File size: 2,754 Bytes
661a2a1
749f00b
0d7fdda
 
 
 
 
41d8a22
0d7fdda
 
 
41d8a22
 
 
 
 
0d7fdda
0a2fb97
 
 
 
 
 
 
5f773af
0d7fdda
 
 
 
 
 
 
 
 
60a05fe
0d7fdda
 
 
 
 
 
 
60a05fe
0d7fdda
60a05fe
 
0d7fdda
60a05fe
 
0d7fdda
 
 
 
 
 
 
 
 
 
 
0a2fb97
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: cc-by-4.0
---


# Timeseries Data Processing

This repository contains a script for loading and processing time series data using the `datasets` library and converting it to a pandas DataFrame for further analysis.

## Dataset

The dataset used contains time series data with the following features:
- **`id`**: Identifier for the dataset, formatted as `Country_Number of Household` (e.g., `GE_1` for Germany, household 1).  
- **`datetime`**: Timestamp indicating the date and time of the observation.  
- **`target`**: Energy consumption measured in kilowatt-hours (kWh).  
- **`category`**: The resolution of the time series (e.g., 15 minutes, 30 minutes, 60 minutes).  

## Data Sources

The research uses raw data from the following open-source databases:

- **Netherlands Smart Meter Data**: [Liander Open Data](https://www.liander.nl/partners/datadiensten/open-data/data)
- **UK Smart Meter Data**: [London Datastore](https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households)
- **Germany Smart Meter Data**: [Open Power System Data](https://data.open-power-system-data.org/household_data/2020-04-15)
- **Australian Smarter Data**:[Smart-Grid Smart-City Customer Trial Data](https://data.gov.au/dataset/ds-dga-4e21dea3-9b87-4610-94c7-15a8a77907ef/details)
## Requirements

- Python 3.6+
- `datasets` library
- `pandas` library

You can install the required libraries using pip:

```sh
python -m pip install "dask[complete]"    # Install everything
```

## Usage

The following example demonstrates how to load the dataset and convert it to a pandas DataFrame.

```python
import dask.dataframe as dd

# read parquet file
df = dd.read_parquet("hf://datasets/Weijie1996/load_timeseries/30m_resolution_ge/ge_30m.parquet")

# change to pandas dataframe
df = df.compute()

```

## Output
``` data
        id            datetime    target category
0  NL_1  2013-01-01 00:00:00  0.117475      60m
1  NL_1  2013-01-01 01:00:00  0.104347      60m
2  NL_1  2013-01-01 02:00:00  0.103173      60m
3  NL_1  2013-01-01 03:00:00  0.101686      60m
4  NL_1  2013-01-01 04:00:00  0.099632      60m
```

## Related Work

This dataset has been utilized in the following research studies:

1. **Comparative Assessment of Generative Models for Transformer- and Consumer-Level Load Profiles Generation**  
   - GitHub Repository: [Generative Models for Customer Profile Generation](https://github.com/xiaweijie1996/Generative-Models-for-Customer-Profile-Generation)

2. **A Flow-Based Model for Conditional and Probabilistic Electricity Consumption Profile Generation and Prediction**  
   - GitHub Repository: [Full Convolutional Profile Flow](https://github.com/xiaweijie1996/Full-Convolutional-Profile-Flow?tab=readme-ov-file)