code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def load_original_weights(self, logger): """Load weights from original checkpoint, which required converting keys.""" state_dict_torchvision = _load_checkpoint( self.pretrained, map_location='cpu') if 'state_dict' in state_dict_torchvision: state_dict_torchvision = state_dict_torchvision['state_dict'] wrapped_layers_map = dict() for name, module in self.named_modules(): # convert torchvision keys ori_name = name for wrap_prefix in self._get_wrap_prefix(): if wrap_prefix in ori_name: ori_name = ori_name.replace(wrap_prefix, '') wrapped_layers_map[ori_name] = name if isinstance(module, ConvModule): if 'downsample' in ori_name: # layer{X}.{Y}.downsample.conv->layer{X}.{Y}.downsample.0 tv_conv_name = ori_name + '.0' # layer{X}.{Y}.downsample.bn->layer{X}.{Y}.downsample.1 tv_bn_name = ori_name + '.1' else: # layer{X}.{Y}.conv{n}.conv->layer{X}.{Y}.conv{n} tv_conv_name = ori_name # layer{X}.{Y}.conv{n}.bn->layer{X}.{Y}.bn{n} tv_bn_name = ori_name.replace('conv', 'bn') for conv_param in ['.weight', '.bias']: if tv_conv_name + conv_param in state_dict_torchvision: state_dict_torchvision[ori_name+'.conv'+conv_param] = \ state_dict_torchvision.pop(tv_conv_name+conv_param) for bn_param in [ '.weight', '.bias', '.running_mean', '.running_var' ]: if tv_bn_name + bn_param in state_dict_torchvision: state_dict_torchvision[ori_name+'.bn'+bn_param] = \ state_dict_torchvision.pop(tv_bn_name+bn_param) # convert wrapped keys for param_name in list(state_dict_torchvision.keys()): layer_name = '.'.join(param_name.split('.')[:-1]) if layer_name in wrapped_layers_map: wrapped_name = param_name.replace( layer_name, wrapped_layers_map[layer_name]) print(f'wrapped_name {wrapped_name}') state_dict_torchvision[ wrapped_name] = state_dict_torchvision.pop(param_name) msg = self.load_state_dict(state_dict_torchvision, strict=False) logger.info(msg)
Load weights from original checkpoint, which required converting keys.
load_original_weights
python
open-mmlab/mmaction2
mmaction/models/backbones/resnet_tsm.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py
Apache-2.0
def init_weights(self): """Initiate the parameters either from existing checkpoint or from scratch.""" if self.pretrained2d: logger = MMLogger.get_current_instance() self.load_original_weights(logger) else: if self.pretrained: self.init_cfg = dict( type='Pretrained', checkpoint=self.pretrained) super().init_weights()
Initiate the parameters either from existing checkpoint or from scratch.
init_weights
python
open-mmlab/mmaction2
mmaction/models/backbones/resnet_tsm.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_tsm.py
Apache-2.0
def init_weights(self) -> None: """Initiate the parameters either from existing checkpoint or from scratch.""" for m in self.modules(): if isinstance(m, nn.Conv3d): kaiming_init(m) elif isinstance(m, _BatchNorm): constant_init(m, 1) if isinstance(self.pretrained, str): logger = MMLogger.get_current_instance() msg = f'load model from: {self.pretrained}' print_log(msg, logger=logger) load_checkpoint(self, self.pretrained, strict=True, logger=logger) elif self.pretrained is None: # Init two branch separately. self.rgb_path.init_weights() self.pose_path.init_weights() else: raise TypeError('pretrained must be a str or None')
Initiate the parameters either from existing checkpoint or from scratch.
init_weights
python
open-mmlab/mmaction2
mmaction/models/backbones/rgbposeconv3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/rgbposeconv3d.py
Apache-2.0
def forward(self, imgs: torch.Tensor, heatmap_imgs: torch.Tensor) -> tuple: """Defines the computation performed at every call. Args: imgs (torch.Tensor): The input data. heatmap_imgs (torch.Tensor): The input data. Returns: tuple[torch.Tensor]: The feature of the input samples extracted by the backbone. """ if self.training: rgb_drop_path = torch.rand(1) < self.rgb_drop_path pose_drop_path = torch.rand(1) < self.pose_drop_path else: rgb_drop_path, pose_drop_path = False, False # We assume base_channel for RGB and Pose are 64 and 32. x_rgb = self.rgb_path.conv1(imgs) x_rgb = self.rgb_path.maxpool(x_rgb) # N x 64 x 8 x 56 x 56 x_pose = self.pose_path.conv1(heatmap_imgs) x_pose = self.pose_path.maxpool(x_pose) x_rgb = self.rgb_path.layer1(x_rgb) x_rgb = self.rgb_path.layer2(x_rgb) x_pose = self.pose_path.layer1(x_pose) if hasattr(self.rgb_path, 'layer2_lateral'): feat = x_pose.detach() if self.rgb_detach else x_pose x_pose_lateral = self.rgb_path.layer2_lateral(feat) if rgb_drop_path: x_pose_lateral = x_pose_lateral.new_zeros(x_pose_lateral.shape) if hasattr(self.pose_path, 'layer1_lateral'): feat = x_rgb.detach() if self.pose_detach else x_rgb x_rgb_lateral = self.pose_path.layer1_lateral(feat) if pose_drop_path: x_rgb_lateral = x_rgb_lateral.new_zeros(x_rgb_lateral.shape) if hasattr(self.rgb_path, 'layer2_lateral'): x_rgb = torch.cat((x_rgb, x_pose_lateral), dim=1) if hasattr(self.pose_path, 'layer1_lateral'): x_pose = torch.cat((x_pose, x_rgb_lateral), dim=1) x_rgb = self.rgb_path.layer3(x_rgb) x_pose = self.pose_path.layer2(x_pose) if hasattr(self.rgb_path, 'layer3_lateral'): feat = x_pose.detach() if self.rgb_detach else x_pose x_pose_lateral = self.rgb_path.layer3_lateral(feat) if rgb_drop_path: x_pose_lateral = x_pose_lateral.new_zeros(x_pose_lateral.shape) if hasattr(self.pose_path, 'layer2_lateral'): feat = x_rgb.detach() if self.pose_detach else x_rgb x_rgb_lateral = self.pose_path.layer2_lateral(feat) if pose_drop_path: x_rgb_lateral = x_rgb_lateral.new_zeros(x_rgb_lateral.shape) if hasattr(self.rgb_path, 'layer3_lateral'): x_rgb = torch.cat((x_rgb, x_pose_lateral), dim=1) if hasattr(self.pose_path, 'layer2_lateral'): x_pose = torch.cat((x_pose, x_rgb_lateral), dim=1) x_rgb = self.rgb_path.layer4(x_rgb) x_pose = self.pose_path.layer3(x_pose) return x_rgb, x_pose
Defines the computation performed at every call. Args: imgs (torch.Tensor): The input data. heatmap_imgs (torch.Tensor): The input data. Returns: tuple[torch.Tensor]: The feature of the input samples extracted by the backbone.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/rgbposeconv3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/rgbposeconv3d.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" res = self.residual(x) x = self.tcn(self.gcn(x)) + res return self.relu(x)
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/stgcn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/stgcn.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" N, M, T, V, C = x.size() x = x.permute(0, 1, 3, 4, 2).contiguous() if self.data_bn_type == 'MVC': x = self.data_bn(x.view(N, M * V * C, T)) else: x = self.data_bn(x.view(N * M, V * C, T)) x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V) for i in range(self.num_stages): x = self.gcn[i](x) x = x.reshape((N, M) + x.shape[1:]) return x
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/stgcn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/stgcn.py
Apache-2.0
def window_partition(x: torch.Tensor, window_size: Sequence[int]) -> torch.Tensor: """ Args: x (torch.Tensor): The input features of shape :math:`(B, D, H, W, C)`. window_size (Sequence[int]): The window size, :math:`(w_d, w_h, w_w)`. Returns: torch.Tensor: The partitioned windows of shape :math:`(B*num_windows, w_d*w_h*w_w, C)`. """ B, D, H, W, C = x.shape x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C) windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C) return windows
Args: x (torch.Tensor): The input features of shape :math:`(B, D, H, W, C)`. window_size (Sequence[int]): The window size, :math:`(w_d, w_h, w_w)`. Returns: torch.Tensor: The partitioned windows of shape :math:`(B*num_windows, w_d*w_h*w_w, C)`.
window_partition
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def window_reverse(windows: torch.Tensor, window_size: Sequence[int], B: int, D: int, H: int, W: int) -> torch.Tensor: """ Args: windows (torch.Tensor): Input windows of shape :meth:`(B*num_windows, w_d, w_h, w_w, C)`. window_size (Sequence[int]): The window size, :meth:`(w_d, w_h, w_w)`. B (int): Batch size of feature maps. D (int): Temporal length of feature maps. H (int): Height of feature maps. W (int): Width of feature maps. Returns: torch.Tensor: The feature maps reversed from windows of shape :math:`(B, D, H, W, C)`. """ x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1) x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1) return x
Args: windows (torch.Tensor): Input windows of shape :meth:`(B*num_windows, w_d, w_h, w_w, C)`. window_size (Sequence[int]): The window size, :meth:`(w_d, w_h, w_w)`. B (int): Batch size of feature maps. D (int): Temporal length of feature maps. H (int): Height of feature maps. W (int): Width of feature maps. Returns: torch.Tensor: The feature maps reversed from windows of shape :math:`(B, D, H, W, C)`.
window_reverse
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def get_window_size( x_size: Sequence[int], window_size: Sequence[int], shift_size: Optional[Sequence[int]] = None ) -> Union[Tuple[int], Tuple[Tuple[int]]]: """Calculate window size and shift size according to the input size. Args: x_size (Sequence[int]): The input size. window_size (Sequence[int]): The expected window size. shift_size (Sequence[int], optional): The expected shift size. Defaults to None. Returns: tuple: The calculated window size and shift size. """ use_window_size = list(window_size) if shift_size is not None: use_shift_size = list(shift_size) for i in range(len(x_size)): if x_size[i] <= window_size[i]: use_window_size[i] = x_size[i] if shift_size is not None: use_shift_size[i] = 0 if shift_size is None: return tuple(use_window_size) else: return tuple(use_window_size), tuple(use_shift_size)
Calculate window size and shift size according to the input size. Args: x_size (Sequence[int]): The input size. window_size (Sequence[int]): The expected window size. shift_size (Sequence[int], optional): The expected shift size. Defaults to None. Returns: tuple: The calculated window size and shift size.
get_window_size
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def compute_mask(D: int, H: int, W: int, window_size: Sequence[int], shift_size: Sequence[int], device: Union[str, torch.device]) -> torch.Tensor: """Compute attention mask. Args: D (int): Temporal length of feature maps. H (int): Height of feature maps. W (int): Width of feature maps. window_size (Sequence[int]): The window size. shift_size (Sequence[int]): The shift size. device (str or :obj:`torch.device`): The device of the mask. Returns: torch.Tensor: The attention mask used for shifted window attention. """ img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1 cnt = 0 for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice( -shift_size[0], None): for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice( -shift_size[1], None): for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice( -shift_size[2], None): img_mask[:, d, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1 mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2] attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( attn_mask == 0, float(0.0)) return attn_mask
Compute attention mask. Args: D (int): Temporal length of feature maps. H (int): Height of feature maps. W (int): Width of feature maps. window_size (Sequence[int]): The window size. shift_size (Sequence[int]): The shift size. device (str or :obj:`torch.device`): The device of the mask. Returns: torch.Tensor: The attention mask used for shifted window attention.
compute_mask
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Forward function. Args: x (torch.Tensor): Input feature maps of shape :meth:`(B*num_windows, N, C)`. mask (torch.Tensor, optional): (0/-inf) mask of shape :meth:`(num_windows, N, N)`. Defaults to None. """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C q = q * self.scale attn = q @ k.transpose(-2, -1) relative_position_bias = self.relative_position_bias_table[ self.relative_position_index[:N, :N].reshape(-1)].reshape( N, N, -1) # Wd*Wh*Ww,Wd*Wh*Ww,nH relative_position_bias = relative_position_bias.permute( 2, 0, 1).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x
Forward function. Args: x (torch.Tensor): Input feature maps of shape :meth:`(B*num_windows, N, C)`. mask (torch.Tensor, optional): (0/-inf) mask of shape :meth:`(num_windows, N, N)`. Defaults to None.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def forward(self, x: torch.Tensor, mask_matrix: torch.Tensor) -> torch.Tensor: """ Args: x (torch.Tensor): Input features of shape :math:`(B, D, H, W, C)`. mask_matrix (torch.Tensor): Attention mask for cyclic shift. """ shortcut = x if self.with_cp: x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix) else: x = self.forward_part1(x, mask_matrix) x = shortcut + self.drop_path(x) if self.with_cp: x = x + checkpoint.checkpoint(self.forward_part2, x) else: x = x + self.forward_part2(x) return x
Args: x (torch.Tensor): Input features of shape :math:`(B, D, H, W, C)`. mask_matrix (torch.Tensor): Attention mask for cyclic shift.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Perform patch merging. Args: x (torch.Tensor): Input feature maps of shape :math:`(B, D, H, W, C)`. Returns: torch.Tensor: The merged feature maps of shape :math:`(B, D, H/2, W/2, 2*C)`. """ B, D, H, W, C = x.shape # padding pad_input = (H % 2 == 1) or (W % 2 == 1) if pad_input: x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C x = self.norm(x) x = self.reduction(x) return x
Perform patch merging. Args: x (torch.Tensor): Input feature maps of shape :math:`(B, D, H, W, C)`. Returns: torch.Tensor: The merged feature maps of shape :math:`(B, D, H/2, W/2, 2*C)`.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def forward(self, x: torch.Tensor, do_downsample: bool = True) -> torch.Tensor: """Forward function. Args: x (torch.Tensor): Input feature maps of shape :math:`(B, C, D, H, W)`. do_downsample (bool): Whether to downsample the output of the current layer. Defaults to True. """ # calculate attention mask for SW-MSA B, C, D, H, W = x.shape window_size, shift_size = get_window_size((D, H, W), self.window_size, self.shift_size) x = rearrange(x, 'b c d h w -> b d h w c') Dp = int(np.ceil(D / window_size[0])) * window_size[0] Hp = int(np.ceil(H / window_size[1])) * window_size[1] Wp = int(np.ceil(W / window_size[2])) * window_size[2] attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device) for blk in self.blocks: x = blk(x, attn_mask) if self.downsample is not None and do_downsample: x = self.downsample(x) return x
Forward function. Args: x (torch.Tensor): Input feature maps of shape :math:`(B, C, D, H, W)`. do_downsample (bool): Whether to downsample the output of the current layer. Defaults to True.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Perform video to patch embedding. Args: x (torch.Tensor): The input videos of shape :math:`(B, C, D, H, W)`. In most cases, C is 3. Returns: torch.Tensor: The video patches of shape :math:`(B, embed_dims, Dp, Hp, Wp)`. """ _, _, D, H, W = x.size() if W % self.patch_size[2] != 0: x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) if H % self.patch_size[1] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) if D % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) x = self.proj(x) # B C Dp Wp Wp if self.norm is not None: Dp, Hp, Wp = x.size(2), x.size(3), x.size(4) x = x.flatten(2).transpose(1, 2) # B Dp*Hp*Wp C x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dims, Dp, Hp, Wp) return x
Perform video to patch embedding. Args: x (torch.Tensor): The input videos of shape :math:`(B, C, D, H, W)`. In most cases, C is 3. Returns: torch.Tensor: The video patches of shape :math:`(B, embed_dims, Dp, Hp, Wp)`.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def _freeze_stages(self) -> None: """Prevent all the parameters from being optimized before ``self.frozen_stages``.""" if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.frozen_stages >= 1: self.pos_drop.eval() for i in range(0, self.frozen_stages): m = self.layers[i] m.eval() for param in m.parameters(): param.requires_grad = False
Prevent all the parameters from being optimized before ``self.frozen_stages``.
_freeze_stages
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def inflate_weights(self, logger: MMLogger) -> None: """Inflate the swin2d parameters to swin3d. The differences between swin3d and swin2d mainly lie in an extra axis. To utilize the pretrained parameters in 2d model, the weight of swin2d models should be inflated to fit in the shapes of the 3d counterpart. Args: logger (MMLogger): The logger used to print debugging information. """ checkpoint = _load_checkpoint(self.pretrained, map_location='cpu') state_dict = checkpoint['model'] # delete relative_position_index since we always re-init it relative_position_index_keys = [ k for k in state_dict.keys() if 'relative_position_index' in k ] for k in relative_position_index_keys: del state_dict[k] # delete attn_mask since we always re-init it attn_mask_keys = [k for k in state_dict.keys() if 'attn_mask' in k] for k in attn_mask_keys: del state_dict[k] state_dict['patch_embed.proj.weight'] = \ state_dict['patch_embed.proj.weight'].unsqueeze(2).\ repeat(1, 1, self.patch_size[0], 1, 1) / self.patch_size[0] # bicubic interpolate relative_position_bias_table if not match relative_position_bias_table_keys = [ k for k in state_dict.keys() if 'relative_position_bias_table' in k ] for k in relative_position_bias_table_keys: relative_position_bias_table_pretrained = state_dict[k] relative_position_bias_table_current = self.state_dict()[k] L1, nH1 = relative_position_bias_table_pretrained.size() L2, nH2 = relative_position_bias_table_current.size() L2 = (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) wd = self.window_size[0] if nH1 != nH2: logger.warning(f'Error in loading {k}, passing') else: if L1 != L2: S1 = int(L1**0.5) relative_position_bias_table_pretrained_resized = \ torch.nn.functional.interpolate( relative_position_bias_table_pretrained.permute( 1, 0).view(1, nH1, S1, S1), size=(2 * self.window_size[1] - 1, 2 * self.window_size[2] - 1), mode='bicubic') relative_position_bias_table_pretrained = \ relative_position_bias_table_pretrained_resized. \ view(nH2, L2).permute(1, 0) state_dict[k] = relative_position_bias_table_pretrained.repeat( 2 * wd - 1, 1) # In the original swin2d checkpoint, the last layer of the # backbone is the norm layer, and the original attribute # name is `norm`. We changed it to `norm3` which means it # is the last norm layer of stage 4. if hasattr(self, 'norm3'): state_dict['norm3.weight'] = state_dict['norm.weight'] state_dict['norm3.bias'] = state_dict['norm.bias'] del state_dict['norm.weight'] del state_dict['norm.bias'] msg = self.load_state_dict(state_dict, strict=False) logger.info(msg)
Inflate the swin2d parameters to swin3d. The differences between swin3d and swin2d mainly lie in an extra axis. To utilize the pretrained parameters in 2d model, the weight of swin2d models should be inflated to fit in the shapes of the 3d counterpart. Args: logger (MMLogger): The logger used to print debugging information.
inflate_weights
python
open-mmlab/mmaction2
mmaction/models/backbones/swin.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call.""" assert isinstance(self.block, Bottleneck) def _inner_forward(x): """Forward wrapper for utilizing checkpoint.""" identity = x out = self.block.conv1(x) out = self.tam(out) out = self.block.conv2(out) out = self.block.conv3(out) if self.block.downsample is not None: identity = self.block.downsample(x) out = out + identity return out if self.block.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) out = self.block.relu(out) return out
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/tanet.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/tanet.py
Apache-2.0
def make_tam_modeling(self): """Replace ResNet-Block with TA-Block.""" def make_tam_block(stage, num_segments, tam_cfg=dict()): blocks = list(stage.children()) for i, block in enumerate(blocks): blocks[i] = TABlock(block, num_segments, deepcopy(tam_cfg)) return nn.Sequential(*blocks) for i in range(self.num_stages): layer_name = f'layer{i + 1}' res_layer = getattr(self, layer_name) setattr(self, layer_name, make_tam_block(res_layer, self.num_segments, self.tam_cfg))
Replace ResNet-Block with TA-Block.
make_tam_modeling
python
open-mmlab/mmaction2
mmaction/models/backbones/tanet.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/tanet.py
Apache-2.0
def forward(self, x): """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The output of the module. """ x = rearrange(x, 'b c t h w -> (b t) c h w') x = self.projection(x).flatten(2).transpose(1, 2) return x
Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The output of the module.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/timesformer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/timesformer.py
Apache-2.0
def init_weights(self, pretrained=None): """Initiate the parameters either from existing checkpoint or from scratch.""" trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) if pretrained: self.pretrained = pretrained if isinstance(self.pretrained, str): logger = MMLogger.get_current_instance() logger.info(f'load model from: {self.pretrained}') state_dict = _load_checkpoint(self.pretrained, map_location='cpu') if 'state_dict' in state_dict: state_dict = state_dict['state_dict'] if self.attention_type == 'divided_space_time': # modify the key names of norm layers old_state_dict_keys = list(state_dict.keys()) for old_key in old_state_dict_keys: if 'norms' in old_key: new_key = old_key.replace('norms.0', 'attentions.0.norm') new_key = new_key.replace('norms.1', 'ffns.0.norm') state_dict[new_key] = state_dict.pop(old_key) # copy the parameters of space attention to time attention old_state_dict_keys = list(state_dict.keys()) for old_key in old_state_dict_keys: if 'attentions.0' in old_key: new_key = old_key.replace('attentions.0', 'attentions.1') state_dict[new_key] = state_dict[old_key].clone() load_state_dict(self, state_dict, strict=False, logger=logger)
Initiate the parameters either from existing checkpoint or from scratch.
init_weights
python
open-mmlab/mmaction2
mmaction/models/backbones/timesformer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/timesformer.py
Apache-2.0
def forward(self, x): """Defines the computation performed at every call.""" # x [batch_size * num_frames, num_patches, embed_dims] batches = x.shape[0] x = self.patch_embed(x) # x [batch_size * num_frames, num_patches + 1, embed_dims] cls_tokens = self.cls_token.expand(x.size(0), -1, -1) x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed x = self.drop_after_pos(x) # Add Time Embedding if self.attention_type != 'space_only': # x [batch_size, num_patches * num_frames + 1, embed_dims] cls_tokens = x[:batches, 0, :].unsqueeze(1) x = rearrange(x[:, 1:, :], '(b t) p m -> (b p) t m', b=batches) x = x + self.time_embed x = self.drop_after_time(x) x = rearrange(x, '(b p) t m -> b (p t) m', b=batches) x = torch.cat((cls_tokens, x), dim=1) x = self.transformer_layers(x, None, None) if self.attention_type == 'space_only': # x [batch_size, num_patches + 1, embed_dims] x = x.view(-1, self.num_frames, *x.size()[-2:]) x = torch.mean(x, 1) x = self.norm(x) # Return Class Token return x[:, 0]
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/timesformer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/timesformer.py
Apache-2.0
def conv_3xnxn(inp: int, oup: int, kernel_size: int = 3, stride: int = 3, groups: int = 1): """3D convolution with kernel size of 3xnxn. Args: inp (int): Dimension of input features. oup (int): Dimension of output features. kernel_size (int): The spatial kernel size (i.e., n). Defaults to 3. stride (int): The spatial stride. Defaults to 3. groups (int): Group number of operated features. Defaults to 1. """ return nn.Conv3d( inp, oup, (3, kernel_size, kernel_size), (2, stride, stride), (1, 0, 0), groups=groups)
3D convolution with kernel size of 3xnxn. Args: inp (int): Dimension of input features. oup (int): Dimension of output features. kernel_size (int): The spatial kernel size (i.e., n). Defaults to 3. stride (int): The spatial stride. Defaults to 3. groups (int): Group number of operated features. Defaults to 1.
conv_3xnxn
python
open-mmlab/mmaction2
mmaction/models/backbones/uniformer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py
Apache-2.0
def conv_1xnxn(inp: int, oup: int, kernel_size: int = 3, stride: int = 3, groups: int = 1): """3D convolution with kernel size of 1xnxn. Args: inp (int): Dimension of input features. oup (int): Dimension of output features. kernel_size (int): The spatial kernel size (i.e., n). Defaults to 3. stride (int): The spatial stride. Defaults to 3. groups (int): Group number of operated features. Defaults to 1. """ return nn.Conv3d( inp, oup, (1, kernel_size, kernel_size), (1, stride, stride), (0, 0, 0), groups=groups)
3D convolution with kernel size of 1xnxn. Args: inp (int): Dimension of input features. oup (int): Dimension of output features. kernel_size (int): The spatial kernel size (i.e., n). Defaults to 3. stride (int): The spatial stride. Defaults to 3. groups (int): Group number of operated features. Defaults to 1.
conv_1xnxn
python
open-mmlab/mmaction2
mmaction/models/backbones/uniformer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py
Apache-2.0
def _load_pretrained(self, pretrained: str = None) -> None: """Load ImageNet-1K pretrained model. The model is pretrained with ImageNet-1K. https://github.com/Sense-X/UniFormer Args: pretrained (str): Model name of ImageNet-1K pretrained model. Defaults to None. """ if pretrained is not None: model_path = _MODELS[pretrained] logger.info(f'Load ImageNet pretrained model from {model_path}') state_dict = _load_checkpoint(model_path, map_location='cpu') state_dict_3d = self.state_dict() for k in state_dict.keys(): if k in state_dict_3d.keys( ) and state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: logger.info(f'Ignore: {k}') continue logger.info(f'Inflate: {k}, {state_dict[k].shape}' + f' => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = self._inflate_weight( state_dict[k], time_dim) self.load_state_dict(state_dict, strict=False)
Load ImageNet-1K pretrained model. The model is pretrained with ImageNet-1K. https://github.com/Sense-X/UniFormer Args: pretrained (str): Model name of ImageNet-1K pretrained model. Defaults to None.
_load_pretrained
python
open-mmlab/mmaction2
mmaction/models/backbones/uniformer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py
Apache-2.0
def _load_pretrained(self, pretrained: str = None) -> None: """Load CLIP pretrained visual encoder. The visual encoder is extracted from CLIP. https://github.com/openai/CLIP Args: pretrained (str): Model name of pretrained CLIP visual encoder. Defaults to None. """ assert pretrained is not None, \ 'please specify clip pretraied checkpoint' model_path = _MODELS[pretrained] logger.info(f'Load CLIP pretrained model from {model_path}') state_dict = _load_checkpoint(model_path, map_location='cpu') state_dict_3d = self.state_dict() for k in state_dict.keys(): if k in state_dict_3d.keys( ) and state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: logger.info(f'Ignore: {k}') continue logger.info(f'Inflate: {k}, {state_dict[k].shape}' + f' => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = self._inflate_weight(state_dict[k], time_dim) self.load_state_dict(state_dict, strict=False)
Load CLIP pretrained visual encoder. The visual encoder is extracted from CLIP. https://github.com/openai/CLIP Args: pretrained (str): Model name of pretrained CLIP visual encoder. Defaults to None.
_load_pretrained
python
open-mmlab/mmaction2
mmaction/models/backbones/uniformerv2.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformerv2.py
Apache-2.0
def forward(self, x: Tensor) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data with size of (B, N, C). Returns: Tensor: The output of the attention block, same size as inputs. """ B, N, C = x.shape if hasattr(self, 'q_bias'): k_bias = torch.zeros_like(self.v_bias, requires_grad=False) qkv_bias = torch.cat((self.q_bias, k_bias, self.v_bias)) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) else: qkv = self.qkv(x) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x
Defines the computation performed at every call. Args: x (Tensor): The input data with size of (B, N, C). Returns: Tensor: The output of the attention block, same size as inputs.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/vit_mae.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/vit_mae.py
Apache-2.0
def forward(self, x: Tensor) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data with size of (B, N, C). Returns: Tensor: The output of the transformer block, same size as inputs. """ if hasattr(self, 'gamma_1'): x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x
Defines the computation performed at every call. Args: x (Tensor): The input data with size of (B, N, C). Returns: Tensor: The output of the transformer block, same size as inputs.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/vit_mae.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/vit_mae.py
Apache-2.0
def get_sinusoid_encoding(n_position: int, embed_dims: int) -> Tensor: """Generate sinusoid encoding table. Sinusoid encoding is a kind of relative position encoding method came from `Attention Is All You Need<https://arxiv.org/abs/1706.03762>`_. Args: n_position (int): The length of the input token. embed_dims (int): The position embedding dimension. Returns: :obj:`torch.FloatTensor`: The sinusoid encoding table of size (1, n_position, embed_dims) """ vec = torch.arange(embed_dims, dtype=torch.float64) vec = (vec - vec % 2) / embed_dims vec = torch.pow(10000, -vec).view(1, -1) sinusoid_table = torch.arange(n_position).view(-1, 1) * vec sinusoid_table[:, 0::2].sin_() # dim 2i sinusoid_table[:, 1::2].cos_() # dim 2i+1 sinusoid_table = sinusoid_table.to(torch.float32) return sinusoid_table.unsqueeze(0)
Generate sinusoid encoding table. Sinusoid encoding is a kind of relative position encoding method came from `Attention Is All You Need<https://arxiv.org/abs/1706.03762>`_. Args: n_position (int): The length of the input token. embed_dims (int): The position embedding dimension. Returns: :obj:`torch.FloatTensor`: The sinusoid encoding table of size (1, n_position, embed_dims)
get_sinusoid_encoding
python
open-mmlab/mmaction2
mmaction/models/backbones/vit_mae.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/vit_mae.py
Apache-2.0
def forward(self, x: Tensor) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The feature of the input samples extracted by the backbone. """ b, _, _, h, w = x.shape h //= self.patch_size w //= self.patch_size x = self.patch_embed(x)[0] if (h, w) != self.grid_size: pos_embed = self.pos_embed.reshape(-1, *self.grid_size, self.embed_dims) pos_embed = pos_embed.permute(0, 3, 1, 2) pos_embed = F.interpolate( pos_embed, size=(h, w), mode='bicubic', align_corners=False) pos_embed = pos_embed.permute(0, 2, 3, 1).flatten(1, 2) pos_embed = pos_embed.reshape(1, -1, self.embed_dims) else: pos_embed = self.pos_embed x = x + pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) if self.return_feat_map: x = x.reshape(b, -1, h, w, self.embed_dims) x = x.permute(0, 4, 1, 2, 3) return x if self.fc_norm is not None: return self.fc_norm(x.mean(1)) return x[:, 0]
Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The feature of the input samples extracted by the backbone.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/vit_mae.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/vit_mae.py
Apache-2.0
def _round_width(width, multiplier, min_width=8, divisor=8): """Round width of filters based on width multiplier.""" width *= multiplier min_width = min_width or divisor width_out = max(min_width, int(width + divisor / 2) // divisor * divisor) if width_out < 0.9 * width: width_out += divisor return int(width_out)
Round width of filters based on width multiplier.
_round_width
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def forward(self, x): """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The output of the module. """ module_input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return module_input * x
Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The output of the module.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def forward(self, x): """Defines the computation performed at every call.""" def _inner_forward(x): """Forward wrapper for utilizing checkpoint.""" identity = x out = self.conv1(x) out = self.conv2(out) if self.se_ratio is not None: out = self.se_module(out) out = self.swish(out) out = self.conv3(out) if self.downsample is not None: identity = self.downsample(x) out = out + identity return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) out = self.relu(out) return out
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def _round_width(width, multiplier, min_depth=8, divisor=8): """Round width of filters based on width multiplier.""" if not multiplier: return width width *= multiplier min_depth = min_depth or divisor new_filters = max(min_depth, int(width + divisor / 2) // divisor * divisor) if new_filters < 0.9 * width: new_filters += divisor return int(new_filters)
Round width of filters based on width multiplier.
_round_width
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def _round_repeats(repeats, multiplier): """Round number of layers based on depth multiplier.""" if not multiplier: return repeats return int(math.ceil(multiplier * repeats))
Round number of layers based on depth multiplier.
_round_repeats
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def make_res_layer(self, block, layer_inplanes, inplanes, planes, blocks, spatial_stride=1, se_style='half', se_ratio=None, use_swish=True, norm_cfg=None, act_cfg=None, conv_cfg=None, with_cp=False, **kwargs): """Build residual layer for ResNet3D. Args: block (nn.Module): Residual module to be built. layer_inplanes (int): Number of channels for the input feature of the res layer. inplanes (int): Number of channels for the input feature in each block, which equals to base_channels * gamma_w. planes (int): Number of channels for the output feature in each block, which equals to base_channel * gamma_w * gamma_b. blocks (int): Number of residual blocks. spatial_stride (int): Spatial strides in residual and conv layers. Default: 1. se_style (str): The style of inserting SE modules into BlockX3D, 'half' denotes insert into half of the blocks, while 'all' denotes insert into all blocks. Default: 'half'. se_ratio (float | None): The reduction ratio of squeeze and excitation unit. If set as None, it means not using SE unit. Default: None. use_swish (bool): Whether to use swish as the activation function before and after the 3x3x3 conv. Default: True. conv_cfg (dict | None): Config for norm layers. Default: None. norm_cfg (dict | None): Config for norm layers. Default: None. act_cfg (dict | None): Config for activate layers. Default: None. with_cp (bool | None): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: nn.Module: A residual layer for the given config. """ downsample = None if spatial_stride != 1 or layer_inplanes != inplanes: downsample = ConvModule( layer_inplanes, inplanes, kernel_size=1, stride=(1, spatial_stride, spatial_stride), padding=0, bias=False, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) use_se = [False] * blocks if self.se_style == 'all': use_se = [True] * blocks elif self.se_style == 'half': use_se = [i % 2 == 0 for i in range(blocks)] else: raise NotImplementedError layers = [] layers.append( block( layer_inplanes, planes, inplanes, spatial_stride=spatial_stride, downsample=downsample, se_ratio=se_ratio if use_se[0] else None, use_swish=use_swish, norm_cfg=norm_cfg, conv_cfg=conv_cfg, act_cfg=act_cfg, with_cp=with_cp, **kwargs)) for i in range(1, blocks): layers.append( block( inplanes, planes, inplanes, spatial_stride=1, se_ratio=se_ratio if use_se[i] else None, use_swish=use_swish, norm_cfg=norm_cfg, conv_cfg=conv_cfg, act_cfg=act_cfg, with_cp=with_cp, **kwargs)) return nn.Sequential(*layers)
Build residual layer for ResNet3D. Args: block (nn.Module): Residual module to be built. layer_inplanes (int): Number of channels for the input feature of the res layer. inplanes (int): Number of channels for the input feature in each block, which equals to base_channels * gamma_w. planes (int): Number of channels for the output feature in each block, which equals to base_channel * gamma_w * gamma_b. blocks (int): Number of residual blocks. spatial_stride (int): Spatial strides in residual and conv layers. Default: 1. se_style (str): The style of inserting SE modules into BlockX3D, 'half' denotes insert into half of the blocks, while 'all' denotes insert into all blocks. Default: 'half'. se_ratio (float | None): The reduction ratio of squeeze and excitation unit. If set as None, it means not using SE unit. Default: None. use_swish (bool): Whether to use swish as the activation function before and after the 3x3x3 conv. Default: True. conv_cfg (dict | None): Config for norm layers. Default: None. norm_cfg (dict | None): Config for norm layers. Default: None. act_cfg (dict | None): Config for activate layers. Default: None. with_cp (bool | None): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: nn.Module: A residual layer for the given config.
make_res_layer
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def _make_stem_layer(self): """Construct the stem layers consists of a conv+norm+act module and a pooling layer.""" self.conv1_s = ConvModule( self.in_channels, self.base_channels, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1), bias=False, conv_cfg=self.conv_cfg, norm_cfg=None, act_cfg=None) self.conv1_t = ConvModule( self.base_channels, self.base_channels, kernel_size=(5, 1, 1), stride=(1, 1, 1), padding=(2, 0, 0), groups=self.base_channels, bias=False, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg)
Construct the stem layers consists of a conv+norm+act module and a pooling layer.
_make_stem_layer
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def _freeze_stages(self): """Prevent all the parameters from being optimized before ``self.frozen_stages``.""" if self.frozen_stages >= 0: self.conv1_s.eval() self.conv1_t.eval() for param in self.conv1_s.parameters(): param.requires_grad = False for param in self.conv1_t.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, f'layer{i}') m.eval() for param in m.parameters(): param.requires_grad = False
Prevent all the parameters from being optimized before ``self.frozen_stages``.
_freeze_stages
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def init_weights(self): """Initiate the parameters either from existing checkpoint or from scratch.""" if isinstance(self.pretrained, str): logger = MMLogger.get_current_instance() logger.info(f'load model from: {self.pretrained}') load_checkpoint(self, self.pretrained, strict=False, logger=logger) elif self.pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv3d): kaiming_init(m) elif isinstance(m, _BatchNorm): constant_init(m, 1) if self.zero_init_residual: for m in self.modules(): if isinstance(m, BlockX3D): constant_init(m.conv3.bn, 0) else: raise TypeError('pretrained must be a str or None')
Initiate the parameters either from existing checkpoint or from scratch.
init_weights
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def forward(self, x): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The feature of the input samples extracted by the backbone. """ x = self.conv1_s(x) x = self.conv1_t(x) for layer_name in self.res_layers: res_layer = getattr(self, layer_name) x = res_layer(x) x = self.conv5(x) return x
Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The feature of the input samples extracted by the backbone.
forward
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def train(self, mode=True): """Set the optimization status when training.""" super().train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()
Set the optimization status when training.
train
python
open-mmlab/mmaction2
mmaction/models/backbones/x3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ x = self.conv_s(x) x = self.bn_s(x) x = self.relu(x) x = self.conv_t(x) return x
Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module.
forward
python
open-mmlab/mmaction2
mmaction/models/common/conv2plus1d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/common/conv2plus1d.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ x_1 = self.conv_1(x) x_2 = self.conv_2(x) if self.op == 'concat': out = torch.cat([x_1, x_2], 1) else: out = x_1 + x_2 return out
Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module.
forward
python
open-mmlab/mmaction2
mmaction/models/common/conv_audio.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/common/conv_audio.py
Apache-2.0
def aggregate_stats(self): """Synchronize running_mean, and running_var to self.bn. Call this before eval, then call model.eval(); When eval, forward function will call self.bn instead of self.split_bn, During this time the running_mean, and running_var of self.bn has been obtained from self.split_bn. """ if self.split_bn.track_running_stats: aggre_func = self._get_aggregated_mean_std self.bn.running_mean.data, self.bn.running_var.data = aggre_func( self.split_bn.running_mean, self.split_bn.running_var, self.num_splits) self.bn.num_batches_tracked = self.split_bn.num_batches_tracked.detach( )
Synchronize running_mean, and running_var to self.bn. Call this before eval, then call model.eval(); When eval, forward function will call self.bn instead of self.split_bn, During this time the running_mean, and running_var of self.bn has been obtained from self.split_bn.
aggregate_stats
python
open-mmlab/mmaction2
mmaction/models/common/sub_batchnorm3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/common/sub_batchnorm3d.py
Apache-2.0
def forward(self, x): """Defines the computation performed at every call.""" if self.training: n, c, t, h, w = x.shape assert n % self.num_splits == 0 x = x.view(n // self.num_splits, c * self.num_splits, t, h, w) x = self.split_bn(x) x = x.view(n, c, t, h, w) else: x = self.bn(x) if self.affine: x = x * self.weight.view(-1, 1, 1, 1) x = x + self.bias.view(-1, 1, 1, 1) return x
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/common/sub_batchnorm3d.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/common/sub_batchnorm3d.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ # [n, c, h, w] n, c, h, w = x.size() num_segments = self.num_segments num_batches = n // num_segments assert c == self.in_channels # [num_batches, c, num_segments, h, w] x = x.view(num_batches, num_segments, c, h, w) x = x.permute(0, 2, 1, 3, 4).contiguous() # [num_batches * c, num_segments, 1, 1] theta_out = F.adaptive_avg_pool2d( x.view(-1, num_segments, h, w), (1, 1)) # [num_batches * c, 1, adaptive_kernel_size, 1] conv_kernel = self.G(theta_out.view(-1, num_segments)).view( num_batches * c, 1, -1, 1) # [num_batches, c, num_segments, 1, 1] local_activation = self.L(theta_out.view(-1, c, num_segments)).view( num_batches, c, num_segments, 1, 1) # [num_batches, c, num_segments, h, w] new_x = x * local_activation # [1, num_batches * c, num_segments, h * w] y = F.conv2d( new_x.view(1, num_batches * c, num_segments, h * w), conv_kernel, bias=None, stride=(self.adaptive_convolution_stride, 1), padding=(self.adaptive_convolution_padding, 0), groups=num_batches * c) # [n, c, h, w] y = y.view(num_batches, c, num_segments, h, w) y = y.permute(0, 2, 1, 3, 4).contiguous().view(n, c, h, w) return y
Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module.
forward
python
open-mmlab/mmaction2
mmaction/models/common/tam.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/common/tam.py
Apache-2.0
def forward(self, query, key=None, value=None, residual=None, **kwargs): """Defines the computation performed at every call.""" assert residual is None, ( 'Always adding the shortcut in the forward function') init_cls_token = query[:, 0, :].unsqueeze(1) identity = query_t = query[:, 1:, :] # query_t [batch_size, num_patches * num_frames, embed_dims] b, pt, m = query_t.size() p, t = pt // self.num_frames, self.num_frames # res_temporal [batch_size * num_patches, num_frames, embed_dims] query_t = self.norm(query_t.reshape(b * p, t, m)).permute(1, 0, 2) res_temporal = self.attn(query_t, query_t, query_t)[0].permute(1, 0, 2) res_temporal = self.dropout_layer( self.proj_drop(res_temporal.contiguous())) res_temporal = self.temporal_fc(res_temporal) # res_temporal [batch_size, num_patches * num_frames, embed_dims] res_temporal = res_temporal.reshape(b, p * t, m) # ret_value [batch_size, num_patches * num_frames + 1, embed_dims] new_query_t = identity + res_temporal new_query = torch.cat((init_cls_token, new_query_t), 1) return new_query
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/common/transformer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/common/transformer.py
Apache-2.0
def forward(self, query, key=None, value=None, residual=None, **kwargs): """Defines the computation performed at every call.""" assert residual is None, ( 'Always adding the shortcut in the forward function') identity = query init_cls_token = query[:, 0, :].unsqueeze(1) query_s = query[:, 1:, :] # query_s [batch_size, num_patches * num_frames, embed_dims] b, pt, m = query_s.size() p, t = pt // self.num_frames, self.num_frames # cls_token [batch_size * num_frames, 1, embed_dims] cls_token = init_cls_token.repeat(1, t, 1).reshape(b * t, m).unsqueeze(1) # query_s [batch_size * num_frames, num_patches + 1, embed_dims] query_s = rearrange(query_s, 'b (p t) m -> (b t) p m', p=p, t=t) query_s = torch.cat((cls_token, query_s), 1) # res_spatial [batch_size * num_frames, num_patches + 1, embed_dims] query_s = self.norm(query_s).permute(1, 0, 2) res_spatial = self.attn(query_s, query_s, query_s)[0].permute(1, 0, 2) res_spatial = self.dropout_layer( self.proj_drop(res_spatial.contiguous())) # cls_token [batch_size, 1, embed_dims] cls_token = res_spatial[:, 0, :].reshape(b, t, m) cls_token = torch.mean(cls_token, 1, True) # res_spatial [batch_size * num_frames, num_patches + 1, embed_dims] res_spatial = rearrange( res_spatial[:, 1:, :], '(b t) p m -> b (p t) m', p=p, t=t) res_spatial = torch.cat((cls_token, res_spatial), 1) new_query = identity + res_spatial return new_query
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/common/transformer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/common/transformer.py
Apache-2.0
def forward(self, x, residual=None): """Defines the computation performed at every call.""" assert residual is None, ('Cannot apply pre-norm with FFNWithNorm') return super().forward(self.norm(x), x)
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/common/transformer.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/common/transformer.py
Apache-2.0
def forward(self, data: Union[dict, Tuple[dict]], training: bool = False) -> Union[dict, Tuple[dict]]: """Perform normalization, padding, bgr2rgb conversion and batch augmentation based on ``BaseDataPreprocessor``. Args: data (dict or Tuple[dict]): data sampled from dataloader. training (bool): Whether to enable training time augmentation. Returns: dict or Tuple[dict]: Data in the same format as the model input. """ data = self.cast_data(data) if isinstance(data, dict): return self.forward_onesample(data, training=training) elif isinstance(data, (tuple, list)): outputs = [] for data_sample in data: output = self.forward_onesample(data_sample, training=training) outputs.append(output) return tuple(outputs) else: raise TypeError(f'Unsupported data type: {type(data)}!')
Perform normalization, padding, bgr2rgb conversion and batch augmentation based on ``BaseDataPreprocessor``. Args: data (dict or Tuple[dict]): data sampled from dataloader. training (bool): Whether to enable training time augmentation. Returns: dict or Tuple[dict]: Data in the same format as the model input.
forward
python
open-mmlab/mmaction2
mmaction/models/data_preprocessors/data_preprocessor.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/data_preprocessors/data_preprocessor.py
Apache-2.0
def forward_onesample(self, data, training: bool = False) -> dict: """Perform normalization, padding, bgr2rgb conversion and batch augmentation on one data sample. Args: data (dict): data sampled from dataloader. training (bool): Whether to enable training time augmentation. Returns: dict: Data in the same format as the model input. """ inputs, data_samples = data['inputs'], data['data_samples'] inputs, data_samples = self.preprocess(inputs, data_samples, training) data['inputs'] = inputs data['data_samples'] = data_samples return data
Perform normalization, padding, bgr2rgb conversion and batch augmentation on one data sample. Args: data (dict): data sampled from dataloader. training (bool): Whether to enable training time augmentation. Returns: dict: Data in the same format as the model input.
forward_onesample
python
open-mmlab/mmaction2
mmaction/models/data_preprocessors/data_preprocessor.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/data_preprocessors/data_preprocessor.py
Apache-2.0
def forward(self, data: Dict, training: bool = False) -> Dict: """Preprocesses the data into the model input format. Args: data (dict): Data returned by dataloader. training (bool): Whether to enable training time augmentation. Returns: dict: Data in the same format as the model input. """ data = self.cast_data(data) inputs, data_samples = data['inputs'], data['data_samples'] for modality, modality_data in inputs.items(): preprocessor = self.preprocessors[modality] modality_data, data_samples = preprocessor.preprocess( modality_data, data_samples, training) inputs[modality] = modality_data data['inputs'] = inputs data['data_samples'] = data_samples return data
Preprocesses the data into the model input format. Args: data (dict): Data returned by dataloader. training (bool): Whether to enable training time augmentation. Returns: dict: Data in the same format as the model input.
forward
python
open-mmlab/mmaction2
mmaction/models/data_preprocessors/multimodal_data_preprocessor.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/data_preprocessors/multimodal_data_preprocessor.py
Apache-2.0
def loss(self, feats: Union[torch.Tensor, Tuple[torch.Tensor]], data_samples: SampleList, **kwargs) -> Dict: """Perform forward propagation of head and loss calculation on the features of the upstream network. Args: feats (torch.Tensor | tuple[torch.Tensor]): Features from upstream network. data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: dict: A dictionary of loss components. """ cls_scores = self(feats, **kwargs) return self.loss_by_feat(cls_scores, data_samples)
Perform forward propagation of head and loss calculation on the features of the upstream network. Args: feats (torch.Tensor | tuple[torch.Tensor]): Features from upstream network. data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: dict: A dictionary of loss components.
loss
python
open-mmlab/mmaction2
mmaction/models/heads/base.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/base.py
Apache-2.0
def loss_by_feat(self, cls_scores: torch.Tensor, data_samples: SampleList) -> Dict: """Calculate the loss based on the features extracted by the head. Args: cls_scores (torch.Tensor): Classification prediction results of all class, has shape (batch_size, num_classes). data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: dict: A dictionary of loss components. """ labels = [x.gt_label for x in data_samples] labels = torch.stack(labels).to(cls_scores.device) labels = labels.squeeze() losses = dict() if labels.shape == torch.Size([]): labels = labels.unsqueeze(0) elif labels.dim() == 1 and labels.size()[0] == self.num_classes \ and cls_scores.size()[0] == 1: # Fix a bug when training with soft labels and batch size is 1. # When using soft labels, `labels` and `cls_score` share the same # shape. labels = labels.unsqueeze(0) if cls_scores.size() != labels.size(): top_k_acc = top_k_accuracy(cls_scores.detach().cpu().numpy(), labels.detach().cpu().numpy(), self.topk) for k, a in zip(self.topk, top_k_acc): losses[f'top{k}_acc'] = torch.tensor( a, device=cls_scores.device) if self.label_smooth_eps != 0: if cls_scores.size() != labels.size(): labels = F.one_hot(labels, num_classes=self.num_classes) labels = ((1 - self.label_smooth_eps) * labels + self.label_smooth_eps / self.num_classes) loss_cls = self.loss_cls(cls_scores, labels) # loss_cls may be dictionary or single tensor if isinstance(loss_cls, dict): losses.update(loss_cls) else: losses['loss_cls'] = loss_cls return losses
Calculate the loss based on the features extracted by the head. Args: cls_scores (torch.Tensor): Classification prediction results of all class, has shape (batch_size, num_classes). data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: dict: A dictionary of loss components.
loss_by_feat
python
open-mmlab/mmaction2
mmaction/models/heads/base.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/base.py
Apache-2.0
def predict(self, feats: Union[torch.Tensor, Tuple[torch.Tensor]], data_samples: SampleList, **kwargs) -> SampleList: """Perform forward propagation of head and predict recognition results on the features of the upstream network. Args: feats (torch.Tensor | tuple[torch.Tensor]): Features from upstream network. data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: list[:obj:`ActionDataSample`]: Recognition results wrapped by :obj:`ActionDataSample`. """ cls_scores = self(feats, **kwargs) return self.predict_by_feat(cls_scores, data_samples)
Perform forward propagation of head and predict recognition results on the features of the upstream network. Args: feats (torch.Tensor | tuple[torch.Tensor]): Features from upstream network. data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: list[:obj:`ActionDataSample`]: Recognition results wrapped by :obj:`ActionDataSample`.
predict
python
open-mmlab/mmaction2
mmaction/models/heads/base.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/base.py
Apache-2.0
def predict_by_feat(self, cls_scores: torch.Tensor, data_samples: SampleList) -> SampleList: """Transform a batch of output features extracted from the head into prediction results. Args: cls_scores (torch.Tensor): Classification scores, has a shape (B*num_segs, num_classes) data_samples (list[:obj:`ActionDataSample`]): The annotation data of every samples. It usually includes information such as `gt_label`. Returns: List[:obj:`ActionDataSample`]: Recognition results wrapped by :obj:`ActionDataSample`. """ num_segs = cls_scores.shape[0] // len(data_samples) cls_scores = self.average_clip(cls_scores, num_segs=num_segs) pred_labels = cls_scores.argmax(dim=-1, keepdim=True).detach() for data_sample, score, pred_label in zip(data_samples, cls_scores, pred_labels): data_sample.set_pred_score(score) data_sample.set_pred_label(pred_label) return data_samples
Transform a batch of output features extracted from the head into prediction results. Args: cls_scores (torch.Tensor): Classification scores, has a shape (B*num_segs, num_classes) data_samples (list[:obj:`ActionDataSample`]): The annotation data of every samples. It usually includes information such as `gt_label`. Returns: List[:obj:`ActionDataSample`]: Recognition results wrapped by :obj:`ActionDataSample`.
predict_by_feat
python
open-mmlab/mmaction2
mmaction/models/heads/base.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/base.py
Apache-2.0
def average_clip(self, cls_scores: torch.Tensor, num_segs: int = 1) -> torch.Tensor: """Averaging class scores over multiple clips. Using different averaging types ('score' or 'prob' or None, which defined in test_cfg) to computed the final averaged class score. Only called in test mode. Args: cls_scores (torch.Tensor): Class scores to be averaged. num_segs (int): Number of clips for each input sample. Returns: torch.Tensor: Averaged class scores. """ if self.average_clips not in ['score', 'prob', None]: raise ValueError(f'{self.average_clips} is not supported. ' f'Currently supported ones are ' f'["score", "prob", None]') batch_size = cls_scores.shape[0] cls_scores = cls_scores.view((batch_size // num_segs, num_segs) + cls_scores.shape[1:]) if self.average_clips is None: return cls_scores elif self.average_clips == 'prob': cls_scores = F.softmax(cls_scores, dim=2).mean(dim=1) elif self.average_clips == 'score': cls_scores = cls_scores.mean(dim=1) return cls_scores
Averaging class scores over multiple clips. Using different averaging types ('score' or 'prob' or None, which defined in test_cfg) to computed the final averaged class score. Only called in test mode. Args: cls_scores (torch.Tensor): Class scores to be averaged. num_segs (int): Number of clips for each input sample. Returns: torch.Tensor: Averaged class scores.
average_clip
python
open-mmlab/mmaction2
mmaction/models/heads/base.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/base.py
Apache-2.0
def forward(self, x: Tensor, num_segs: Optional[int] = None, **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. num_segs (int): For 2D backbone. Number of segments into which a video is divided. Defaults to None. Returns: Tensor: The output features after pooling. """ if isinstance(x, Tensor): n_dims = x.ndim elif isinstance(x, tuple): n_dims = x[0].ndim assert self.backbone_name == 'slowfast', \ 'Only support SlowFast backbone to input tuple' else: raise NotImplementedError(f'Unsupported feature type: {type(x)}') # For 2D backbone with spatial dimension if n_dims == 4: assert num_segs is not None if self.backbone_name == 'tsm': assert self.num_segments is not None, \ 'Please Specify num_segments for TSM' num_segs = self.num_segments # [N, T, channels, H, W] x = x.view((-1, num_segs) + x.shape[1:]) feat = self.pool1d(self.pool2d(x, dim=[-2, -1]), dim=1) elif n_dims == 5: if self.backbone_name == 'slowfast': x_slow, x_fast = x assert self.temporal_type is not None, \ 'slowfast backbone has to pool temporal dimension' x_fast = self.pool1d(self.pool2d(x_fast, dim=[-2, -1]), dim=2) x_slow = self.pool1d(self.pool2d(x_slow, dim=[-2, -1]), dim=2) feat = torch.cat((x_slow, x_fast), dim=1) # For GCN-based backbone elif self.backbone_name == 'gcn': # N, M, C, T, V feat = self.pool1d(self.pool2d(x, dim=[-2, -1]), dim=1) # For 3D backbone with spatial dimension else: # [N, channels, T, H, W] feat = self.pool1d(self.pool2d(x, dim=[-2, -1]), dim=2) # For backbone output feature without spatial and temporal dimension elif n_dims == 2: # [N, channels] feat = x return feat
Defines the computation performed at every call. Args: x (Tensor): The input data. num_segs (int): For 2D backbone. Number of segments into which a video is divided. Defaults to None. Returns: Tensor: The output features after pooling.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/feature_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/feature_head.py
Apache-2.0
def predict_by_feat(self, feats: Union[Tensor, Tuple[Tensor]], data_samples) -> Tensor: """Integrate multi-view features into one tensor. Args: feats (torch.Tensor | tuple[torch.Tensor]): Features from upstream network. data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: Tensor: The integrated multi-view features. """ num_segs = feats.shape[0] // len(data_samples) feats = self.average_clip(feats, num_segs=num_segs) return feats
Integrate multi-view features into one tensor. Args: feats (torch.Tensor | tuple[torch.Tensor]): Features from upstream network. data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: Tensor: The integrated multi-view features.
predict_by_feat
python
open-mmlab/mmaction2
mmaction/models/heads/feature_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/feature_head.py
Apache-2.0
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: """Forward features from the upstream network. Args: x (torch.Tensor): Features from the upstream network. Returns: torch.Tensor: Classification scores with shape (B, num_classes). """ N, M, C, T, V = x.shape x = x.view(N * M, C, T, V) x = self.pool(x) x = x.view(N, M, C) x = x.mean(dim=1) assert x.shape[1] == self.in_channels if self.dropout is not None: x = self.dropout(x) cls_scores = self.fc(x) return cls_scores
Forward features from the upstream network. Args: x (torch.Tensor): Features from the upstream network. Returns: torch.Tensor: Classification scores with shape (B, num_classes).
forward
python
open-mmlab/mmaction2
mmaction/models/heads/gcn_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/gcn_head.py
Apache-2.0
def forward(self, x: Tensor, **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples. """ # [N, in_channels, 4, 7, 7] if self.avg_pool is not None: x = self.avg_pool(x) # [N, in_channels, 1, 1, 1] if self.dropout is not None: x = self.dropout(x) # [N, in_channels, 1, 1, 1] x = x.view(x.shape[0], -1) # [N, in_channels] cls_score = self.fc_cls(x) # [N, num_classes] return cls_score
Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/i3d_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/i3d_head.py
Apache-2.0
def pre_logits(self, feats: Tuple[List[Tensor]]) -> Tensor: """The process before the final classification head. The input ``feats`` is a tuple of list of tensor, and each tensor is the feature of a backbone stage. """ if self.with_cls_token: _, cls_token = feats[-1] return cls_token else: patch_token = feats[-1] return patch_token.mean(dim=(2, 3, 4))
The process before the final classification head. The input ``feats`` is a tuple of list of tensor, and each tensor is the feature of a backbone stage.
pre_logits
python
open-mmlab/mmaction2
mmaction/models/heads/mvit_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/mvit_head.py
Apache-2.0
def forward(self, x: Tuple[List[Tensor]], **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tuple[List[Tensor]]): The input data. Returns: Tensor: The classification scores for input samples. """ x = self.pre_logits(x) if self.dropout is not None: x = self.dropout(x) # [N, in_channels] cls_score = self.fc_cls(x) # [N, num_classes] return cls_score
Defines the computation performed at every call. Args: x (Tuple[List[Tensor]]): The input data. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/mvit_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/mvit_head.py
Apache-2.0
def forward(self, x: Tensor, **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples. """ if len(x.shape) == 4: cls_score = self.fc2d(x) else: cls_score = self.fc3d(x) return cls_score
Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/omni_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/omni_head.py
Apache-2.0
def loss_by_feat(self, cls_scores: Union[Tensor, Tuple[Tensor]], data_samples: SampleList) -> dict: """Calculate the loss based on the features extracted by the head. Args: cls_scores (Tensor): Classification prediction results of all class, has shape (batch_size, num_classes). data_samples (List[:obj:`ActionDataSample`]): The batch data samples. Returns: dict: A dictionary of loss components. """ labels = [x.gt_label for x in data_samples] labels = torch.stack(labels).to(cls_scores.device) labels = labels.squeeze() losses = dict() if labels.shape == torch.Size([]): labels = labels.unsqueeze(0) elif labels.dim() == 1 and cls_scores.size()[0] == 1: # Fix a bug when training with soft labels and batch size is 1. # When using soft labels, `labels` and `cls_socre` share the same # shape. labels = labels.unsqueeze(0) if cls_scores.size() != labels.size(): top_k_acc = top_k_accuracy(cls_scores.detach().cpu().numpy(), labels.detach().cpu().numpy(), self.topk) for k, a in zip(self.topk, top_k_acc): losses[f'top{k}_acc'] = torch.tensor( a, device=cls_scores.device) if self.label_smooth_eps != 0: if cls_scores.size() != labels.size(): labels = F.one_hot(labels, num_classes=self.num_classes) labels = ((1 - self.label_smooth_eps) * labels + self.label_smooth_eps / self.num_classes) loss_cls = self.loss_cls(cls_scores, labels) # loss_cls may be dictionary or single tensor if isinstance(loss_cls, dict): losses.update(loss_cls) else: losses['loss_cls'] = loss_cls return losses
Calculate the loss based on the features extracted by the head. Args: cls_scores (Tensor): Classification prediction results of all class, has shape (batch_size, num_classes). data_samples (List[:obj:`ActionDataSample`]): The batch data samples. Returns: dict: A dictionary of loss components.
loss_by_feat
python
open-mmlab/mmaction2
mmaction/models/heads/omni_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/omni_head.py
Apache-2.0
def forward(self, x: Tuple[torch.Tensor]) -> Dict: """Defines the computation performed at every call.""" x_rgb, x_pose = self.avg_pool(x[0]), self.avg_pool(x[1]) x_rgb = x_rgb.view(x_rgb.size(0), -1) x_pose = x_pose.view(x_pose.size(0), -1) x_rgb = self.dropout_rgb(x_rgb) x_pose = self.dropout_pose(x_pose) cls_scores = dict() cls_scores['rgb'] = self.fc_rgb(x_rgb) cls_scores['pose'] = self.fc_pose(x_pose) return cls_scores
Defines the computation performed at every call.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/rgbpose_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/rgbpose_head.py
Apache-2.0
def loss(self, feats: Tuple[torch.Tensor], data_samples: SampleList, **kwargs) -> Dict: """Perform forward propagation of head and loss calculation on the features of the upstream network. Args: feats (tuple[torch.Tensor]): Features from upstream network. data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: dict: A dictionary of loss components. """ cls_scores = self(feats, **kwargs) return self.loss_by_feat(cls_scores, data_samples)
Perform forward propagation of head and loss calculation on the features of the upstream network. Args: feats (tuple[torch.Tensor]): Features from upstream network. data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: dict: A dictionary of loss components.
loss
python
open-mmlab/mmaction2
mmaction/models/heads/rgbpose_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/rgbpose_head.py
Apache-2.0
def loss_by_feat(self, cls_scores: Dict[str, torch.Tensor], data_samples: SampleList) -> Dict: """Calculate the loss based on the features extracted by the head. Args: cls_scores (dict[str, torch.Tensor]): The dict of classification scores, data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: dict: A dictionary of loss components. """ labels = torch.stack([x.gt_label for x in data_samples]) labels = labels.squeeze() if labels.shape == torch.Size([]): labels = labels.unsqueeze(0) elif labels.dim() == 1 and labels.size()[0] == self.num_classes \ and cls_scores.size()[0] == 1: # Fix a bug when training with soft labels and batch size is 1. # When using soft labels, `labels` and `cls_score` share the same # shape. labels = labels.unsqueeze(0) losses = dict() for loss_name, weight in zip(self.loss_components, self.loss_weights): cls_score = cls_scores[loss_name] loss_cls = self.loss_by_scores(cls_score, labels) loss_cls = {loss_name + '_' + k: v for k, v in loss_cls.items()} loss_cls[f'{loss_name}_loss_cls'] *= weight losses.update(loss_cls) return losses
Calculate the loss based on the features extracted by the head. Args: cls_scores (dict[str, torch.Tensor]): The dict of classification scores, data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: dict: A dictionary of loss components.
loss_by_feat
python
open-mmlab/mmaction2
mmaction/models/heads/rgbpose_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/rgbpose_head.py
Apache-2.0
def loss_by_scores(self, cls_scores: torch.Tensor, labels: torch.Tensor) -> Dict: """Calculate the loss based on the features extracted by the head. Args: cls_scores (torch.Tensor): Classification prediction results of all class, has shape (batch_size, num_classes). labels (torch.Tensor): The labels used to calculate the loss. Returns: dict: A dictionary of loss components. """ losses = dict() if cls_scores.size() != labels.size(): top_k_acc = top_k_accuracy(cls_scores.detach().cpu().numpy(), labels.detach().cpu().numpy(), self.topk) for k, a in zip(self.topk, top_k_acc): losses[f'top{k}_acc'] = torch.tensor( a, device=cls_scores.device) if self.label_smooth_eps != 0: if cls_scores.size() != labels.size(): labels = F.one_hot(labels, num_classes=self.num_classes) labels = ((1 - self.label_smooth_eps) * labels + self.label_smooth_eps / self.num_classes) loss_cls = self.loss_cls(cls_scores, labels) # loss_cls may be dictionary or single tensor if isinstance(loss_cls, dict): losses.update(loss_cls) else: losses['loss_cls'] = loss_cls return losses
Calculate the loss based on the features extracted by the head. Args: cls_scores (torch.Tensor): Classification prediction results of all class, has shape (batch_size, num_classes). labels (torch.Tensor): The labels used to calculate the loss. Returns: dict: A dictionary of loss components.
loss_by_scores
python
open-mmlab/mmaction2
mmaction/models/heads/rgbpose_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/rgbpose_head.py
Apache-2.0
def predict(self, feats: Tuple[torch.Tensor], data_samples: SampleList, **kwargs) -> SampleList: """Perform forward propagation of head and predict recognition results on the features of the upstream network. Args: feats (tuple[torch.Tensor]): Features from upstream network. data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: list[:obj:`ActionDataSample`]: Recognition results wrapped by :obj:`ActionDataSample`. """ cls_scores = self(feats, **kwargs) return self.predict_by_feat(cls_scores, data_samples)
Perform forward propagation of head and predict recognition results on the features of the upstream network. Args: feats (tuple[torch.Tensor]): Features from upstream network. data_samples (list[:obj:`ActionDataSample`]): The batch data samples. Returns: list[:obj:`ActionDataSample`]: Recognition results wrapped by :obj:`ActionDataSample`.
predict
python
open-mmlab/mmaction2
mmaction/models/heads/rgbpose_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/rgbpose_head.py
Apache-2.0
def predict_by_feat(self, cls_scores: Dict[str, torch.Tensor], data_samples: SampleList) -> SampleList: """Transform a batch of output features extracted from the head into prediction results. Args: cls_scores (dict[str, torch.Tensor]): The dict of classification scores, data_samples (list[:obj:`ActionDataSample`]): The annotation data of every samples. It usually includes information such as `gt_label`. Returns: list[:obj:`ActionDataSample`]: Recognition results wrapped by :obj:`ActionDataSample`. """ pred_scores = [dict() for _ in range(len(data_samples))] for name in self.loss_components: cls_score = cls_scores[name] cls_score = self.predict_by_scores(cls_score, data_samples) for pred_score, score in zip(pred_scores, cls_score): pred_score[f'{name}'] = score for data_sample, pred_score, in zip(data_samples, pred_scores): data_sample.set_pred_score(pred_score) return data_samples
Transform a batch of output features extracted from the head into prediction results. Args: cls_scores (dict[str, torch.Tensor]): The dict of classification scores, data_samples (list[:obj:`ActionDataSample`]): The annotation data of every samples. It usually includes information such as `gt_label`. Returns: list[:obj:`ActionDataSample`]: Recognition results wrapped by :obj:`ActionDataSample`.
predict_by_feat
python
open-mmlab/mmaction2
mmaction/models/heads/rgbpose_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/rgbpose_head.py
Apache-2.0
def predict_by_scores(self, cls_scores: torch.Tensor, data_samples: SampleList) -> torch.Tensor: """Transform a batch of output features extracted from the head into prediction results. Args: cls_scores (torch.Tensor): Classification scores, has a shape (B*num_segs, num_classes) data_samples (list[:obj:`ActionDataSample`]): The annotation data of every samples. Returns: torch.Tensor: The averaged classification scores. """ num_segs = cls_scores.shape[0] // len(data_samples) cls_scores = self.average_clip(cls_scores, num_segs=num_segs) return cls_scores
Transform a batch of output features extracted from the head into prediction results. Args: cls_scores (torch.Tensor): Classification scores, has a shape (B*num_segs, num_classes) data_samples (list[:obj:`ActionDataSample`]): The annotation data of every samples. Returns: torch.Tensor: The averaged classification scores.
predict_by_scores
python
open-mmlab/mmaction2
mmaction/models/heads/rgbpose_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/rgbpose_head.py
Apache-2.0
def forward(self, x: Tuple[Tensor], **kwargs) -> None: """Defines the computation performed at every call. Args: x (tuple[torch.Tensor]): The input data. Returns: Tensor: The classification scores for input samples. """ # ([N, channel_slow, T1, H, W], [(N, channel_fast, T2, H, W)]) x_slow, x_fast = x # ([N, channel_slow, 1, 1, 1], [N, channel_fast, 1, 1, 1]) x_slow = self.avg_pool(x_slow) x_fast = self.avg_pool(x_fast) # [N, channel_fast + channel_slow, 1, 1, 1] x = torch.cat((x_fast, x_slow), dim=1) if self.dropout is not None: x = self.dropout(x) # [N x C] x = x.view(x.size(0), -1) # [N x num_classes] cls_score = self.fc_cls(x) return cls_score
Defines the computation performed at every call. Args: x (tuple[torch.Tensor]): The input data. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/slowfast_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/slowfast_head.py
Apache-2.0
def forward(self, x: Tensor, **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples. """ # [N, in_channels] if self.dropout is not None: x = self.dropout(x) # [N, in_channels] cls_score = self.fc_cls(x) # [N, num_classes] return cls_score
Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/timesformer_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/timesformer_head.py
Apache-2.0
def forward(self, x, num_segs: Optional[int] = None, fcn_test: bool = False, **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. num_segs (int, optional): Number of segments into which a video is divided. Defaults to None. fcn_test (bool): Whether to apply full convolution (fcn) testing. Defaults to False. Returns: Tensor: The classification scores for input samples. """ if fcn_test: if self.avg_pool3d: x = self.avg_pool3d(x) if self.new_cls is None: self._init_new_cls() x = self.new_cls(x) cls_score_feat_map = x.view(x.size(0), -1) return cls_score_feat_map if self.avg_pool2d is None: kernel_size = (1, x.shape[-2], x.shape[-1]) self.avg_pool2d = nn.AvgPool3d(kernel_size, stride=1, padding=0) if num_segs is None: # [N, in_channels, 3, 7, 7] x = self.avg_pool3d(x) else: # [N * num_segs, in_channels, 7, 7] x = self.avg_pool2d(x) # [N * num_segs, in_channels, 1, 1] x = x.reshape((-1, num_segs) + x.shape[1:]) # [N, num_segs, in_channels, 1, 1] x = self.consensus(x) # [N, 1, in_channels, 1, 1] x = x.squeeze(1) # [N, in_channels, 1, 1] if self.dropout is not None: x = self.dropout(x) # [N, in_channels, 1, 1] x = x.view(x.size(0), -1) # [N, in_channels] cls_score = self.fc_cls(x) # [N, num_classes] return cls_score
Defines the computation performed at every call. Args: x (Tensor): The input data. num_segs (int, optional): Number of segments into which a video is divided. Defaults to None. fcn_test (bool): Whether to apply full convolution (fcn) testing. Defaults to False. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/tpn_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/tpn_head.py
Apache-2.0
def forward(self, x): """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples. """ # [N, num_segs * hidden_dim] x = x.view(x.size(0), -1) x = self.classifier(x) return x
Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/trn_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/trn_head.py
Apache-2.0
def forward(self, x, num_segs, **kwargs): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. num_segs (int): Useless in TRNHead. By default, `num_segs` is equal to `clip_len * num_clips * num_crops`, which is automatically generated in Recognizer forward phase and useless in TRN models. The `self.num_segments` we need is a hyper parameter to build TRN models. Returns: torch.Tensor: The classification scores for input samples. """ # [N * num_segs, in_channels, 7, 7] if self.avg_pool is not None: x = self.avg_pool(x) # [N * num_segs, in_channels, 1, 1] x = torch.flatten(x, 1) # [N * num_segs, in_channels] if self.dropout is not None: x = self.dropout(x) # [N, num_segs, hidden_dim] cls_score = self.fc_cls(x) cls_score = cls_score.view((-1, self.num_segments) + cls_score.size()[1:]) # [N, num_classes] cls_score = self.consensus(cls_score) return cls_score
Defines the computation performed at every call. Args: x (torch.Tensor): The input data. num_segs (int): Useless in TRNHead. By default, `num_segs` is equal to `clip_len * num_clips * num_crops`, which is automatically generated in Recognizer forward phase and useless in TRN models. The `self.num_segments` we need is a hyper parameter to build TRN models. Returns: torch.Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/trn_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/trn_head.py
Apache-2.0
def forward(self, x: Tensor, num_segs: int, **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. num_segs (int): Useless in TSMHead. By default, `num_segs` is equal to `clip_len * num_clips * num_crops`, which is automatically generated in Recognizer forward phase and useless in TSM models. The `self.num_segments` we need is a hyper parameter to build TSM models. Returns: Tensor: The classification scores for input samples. """ # [N * num_segs, in_channels, 7, 7] if self.avg_pool is not None: x = self.avg_pool(x) # [N * num_segs, in_channels, 1, 1] x = torch.flatten(x, 1) # [N * num_segs, in_channels] if self.dropout is not None: x = self.dropout(x) # [N * num_segs, num_classes] cls_score = self.fc_cls(x) if self.is_shift and self.temporal_pool: # [2 * N, num_segs // 2, num_classes] cls_score = cls_score.view((-1, self.num_segments // 2) + cls_score.size()[1:]) else: # [N, num_segs, num_classes] cls_score = cls_score.view((-1, self.num_segments) + cls_score.size()[1:]) # [N, 1, num_classes] cls_score = self.consensus(cls_score) # [N, num_classes] return cls_score.squeeze(1)
Defines the computation performed at every call. Args: x (Tensor): The input data. num_segs (int): Useless in TSMHead. By default, `num_segs` is equal to `clip_len * num_clips * num_crops`, which is automatically generated in Recognizer forward phase and useless in TSM models. The `self.num_segments` we need is a hyper parameter to build TSM models. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/tsm_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/tsm_head.py
Apache-2.0
def forward(self, x: torch.Tensor) -> torch.Tensor: """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The classification scores for input samples. """ # [N * num_segs, in_channels, h, w] x = self.avg_pool(x) # [N, in_channels, 1, 1] x = x.view(x.size(0), -1) # [N, in_channels] if self.dropout is not None: x = self.dropout(x) # [N, in_channels] cls_score = self.fc_cls(x) # [N, num_classes] return cls_score
Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/tsn_audio_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/tsn_audio_head.py
Apache-2.0
def forward(self, x: Tensor, num_segs: int, **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. num_segs (int): Number of segments into which a video is divided. Returns: Tensor: The classification scores for input samples. """ # [N * num_segs, in_channels, 7, 7] if self.avg_pool is not None: if isinstance(x, tuple): shapes = [y.shape for y in x] assert 1 == 0, f'x is tuple {shapes}' x = self.avg_pool(x) # [N * num_segs, in_channels, 1, 1] x = x.reshape((-1, num_segs) + x.shape[1:]) # [N, num_segs, in_channels, 1, 1] x = self.consensus(x) # [N, 1, in_channels, 1, 1] x = x.squeeze(1) # [N, in_channels, 1, 1] if self.dropout is not None: x = self.dropout(x) # [N, in_channels, 1, 1] x = x.view(x.size(0), -1) # [N, in_channels] cls_score = self.fc_cls(x) # [N, num_classes] return cls_score
Defines the computation performed at every call. Args: x (Tensor): The input data. num_segs (int): Number of segments into which a video is divided. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/tsn_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/tsn_head.py
Apache-2.0
def forward(self, x: Tensor, **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples. """ # [N, in_channels] if self.dropout is not None: x = self.dropout(x) # [N, in_channels] cls_score = self.fc_cls(x) # [N, num_classes] return cls_score
Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/uniformer_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/uniformer_head.py
Apache-2.0
def forward(self, x: Tensor, **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples. """ # [N, in_channels, T, H, W] assert self.pool is not None x = self.pool(x) # [N, in_channels, 1, 1, 1] # [N, in_channels, 1, 1, 1] x = x.view(x.shape[0], -1) # [N, in_channels] x = self.fc1(x) # [N, 2048] x = self.relu(x) if self.dropout is not None: x = self.dropout(x) cls_score = self.fc2(x) # [N, num_classes] return cls_score
Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples.
forward
python
open-mmlab/mmaction2
mmaction/models/heads/x3d_head.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/heads/x3d_head.py
Apache-2.0
def forward(self, inputs, data_samples, mode, **kwargs): """The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[:obj:`ActionDataSample`], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor. """ inputs = torch.stack(inputs) if mode == 'tensor': return self._forward(inputs, **kwargs) if mode == 'predict': return self.predict(inputs, data_samples, **kwargs) elif mode == 'loss': return self.loss(inputs, data_samples, **kwargs) else: raise RuntimeError(f'Invalid mode "{mode}". ' 'Only supports loss, predict and tensor mode')
The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[:obj:`ActionDataSample`], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor.
forward
python
open-mmlab/mmaction2
mmaction/models/localizers/bmn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py
Apache-2.0
def loss(self, batch_inputs, batch_data_samples, **kwargs): """Calculate losses from a batch of inputs and data samples. Args: batch_inputs (Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. batch_data_samples (List[:obj:`ActionDataSample`]): The batch data samples. It usually includes information such as ``gt_labels``. Returns: dict: A dictionary of loss components. """ gt_bbox = [ sample.gt_instances['gt_bbox'] for sample in batch_data_samples ] label_confidence, label_start, label_end = self.generate_labels( gt_bbox) device = batch_inputs.device label_confidence = label_confidence.to(device) label_start = label_start.to(device) label_end = label_end.to(device) confidence_map, start, end = self._forward(batch_inputs) loss = self.loss_cls(confidence_map, start, end, label_confidence, label_start, label_end, self.bm_mask) loss_dict = dict(loss=loss[0]) return loss_dict
Calculate losses from a batch of inputs and data samples. Args: batch_inputs (Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. batch_data_samples (List[:obj:`ActionDataSample`]): The batch data samples. It usually includes information such as ``gt_labels``. Returns: dict: A dictionary of loss components.
loss
python
open-mmlab/mmaction2
mmaction/models/localizers/bmn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py
Apache-2.0
def predict(self, batch_inputs, batch_data_samples, **kwargs): """Define the computation performed at every call when testing.""" confidence_map, start, end = self._forward(batch_inputs) start_scores = start[0].cpu().numpy() end_scores = end[0].cpu().numpy() cls_confidence = (confidence_map[0][1]).cpu().numpy() reg_confidence = (confidence_map[0][0]).cpu().numpy() max_start = max(start_scores) max_end = max(end_scores) # generate the set of start points and end points start_bins = np.zeros(len(start_scores)) start_bins[0] = 1 # [1,0,0...,0,0] end_bins = np.zeros(len(end_scores)) end_bins[-1] = 1 # [0,0,0...,0,1] for idx in range(1, self.tscale - 1): if start_scores[idx] > start_scores[ idx + 1] and start_scores[idx] > start_scores[idx - 1]: start_bins[idx] = 1 elif start_scores[idx] > (0.5 * max_start): start_bins[idx] = 1 if end_scores[idx] > end_scores[ idx + 1] and end_scores[idx] > end_scores[idx - 1]: end_bins[idx] = 1 elif end_scores[idx] > (0.5 * max_end): end_bins[idx] = 1 # iterate through all combinations of start_index and end_index new_proposals = [] for idx in range(self.tscale): for jdx in range(self.tscale): start_index = jdx end_index = start_index + idx + 1 if end_index < self.tscale and start_bins[ start_index] == 1 and end_bins[end_index] == 1: tmin = start_index / self.tscale tmax = end_index / self.tscale tmin_score = start_scores[start_index] tmax_score = end_scores[end_index] cls_score = cls_confidence[idx, jdx] reg_score = reg_confidence[idx, jdx] score = tmin_score * tmax_score * cls_score * reg_score new_proposals.append([ tmin, tmax, tmin_score, tmax_score, cls_score, reg_score, score ]) new_proposals = np.stack(new_proposals) video_info = batch_data_samples[0].metainfo proposal_list = post_processing(new_proposals, video_info, self.soft_nms_alpha, self.soft_nms_low_threshold, self.soft_nms_high_threshold, self.post_process_top_k, self.feature_extraction_interval) output = [ dict( video_name=video_info['video_name'], proposal_list=proposal_list) ] return output
Define the computation performed at every call when testing.
predict
python
open-mmlab/mmaction2
mmaction/models/localizers/bmn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py
Apache-2.0
def _get_interp1d_bin_mask(seg_tmin, seg_tmax, tscale, num_samples, num_samples_per_bin): """Generate sample mask for a boundary-matching pair.""" plen = float(seg_tmax - seg_tmin) plen_sample = plen / (num_samples * num_samples_per_bin - 1.0) total_samples = [ seg_tmin + plen_sample * i for i in range(num_samples * num_samples_per_bin) ] p_mask = [] for idx in range(num_samples): bin_samples = total_samples[idx * num_samples_per_bin:(idx + 1) * num_samples_per_bin] bin_vector = np.zeros(tscale) for sample in bin_samples: sample_upper = math.ceil(sample) sample_decimal, sample_down = math.modf(sample) if 0 <= int(sample_down) <= (tscale - 1): bin_vector[int(sample_down)] += 1 - sample_decimal if 0 <= int(sample_upper) <= (tscale - 1): bin_vector[int(sample_upper)] += sample_decimal bin_vector = 1.0 / num_samples_per_bin * bin_vector p_mask.append(bin_vector) p_mask = np.stack(p_mask, axis=1) return p_mask
Generate sample mask for a boundary-matching pair.
_get_interp1d_bin_mask
python
open-mmlab/mmaction2
mmaction/models/localizers/bmn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py
Apache-2.0
def _get_interp1d_mask(self): """Generate sample mask for each point in Boundary-Matching Map.""" mask_mat = [] for start_index in range(self.tscale): mask_mat_vector = [] for duration_index in range(self.tscale): if start_index + duration_index < self.tscale: p_tmin = start_index p_tmax = start_index + duration_index center_len = float(p_tmax - p_tmin) + 1 sample_tmin = p_tmin - (center_len * self.boundary_ratio) sample_tmax = p_tmax + (center_len * self.boundary_ratio) p_mask = self._get_interp1d_bin_mask( sample_tmin, sample_tmax, self.tscale, self.num_samples, self.num_samples_per_bin) else: p_mask = np.zeros([self.tscale, self.num_samples]) mask_mat_vector.append(p_mask) mask_mat_vector = np.stack(mask_mat_vector, axis=2) mask_mat.append(mask_mat_vector) mask_mat = np.stack(mask_mat, axis=3) mask_mat = mask_mat.astype(np.float32) self.sample_mask = nn.Parameter( torch.tensor(mask_mat).view(self.tscale, -1), requires_grad=False)
Generate sample mask for each point in Boundary-Matching Map.
_get_interp1d_mask
python
open-mmlab/mmaction2
mmaction/models/localizers/bmn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py
Apache-2.0
def _temporal_anchors(self, tmin_offset=0., tmax_offset=1.): """Generate temporal anchors. Args: tmin_offset (int): Offset for the minimum value of temporal anchor. Default: 0. tmax_offset (int): Offset for the maximum value of temporal anchor. Default: 1. Returns: tuple[Sequence[float]]: The minimum and maximum values of temporal anchors. """ temporal_gap = 1. / self.tscale anchors_tmins = [] anchors_tmaxs = [] for i in range(self.tscale): anchors_tmins.append(temporal_gap * (i + tmin_offset)) anchors_tmaxs.append(temporal_gap * (i + tmax_offset)) return anchors_tmins, anchors_tmaxs
Generate temporal anchors. Args: tmin_offset (int): Offset for the minimum value of temporal anchor. Default: 0. tmax_offset (int): Offset for the maximum value of temporal anchor. Default: 1. Returns: tuple[Sequence[float]]: The minimum and maximum values of temporal anchors.
_temporal_anchors
python
open-mmlab/mmaction2
mmaction/models/localizers/bmn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py
Apache-2.0
def _forward(self, x): """Define the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ # x.shape [batch_size, self.feat_dim, self.tscale] base_feature = self.x_1d_b(x) # base_feature.shape [batch_size, self.hidden_dim_1d, self.tscale] start = self.x_1d_s(base_feature).squeeze(1) # start.shape [batch_size, self.tscale] end = self.x_1d_e(base_feature).squeeze(1) # end.shape [batch_size, self.tscale] confidence_map = self.x_1d_p(base_feature) # [batch_size, self.hidden_dim_1d, self.tscale] confidence_map = self._boundary_matching_layer(confidence_map) # [batch_size, self.hidden_dim_1d,, self.num_sampls, self.tscale, self.tscale] # noqa confidence_map = self.x_3d_p(confidence_map).squeeze(2) # [batch_size, self.hidden_dim_3d, self.tscale, self.tscale] confidence_map = self.x_2d_p(confidence_map) # [batch_size, 2, self.tscale, self.tscale] return confidence_map, start, end
Define the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module.
_forward
python
open-mmlab/mmaction2
mmaction/models/localizers/bmn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py
Apache-2.0
def init_weights(self) -> None: """Initiate the parameters either from existing checkpoint or from scratch.""" for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, nn.BatchNorm2d): constant_init(m, 1)
Initiate the parameters either from existing checkpoint or from scratch.
init_weights
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0
def _temporal_anchors(self, tmin_offset=0., tmax_offset=1.): """Generate temporal anchors. Args: tmin_offset (int): Offset for the minimum value of temporal anchor. Default: 0. tmax_offset (int): Offset for the maximum value of temporal anchor. Default: 1. Returns: tuple[Sequence[float]]: The minimum and maximum values of temporal anchors. """ temporal_gap = 1. / self.temporal_dim anchors_tmins = [] anchors_tmaxs = [] for i in range(self.temporal_dim): anchors_tmins.append(temporal_gap * (i + tmin_offset)) anchors_tmaxs.append(temporal_gap * (i + tmax_offset)) return anchors_tmins, anchors_tmaxs
Generate temporal anchors. Args: tmin_offset (int): Offset for the minimum value of temporal anchor. Default: 0. tmax_offset (int): Offset for the maximum value of temporal anchor. Default: 1. Returns: tuple[Sequence[float]]: The minimum and maximum values of temporal anchors.
_temporal_anchors
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0
def _forward(self, x): """Define the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ x = F.relu(self.conv1_ratio * self.conv1(x)) x = F.relu(self.conv2_ratio * self.conv2(x)) x = torch.sigmoid(self.conv3_ratio * self.conv3(x)) return x
Define the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module.
_forward
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0
def loss(self, batch_inputs, batch_data_samples, **kwargs): """Calculate losses from a batch of inputs and data samples. Args: batch_inputs (Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. batch_data_samples (List[:obj:`ActionDataSample`]): The batch data samples. It usually includes information such as ``gt_labels``. Returns: dict: A dictionary of loss components. """ tem_output = self._forward(batch_inputs) score_action = tem_output[:, 0, :] score_start = tem_output[:, 1, :] score_end = tem_output[:, 2, :] gt_bbox = [ sample.gt_instances['gt_bbox'] for sample in batch_data_samples ] label_action, label_start, label_end = self.generate_labels(gt_bbox) device = batch_inputs.device label_action = label_action.to(device) label_start = label_start.to(device) label_end = label_end.to(device) loss_action = self.loss_cls(score_action, label_action, self.match_threshold) loss_start = self.loss_cls(score_start, label_start, self.match_threshold) loss_end = self.loss_cls(score_end, label_end, self.match_threshold) loss_dict = { 'loss_action': loss_action * self.loss_weight, 'loss_start': loss_start, 'loss_end': loss_end } return loss_dict
Calculate losses from a batch of inputs and data samples. Args: batch_inputs (Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. batch_data_samples (List[:obj:`ActionDataSample`]): The batch data samples. It usually includes information such as ``gt_labels``. Returns: dict: A dictionary of loss components.
loss
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0
def predict(self, batch_inputs, batch_data_samples, **kwargs): """Define the computation performed at every call when testing.""" tem_output = self._forward(batch_inputs).cpu().numpy() batch_action = tem_output[:, 0, :] batch_start = tem_output[:, 1, :] batch_end = tem_output[:, 2, :] video_results = [] for batch_idx, _ in enumerate(batch_action): video_name = batch_data_samples[batch_idx].metainfo['video_name'] video_action = batch_action[batch_idx] video_start = batch_start[batch_idx] video_end = batch_end[batch_idx] video_result = np.stack((video_action, video_start, video_end, self.anchors_tmins, self.anchors_tmaxs), axis=1) video_results.append((video_name, video_result)) return video_results
Define the computation performed at every call when testing.
predict
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0
def forward(self, inputs, data_samples, mode, **kwargs): """The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[:obj:`ActionDataSample`], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor. """ if type(inputs) is not torch.Tensor: inputs = torch.stack(inputs) if mode == 'tensor': return self._forward(inputs, **kwargs) if mode == 'predict': return self.predict(inputs, data_samples, **kwargs) elif mode == 'loss': return self.loss(inputs, data_samples, **kwargs) else: raise RuntimeError(f'Invalid mode "{mode}". ' 'Only supports loss, predict and tensor mode')
The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[:obj:`ActionDataSample`], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor.
forward
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0
def init_weights(self) -> None: """Initiate the parameters either from existing checkpoint or from scratch.""" for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, nn.BatchNorm2d): constant_init(m, 1)
Initiate the parameters either from existing checkpoint or from scratch.
init_weights
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0
def _forward(self, x): """Define the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ x = F.relu(self.fc1_ratio * self.fc1(x)) x = torch.sigmoid(self.fc2_ratio * self.fc2(x)) return x
Define the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module.
_forward
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0
def loss(self, batch_inputs, batch_data_samples, **kwargs): """Calculate losses from a batch of inputs and data samples. Args: batch_inputs (Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. batch_data_samples (List[:obj:`ActionDataSample`]): The batch data samples. It usually includes information such as ``gt_labels``. Returns: dict: A dictionary of loss components. """ device = self.fc1.weight.device bsp_feature = torch.cat([ sample.gt_instances['bsp_feature'] for sample in batch_data_samples ]).to(device) reference_temporal_iou = torch.cat([ sample.gt_instances['reference_temporal_iou'] for sample in batch_data_samples ]).to(device) pem_output = self._forward(bsp_feature) anchors_temporal_iou = pem_output.view(-1) u_hmask = (reference_temporal_iou > self.pem_high_temporal_iou_threshold).float() u_mmask = ( (reference_temporal_iou <= self.pem_high_temporal_iou_threshold) & (reference_temporal_iou > self.pem_low_temporal_iou_threshold) ).float() u_lmask = (reference_temporal_iou <= self.pem_low_temporal_iou_threshold).float() num_h = torch.sum(u_hmask) num_m = torch.sum(u_mmask) num_l = torch.sum(u_lmask) r_m = self.u_ratio_m * num_h / (num_m) r_m = torch.min(r_m, torch.Tensor([1.0]).to(device))[0] u_smmask = torch.rand(u_hmask.size()[0], device=device) u_smmask = u_smmask * u_mmask u_smmask = (u_smmask > (1. - r_m)).float() r_l = self.u_ratio_l * num_h / (num_l) r_l = torch.min(r_l, torch.Tensor([1.0]).to(device))[0] u_slmask = torch.rand(u_hmask.size()[0], device=device) u_slmask = u_slmask * u_lmask u_slmask = (u_slmask > (1. - r_l)).float() temporal_iou_weights = u_hmask + u_smmask + u_slmask temporal_iou_loss = F.smooth_l1_loss(anchors_temporal_iou, reference_temporal_iou) temporal_iou_loss = torch.sum( temporal_iou_loss * temporal_iou_weights) / torch.sum(temporal_iou_weights) loss_dict = dict(temporal_iou_loss=temporal_iou_loss) return loss_dict
Calculate losses from a batch of inputs and data samples. Args: batch_inputs (Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. batch_data_samples (List[:obj:`ActionDataSample`]): The batch data samples. It usually includes information such as ``gt_labels``. Returns: dict: A dictionary of loss components.
loss
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0
def predict(self, batch_inputs, batch_data_samples, **kwargs): """Define the computation performed at every call when testing.""" device = self.fc1.weight.device bsp_feature = torch.cat([ sample.gt_instances['bsp_feature'] for sample in batch_data_samples ]).to(device) pem_output = self._forward(bsp_feature).view(-1).cpu().numpy() pem_output = pem_output.reshape(-1, 1) gt_instances = [sample.gt_instances for sample in batch_data_samples] tmin = self._parse(gt_instances, 'tmin') tmax = self._parse(gt_instances, 'tmax') tmin_score = self._parse(gt_instances, 'tmin_score') tmax_score = self._parse(gt_instances, 'tmax_score') score = np.array(pem_output * tmin_score * tmax_score).reshape(-1, 1) result = np.concatenate( (tmin, tmax, tmin_score, tmax_score, pem_output, score), axis=1) result = result.reshape(-1, 6) video_info = batch_data_samples[0].metainfo proposal_list = post_processing(result, video_info, self.soft_nms_alpha, self.soft_nms_low_threshold, self.soft_nms_high_threshold, self.post_process_top_k, self.feature_extraction_interval) output = [ dict( video_name=video_info['video_name'], proposal_list=proposal_list) ] return output
Define the computation performed at every call when testing.
predict
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0
def forward(self, inputs, data_samples, mode, **kwargs): """The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: batch_inputs (Tensor): The input tensor with shape (N, C, ...) in general. batch_data_samples (List[:obj:`ActionDataSample`], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor. """ inputs = torch.stack(inputs) if mode == 'tensor': return self._forward(inputs, **kwargs) if mode == 'predict': return self.predict(inputs, data_samples, **kwargs) elif mode == 'loss': return self.loss(inputs, data_samples, **kwargs) else: raise RuntimeError(f'Invalid mode "{mode}". ' 'Only supports loss, predict and tensor mode')
The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: batch_inputs (Tensor): The input tensor with shape (N, C, ...) in general. batch_data_samples (List[:obj:`ActionDataSample`], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor.
forward
python
open-mmlab/mmaction2
mmaction/models/localizers/bsn.py
https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py
Apache-2.0