code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def __getitem__(self, img_key): """Sample long term features like `lfb['0f39OWEqJ24,0902']` where `lfb` is a instance of class LFB.""" video_id, timestamp = img_key.split(',') return self.sample_long_term_features(video_id, int(timestamp))
Sample long term features like `lfb['0f39OWEqJ24,0902']` where `lfb` is a instance of class LFB.
__getitem__
python
open-mmlab/mmaction2
mmaction/models/roi_heads/shared_heads/lfb.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/lfb.py
Apache-2.0
def forward(self, x, rois, img_metas, **kwargs): """Defines the computation performed at every call. Args: x (torch.Tensor): The extracted RoI feature. rois (torch.Tensor): The regions of interest. img_metas (List[dict]): The meta information of the data. Returns: torch.Tensor: The RoI features that have interacted with context """ # [N, C, 1, 1, 1] features = self.temporal_pool(x) features = self.spatial_pool(features) if self.use_half_precision: features = features.half() inds = rois[:, 0].type(torch.int64) for ind in inds: self.all_metadata.append(img_metas[ind]['img_key']) self.all_features += list(features) # Return the input directly and doesn't affect the input. return x
Defines the computation performed at every call. Args: x (torch.Tensor): The extracted RoI feature. rois (torch.Tensor): The regions of interest. img_metas (List[dict]): The meta information of the data. Returns: torch.Tensor: The RoI features that have interacted with context
forward
python
open-mmlab/mmaction2
mmaction/models/roi_heads/shared_heads/lfb_infer_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/roi_heads/shared_heads/lfb_infer_head.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type)
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/similarity/adapters.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/similarity/adapters.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" b, seq_length, c = x.size() x_original = x x = x + self.positional_embedding x = x.transpose(0, 1) # NLD -> LND x = self.transformer(x) x = x.transpose(0, 1) # LND -> NLD x = x.type(x_original.dtype) + x_original return x.mean(dim=1)
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/similarity/adapters.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py
Apache-2.0
def _freeze_stages(self) -> None: """Prevent all the parameters from being optimized before ``self.frozen_layers``.""" if self.frozen_layers >= 0: top_layers = [ 'ln_final', 'text_projection', 'logit_scale', 'visual.ln_post', 'visual.proj' ] mid_layers = [ 'visual.transformer.resblocks', 'transformer.resblocks' ] for name, param in self.clip.named_parameters(): if any(name.find(n) == 0 for n in top_layers): continue elif any(name.find(n) == 0 for n in mid_layers): layer_n = int(name.split('.resblocks.')[1].split('.')[0]) if layer_n >= self.frozen_layers: continue param.requires_grad = False
Prevent all the parameters from being optimized before ``self.frozen_layers``.
_freeze_stages
python
open-mmlab/mmaction2
mmaction/models/similarity/clip_similarity.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/clip_similarity.py
Apache-2.0
def assign_wrt_overlaps(self, overlaps: Tensor, gt_labels: Tensor) -> AssignResult: """Assign w.r.t. the overlaps of bboxes with gts. Args: overlaps (Tensor): Overlaps between k gt_bboxes and n bboxes, shape(k, n). gt_labels (Tensor): Labels of k gt_bboxes, shape (k, num_classes). Returns: :obj:`AssignResult`: The assign result. """ num_gts, num_bboxes = overlaps.size(0), overlaps.size(1) # 1. assign -1 by default assigned_gt_inds = overlaps.new_full((num_bboxes, ), -1, dtype=torch.long) if num_gts == 0 or num_bboxes == 0: # No ground truth or boxes, return empty assignment max_overlaps = overlaps.new_zeros((num_bboxes, )) assigned_labels = overlaps.new_full((num_bboxes, ), -1, dtype=torch.long) if num_gts == 0: # No truth, assign everything to background assigned_gt_inds[:] = 0 return AssignResult( num_gts=num_gts, gt_inds=assigned_gt_inds, max_overlaps=max_overlaps, labels=assigned_labels) # for each anchor, which gt best overlaps with it # for each anchor, the max iou of all gts max_overlaps, argmax_overlaps = overlaps.max(dim=0) # for each gt, which anchor best overlaps with it # for each gt, the max iou of all proposals gt_max_overlaps, gt_argmax_overlaps = overlaps.max(dim=1) # 2. assign negative: below # the negative inds are set to be 0 if isinstance(self.neg_iou_thr, float): assigned_gt_inds[(max_overlaps >= 0) & (max_overlaps < self.neg_iou_thr)] = 0 elif isinstance(self.neg_iou_thr, tuple): assert len(self.neg_iou_thr) == 2 assigned_gt_inds[(max_overlaps >= self.neg_iou_thr[0]) & (max_overlaps < self.neg_iou_thr[1])] = 0 # 3. assign positive: above positive IoU threshold pos_inds = max_overlaps >= self.pos_iou_thr assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1 if self.match_low_quality: # Low-quality matching will overwrite the assigned_gt_inds # assigned in Step 3. Thus, the assigned gt might not be the # best one for prediction. # For example, if bbox A has 0.9 and 0.8 iou with GT bbox # 1 & 2, bbox 1 will be assigned as the best target for bbox A # in step 3. However, if GT bbox 2's gt_argmax_overlaps = A, # bbox A's assigned_gt_inds will be overwritten to be bbox B. # This might be the reason that it is not used in ROI Heads. for i in range(num_gts): if gt_max_overlaps[i] >= self.min_pos_iou: if self.gt_max_assign_all: max_iou_inds = overlaps[i, :] == gt_max_overlaps[i] assigned_gt_inds[max_iou_inds] = i + 1 else: assigned_gt_inds[gt_argmax_overlaps[i]] = i + 1 # consider multi-class case (AVA) assert len(gt_labels[0]) > 1 assigned_labels = assigned_gt_inds.new_zeros( (num_bboxes, len(gt_labels[0])), dtype=torch.float32) # If not assigned, labels will be all 0 pos_inds = torch.nonzero( assigned_gt_inds > 0, as_tuple=False).squeeze() if pos_inds.numel() > 0: assigned_labels[pos_inds] = gt_labels[assigned_gt_inds[pos_inds] - 1] return AssignResult( num_gts=num_gts, gt_inds=assigned_gt_inds, max_overlaps=max_overlaps, labels=assigned_labels)
Assign w.r.t. the overlaps of bboxes with gts. Args: overlaps (Tensor): Overlaps between k gt_bboxes and n bboxes, shape(k, n). gt_labels (Tensor): Labels of k gt_bboxes, shape (k, num_classes). Returns: :obj:`AssignResult`: The assign result.
assign_wrt_overlaps
python
open-mmlab/mmaction2
mmaction/models/task_modules/assigners/max_iou_assigner_ava.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/task_modules/assigners/max_iou_assigner_ava.py
Apache-2.0
def __call__(self, imgs: torch.Tensor, batch_data_samples: SampleList, **kwargs) -> Tuple: """Blending data in a mini-batch. Images are float tensors with the shape of (B, N, C, H, W) for 2D recognizers or (B, N, C, T, H, W) for 3D recognizers. Besides, labels are converted from hard labels to soft labels. Hard labels are integer tensors with the shape of (B, ) and all of the elements are in the range [0, num_classes - 1]. Soft labels (probability distribution over classes) are float tensors with the shape of (B, num_classes) and all of the elements are in the range [0, 1]. Args: imgs (torch.Tensor): Model input images, float tensor with the shape of (B, N, C, H, W) or (B, N, C, T, H, W). batch_data_samples (List[:obj:`ActionDataSample`]): The batch data samples. It usually includes information such as `gt_label`. Returns: mixed_imgs (torch.Tensor): Blending images, float tensor with the same shape of the input imgs. batch_data_samples (List[:obj:`ActionDataSample`]): The modified batch data samples. ``gt_label`` in each data sample are converted from a hard label to a blended soft label, float tensor with the shape of (num_classes, ) and all elements are in range [0, 1]. """ label = [x.gt_label for x in batch_data_samples] # single-label classification if label[0].size(0) == 1: label = torch.tensor(label, dtype=torch.long).to(imgs.device) one_hot_label = F.one_hot(label, num_classes=self.num_classes) # multi-label classification else: one_hot_label = torch.stack(label) mixed_imgs, mixed_label = self.do_blending(imgs, one_hot_label, **kwargs) for label_item, sample in zip(mixed_label, batch_data_samples): sample.set_gt_label(label_item) return mixed_imgs, batch_data_samples
Blending data in a mini-batch. Images are float tensors with the shape of (B, N, C, H, W) for 2D recognizers or (B, N, C, T, H, W) for 3D recognizers. Besides, labels are converted from hard labels to soft labels. Hard labels are integer tensors with the shape of (B, ) and all of the elements are in the range [0, num_classes - 1]. Soft labels (probability distribution over classes) are float tensors with the shape of (B, num_classes) and all of the elements are in the range [0, 1]. Args: imgs (torch.Tensor): Model input images, float tensor with the shape of (B, N, C, H, W) or (B, N, C, T, H, W). batch_data_samples (List[:obj:`ActionDataSample`]): The batch data samples. It usually includes information such as `gt_label`. Returns: mixed_imgs (torch.Tensor): Blending images, float tensor with the same shape of the input imgs. batch_data_samples (List[:obj:`ActionDataSample`]): The modified batch data samples. ``gt_label`` in each data sample are converted from a hard label to a blended soft label, float tensor with the shape of (num_classes, ) and all elements are in range [0, 1].
__call__
python
open-mmlab/mmaction2
mmaction/models/utils/blending_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/blending_utils.py
Apache-2.0
def do_blending(self, imgs: torch.Tensor, label: torch.Tensor, **kwargs) -> Tuple: """Blending images with mixup. Args: imgs (torch.Tensor): Model input images, float tensor with the shape of (B, N, C, H, W) or (B, N, C, T, H, W). label (torch.Tensor): One hot labels, integer tensor with the shape of (B, num_classes). Returns: tuple: A tuple of blended images and labels. """ assert len(kwargs) == 0, f'unexpected kwargs for mixup {kwargs}' lam = self.beta.sample() batch_size = imgs.size(0) rand_index = torch.randperm(batch_size) mixed_imgs = lam * imgs + (1 - lam) * imgs[rand_index, :] mixed_label = lam * label + (1 - lam) * label[rand_index, :] return mixed_imgs, mixed_label
Blending images with mixup. Args: imgs (torch.Tensor): Model input images, float tensor with the shape of (B, N, C, H, W) or (B, N, C, T, H, W). label (torch.Tensor): One hot labels, integer tensor with the shape of (B, num_classes). Returns: tuple: A tuple of blended images and labels.
do_blending
python
open-mmlab/mmaction2
mmaction/models/utils/blending_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/blending_utils.py
Apache-2.0
def do_blending(self, imgs: torch.Tensor, label: torch.Tensor, **kwargs) -> Tuple: """Blending images with cutmix. Args: imgs (torch.Tensor): Model input images, float tensor with the shape of (B, N, C, H, W) or (B, N, C, T, H, W). label (torch.Tensor): One hot labels, integer tensor with the shape of (B, num_classes). Returns: tuple: A tuple of blended images and labels. """ assert len(kwargs) == 0, f'unexpected kwargs for cutmix {kwargs}' batch_size = imgs.size(0) rand_index = torch.randperm(batch_size) lam = self.beta.sample() bbx1, bby1, bbx2, bby2 = self.rand_bbox(imgs.size(), lam) imgs[:, ..., bby1:bby2, bbx1:bbx2] = imgs[rand_index, ..., bby1:bby2, bbx1:bbx2] lam = 1 - (1.0 * (bbx2 - bbx1) * (bby2 - bby1) / (imgs.size()[-1] * imgs.size()[-2])) label = lam * label + (1 - lam) * label[rand_index, :] return imgs, label
Blending images with cutmix. Args: imgs (torch.Tensor): Model input images, float tensor with the shape of (B, N, C, H, W) or (B, N, C, T, H, W). label (torch.Tensor): One hot labels, integer tensor with the shape of (B, num_classes). Returns: tuple: A tuple of blended images and labels.
do_blending
python
open-mmlab/mmaction2
mmaction/models/utils/blending_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/blending_utils.py
Apache-2.0
def do_blending(self, imgs: torch.Tensor, label: torch.Tensor, **kwargs) -> Tuple: """Randomly apply batch augmentations to the batch inputs and batch data samples.""" aug_index = np.random.choice(len(self.augments), p=self.probs) aug = self.augments[aug_index] if aug is not None: return aug.do_blending(imgs, label, **kwargs) else: return imgs, label
Randomly apply batch augmentations to the batch inputs and batch data samples.
do_blending
python
open-mmlab/mmaction2
mmaction/models/utils/blending_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/blending_utils.py
Apache-2.0
def get_pad_shape(self, input_shape): """Calculate the padding size of input. Args: input_shape (:obj:`torch.Size`): arrange as (H, W). Returns: Tuple[int]: The padding size along the original H and W directions """ input_t, input_h, input_w = input_shape kernel_d, kernel_h, kernel_w = self.kernel_size stride_d, stride_h, stride_w = self.stride output_d = math.ceil(input_t / stride_d) output_h = math.ceil(input_h / stride_h) output_w = math.ceil(input_w / stride_w) pad_d = max((output_d - 1) * stride_d + (kernel_d - 1) * self.dilation[0] + 1 - input_t, 0) pad_h = max((output_h - 1) * stride_h + (kernel_h - 1) * self.dilation[1] + 1 - input_h, 0) pad_w = max((output_w - 1) * stride_w + (kernel_w - 1) * self.dilation[2] + 1 - input_w, 0) return pad_d, pad_h, pad_w
Calculate the padding size of input. Args: input_shape (:obj:`torch.Size`): arrange as (H, W). Returns: Tuple[int]: The padding size along the original H and W directions
get_pad_shape
python
open-mmlab/mmaction2
mmaction/models/utils/embed.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/embed.py
Apache-2.0
def forward(self, x): """Add padding to `x` Args: x (Tensor): Input tensor has shape (B, C, H, W). Returns: Tensor: The tensor with adaptive padding """ pad_d, pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) if pad_d > 0 or pad_h > 0 or pad_w > 0: if self.padding == 'corner': x = F.pad(x, [0, pad_w, 0, pad_h, 0, pad_d]) elif self.padding == 'same': x = F.pad(x, [ pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2, pad_d // 2, pad_d - pad_d // 2, ]) return x
Add padding to `x` Args: x (Tensor): Input tensor has shape (B, C, H, W). Returns: Tensor: The tensor with adaptive padding
forward
python
open-mmlab/mmaction2
mmaction/models/utils/embed.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/embed.py
Apache-2.0
def forward(self, x): """ Args: x (Tensor): Has shape (B, C, T, H, W). In most case, C is 3. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, out_t * out_h * out_w, embed_dims) - out_size (tuple[int]): Spatial shape of x, arrange as (out_t, out_h, out_w). """ if self.adaptive_padding: x = self.adaptive_padding(x) x = self.projection(x) out_size = (x.shape[2], x.shape[3], x.shape[4]) x = x.flatten(2).transpose(1, 2) if self.norm is not None: x = self.norm(x) return x, out_size
Args: x (Tensor): Has shape (B, C, T, H, W). In most case, C is 3. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, out_t * out_h * out_w, embed_dims) - out_size (tuple[int]): Spatial shape of x, arrange as (out_t, out_h, out_w).
forward
python
open-mmlab/mmaction2
mmaction/models/utils/embed.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/embed.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" n, c, t, v = x.shape res = self.down(x) if self.with_res else 0 A_switch = {None: self.A, 'init': self.A} if hasattr(self, 'PA'): A_switch.update({ 'offset': self.A + self.PA, 'importance': self.A * self.PA }) A = A_switch[self.adaptive] if self.conv_pos == 'pre': x = self.conv(x) x = x.view(n, self.num_subsets, -1, t, v) x = torch.einsum('nkctv,kvw->nctw', (x, A)).contiguous() elif self.conv_pos == 'post': x = torch.einsum('nctv,kvw->nkctw', (x, A)).contiguous() x = x.view(n, -1, t, v) x = self.conv(x) return self.act(self.bn(x) + res)
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/utils/gcn_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/gcn_utils.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" N, C, T, V = x.size() y = None if self.adaptive: for i in range(self.num_subset): A1 = self.conv_a[i](x).permute(0, 3, 1, 2).contiguous().view( N, V, self.inter_c * T) A2 = self.conv_b[i](x).view(N, self.inter_c * T, V) A1 = self.tan(torch.matmul(A1, A2) / A1.size(-1)) # N V V A1 = self.A[i] + A1 * self.alpha A2 = x.view(N, C * T, V) z = self.conv_d[i](torch.matmul(A2, A1).view(N, C, T, V)) y = z + y if y is not None else z else: for i in range(self.num_subset): A1 = self.A[i] A2 = x.view(N, C * T, V) z = self.conv_d[i](torch.matmul(A2, A1).view(N, C, T, V)) y = z + y if y is not None else z y = self.relu(self.bn(y) + self.down(x)) if self.attention: # spatial attention first se = y.mean(-2) # N C V se1 = self.sigmoid(self.conv_sa(se)) # N 1 V y = y * se1.unsqueeze(-2) + y # then temporal attention se = y.mean(-1) # N C T se1 = self.sigmoid(self.conv_ta(se)) # N 1 T y = y * se1.unsqueeze(-1) + y # then spatial temporal attention ?? se = y.mean(-1).mean(-1) # N C se1 = self.relu(self.fc1c(se)) se2 = self.sigmoid(self.fc2c(se1)) # N C y = y * se2.unsqueeze(-1).unsqueeze(-1) + y # A little bit weird return y
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/utils/gcn_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/gcn_utils.py
Apache-2.0
def inner_forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" N, C, T, V = x.shape branch_outs = [] for tempconv in self.branches: out = tempconv(x) branch_outs.append(out) feat = torch.cat(branch_outs, dim=1) feat = self.transform(feat) return feat
Defines the computation performed at every call.
inner_forward
python
open-mmlab/mmaction2
mmaction/models/utils/gcn_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/gcn_utils.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" out = self.inner_forward(x) out = self.bn(out) return self.drop(out)
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/utils/gcn_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/gcn_utils.py
Apache-2.0
def k_adjacency(A: Union[torch.Tensor, np.ndarray], k: int, with_self: bool = False, self_factor: float = 1) -> np.ndarray: """Construct k-adjacency matrix. Args: A (torch.Tensor or np.ndarray): The adjacency matrix. k (int): The number of hops. with_self (bool): Whether to add self-loops to the k-adjacency matrix. The self-loops is critical for learning the relationships between the current joint and its k-hop neighbors. Defaults to False. self_factor (float): The scale factor to the added identity matrix. Defaults to 1. Returns: np.ndarray: The k-adjacency matrix. """ # A is a 2D square array if isinstance(A, torch.Tensor): A = A.data.cpu().numpy() assert isinstance(A, np.ndarray) Iden = np.eye(len(A), dtype=A.dtype) if k == 0: return Iden Ak = np.minimum(np.linalg.matrix_power(A + Iden, k), 1) - np.minimum( np.linalg.matrix_power(A + Iden, k - 1), 1) if with_self: Ak += (self_factor * Iden) return Ak
Construct k-adjacency matrix. Args: A (torch.Tensor or np.ndarray): The adjacency matrix. k (int): The number of hops. with_self (bool): Whether to add self-loops to the k-adjacency matrix. The self-loops is critical for learning the relationships between the current joint and its k-hop neighbors. Defaults to False. self_factor (float): The scale factor to the added identity matrix. Defaults to 1. Returns: np.ndarray: The k-adjacency matrix.
k_adjacency
python
open-mmlab/mmaction2
mmaction/models/utils/graph.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py
Apache-2.0
def edge2mat(edges: List[Tuple[int, int]], num_node: int) -> np.ndarray: """Get adjacency matrix from edges. Args: edges (list[tuple[int, int]]): The edges of the graph. num_node (int): The number of nodes of the graph. Returns: np.ndarray: The adjacency matrix. """ A = np.zeros((num_node, num_node)) for i, j in edges: A[j, i] = 1 return A
Get adjacency matrix from edges. Args: edges (list[tuple[int, int]]): The edges of the graph. num_node (int): The number of nodes of the graph. Returns: np.ndarray: The adjacency matrix.
edge2mat
python
open-mmlab/mmaction2
mmaction/models/utils/graph.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py
Apache-2.0
def normalize_digraph(A: np.ndarray, dim: int = 0) -> np.ndarray: """Normalize the digraph according to the given dimension. Args: A (np.ndarray): The adjacency matrix. dim (int): The dimension to perform normalization. Defaults to 0. Returns: np.ndarray: The normalized adjacency matrix. """ # A is a 2D square array Dl = np.sum(A, dim) h, w = A.shape Dn = np.zeros((w, w)) for i in range(w): if Dl[i] > 0: Dn[i, i] = Dl[i]**(-1) AD = np.dot(A, Dn) return AD
Normalize the digraph according to the given dimension. Args: A (np.ndarray): The adjacency matrix. dim (int): The dimension to perform normalization. Defaults to 0. Returns: np.ndarray: The normalized adjacency matrix.
normalize_digraph
python
open-mmlab/mmaction2
mmaction/models/utils/graph.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py
Apache-2.0
def get_hop_distance(num_node: int, edges: List[Tuple[int, int]], max_hop: int = 1) -> np.ndarray: """Get n-hop distance matrix by edges. Args: num_node (int): The number of nodes of the graph. edges (list[tuple[int, int]]): The edges of the graph. max_hop (int): The maximal distance between two connected nodes. Defaults to 1. Returns: np.ndarray: The n-hop distance matrix. """ A = np.eye(num_node) for i, j in edges: A[i, j] = 1 A[j, i] = 1 # compute hop steps hop_dis = np.zeros((num_node, num_node)) + np.inf transfer_mat = [np.linalg.matrix_power(A, d) for d in range(max_hop + 1)] arrive_mat = (np.stack(transfer_mat) > 0) for d in range(max_hop, -1, -1): hop_dis[arrive_mat[d]] = d return hop_dis
Get n-hop distance matrix by edges. Args: num_node (int): The number of nodes of the graph. edges (list[tuple[int, int]]): The edges of the graph. max_hop (int): The maximal distance between two connected nodes. Defaults to 1. Returns: np.ndarray: The n-hop distance matrix.
get_hop_distance
python
open-mmlab/mmaction2
mmaction/models/utils/graph.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/utils/graph.py
Apache-2.0
def format_label(value: LABEL_TYPE) -> torch.Tensor: """Convert various python types to label-format tensor. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`, :class:`int`. Args: value (torch.Tensor | numpy.ndarray | Sequence | int): Label value. Returns: :obj:`torch.Tensor`: The formatted label tensor. """ # Handle single number if isinstance(value, (torch.Tensor, np.ndarray)) and value.ndim == 0: value = int(value.item()) if isinstance(value, np.ndarray): value = torch.from_numpy(value).to(torch.long) elif isinstance(value, Sequence) and not is_str(value): value = torch.tensor(value).to(torch.long) elif isinstance(value, int): value = torch.LongTensor([value]) elif not isinstance(value, torch.Tensor): raise TypeError(f'Type {type(value)} is not an available label type.') return value
Convert various python types to label-format tensor. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`, :class:`int`. Args: value (torch.Tensor | numpy.ndarray | Sequence | int): Label value. Returns: :obj:`torch.Tensor`: The formatted label tensor.
format_label
python
open-mmlab/mmaction2
mmaction/structures/action_data_sample.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/structures/action_data_sample.py
Apache-2.0
def format_score(value: SCORE_TYPE) -> Union[torch.Tensor, Dict]: """Convert various python types to score-format tensor. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`. Args: value (torch.Tensor | numpy.ndarray | Sequence | dict): Score values or dict of scores values. Returns: :obj:`torch.Tensor` | dict: The formatted scores. """ if isinstance(value, np.ndarray): value = torch.from_numpy(value).float() elif isinstance(value, Sequence) and not is_str(value): value = torch.tensor(value).float() elif isinstance(value, dict): for k, v in value.items(): value[k] = format_score(v) elif not isinstance(value, torch.Tensor): raise TypeError(f'Type {type(value)} is not an available label type.') return value
Convert various python types to score-format tensor. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`. Args: value (torch.Tensor | numpy.ndarray | Sequence | dict): Score values or dict of scores values. Returns: :obj:`torch.Tensor` | dict: The formatted scores.
format_score
python
open-mmlab/mmaction2
mmaction/structures/action_data_sample.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/structures/action_data_sample.py
Apache-2.0
def bbox_target(pos_bboxes_list: List[torch.Tensor], neg_bboxes_list: List[torch.Tensor], gt_labels: List[torch.Tensor], cfg: Union[dict, mmengine.ConfigDict]) -> tuple: """Generate classification targets for bboxes. Args: pos_bboxes_list (List[torch.Tensor]): Positive bboxes list. neg_bboxes_list (List[torch.Tensor]): Negative bboxes list. gt_labels (List[torch.Tensor]): Groundtruth classification label list. cfg (dict | mmengine.ConfigDict): RCNN config. Returns: tuple: Label and label_weight for bboxes. """ labels, label_weights = [], [] pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight assert len(pos_bboxes_list) == len(neg_bboxes_list) == len(gt_labels) length = len(pos_bboxes_list) for i in range(length): pos_bboxes = pos_bboxes_list[i] neg_bboxes = neg_bboxes_list[i] gt_label = gt_labels[i] num_pos = pos_bboxes.size(0) num_neg = neg_bboxes.size(0) num_samples = num_pos + num_neg label = F.pad(gt_label, (0, 0, 0, num_neg)) label_weight = pos_bboxes.new_zeros(num_samples) label_weight[:num_pos] = pos_weight label_weight[-num_neg:] = 1. labels.append(label) label_weights.append(label_weight) labels = torch.cat(labels, 0) label_weights = torch.cat(label_weights, 0) return labels, label_weights
Generate classification targets for bboxes. Args: pos_bboxes_list (List[torch.Tensor]): Positive bboxes list. neg_bboxes_list (List[torch.Tensor]): Negative bboxes list. gt_labels (List[torch.Tensor]): Groundtruth classification label list. cfg (dict | mmengine.ConfigDict): RCNN config. Returns: tuple: Label and label_weight for bboxes.
bbox_target
python
open-mmlab/mmaction2
mmaction/structures/bbox/bbox_target.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/structures/bbox/bbox_target.py
Apache-2.0
def bbox2result(bboxes: torch.Tensor, labels: torch.Tensor, num_classes: int, thr: float = 0.01) -> list: """Convert detection results to a list of numpy arrays. This identifies single-label classification (as opposed to multi-label) through the thr parameter which is set to a negative value. ToDo: The ideal way would be for this to be automatically set when the Currently, the way to set this is to set ``test_cfg.rcnn.action_thr=-1.0`` model cfg uses multilabel=False, however this could be a breaking change and is left as a future exercise. NB - this should not interfere with the evaluation in any case. Args: bboxes (torch.Tensor): shape ``(n, 4)``. labels (torch.Tensor): shape ``(n, num_classes)``. num_classes (int): class number, including background class. thr (float): The score threshold used when converting predictions to detection results. If a single negative value, uses single-label classification. Returns: List(ndarray): bbox results of each class. """ if bboxes.shape[0] == 0: return list(np.zeros((num_classes - 1, 0, 5), dtype=np.float32)) bboxes = bboxes.cpu().numpy() scores = labels.cpu().numpy() # rename for clarification # Although we can handle single-label classification, we still want scores assert scores.shape[-1] > 1 # Robustly check for multi/single-label: if not hasattr(thr, '__len__'): multilabel = thr >= 0 thr = (thr, ) * num_classes else: multilabel = True # Check Shape assert scores.shape[1] == num_classes assert len(thr) == num_classes result = [] for i in range(num_classes - 1): if multilabel: where = (scores[:, i + 1] > thr[i + 1]) else: where = (scores[:, 1:].argmax(axis=1) == i) result.append( np.concatenate((bboxes[where, :4], scores[where, i + 1:i + 2]), axis=1)) return result
Convert detection results to a list of numpy arrays. This identifies single-label classification (as opposed to multi-label) through the thr parameter which is set to a negative value. ToDo: The ideal way would be for this to be automatically set when the Currently, the way to set this is to set ``test_cfg.rcnn.action_thr=-1.0`` model cfg uses multilabel=False, however this could be a breaking change and is left as a future exercise. NB - this should not interfere with the evaluation in any case. Args: bboxes (torch.Tensor): shape ``(n, 4)``. labels (torch.Tensor): shape ``(n, num_classes)``. num_classes (int): class number, including background class. thr (float): The score threshold used when converting predictions to detection results. If a single negative value, uses single-label classification. Returns: List(ndarray): bbox results of each class.
bbox2result
python
open-mmlab/mmaction2
mmaction/structures/bbox/transforms.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/structures/bbox/transforms.py
Apache-2.0
def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True
Check if norm layer is in correct train state.
check_norm_state
python
open-mmlab/mmaction2
mmaction/testing/_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/testing/_utils.py
Apache-2.0
def generate_backbone_demo_inputs(input_shape=(1, 3, 64, 64)): """Create a superset of inputs needed to run backbone. Args: input_shape (tuple): input batch dimensions. Defaults to ``(1, 3, 64, 64)``. """ imgs = np.random.random(input_shape) imgs = torch.FloatTensor(imgs) return imgs
Create a superset of inputs needed to run backbone. Args: input_shape (tuple): input batch dimensions. Defaults to ``(1, 3, 64, 64)``.
generate_backbone_demo_inputs
python
open-mmlab/mmaction2
mmaction/testing/_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/testing/_utils.py
Apache-2.0
def generate_recognizer_demo_inputs( input_shape=(1, 3, 3, 224, 224), model_type='2D'): """Create a superset of inputs needed to run test or train batches. Args: input_shape (tuple): input batch dimensions. Default: (1, 250, 3, 224, 224). model_type (str): Model type for data generation, from {'2D', '3D'}. Default:'2D' """ if len(input_shape) == 5: (N, L, _, _, _) = input_shape elif len(input_shape) == 6: (N, M, _, L, _, _) = input_shape imgs = np.random.random(input_shape) if model_type == '2D' or model_type == 'skeleton': gt_labels = torch.LongTensor([2] * N) elif model_type == '3D': gt_labels = torch.LongTensor([2] * M) elif model_type == 'audio': gt_labels = torch.LongTensor([2] * L) else: raise ValueError(f'Data type {model_type} is not available') inputs = {'imgs': torch.FloatTensor(imgs), 'gt_labels': gt_labels} return inputs
Create a superset of inputs needed to run test or train batches. Args: input_shape (tuple): input batch dimensions. Default: (1, 250, 3, 224, 224). model_type (str): Model type for data generation, from {'2D', '3D'}. Default:'2D'
generate_recognizer_demo_inputs
python
open-mmlab/mmaction2
mmaction/testing/_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/testing/_utils.py
Apache-2.0
def get_cfg(config_type, fname): """Grab configs necessary to create a recognizer. These are deep copied to allow for safe modification of parameters without influencing other tests. """ config_types = ('recognition', 'recognition_audio', 'localization', 'detection', 'skeleton', 'retrieval') assert config_type in config_types repo_dpath = osp.dirname(osp.dirname(osp.dirname(__file__))) config_dpath = osp.join(repo_dpath, 'configs/' + config_type) config_fpath = osp.join(config_dpath, fname) if not osp.exists(config_dpath): raise Exception('Cannot find config path') config = mmengine.Config.fromfile(config_fpath) return config
Grab configs necessary to create a recognizer. These are deep copied to allow for safe modification of parameters without influencing other tests.
get_cfg
python
open-mmlab/mmaction2
mmaction/testing/_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/testing/_utils.py
Apache-2.0
def collect_env(): """Collect the information of the running environments.""" env_info = collect_basic_env() env_info['MMAction2'] = ( mmaction.__version__ + '+' + get_git_hash(digits=7)) env_info['MMCV'] = (mmcv.__version__) try: import mmdet env_info['MMDetection'] = (mmdet.__version__) except ImportError: pass try: import mmpose env_info['MMPose'] = (mmpose.__version__) except ImportError: pass return env_info
Collect the information of the running environments.
collect_env
python
open-mmlab/mmaction2
mmaction/utils/collect_env.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/utils/collect_env.py
Apache-2.0
def require(dep, install=None): """A wrapper of function for extra package requirements. Args: dep (str): The dependency package name, like ``transformers`` or ``transformers>=4.28.0``. install (str, optional): The installation command hint. Defaults to None, which means to use "pip install dep". """ def wrapper(fn): assert isfunction(fn) @wraps(fn) def ask_install(*args, **kwargs): name = fn.__qualname__.replace('.__init__', '') ins = install or f'pip install "{dep}"' raise ImportError( f'{name} requires {dep}, please install it by `{ins}`.') if satisfy_requirement(dep): fn._verify_require = getattr(fn, '_verify_require', lambda: None) return fn ask_install._verify_require = ask_install return ask_install return wrapper
A wrapper of function for extra package requirements. Args: dep (str): The dependency package name, like ``transformers`` or ``transformers>=4.28.0``. install (str, optional): The installation command hint. Defaults to None, which means to use "pip install dep".
require
python
open-mmlab/mmaction2
mmaction/utils/dependency.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/utils/dependency.py
Apache-2.0
def _register_hooks(self, layer_name: str) -> None: """Register forward and backward hook to a layer, given layer_name, to obtain gradients and activations. Args: layer_name (str): name of the layer. """ def get_gradients(module, grad_input, grad_output): self.target_gradients = grad_output[0].detach() def get_activations(module, input, output): self.target_activations = output.clone().detach() layer_ls = layer_name.split('/') prev_module = self.model for layer in layer_ls: prev_module = prev_module._modules[layer] target_layer = prev_module target_layer.register_forward_hook(get_activations) target_layer.register_backward_hook(get_gradients)
Register forward and backward hook to a layer, given layer_name, to obtain gradients and activations. Args: layer_name (str): name of the layer.
_register_hooks
python
open-mmlab/mmaction2
mmaction/utils/gradcam_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/utils/gradcam_utils.py
Apache-2.0
def _calculate_localization_map(self, data: dict, use_labels: bool, delta=1e-20) -> tuple: """Calculate localization map for all inputs with Grad-CAM. Args: data (dict): model inputs, generated by test pipeline, use_labels (bool): Whether to use given labels to generate localization map. delta (float): used in localization map normalization, must be small enough. Please make sure `localization_map_max - localization_map_min >> delta` Returns: localization_map (torch.Tensor): the localization map for input imgs. preds (torch.Tensor): Model predictions with shape (batch_size, num_classes). """ inputs = data['inputs'] # use score before softmax self.model.cls_head.average_clips = 'score' # model forward & backward results = self.model.test_step(data) preds = [result.pred_score for result in results] preds = torch.stack(preds) if use_labels: labels = [result.gt_label for result in results] labels = torch.stack(labels) score = torch.gather(preds, dim=1, index=labels) else: score = torch.max(preds, dim=-1)[0] self.model.zero_grad() score = torch.sum(score) score.backward() imgs = torch.stack(inputs) if self.is_recognizer2d: # [batch_size, num_segments, 3, H, W] b, t, _, h, w = imgs.size() else: # [batch_size, num_crops*num_clips, 3, clip_len, H, W] b1, b2, _, t, h, w = imgs.size() b = b1 * b2 gradients = self.target_gradients activations = self.target_activations if self.is_recognizer2d: # [B*Tg, C', H', W'] b_tg, c, _, _ = gradients.size() tg = b_tg // b else: # source shape: [B, C', Tg, H', W'] _, c, tg, _, _ = gradients.size() # target shape: [B, Tg, C', H', W'] gradients = gradients.permute(0, 2, 1, 3, 4) activations = activations.permute(0, 2, 1, 3, 4) # calculate & resize to [B, 1, T, H, W] weights = torch.mean(gradients.view(b, tg, c, -1), dim=3) weights = weights.view(b, tg, c, 1, 1) activations = activations.view([b, tg, c] + list(activations.size()[-2:])) localization_map = torch.sum( weights * activations, dim=2, keepdim=True) localization_map = F.relu(localization_map) localization_map = localization_map.permute(0, 2, 1, 3, 4) localization_map = F.interpolate( localization_map, size=(t, h, w), mode='trilinear', align_corners=False) # Normalize the localization map. localization_map_min, localization_map_max = ( torch.min(localization_map.view(b, -1), dim=-1, keepdim=True)[0], torch.max(localization_map.view(b, -1), dim=-1, keepdim=True)[0]) localization_map_min = torch.reshape( localization_map_min, shape=(b, 1, 1, 1, 1)) localization_map_max = torch.reshape( localization_map_max, shape=(b, 1, 1, 1, 1)) localization_map = (localization_map - localization_map_min) / ( localization_map_max - localization_map_min + delta) localization_map = localization_map.data return localization_map.squeeze(dim=1), preds
Calculate localization map for all inputs with Grad-CAM. Args: data (dict): model inputs, generated by test pipeline, use_labels (bool): Whether to use given labels to generate localization map. delta (float): used in localization map normalization, must be small enough. Please make sure `localization_map_max - localization_map_min >> delta` Returns: localization_map (torch.Tensor): the localization map for input imgs. preds (torch.Tensor): Model predictions with shape (batch_size, num_classes).
_calculate_localization_map
python
open-mmlab/mmaction2
mmaction/utils/gradcam_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/utils/gradcam_utils.py
Apache-2.0
def _alpha_blending(self, localization_map: torch.Tensor, input_imgs: torch.Tensor, alpha: float) -> torch.Tensor: """Blend heatmaps and model input images and get visulization results. Args: localization_map (torch.Tensor): localization map for all inputs, generated with Grad-CAM. input_imgs (torch.Tensor): model inputs, raw images. alpha (float): transparency level of the heatmap, in the range [0, 1]. Returns: torch.Tensor: blending results for localization map and input images, with shape [B, T, H, W, 3] and pixel values in RGB order within range [0, 1]. """ # localization_map shape [B, T, H, W] localization_map = localization_map.cpu() # heatmap shape [B, T, H, W, 3] in RGB order heatmap = self.colormap(localization_map.detach().numpy()) heatmap = heatmap[..., :3] heatmap = torch.from_numpy(heatmap) input_imgs = torch.stack(input_imgs) # Permute input imgs to [B, T, H, W, 3], like heatmap if self.is_recognizer2d: # Recognizer2D input (B, T, C, H, W) curr_inp = input_imgs.permute(0, 1, 3, 4, 2) else: # Recognizer3D input (B', num_clips*num_crops, C, T, H, W) # B = B' * num_clips * num_crops curr_inp = input_imgs.view([-1] + list(input_imgs.size()[2:])) curr_inp = curr_inp.permute(0, 2, 3, 4, 1) # renormalize input imgs to [0, 1] curr_inp = curr_inp.cpu().float() curr_inp /= 255. # alpha blending blended_imgs = alpha * heatmap + (1 - alpha) * curr_inp return blended_imgs
Blend heatmaps and model input images and get visulization results. Args: localization_map (torch.Tensor): localization map for all inputs, generated with Grad-CAM. input_imgs (torch.Tensor): model inputs, raw images. alpha (float): transparency level of the heatmap, in the range [0, 1]. Returns: torch.Tensor: blending results for localization map and input images, with shape [B, T, H, W, 3] and pixel values in RGB order within range [0, 1].
_alpha_blending
python
open-mmlab/mmaction2
mmaction/utils/gradcam_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/utils/gradcam_utils.py
Apache-2.0
def __call__(self, data: dict, use_labels: bool = False, alpha: float = 0.5) -> tuple: """Visualize the localization maps on their corresponding inputs as heatmap, using Grad-CAM. Generate visualization results for **ALL CROPS**. For example, for I3D model, if `clip_len=32, num_clips=10` and use `ThreeCrop` in test pipeline, then for every model inputs, there are 960(32*10*3) images generated. Args: data (dict): model inputs, generated by test pipeline. use_labels (bool): Whether to use given labels to generate localization map. alpha (float): transparency level of the heatmap, in the range [0, 1]. Returns: blended_imgs (torch.Tensor): Visualization results, blended by localization maps and model inputs. preds (torch.Tensor): Model predictions for inputs. """ # localization_map shape [B, T, H, W] # preds shape [batch_size, num_classes] localization_map, preds = self._calculate_localization_map( data, use_labels=use_labels) # blended_imgs shape [B, T, H, W, 3] blended_imgs = self._alpha_blending(localization_map, data['inputs'], alpha) # blended_imgs shape [B, T, H, W, 3] # preds shape [batch_size, num_classes] # Recognizer2D: B = batch_size, T = num_segments # Recognizer3D: B = batch_size * num_crops * num_clips, T = clip_len return blended_imgs, preds
Visualize the localization maps on their corresponding inputs as heatmap, using Grad-CAM. Generate visualization results for **ALL CROPS**. For example, for I3D model, if `clip_len=32, num_clips=10` and use `ThreeCrop` in test pipeline, then for every model inputs, there are 960(32*10*3) images generated. Args: data (dict): model inputs, generated by test pipeline. use_labels (bool): Whether to use given labels to generate localization map. alpha (float): transparency level of the heatmap, in the range [0, 1]. Returns: blended_imgs (torch.Tensor): Visualization results, blended by localization maps and model inputs. preds (torch.Tensor): Model predictions for inputs.
__call__
python
open-mmlab/mmaction2
mmaction/utils/gradcam_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/utils/gradcam_utils.py
Apache-2.0
def get_random_string(length: int = 15) -> str: """Get random string with letters and digits. Args: length (int): Length of random string. Defaults to 15. """ return ''.join( random.choice(string.ascii_letters + string.digits) for _ in range(length))
Get random string with letters and digits. Args: length (int): Length of random string. Defaults to 15.
get_random_string
python
open-mmlab/mmaction2
mmaction/utils/misc.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/utils/misc.py
Apache-2.0
def frame_extract(video_path: str, short_side: Optional[int] = None, out_dir: str = './tmp'): """Extract frames given video_path. Args: video_path (str): The video path. short_side (int): Target short-side of the output image. Defaults to None, means keeping original shape. out_dir (str): The output directory. Defaults to ``'./tmp'``. """ # Load the video, extract frames into OUT_DIR/video_name target_dir = osp.join(out_dir, osp.basename(osp.splitext(video_path)[0])) os.makedirs(target_dir, exist_ok=True) # Should be able to handle videos up to several hours frame_tmpl = osp.join(target_dir, 'img_{:06d}.jpg') assert osp.exists(video_path), f'file not exit {video_path}' vid = cv2.VideoCapture(video_path) frames = [] frame_paths = [] flag, frame = vid.read() cnt = 0 new_h, new_w = None, None while flag: if short_side is not None: if new_h is None: h, w, _ = frame.shape new_w, new_h = mmcv.rescale_size((w, h), (short_side, np.Inf)) frame = mmcv.imresize(frame, (new_w, new_h)) frames.append(frame) frame_path = frame_tmpl.format(cnt + 1) frame_paths.append(frame_path) cv2.imwrite(frame_path, frame) cnt += 1 flag, frame = vid.read() return frame_paths, frames
Extract frames given video_path. Args: video_path (str): The video path. short_side (int): Target short-side of the output image. Defaults to None, means keeping original shape. out_dir (str): The output directory. Defaults to ``'./tmp'``.
frame_extract
python
open-mmlab/mmaction2
mmaction/utils/misc.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/utils/misc.py
Apache-2.0
def get_str_type(module: Union[str, ModuleType, FunctionType]) -> str: """Return the string type name of module. Args: module (str | ModuleType | FunctionType): The target module class Returns: Class name of the module """ if isinstance(module, str): str_type = module elif inspect.isclass(module) or inspect.isfunction(module): str_type = module.__name__ else: return None return str_type
Return the string type name of module. Args: module (str | ModuleType | FunctionType): The target module class Returns: Class name of the module
get_str_type
python
open-mmlab/mmaction2
mmaction/utils/misc.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/utils/misc.py
Apache-2.0
def register_all_modules(init_default_scope: bool = True) -> None: """Register all modules in mmaction into the registries. Args: init_default_scope (bool): Whether initialize the mmaction default scope. If True, the global default scope will be set to `mmaction`, and all registries will build modules from mmaction's registry node. To understand more about the registry, please refer to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md Defaults to True. """ import mmaction.datasets # noqa: F401,F403 import mmaction.engine # noqa: F401,F403 import mmaction.evaluation # noqa: F401,F403 import mmaction.models # noqa: F401,F403 import mmaction.structures # noqa: F401,F403 import mmaction.visualization # noqa: F401,F403 if init_default_scope: never_created = DefaultScope.get_current_instance() is None \ or not DefaultScope.check_instance_created('mmaction') if never_created: DefaultScope.get_instance('mmaction', scope_name='mmaction') return current_scope = DefaultScope.get_current_instance() if current_scope.scope_name != 'mmaction': warnings.warn('The current default scope ' f'"{current_scope.scope_name}" is not "mmaction", ' '`register_all_modules` will force set the current' 'default scope to "mmaction". If this is not as ' 'expected, please set `init_default_scope=False`.') # avoid name conflict new_instance_name = f'mmaction-{datetime.datetime.now()}' DefaultScope.get_instance(new_instance_name, scope_name='mmaction')
Register all modules in mmaction into the registries. Args: init_default_scope (bool): Whether initialize the mmaction default scope. If True, the global default scope will be set to `mmaction`, and all registries will build modules from mmaction's registry node. To understand more about the registry, please refer to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md Defaults to True.
register_all_modules
python
open-mmlab/mmaction2
mmaction/utils/setup_env.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/utils/setup_env.py
Apache-2.0
def _load_video(self, video: Union[np.ndarray, Sequence[np.ndarray], str], target_resolution: Optional[Tuple[int]] = None): """Load video from multiple source and convert to target resolution. Args: video (np.ndarray, str): The video to draw. target_resolution (Tuple[int], optional): Set to (desired_width desired_height) to have resized frames. If either dimension is None, the frames are resized by keeping the existing aspect ratio. Defaults to None. """ if isinstance(video, np.ndarray) or isinstance(video, list): frames = video elif isinstance(video, str): # video file path if isfile(video): try: import decord except ImportError: raise ImportError( 'Please install decord to load video file.') video = decord.VideoReader(video) frames = [x.asnumpy()[..., ::-1] for x in video] # rawframes folder path elif isdir(video): frame_list = sorted(list_dir_or_file(video, list_dir=False)) frames = [mmcv.imread(join_path(video, x)) for x in frame_list] else: raise TypeError(f'type of video {type(video)} not supported') if target_resolution is not None: w, h = target_resolution frame_h, frame_w, _ = frames[0].shape if w == -1: w = int(h / frame_h * frame_w) if h == -1: h = int(w / frame_w * frame_h) frames = [mmcv.imresize(f, (w, h)) for f in frames] return frames
Load video from multiple source and convert to target resolution. Args: video (np.ndarray, str): The video to draw. target_resolution (Tuple[int], optional): Set to (desired_width desired_height) to have resized frames. If either dimension is None, the frames are resized by keeping the existing aspect ratio. Defaults to None.
_load_video
python
open-mmlab/mmaction2
mmaction/visualization/action_visualizer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/visualization/action_visualizer.py
Apache-2.0
def add_datasample(self, name: str, video: Union[np.ndarray, Sequence[np.ndarray], str], data_sample: Optional[ActionDataSample] = None, draw_gt: bool = True, draw_pred: bool = True, draw_score: bool = True, rescale_factor: Optional[float] = None, show_frames: bool = False, text_cfg: dict = dict(), wait_time: float = 0.1, out_path: Optional[str] = None, out_type: str = 'img', target_resolution: Optional[Tuple[int]] = None, step: int = 0, fps: int = 4) -> None: """Draw datasample and save to all backends. - If ``out_path`` is specified, all storage backends are ignored and save the videos to the ``out_path``. - If ``show_frames`` is True, plot the frames in a window sequentially, please confirm you are able to access the graphical interface. Args: name (str): The frame identifier. video (np.ndarray, str): The video to draw. supports decoded np.ndarray, video file path, rawframes folder path. data_sample (:obj:`ActionDataSample`, optional): The annotation of the frame. Defaults to None. draw_gt (bool): Whether to draw ground truth labels. Defaults to True. draw_pred (bool): Whether to draw prediction labels. Defaults to True. draw_score (bool): Whether to draw the prediction scores of prediction categories. Defaults to True. rescale_factor (float, optional): Rescale the frame by the rescale factor before visualization. Defaults to None. show_frames (bool): Whether to display the frames of the video. Defaults to False. text_cfg (dict): Extra text setting, which accepts arguments of :attr:`mmengine.Visualizer.draw_texts`. Defaults to an empty dict. wait_time (float): Delay in seconds. 0 is the special value that means "forever". Defaults to 0.1. out_path (str, optional): Extra folder to save the visualization result. If specified, the visualizer will only save the result frame to the out_path and ignore its storage backends. Defaults to None. out_type (str): Output format type, choose from 'img', 'gif', 'video'. Defaults to ``'img'``. target_resolution (Tuple[int], optional): Set to (desired_width desired_height) to have resized frames. If either dimension is None, the frames are resized by keeping the existing aspect ratio. Defaults to None. step (int): Global step value to record. Defaults to 0. fps (int): Frames per second for saving video. Defaults to 4. """ classes = None video = self._load_video(video, target_resolution) tol_video = len(video) if self.dataset_meta is not None: classes = self.dataset_meta.get('classes', None) if data_sample is None: data_sample = ActionDataSample() resulted_video = [] for frame_idx, frame in enumerate(video): frame_name = 'frame %d of %s' % (frame_idx + 1, name) if rescale_factor is not None: frame = mmcv.imrescale(frame, rescale_factor) texts = ['Frame %d of total %d frames' % (frame_idx, tol_video)] self.set_image(frame) if draw_gt and 'gt_labels' in data_sample: gt_labels = data_sample.gt_label idx = gt_labels.tolist() class_labels = [''] * len(idx) if classes is not None: class_labels = [f' ({classes[i]})' for i in idx] labels = [ str(idx[i]) + class_labels[i] for i in range(len(idx)) ] prefix = 'Ground truth: ' texts.append(prefix + ('\n' + ' ' * len(prefix)).join(labels)) if draw_pred and 'pred_labels' in data_sample: pred_labels = data_sample.pred_labels idx = pred_labels.item.tolist() score_labels = [''] * len(idx) class_labels = [''] * len(idx) if draw_score and 'score' in pred_labels: score_labels = [ f', {pred_labels.score[i].item():.2f}' for i in idx ] if classes is not None: class_labels = [f' ({classes[i]})' for i in idx] labels = [ str(idx[i]) + score_labels[i] + class_labels[i] for i in range(len(idx)) ] prefix = 'Prediction: ' texts.append(prefix + ('\n' + ' ' * len(prefix)).join(labels)) img_scale = _get_adaptive_scale(frame.shape[:2]) _text_cfg = { 'positions': np.array([(img_scale * 5, ) * 2]).astype(np.int32), 'font_sizes': int(img_scale * 7), 'font_families': 'monospace', 'colors': 'white', 'bboxes': dict(facecolor='black', alpha=0.5, boxstyle='Round'), } _text_cfg.update(text_cfg) self.draw_texts('\n'.join(texts), **_text_cfg) drawn_img = self.get_image() resulted_video.append(drawn_img) if show_frames: frame_wait_time = 1. / fps for frame_idx, drawn_img in enumerate(resulted_video): frame_name = 'frame %d of %s' % (frame_idx + 1, name) if frame_idx < len(resulted_video) - 1: wait_time = frame_wait_time else: wait_time = wait_time self.show( drawn_img[:, :, ::-1], win_name=frame_name, wait_time=wait_time) resulted_video = np.array(resulted_video) if out_path is not None: save_dir, save_name = osp.split(out_path) vis_backend_cfg = dict(type='LocalVisBackend', save_dir=save_dir) tmp_local_vis_backend = VISBACKENDS.build(vis_backend_cfg) tmp_local_vis_backend.add_video( save_name, resulted_video, step=step, fps=fps, out_type=out_type) else: self.add_video( name, resulted_video, step=step, fps=fps, out_type=out_type) return resulted_video
Draw datasample and save to all backends. - If ``out_path`` is specified, all storage backends are ignored and save the videos to the ``out_path``. - If ``show_frames`` is True, plot the frames in a window sequentially, please confirm you are able to access the graphical interface. Args: name (str): The frame identifier. video (np.ndarray, str): The video to draw. supports decoded np.ndarray, video file path, rawframes folder path. data_sample (:obj:`ActionDataSample`, optional): The annotation of the frame. Defaults to None. draw_gt (bool): Whether to draw ground truth labels. Defaults to True. draw_pred (bool): Whether to draw prediction labels. Defaults to True. draw_score (bool): Whether to draw the prediction scores of prediction categories. Defaults to True. rescale_factor (float, optional): Rescale the frame by the rescale factor before visualization. Defaults to None. show_frames (bool): Whether to display the frames of the video. Defaults to False. text_cfg (dict): Extra text setting, which accepts arguments of :attr:`mmengine.Visualizer.draw_texts`. Defaults to an empty dict. wait_time (float): Delay in seconds. 0 is the special value that means "forever". Defaults to 0.1. out_path (str, optional): Extra folder to save the visualization result. If specified, the visualizer will only save the result frame to the out_path and ignore its storage backends. Defaults to None. out_type (str): Output format type, choose from 'img', 'gif', 'video'. Defaults to ``'img'``. target_resolution (Tuple[int], optional): Set to (desired_width desired_height) to have resized frames. If either dimension is None, the frames are resized by keeping the existing aspect ratio. Defaults to None. step (int): Global step value to record. Defaults to 0. fps (int): Frames per second for saving video. Defaults to 4.
add_datasample
python
open-mmlab/mmaction2
mmaction/visualization/action_visualizer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/visualization/action_visualizer.py
Apache-2.0
def add_video( self, name: str, image: np.ndarray, step: int = 0, fps: int = 4, out_type: str = 'img', ) -> None: """Record the image. Args: name (str): The image identifier. image (np.ndarray, optional): The image to be saved. The format should be RGB. Default to None. step (int): Global step value to record. Default to 0. fps (int): Frames per second for saving video. Defaults to 4. out_type (str): Output format type, choose from 'img', 'gif', 'video'. Defaults to ``'img'``. """ for vis_backend in self._vis_backends.values(): vis_backend.add_video( name, image, step=step, fps=fps, out_type=out_type) # type: ignore
Record the image. Args: name (str): The image identifier. image (np.ndarray, optional): The image to be saved. The format should be RGB. Default to None. step (int): Global step value to record. Default to 0. fps (int): Frames per second for saving video. Defaults to 4. out_type (str): Output format type, choose from 'img', 'gif', 'video'. Defaults to ``'img'``.
add_video
python
open-mmlab/mmaction2
mmaction/visualization/action_visualizer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/visualization/action_visualizer.py
Apache-2.0
def add_video(self, name: str, frames: np.ndarray, step: int = 0, fps: Optional[int] = 4, out_type: Optional[int] = 'img', **kwargs) -> None: """Record the frames of a video to disk. Args: name (str): The video identifier (frame folder). frames (np.ndarray): The frames to be saved. The format should be RGB. The shape should be (T, H, W, C). step (int): Global step value to record. Defaults to 0. out_type (str): Output format type, choose from 'img', 'gif', 'video'. Defaults to ``'img'``. fps (int): Frames per second for saving video. Defaults to 4. """ assert frames.dtype == np.uint8 if out_type == 'img': frames_dir = osp.join(self._save_dir, name, f'frames_{step}') os.makedirs(frames_dir, exist_ok=True) for idx, frame in enumerate(frames): drawn_image = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) save_file_name = f'{idx}.png' cv2.imwrite(osp.join(frames_dir, save_file_name), drawn_image) else: try: from moviepy.editor import ImageSequenceClip except ImportError: raise ImportError('Please install moviepy to enable ' 'output file.') frames = [x[..., ::-1] for x in frames] video_clips = ImageSequenceClip(frames, fps=fps) name = osp.splitext(name)[0] if out_type == 'gif': out_path = osp.join(self._save_dir, name + '.gif') video_clips.write_gif(out_path, logger=None) elif out_type == 'video': out_path = osp.join(self._save_dir, name + '.mp4') video_clips.write_videofile( out_path, remove_temp=True, logger=None)
Record the frames of a video to disk. Args: name (str): The video identifier (frame folder). frames (np.ndarray): The frames to be saved. The format should be RGB. The shape should be (T, H, W, C). step (int): Global step value to record. Defaults to 0. out_type (str): Output format type, choose from 'img', 'gif', 'video'. Defaults to ``'img'``. fps (int): Frames per second for saving video. Defaults to 4.
add_video
python
open-mmlab/mmaction2
mmaction/visualization/video_backend.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/visualization/video_backend.py
Apache-2.0
def add_video(self, name: str, frames: np.ndarray, fps: int = 4, **kwargs) -> None: """Record the frames of a video to wandb. Note that this requires the ``moviepy`` package. Args: name (str): The video identifier (frame folder). frames (np.ndarray): The frames to be saved. The format should be RGB. The shape should be (T, H, W, C). step is a useless parameter that Wandb does not need. fps (int): Frames per second. Defaults to 4. """ frames = frames.transpose(0, 3, 1, 2) self._wandb.log({'video': wandb.Video(frames, fps=fps, format='gif')})
Record the frames of a video to wandb. Note that this requires the ``moviepy`` package. Args: name (str): The video identifier (frame folder). frames (np.ndarray): The frames to be saved. The format should be RGB. The shape should be (T, H, W, C). step is a useless parameter that Wandb does not need. fps (int): Frames per second. Defaults to 4.
add_video
python
open-mmlab/mmaction2
mmaction/visualization/video_backend.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/visualization/video_backend.py
Apache-2.0
def add_video(self, name: str, frames: np.ndarray, step: int = 0, fps: int = 4, **kwargs) -> None: """Record the frames of a video to tensorboard. Note that this requires the ``moviepy`` package. Args: name (str): The video identifier (frame folder). frames (np.ndarray): The frames to be saved. The format should be RGB. The shape should be (T, H, W, C). step (int): Global step value to record. Defaults to 0. fps (int): Frames per second. Defaults to 4. """ frames = frames.transpose(0, 3, 1, 2) frames = frames.reshape(1, *frames.shape) self._tensorboard.add_video(name, frames, global_step=step, fps=fps)
Record the frames of a video to tensorboard. Note that this requires the ``moviepy`` package. Args: name (str): The video identifier (frame folder). frames (np.ndarray): The frames to be saved. The format should be RGB. The shape should be (T, H, W, C). step (int): Global step value to record. Defaults to 0. fps (int): Frames per second. Defaults to 4.
add_video
python
open-mmlab/mmaction2
mmaction/visualization/video_backend.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/visualization/video_backend.py
Apache-2.0
def check_crop(origin_imgs, result_imgs, result_bbox, num_crops=1): """Check if the result_bbox is in correspond to result_imgs.""" def check_single_crop(origin_imgs, result_imgs, result_bbox): result_img_shape = result_imgs[0].shape[:2] crop_w = result_bbox[2] - result_bbox[0] crop_h = result_bbox[3] - result_bbox[1] crop_shape = (crop_h, crop_w) if not crop_shape == result_img_shape: return False left, top, right, bottom = result_bbox return np.array_equal( np.array(origin_imgs)[:, top:bottom, left:right, :], np.array(result_imgs)) if result_bbox.ndim == 1: return check_single_crop(origin_imgs, result_imgs, result_bbox) if result_bbox.ndim == 2: num_batch = len(origin_imgs) for i, bbox in enumerate(result_bbox): if num_crops == 10: if (i // num_batch) % 2 == 0: flag = check_single_crop([origin_imgs[i % num_batch]], [result_imgs[i]], bbox) else: flag = check_single_crop([origin_imgs[i % num_batch]], [np.flip(result_imgs[i], axis=1)], bbox) else: flag = check_single_crop([origin_imgs[i % num_batch]], [result_imgs[i]], bbox) if not flag: return False return True else: # bbox has a wrong dimension return False
Check if the result_bbox is in correspond to result_imgs.
check_crop
python
open-mmlab/mmaction2
tests/datasets/transforms/test_processing.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/datasets/transforms/test_processing.py
Apache-2.0
def check_flip(origin_imgs, result_imgs, flip_type): """Check if the origin_imgs are flipped correctly into result_imgs in different flip_types.""" n, _, _, _ = np.shape(origin_imgs) if flip_type == 'horizontal': for i in range(n): if np.any(result_imgs[i] != np.fliplr(origin_imgs[i])): return False else: # yapf: disable for i in range(n): if np.any(result_imgs[i] != np.transpose(np.fliplr(np.transpose(origin_imgs[i], (1, 0, 2))), (1, 0, 2))): # noqa:E501 return False # yapf: enable return True
Check if the origin_imgs are flipped correctly into result_imgs in different flip_types.
check_flip
python
open-mmlab/mmaction2
tests/datasets/transforms/test_processing.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/datasets/transforms/test_processing.py
Apache-2.0
def check_flip(origin_imgs, result_imgs, flip_type): """Check if the origin_imgs are flipped correctly into result_imgs in different flip_types.""" n, _, _, _ = np.shape(origin_imgs) if flip_type == 'horizontal': for i in range(n): if np.any(result_imgs[i] != np.fliplr(origin_imgs[i])): return False else: # yapf: disable for i in range(n): if np.any(result_imgs[i] != np.transpose(np.fliplr(np.transpose(origin_imgs[i], (1, 0, 2))), (1, 0, 2))): # noqa:E501 return False # yapf: enable return True
Check if the origin_imgs are flipped correctly into result_imgs in different flip_types.
check_flip
python
open-mmlab/mmaction2
tests/datasets/transforms/test_wrappers.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/datasets/transforms/test_wrappers.py
Apache-2.0
def test_evaluate(self): """Test using the metric in the same way as Evalutor.""" pred = [ ActionDataSample().set_pred_score(i).set_pred_label( j).set_gt_label(k).to_dict() for i, j, k in zip([ torch.tensor([0.7, 0.0, 0.3]), torch.tensor([0.5, 0.2, 0.3]), torch.tensor([0.4, 0.5, 0.1]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), ], [0, 0, 1, 2, 2, 2], [0, 0, 1, 2, 1, 0]) ] # Test with score (use score instead of label if score exists) metric = METRICS.build(dict(type='ConfusionMatrix')) metric.process(None, pred) res = metric.evaluate(6) self.assertIsInstance(res, dict) self.assertTensorEqual( res['confusion_matrix/result'], torch.tensor([ [2, 0, 1], [0, 1, 1], [0, 0, 1], ])) # Test with label for sample in pred: del sample['pred_score'] metric = METRICS.build(dict(type='ConfusionMatrix')) metric.process(None, pred) with self.assertRaisesRegex(AssertionError, 'Please specify the `num_classes`'): metric.evaluate(6) metric = METRICS.build(dict(type='ConfusionMatrix', num_classes=3)) metric.process(None, pred) self.assertIsInstance(res, dict) self.assertTensorEqual( res['confusion_matrix/result'], torch.tensor([ [2, 0, 1], [0, 1, 1], [0, 0, 1], ]))
Test using the metric in the same way as Evalutor.
test_evaluate
python
open-mmlab/mmaction2
tests/evaluation/metrics/test_acc_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/evaluation/metrics/test_acc_metric.py
Apache-2.0
def gt_confusion_matrix(gt_labels, pred_labels, normalize=None): """Calculate the ground truth confusion matrix.""" max_index = max(max(gt_labels), max(pred_labels)) confusion_mat = np.zeros((max_index + 1, max_index + 1), dtype=np.int64) for gt, pred in zip(gt_labels, pred_labels): confusion_mat[gt][pred] += 1 del_index = [] for i in range(max_index): if sum(confusion_mat[i]) == 0 and sum(confusion_mat[:, i]) == 0: del_index.append(i) confusion_mat = np.delete(confusion_mat, del_index, axis=0) confusion_mat = np.delete(confusion_mat, del_index, axis=1) if normalize is not None: confusion_mat = np.array(confusion_mat, dtype=np.float64) m, n = confusion_mat.shape if normalize == 'true': for i in range(m): s = np.sum(confusion_mat[i], dtype=float) if s == 0: continue confusion_mat[i, :] = confusion_mat[i, :] / s print(confusion_mat[i, :]) elif normalize == 'pred': for i in range(n): s = sum(confusion_mat[:, i]) if s == 0: continue confusion_mat[:, i] = confusion_mat[:, i] / s elif normalize == 'all': s = np.sum(confusion_mat) if s != 0: confusion_mat /= s return confusion_mat
Calculate the ground truth confusion matrix.
gt_confusion_matrix
python
open-mmlab/mmaction2
tests/evaluation/metrics/test_metric_utils.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/evaluation/metrics/test_metric_utils.py
Apache-2.0
def test_evaluate(self): """Test using the metric in the same way as Evalutor.""" pred = [ ActionDataSample().set_pred_score(i).set_gt_label(k).to_dict() for i, k in zip([ torch.tensor([0.7, 0.0, 0.3]), torch.tensor([0.5, 0.2, 0.3]), torch.tensor([0.4, 0.5, 0.1]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), torch.tensor([0.0, 0.0, 1.0]), ], [[0], [0], [1], [2], [2], [0]]) ] # Test with score (use score instead of label if score exists) metric = METRICS.build(dict(type='RetrievalRecall', topk=1)) metric.process(None, pred) recall = metric.evaluate(6) self.assertIsInstance(recall, dict) self.assertAlmostEqual( recall['retrieval/Recall@1'], 5 / 6 * 100, places=4) # Test with invalid topk with self.assertRaisesRegex(RuntimeError, 'selected index k'): metric = METRICS.build(dict(type='RetrievalRecall', topk=10)) metric.process(None, pred) metric.evaluate(6) with self.assertRaisesRegex(ValueError, '`topk` must be a'): METRICS.build(dict(type='RetrievalRecall', topk=-1)) # Test initialization metric = METRICS.build(dict(type='RetrievalRecall', topk=5)) self.assertEqual(metric.topk, (5, )) # Test initialization metric = METRICS.build(dict(type='RetrievalRecall', topk=(1, 2, 5))) self.assertEqual(metric.topk, (1, 2, 5))
Test using the metric in the same way as Evalutor.
test_evaluate
python
open-mmlab/mmaction2
tests/evaluation/metrics/test_retrieval_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/evaluation/metrics/test_retrieval_metric.py
Apache-2.0
def test_calculate(self): """Test using the metric from static method.""" # seq of indices format y_true = [[0, 2, 5, 8, 9], [1, 4, 6]] y_pred = [np.arange(10)] * 2 # test with average is 'macro' recall_score = RetrievalRecall.calculate( y_pred, y_true, topk=1, pred_indices=True, target_indices=True) expect_recall = 50. self.assertEqual(recall_score[0].item(), expect_recall) # test with tensor input y_true = torch.Tensor([[1, 0, 1, 0, 0, 1, 0, 0, 1, 1], [0, 1, 0, 0, 1, 0, 1, 0, 0, 0]]) y_pred = np.array([np.linspace(0.95, 0.05, 10)] * 2) recall_score = RetrievalRecall.calculate(y_pred, y_true, topk=1) expect_recall = 50. self.assertEqual(recall_score[0].item(), expect_recall) # test with topk is 5 y_pred = np.array([np.linspace(0.95, 0.05, 10)] * 2) recall_score = RetrievalRecall.calculate(y_pred, y_true, topk=2) expect_recall = 100. self.assertEqual(recall_score[0].item(), expect_recall) # test with topk is (1, 5) y_pred = np.array([np.linspace(0.95, 0.05, 10)] * 2) recall_score = RetrievalRecall.calculate(y_pred, y_true, topk=(1, 5)) expect_recalls = [50., 100.] self.assertEqual(len(recall_score), len(expect_recalls)) for i in range(len(expect_recalls)): self.assertEqual(recall_score[i].item(), expect_recalls[i]) # Test with invalid pred y_pred = dict() y_true = [[0, 2, 5, 8, 9], [1, 4, 6]] with self.assertRaisesRegex(AssertionError, '`pred` must be Seq'): RetrievalRecall.calculate(y_pred, y_true, True, True) # Test with invalid target y_true = dict() y_pred = [np.arange(10)] * 2 with self.assertRaisesRegex(AssertionError, '`target` must be Seq'): RetrievalRecall.calculate( y_pred, y_true, topk=1, pred_indices=True, target_indices=True) # Test with different length `pred` with `target` y_true = [[0, 2, 5, 8, 9], [1, 4, 6]] y_pred = [np.arange(10)] * 3 with self.assertRaisesRegex(AssertionError, 'Length of `pred`'): RetrievalRecall.calculate( y_pred, y_true, topk=1, pred_indices=True, target_indices=True) # Test with invalid pred y_true = [[0, 2, 5, 8, 9], dict()] y_pred = [np.arange(10)] * 2 with self.assertRaisesRegex(AssertionError, '`target` should be'): RetrievalRecall.calculate( y_pred, y_true, topk=1, pred_indices=True, target_indices=True) # Test with invalid target y_true = [[0, 2, 5, 8, 9], [1, 4, 6]] y_pred = [np.arange(10), dict()] with self.assertRaisesRegex(AssertionError, '`pred` should be'): RetrievalRecall.calculate( y_pred, y_true, topk=1, pred_indices=True, target_indices=True)
Test using the metric from static method.
test_calculate
python
open-mmlab/mmaction2
tests/evaluation/metrics/test_retrieval_metric.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/evaluation/metrics/test_retrieval_metric.py
Apache-2.0
def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (GroupNorm, _BatchNorm)): return True return False
Check if is one of the norms.
is_norm
python
open-mmlab/mmaction2
tests/models/backbones/test_mobilenet_v2.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_mobilenet_v2.py
Apache-2.0
def is_block(modules): """Check if is ResNet building block.""" if isinstance(modules, (InvertedResidual, )): return True return False
Check if is ResNet building block.
is_block
python
open-mmlab/mmaction2
tests/models/backbones/test_mobilenet_v2.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_mobilenet_v2.py
Apache-2.0
def test_i3d_head(): """Test loss method, layer construction, attributes and forward function in i3d head.""" i3d_head = I3DHead(num_classes=4, in_channels=2048) i3d_head.init_weights() assert i3d_head.num_classes == 4 assert i3d_head.dropout_ratio == 0.5 assert i3d_head.in_channels == 2048 assert i3d_head.init_std == 0.01 assert isinstance(i3d_head.dropout, nn.Dropout) assert i3d_head.dropout.p == i3d_head.dropout_ratio assert isinstance(i3d_head.fc_cls, nn.Linear) assert i3d_head.fc_cls.in_features == i3d_head.in_channels assert i3d_head.fc_cls.out_features == i3d_head.num_classes assert isinstance(i3d_head.avg_pool, nn.AdaptiveAvgPool3d) assert i3d_head.avg_pool.output_size == (1, 1, 1) input_shape = (3, 2048, 4, 7, 7) feat = torch.rand(input_shape) # i3d head inference cls_scores = i3d_head(feat) assert cls_scores.shape == torch.Size([3, 4])
Test loss method, layer construction, attributes and forward function in i3d head.
test_i3d_head
python
open-mmlab/mmaction2
tests/models/heads/test_i3d_head.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_i3d_head.py
Apache-2.0
def test_slowfast_head(): """Test loss method, layer construction, attributes and forward function in slowfast head.""" sf_head = SlowFastHead(num_classes=4, in_channels=2304) sf_head.init_weights() assert sf_head.num_classes == 4 assert sf_head.dropout_ratio == 0.8 assert sf_head.in_channels == 2304 assert sf_head.init_std == 0.01 assert isinstance(sf_head.dropout, nn.Dropout) assert sf_head.dropout.p == sf_head.dropout_ratio assert isinstance(sf_head.fc_cls, nn.Linear) assert sf_head.fc_cls.in_features == sf_head.in_channels assert sf_head.fc_cls.out_features == sf_head.num_classes assert isinstance(sf_head.avg_pool, nn.AdaptiveAvgPool3d) assert sf_head.avg_pool.output_size == (1, 1, 1) input_shape = (3, 2048, 32, 7, 7) feat_slow = torch.rand(input_shape) input_shape = (3, 256, 4, 7, 7) feat_fast = torch.rand(input_shape) sf_head = SlowFastHead(num_classes=4, in_channels=2304) cls_scores = sf_head((feat_slow, feat_fast)) assert cls_scores.shape == torch.Size([3, 4])
Test loss method, layer construction, attributes and forward function in slowfast head.
test_slowfast_head
python
open-mmlab/mmaction2
tests/models/heads/test_slowfast_head.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_slowfast_head.py
Apache-2.0
def test_timesformer_head(): """Test loss method, layer construction, attributes and forward function in timesformer head.""" timesformer_head = TimeSformerHead(num_classes=4, in_channels=64) timesformer_head.init_weights() assert timesformer_head.num_classes == 4 assert timesformer_head.in_channels == 64 assert timesformer_head.init_std == 0.02 input_shape = (2, 64) feat = torch.rand(input_shape) cls_scores = timesformer_head(feat) assert cls_scores.shape == torch.Size([2, 4])
Test loss method, layer construction, attributes and forward function in timesformer head.
test_timesformer_head
python
open-mmlab/mmaction2
tests/models/heads/test_timesformer_head.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_timesformer_head.py
Apache-2.0
def test_tpn_head(): """Test loss method, layer construction, attributes and forward function in tpn head.""" tpn_head = TPNHead(num_classes=4, in_channels=2048) tpn_head.init_weights() assert hasattr(tpn_head, 'avg_pool2d') assert hasattr(tpn_head, 'avg_pool3d') assert isinstance(tpn_head.avg_pool3d, nn.AdaptiveAvgPool3d) assert tpn_head.avg_pool3d.output_size == (1, 1, 1) assert tpn_head.avg_pool2d is None input_shape = (4, 2048, 7, 7) feat = torch.rand(input_shape) # tpn head inference with num_segs num_segs = 2 cls_scores = tpn_head(feat, num_segs) assert isinstance(tpn_head.avg_pool2d, nn.AvgPool3d) assert tpn_head.avg_pool2d.kernel_size == (1, 7, 7) assert cls_scores.shape == torch.Size([2, 4]) # tpn head inference with no num_segs input_shape = (2, 2048, 3, 7, 7) feat = torch.rand(input_shape) cls_scores = tpn_head(feat) assert isinstance(tpn_head.avg_pool2d, nn.AvgPool3d) assert tpn_head.avg_pool2d.kernel_size == (1, 7, 7) assert cls_scores.shape == torch.Size([2, 4])
Test loss method, layer construction, attributes and forward function in tpn head.
test_tpn_head
python
open-mmlab/mmaction2
tests/models/heads/test_tpn_head.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_tpn_head.py
Apache-2.0
def test_trn_head(): """Test loss method, layer construction, attributes and forward function in trn head.""" from mmaction.models.heads.trn_head import (RelationModule, RelationModuleMultiScale) trn_head = TRNHead(num_classes=4, in_channels=2048, relation_type='TRN') trn_head.init_weights() assert trn_head.num_classes == 4 assert trn_head.dropout_ratio == 0.8 assert trn_head.in_channels == 2048 assert trn_head.init_std == 0.001 assert trn_head.spatial_type == 'avg' relation_module = trn_head.consensus assert isinstance(relation_module, RelationModule) assert relation_module.hidden_dim == 256 assert isinstance(relation_module.classifier[3], nn.Linear) assert relation_module.classifier[3].out_features == trn_head.num_classes assert trn_head.dropout.p == trn_head.dropout_ratio assert isinstance(trn_head.dropout, nn.Dropout) assert isinstance(trn_head.fc_cls, nn.Linear) assert trn_head.fc_cls.in_features == trn_head.in_channels assert trn_head.fc_cls.out_features == trn_head.hidden_dim assert isinstance(trn_head.avg_pool, nn.AdaptiveAvgPool2d) assert trn_head.avg_pool.output_size == 1 input_shape = (8, 2048, 7, 7) feat = torch.rand(input_shape) # tsm head inference with no init num_segs = input_shape[0] cls_scores = trn_head(feat, num_segs) assert cls_scores.shape == torch.Size([1, 4]) # tsm head inference with init trn_head = TRNHead( num_classes=4, in_channels=2048, num_segments=8, relation_type='TRNMultiScale') trn_head.init_weights() assert isinstance(trn_head.consensus, RelationModuleMultiScale) assert trn_head.consensus.scales == range(8, 1, -1) cls_scores = trn_head(feat, num_segs) assert cls_scores.shape == torch.Size([1, 4]) with pytest.raises(ValueError): trn_head = TRNHead( num_classes=4, in_channels=2048, num_segments=8, relation_type='RelationModlue')
Test loss method, layer construction, attributes and forward function in trn head.
test_trn_head
python
open-mmlab/mmaction2
tests/models/heads/test_trn_head.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_trn_head.py
Apache-2.0
def test_tsm_head(): """Test loss method, layer construction, attributes and forward function in tsm head.""" tsm_head = TSMHead(num_classes=4, in_channels=2048) tsm_head.init_weights() assert tsm_head.num_classes == 4 assert tsm_head.dropout_ratio == 0.8 assert tsm_head.in_channels == 2048 assert tsm_head.init_std == 0.001 assert tsm_head.consensus.dim == 1 assert tsm_head.spatial_type == 'avg' assert isinstance(tsm_head.dropout, nn.Dropout) assert tsm_head.dropout.p == tsm_head.dropout_ratio assert isinstance(tsm_head.fc_cls, nn.Linear) assert tsm_head.fc_cls.in_features == tsm_head.in_channels assert tsm_head.fc_cls.out_features == tsm_head.num_classes assert isinstance(tsm_head.avg_pool, nn.AdaptiveAvgPool2d) assert tsm_head.avg_pool.output_size == 1 input_shape = (8, 2048, 7, 7) feat = torch.rand(input_shape) # tsm head inference with no init num_segs = input_shape[0] cls_scores = tsm_head(feat, num_segs) assert cls_scores.shape == torch.Size([1, 4]) # tsm head inference with init tsm_head = TSMHead(num_classes=4, in_channels=2048, temporal_pool=True) tsm_head.init_weights() cls_scores = tsm_head(feat, num_segs) assert cls_scores.shape == torch.Size([2, 4])
Test loss method, layer construction, attributes and forward function in tsm head.
test_tsm_head
python
open-mmlab/mmaction2
tests/models/heads/test_tsm_head.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_tsm_head.py
Apache-2.0
def test_tsn_head(): """Test loss method, layer construction, attributes and forward function in tsn head.""" tsn_head = TSNHead(num_classes=4, in_channels=2048) tsn_head.init_weights() assert tsn_head.num_classes == 4 assert tsn_head.dropout_ratio == 0.4 assert tsn_head.in_channels == 2048 assert tsn_head.init_std == 0.01 assert tsn_head.consensus.dim == 1 assert tsn_head.spatial_type == 'avg' assert isinstance(tsn_head.dropout, nn.Dropout) assert tsn_head.dropout.p == tsn_head.dropout_ratio assert isinstance(tsn_head.fc_cls, nn.Linear) assert tsn_head.fc_cls.in_features == tsn_head.in_channels assert tsn_head.fc_cls.out_features == tsn_head.num_classes assert isinstance(tsn_head.avg_pool, nn.AdaptiveAvgPool2d) assert tsn_head.avg_pool.output_size == (1, 1) input_shape = (8, 2048, 7, 7) feat = torch.rand(input_shape) # tsn head inference num_segs = input_shape[0] cls_scores = tsn_head(feat, num_segs) assert cls_scores.shape == torch.Size([1, 4]) # Test multi-class recognition multi_tsn_head = TSNHead( num_classes=4, in_channels=2048, loss_cls=dict(type='BCELossWithLogits', loss_weight=160.0), multi_class=True, label_smooth_eps=0.01) multi_tsn_head.init_weights() assert multi_tsn_head.num_classes == 4 assert multi_tsn_head.dropout_ratio == 0.4 assert multi_tsn_head.in_channels == 2048 assert multi_tsn_head.init_std == 0.01 assert multi_tsn_head.consensus.dim == 1 assert isinstance(multi_tsn_head.dropout, nn.Dropout) assert multi_tsn_head.dropout.p == multi_tsn_head.dropout_ratio assert isinstance(multi_tsn_head.fc_cls, nn.Linear) assert multi_tsn_head.fc_cls.in_features == multi_tsn_head.in_channels assert multi_tsn_head.fc_cls.out_features == multi_tsn_head.num_classes assert isinstance(multi_tsn_head.avg_pool, nn.AdaptiveAvgPool2d) assert multi_tsn_head.avg_pool.output_size == (1, 1) input_shape = (8, 2048, 7, 7) feat = torch.rand(input_shape) # multi-class tsn head inference num_segs = input_shape[0] cls_scores = tsn_head(feat, num_segs) assert cls_scores.shape == torch.Size([1, 4])
Test loss method, layer construction, attributes and forward function in tsn head.
test_tsn_head
python
open-mmlab/mmaction2
tests/models/heads/test_tsn_head.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_tsn_head.py
Apache-2.0
def test_x3d_head(): """Test loss method, layer construction, attributes and forward function in x3d head.""" x3d_head = X3DHead(in_channels=432, num_classes=4, fc1_bias=False) x3d_head.init_weights() assert x3d_head.num_classes == 4 assert x3d_head.dropout_ratio == 0.5 assert x3d_head.in_channels == 432 assert x3d_head.init_std == 0.01 assert isinstance(x3d_head.dropout, nn.Dropout) assert x3d_head.dropout.p == x3d_head.dropout_ratio assert isinstance(x3d_head.fc1, nn.Linear) assert x3d_head.fc1.in_features == x3d_head.in_channels assert x3d_head.fc1.out_features == x3d_head.mid_channels assert x3d_head.fc1.bias is None assert isinstance(x3d_head.fc2, nn.Linear) assert x3d_head.fc2.in_features == x3d_head.mid_channels assert x3d_head.fc2.out_features == x3d_head.num_classes assert isinstance(x3d_head.pool, nn.AdaptiveAvgPool3d) assert x3d_head.pool.output_size == (1, 1, 1) input_shape = (3, 432, 4, 7, 7) feat = torch.rand(input_shape) # i3d head inference cls_scores = x3d_head(feat) assert cls_scores.shape == torch.Size([3, 4])
Test loss method, layer construction, attributes and forward function in x3d head.
test_x3d_head
python
open-mmlab/mmaction2
tests/models/heads/test_x3d_head.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_x3d_head.py
Apache-2.0
def test_bbox_head_ava(): """Test loss method, layer construction, attributes and forward function in bbox head.""" with pytest.raises(TypeError): # topk must be None, int or tuple[int] BBoxHeadAVA(background_class=True, topk=0.1) with pytest.raises(AssertionError): # topk should be smaller than num_classes BBoxHeadAVA(background_class=True, num_classes=5, topk=(3, 5)) bbox_head = BBoxHeadAVA( background_class=True, in_channels=10, num_classes=4, topk=1) input = torch.randn([3, 10, 2, 2, 2]) ret = bbox_head(input) assert ret.shape == (3, 4) cls_score = torch.tensor( [[0.568, -0.162, 0.273, -0.390, 0.447, 0.102, -0.409], [2.388, 0.609, 0.369, 1.630, -0.808, -0.212, 0.296], [0.252, -0.533, -0.644, -0.591, 0.148, 0.963, -0.525], [0.134, -0.311, -0.764, -0.752, 0.656, -1.517, 0.185]]) # Test topk_to_matrix() assert torch.equal( BBoxHeadAVA.topk_to_matrix(cls_score[:, 1:], 1), torch.tensor([[0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0]], dtype=bool)) assert torch.equal( BBoxHeadAVA.topk_to_matrix(cls_score[:, 1:], 2), torch.tensor([[0, 1, 0, 1, 0, 0], [1, 0, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 0, 1]], dtype=bool)) assert torch.equal( BBoxHeadAVA.topk_to_matrix(cls_score[:, 1:], 3), torch.tensor([[0, 1, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 0, 1]], dtype=bool)) assert torch.equal( BBoxHeadAVA.topk_to_matrix(cls_score[:, 1:], 6), torch.ones([4, 6], dtype=bool)) # Test Multi-Label Loss bbox_head = BBoxHeadAVA( background_class=True) # Why is this here? isn't this redundant? bbox_head.init_weights() bbox_head = BBoxHeadAVA( background_class=True, temporal_pool_type='max', spatial_pool_type='avg') bbox_head.init_weights() # test without background class """ losses = bbox_head.loss( cls_score=cls_score, bbox_pred=None, rois=None, labels=labels, label_weights=label_weights) assert torch.isclose(losses['loss_action_cls'], torch.tensor(0.7162495)) assert torch.isclose(losses['recall@thr=0.5'], torch.tensor(0.6666666)) assert torch.isclose(losses['prec@thr=0.5'], torch.tensor(0.4791665)) assert torch.isclose(losses['recall@top3'], torch.tensor(0.75)) assert torch.isclose(losses['prec@top3'], torch.tensor(0.5)) assert torch.isclose(losses['recall@top5'], torch.tensor(1.0)) assert torch.isclose(losses['prec@top5'], torch.tensor(0.45)) # Test Single-Label Loss bbox_head = BBoxHeadAVA(multilabel=False) losses = bbox_head.loss( cls_score=cls_score, bbox_pred=None, rois=None, labels=labels, label_weights=label_weights) assert torch.isclose(losses['loss_action_cls'], torch.tensor(1.639561)) assert torch.isclose(losses['recall@thr=0.5'], torch.tensor(0.25)) assert torch.isclose(losses['prec@thr=0.5'], torch.tensor(0.25)) assert torch.isclose(losses['recall@top3'], torch.tensor(0.75)) assert torch.isclose(losses['prec@top3'], torch.tensor(0.5)) assert torch.isclose(losses['recall@top5'], torch.tensor(1.0)) assert torch.isclose(losses['prec@top5'], torch.tensor(0.45)) # Test ROI rois = torch.tensor([[0.0, 0.1, 0.2, 0.3, 0.4], [0.0, 0.5, 0.6, 0.7, 0.8]]) rois[1::2] *= 380 rois[2::2] *= 220 crop_quadruple = np.array([0.1, 0.2, 0.8, 0.7]) cls_score = torch.tensor([0.995, 0.728]) img_shape = (320, 480) flip = True bbox_head = BBoxHeadAVA(multilabel=True) bboxes, scores = bbox_head.get_det_bboxes( rois=rois, cls_score=cls_score, img_shape=img_shape, flip=flip, crop_quadruple=crop_quadruple) assert torch.all( torch.isclose( bboxes, torch.tensor([[0.89783341, 0.20043750, 0.89816672, 0.20087500], [0.45499998, 0.69875002, 0.58166665, 0.86499995]]))) assert torch.all( torch.isclose(scores, torch.tensor([0.73007441, 0.67436624]))) bbox_head = BBoxHeadAVA(multilabel=False) bboxes, scores = bbox_head.get_det_bboxes( rois=rois, cls_score=cls_score, img_shape=img_shape, flip=flip, crop_quadruple=crop_quadruple) assert torch.all( torch.isclose( bboxes, torch.tensor([[0.89783341, 0.20043750, 0.89816672, 0.20087500], [0.45499998, 0.69875002, 0.58166665, 0.86499995]]))) assert torch.all(torch.isclose(scores, torch.tensor([0.56636, 0.43364]))) """
Test loss method, layer construction, attributes and forward function in bbox head.
test_bbox_head_ava
python
open-mmlab/mmaction2
tests/models/roi_heads/test_bbox_heads.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/roi_heads/test_bbox_heads.py
Apache-2.0
def test_fbo_head(): """Test layer construction, attributes and forward function in fbo head.""" lfb_prefix_path = osp.normpath( osp.join(osp.dirname(__file__), '../../data/lfb')) st_feat_shape = (1, 16, 1, 8, 8) st_feat = torch.rand(st_feat_shape) rois = torch.randn(1, 5) rois[0][0] = 0 img_metas = [dict(img_key='video_1, 930')] # non local fbo fbo_head = FBOHead( lfb_cfg=dict( lfb_prefix_path=lfb_prefix_path, max_num_sampled_feat=5, window_size=60, lfb_channels=16, dataset_modes=('unittest'), device='cpu'), fbo_cfg=dict( type='non_local', st_feat_channels=16, lt_feat_channels=16, latent_channels=8, num_st_feat=1, num_lt_feat=5 * 60, )) fbo_head.init_weights() out = fbo_head(st_feat, rois, img_metas) assert out.shape == (1, 24, 1, 1, 1) # avg fbo fbo_head = FBOHead( lfb_cfg=dict( lfb_prefix_path=lfb_prefix_path, max_num_sampled_feat=5, window_size=60, lfb_channels=16, dataset_modes=('unittest'), device='cpu'), fbo_cfg=dict(type='avg')) fbo_head.init_weights() out = fbo_head(st_feat, rois, img_metas) assert out.shape == (1, 32, 1, 1, 1) # max fbo fbo_head = FBOHead( lfb_cfg=dict( lfb_prefix_path=lfb_prefix_path, max_num_sampled_feat=5, window_size=60, lfb_channels=16, dataset_modes=('unittest'), device='cpu'), fbo_cfg=dict(type='max')) fbo_head.init_weights() out = fbo_head(st_feat, rois, img_metas) assert out.shape == (1, 32, 1, 1, 1)
Test layer construction, attributes and forward function in fbo head.
test_fbo_head
python
open-mmlab/mmaction2
tests/models/roi_heads/test_fbo_head.py
https://github.com/open-mmlab/mmaction2/blob/master/tests/models/roi_heads/test_fbo_head.py
Apache-2.0
def __call__(self, results): """Select frames to verify. Select the first, last and three random frames, Required key is "total_frames", added or modified key is "frame_inds". Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ assert results['total_frames'] > 0 # first and last frames results['frame_inds'] = np.array([0, results['total_frames'] - 1]) # choose 3 random frames if results['total_frames'] > 2: results['frame_inds'] = np.concatenate([ results['frame_inds'], np.random.randint(1, results['total_frames'] - 1, 3) ]) return results
Select frames to verify. Select the first, last and three random frames, Required key is "total_frames", added or modified key is "frame_inds". Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline.
__call__
python
open-mmlab/mmaction2
tools/analysis_tools/check_videos.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/analysis_tools/check_videos.py
Apache-2.0
def cuhk17_top1(): """Assign label for each proposal with the cuhk17 result, which is the #2 entry in http://activity-net.org/challenges/2017/evaluation.html.""" if not osp.exists('cuhk_anet17_pred.json'): os.system('wget https://download.openmmlab.com/' 'mmaction/localization/cuhk_anet17_pred.json') proposal = mmengine.load(args.proposal) results = proposal['results'] cuhk_pred = mmengine.load('cuhk_anet17_pred.json')['results'] def get_topk(preds, k): preds.sort(key=lambda x: x['score']) return preds[-k:] for k, v in results.items(): action_pred = cuhk_pred[k] top1 = get_topk(action_pred, 1) top1_label = top1[0]['label'] new_value = [] for item in v: x = dict(label=top1_label) x.update(item) new_value.append(x) results[k] = new_value proposal['results'] = results mmengine.dump(proposal, args.det_output)
Assign label for each proposal with the cuhk17 result, which is the #2 entry in http://activity-net.org/challenges/2017/evaluation.html.
cuhk17_top1
python
open-mmlab/mmaction2
tools/analysis_tools/report_map.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/analysis_tools/report_map.py
Apache-2.0
def lines2dictlist(lines, format): """Convert lines in 'txt' format to dictionaries in 'json' format. Currently support single-label and multi-label. Example of a single-label rawframes annotation txt file: .. code-block:: txt (frame_dir num_frames label) some/directory-1 163 1 some/directory-2 122 1 some/directory-3 258 2 Example of a multi-label rawframes annotation txt file: .. code-block:: txt (frame_dir num_frames label1 label2 ...) some/directory-1 163 1 3 5 some/directory-2 122 1 2 some/directory-3 258 2 Example of a single-label videos annotation txt file: .. code-block:: txt (filename label) some/path/000.mp4 1 some/path/001.mp4 1 some/path/002.mp4 2 Example of a multi-label videos annotation txt file: .. code-block:: txt (filename label1 label2 ...) some/path/000.mp4 1 3 5 some/path/001.mp4 1 4 8 some/path/002.mp4 2 4 9 Args: lines (list): List of lines in 'txt' label format. format (str): Data format, choices are 'rawframes' and 'videos'. Returns: list[dict]: For rawframes format, each dict has keys: frame_dir, total_frames, label; for videos format, each diction has keys: filename, label. """ lines = [x.split() for x in lines] if format == 'rawframes': data = [ dict( frame_dir=line[0], total_frames=int(line[1]), label=[int(x) for x in line[2:]]) for line in lines ] elif format == 'videos': data = [ dict(filename=line[0], label=[int(x) for x in line[1:]]) for line in lines ] return data
Convert lines in 'txt' format to dictionaries in 'json' format. Currently support single-label and multi-label. Example of a single-label rawframes annotation txt file: .. code-block:: txt (frame_dir num_frames label) some/directory-1 163 1 some/directory-2 122 1 some/directory-3 258 2 Example of a multi-label rawframes annotation txt file: .. code-block:: txt (frame_dir num_frames label1 label2 ...) some/directory-1 163 1 3 5 some/directory-2 122 1 2 some/directory-3 258 2 Example of a single-label videos annotation txt file: .. code-block:: txt (filename label) some/path/000.mp4 1 some/path/001.mp4 1 some/path/002.mp4 2 Example of a multi-label videos annotation txt file: .. code-block:: txt (filename label1 label2 ...) some/path/000.mp4 1 3 5 some/path/001.mp4 1 4 8 some/path/002.mp4 2 4 9 Args: lines (list): List of lines in 'txt' label format. format (str): Data format, choices are 'rawframes' and 'videos'. Returns: list[dict]: For rawframes format, each dict has keys: frame_dir, total_frames, label; for videos format, each diction has keys: filename, label.
lines2dictlist
python
open-mmlab/mmaction2
tools/data/anno_txt2json.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/anno_txt2json.py
Apache-2.0
def generate_spectrogram_magphase(self, audio, with_phase=False): """Separate a complex-valued spectrogram D into its magnitude (S) and phase (P) components, so that D = S * P. Args: audio (np.ndarray): The input audio signal. with_phase (bool): Determines whether to output the phase components. Default: False. Returns: np.ndarray: magnitude and phase component of the complex-valued spectrogram. """ spectro = librosa.core.stft( audio, hop_length=self.get_hop_size(), n_fft=self.fft_size, center=True) spectro_mag, spectro_phase = librosa.core.magphase(spectro) spectro_mag = np.expand_dims(spectro_mag, axis=0) if with_phase: spectro_phase = np.expand_dims(np.angle(spectro_phase), axis=0) return spectro_mag, spectro_phase return spectro_mag
Separate a complex-valued spectrogram D into its magnitude (S) and phase (P) components, so that D = S * P. Args: audio (np.ndarray): The input audio signal. with_phase (bool): Determines whether to output the phase components. Default: False. Returns: np.ndarray: magnitude and phase component of the complex-valued spectrogram.
generate_spectrogram_magphase
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def adjust_time_resolution(self, quantized, mel): """Adjust time resolution by repeating features. Args: quantized (np.ndarray): (T,) mel (np.ndarray): (N, D) Returns: tuple: Tuple of (T,) and (T, D) """ assert quantized.ndim == 1 assert mel.ndim == 2 upsample_factor = quantized.size // mel.shape[0] mel = np.repeat(mel, upsample_factor, axis=0) n_pad = quantized.size - mel.shape[0] if n_pad != 0: assert n_pad > 0 mel = np.pad( mel, [(0, n_pad), (0, 0)], mode='constant', constant_values=0) # trim start, end = self.start_and_end_indices(quantized, self.silence_threshold) return quantized[start:end], mel[start:end, :]
Adjust time resolution by repeating features. Args: quantized (np.ndarray): (T,) mel (np.ndarray): (N, D) Returns: tuple: Tuple of (T,) and (T, D)
adjust_time_resolution
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def start_and_end_indices(quantized, silence_threshold=2): """Trim the audio file when reaches the silence threshold.""" for start in range(quantized.size): if abs(quantized[start] - 127) > silence_threshold: break for end in range(quantized.size - 1, 1, -1): if abs(quantized[end] - 127) > silence_threshold: break assert abs(quantized[start] - 127) > silence_threshold assert abs(quantized[end] - 127) > silence_threshold return start, end
Trim the audio file when reaches the silence threshold.
start_and_end_indices
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def lws_num_frames(length, fsize, fshift): """Compute number of time frames of lws spectrogram. Please refer to <https://pypi.org/project/lws/1.2.6/>`_. """ pad = (fsize - fshift) if length % fshift == 0: M = (length + pad * 2 - fsize) // fshift + 1 else: M = (length + pad * 2 - fsize) // fshift + 2 return M
Compute number of time frames of lws spectrogram. Please refer to <https://pypi.org/project/lws/1.2.6/>`_.
lws_num_frames
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def lws_pad_lr(self, x, fsize, fshift): """Compute left and right padding lws internally uses. Please refer to <https://pypi.org/project/lws/1.2.6/>`_. """ M = self.lws_num_frames(len(x), fsize, fshift) pad = (fsize - fshift) T = len(x) + 2 * pad r = (M - 1) * fshift + fsize - T return pad, pad + r
Compute left and right padding lws internally uses. Please refer to <https://pypi.org/project/lws/1.2.6/>`_.
lws_pad_lr
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def _linear_to_mel(self, spectrogram): """Warp linear scale spectrograms to the mel scale. Please refer to <https://github.com/r9y9/deepvoice3_pytorch>`_ """ global _mel_basis _mel_basis = self._build_mel_basis() return np.dot(_mel_basis, spectrogram)
Warp linear scale spectrograms to the mel scale. Please refer to <https://github.com/r9y9/deepvoice3_pytorch>`_
_linear_to_mel
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def _build_mel_basis(self): """Build mel filters. Please refer to <https://github.com/r9y9/deepvoice3_pytorch>`_ """ assert self.fmax <= self.sample_rate // 2 return librosa.filters.mel( self.sample_rate, self.fft_size, fmin=self.fmin, fmax=self.fmax, n_mels=self.num_mels)
Build mel filters. Please refer to <https://github.com/r9y9/deepvoice3_pytorch>`_
_build_mel_basis
python
open-mmlab/mmaction2
tools/data/build_audio_features.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_audio_features.py
Apache-2.0
def build_file_list(splits, frame_info, shuffle=False): """Build file list for a certain data split. Args: splits (tuple): Data split to generate file list. frame_info (dict): Dict mapping from frames to path. e.g., 'Skiing/v_Skiing_g18_c02': ('data/ucf101/rawframes/Skiing/v_Skiing_g18_c02', 0, 0). # noqa: E501 shuffle (bool): Whether to shuffle the file list. Returns: tuple: RGB file list for training and testing, together with Flow file list for training and testing. """ def build_list(split): """Build RGB and Flow file list with a given split. Args: split (list): Split to be generate file list. Returns: tuple[list, list]: (rgb_list, flow_list), rgb_list is the generated file list for rgb, flow_list is the generated file list for flow. """ rgb_list, flow_list = list(), list() for item in split: if item[0] not in frame_info: continue if frame_info[item[0]][1] > 0: # rawframes rgb_cnt = frame_info[item[0]][1] flow_cnt = frame_info[item[0]][2] if isinstance(item[1], int): rgb_list.append(f'{item[0]} {rgb_cnt} {item[1]}\n') flow_list.append(f'{item[0]} {flow_cnt} {item[1]}\n') elif isinstance(item[1], list): # only for multi-label datasets like mmit rgb_list.append(f'{item[0]} {rgb_cnt} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') rgb_list.append(f'{item[0]} {flow_cnt} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') else: raise ValueError( 'frame_info should be ' + '[`video`(str), `label`(int)|`labels(list[int])`') else: # videos if isinstance(item[1], int): rgb_list.append(f'{frame_info[item[0]][0]} {item[1]}\n') flow_list.append(f'{frame_info[item[0]][0]} {item[1]}\n') elif isinstance(item[1], list): # only for multi-label datasets like mmit rgb_list.append(f'{frame_info[item[0]][0]} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') flow_list.append( f'{frame_info[item[0]][0]} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') else: raise ValueError( 'frame_info should be ' + '[`video`(str), `label`(int)|`labels(list[int])`') if shuffle: random.shuffle(rgb_list) random.shuffle(flow_list) return rgb_list, flow_list train_rgb_list, train_flow_list = build_list(splits[0]) test_rgb_list, test_flow_list = build_list(splits[1]) return (train_rgb_list, test_rgb_list), (train_flow_list, test_flow_list)
Build file list for a certain data split. Args: splits (tuple): Data split to generate file list. frame_info (dict): Dict mapping from frames to path. e.g., 'Skiing/v_Skiing_g18_c02': ('data/ucf101/rawframes/Skiing/v_Skiing_g18_c02', 0, 0). # noqa: E501 shuffle (bool): Whether to shuffle the file list. Returns: tuple: RGB file list for training and testing, together with Flow file list for training and testing.
build_file_list
python
open-mmlab/mmaction2
tools/data/build_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_file_list.py
Apache-2.0
def build_list(split): """Build RGB and Flow file list with a given split. Args: split (list): Split to be generate file list. Returns: tuple[list, list]: (rgb_list, flow_list), rgb_list is the generated file list for rgb, flow_list is the generated file list for flow. """ rgb_list, flow_list = list(), list() for item in split: if item[0] not in frame_info: continue if frame_info[item[0]][1] > 0: # rawframes rgb_cnt = frame_info[item[0]][1] flow_cnt = frame_info[item[0]][2] if isinstance(item[1], int): rgb_list.append(f'{item[0]} {rgb_cnt} {item[1]}\n') flow_list.append(f'{item[0]} {flow_cnt} {item[1]}\n') elif isinstance(item[1], list): # only for multi-label datasets like mmit rgb_list.append(f'{item[0]} {rgb_cnt} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') rgb_list.append(f'{item[0]} {flow_cnt} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') else: raise ValueError( 'frame_info should be ' + '[`video`(str), `label`(int)|`labels(list[int])`') else: # videos if isinstance(item[1], int): rgb_list.append(f'{frame_info[item[0]][0]} {item[1]}\n') flow_list.append(f'{frame_info[item[0]][0]} {item[1]}\n') elif isinstance(item[1], list): # only for multi-label datasets like mmit rgb_list.append(f'{frame_info[item[0]][0]} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') flow_list.append( f'{frame_info[item[0]][0]} ' + ' '.join([str(digit) for digit in item[1]]) + '\n') else: raise ValueError( 'frame_info should be ' + '[`video`(str), `label`(int)|`labels(list[int])`') if shuffle: random.shuffle(rgb_list) random.shuffle(flow_list) return rgb_list, flow_list
Build RGB and Flow file list with a given split. Args: split (list): Split to be generate file list. Returns: tuple[list, list]: (rgb_list, flow_list), rgb_list is the generated file list for rgb, flow_list is the generated file list for flow.
build_list
python
open-mmlab/mmaction2
tools/data/build_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_file_list.py
Apache-2.0
def extract_frame(vid_item): """Generate optical flow using dense flow. Args: vid_item (list): Video item containing video full path, video (short) path, video id. Returns: bool: Whether generate optical flow successfully. """ full_path, vid_path, vid_id, method, task, report_file = vid_item if '/' in vid_path: act_name = osp.basename(osp.dirname(vid_path)) out_full_path = osp.join(args.out_dir, act_name) else: out_full_path = args.out_dir run_success = -1 if task == 'rgb': if args.use_opencv: # Not like using denseflow, # Use OpenCV will not make a sub directory with the video name try: video_name = osp.splitext(osp.basename(vid_path))[0] out_full_path = osp.join(out_full_path, video_name) vr = mmcv.VideoReader(full_path) for i, vr_frame in enumerate(vr): if vr_frame is not None: w, h, _ = np.shape(vr_frame) if args.new_short == 0: if args.new_width == 0 or args.new_height == 0: # Keep original shape out_img = vr_frame else: out_img = mmcv.imresize( vr_frame, (args.new_width, args.new_height)) else: if min(h, w) == h: new_h = args.new_short new_w = int((new_h / h) * w) else: new_w = args.new_short new_h = int((new_w / w) * h) out_img = mmcv.imresize(vr_frame, (new_h, new_w)) mmcv.imwrite(out_img, f'{out_full_path}/img_{i + 1:05d}.jpg') else: warnings.warn( 'Length inconsistent!' f'Early stop with {i + 1} out of {len(vr)} frames.' ) break run_success = 0 except Exception: run_success = -1 else: if args.new_short == 0: cmd = osp.join( f"denseflow '{full_path}' -b=20 -s=0 -o='{out_full_path}'" f' -nw={args.new_width} -nh={args.new_height} -v') else: cmd = osp.join( f"denseflow '{full_path}' -b=20 -s=0 -o='{out_full_path}'" f' -ns={args.new_short} -v') run_success = os.system(cmd) elif task == 'flow': if args.input_frames: if args.new_short == 0: cmd = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -nw={args.new_width} --nh={args.new_height} -v --if') else: cmd = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -ns={args.new_short} -v --if') else: if args.new_short == 0: cmd = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -nw={args.new_width} --nh={args.new_height} -v') else: cmd = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -ns={args.new_short} -v') run_success = os.system(cmd) else: if args.new_short == 0: cmd_rgb = osp.join( f"denseflow '{full_path}' -b=20 -s=0 -o='{out_full_path}'" f' -nw={args.new_width} -nh={args.new_height} -v') cmd_flow = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -nw={args.new_width} -nh={args.new_height} -v') else: cmd_rgb = osp.join( f"denseflow '{full_path}' -b=20 -s=0 -o='{out_full_path}'" f' -ns={args.new_short} -v') cmd_flow = osp.join( f"denseflow '{full_path}' -a={method} -b=20 -s=1 -o='{out_full_path}'" # noqa: E501 f' -ns={args.new_short} -v') run_success_rgb = os.system(cmd_rgb) run_success_flow = os.system(cmd_flow) if run_success_flow == 0 and run_success_rgb == 0: run_success = 0 if run_success == 0: print(f'{task} {vid_id} {vid_path} {method} done') sys.stdout.flush() lock.acquire() with open(report_file, 'a') as f: line = full_path + '\n' f.write(line) lock.release() else: print(f'{task} {vid_id} {vid_path} {method} got something wrong') sys.stdout.flush() return True
Generate optical flow using dense flow. Args: vid_item (list): Video item containing video full path, video (short) path, video id. Returns: bool: Whether generate optical flow successfully.
extract_frame
python
open-mmlab/mmaction2
tools/data/build_rawframes.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_rawframes.py
Apache-2.0
def encode_video(frame_dir_item): """Encode frames to video using ffmpeg. Args: frame_dir_item (list): Rawframe item containing raw frame directory full path, rawframe directory (short) path, rawframe directory id. Returns: bool: Whether synthesize video successfully. """ full_path, frame_dir_path, frame_dir_id = frame_dir_item out_full_path = args.out_dir img_name_tmpl = args.filename_tmpl + '.' + args.in_format img_path = osp.join(full_path, img_name_tmpl) out_vid_name = frame_dir_path + '.' + args.ext out_vid_path = osp.join(out_full_path, out_vid_name) cmd = osp.join( f"ffmpeg -start_number {args.start_idx} -r {args.fps} -i '{img_path}' " f"-vcodec {args.vcodec} '{out_vid_path}'") os.system(cmd) print(f'{frame_dir_id} {frame_dir_path} done') sys.stdout.flush() return True
Encode frames to video using ffmpeg. Args: frame_dir_item (list): Rawframe item containing raw frame directory full path, rawframe directory (short) path, rawframe directory id. Returns: bool: Whether synthesize video successfully.
encode_video
python
open-mmlab/mmaction2
tools/data/build_videos.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/build_videos.py
Apache-2.0
def process_norm_proposal_file(norm_proposal_file, frame_dict): """Process the normalized proposal file and denormalize it. Args: norm_proposal_file (str): Name of normalized proposal file. frame_dict (dict): Information of frame folders. """ proposal_file = norm_proposal_file.replace('normalized_', '') norm_proposals = load_localize_proposal_file(norm_proposal_file) processed_proposal_list = [] for idx, norm_proposal in enumerate(norm_proposals): video_id = norm_proposal[0] frame_info = frame_dict[video_id] num_frames = frame_info[1] frame_path = osp.basename(frame_info[0]) gt = [[ int(x[0]), int(float(x[1]) * num_frames), int(float(x[2]) * num_frames) ] for x in norm_proposal[2]] proposal = [[ int(x[0]), float(x[1]), float(x[2]), int(float(x[3]) * num_frames), int(float(x[4]) * num_frames) ] for x in norm_proposal[3]] gt_dump = '\n'.join(['{} {} {}'.format(*x) for x in gt]) gt_dump += '\n' if len(gt) else '' proposal_dump = '\n'.join( ['{} {:.04f} {:.04f} {} {}'.format(*x) for x in proposal]) proposal_dump += '\n' if len(proposal) else '' processed_proposal_list.append( f'# {idx}\n{frame_path}\n{num_frames}\n1' f'\n{len(gt)}\n{gt_dump}{len(proposal)}\n{proposal_dump}') with open(proposal_file, 'w') as f: f.writelines(processed_proposal_list)
Process the normalized proposal file and denormalize it. Args: norm_proposal_file (str): Name of normalized proposal file. frame_dict (dict): Information of frame folders.
process_norm_proposal_file
python
open-mmlab/mmaction2
tools/data/denormalize_proposal_file.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/denormalize_proposal_file.py
Apache-2.0
def extract_audio_wav(line): """Extract the audio wave from video streams using FFMPEG.""" video_id, _ = osp.splitext(osp.basename(line)) video_dir = osp.dirname(line) video_rel_dir = osp.relpath(video_dir, args.root) dst_dir = osp.join(args.dst_root, video_rel_dir) os.popen(f'mkdir -p {dst_dir}') try: if osp.exists(f'{dst_dir}/{video_id}.wav'): return cmd = f'ffmpeg -i ./{line} -map 0:a -y {dst_dir}/{video_id}.wav' os.popen(cmd) except BaseException: with open('extract_wav_err_file.txt', 'a+') as f: f.write(f'{line}\n')
Extract the audio wave from video streams using FFMPEG.
extract_audio_wav
python
open-mmlab/mmaction2
tools/data/extract_audio.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/extract_audio.py
Apache-2.0
def parse_directory(path, rgb_prefix='img_', flow_x_prefix='flow_x_', flow_y_prefix='flow_y_', level=1): """Parse directories holding extracted frames from standard benchmarks. Args: path (str): Directory path to parse frames. rgb_prefix (str): Prefix of generated rgb frames name. default: 'img_'. flow_x_prefix (str): Prefix of generated flow x name. default: `flow_x_`. flow_y_prefix (str): Prefix of generated flow y name. default: `flow_y_`. level (int): Directory level for glob searching. Options are 1 and 2. default: 1. Returns: dict: frame info dict with video id as key and tuple(path(str), rgb_num(int), flow_x_num(int)) as value. """ print(f'parse frames under directory {path}') if level == 1: # Only search for one-level directory def locate_directory(x): return osp.basename(x) frame_dirs = glob.glob(osp.join(path, '*')) elif level == 2: # search for two-level directory def locate_directory(x): return osp.join(osp.basename(osp.dirname(x)), osp.basename(x)) frame_dirs = glob.glob(osp.join(path, '*', '*')) else: raise ValueError('level can be only 1 or 2') def count_files(directory, prefix_list): """Count file number with a given directory and prefix. Args: directory (str): Data directory to be search. prefix_list (list): List or prefix. Returns: list (int): Number list of the file with the prefix. """ lst = os.listdir(directory) cnt_list = [len(fnmatch.filter(lst, x + '*')) for x in prefix_list] return cnt_list # check RGB frame_dict = {} for i, frame_dir in enumerate(frame_dirs): total_num = count_files(frame_dir, (rgb_prefix, flow_x_prefix, flow_y_prefix)) dir_name = locate_directory(frame_dir) num_x = total_num[1] num_y = total_num[2] if num_x != num_y: raise ValueError(f'x and y direction have different number ' f'of flow images in video directory: {frame_dir}') if i % 200 == 0: print(f'{i} videos parsed') frame_dict[dir_name] = (frame_dir, total_num[0], num_x) print('frame directory analysis done') return frame_dict
Parse directories holding extracted frames from standard benchmarks. Args: path (str): Directory path to parse frames. rgb_prefix (str): Prefix of generated rgb frames name. default: 'img_'. flow_x_prefix (str): Prefix of generated flow x name. default: `flow_x_`. flow_y_prefix (str): Prefix of generated flow y name. default: `flow_y_`. level (int): Directory level for glob searching. Options are 1 and 2. default: 1. Returns: dict: frame info dict with video id as key and tuple(path(str), rgb_num(int), flow_x_num(int)) as value.
parse_directory
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def count_files(directory, prefix_list): """Count file number with a given directory and prefix. Args: directory (str): Data directory to be search. prefix_list (list): List or prefix. Returns: list (int): Number list of the file with the prefix. """ lst = os.listdir(directory) cnt_list = [len(fnmatch.filter(lst, x + '*')) for x in prefix_list] return cnt_list
Count file number with a given directory and prefix. Args: directory (str): Data directory to be search. prefix_list (list): List or prefix. Returns: list (int): Number list of the file with the prefix.
count_files
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_ucf101_splits(level): """Parse UCF-101 dataset into "train", "val", "test" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of UCF-101. """ class_index_file = 'data/ucf101/annotations/classInd.txt' train_file_template = 'data/ucf101/annotations/trainlist{:02d}.txt' test_file_template = 'data/ucf101/annotations/testlist{:02d}.txt' with open(class_index_file, 'r') as fin: class_index = [x.strip().split() for x in fin] class_mapping = {x[1]: int(x[0]) - 1 for x in class_index} def line_to_map(line): """A function to map line string to video and label. Args: line (str): A long directory path, which is a text path. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label. """ items = line.strip().split() video = osp.splitext(items[0])[0] if level == 1: video = osp.basename(video) label = items[0] elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) label = class_mapping[osp.dirname(items[0])] return video, label splits = [] for i in range(1, 4): with open(train_file_template.format(i), 'r') as fin: train_list = [line_to_map(x) for x in fin] with open(test_file_template.format(i), 'r') as fin: test_list = [line_to_map(x) for x in fin] splits.append((train_list, test_list)) return splits
Parse UCF-101 dataset into "train", "val", "test" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of UCF-101.
parse_ucf101_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def line_to_map(line): """A function to map line string to video and label. Args: line (str): A long directory path, which is a text path. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label. """ items = line.strip().split() video = osp.splitext(items[0])[0] if level == 1: video = osp.basename(video) label = items[0] elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) label = class_mapping[osp.dirname(items[0])] return video, label
A function to map line string to video and label. Args: line (str): A long directory path, which is a text path. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label.
line_to_map
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_jester_splits(level): """Parse Jester into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Jester dataset. """ # Read the annotations class_index_file = 'data/jester/annotations/jester-v1-labels.csv' train_file = 'data/jester/annotations/jester-v1-train.csv' val_file = 'data/jester/annotations/jester-v1-validation.csv' test_file = 'data/jester/annotations/jester-v1-test.csv' with open(class_index_file, 'r') as fin: class_index = [x.strip() for x in fin] class_mapping = {class_index[idx]: idx for idx in range(len(class_index))} def line_to_map(line, test_mode=False): items = line.strip().split(';') video = items[0] if level == 1: video = osp.basename(video) elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) if test_mode: return video label = class_mapping[items[1]] return video, label with open(train_file, 'r') as fin: train_list = [line_to_map(x) for x in fin] with open(val_file, 'r') as fin: val_list = [line_to_map(x) for x in fin] with open(test_file, 'r') as fin: test_list = [line_to_map(x, test_mode=True) for x in fin] splits = ((train_list, val_list, test_list), ) return splits
Parse Jester into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Jester dataset.
parse_jester_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_sthv1_splits(level): """Parse Something-Something dataset V1 into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Something-Something V1 dataset. """ # Read the annotations # yapf: disable class_index_file = 'data/sthv1/annotations/something-something-v1-labels.csv' # noqa # yapf: enable train_file = 'data/sthv1/annotations/something-something-v1-train.csv' val_file = 'data/sthv1/annotations/something-something-v1-validation.csv' test_file = 'data/sthv1/annotations/something-something-v1-test.csv' with open(class_index_file, 'r') as fin: class_index = [x.strip() for x in fin] class_mapping = {class_index[idx]: idx for idx in range(len(class_index))} def line_to_map(line, test_mode=False): items = line.strip().split(';') video = items[0] if level == 1: video = osp.basename(video) elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) if test_mode: return video label = class_mapping[items[1]] return video, label with open(train_file, 'r') as fin: train_list = [line_to_map(x) for x in fin] with open(val_file, 'r') as fin: val_list = [line_to_map(x) for x in fin] with open(test_file, 'r') as fin: test_list = [line_to_map(x, test_mode=True) for x in fin] splits = ((train_list, val_list, test_list), ) return splits
Parse Something-Something dataset V1 into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Something-Something V1 dataset.
parse_sthv1_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_sthv2_splits(level): """Parse Something-Something dataset V2 into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Something-Something V2 dataset. """ # Read the annotations # yapf: disable class_index_file = 'data/sthv2/annotations/something-something-v2-labels.json' # noqa # yapf: enable train_file = 'data/sthv2/annotations/something-something-v2-train.json' val_file = 'data/sthv2/annotations/something-something-v2-validation.json' test_file = 'data/sthv2/annotations/something-something-v2-test.json' with open(class_index_file, 'r') as fin: class_mapping = json.loads(fin.read()) def line_to_map(item, test_mode=False): video = item['id'] if level == 1: video = osp.basename(video) elif level == 2: video = osp.join( osp.basename(osp.dirname(video)), osp.basename(video)) if test_mode: return video template = item['template'].replace('[', '') template = template.replace(']', '') label = int(class_mapping[template]) return video, label with open(train_file, 'r') as fin: items = json.loads(fin.read()) train_list = [line_to_map(item) for item in items] with open(val_file, 'r') as fin: items = json.loads(fin.read()) val_list = [line_to_map(item) for item in items] with open(test_file, 'r') as fin: items = json.loads(fin.read()) test_list = [line_to_map(item, test_mode=True) for item in items] splits = ((train_list, val_list, test_list), ) return splits
Parse Something-Something dataset V2 into "train", "val" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. Returns: list: "train", "val", "test" splits of Something-Something V2 dataset.
parse_sthv2_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_mmit_splits(): """Parse Multi-Moments in Time dataset into "train", "val" splits. Returns: list: "train", "val", "test" splits of Multi-Moments in Time. """ # Read the annotations def line_to_map(x): video = osp.splitext(x[0])[0] labels = [int(digit) for digit in x[1:]] return video, labels csv_reader = csv.reader(open('data/mmit/annotations/trainingSet.csv')) train_list = [line_to_map(x) for x in csv_reader] csv_reader = csv.reader(open('data/mmit/annotations/validationSet.csv')) val_list = [line_to_map(x) for x in csv_reader] test_list = val_list # not test for mit splits = ((train_list, val_list, test_list), ) return splits
Parse Multi-Moments in Time dataset into "train", "val" splits. Returns: list: "train", "val", "test" splits of Multi-Moments in Time.
parse_mmit_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_kinetics_splits(level, dataset): """Parse Kinetics dataset into "train", "val", "test" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. dataset (str): Denotes the version of Kinetics that needs to be parsed, choices are "kinetics400", "kinetics600" and "kinetics700". Returns: list: "train", "val", "test" splits of Kinetics. """ def convert_label(s, keep_whitespaces=False): """Convert label name to a formal string. Remove redundant '"' and convert whitespace to '_'. Args: s (str): String to be converted. keep_whitespaces(bool): Whether to keep whitespace. Default: False. Returns: str: Converted string. """ if not keep_whitespaces: return s.replace('"', '').replace(' ', '_') return s.replace('"', '') def line_to_map(x, test=False): """A function to map line string to video and label. Args: x (str): A single line from Kinetics csv file. test (bool): Indicate whether the line comes from test annotation file. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label. """ if test: # video = f'{x[0]}_{int(x[1]):06d}_{int(x[2]):06d}' video = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}' label = -1 # label unknown return video, label video = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}' if level == 2: video = f'{convert_label(x[0])}/{video}' else: assert level == 1 label = class_mapping[convert_label(x[0])] return video, label train_file = f'data/{dataset}/annotations/kinetics_train.csv' val_file = f'data/{dataset}/annotations/kinetics_val.csv' test_file = f'data/{dataset}/annotations/kinetics_test.csv' csv_reader = csv.reader(open(train_file)) # skip the first line next(csv_reader) labels_sorted = sorted({convert_label(row[0]) for row in csv_reader}) class_mapping = {label: i for i, label in enumerate(labels_sorted)} csv_reader = csv.reader(open(train_file)) next(csv_reader) train_list = [line_to_map(x) for x in csv_reader] csv_reader = csv.reader(open(val_file)) next(csv_reader) val_list = [line_to_map(x) for x in csv_reader] csv_reader = csv.reader(open(test_file)) next(csv_reader) test_list = [line_to_map(x, test=True) for x in csv_reader] splits = ((train_list, val_list, test_list), ) return splits
Parse Kinetics dataset into "train", "val", "test" splits. Args: level (int): Directory level of data. 1 for the single-level directory, 2 for the two-level directory. dataset (str): Denotes the version of Kinetics that needs to be parsed, choices are "kinetics400", "kinetics600" and "kinetics700". Returns: list: "train", "val", "test" splits of Kinetics.
parse_kinetics_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def convert_label(s, keep_whitespaces=False): """Convert label name to a formal string. Remove redundant '"' and convert whitespace to '_'. Args: s (str): String to be converted. keep_whitespaces(bool): Whether to keep whitespace. Default: False. Returns: str: Converted string. """ if not keep_whitespaces: return s.replace('"', '').replace(' ', '_') return s.replace('"', '')
Convert label name to a formal string. Remove redundant '"' and convert whitespace to '_'. Args: s (str): String to be converted. keep_whitespaces(bool): Whether to keep whitespace. Default: False. Returns: str: Converted string.
convert_label
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def line_to_map(x, test=False): """A function to map line string to video and label. Args: x (str): A single line from Kinetics csv file. test (bool): Indicate whether the line comes from test annotation file. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label. """ if test: # video = f'{x[0]}_{int(x[1]):06d}_{int(x[2]):06d}' video = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}' label = -1 # label unknown return video, label video = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}' if level == 2: video = f'{convert_label(x[0])}/{video}' else: assert level == 1 label = class_mapping[convert_label(x[0])] return video, label
A function to map line string to video and label. Args: x (str): A single line from Kinetics csv file. test (bool): Indicate whether the line comes from test annotation file. Returns: tuple[str, str]: (video, label), video is the video id, label is the video label.
line_to_map
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def parse_mit_splits(): """Parse Moments in Time dataset into "train", "val" splits. Returns: list: "train", "val", "test" splits of Moments in Time. """ # Read the annotations class_mapping = {} with open('data/mit/annotations/moments_categories.txt') as f_cat: for line in f_cat.readlines(): cat, digit = line.rstrip().split(',') class_mapping[cat] = int(digit) def line_to_map(x): video = osp.splitext(x[0])[0] label = class_mapping[osp.dirname(x[0])] return video, label csv_reader = csv.reader(open('data/mit/annotations/trainingSet.csv')) train_list = [line_to_map(x) for x in csv_reader] csv_reader = csv.reader(open('data/mit/annotations/validationSet.csv')) val_list = [line_to_map(x) for x in csv_reader] test_list = val_list # no test for mit splits = ((train_list, val_list, test_list), ) return splits
Parse Moments in Time dataset into "train", "val" splits. Returns: list: "train", "val", "test" splits of Moments in Time.
parse_mit_splits
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def generate_class_index_file(): """This function will generate a `ClassInd.txt` for HMDB51 in a format like UCF101, where class id starts with 1.""" video_path = 'data/hmdb51/videos' annotation_dir = 'data/hmdb51/annotations' class_list = sorted(os.listdir(video_path)) class_dict = dict() if not osp.exists(class_index_file): with open(class_index_file, 'w') as f: content = [] for class_id, class_name in enumerate(class_list): # like `ClassInd.txt` in UCF-101, # the class_id begins with 1 class_dict[class_name] = class_id + 1 cur_line = ' '.join([str(class_id + 1), class_name]) content.append(cur_line) content = '\n'.join(content) f.write(content) else: print(f'{class_index_file} has been generated before.') class_dict = { class_name: class_id + 1 for class_id, class_name in enumerate(class_list) } for i in range(1, 4): train_content = [] test_content = [] for class_name in class_dict: filename = class_name + f'_test_split{i}.txt' filename_path = osp.join(annotation_dir, filename) with open(filename_path, 'r') as fin: for line in fin: video_info = line.strip().split() video_name = video_info[0] if video_info[1] == '1': target_line = ' '.join([ osp.join(class_name, video_name), str(class_dict[class_name]) ]) train_content.append(target_line) elif video_info[1] == '2': target_line = ' '.join([ osp.join(class_name, video_name), str(class_dict[class_name]) ]) test_content.append(target_line) train_content = '\n'.join(train_content) test_content = '\n'.join(test_content) with open(train_file_template.format(i), 'w') as fout: fout.write(train_content) with open(test_file_template.format(i), 'w') as fout: fout.write(test_content)
This function will generate a `ClassInd.txt` for HMDB51 in a format like UCF101, where class id starts with 1.
generate_class_index_file
python
open-mmlab/mmaction2
tools/data/parse_file_list.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/parse_file_list.py
Apache-2.0
def resize_videos(vid_item): """Generate resized video cache. Args: vid_item (list): Video item containing video full path, video relative path. Returns: bool: Whether generate video cache successfully. """ full_path, vid_path = vid_item # Change the output video extension to .mp4 if '--to-mp4' flag is set if args.to_mp4: vid_path = vid_path.split('.') assert len(vid_path) == 2, \ f"Video path '{vid_path}' contain more than one dot" vid_path = vid_path[0] + '.mp4' out_full_path = osp.join(args.out_dir, vid_path) dir_name = osp.dirname(vid_path) out_dir = osp.join(args.out_dir, dir_name) if not osp.exists(out_dir): os.makedirs(out_dir) result = os.popen( f'ffprobe -hide_banner -loglevel error -select_streams v:0 -show_entries stream=width,height -of csv=p=0 {full_path}' # noqa:E501 ) w, h = [int(d) for d in result.readline().rstrip().split(',')] if w > h: cmd = (f'ffmpeg -hide_banner -loglevel error -i {full_path} ' f'-vf {"mpdecimate," if args.remove_dup else ""}' f'scale=-2:{args.scale} ' f'{"-vsync vfr" if args.remove_dup else ""} ' f'-c:v libx264 {"-g 16" if args.dense else ""} ' f'-an {out_full_path} -y') else: cmd = (f'ffmpeg -hide_banner -loglevel error -i {full_path} ' f'-vf {"mpdecimate," if args.remove_dup else ""}' f'scale={args.scale}:-2 ' f'{"-vsync vfr" if args.remove_dup else ""} ' f'-c:v libx264 {"-g 16" if args.dense else ""} ' f'-an {out_full_path} -y') os.popen(cmd) print(f'{vid_path} done') sys.stdout.flush() return True
Generate resized video cache. Args: vid_item (list): Video item containing video full path, video relative path. Returns: bool: Whether generate video cache successfully.
resize_videos
python
open-mmlab/mmaction2
tools/data/resize_videos.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/resize_videos.py
Apache-2.0
def pool_feature(data, num_proposals=100, num_sample_bins=3, pool_type='mean'): """Pool features with arbitrary temporal length. Args: data (list[np.ndarray] | np.ndarray): Features of an untrimmed video, with arbitrary temporal length. num_proposals (int): The temporal dim of pooled feature. Default: 100. num_sample_bins (int): How many points to sample to get the feature vector at one timestamp. Default: 3. pool_type (str): Type of pooling to pool features. Choices are ['mean', 'max']. Default: 'mean'. Returns: np.ndarray: The pooled feature with shape num_proposals x feature_dim. """ if len(data) == 1: return np.concatenate([data] * num_proposals) x_range = list(range(len(data))) f = scipy.interpolate.interp1d(x_range, data, axis=0) eps = 1e-4 start, end = eps, len(data) - 1 - eps anchor_size = (end - start) / num_proposals ptr = start feature = [] for _ in range(num_proposals): x_new = [ ptr + i / num_sample_bins * anchor_size for i in range(num_sample_bins) ] y_new = f(x_new) if pool_type == 'mean': y_new = np.mean(y_new, axis=0) elif pool_type == 'max': y_new = np.max(y_new, axis=0) else: raise NotImplementedError('Unsupported pool type') feature.append(y_new) ptr += anchor_size feature = np.stack(feature) return feature
Pool features with arbitrary temporal length. Args: data (list[np.ndarray] | np.ndarray): Features of an untrimmed video, with arbitrary temporal length. num_proposals (int): The temporal dim of pooled feature. Default: 100. num_sample_bins (int): How many points to sample to get the feature vector at one timestamp. Default: 3. pool_type (str): Type of pooling to pool features. Choices are ['mean', 'max']. Default: 'mean'. Returns: np.ndarray: The pooled feature with shape num_proposals x feature_dim.
pool_feature
python
open-mmlab/mmaction2
tools/data/activitynet/activitynet_feature_postprocessing.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/activitynet_feature_postprocessing.py
Apache-2.0
def load_annotations(ann_file): """Load the annotation according to ann_file into video_infos.""" video_infos = [] anno_database = mmengine.load(ann_file) for video_name in anno_database: video_info = anno_database[video_name] video_info['video_name'] = video_name video_infos.append(video_info) return video_infos
Load the annotation according to ann_file into video_infos.
load_annotations
python
open-mmlab/mmaction2
tools/data/activitynet/convert_proposal_format.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/convert_proposal_format.py
Apache-2.0
def dump_formatted_proposal(video_idx, video_id, num_frames, fps, gts, proposals, tiou, t_overlap_self, formatted_proposal_file): """dump the formatted proposal file, which is the input proposal file of action classifier (e.g: SSN). Args: video_idx (int): Index of video. video_id (str): ID of video. num_frames (int): Total frames of the video. fps (float): Fps of the video. gts (np.ndarray[float]): t_start, t_end and label of groundtruths. proposals (np.ndarray[float]): t_start, t_end and score of proposals. tiou (np.ndarray[float]): 2-dim array with IoU ratio. t_overlap_self (np.ndarray[float]): 2-dim array with overlap_self (union / self_len) ratio. formatted_proposal_file (open file object): Open file object of formatted_proposal_file. """ formatted_proposal_file.write( f'#{video_idx}\n{video_id}\n{num_frames}\n{fps}\n{gts.shape[0]}\n') for gt in gts: formatted_proposal_file.write(f'{int(gt[2])} {gt[0]} {gt[1]}\n') formatted_proposal_file.write(f'{proposals.shape[0]}\n') best_iou = np.amax(tiou, axis=0) best_iou_index = np.argmax(tiou, axis=0) best_overlap = np.amax(t_overlap_self, axis=0) best_overlap_index = np.argmax(t_overlap_self, axis=0) for i in range(proposals.shape[0]): index_iou = best_iou_index[i] index_overlap = best_overlap_index[i] label_iou = gts[index_iou][2] label_overlap = gts[index_overlap][2] if label_iou != label_overlap: label = label_iou if label_iou != 0 else label_overlap else: label = label_iou if best_iou[i] == 0 and best_overlap[i] == 0: formatted_proposal_file.write( f'0 0 0 {proposals[i][0]} {proposals[i][1]}\n') else: formatted_proposal_file.write( f'{int(label)} {best_iou[i]} {best_overlap[i]} ' f'{proposals[i][0]} {proposals[i][1]}\n')
dump the formatted proposal file, which is the input proposal file of action classifier (e.g: SSN). Args: video_idx (int): Index of video. video_id (str): ID of video. num_frames (int): Total frames of the video. fps (float): Fps of the video. gts (np.ndarray[float]): t_start, t_end and label of groundtruths. proposals (np.ndarray[float]): t_start, t_end and score of proposals. tiou (np.ndarray[float]): 2-dim array with IoU ratio. t_overlap_self (np.ndarray[float]): 2-dim array with overlap_self (union / self_len) ratio. formatted_proposal_file (open file object): Open file object of formatted_proposal_file.
dump_formatted_proposal
python
open-mmlab/mmaction2
tools/data/activitynet/convert_proposal_format.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/convert_proposal_format.py
Apache-2.0
def download_clip(video_identifier, output_filename, num_attempts=5, url_base='https://www.youtube.com/watch?v='): """Download a video from youtube if exists and is not blocked. arguments: --------- video_identifier: str Unique YouTube video identifier (11 characters) output_filename: str File path where the video will be stored. """ # Defensive argument checking. assert isinstance(video_identifier, str), 'video_identifier must be string' assert isinstance(output_filename, str), 'output_filename must be string' assert len(video_identifier) == 11, 'video_identifier must have length 11' status = False if not os.path.exists(output_filename): command = [ 'youtube-dl', '--quiet', '--no-warnings', '--no-check-certificate', '-f', 'mp4', '-o', '"%s"' % output_filename, '"%s"' % (url_base + video_identifier) ] command = ' '.join(command) print(command) attempts = 0 while True: try: subprocess.check_output( command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: attempts += 1 if attempts == num_attempts: return status, 'Fail' else: break # Check if the video was successfully saved. status = os.path.exists(output_filename) return status, 'Downloaded'
Download a video from youtube if exists and is not blocked. arguments: --------- video_identifier: str Unique YouTube video identifier (11 characters) output_filename: str File path where the video will be stored.
download_clip
python
open-mmlab/mmaction2
tools/data/activitynet/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/download.py
Apache-2.0
def parse_activitynet_annotations(input_csv, is_bsn_case=False): """Returns a list of YoutubeID. arguments: --------- input_csv: str Path to CSV file containing the following columns: 'video,numFrame,seconds,fps,rfps,subset,featureFrame' returns: ------- youtube_ids: list List of all YoutubeIDs in ActivityNet. """ if is_bsn_case: lines = open(input_csv).readlines() lines = lines[1:] # YoutubeIDs do not have prefix `v_` youtube_ids = [x.split(',')[0][2:] for x in lines] else: data = mmengine.load(anno_file)['database'] youtube_ids = list(data.keys()) return youtube_ids
Returns a list of YoutubeID. arguments: --------- input_csv: str Path to CSV file containing the following columns: 'video,numFrame,seconds,fps,rfps,subset,featureFrame' returns: ------- youtube_ids: list List of all YoutubeIDs in ActivityNet.
parse_activitynet_annotations
python
open-mmlab/mmaction2
tools/data/activitynet/download.py
https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/download.py
Apache-2.0