, 0, 1, 1])) bboxes = _bbox_crop_undo(bboxes, crop_quadruple) results.bboxes = bboxes results.scores = scores return results
Transform a single image's features extracted from the head into bbox results. Args: roi (Tensor): Boxes to be transformed. Has shape (num_boxes, 5). last dimension 5 arrange as (batch_index, x1, y1, x2, y2). cls_score (Tensor): Box scores, has shape (num_boxes, num_classes + 1). bbox_pred (Tensor): Box energies / deltas. has shape (num_boxes, num_classes * 4). img_meta (dict): image information. rescale (bool): If True, return boxes in original image space. Defaults to False. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head. Defaults to None Returns: :obj:`InstanceData`: Detection results of each image Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
_predict_by_feat_single
python
open-mmlab/mmaction2
mmaction/models/roi_heads/bbox_heads/bbox_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/bbox_heads/bbox_head.py
Apache-2.0
def forward(self, feat: Union[Tensor, Tuple[Tensor]], rois: Tensor) -> tuple: """Forward function for extract roi features. Args: feat (Tensor or Tuple[Tensor]): The image features extracted by the upstream network. The shape of feat is N, C, T, H, W. rois (Tensor): Input RoIs, shape (k, 5). Returns: tuple: A tuple of roi features and global features. - roi_feats (Tensor): Extracted bbox RoI features. - feat (Tensor): Global features of the video clip. """ if not isinstance(feat, tuple): feat = (feat, ) if len(feat) >= 2: maxT = max([x.shape[2] for x in feat]) max_shape = (maxT, ) + feat[0].shape[3:] # resize each feat to the largest shape (w. nearest) feat = [F.interpolate(x, max_shape).contiguous() for x in feat] if self.with_temporal_pool: if self.temporal_pool_mode == 'avg': feat = [torch.mean(x, 2, keepdim=True) for x in feat] elif self.temporal_pool_mode == 'max': feat = [torch.max(x, 2, keepdim=True)[0] for x in feat] else: raise NotImplementedError feat = torch.cat(feat, axis=1).contiguous() roi_feats = [] for t in range(feat.size(2)): frame_feat = feat[:, :, t].contiguous() roi_feat = self.roi_layer(frame_feat, rois) if self.with_global: global_feat = self.global_pool(frame_feat.contiguous()) inds = rois[:, 0].type(torch.int64) global_feat = global_feat[inds] roi_feat = torch.cat([roi_feat, global_feat], dim=1) roi_feat = roi_feat.contiguous() roi_feats.append(roi_feat) roi_feats = torch.stack(roi_feats, dim=2) return roi_feats, feat
Forward function for extract roi features. Args: feat (Tensor or Tuple[Tensor]): The image features extracted by the upstream network. The shape of feat is N, C, T, H, W. rois (Tensor): Input RoIs, shape (k, 5). Returns: tuple: A tuple of roi features and global features. - roi_feats (Tensor): Extracted bbox RoI features. - feat (Tensor): Global features of the video clip.
forward
python
open-mmlab/mmaction2
mmaction/models/roi_heads/roi_extractors/single_straight3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/roi_extractors/single_straight3d.py
Apache-2.0
def forward(self, x, feat, rois, **kwargs): """Defines the computation performed at every call. Args: x (torch.Tensor): The extracted RoI feature. feat (torch.Tensor): The context feature. rois (torch.Tensor): The regions of interest. Returns: torch.Tensor: The RoI features that have interacted with context feature. """ # We use max pooling by default x = self.max_pool(x) h, w = feat.shape[-2:] x_tile = x.repeat(1, 1, 1, h, w) roi_inds = rois[:, 0].type(torch.long) roi_gfeat = feat[roi_inds] new_feat = torch.cat([x_tile, roi_gfeat], dim=1) new_feat = self.conv1(new_feat) new_feat = self.conv2(new_feat) for conv in self.convs: new_feat = conv(new_feat) return new_feat
Defines the computation performed at every call. Args: x (torch.Tensor): The extracted RoI feature. feat (torch.Tensor): The context feature. rois (torch.Tensor): The regions of interest. Returns: torch.Tensor: The RoI features that have interacted with context feature.
forward
python
open-mmlab/mmaction2
mmaction/models/roi_heads/shared_heads/acrn_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/acrn_head.py
Apache-2.0
def init_weights(self, pretrained=None): """Initiate the parameters either from existing checkpoint or from scratch.""" if isinstance(pretrained, str): logger = MMLogger.get_current_instance() logger.info(f'load model from: {pretrained}') load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv3d): kaiming_init(m) elif isinstance(m, _BatchNorm): constant_init(m, 1) if self.zero_init_out_conv: constant_init(self.out_conv, 0, bias=0) else: raise TypeError('pretrained must be a str or None')
Initiate the parameters either from existing checkpoint or from scratch.
init_weights
python
open-mmlab/mmaction2
mmaction/models/roi_heads/shared_heads/fbo_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py
Apache-2.0
def forward(self, st_feat, lt_feat): """Defines the computation performed at every call.""" n, c = st_feat.size(0), self.latent_channels num_st_feat, num_lt_feat = self.num_st_feat, self.num_lt_feat theta = self.st_feat_conv(st_feat) theta = theta.view(n, c, num_st_feat) phi = self.lt_feat_conv(lt_feat) phi = phi.view(n, c, num_lt_feat) g = self.global_conv(lt_feat) g = g.view(n, c, num_lt_feat) # (n, num_st_feat, c), (n, c, num_lt_feat) # -> (n, num_st_feat, num_lt_feat) theta_phi = torch.matmul(theta.permute(0, 2, 1), phi) if self.use_scale: theta_phi /= c**0.5 p = theta_phi.softmax(dim=-1) # (n, c, num_lt_feat), (n, num_lt_feat, num_st_feat) # -> (n, c, num_st_feat, 1, 1) out = torch.matmul(g, p.permute(0, 2, 1)).view(n, c, num_st_feat, 1, 1) # If need to activate it before out_conv, use relu here, otherwise # use relu outside the non local layer. if self.pre_activate: if self.pre_activate_with_ln: out = self.ln(out) out = self.relu(out) out = self.out_conv(out) if not self.pre_activate: out = self.ln(out) if self.dropout_ratio > 0: out = self.dropout(out) return out
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/roi_heads/shared_heads/fbo_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py
Apache-2.0
def init_weights(self, pretrained=None): """Initiate the parameters either from existing checkpoint or from scratch.""" if isinstance(pretrained, str): logger = MMLogger.get_current_instance() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: kaiming_init(self.st_feat_conv) kaiming_init(self.lt_feat_conv) for layer_name in self.non_local_layers: non_local_layer = getattr(self, layer_name) non_local_layer.init_weights(pretrained=pretrained) else: raise TypeError('pretrained must be a str or None')
Initiate the parameters either from existing checkpoint or from scratch.
init_weights
python
open-mmlab/mmaction2
mmaction/models/roi_heads/shared_heads/fbo_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py
Apache-2.0
def forward(self, st_feat, lt_feat): """Defines the computation performed at every call.""" # prepare st_feat st_feat = self.st_feat_conv(st_feat) if self.st_feat_dropout_ratio > 0: st_feat = self.st_feat_dropout(st_feat) # prepare lt_feat lt_feat = self.lt_feat_conv(lt_feat) if self.lt_feat_dropout_ratio > 0: lt_feat = self.lt_feat_dropout(lt_feat) # fuse short-term and long-term features in NonLocal Layer for layer_name in self.non_local_layers: identity = st_feat non_local_layer = getattr(self, layer_name) nl_out = non_local_layer(st_feat, lt_feat) nl_out = identity + nl_out if not self.pre_activate: nl_out = self.relu(nl_out) st_feat = nl_out return nl_out
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/roi_heads/shared_heads/fbo_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py
Apache-2.0
def sample_lfb(self, rois, img_metas): """Sample long-term features for each ROI feature.""" inds = rois[:, 0].type(torch.int64) lt_feat_list = [] for ind in inds: lt_feat_list.append(self.lfb[img_metas[ind]['img_key']]) lt_feat = torch.stack(lt_feat_list, dim=0) # [N, lfb_channels, window_size * max_num_feat_per_step] lt_feat = lt_feat.permute(0, 2, 1).contiguous() return lt_feat.unsqueeze(-1).unsqueeze(-1)
Sample long-term features for each ROI feature.
sample_lfb
python
open-mmlab/mmaction2
mmaction/models/roi_heads/shared_heads/fbo_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py
Apache-2.0
def forward(self, x, rois, img_metas, **kwargs): """Defines the computation performed at every call.""" # [N, C, 1, 1, 1] st_feat = self.temporal_pool(x) st_feat = self.spatial_pool(st_feat) identity = st_feat # [N, C, window_size * num_feat_per_step, 1, 1] lt_feat = self.sample_lfb(rois, img_metas).to(st_feat.device) fbo_feat = self.fbo(st_feat, lt_feat) out = torch.cat([identity, fbo_feat], dim=1) return out
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/roi_heads/shared_heads/fbo_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/fbo_head.py
Apache-2.0