text
stringlengths
5
22M
id
stringlengths
12
177
metadata
dict
__index_level_0__
int64
0
1.37k
.. Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. DialoGPT ----------------------------------------------------------------------------------------------------------------------- Overview ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DialoGPT was proposed in `DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation <https://arxiv.org/abs/1911.00536>`_ by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. It's a GPT2 Model trained on 147M conversation-like exchanges extracted from Reddit. The abstract from the paper is the following: *We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.* Tips: - DialoGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - DialoGPT was trained with a causal language modeling (CLM) objective on conversational data and is therefore powerful at response generation in open-domain dialogue systems. - DialoGPT enables the user to create a chat bot in just 10 lines of code as shown on `DialoGPT's model card <https://huggingface.co/microsoft/DialoGPT-medium>`_. Training: In order to train or fine-tune DialoGPT, one can use causal language modeling training. To cite the official paper: *We follow the OpenAI GPT-2 to model a multiturn dialogue session as a long text and frame the generation task as language modeling. We first concatenate all dialog turns within a dialogue session into a long text x_1,..., x_N (N is the sequence length), ended by the end-of-text token.* For more information please confer to the original paper. DialoGPT's architecture is based on the GPT2 model, so one can refer to :doc:`GPT2's documentation page <gpt2>`. The original code can be found `here <https://github.com/microsoft/DialoGPT>`_.
AdaMix/docs/source/model_doc/dialogpt.rst/0
{ "file_path": "AdaMix/docs/source/model_doc/dialogpt.rst", "repo_id": "AdaMix", "token_count": 779 }
28
.. Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. M2M100 ----------------------------------------------------------------------------------------------------------------------- Overview ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The M2M100 model was proposed in `Beyond English-Centric Multilingual Machine Translation <https://arxiv.org/abs/2010.11125>`__ by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. The abstract from the paper is the following: *Existing work in translation demonstrated the potential of massively multilingual machine translation by training a single model able to translate between any pair of languages. However, much of this work is English-Centric by training only on data which was translated from or to English. While this is supported by large sources of training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data, evaluation, and final M2M-100 model.* Training and Generation _______________________________________________________________________________________________________________________ M2M100 is a multilingual encoder-decoder (seq-to-seq) model primarily intended for translation tasks. As the model is multilingual it expects the sequences in a certain format: A special language id token is used as prefix in both the source and target text. The source text format is :obj:`[lang_code] X [eos]`, where :obj:`lang_code` is source language id for source text and target language id for target text, with :obj:`X` being the source or target text. The :class:`~transformers.M2M100Tokenizer` depends on :obj:`sentencepiece` so be sure to install it before running the examples. To install :obj:`sentencepiece` run ``pip install sentencepiece``. - Supervised Training .. code-block:: from transformers import M2M100Config, M2M100ForConditionalGeneration, M2M100Tokenizer model = M2M100ForConditionalGeneration.from_pretrained('facebook/m2m100_418M') tokenizer = M2M100Tokenizer.from_pretrained('facebook/m2m100_418M', src_lang="en", tgt_lang="fr") src_text = "Life is like a box of chocolates." tgt_lang = "La vie est comme une boîte de chocolat." model_inputs = tokenizer(src_text, return_tensors="pt") with tokenizer.as_target_tokenizer(): labels = tokenizer(tgt_text, return_tensors="pt").input_ids loss = model(**model_inputs, labels=labels) # forward pass - Generation M2M100 uses the :obj:`eos_token_id` as the :obj:`decoder_start_token_id` for generation with the target language id being forced as the first generated token. To force the target language id as the first generated token, pass the `forced_bos_token_id` parameter to the `generate` method. The following example shows how to translate between Hindi to French and Chinese to English using the `facebook/m2m100_418M` checkpoint. .. code-block:: >>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer >>> hi_text = "जीवन एक चॉकलेट बॉक्स की तरह है।" >>> chinese_text = "生活就像一盒巧克力。" >>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") >>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") >>> # translate Hindi to French >>> tokenizer.src_lang = "hi" >>> encoded_hi = tokenizer(hi_text, return_tensors="pt") >>> generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.get_lang_id("fr")) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) "La vie est comme une boîte de chocolat." >>> # translate Chinese to English >>> tokenizer.src_lang = "zh" >>> encoded_zh = tokenizer(chinese_text, return_tensors="pt") >>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en")) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) "Life is like a box of chocolate." M2M100Config ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.M2M100Config :members: M2M100Tokenizer ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.M2M100Tokenizer :members: build_inputs_with_special_tokens, get_special_tokens_mask, create_token_type_ids_from_sequences, save_vocabulary M2M100Model ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.M2M100Model :members: forward M2M100ForConditionalGeneration ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.M2M100ForConditionalGeneration :members: forward
AdaMix/docs/source/model_doc/m2m_100.rst/0
{ "file_path": "AdaMix/docs/source/model_doc/m2m_100.rst", "repo_id": "AdaMix", "token_count": 1816 }
29
TAPAS ----------------------------------------------------------------------------------------------------------------------- .. note:: This is a recently introduced model so the API hasn't been tested extensively. There may be some bugs or slight breaking changes to fix them in the future. Overview ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The TAPAS model was proposed in `TAPAS: Weakly Supervised Table Parsing via Pre-training <https://www.aclweb.org/anthology/2020.acl-main.398>`__ by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos. It's a BERT-based model specifically designed (and pre-trained) for answering questions about tabular data. Compared to BERT, TAPAS uses relative position embeddings and has 7 token types that encode tabular structure. TAPAS is pre-trained on the masked language modeling (MLM) objective on a large dataset comprising millions of tables from English Wikipedia and corresponding texts. For question answering, TAPAS has 2 heads on top: a cell selection head and an aggregation head, for (optionally) performing aggregations (such as counting or summing) among selected cells. TAPAS has been fine-tuned on several datasets: `SQA <https://www.microsoft.com/en-us/download/details.aspx?id=54253>`__ (Sequential Question Answering by Microsoft), `WTQ <https://github.com/ppasupat/WikiTableQuestions>`__ (Wiki Table Questions by Stanford University) and `WikiSQL <https://github.com/salesforce/WikiSQL>`__ (by Salesforce). It achieves state-of-the-art on both SQA and WTQ, while having comparable performance to SOTA on WikiSQL, with a much simpler architecture. The abstract from the paper is the following: *Answering natural language questions over tables is usually seen as a semantic parsing task. To alleviate the collection cost of full logical forms, one popular approach focuses on weak supervision consisting of denotations instead of logical forms. However, training semantic parsers from weak supervision poses difficulties, and in addition, the generated logical forms are only used as an intermediate step prior to retrieving the denotation. In this paper, we present TAPAS, an approach to question answering over tables without generating logical forms. TAPAS trains from weak supervision, and predicts the denotation by selecting table cells and optionally applying a corresponding aggregation operator to such selection. TAPAS extends BERT's architecture to encode tables as input, initializes from an effective joint pre-training of text segments and tables crawled from Wikipedia, and is trained end-to-end. We experiment with three different semantic parsing datasets, and find that TAPAS outperforms or rivals semantic parsing models by improving state-of-the-art accuracy on SQA from 55.1 to 67.2 and performing on par with the state-of-the-art on WIKISQL and WIKITQ, but with a simpler model architecture. We additionally find that transfer learning, which is trivial in our setting, from WIKISQL to WIKITQ, yields 48.7 accuracy, 4.2 points above the state-of-the-art.* In addition, the authors have further pre-trained TAPAS to recognize **table entailment**, by creating a balanced dataset of millions of automatically created training examples which are learned in an intermediate step prior to fine-tuning. The authors of TAPAS call this further pre-training intermediate pre-training (since TAPAS is first pre-trained on MLM, and then on another dataset). They found that intermediate pre-training further improves performance on SQA, achieving a new state-of-the-art as well as state-of-the-art on `TabFact <https://github.com/wenhuchen/Table-Fact-Checking>`__, a large-scale dataset with 16k Wikipedia tables for table entailment (a binary classification task). For more details, see their follow-up paper: `Understanding tables with intermediate pre-training <https://www.aclweb.org/anthology/2020.findings-emnlp.27/>`__ by Julian Martin Eisenschlos, Syrine Krichene and Thomas Müller. The original code can be found `here <https://github.com/google-research/tapas>`__. Tips: - TAPAS is a model that uses relative position embeddings by default (restarting the position embeddings at every cell of the table). Note that this is something that was added after the publication of the original TAPAS paper. According to the authors, this usually results in a slightly better performance, and allows you to encode longer sequences without running out of embeddings. This is reflected in the ``reset_position_index_per_cell`` parameter of :class:`~transformers.TapasConfig`, which is set to ``True`` by default. The default versions of the models available in the `model hub <https://huggingface.co/models?search=tapas>`_ all use relative position embeddings. You can still use the ones with absolute position embeddings by passing in an additional argument ``revision="no_reset"`` when calling the ``.from_pretrained()`` method. Note that it's usually advised to pad the inputs on the right rather than the left. - TAPAS is based on BERT, so ``TAPAS-base`` for example corresponds to a ``BERT-base`` architecture. Of course, TAPAS-large will result in the best performance (the results reported in the paper are from TAPAS-large). Results of the various sized models are shown on the `original Github repository <https://github.com/google-research/tapas>`_. - TAPAS has checkpoints fine-tuned on SQA, which are capable of answering questions related to a table in a conversational set-up. This means that you can ask follow-up questions such as "what is his age?" related to the previous question. Note that the forward pass of TAPAS is a bit different in case of a conversational set-up: in that case, you have to feed every table-question pair one by one to the model, such that the `prev_labels` token type ids can be overwritten by the predicted `labels` of the model to the previous question. See "Usage" section for more info. - TAPAS is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained with a causal language modeling (CLM) objective are better in that regard. Usage: fine-tuning ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here we explain how you can fine-tune :class:`~transformers.TapasForQuestionAnswering` on your own dataset. **STEP 1: Choose one of the 3 ways in which you can use TAPAS - or experiment** Basically, there are 3 different ways in which one can fine-tune :class:`~transformers.TapasForQuestionAnswering`, corresponding to the different datasets on which Tapas was fine-tuned: 1. SQA: if you're interested in asking follow-up questions related to a table, in a conversational set-up. For example if you first ask "what's the name of the first actor?" then you can ask a follow-up question such as "how old is he?". Here, questions do not involve any aggregation (all questions are cell selection questions). 2. WTQ: if you're not interested in asking questions in a conversational set-up, but rather just asking questions related to a table, which might involve aggregation, such as counting a number of rows, summing up cell values or averaging cell values. You can then for example ask "what's the total number of goals Cristiano Ronaldo made in his career?". This case is also called **weak supervision**, since the model itself must learn the appropriate aggregation operator (SUM/COUNT/AVERAGE/NONE) given only the answer to the question as supervision. 3. WikiSQL-supervised: this dataset is based on WikiSQL with the model being given the ground truth aggregation operator during training. This is also called **strong supervision**. Here, learning the appropriate aggregation operator is much easier. To summarize: +------------------------------------+----------------------+-------------------------------------------------------------------------------------------------------------------+ | **Task** | **Example dataset** | **Description** | +------------------------------------+----------------------+-------------------------------------------------------------------------------------------------------------------+ | Conversational | SQA | Conversational, only cell selection questions | +------------------------------------+----------------------+-------------------------------------------------------------------------------------------------------------------+ | Weak supervision for aggregation | WTQ | Questions might involve aggregation, and the model must learn this given only the answer as supervision | +------------------------------------+----------------------+-------------------------------------------------------------------------------------------------------------------+ | Strong supervision for aggregation | WikiSQL-supervised | Questions might involve aggregation, and the model must learn this given the gold aggregation operator | +------------------------------------+----------------------+-------------------------------------------------------------------------------------------------------------------+ Initializing a model with a pre-trained base and randomly initialized classification heads from the model hub can be done as follows (be sure to have installed the `torch-scatter dependency <https://github.com/rusty1s/pytorch_scatter>`_ for your environment): .. code-block:: >>> from transformers import TapasConfig, TapasForQuestionAnswering >>> # for example, the base sized model with default SQA configuration >>> model = TapasForQuestionAnswering.from_pretrained('google/tapas-base') >>> # or, the base sized model with WTQ configuration >>> config = TapasConfig.from_pretrained('google/tapas-base-finetuned-wtq') >>> model = TapasForQuestionAnswering.from_pretrained('google/tapas-base', config=config) >>> # or, the base sized model with WikiSQL configuration >>> config = TapasConfig('google-base-finetuned-wikisql-supervised') >>> model = TapasForQuestionAnswering.from_pretrained('google/tapas-base', config=config) Of course, you don't necessarily have to follow one of these three ways in which TAPAS was fine-tuned. You can also experiment by defining any hyperparameters you want when initializing :class:`~transformers.TapasConfig`, and then create a :class:`~transformers.TapasForQuestionAnswering` based on that configuration. For example, if you have a dataset that has both conversational questions and questions that might involve aggregation, then you can do it this way. Here's an example: .. code-block:: >>> from transformers import TapasConfig, TapasForQuestionAnswering >>> # you can initialize the classification heads any way you want (see docs of TapasConfig) >>> config = TapasConfig(num_aggregation_labels=3, average_logits_per_cell=True, select_one_column=False) >>> # initializing the pre-trained base sized model with our custom classification heads >>> model = TapasForQuestionAnswering.from_pretrained('google/tapas-base', config=config) What you can also do is start from an already fine-tuned checkpoint. A note here is that the already fine-tuned checkpoint on WTQ has some issues due to the L2-loss which is somewhat brittle. See `here <https://github.com/google-research/tapas/issues/91#issuecomment-735719340>`__ for more info. For a list of all pre-trained and fine-tuned TAPAS checkpoints available in the HuggingFace model hub, see `here <https://huggingface.co/models?search=tapas>`__. **STEP 2: Prepare your data in the SQA format** Second, no matter what you picked above, you should prepare your dataset in the `SQA format <https://www.microsoft.com/en-us/download/details.aspx?id=54253>`__. This format is a TSV/CSV file with the following columns: - ``id``: optional, id of the table-question pair, for bookkeeping purposes. - ``annotator``: optional, id of the person who annotated the table-question pair, for bookkeeping purposes. - ``position``: integer indicating if the question is the first, second, third,... related to the table. Only required in case of conversational setup (SQA). You don't need this column in case you're going for WTQ/WikiSQL-supervised. - ``question``: string - ``table_file``: string, name of a csv file containing the tabular data - ``answer_coordinates``: list of one or more tuples (each tuple being a cell coordinate, i.e. row, column pair that is part of the answer) - ``answer_text``: list of one or more strings (each string being a cell value that is part of the answer) - ``aggregation_label``: index of the aggregation operator. Only required in case of strong supervision for aggregation (the WikiSQL-supervised case) - ``float_answer``: the float answer to the question, if there is one (np.nan if there isn't). Only required in case of weak supervision for aggregation (such as WTQ and WikiSQL) The tables themselves should be present in a folder, each table being a separate csv file. Note that the authors of the TAPAS algorithm used conversion scripts with some automated logic to convert the other datasets (WTQ, WikiSQL) into the SQA format. The author explains this `here <https://github.com/google-research/tapas/issues/50#issuecomment-705465960>`__. Interestingly, these conversion scripts are not perfect (the ``answer_coordinates`` and ``float_answer`` fields are populated based on the ``answer_text``), meaning that WTQ and WikiSQL results could actually be improved. **STEP 3: Convert your data into PyTorch tensors using TapasTokenizer** Third, given that you've prepared your data in this TSV/CSV format (and corresponding CSV files containing the tabular data), you can then use :class:`~transformers.TapasTokenizer` to convert table-question pairs into :obj:`input_ids`, :obj:`attention_mask`, :obj:`token_type_ids` and so on. Again, based on which of the three cases you picked above, :class:`~transformers.TapasForQuestionAnswering` requires different inputs to be fine-tuned: +------------------------------------+----------------------------------------------------------------------------------------------+ | **Task** | **Required inputs** | +------------------------------------+----------------------------------------------------------------------------------------------+ | Conversational | ``input_ids``, ``attention_mask``, ``token_type_ids``, ``labels`` | +------------------------------------+----------------------------------------------------------------------------------------------+ | Weak supervision for aggregation | ``input_ids``, ``attention_mask``, ``token_type_ids``, ``labels``, ``numeric_values``, | | | ``numeric_values_scale``, ``float_answer`` | +------------------------------------+----------------------------------------------------------------------------------------------+ | Strong supervision for aggregation | ``input ids``, ``attention mask``, ``token type ids``, ``labels``, ``aggregation_labels`` | +------------------------------------+----------------------------------------------------------------------------------------------+ :class:`~transformers.TapasTokenizer` creates the ``labels``, ``numeric_values`` and ``numeric_values_scale`` based on the ``answer_coordinates`` and ``answer_text`` columns of the TSV file. The ``float_answer`` and ``aggregation_labels`` are already in the TSV file of step 2. Here's an example: .. code-block:: >>> from transformers import TapasTokenizer >>> import pandas as pd >>> model_name = 'google/tapas-base' >>> tokenizer = TapasTokenizer.from_pretrained(model_name) >>> data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]} >>> queries = ["What is the name of the first actor?", "How many movies has George Clooney played in?", "What is the total number of movies?"] >>> answer_coordinates = [[(0, 0)], [(2, 1)], [(0, 1), (1, 1), (2, 1)]] >>> answer_text = [["Brad Pitt"], ["69"], ["209"]] >>> table = pd.DataFrame.from_dict(data) >>> inputs = tokenizer(table=table, queries=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, padding='max_length', return_tensors='pt') >>> inputs {'input_ids': tensor([[ ... ]]), 'attention_mask': tensor([[...]]), 'token_type_ids': tensor([[[...]]]), 'numeric_values': tensor([[ ... ]]), 'numeric_values_scale: tensor([[ ... ]]), labels: tensor([[ ... ]])} Note that :class:`~transformers.TapasTokenizer` expects the data of the table to be **text-only**. You can use ``.astype(str)`` on a dataframe to turn it into text-only data. Of course, this only shows how to encode a single training example. It is advised to create a PyTorch dataset and a corresponding dataloader: .. code-block:: >>> import torch >>> import pandas as pd >>> tsv_path = "your_path_to_the_tsv_file" >>> table_csv_path = "your_path_to_a_directory_containing_all_csv_files" >>> class TableDataset(torch.utils.data.Dataset): ... def __init__(self, data, tokenizer): ... self.data = data ... self.tokenizer = tokenizer ... ... def __getitem__(self, idx): ... item = data.iloc[idx] ... table = pd.read_csv(table_csv_path + item.table_file).astype(str) # be sure to make your table data text only ... encoding = self.tokenizer(table=table, ... queries=item.question, ... answer_coordinates=item.answer_coordinates, ... answer_text=item.answer_text, ... truncation=True, ... padding="max_length", ... return_tensors="pt" ... ) ... # remove the batch dimension which the tokenizer adds by default ... encoding = {key: val.squeeze(0) for key, val in encoding.items()} ... # add the float_answer which is also required (weak supervision for aggregation case) ... encoding["float_answer"] = torch.tensor(item.float_answer) ... return encoding ... ... def __len__(self): ... return len(self.data) >>> data = pd.read_csv(tsv_path, sep='\t') >>> train_dataset = TableDataset(data, tokenizer) >>> train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=32) Note that here, we encode each table-question pair independently. This is fine as long as your dataset is **not conversational**. In case your dataset involves conversational questions (such as in SQA), then you should first group together the ``queries``, ``answer_coordinates`` and ``answer_text`` per table (in the order of their ``position`` index) and batch encode each table with its questions. This will make sure that the ``prev_labels`` token types (see docs of :class:`~transformers.TapasTokenizer`) are set correctly. See `this notebook <https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb>`__ for more info. **STEP 4: Train (fine-tune) TapasForQuestionAnswering** You can then fine-tune :class:`~transformers.TapasForQuestionAnswering` using native PyTorch as follows (shown here for the weak supervision for aggregation case): .. code-block:: >>> from transformers import TapasConfig, TapasForQuestionAnswering, AdamW >>> # this is the default WTQ configuration >>> config = TapasConfig( ... num_aggregation_labels = 4, ... use_answer_as_supervision = True, ... answer_loss_cutoff = 0.664694, ... cell_selection_preference = 0.207951, ... huber_loss_delta = 0.121194, ... init_cell_selection_weights_to_zero = True, ... select_one_column = True, ... allow_empty_column_selection = False, ... temperature = 0.0352513, ... ) >>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base", config=config) >>> optimizer = AdamW(model.parameters(), lr=5e-5) >>> for epoch in range(2): # loop over the dataset multiple times ... for idx, batch in enumerate(train_dataloader): ... # get the inputs; ... input_ids = batch["input_ids"] ... attention_mask = batch["attention_mask"] ... token_type_ids = batch["token_type_ids"] ... labels = batch["labels"] ... numeric_values = batch["numeric_values"] ... numeric_values_scale = batch["numeric_values_scale"] ... float_answer = batch["float_answer"] ... # zero the parameter gradients ... optimizer.zero_grad() ... # forward + backward + optimize ... outputs = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, ... labels=labels, numeric_values=numeric_values, numeric_values_scale=numeric_values_scale, ... float_answer=float_answer) ... loss = outputs.loss ... loss.backward() ... optimizer.step() Usage: inference ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here we explain how you can use :class:`~transformers.TapasForQuestionAnswering` for inference (i.e. making predictions on new data). For inference, only ``input_ids``, ``attention_mask`` and ``token_type_ids`` (which you can obtain using :class:`~transformers.TapasTokenizer`) have to be provided to the model to obtain the logits. Next, you can use the handy ``convert_logits_to_predictions`` method of :class:`~transformers.TapasTokenizer` to convert these into predicted coordinates and optional aggregation indices. However, note that inference is **different** depending on whether or not the setup is conversational. In a non-conversational set-up, inference can be done in parallel on all table-question pairs of a batch. Here's an example of that: .. code-block:: >>> from transformers import TapasTokenizer, TapasForQuestionAnswering >>> import pandas as pd >>> model_name = 'google/tapas-base-finetuned-wtq' >>> model = TapasForQuestionAnswering.from_pretrained(model_name) >>> tokenizer = TapasTokenizer.from_pretrained(model_name) >>> data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]} >>> queries = ["What is the name of the first actor?", "How many movies has George Clooney played in?", "What is the total number of movies?"] >>> table = pd.DataFrame.from_dict(data) >>> inputs = tokenizer(table=table, queries=queries, padding='max_length', return_tensors="pt") >>> outputs = model(**inputs) >>> predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions( ... inputs, ... outputs.logits.detach(), ... outputs.logits_aggregation.detach() ... ) >>> # let's print out the results: >>> id2aggregation = {0: "NONE", 1: "SUM", 2: "AVERAGE", 3:"COUNT"} >>> aggregation_predictions_string = [id2aggregation[x] for x in predicted_aggregation_indices] >>> answers = [] >>> for coordinates in predicted_answer_coordinates: ... if len(coordinates) == 1: ... # only a single cell: ... answers.append(table.iat[coordinates[0]]) ... else: ... # multiple cells ... cell_values = [] ... for coordinate in coordinates: ... cell_values.append(table.iat[coordinate]) ... answers.append(", ".join(cell_values)) >>> display(table) >>> print("") >>> for query, answer, predicted_agg in zip(queries, answers, aggregation_predictions_string): ... print(query) ... if predicted_agg == "NONE": ... print("Predicted answer: " + answer) ... else: ... print("Predicted answer: " + predicted_agg + " > " + answer) What is the name of the first actor? Predicted answer: Brad Pitt How many movies has George Clooney played in? Predicted answer: COUNT > 69 What is the total number of movies? Predicted answer: SUM > 87, 53, 69 In case of a conversational set-up, then each table-question pair must be provided **sequentially** to the model, such that the ``prev_labels`` token types can be overwritten by the predicted ``labels`` of the previous table-question pair. Again, more info can be found in `this notebook <https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb>`__. Tapas specific outputs ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.models.tapas.modeling_tapas.TableQuestionAnsweringOutput :members: TapasConfig ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.TapasConfig :members: TapasTokenizer ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.TapasTokenizer :members: __call__, convert_logits_to_predictions, save_vocabulary TapasModel ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.TapasModel :members: forward TapasForMaskedLM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.TapasForMaskedLM :members: forward TapasForSequenceClassification ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.TapasForSequenceClassification :members: forward TapasForQuestionAnswering ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: transformers.TapasForQuestionAnswering :members: forward
AdaMix/docs/source/model_doc/tapas.rst/0
{ "file_path": "AdaMix/docs/source/model_doc/tapas.rst", "repo_id": "AdaMix", "token_count": 8683 }
30
.. Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Quick tour ======================================================================================================================= Let's have a quick look at the 🤗 Transformers library features. The library downloads pretrained models for Natural Language Understanding (NLU) tasks, such as analyzing the sentiment of a text, and Natural Language Generation (NLG), such as completing a prompt with new text or translating in another language. First we will see how to easily leverage the pipeline API to quickly use those pretrained models at inference. Then, we will dig a little bit more and see how the library gives you access to those models and helps you preprocess your data. .. note:: All code examples presented in the documentation have a switch on the top left for Pytorch versus TensorFlow. If not, the code is expected to work for both backends without any change needed. Getting started on a task with a pipeline ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The easiest way to use a pretrained model on a given task is to use :func:`~transformers.pipeline`. 🤗 Transformers provides the following tasks out of the box: - Sentiment analysis: is a text positive or negative? - Text generation (in English): provide a prompt and the model will generate what follows. - Name entity recognition (NER): in an input sentence, label each word with the entity it represents (person, place, etc.) - Question answering: provide the model with some context and a question, extract the answer from the context. - Filling masked text: given a text with masked words (e.g., replaced by ``[MASK]``), fill the blanks. - Summarization: generate a summary of a long text. - Translation: translate a text in another language. - Feature extraction: return a tensor representation of the text. Let's see how this work for sentiment analysis (the other tasks are all covered in the :doc:`task summary </task_summary>`): .. code-block:: >>> from transformers import pipeline >>> classifier = pipeline('sentiment-analysis') When typing this command for the first time, a pretrained model and its tokenizer are downloaded and cached. We will look at both later on, but as an introduction the tokenizer's job is to preprocess the text for the model, which is then responsible for making predictions. The pipeline groups all of that together, and post-process the predictions to make them readable. For instance: .. code-block:: >>> classifier('We are very happy to show you the 🤗 Transformers library.') [{'label': 'POSITIVE', 'score': 0.9997795224189758}] That's encouraging! You can use it on a list of sentences, which will be preprocessed then fed to the model as a `batch`, returning a list of dictionaries like this one: .. code-block:: >>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", ... "We hope you don't hate it."]) >>> for result in results: ... print(f"label: {result['label']}, with score: {round(result['score'], 4)}") label: POSITIVE, with score: 0.9998 label: NEGATIVE, with score: 0.5309 You can see the second sentence has been classified as negative (it needs to be positive or negative) but its score is fairly neutral. By default, the model downloaded for this pipeline is called "distilbert-base-uncased-finetuned-sst-2-english". We can look at its `model page <https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english>`__ to get more information about it. It uses the :doc:`DistilBERT architecture </model_doc/distilbert>` and has been fine-tuned on a dataset called SST-2 for the sentiment analysis task. Let's say we want to use another model; for instance, one that has been trained on French data. We can search through the `model hub <https://huggingface.co/models>`__ that gathers models pretrained on a lot of data by research labs, but also community models (usually fine-tuned versions of those big models on a specific dataset). Applying the tags "French" and "text-classification" gives back a suggestion "nlptown/bert-base-multilingual-uncased-sentiment". Let's see how we can use it. You can directly pass the name of the model to use to :func:`~transformers.pipeline`: .. code-block:: >>> classifier = pipeline('sentiment-analysis', model="nlptown/bert-base-multilingual-uncased-sentiment") This classifier can now deal with texts in English, French, but also Dutch, German, Italian and Spanish! You can also replace that name by a local folder where you have saved a pretrained model (see below). You can also pass a model object and its associated tokenizer. We will need two classes for this. The first is :class:`~transformers.AutoTokenizer`, which we will use to download the tokenizer associated to the model we picked and instantiate it. The second is :class:`~transformers.AutoModelForSequenceClassification` (or :class:`~transformers.TFAutoModelForSequenceClassification` if you are using TensorFlow), which we will use to download the model itself. Note that if we were using the library on an other task, the class of the model would change. The :doc:`task summary </task_summary>` tutorial summarizes which class is used for which task. .. code-block:: >>> ## PYTORCH CODE >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> ## TENSORFLOW CODE >>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification Now, to download the models and tokenizer we found previously, we just have to use the :func:`~transformers.AutoModelForSequenceClassification.from_pretrained` method (feel free to replace ``model_name`` by any other model from the model hub): .. code-block:: >>> ## PYTORCH CODE >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> model = AutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) >>> classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) >>> ## TENSORFLOW CODE >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> # This model only exists in PyTorch, so we use the `from_pt` flag to import that model in TensorFlow. >>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name, from_pt=True) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) >>> classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) If you don't find a model that has been pretrained on some data similar to yours, you will need to fine-tune a pretrained model on your data. We provide :doc:`example scripts </examples>` to do so. Once you're done, don't forget to share your fine-tuned model on the hub with the community, using :doc:`this tutorial </model_sharing>`. .. _pretrained-model: Under the hood: pretrained models ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Let's now see what happens beneath the hood when using those pipelines. As we saw, the model and tokenizer are created using the :obj:`from_pretrained` method: .. code-block:: >>> ## PYTORCH CODE >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> model_name = "distilbert-base-uncased-finetuned-sst-2-english" >>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) >>> ## TENSORFLOW CODE >>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification >>> model_name = "distilbert-base-uncased-finetuned-sst-2-english" >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) Using the tokenizer ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ We mentioned the tokenizer is responsible for the preprocessing of your texts. First, it will split a given text in words (or part of words, punctuation symbols, etc.) usually called `tokens`. There are multiple rules that can govern that process (you can learn more about them in the :doc:`tokenizer summary <tokenizer_summary>`), which is why we need to instantiate the tokenizer using the name of the model, to make sure we use the same rules as when the model was pretrained. The second step is to convert those `tokens` into numbers, to be able to build a tensor out of them and feed them to the model. To do this, the tokenizer has a `vocab`, which is the part we download when we instantiate it with the :obj:`from_pretrained` method, since we need to use the same `vocab` as when the model was pretrained. To apply these steps on a given text, we can just feed it to our tokenizer: .. code-block:: >>> inputs = tokenizer("We are very happy to show you the 🤗 Transformers library.") This returns a dictionary string to list of ints. It contains the `ids of the tokens <glossary.html#input-ids>`__, as mentioned before, but also additional arguments that will be useful to the model. Here for instance, we also have an `attention mask <glossary.html#attention-mask>`__ that the model will use to have a better understanding of the sequence: .. code-block:: >>> print(inputs) {'input_ids': [101, 2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 100, 19081, 3075, 1012, 102], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} You can pass a list of sentences directly to your tokenizer. If your goal is to send them through your model as a batch, you probably want to pad them all to the same length, truncate them to the maximum length the model can accept and get tensors back. You can specify all of that to the tokenizer: .. code-block:: >>> ## PYTORCH CODE >>> pt_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="pt" ... ) >>> ## TENSORFLOW CODE >>> tf_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="tf" ... ) The padding is automatically applied on the side expected by the model (in this case, on the right), with the padding token the model was pretrained with. The attention mask is also adapted to take the padding into account: .. code-block:: >>> ## PYTORCH CODE >>> for key, value in pt_batch.items(): ... print(f"{key}: {value.numpy().tolist()}") input_ids: [[101, 2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 100, 19081, 3075, 1012, 102], [101, 2057, 3246, 2017, 2123, 1005, 1056, 5223, 2009, 1012, 102, 0, 0, 0]] attention_mask: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]] >>> ## TENSORFLOW CODE >>> for key, value in tf_batch.items(): ... print(f"{key}: {value.numpy().tolist()}") input_ids: [[101, 2057, 2024, 2200, 3407, 2000, 2265, 2017, 1996, 100, 19081, 3075, 1012, 102], [101, 2057, 3246, 2017, 2123, 1005, 1056, 5223, 2009, 1012, 102, 0, 0, 0]] attention_mask: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]] You can learn more about tokenizers :doc:`here <preprocessing>`. Using the model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Once your input has been preprocessed by the tokenizer, you can send it directly to the model. As we mentioned, it will contain all the relevant information the model needs. If you're using a TensorFlow model, you can pass the dictionary keys directly to tensors, for a PyTorch model, you need to unpack the dictionary by adding :obj:`**`. .. code-block:: >>> ## PYTORCH CODE >>> pt_outputs = pt_model(**pt_batch) >>> ## TENSORFLOW CODE >>> tf_outputs = tf_model(tf_batch) In 🤗 Transformers, all outputs are tuples (with only one element potentially). Here, we get a tuple with just the final activations of the model. .. code-block:: >>> ## PYTORCH CODE >>> print(pt_outputs) (tensor([[-4.0833, 4.3364], [ 0.0818, -0.0418]], grad_fn=<AddmmBackward>),) >>> ## TENSORFLOW CODE >>> print(tf_outputs) (<tf.Tensor: shape=(2, 2), dtype=float32, numpy= array([[-4.0832963 , 4.336414 ], [ 0.08181786, -0.04179301]], dtype=float32)>,) The model can return more than just the final activations, which is why the output is a tuple. Here we only asked for the final activations, so we get a tuple with one element. .. note:: All 🤗 Transformers models (PyTorch or TensorFlow) return the activations of the model *before* the final activation function (like SoftMax) since this final activation function is often fused with the loss. Let's apply the SoftMax activation to get predictions. .. code-block:: >>> ## PYTORCH CODE >>> import torch.nn.functional as F >>> pt_predictions = F.softmax(pt_outputs[0], dim=-1) >>> ## TENSORFLOW CODE >>> import tensorflow as tf >>> tf_predictions = tf.nn.softmax(tf_outputs[0], axis=-1) We can see we get the numbers from before: .. code-block:: >>> ## TENSORFLOW CODE >>> print(tf_predictions) tf.Tensor( [[2.2042994e-04 9.9977952e-01] [5.3086340e-01 4.6913657e-01]], shape=(2, 2), dtype=float32) >>> ## PYTORCH CODE >>> print(pt_predictions) tensor([[2.2043e-04, 9.9978e-01], [5.3086e-01, 4.6914e-01]], grad_fn=<SoftmaxBackward>) If you have labels, you can provide them to the model, it will return a tuple with the loss and the final activations. .. code-block:: >>> ## PYTORCH CODE >>> import torch >>> pt_outputs = pt_model(**pt_batch, labels = torch.tensor([1, 0])) >>> ## TENSORFLOW CODE >>> import tensorflow as tf >>> tf_outputs = tf_model(tf_batch, labels = tf.constant([1, 0])) Models are standard `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ or `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ so you can use them in your usual training loop. 🤗 Transformers also provides a :class:`~transformers.Trainer` (or :class:`~transformers.TFTrainer` if you are using TensorFlow) class to help with your training (taking care of things such as distributed training, mixed precision, etc.). See the :doc:`training tutorial <training>` for more details. .. note:: Pytorch model outputs are special dataclasses so that you can get autocompletion for their attributes in an IDE. They also behave like a tuple or a dictionary (e.g., you can index with an integer, a slice or a string) in which case the attributes not set (that have :obj:`None` values) are ignored. Once your model is fine-tuned, you can save it with its tokenizer in the following way: .. code-block:: tokenizer.save_pretrained(save_directory) model.save_pretrained(save_directory) You can then load this model back using the :func:`~transformers.AutoModel.from_pretrained` method by passing the directory name instead of the model name. One cool feature of 🤗 Transformers is that you can easily switch between PyTorch and TensorFlow: any model saved as before can be loaded back either in PyTorch or TensorFlow. If you are loading a saved PyTorch model in a TensorFlow model, use :func:`~transformers.TFAutoModel.from_pretrained` like this: .. code-block:: tokenizer = AutoTokenizer.from_pretrained(save_directory) model = TFAutoModel.from_pretrained(save_directory, from_pt=True) and if you are loading a saved TensorFlow model in a PyTorch model, you should use the following code: .. code-block:: tokenizer = AutoTokenizer.from_pretrained(save_directory) model = AutoModel.from_pretrained(save_directory, from_tf=True) Lastly, you can also ask the model to return all hidden states and all attention weights if you need them: .. code-block:: >>> ## PYTORCH CODE >>> pt_outputs = pt_model(**pt_batch, output_hidden_states=True, output_attentions=True) >>> all_hidden_states, all_attentions = pt_outputs[-2:] >>> ## TENSORFLOW CODE >>> tf_outputs = tf_model(tf_batch, output_hidden_states=True, output_attentions=True) >>> all_hidden_states, all_attentions = tf_outputs[-2:] Accessing the code ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The :obj:`AutoModel` and :obj:`AutoTokenizer` classes are just shortcuts that will automatically work with any pretrained model. Behind the scenes, the library has one model class per combination of architecture plus class, so the code is easy to access and tweak if you need to. In our previous example, the model was called "distilbert-base-uncased-finetuned-sst-2-english", which means it's using the :doc:`DistilBERT </model_doc/distilbert>` architecture. As :class:`~transformers.AutoModelForSequenceClassification` (or :class:`~transformers.TFAutoModelForSequenceClassification` if you are using TensorFlow) was used, the model automatically created is then a :class:`~transformers.DistilBertForSequenceClassification`. You can look at its documentation for all details relevant to that specific model, or browse the source code. This is how you would directly instantiate model and tokenizer without the auto magic: .. code-block:: >>> ## PYTORCH CODE >>> from transformers import DistilBertTokenizer, DistilBertForSequenceClassification >>> model_name = "distilbert-base-uncased-finetuned-sst-2-english" >>> model = DistilBertForSequenceClassification.from_pretrained(model_name) >>> tokenizer = DistilBertTokenizer.from_pretrained(model_name) >>> ## TENSORFLOW CODE >>> from transformers import DistilBertTokenizer, TFDistilBertForSequenceClassification >>> model_name = "distilbert-base-uncased-finetuned-sst-2-english" >>> model = TFDistilBertForSequenceClassification.from_pretrained(model_name) >>> tokenizer = DistilBertTokenizer.from_pretrained(model_name) Customizing the model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If you want to change how the model itself is built, you can define your custom configuration class. Each architecture comes with its own relevant configuration (in the case of DistilBERT, :class:`~transformers.DistilBertConfig`) which allows you to specify any of the hidden dimension, dropout rate, etc. If you do core modifications, like changing the hidden size, you won't be able to use a pretrained model anymore and will need to train from scratch. You would then instantiate the model directly from this configuration. Here we use the predefined vocabulary of DistilBERT (hence load the tokenizer with the :func:`~transformers.DistilBertTokenizer.from_pretrained` method) and initialize the model from scratch (hence instantiate the model from the configuration instead of using the :func:`~transformers.DistilBertForSequenceClassification.from_pretrained` method). .. code-block:: >>> ## PYTORCH CODE >>> from transformers import DistilBertConfig, DistilBertTokenizer, DistilBertForSequenceClassification >>> config = DistilBertConfig(n_heads=8, dim=512, hidden_dim=4*512) >>> tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') >>> model = DistilBertForSequenceClassification(config) >>> ## TENSORFLOW CODE >>> from transformers import DistilBertConfig, DistilBertTokenizer, TFDistilBertForSequenceClassification >>> config = DistilBertConfig(n_heads=8, dim=512, hidden_dim=4*512) >>> tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') >>> model = TFDistilBertForSequenceClassification(config) For something that only changes the head of the model (for instance, the number of labels), you can still use a pretrained model for the body. For instance, let's define a classifier for 10 different labels using a pretrained body. We could create a configuration with all the default values and just change the number of labels, but more easily, you can directly pass any argument a configuration would take to the :func:`from_pretrained` method and it will update the default configuration with it: .. code-block:: >>> ## PYTORCH CODE >>> from transformers import DistilBertConfig, DistilBertTokenizer, DistilBertForSequenceClassification >>> model_name = "distilbert-base-uncased" >>> model = DistilBertForSequenceClassification.from_pretrained(model_name, num_labels=10) >>> tokenizer = DistilBertTokenizer.from_pretrained(model_name) >>> ## TENSORFLOW CODE >>> from transformers import DistilBertConfig, DistilBertTokenizer, TFDistilBertForSequenceClassification >>> model_name = "distilbert-base-uncased" >>> model = TFDistilBertForSequenceClassification.from_pretrained(model_name, num_labels=10) >>> tokenizer = DistilBertTokenizer.from_pretrained(model_name)
AdaMix/docs/source/quicktour.rst/0
{ "file_path": "AdaMix/docs/source/quicktour.rst", "repo_id": "AdaMix", "token_count": 6716 }
31
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> ## Language model training Fine-tuning (or training from scratch) the library models for language modeling on a text dataset for GPT, GPT-2, ALBERT, BERT, DistilBERT, RoBERTa, XLNet... GPT and GPT-2 are trained or fine-tuned using a causal language modeling (CLM) loss while ALBERT, BERT, DistilBERT and RoBERTa are trained or fine-tuned using a masked language modeling (MLM) loss. XLNet uses permutation language modeling (PLM), you can find more information about the differences between those objectives in our [model summary](https://huggingface.co/transformers/model_summary.html). These scripts leverage the 🤗 Datasets library and the Trainer API. You can easily customize them to your needs if you need extra processing on your datasets. **Note:** The old script `run_language_modeling.py` is still available [here](https://github.com/huggingface/transformers/blob/master/examples/legacy/run_language_modeling.py). The following examples, will run on a datasets hosted on our [hub](https://huggingface.co/datasets) or with your own text files for training and validation. We give examples of both below. ### GPT-2/GPT and causal language modeling The following example fine-tunes GPT-2 on WikiText-2. We're using the raw WikiText-2 (no tokens were replaced before the tokenization). The loss here is that of causal language modeling. ```bash python run_clm.py \ --model_name_or_path gpt2 \ --dataset_name wikitext \ --dataset_config_name wikitext-2-raw-v1 \ --do_train \ --do_eval \ --output_dir /tmp/test-clm ``` This takes about half an hour to train on a single K80 GPU and about one minute for the evaluation to run. It reaches a score of ~20 perplexity once fine-tuned on the dataset. To run on your own training and validation files, use the following command: ```bash python run_clm.py \ --model_name_or_path gpt2 \ --train_file path_to_train_file \ --validation_file path_to_validation_file \ --do_train \ --do_eval \ --output_dir /tmp/test-clm ``` ### RoBERTa/BERT/DistilBERT and masked language modeling The following example fine-tunes RoBERTa on WikiText-2. Here too, we're using the raw WikiText-2. The loss is different as BERT/RoBERTa have a bidirectional mechanism; we're therefore using the same loss that was used during their pre-training: masked language modeling. In accordance to the RoBERTa paper, we use dynamic masking rather than static masking. The model may, therefore, converge slightly slower (over-fitting takes more epochs). ```bash python run_mlm.py \ --model_name_or_path roberta-base \ --dataset_name wikitext \ --dataset_config_name wikitext-2-raw-v1 \ --do_train \ --do_eval \ --output_dir /tmp/test-mlm ``` To run on your own training and validation files, use the following command: ```bash python run_mlm.py \ --model_name_or_path roberta-base \ --train_file path_to_train_file \ --validation_file path_to_validation_file \ --do_train \ --do_eval \ --output_dir /tmp/test-mlm ``` If your dataset is organized with one sample per line, you can use the `--line_by_line` flag (otherwise the script concatenates all texts and then splits them in blocks of the same length). **Note:** On TPU, you should use the flag `--pad_to_max_length` in conjunction with the `--line_by_line` flag to make sure all your batches have the same length. ### Whole word masking This part was moved to `examples/research_projects/mlm_wwm`. ### XLNet and permutation language modeling XLNet uses a different training objective, which is permutation language modeling. It is an autoregressive method to learn bidirectional contexts by maximizing the expected likelihood over all permutations of the input sequence factorization order. We use the `--plm_probability` flag to define the ratio of length of a span of masked tokens to surrounding context length for permutation language modeling. The `--max_span_length` flag may also be used to limit the length of a span of masked tokens used for permutation language modeling. Here is how to fine-tune XLNet on wikitext-2: ```bash python run_plm.py \ --model_name_or_path=xlnet-base-cased \ --dataset_name wikitext \ --dataset_config_name wikitext-2-raw-v1 \ --do_train \ --do_eval \ --output_dir /tmp/test-plm ``` To fine-tune it on your own training and validation file, run: ```bash python run_plm.py \ --model_name_or_path=xlnet-base-cased \ --train_file path_to_train_file \ --validation_file path_to_validation_file \ --do_train \ --do_eval \ --output_dir /tmp/test-plm ``` If your dataset is organized with one sample per line, you can use the `--line_by_line` flag (otherwise the script concatenates all texts and then splits them in blocks of the same length). **Note:** On TPU, you should use the flag `--pad_to_max_length` in conjunction with the `--line_by_line` flag to make sure all your batches have the same length.
AdaMix/examples/language-modeling/README.md/0
{ "file_path": "AdaMix/examples/language-modeling/README.md", "repo_id": "AdaMix", "token_count": 1759 }
32
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet).""" import argparse import glob import logging import os import random import timeit import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange import transformers from transformers import ( MODEL_FOR_QUESTION_ANSWERING_MAPPING, WEIGHTS_NAME, AdamW, AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer, get_linear_schedule_with_warmup, squad_convert_examples_to_features, ) from transformers.data.metrics.squad_metrics import ( compute_predictions_log_probs, compute_predictions_logits, squad_evaluate, ) from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor from transformers.trainer_utils import is_main_process try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def to_list(tensor): return tensor.detach().cpu().tolist() def train(args, train_dataset, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 1 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): try: # set global_step to gobal_step of last saved checkpoint from model path checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] global_step = int(checkpoint_suffix) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) except ValueError: logger.info(" Starting fine-tuning.") tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) # Added here for reproductibility set_seed(args) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2], "start_positions": batch[3], "end_positions": batch[4], } if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart", "longformer"]: del inputs["token_type_ids"] if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[5], "p_mask": batch[6]}) if args.version_2_with_negative: inputs.update({"is_impossible": batch[7]}) if hasattr(model, "config") and hasattr(model.config, "lang2id"): inputs.update( {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)} ) outputs = model(**inputs) # model outputs are always tuple in transformers (see doc) loss = outputs[0] if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 # Log metrics if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Only evaluate when single GPU otherwise metrics may not average well if args.local_rank == -1 and args.evaluate_during_training: results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss # Save model checkpoint if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) all_results = [] start_time = timeit.default_timer() for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2], } if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart", "longformer"]: del inputs["token_type_ids"] feature_indices = batch[3] # XLNet and XLM use more arguments for their predictions if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[4], "p_mask": batch[5]}) # for lang_id-sensitive xlm models if hasattr(model, "config") and hasattr(model.config, "lang2id"): inputs.update( {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)} ) outputs = model(**inputs) for i, feature_index in enumerate(feature_indices): eval_feature = features[feature_index.item()] unique_id = int(eval_feature.unique_id) output = [to_list(output[i]) for output in outputs.to_tuple()] # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler" # models only use two. if len(output) >= 5: start_logits = output[0] start_top_index = output[1] end_logits = output[2] end_top_index = output[3] cls_logits = output[4] result = SquadResult( unique_id, start_logits, end_logits, start_top_index=start_top_index, end_top_index=end_top_index, cls_logits=cls_logits, ) else: start_logits, end_logits = output result = SquadResult(unique_id, start_logits, end_logits) all_results.append(result) evalTime = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset)) # Compute predictions output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix)) output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix)) if args.version_2_with_negative: output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix)) else: output_null_log_odds_file = None # XLNet and XLM use a more complex post-processing procedure if args.model_type in ["xlnet", "xlm"]: start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top predictions = compute_predictions_log_probs( examples, features, all_results, args.n_best_size, args.max_answer_length, output_prediction_file, output_nbest_file, output_null_log_odds_file, start_n_top, end_n_top, args.version_2_with_negative, tokenizer, args.verbose_logging, ) else: predictions = compute_predictions_logits( examples, features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, args.verbose_logging, args.version_2_with_negative, args.null_score_diff_threshold, tokenizer, ) # Compute the F1 and exact scores. results = squad_evaluate(examples, predictions) return results def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): if args.local_rank not in [-1, 0] and not evaluate: # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() # Load data features from cache or dataset file input_dir = args.data_dir if args.data_dir else "." cached_features_file = os.path.join( input_dir, "cached_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), ), ) # Init features and dataset from cache if it exists if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features_and_dataset = torch.load(cached_features_file) features, dataset, examples = ( features_and_dataset["features"], features_and_dataset["dataset"], features_and_dataset["examples"], ) else: logger.info("Creating features from dataset file at %s", input_dir) if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)): try: import tensorflow_datasets as tfds except ImportError: raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.") if args.version_2_with_negative: logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.") tfds_examples = tfds.load("squad") examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate) else: processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() if evaluate: examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file) else: examples = processor.get_train_examples(args.data_dir, filename=args.train_file) features, dataset = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=not evaluate, return_dataset="pt", threads=args.threads, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file) if args.local_rank == 0 and not evaluate: # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() if output_examples: return dataset, examples, features return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_TYPES), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--data_dir", default=None, type=str, help="The input data dir. Should contain the .json files for the task." + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--train_file", default=None, type=str, help="The input training file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--predict_file", default=None, type=str, help="The input evaluation file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help="The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded.", ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument( "--max_query_length", default=64, type=int, help="The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help="The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.", ) parser.add_argument( "--verbose_logging", action="store_true", help="If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.", ) parser.add_argument( "--lang_id", default=0, type=int, help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)", ) parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features") args = parser.parse_args() if args.doc_stride >= args.max_seq_length - args.max_query_length: logger.warning( "WARNING - You've set a doc stride which may be superior to the document length in some " "examples. This could result in errors when building features from the examples. Please reduce the doc " "stride or increase the maximum length to ensure the features are correctly built." ) if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() args.model_type = args.model_type.lower() config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, use_fast=False, # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling ) model = AutoModelForQuestionAnswering.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.local_rank == 0: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: import apex apex.amp.register_half_function(torch, "einsum") except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Save the trained model and the tokenizer if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = AutoModelForQuestionAnswering.from_pretrained(args.output_dir) # , force_download=True) # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling # So we use use_fast=False here for now until Fast-tokenizer-compatible-examples are out tokenizer = AutoTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case, use_fast=False) model.to(args.device) # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory results = {} if args.do_eval and args.local_rank in [-1, 0]: if args.do_train: logger.info("Loading checkpoints saved during training for evaluation") checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ) else: logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path) checkpoints = [args.model_name_or_path] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: # Reload the model global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" model = AutoModelForQuestionAnswering.from_pretrained(checkpoint) # , force_download=True) model.to(args.device) # Evaluate result = evaluate(args, model, tokenizer, prefix=global_step) result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items()) results.update(result) logger.info("Results: {}".format(results)) return results if __name__ == "__main__": main()
AdaMix/examples/legacy/question-answering/run_squad.py/0
{ "file_path": "AdaMix/examples/legacy/question-answering/run_squad.py", "repo_id": "AdaMix", "token_count": 14598 }
33
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge PRED = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe depression" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital punishment.", ] TGT = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .', "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June . Israel and the United States opposed the move, which could open the door to war crimes investigations against Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to death . Organization claims that governments around the world are using the threat of terrorism to advance executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death sentences up by 28% .", ] def test_disaggregated_scores_are_determinstic(): no_aggregation = calculate_rouge(PRED, TGT, bootstrap_aggregation=False, rouge_keys=["rouge2", "rougeL"]) assert isinstance(no_aggregation, defaultdict) no_aggregation_just_r2 = calculate_rouge(PRED, TGT, bootstrap_aggregation=False, rouge_keys=["rouge2"]) assert ( pd.DataFrame(no_aggregation["rouge2"]).fmeasure.mean() == pd.DataFrame(no_aggregation_just_r2["rouge2"]).fmeasure.mean() ) def test_newline_cnn_improvement(): k = "rougeLsum" score = calculate_rouge(PRED, TGT, newline_sep=True, rouge_keys=[k])[k] score_no_sep = calculate_rouge(PRED, TGT, newline_sep=False, rouge_keys=[k])[k] assert score > score_no_sep def test_newline_irrelevant_for_other_metrics(): k = ["rouge1", "rouge2", "rougeL"] score_sep = calculate_rouge(PRED, TGT, newline_sep=True, rouge_keys=k) score_no_sep = calculate_rouge(PRED, TGT, newline_sep=False, rouge_keys=k) assert score_sep == score_no_sep def test_single_sent_scores_dont_depend_on_newline_sep(): pred = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] tgt = [ "Margot Frank, died in 1945, a month earlier than previously thought.", 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the final seconds on board Flight 9525.', ] assert calculate_rouge(pred, tgt, newline_sep=True) == calculate_rouge(pred, tgt, newline_sep=False) def test_pegasus_newline(): pred = [ """" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" """ ] tgt = [ """ Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] prev_score = calculate_rouge(pred, tgt, rouge_keys=["rougeLsum"], newline_sep=False)["rougeLsum"] new_score = calculate_rouge(pred, tgt, rouge_keys=["rougeLsum"])["rougeLsum"] assert new_score > prev_score def test_rouge_cli(): data_dir = Path("examples/seq2seq/test_data/wmt_en_ro") metrics = calculate_rouge_path(data_dir.joinpath("test.source"), data_dir.joinpath("test.target")) assert isinstance(metrics, dict) metrics_default_dict = calculate_rouge_path( data_dir.joinpath("test.source"), data_dir.joinpath("test.target"), bootstrap_aggregation=False ) assert isinstance(metrics_default_dict, defaultdict)
AdaMix/examples/legacy/seq2seq/old_test_calculate_rouge.py/0
{ "file_path": "AdaMix/examples/legacy/seq2seq/old_test_calculate_rouge.py", "repo_id": "AdaMix", "token_count": 1697 }
34
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.file_utils import is_torch_tpu_available from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode if is_fairscale_available(): from fairscale.optim import OSS logger = logging.get_logger(__name__) arg_to_scheduler = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class Seq2SeqTrainer(Trainer): def __init__(self, config=None, data_args=None, *args, **kwargs): super().__init__(*args, **kwargs) if config is None: assert isinstance( self.model, PreTrainedModel ), f"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is {self.model.__class__}" self.config = self.model.config else: self.config = config self.data_args = data_args self.vocab_size = self.config.tgt_vocab_size if isinstance(self.config, FSMTConfig) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert ( self.config.pad_token_id is not None ), "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss calculation or doing label smoothing." if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warn( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for padding.." ) if self.args.label_smoothing == 0: self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss self.loss_fn = label_smoothed_nll_loss def create_optimizer_and_scheduler(self, num_training_steps: int): """ Setup the optimizer and the learning rate scheduler. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass. """ if self.optimizer is None: no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer_cls = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: optimizer_cls = Adafactor optimizer_kwargs = {"scale_parameter": False, "relative_step": False} else: optimizer_cls = AdamW optimizer_kwargs = { "betas": (self.args.adam_beta1, self.args.adam_beta2), "eps": self.args.adam_epsilon, } optimizer_kwargs["lr"] = self.args.learning_rate if self.sharded_dpp: self.optimizer = OSS( params=optimizer_grouped_parameters, optim=optimizer_cls, **optimizer_kwargs, ) else: self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) if self.lr_scheduler is None: self.lr_scheduler = self._get_lr_scheduler(num_training_steps) else: # ignoring --lr_scheduler logger.warn("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.") def _get_lr_scheduler(self, num_training_steps): schedule_func = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": scheduler = schedule_func(self.optimizer) elif self.args.lr_scheduler == "constant_w_warmup": scheduler = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps) else: scheduler = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps ) return scheduler def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]: if isinstance(self.train_dataset, torch.utils.data.IterableDataset): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset) ) def _compute_loss(self, model, inputs, labels): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token logits = model(**inputs, use_cache=False)[0] loss = self.loss_fn(logits.view(-1, logits.shape[-1]), labels.view(-1)) else: # compute usual loss via models loss, logits = model(**inputs, labels=labels, use_cache=False)[:2] else: # compute label smoothed loss logits = model(**inputs, use_cache=False)[0] lprobs = torch.nn.functional.log_softmax(logits, dim=-1) loss, _ = self.loss_fn(lprobs, labels, self.args.label_smoothing, ignore_index=self.config.pad_token_id) return loss, logits def compute_loss(self, model, inputs): labels = inputs.pop("labels") loss, _ = self._compute_loss(model, inputs, labels) return loss def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on :obj:`model` using obj:`inputs`. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to evaluate. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (:obj:`bool`): Whether or not to return the loss only. Return: Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ inputs = self._prepare_inputs(inputs) gen_kwargs = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: generated_tokens = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **gen_kwargs, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"]) labels = inputs.pop("labels") with torch.no_grad(): # compute loss on predict data loss, logits = self._compute_loss(model, inputs, labels) loss = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) logits = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"]) return (loss, logits, labels) def _pad_tensors_to_max_len(self, tensor, max_length): # If PAD token is not defined at least EOS token has to be defined pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( f"Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be padded to `max_length`={max_length}" ) padded_tensor = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) padded_tensor[:, : tensor.shape[-1]] = tensor return padded_tensor
AdaMix/examples/legacy/seq2seq/seq2seq_trainer.py/0
{ "file_path": "AdaMix/examples/legacy/seq2seq/seq2seq_trainer.py", "repo_id": "AdaMix", "token_count": 5008 }
35
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json import linecache import math import os import pickle import socket from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List, Tuple, Union import git import numpy as np import torch import torch.distributed as dist from rouge_score import rouge_scorer, scoring from sacrebleu import corpus_bleu from torch import nn from torch.utils.data import Dataset, Sampler from sentence_splitter import add_newline_to_end_of_each_sentence from transformers import BartTokenizer, EvalPrediction, PreTrainedTokenizer, T5Tokenizer from transformers.file_utils import cached_property from transformers.models.bart.modeling_bart import shift_tokens_right try: from fairseq.data.data_utils import batch_by_size FAIRSEQ_AVAILABLE = True except (ImportError, ModuleNotFoundError): FAIRSEQ_AVAILABLE = False def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100): """From fairseq""" if target.dim() == lprobs.dim() - 1: target = target.unsqueeze(-1) nll_loss = -lprobs.gather(dim=-1, index=target) smooth_loss = -lprobs.sum(dim=-1, keepdim=True) if ignore_index is not None: pad_mask = target.eq(ignore_index) nll_loss.masked_fill_(pad_mask, 0.0) smooth_loss.masked_fill_(pad_mask, 0.0) else: nll_loss = nll_loss.squeeze(-1) smooth_loss = smooth_loss.squeeze(-1) nll_loss = nll_loss.sum() # mean()? Scared to break other math. smooth_loss = smooth_loss.sum() eps_i = epsilon / lprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss, nll_loss def lmap(f: Callable, x: Iterable) -> List: """list(map(f, x))""" return list(map(f, x)) def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict: """Uses sacrebleu's corpus_bleu implementation.""" return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)} def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) -> Callable[[EvalPrediction], Dict]: def non_pad_len(tokens: np.ndarray) -> int: return np.count_nonzero(tokens != tokenizer.pad_token_id) def decode_pred(pred: EvalPrediction) -> Tuple[List[str], List[str]]: pred_ids = pred.predictions label_ids = pred.label_ids pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) label_ids[label_ids == -100] = tokenizer.pad_token_id label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True) pred_str = lmap(str.strip, pred_str) label_str = lmap(str.strip, label_str) return pred_str, label_str def summarization_metrics(pred: EvalPrediction) -> Dict: pred_str, label_str = decode_pred(pred) rouge: Dict = calculate_rouge(pred_str, label_str) summ_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1) rouge.update({"gen_len": summ_len}) return rouge def translation_metrics(pred: EvalPrediction) -> Dict: pred_str, label_str = decode_pred(pred) bleu: Dict = calculate_bleu(pred_str, label_str) gen_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1) bleu.update({"gen_len": gen_len}) return bleu compute_metrics_fn = summarization_metrics if "summarization" in task_name else translation_metrics return compute_metrics_fn def trim_batch( input_ids, pad_token_id, attention_mask=None, ): """Remove columns that are populated exclusively by pad_token_id""" keep_column_mask = input_ids.ne(pad_token_id).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class AbstractSeq2SeqDataset(Dataset): def __init__( self, tokenizer, data_dir, max_source_length, max_target_length, type_path="train", n_obs=None, prefix="", **dataset_kwargs ): super().__init__() self.src_file = Path(data_dir).joinpath(type_path + ".source") self.tgt_file = Path(data_dir).joinpath(type_path + ".target") self.len_file = Path(data_dir).joinpath(type_path + ".len") if os.path.exists(self.len_file): self.src_lens = pickle_load(self.len_file) self.used_char_len = False else: self.src_lens = self.get_char_lens(self.src_file) self.used_char_len = True self.max_source_length = max_source_length self.max_target_length = max_target_length assert min(self.src_lens) > 0, f"found empty line in {self.src_file}" self.tokenizer = tokenizer self.prefix = prefix if prefix is not None else "" if n_obs is not None: self.src_lens = self.src_lens[:n_obs] self.pad_token_id = self.tokenizer.pad_token_id self.dataset_kwargs = dataset_kwargs dataset_kwargs.update({"add_prefix_space": True} if isinstance(self.tokenizer, BartTokenizer) else {}) def __len__(self): return len(self.src_lens) @staticmethod def get_char_lens(data_file): return [len(x) for x in Path(data_file).open().readlines()] @cached_property def tgt_lens(self): """Length in characters of target documents""" return self.get_char_lens(self.tgt_file) def make_sortish_sampler(self, batch_size, distributed=False, shuffle=True, **kwargs): if distributed: return DistributedSortishSampler(self, batch_size, shuffle=shuffle, **kwargs) else: return SortishSampler(self.src_lens, batch_size, shuffle=shuffle) def make_dynamic_sampler(self, max_tokens_per_batch=1024, **kwargs): assert FAIRSEQ_AVAILABLE, "Dynamic batch size requires `pip install fairseq`" assert not self.used_char_len, "You must call python make_len_file.py before calling make_dynamic_sampler" sorted_indices = list(self.make_sortish_sampler(1024, shuffle=False)) def num_tokens_in_example(i): return min(self.src_lens[i], self.max_target_length) # call fairseq cython function batch_sampler: List[List[int]] = batch_by_size( sorted_indices, num_tokens_fn=num_tokens_in_example, max_tokens=max_tokens_per_batch, required_batch_size_multiple=64, ) shuffled_batches = [batch_sampler[i] for i in np.random.permutation(range(len(batch_sampler)))] # move the largest batch to the front to OOM quickly (uses an approximation for padding) approximate_toks_per_batch = [max(self.src_lens[i] for i in batch) * len(batch) for batch in shuffled_batches] largest_batch_idx = np.argmax(approximate_toks_per_batch) shuffled_batches[0], shuffled_batches[largest_batch_idx] = ( shuffled_batches[largest_batch_idx], shuffled_batches[0], ) return shuffled_batches def __getitem__(self, item): raise NotImplementedError("You must implement this") def collate_fn(self, batch): raise NotImplementedError("You must implement this") class LegacySeq2SeqDataset(AbstractSeq2SeqDataset): def __getitem__(self, index) -> Dict[str, torch.Tensor]: """Call tokenizer on src and tgt_lines""" index = index + 1 # linecache starts at 1 source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n") tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n") assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" source_inputs = self.encode_line(self.tokenizer, source_line, self.max_source_length) target_inputs = self.encode_line(self.tokenizer, tgt_line, self.max_target_length) source_ids = source_inputs["input_ids"].squeeze() target_ids = target_inputs["input_ids"].squeeze() src_mask = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "labels": target_ids, } def encode_line(self, tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"): """Only used by LegacyDataset""" return tokenizer( [line], max_length=max_length, padding="max_length" if pad_to_max_length else None, truncation=True, return_tensors=return_tensors, **self.dataset_kwargs, ) def collate_fn(self, batch) -> Dict[str, torch.Tensor]: input_ids = torch.stack([x["input_ids"] for x in batch]) masks = torch.stack([x["attention_mask"] for x in batch]) target_ids = torch.stack([x["labels"] for x in batch]) pad_token_id = self.pad_token_id y = trim_batch(target_ids, pad_token_id) source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks) batch = { "input_ids": source_ids, "attention_mask": source_mask, "labels": y, } return batch class Seq2SeqDataset(AbstractSeq2SeqDataset): """A dataset that calls prepare_seq2seq_batch.""" def __getitem__(self, index) -> Dict[str, str]: index = index + 1 # linecache starts at 1 source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n") tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n") assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1} def collate_fn(self, batch) -> Dict[str, torch.Tensor]: """Call prepare_seq2seq_batch.""" batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch( [x["src_texts"] for x in batch], tgt_texts=[x["tgt_texts"] for x in batch], max_length=self.max_source_length, max_target_length=self.max_target_length, return_tensors="pt", **self.dataset_kwargs, ).data batch_encoding["ids"] = torch.tensor([x["id"] for x in batch]) return batch_encoding class Seq2SeqDataCollator: def __init__(self, tokenizer, data_args, decoder_start_token_id, tpu_num_cores=None): self.tokenizer = tokenizer self.pad_token_id = tokenizer.pad_token_id self.decoder_start_token_id = decoder_start_token_id assert ( self.pad_token_id is not None ), f"pad_token_id is not defined for ({self.tokenizer.__class__.__name__}), it must be defined." self.data_args = data_args self.tpu_num_cores = tpu_num_cores self.dataset_kwargs = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {} if data_args.src_lang is not None: self.dataset_kwargs["src_lang"] = data_args.src_lang if data_args.tgt_lang is not None: self.dataset_kwargs["tgt_lang"] = data_args.tgt_lang def __call__(self, batch) -> Dict[str, torch.Tensor]: if hasattr(self.tokenizer, "prepare_seq2seq_batch"): batch = self._encode(batch) input_ids, attention_mask, labels = ( batch["input_ids"], batch["attention_mask"], batch["labels"], ) else: input_ids = torch.stack([x["input_ids"] for x in batch]) attention_mask = torch.stack([x["attention_mask"] for x in batch]) labels = torch.stack([x["labels"] for x in batch]) labels = trim_batch(labels, self.pad_token_id) input_ids, attention_mask = trim_batch(input_ids, self.pad_token_id, attention_mask=attention_mask) if isinstance(self.tokenizer, T5Tokenizer): decoder_input_ids = self._shift_right_t5(labels) else: decoder_input_ids = shift_tokens_right(labels, self.pad_token_id, self.decoder_start_token_id) batch = { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "labels": labels, } return batch def _shift_right_t5(self, input_ids): # shift inputs to the right shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = self.pad_token_id return shifted_input_ids def _encode(self, batch) -> Dict[str, torch.Tensor]: batch_encoding = self.tokenizer.prepare_seq2seq_batch( [x["src_texts"] for x in batch], tgt_texts=[x["tgt_texts"] for x in batch], max_length=self.data_args.max_source_length, max_target_length=self.data_args.max_target_length, padding="max_length" if self.tpu_num_cores is not None else "longest", # TPU hack return_tensors="pt", **self.dataset_kwargs, ) return batch_encoding.data class SortishSampler(Sampler): "Go through the text data by order of src length with a bit of randomness. From fastai repo." def __init__(self, data, batch_size, shuffle=True): self.data, self.bs, self.shuffle = data, batch_size, shuffle def __len__(self) -> int: return len(self.data) def __iter__(self): return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle)) def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array: "Go through the text data by order of src length with a bit of randomness. From fastai repo." if not shuffle: return np.argsort(np.array(data) * -1) def key_fn(i): return data[i] idxs = np.random.permutation(len(data)) sz = bs * 50 ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)] sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx]) sz = bs ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)] max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx]) # find the chunk with the largest key, ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0] # then make sure it goes first. sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int) sort_idx = np.concatenate((ck_idx[0], sort_idx)) return sort_idx class DistributedSortishSampler(Sampler): """Copied from torch DistributedSampler""" def __init__(self, dataset, batch_size, num_replicas=None, rank=None, add_extra_examples=True, shuffle=True): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 if add_extra_examples: self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas else: self.total_size = len(dataset) self.num_samples = len(self.available_indices) self.batch_size = batch_size self.add_extra_examples = add_extra_examples self.shuffle = shuffle def __iter__(self) -> Iterable: g = torch.Generator() g.manual_seed(self.epoch) sortish_data = [self.dataset.src_lens[i] for i in self.available_indices] sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size, shuffle=self.shuffle) indices = [self.available_indices[i] for i in sortish_indices] assert len(indices) == self.num_samples return iter(indices) @cached_property def available_indices(self) -> np.array: indices = list(range(len(self.dataset))) # add extra samples to make it evenly divisible indices += indices[: (self.total_size - len(indices))] assert len(indices) == self.total_size # subsample available_indices = indices[self.rank : self.total_size : self.num_replicas] return available_indices def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch logger = getLogger(__name__) def use_task_specific_params(model, task): """Update config with summarization specific params.""" task_specific_params = model.config.task_specific_params if task_specific_params is not None: pars = task_specific_params.get(task, {}) logger.info(f"setting model.config to task specific params for {task}:\n {pars}") logger.info("note: command line args may override some of these") model.config.update(pars) def pickle_load(path): """pickle.load(path)""" with open(path, "rb") as f: return pickle.load(f) def pickle_save(obj, path): """pickle.dump(obj, path)""" with open(path, "wb") as f: return pickle.dump(obj, f) def flatten_list(summary_ids: List[List]): return [x for x in itertools.chain.from_iterable(summary_ids)] def save_git_info(folder_path: str) -> None: """Save git information to output_dir/git_log.json""" repo_infos = get_git_info() save_json(repo_infos, os.path.join(folder_path, "git_log.json")) def save_json(content, path, indent=4, **json_dump_kwargs): with open(path, "w") as f: json.dump(content, f, indent=indent, sort_keys=True, **json_dump_kwargs) def load_json(path): with open(path) as f: return json.load(f) def get_git_info(): try: repo = git.Repo(search_parent_directories=True) repo_infos = { "repo_id": str(repo), "repo_sha": str(repo.head.object.hexsha), "repo_branch": str(repo.active_branch), "hostname": str(socket.gethostname()), } return repo_infos except TypeError: return { "repo_id": None, "repo_sha": None, "repo_branch": None, "hostname": None, } ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"] def extract_rouge_mid_statistics(dct): new_dict = {} for k1, v1 in dct.items(): mid = v1.mid new_dict[k1] = {stat: round(getattr(mid, stat), 4) for stat in ["precision", "recall", "fmeasure"]} return new_dict def calculate_rouge( pred_lns: List[str], tgt_lns: List[str], use_stemmer=True, rouge_keys=ROUGE_KEYS, return_precision_and_recall=False, bootstrap_aggregation=True, newline_sep=True, ) -> Dict: """Calculate rouge using rouge_scorer package. Args: pred_lns: list of summaries generated by model tgt_lns: list of groundtruth summaries (e.g. contents of val.target) use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes to improve matching. rouge_keys: which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum return_precision_and_recall: (False) whether to also return precision and recall. bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]`` newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL on multi sentence summaries (CNN/DM dataset). Returns: Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys """ scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer) aggregator = scoring.BootstrapAggregator() for pred, tgt in zip(tgt_lns, pred_lns): # rougeLsum expects "\n" separated sentences within a summary if newline_sep: pred = add_newline_to_end_of_each_sentence(pred) tgt = add_newline_to_end_of_each_sentence(tgt) scores = scorer.score(pred, tgt) aggregator.add_scores(scores) if bootstrap_aggregation: result = aggregator.aggregate() if return_precision_and_recall: return extract_rouge_mid_statistics(result) # here we return dict else: return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()} else: return aggregator._scores # here we return defaultdict(list) # Utilities for freezing parameters and checking whether they are frozen def freeze_params(model: nn.Module): """Set requires_grad=False for each of model.parameters()""" for par in model.parameters(): par.requires_grad = False def freeze_embeds(model): """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5.""" model_type = model.config.model_type if model_type in ["t5", "mt5"]: freeze_params(model.shared) for d in [model.encoder, model.decoder]: freeze_params(d.embed_tokens) elif model_type == "fsmt": for d in [model.model.encoder, model.model.decoder]: freeze_params(d.embed_positions) freeze_params(d.embed_tokens) else: freeze_params(model.model.shared) for d in [model.model.encoder, model.model.decoder]: freeze_params(d.embed_positions) freeze_params(d.embed_tokens) def grad_status(model: nn.Module) -> Iterable: return (par.requires_grad for par in model.parameters()) def any_requires_grad(model: nn.Module) -> bool: return any(grad_status(model)) def assert_all_frozen(model): model_grads: List[bool] = list(grad_status(model)) n_require_grad = sum(lmap(int, model_grads)) npars = len(model_grads) assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad" def assert_not_all_frozen(model): model_grads: List[bool] = list(grad_status(model)) npars = len(model_grads) assert any(model_grads), f"none of {npars} weights require grad" def parse_numeric_n_bool_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float, bool]]: """ Parse an argv list of unspecified command line args to a dict. Assumes all values are either numeric or boolean in the form of true/false. """ result = {} assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}" num_pairs = len(unparsed_args) // 2 for pair_num in range(num_pairs): i = 2 * pair_num assert unparsed_args[i].startswith("--") if unparsed_args[i + 1].lower() == "true": value = True elif unparsed_args[i + 1].lower() == "false": value = False else: try: value = int(unparsed_args[i + 1]) except ValueError: value = float(unparsed_args[i + 1]) # this can raise another informative ValueError result[unparsed_args[i][2:]] = value return result def write_txt_file(ordered_tgt, path): f = Path(path).open("w") for ln in ordered_tgt: f.write(ln + "\n") f.flush() def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def check_output_dir(args, expected_items=0): """ Checks whether to bail out if output_dir already exists and has more than expected_items in it `args`: needs to have the following attributes of `args`: - output_dir - do_train - overwrite_output_dir `expected_items`: normally 0 (default) - i.e. empty dir, but in some cases a few files are expected (e.g. recovery from OOM) """ if ( os.path.exists(args.output_dir) and len(os.listdir(args.output_dir)) > expected_items and args.do_train and not args.overwrite_output_dir ): raise ValueError( f"Output directory ({args.output_dir}) already exists and " f"has {len(os.listdir(args.output_dir))} items in it (expected {expected_items} items). " "Use --overwrite_output_dir to overcome." )
AdaMix/examples/legacy/seq2seq/utils.py/0
{ "file_path": "AdaMix/examples/legacy/seq2seq/utils.py", "repo_id": "AdaMix", "token_count": 10926 }
36
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> ## SQuAD Based on the script [`run_qa.py`](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_qa.py). **Note:** This script only works with models that have a fast tokenizer (backed by the 🤗 Tokenizers library) as it uses special features of those tokenizers. You can check if your favorite model has a fast tokenizer in [this table](https://huggingface.co/transformers/index.html#bigtable), if it doesn't you can still use the old version of the script. The old version of this script can be found [here](https://github.com/huggingface/transformers/tree/master/examples/legacy/question-answering). #### Fine-tuning BERT on SQuAD1.0 This example code fine-tunes BERT on the SQuAD1.0 dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla V100 16GB. ```bash python run_qa.py \ --model_name_or_path bert-base-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ ``` Training with the previously defined hyper-parameters yields the following results: ```bash f1 = 88.52 exact_match = 81.22 ``` #### Distributed training Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD1.1: ```bash python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_squad.py \ --model_name_or_path bert-large-uncased-whole-word-masking \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./examples/models/wwm_uncased_finetuned_squad/ \ --per_device_eval_batch_size=3 \ --per_device_train_batch_size=3 \ ``` Training with the previously defined hyper-parameters yields the following results: ```bash f1 = 93.15 exact_match = 86.91 ``` This fine-tuned model is available as a checkpoint under the reference [`bert-large-uncased-whole-word-masking-finetuned-squad`](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad). #### Fine-tuning XLNet with beam search on SQuAD This example code fine-tunes XLNet on both SQuAD1.0 and SQuAD2.0 dataset. ##### Command for SQuAD1.0: ```bash python run_qa_beam_search.py \ --model_name_or_path xlnet-large-cased \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./wwm_cased_finetuned_squad/ \ --per_device_eval_batch_size=4 \ --per_device_train_batch_size=4 \ --save_steps 5000 ``` ##### Command for SQuAD2.0: ```bash export SQUAD_DIR=/path/to/SQUAD python run_qa_beam_search.py \ --model_name_or_path xlnet-large-cased \ --dataset_name squad_v2 \ --do_train \ --do_eval \ --version_2_with_negative \ --learning_rate 3e-5 \ --num_train_epochs 4 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./wwm_cased_finetuned_squad/ \ --per_device_eval_batch_size=2 \ --per_device_train_batch_size=2 \ --save_steps 5000 ``` Larger batch size may improve the performance while costing more memory. ##### Results for SQuAD1.0 with the previously defined hyper-parameters: ```python { "exact": 85.45884578997162, "f1": 92.5974600601065, "total": 10570, "HasAns_exact": 85.45884578997162, "HasAns_f1": 92.59746006010651, "HasAns_total": 10570 } ``` ##### Results for SQuAD2.0 with the previously defined hyper-parameters: ```python { "exact": 80.4177545691906, "f1": 84.07154997729623, "total": 11873, "HasAns_exact": 76.73751686909581, "HasAns_f1": 84.05558584352873, "HasAns_total": 5928, "NoAns_exact": 84.0874684608915, "NoAns_f1": 84.0874684608915, "NoAns_total": 5945 } ``` #### Fine-tuning BERT on SQuAD1.0 with relative position embeddings The following examples show how to fine-tune BERT models with different relative position embeddings. The BERT model `bert-base-uncased` was pretrained with default absolute position embeddings. We provide the following pretrained models which were pre-trained on the same training data (BooksCorpus and English Wikipedia) as in the BERT model training, but with different relative position embeddings. * `zhiheng-huang/bert-base-uncased-embedding-relative-key`, trained from scratch with relative embedding proposed by Shaw et al., [Self-Attention with Relative Position Representations](https://arxiv.org/abs/1803.02155) * `zhiheng-huang/bert-base-uncased-embedding-relative-key-query`, trained from scratch with relative embedding method 4 in Huang et al. [Improve Transformer Models with Better Relative Position Embeddings](https://arxiv.org/abs/2009.13658) * `zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query`, fine-tuned from model `bert-large-uncased-whole-word-masking` with 3 additional epochs with relative embedding method 4 in Huang et al. [Improve Transformer Models with Better Relative Position Embeddings](https://arxiv.org/abs/2009.13658) ##### Base models fine-tuning ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_squad.py \ --model_name_or_path zhiheng-huang/bert-base-uncased-embedding-relative-key-query \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 512 \ --doc_stride 128 \ --output_dir relative_squad \ --per_device_eval_batch_size=60 \ --per_device_train_batch_size=6 ``` Training with the above command leads to the following results. It boosts the BERT default from f1 score of 88.52 to 90.54. ```bash 'exact': 83.6802270577105, 'f1': 90.54772098174814 ``` The change of `max_seq_length` from 512 to 384 in the above command leads to the f1 score of 90.34. Replacing the above model `zhiheng-huang/bert-base-uncased-embedding-relative-key-query` with `zhiheng-huang/bert-base-uncased-embedding-relative-key` leads to the f1 score of 89.51. The changing of 8 gpus to one gpu training leads to the f1 score of 90.71. ##### Large models fine-tuning ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_squad.py \ --model_name_or_path zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 512 \ --doc_stride 128 \ --output_dir relative_squad \ --per_gpu_eval_batch_size=6 \ --per_gpu_train_batch_size=2 \ --gradient_accumulation_steps 3 ``` Training with the above command leads to the f1 score of 93.52, which is slightly better than the f1 score of 93.15 for `bert-large-uncased-whole-word-masking`. ## SQuAD with the Tensorflow Trainer ```bash python run_tf_squad.py \ --model_name_or_path bert-base-uncased \ --output_dir model \ --max_seq_length 384 \ --num_train_epochs 2 \ --per_gpu_train_batch_size 8 \ --per_gpu_eval_batch_size 16 \ --do_train \ --logging_dir logs \ --logging_steps 10 \ --learning_rate 3e-5 \ --doc_stride 128 ``` For the moment evaluation is not available in the Tensorflow Trainer only the training.
AdaMix/examples/question-answering/README.md/0
{ "file_path": "AdaMix/examples/question-answering/README.md", "repo_id": "AdaMix", "token_count": 3024 }
37
#!/bin/bash export CUDA_VISIBLE_DEVICES=0 PATH_TO_DATA=/h/xinji/projects/GLUE MODEL_TYPE=bert # bert or roberta MODEL_SIZE=base # base or large DATASET=MRPC # SST-2, MRPC, RTE, QNLI, QQP, or MNLI MODEL_NAME=${MODEL_TYPE}-${MODEL_SIZE} if [ $MODEL_TYPE = 'bert' ] then MODEL_NAME=${MODEL_NAME}-uncased fi ENTROPIES="0 0.1 0.2 0.3 0.4 0.5 0.6 0.7" for ENTROPY in $ENTROPIES; do python -u run_glue_deebert.py \ --model_type $MODEL_TYPE \ --model_name_or_path ./saved_models/${MODEL_TYPE}-${MODEL_SIZE}/$DATASET/two_stage \ --task_name $DATASET \ --do_eval \ --do_lower_case \ --data_dir $PATH_TO_DATA/$DATASET \ --output_dir ./saved_models/${MODEL_TYPE}-${MODEL_SIZE}/$DATASET/two_stage \ --plot_data_dir ./results/ \ --max_seq_length 128 \ --early_exit_entropy $ENTROPY \ --eval_highway \ --overwrite_cache \ --per_gpu_eval_batch_size=1 done
AdaMix/examples/research_projects/deebert/entropy_eval.sh/0
{ "file_path": "AdaMix/examples/research_projects/deebert/entropy_eval.sh", "repo_id": "AdaMix", "token_count": 437 }
38
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocessing script before training the distilled model. Specific to RoBERTa -> DistilRoBERTa and GPT2 -> DistilGPT2. """ import argparse import torch from transformers import GPT2LMHeadModel, RobertaForMaskedLM if __name__ == "__main__": parser = argparse.ArgumentParser( description="Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned Distillation" ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") args = parser.parse_args() if args.model_type == "roberta": model = RobertaForMaskedLM.from_pretrained(args.model_name) prefix = "roberta" elif args.model_type == "gpt2": model = GPT2LMHeadModel.from_pretrained(args.model_name) prefix = "transformer" state_dict = model.state_dict() compressed_sd = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: compressed_sd[f"{prefix}.{param_name}"] = state_dict[f"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: param_name = f"{prefix}.embeddings.{w}.weight" compressed_sd[param_name] = state_dict[param_name] for w in ["weight", "bias"]: param_name = f"{prefix}.embeddings.LayerNorm.{w}" compressed_sd[param_name] = state_dict[param_name] # Transformer Blocks # std_idx = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: compressed_sd[f"{prefix}.h.{std_idx}.{layer}.{w}"] = state_dict[ f"{prefix}.h.{teacher_idx}.{layer}.{w}" ] compressed_sd[f"{prefix}.h.{std_idx}.attn.bias"] = state_dict[f"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: compressed_sd[f"{prefix}.encoder.layer.{std_idx}.{layer}.{w}"] = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: compressed_sd[f"{layer}"] = state_dict[f"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: compressed_sd[f"lm_head.dense.{w}"] = state_dict[f"lm_head.dense.{w}"] compressed_sd[f"lm_head.layer_norm.{w}"] = state_dict[f"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: compressed_sd[f"{prefix}.ln_f.{w}"] = state_dict[f"{prefix}.ln_f.{w}"] compressed_sd["lm_head.weight"] = state_dict["lm_head.weight"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
AdaMix/examples/research_projects/distillation/scripts/extract.py/0
{ "file_path": "AdaMix/examples/research_projects/distillation/scripts/extract.py", "repo_id": "AdaMix", "token_count": 2002 }
39
import getopt import json import os # import numpy as np import sys from collections import OrderedDict import datasets import numpy as np import torch from modeling_frcnn import GeneralizedRCNN from processing_image import Preprocess from utils import Config """ USAGE: ``python extracting_data.py -i <img_dir> -o <dataset_file>.datasets <batch_size>`` """ TEST = False CONFIG = Config.from_pretrained("unc-nlp/frcnn-vg-finetuned") DEFAULT_SCHEMA = datasets.Features( OrderedDict( { "attr_ids": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")), "attr_probs": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")), "boxes": datasets.Array2D((CONFIG.MAX_DETECTIONS, 4), dtype="float32"), "img_id": datasets.Value("int32"), "obj_ids": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")), "obj_probs": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")), "roi_features": datasets.Array2D((CONFIG.MAX_DETECTIONS, 2048), dtype="float32"), "sizes": datasets.Sequence(length=2, feature=datasets.Value("float32")), "preds_per_image": datasets.Value(dtype="int32"), } ) ) class Extract: def __init__(self, argv=sys.argv[1:]): inputdir = None outputfile = None subset_list = None batch_size = 1 opts, args = getopt.getopt(argv, "i:o:b:s", ["inputdir=", "outfile=", "batch_size=", "subset_list="]) for opt, arg in opts: if opt in ("-i", "--inputdir"): inputdir = arg elif opt in ("-o", "--outfile"): outputfile = arg elif opt in ("-b", "--batch_size"): batch_size = int(arg) elif opt in ("-s", "--subset_list"): subset_list = arg assert inputdir is not None # and os.path.isdir(inputdir), f"{inputdir}" assert outputfile is not None and not os.path.isfile(outputfile), f"{outputfile}" if subset_list is not None: with open(os.path.realpath(subset_list)) as f: self.subset_list = set(map(lambda x: self._vqa_file_split()[0], tryload(f))) else: self.subset_list = None self.config = CONFIG if torch.cuda.is_available(): self.config.model.device = "cuda" self.inputdir = os.path.realpath(inputdir) self.outputfile = os.path.realpath(outputfile) self.preprocess = Preprocess(self.config) self.model = GeneralizedRCNN.from_pretrained("unc-nlp/frcnn-vg-finetuned", config=self.config) self.batch = batch_size if batch_size != 0 else 1 self.schema = DEFAULT_SCHEMA def _vqa_file_split(self, file): img_id = int(file.split(".")[0].split("_")[-1]) filepath = os.path.join(self.inputdir, file) return (img_id, filepath) @property def file_generator(self): batch = [] for i, file in enumerate(os.listdir(self.inputdir)): if self.subset_list is not None and i not in self.subset_list: continue batch.append(self._vqa_file_split(file)) if len(batch) == self.batch: temp = batch batch = [] yield list(map(list, zip(*temp))) for i in range(1): yield list(map(list, zip(*batch))) def __call__(self): # make writer if not TEST: writer = datasets.ArrowWriter(features=self.schema, path=self.outputfile) # do file generator for i, (img_ids, filepaths) in enumerate(self.file_generator): images, sizes, scales_yx = self.preprocess(filepaths) output_dict = self.model( images, sizes, scales_yx=scales_yx, padding="max_detections", max_detections=self.config.MAX_DETECTIONS, pad_value=0, return_tensors="np", location="cpu", ) output_dict["boxes"] = output_dict.pop("normalized_boxes") if not TEST: output_dict["img_id"] = np.array(img_ids) batch = self.schema.encode_batch(output_dict) writer.write_batch(batch) if TEST: break # finalizer the writer if not TEST: num_examples, num_bytes = writer.finalize() print(f"Success! You wrote {num_examples} entry(s) and {num_bytes >> 20} mb") def tryload(stream): try: data = json.load(stream) try: data = list(data.keys()) except Exception: data = [d["img_id"] for d in data] except Exception: try: data = eval(stream.read()) except Exception: data = stream.read().split("\n") return data if __name__ == "__main__": extract = Extract(sys.argv[1:]) extract() if not TEST: dataset = datasets.Dataset.from_file(extract.outputfile) # wala! # print(np.array(dataset[0:2]["roi_features"]).shape)
AdaMix/examples/research_projects/lxmert/extracting_data.py/0
{ "file_path": "AdaMix/examples/research_projects/lxmert/extracting_data.py", "repo_id": "AdaMix", "token_count": 2531 }
40
# Copyright 2020-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Count remaining (non-zero) weights in the encoder (i.e. the transformer layers). Sparsity and remaining weights levels are equivalent: sparsity % = 100 - remaining weights %. """ import argparse import os import torch from emmental.modules import ThresholdBinarizer, TopKBinarizer def main(args): serialization_dir = args.serialization_dir pruning_method = args.pruning_method threshold = args.threshold st = torch.load(os.path.join(serialization_dir, "pytorch_model.bin"), map_location="cpu") remaining_count = 0 # Number of remaining (not pruned) params in the encoder encoder_count = 0 # Number of params in the encoder print("name".ljust(60, " "), "Remaining Weights %", "Remaining Weight") for name, param in st.items(): if "encoder" not in name: continue if "mask_scores" in name: if pruning_method == "topK": mask_ones = TopKBinarizer.apply(param, threshold).sum().item() elif pruning_method == "sigmoied_threshold": mask_ones = ThresholdBinarizer.apply(param, threshold, True).sum().item() elif pruning_method == "l0": l, r = -0.1, 1.1 s = torch.sigmoid(param) s_bar = s * (r - l) + l mask = s_bar.clamp(min=0.0, max=1.0) mask_ones = (mask > 0.0).sum().item() else: raise ValueError("Unknown pruning method") remaining_count += mask_ones print(name.ljust(60, " "), str(round(100 * mask_ones / param.numel(), 3)).ljust(20, " "), str(mask_ones)) else: encoder_count += param.numel() if "bias" in name or "LayerNorm" in name: remaining_count += param.numel() print("") print("Remaining Weights (global) %: ", 100 * remaining_count / encoder_count) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "topK", "sigmoied_threshold"], type=str, required=True, help="Pruning Method (l0 = L0 regularization, topK = Movement pruning, sigmoied_threshold = Soft movement pruning)", ) parser.add_argument( "--threshold", type=float, required=False, help="For `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`", ) parser.add_argument( "--serialization_dir", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) args = parser.parse_args() main(args)
AdaMix/examples/research_projects/movement-pruning/counts_parameters.py/0
{ "file_path": "AdaMix/examples/research_projects/movement-pruning/counts_parameters.py", "repo_id": "AdaMix", "token_count": 1361 }
41
# Plug and Play Language Models: a Simple Approach to Controlled Text Generation Authors: [Sumanth Dathathri](https://dathath.github.io/), [Andrea Madotto](https://andreamad8.github.io/), Janice Lan, Jane Hung, Eric Frank, [Piero Molino](https://w4nderlu.st/), [Jason Yosinski](http://yosinski.com/), and [Rosanne Liu](http://www.rosanneliu.com/) This folder contains the original code used to run the Plug and Play Language Model (PPLM). Paper link: https://arxiv.org/abs/1912.02164 Blog link: https://eng.uber.com/pplm Please check out the repo under uber-research for more information: https://github.com/uber-research/PPLM ## Setup ```bash git clone https://github.com/huggingface/transformers && cd transformers pip install . pip install nltk torchtext # additional requirements. cd examples/text-generation/pplm ``` ## PPLM-BoW ### Example command for bag-of-words control ```bash python run_pplm.py -B military --cond_text "The potato" --length 50 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.03 --window_length 5 --kl_scale 0.01 --gm_scale 0.99 --colorama --sample ``` ### Tuning hyperparameters for bag-of-words control 1. Increase `--stepsize` to intensify topic control, and decrease its value to soften the control. `--stepsize 0` recovers the original uncontrolled GPT-2 model. 2. If the language being generated is repetitive (For e.g. "science science experiment experiment"), there are several options to consider: </br> a) Reduce the `--stepsize` </br> b) Increase `--kl_scale` (the KL-loss coefficient) or decrease `--gm_scale` (the gm-scaling term) </br> c) Add `--grad-length xx` where xx is an (integer <= length, e.g. `--grad-length 30`).</br> ## PPLM-Discrim ### Example command for discriminator based sentiment control ```bash python run_pplm.py -D sentiment --class_label 2 --cond_text "My dog died" --length 50 --gamma 1.0 --num_iterations 10 --num_samples 10 --stepsize 0.04 --kl_scale 0.01 --gm_scale 0.95 --sample ``` ### Tuning hyperparameters for discriminator control 1. Increase `--stepsize` to intensify topic control, and decrease its value to soften the control. `--stepsize 0` recovers the original uncontrolled GPT-2 model. 2. Use `--class_label 3` for negative, and `--class_label 2` for positive
AdaMix/examples/research_projects/pplm/README.md/0
{ "file_path": "AdaMix/examples/research_projects/pplm/README.md", "repo_id": "AdaMix", "token_count": 716 }
42
# Add parent directory to python path to access lightning_base.py export PYTHONPATH="../":"${PYTHONPATH}" # A sample finetuning run, you need to specify data_dir, output_dir and model_name_or_path # run ./examples/rag/finetune_rag.sh --help to see all the possible options python examples/rag/finetune_rag.py \ --data_dir $DATA_DIR \ --output_dir $OUTPUT_DIR \ --model_name_or_path $MODEL_NAME_OR_PATH \ --model_type rag_sequence \ --fp16 \ --gpus 8 \ --profile \ --do_train \ --do_predict \ --n_val -1 \ --train_batch_size 8 \ --eval_batch_size 1 \ --max_source_length 128 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-05 \ --num_train_epochs 100 \ --warmup_steps 500 \ --gradient_accumulation_steps 1 \
AdaMix/examples/research_projects/rag/finetune_rag.sh/0
{ "file_path": "AdaMix/examples/research_projects/rag/finetune_rag.sh", "repo_id": "AdaMix", "token_count": 440 }
43
#!/usr/bin/env bash export PYTHONPATH="../":"${PYTHONPATH}" export WANDB_PROJECT=dmar # export MAX_LEN=128 python distillation.py \ --learning_rate=3e-4 \ --do_train \ --fp16 \ --val_check_interval 0.25 \ --teacher Helsinki-NLP/opus-mt-en-ro \ --max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \ --student_decoder_layers 3 --student_encoder_layers 6 \ --freeze_encoder --freeze_embeds \ --model_name_or_path IGNORED \ --alpha_hid=3. \ --train_batch_size=$BS --eval_batch_size=$BS \ --tokenizer_name Helsinki-NLP/opus-mt-en-ro \ --warmup_steps 500 --logger_name wandb \ --fp16_opt_level O1 --task translation --normalize_hidden --num_sanity_val_steps=0 \ "$@"
AdaMix/examples/research_projects/seq2seq-distillation/distil_marian_enro_teacher.sh/0
{ "file_path": "AdaMix/examples/research_projects/seq2seq-distillation/distil_marian_enro_teacher.sh", "repo_id": "AdaMix", "token_count": 310 }
44
#!/usr/bin/env bash export PYTHONPATH="../":"${PYTHONPATH}" python distillation.py \ --teacher facebook/bart-large-xsum --data_dir xsum \ --tokenizer_name facebook/bart-large-xsum \ --student_decoder_layers 6 --student_encoder_layers 12 \ --freeze_encoder --freeze_embeds \ --learning_rate=3e-4 \ --do_train \ --do_predict \ --fp16 --fp16_opt_level=O1 \ --val_check_interval 0.1 --n_val 1000 --eval_beams 2 --length_penalty=0.5 \ --max_target_length=60 --val_max_target_length=60 --test_max_target_length=100 \ --model_name_or_path IGNORED \ --alpha_hid=3. \ --train_batch_size=16 --eval_batch_size=16 --gradient_accumulation_steps=2 \ --sortish_sampler \ --num_train_epochs=6 \ --warmup_steps 500 \ --output_dir distilbart_xsum_12_6 \ "$@"
AdaMix/examples/research_projects/seq2seq-distillation/train_distilbart_xsum.sh/0
{ "file_path": "AdaMix/examples/research_projects/seq2seq-distillation/train_distilbart_xsum.sh", "repo_id": "AdaMix", "token_count": 317 }
45
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> ## Token classification Fine-tuning the library models for token classification task such as Named Entity Recognition (NER) or Parts-of-speech tagging (POS). The main scrip `run_ner.py` leverages the 🤗 Datasets library and the Trainer API. You can easily customize it to your needs if you need extra processing on your datasets. It will either run on a datasets hosted on our [hub](https://huggingface.co/datasets) or with your own text files for training and validation. The following example fine-tunes BERT on CoNLL-2003: ```bash python run_ner.py \ --model_name_or_path bert-base-uncased \ --dataset_name conll2003 \ --output_dir /tmp/test-ner \ --do_train \ --do_eval ``` or just can just run the bash script `run.sh`. To run on your own training and validation files, use the following command: ```bash python run_ner.py \ --model_name_or_path bert-base-uncased \ --train_file path_to_train_file \ --validation_file path_to_validation_file \ --output_dir /tmp/test-ner \ --do_train \ --do_eval ``` **Note:** This script only works with models that have a fast tokenizer (backed by the 🤗 Tokenizers library) as it uses special features of those tokenizers. You can check if your favorite model has a fast tokenizer in [this table](https://huggingface.co/transformers/index.html#bigtable), if it doesn't you can still use the old version of the script. ## Old version of the script You can find the old version of the PyTorch script [here](https://github.com/huggingface/transformers/blob/master/examples/legacy/token-classification/run_ner.py). ### TensorFlow version The following examples are covered in this section: * NER on the GermEval 2014 (German NER) dataset * Emerging and Rare Entities task: WNUT’17 (English NER) dataset Details and results for the fine-tuning provided by @stefan-it. ### GermEval 2014 (German NER) dataset #### Data (Download and pre-processing steps) Data can be obtained from the [GermEval 2014](https://sites.google.com/site/germeval2014ner/data) shared task page. Here are the commands for downloading and pre-processing train, dev and test datasets. The original data format has four (tab-separated) columns, in a pre-processing step only the two relevant columns (token and outer span NER annotation) are extracted: ```bash curl -L 'https://drive.google.com/uc?export=download&id=1Jjhbal535VVz2ap4v4r_rN1UEHTdLK5P' \ | grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > train.txt.tmp curl -L 'https://drive.google.com/uc?export=download&id=1ZfRcQThdtAR5PPRjIDtrVP7BtXSCUBbm' \ | grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp curl -L 'https://drive.google.com/uc?export=download&id=1u9mb7kNJHWQCWyweMDRMuTFoOHOfeBTH' \ | grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp ``` The GermEval 2014 dataset contains some strange "control character" tokens like `'\x96', '\u200e', '\x95', '\xad' or '\x80'`. One problem with these tokens is, that `BertTokenizer` returns an empty token for them, resulting in misaligned `InputExample`s. The `preprocess.py` script located in the `scripts` folder a) filters these tokens and b) splits longer sentences into smaller ones (once the max. subtoken length is reached). Let's define some variables that we need for further pre-processing steps and training the model: ```bash export MAX_LENGTH=128 export BERT_MODEL=bert-base-multilingual-cased ``` Run the pre-processing script on training, dev and test datasets: ```bash python3 scripts/preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt python3 scripts/preprocess.py dev.txt.tmp $BERT_MODEL $MAX_LENGTH > dev.txt python3 scripts/preprocess.py test.txt.tmp $BERT_MODEL $MAX_LENGTH > test.txt ``` The GermEval 2014 dataset has much more labels than CoNLL-2002/2003 datasets, so an own set of labels must be used: ```bash cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt ``` #### Prepare the run Additional environment variables must be set: ```bash export OUTPUT_DIR=germeval-model export BATCH_SIZE=32 export NUM_EPOCHS=3 export SAVE_STEPS=750 export SEED=1 ```
AdaMix/examples/token-classification/README.md/0
{ "file_path": "AdaMix/examples/token-classification/README.md", "repo_id": "AdaMix", "token_count": 1506 }
46
--- language: en tags: - tapas - masked-lm license: apache-2.0 --- # TAPAS base model This model corresponds to the `tapas_inter_masklm_base_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding classification heads on top of the pre-trained model, and then jointly train the randomly initialized classification heads with the base model on a labelled dataset. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=tapas) to look for fine-tuned versions on a task that interests you. Here is how to use this model to get the features of a given table-text pair in PyTorch: ```python from transformers import TapasTokenizer, TapasModel import pandas as pd tokenizer = TapasTokenizer.from_pretrained('tapase-base') model = TapasModel.from_pretrained("tapas-base") data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Age': ["56", "45", "59"], 'Number of movies': ["87", "53", "69"] } table = pd.DataFrame.from_dict(data) queries = ["How many movies has George Clooney played in?"] text = "Replace me by any text you'd like." encoded_input = tokenizer(table=table, queries=queries, return_tensors='pt') output = model(**encoded_input) ``` ## Training data For masked language modeling (MLM), a collection of 6.2 million tables was extracted from English Wikipedia: 3.3M of class [Infobox](https://en.wikipedia.org/wiki/Help:Infobox) and 2.9M of class WikiTable. The author only considered tables with at most 500 cells. As a proxy for questions that appear in the downstream tasks, the authros extracted the table caption, article title, article description, segment title and text of the segment the table occurs in as relevant text snippets. In this way, 21.3M snippets were created. For more info, see the original [TAPAS paper](https://www.aclweb.org/anthology/2020.acl-main.398.pdf). For intermediate pre-training, 2 tasks are introduced: one based on synthetic and the other from counterfactual statements. The first one generates a sentence by sampling from a set of logical expressions that filter, combine and compare the information on the table, which is required in table entailment (e.g., knowing that Gerald Ford is taller than the average president requires summing all presidents and dividing by the number of presidents). The second one corrupts sentences about tables appearing on Wikipedia by swapping entities for plausible alternatives. Examples of the two tasks can be seen in Figure 1. The procedure is described in detail in section 3 of the [TAPAS follow-up paper](https://www.aclweb.org/anthology/2020.findings-emnlp.27.pdf). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Context [SEP] Flattened table [SEP] ``` The details of the masking procedure for each sequence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. The details of the creation of the synthetic and counterfactual examples can be found in the [follow-up paper](https://arxiv.org/abs/2010.00571). ### Pretraining The model was trained on 32 Cloud TPU v3 cores for one million steps with maximum sequence length 512 and batch size of 512. In this setup, pre-training takes around 3 days. The optimizer used is Adam with a learning rate of 5e-5, and a warmup ratio of 0.10. ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
AdaMix/model_cards/google/tapas-base/README.md/0
{ "file_path": "AdaMix/model_cards/google/tapas-base/README.md", "repo_id": "AdaMix", "token_count": 1745 }
47
#!/usr/bin/env python # coding: utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES mname_tiny = "tiny-wmt19-en-ru" # Build # borrowed from a test vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: build_dir = Path(tmpdirname) src_vocab_file = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] tgt_vocab_file = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] merges_file = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp : fp.write("\n".join(merges)) tokenizer = FSMTTokenizer( langs=["en", "ru"], src_vocab_size = len(vocab), tgt_vocab_size = len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) config = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) tiny_model = FSMTForConditionalGeneration(config) print(f"num of params {tiny_model.num_parameters()}") # Test batch = tokenizer(["Making tiny model"], return_tensors="pt") outputs = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
AdaMix/scripts/fsmt/fsmt-make-super-tiny-model.py/0
{ "file_path": "AdaMix/scripts/fsmt/fsmt-make-super-tiny-model.py", "repo_id": "AdaMix", "token_count": 1251 }
48
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Benchmarking the library on inference and training in PyTorch. """ import timeit from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..file_utils import is_py3nvml_available, is_torch_available from ..models.auto.modeling_auto import MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING from ..utils import logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_torch_available(): import torch from .benchmark_args import PyTorchBenchmarkArguments if is_py3nvml_available(): import py3nvml.py3nvml as nvml logger = logging.get_logger(__name__) class PyTorchBenchmark(Benchmark): args: PyTorchBenchmarkArguments configs: PretrainedConfig framework: str = "PyTorch" @property def framework_version(self): return torch.__version__ def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float: _inference = self._prepare_inference_func(model_name, batch_size, sequence_length) return self._measure_speed(_inference) def _inference_memory( self, model_name: str, batch_size: int, sequence_length: int ) -> [Memory, Optional[MemorySummary]]: _inference = self._prepare_inference_func(model_name, batch_size, sequence_length) return self._measure_memory(_inference) def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float: _train = self._prepare_train_func(model_name, batch_size, sequence_length) return self._measure_speed(_train) def _train_memory( self, model_name: str, batch_size: int, sequence_length: int ) -> [Memory, Optional[MemorySummary]]: _train = self._prepare_train_func(model_name, batch_size, sequence_length) return self._measure_memory(_train) def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]: config = self.config_dict[model_name] if self.args.torchscript: config.torchscript = True has_model_class_in_config = ( hasattr(config, "architectures") and isinstance(config.architectures, list) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: model_class = config.architectures[0] transformers_module = __import__("transformers", fromlist=[model_class]) model_cls = getattr(transformers_module, model_class) model = model_cls(config) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: model = MODEL_MAPPING[config.__class__](config) model.eval() model.to(self.args.device) # encoder-decoder has vocab size saved differently vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device) if self.args.fp16: logger.info("Running training in Mixed Precision...") assert self.args.is_gpu, "Mixed precision is possible only for GPU." # amp seems to have memory leaks so that memory usage # is measured using .half() for now https://github.com/NVIDIA/apex/issues/439 model.half() if self.args.torchscript: with torch.no_grad(): inference_model = torch.jit.trace(model, input_ids) else: inference_model = model def encoder_decoder_forward(): with torch.no_grad(): outputs = inference_model(input_ids, decoder_input_ids=input_ids) return outputs def encoder_forward(): with torch.no_grad(): outputs = inference_model(input_ids) return outputs _forward = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _forward def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]: config = self.config_dict[model_name] has_model_class_in_config = ( hasattr(config, "architectures") and isinstance(config.architectures, list) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: model_class = config.architectures[0] transformers_module = __import__("transformers", fromlist=[model_class]) model_cls = getattr(transformers_module, model_class) model = model_cls(config) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: model = MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config) if self.args.torchscript: raise NotImplementedError("Training for torchscript is currently not implemented") else: train_model = model model.train() model.to(self.args.device) # encoder-decoder has vocab size saved differently vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device) if self.args.fp16: logger.info("Running training in Mixed Precision...") assert self.args.is_gpu, "Mixed precision is possible only for GPU." # amp seems to have memory leaks so that memory usage # is measured using .half() for now https://github.com/NVIDIA/apex/issues/439 model.half() def compute_loss_and_backprob_encoder(): loss = train_model(input_ids, labels=input_ids)[0] loss.backward() return loss def compute_loss_and_backprob_encoder_decoder(): loss = train_model(input_ids, decoder_input_ids=input_ids, labels=input_ids)[0] loss.backward() return loss _train = ( compute_loss_and_backprob_encoder_decoder if config.is_encoder_decoder else compute_loss_and_backprob_encoder ) return _train def _measure_speed(self, func) -> float: try: if self.args.is_tpu or self.args.torchscript: # run additional 10 times to stabilize compilation for tpu and torchscript logger.info("Do inference on TPU or torchscript. Running model 5 times to stabilize compilation") timeit.repeat( func, repeat=1, number=5, ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average runtimes = timeit.repeat( func, repeat=self.args.repeat, number=10, ) if self.args.is_tpu and self.args.torch_xla_tpu_print_metrics: import torch_xla.debug.metrics as met self.print_fn(met.metrics_report()) return min(runtimes) / 10.0 except RuntimeError as e: self.print_fn("Doesn't fit on GPU. {}".format(e)) return "N/A" def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]: try: if self.args.trace_memory_line_by_line: trace = start_memory_tracing("transformers") if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking with `--no-memory` or `args.memory=False`" ) elif self.args.is_gpu: if not is_py3nvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) memory = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes running on the same GPU." ) # init nvml nvml.nvmlInit() func() handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) meminfo = nvml.nvmlDeviceGetMemoryInfo(handle) max_bytes_in_use = meminfo.used memory = Memory(max_bytes_in_use) # shutdown nvml nvml.nvmlShutdown() else: # cpu memory_bytes = measure_peak_memory_cpu(func) memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes if self.args.trace_memory_line_by_line: summary = stop_memory_tracing(trace) else: summary = None return memory, summary except RuntimeError as e: self.print_fn("Doesn't fit on GPU. {}".format(e)) return "N/A", None
AdaMix/src/transformers/benchmark/benchmark.py/0
{ "file_path": "AdaMix/src/transformers/benchmark/benchmark.py", "repo_id": "AdaMix", "token_count": 4766 }
49
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import sys from argparse import ArgumentParser from getpass import getpass from typing import List, Union from requests.exceptions import HTTPError from ..hf_api import HfApi, HfFolder from . import BaseTransformersCLICommand UPLOAD_MAX_FILES = 15 class UserCommands(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): login_parser = parser.add_parser("login", help="Log in using the same credentials as on huggingface.co") login_parser.set_defaults(func=lambda args: LoginCommand(args)) whoami_parser = parser.add_parser("whoami", help="Find out which huggingface.co account you are logged in as.") whoami_parser.set_defaults(func=lambda args: WhoamiCommand(args)) logout_parser = parser.add_parser("logout", help="Log out") logout_parser.set_defaults(func=lambda args: LogoutCommand(args)) # s3_datasets (s3-based system) s3_parser = parser.add_parser( "s3_datasets", help="{ls, rm} Commands to interact with the files you upload on S3." ) s3_subparsers = s3_parser.add_subparsers(help="s3 related commands") ls_parser = s3_subparsers.add_parser("ls") ls_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") ls_parser.set_defaults(func=lambda args: ListObjsCommand(args)) rm_parser = s3_subparsers.add_parser("rm") rm_parser.add_argument("filename", type=str, help="individual object filename to delete from huggingface.co.") rm_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") rm_parser.set_defaults(func=lambda args: DeleteObjCommand(args)) upload_parser = s3_subparsers.add_parser("upload", help="Upload a file to S3.") upload_parser.add_argument("path", type=str, help="Local path of the folder or individual file to upload.") upload_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") upload_parser.add_argument( "--filename", type=str, default=None, help="Optional: override individual object filename on S3." ) upload_parser.add_argument("-y", "--yes", action="store_true", help="Optional: answer Yes to the prompt") upload_parser.set_defaults(func=lambda args: UploadCommand(args)) # deprecated model upload upload_parser = parser.add_parser( "upload", help=( "Deprecated: used to be the way to upload a model to S3." " We now use a git-based system for storing models and other artifacts." " Use the `repo create` command instead." ), ) upload_parser.set_defaults(func=lambda args: DeprecatedUploadCommand(args)) # new system: git-based repo system repo_parser = parser.add_parser( "repo", help="{create, ls-files} Commands to interact with your huggingface.co repos." ) repo_subparsers = repo_parser.add_subparsers(help="huggingface.co repos related commands") ls_parser = repo_subparsers.add_parser("ls-files", help="List all your files on huggingface.co") ls_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") ls_parser.set_defaults(func=lambda args: ListReposObjsCommand(args)) repo_create_parser = repo_subparsers.add_parser("create", help="Create a new repo on huggingface.co") repo_create_parser.add_argument( "name", type=str, help="Name for your model's repo. Will be namespaced under your username to build the model id.", ) repo_create_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") repo_create_parser.add_argument("-y", "--yes", action="store_true", help="Optional: answer Yes to the prompt") repo_create_parser.set_defaults(func=lambda args: RepoCreateCommand(args)) class ANSI: """ Helper for en.wikipedia.org/wiki/ANSI_escape_code """ _bold = "\u001b[1m" _red = "\u001b[31m" _gray = "\u001b[90m" _reset = "\u001b[0m" @classmethod def bold(cls, s): return "{}{}{}".format(cls._bold, s, cls._reset) @classmethod def red(cls, s): return "{}{}{}".format(cls._bold + cls._red, s, cls._reset) @classmethod def gray(cls, s): return "{}{}{}".format(cls._gray, s, cls._reset) def tabulate(rows: List[List[Union[str, int]]], headers: List[str]) -> str: """ Inspired by: - stackoverflow.com/a/8356620/593036 - stackoverflow.com/questions/9535954/printing-lists-as-tabular-data """ col_widths = [max(len(str(x)) for x in col) for col in zip(*rows, headers)] row_format = ("{{:{}}} " * len(headers)).format(*col_widths) lines = [] lines.append(row_format.format(*headers)) lines.append(row_format.format(*["-" * w for w in col_widths])) for row in rows: lines.append(row_format.format(*row)) return "\n".join(lines) class BaseUserCommand: def __init__(self, args): self.args = args self._api = HfApi() class LoginCommand(BaseUserCommand): def run(self): print( # docstyle-ignore """ _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _| _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_| _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _| _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_| """ ) username = input("Username: ") password = getpass() try: token = self._api.login(username, password) except HTTPError as e: # probably invalid credentials, display error message. print(e) print(ANSI.red(e.response.text)) exit(1) HfFolder.save_token(token) print("Login successful") print("Your token:", token, "\n") print("Your token has been saved to", HfFolder.path_token) class WhoamiCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit() try: user, orgs = self._api.whoami(token) print(user) if orgs: print(ANSI.bold("orgs: "), ",".join(orgs)) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) class LogoutCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit() HfFolder.delete_token() self._api.logout(token) print("Successfully logged out.") class ListObjsCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) try: objs = self._api.list_objs(token, organization=self.args.organization) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) if len(objs) == 0: print("No shared file yet") exit() rows = [[obj.filename, obj.LastModified, obj.ETag, obj.Size] for obj in objs] print(tabulate(rows, headers=["Filename", "LastModified", "ETag", "Size"])) class DeleteObjCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) try: self._api.delete_obj(token, filename=self.args.filename, organization=self.args.organization) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) print("Done") class ListReposObjsCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) try: objs = self._api.list_repos_objs(token, organization=self.args.organization) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) if len(objs) == 0: print("No shared file yet") exit() rows = [[obj.filename, obj.lastModified, obj.commit, obj.size] for obj in objs] print(tabulate(rows, headers=["Filename", "LastModified", "Commit-Sha", "Size"])) class RepoCreateCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) try: stdout = subprocess.check_output(["git", "--version"]).decode("utf-8") print(ANSI.gray(stdout.strip())) except FileNotFoundError: print("Looks like you do not have git installed, please install.") try: stdout = subprocess.check_output(["git-lfs", "--version"]).decode("utf-8") print(ANSI.gray(stdout.strip())) except FileNotFoundError: print( ANSI.red( "Looks like you do not have git-lfs installed, please install." " You can install from https://git-lfs.github.com/." " Then run `git lfs install` (you only have to do this once)." ) ) print("") user, _ = self._api.whoami(token) namespace = self.args.organization if self.args.organization is not None else user print("You are about to create {}".format(ANSI.bold(namespace + "/" + self.args.name))) if not self.args.yes: choice = input("Proceed? [Y/n] ").lower() if not (choice == "" or choice == "y" or choice == "yes"): print("Abort") exit() try: url = self._api.create_repo(token, name=self.args.name, organization=self.args.organization) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) print("\nYour repo now lives at:") print(" {}".format(ANSI.bold(url))) print("\nYou can clone it locally with the command below," " and commit/push as usual.") print(f"\n git clone {url}") print("") class DeprecatedUploadCommand(BaseUserCommand): def run(self): print( ANSI.red( "Deprecated: used to be the way to upload a model to S3." " We now use a git-based system for storing models and other artifacts." " Use the `repo create` command instead." ) ) exit(1) class UploadCommand(BaseUserCommand): def walk_dir(self, rel_path): """ Recursively list all files in a folder. """ entries: List[os.DirEntry] = list(os.scandir(rel_path)) files = [(os.path.join(os.getcwd(), f.path), f.path) for f in entries if f.is_file()] # (filepath, filename) for f in entries: if f.is_dir(): files += self.walk_dir(f.path) return files def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) local_path = os.path.abspath(self.args.path) if os.path.isdir(local_path): if self.args.filename is not None: raise ValueError("Cannot specify a filename override when uploading a folder.") rel_path = os.path.basename(local_path) files = self.walk_dir(rel_path) elif os.path.isfile(local_path): filename = self.args.filename if self.args.filename is not None else os.path.basename(local_path) files = [(local_path, filename)] else: raise ValueError("Not a valid file or directory: {}".format(local_path)) if sys.platform == "win32": files = [(filepath, filename.replace(os.sep, "/")) for filepath, filename in files] if len(files) > UPLOAD_MAX_FILES: print( "About to upload {} files to S3. This is probably wrong. Please filter files before uploading.".format( ANSI.bold(len(files)) ) ) exit(1) user, _ = self._api.whoami(token) namespace = self.args.organization if self.args.organization is not None else user for filepath, filename in files: print( "About to upload file {} to S3 under filename {} and namespace {}".format( ANSI.bold(filepath), ANSI.bold(filename), ANSI.bold(namespace) ) ) if not self.args.yes: choice = input("Proceed? [Y/n] ").lower() if not (choice == "" or choice == "y" or choice == "yes"): print("Abort") exit() print(ANSI.bold("Uploading... This might take a while if files are large")) for filepath, filename in files: try: access_url = self._api.presign_and_upload( token=token, filename=filename, filepath=filepath, organization=self.args.organization ) except HTTPError as e: print(e) print(ANSI.red(e.response.text)) exit(1) print("Your file now lives at:") print(access_url)
AdaMix/src/transformers/commands/user.py/0
{ "file_path": "AdaMix/src/transformers/commands/user.py", "repo_id": "AdaMix", "token_count": 6690 }
50
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extraction saving/loading class for common feature extractors. """ import copy import json import os from collections import UserDict from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union import numpy as np from .file_utils import ( FEATURE_EXTRACTOR_NAME, TensorType, _is_jax, _is_numpy, _is_torch_device, cached_path, hf_bucket_url, is_flax_available, is_offline_mode, is_remote_url, is_tf_available, is_torch_available, torch_required, ) from .utils import logging if TYPE_CHECKING: if is_torch_available(): import torch logger = logging.get_logger(__name__) PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"] # noqa: F821 class BatchFeature(UserDict): r""" Holds the output of the :meth:`~transformers.SequenceFeatureExtractor.pad` and feature extractor specific ``__call__`` methods. This class is derived from a python dictionary and can be used as a dictionary. Args: data (:obj:`dict`): Dictionary of lists/arrays/tensors returned by the __call__/pad methods ('input_values', 'attention_mask', etc.). tensor_type (:obj:`Union[None, str, TensorType]`, `optional`): You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at initialization. """ def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None): super().__init__(data) self.convert_to_tensors(tensor_type=tensor_type) def __getitem__(self, item: str) -> Union[Any]: """ If the key is a string, returns the value of the dict associated to :obj:`key` ('input_values', 'attention_mask', etc.). """ if isinstance(item, str): return self.data[item] else: raise KeyError("Indexing with integers is not available when using Python based feature extractors") def __getattr__(self, item: str): try: return self.data[item] except KeyError: raise AttributeError def __getstate__(self): return {"data": self.data} def __setstate__(self, state): if "data" in state: self.data = state["data"] # Copied from transformers.tokenization_utils_base.BatchEncoding.keys def keys(self): return self.data.keys() # Copied from transformers.tokenization_utils_base.BatchEncoding.values def values(self): return self.data.values() # Copied from transformers.tokenization_utils_base.BatchEncoding.items def items(self): return self.data.items() def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None): """ Convert the inner content to tensors. Args: tensor_type (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`): The type of tensors to use. If :obj:`str`, should be one of the values of the enum :class:`~transformers.file_utils.TensorType`. If :obj:`None`, no modification is done. """ if tensor_type is None: return self # Convert to TensorType if not isinstance(tensor_type, TensorType): tensor_type = TensorType(tensor_type) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf as_tensor = tf.constant is_tensor = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") import torch as_tensor = torch.tensor is_tensor = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") import jax.numpy as jnp # noqa: F811 as_tensor = jnp.array is_tensor = _is_jax else: as_tensor = np.asarray is_tensor = _is_numpy # Do the tensor conversion in batch for key, value in self.items(): try: if not is_tensor(value): tensor = as_tensor(value) self[key] = tensor except: # noqa E722 if key == "overflowing_values": raise ValueError("Unable to create tensor returning overflowing values of different lengths. ") raise ValueError( "Unable to create tensor, you should probably activate padding " "with 'padding=True' to have batched tensors with the same length." ) return self @torch_required # Copied from transformers.tokenization_utils_base.BatchEncoding.to with BatchEncoding->BatchFeature def to(self, device: Union[str, "torch.device"]) -> "BatchFeature": """ Send all values to device by calling :obj:`v.to(device)` (PyTorch only). Args: device (:obj:`str` or :obj:`torch.device`): The device to put the tensors on. Returns: :class:`~transformers.BatchFeature`: The same instance after modification. """ # This check catches things like APEX blindly calling "to" on all inputs to a module # Otherwise it passes the casts down and casts the LongTensor containing the token idxs # into a HalfTensor if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int): self.data = {k: v.to(device=device) for k, v in self.data.items()} else: logger.warning(f"Attempting to cast a BatchFeature to type {str(device)}. This is not supported.") return self class FeatureExtractionMixin: """ This is a feature extraction mixin used to provide saving/loading functionality for sequential and image feature extractors. """ @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs ) -> PreTrainedFeatureExtractor: r""" Instantiate a type of :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from a feature extractor, *e.g.* a derived class of :class:`~transformers.SequenceFeatureExtractor`. Args: pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): This can be either: - a string, the `model id` of a pretrained feature_extractor hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing a feature extractor file saved using the :func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.save_pretrained` method, e.g., ``./my_model_directory/``. - a path or url to a saved feature extractor JSON `file`, e.g., ``./my_model_directory/feature_extraction_config.json``. cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): Path to a directory in which a downloaded pretrained model feature extractor should be cached if the standard cache should not be used. force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force to (re-)download the feature extractor files and override the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. proxies (:obj:`Dict[str, str]`, `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. use_auth_token (:obj:`str` or `bool`, `optional`): The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git. return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`): If :obj:`False`, then this function returns just the final feature extractor object. If :obj:`True`, then this functions returns a :obj:`Tuple(feature_extractor, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of ``kwargs`` which has not been used to update ``feature_extractor`` and is otherwise ignored. kwargs (:obj:`Dict[str, Any]`, `optional`): The values in kwargs of any keys which are feature extractor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is controlled by the ``return_unused_kwargs`` keyword parameter. .. note:: Passing :obj:`use_auth_token=True` is required when you want to use a private model. Returns: A feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`. Examples:: # We can't instantiate directly the base class `FeatureExtractionMixin` nor `SequenceFeatureExtractor` so let's show the examples on a # derived class: `Wav2Vec2FeatureExtractor` feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h') # Download feature_extraction_config from huggingface.co and cache. feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('./test/saved_model/') # E.g. feature_extractor (or model) was saved using `save_pretrained('./test/saved_model/')` feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('./test/saved_model/preprocessor_config.json') feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h', return_attention_mask=False, foo=False) assert feature_extractor.return_attention_mask is False feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h', return_attention_mask=False, foo=False, return_unused_kwargs=True) assert feature_extractor.return_attention_mask is False assert unused_kwargs == {'foo': False} """ feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) return cls.from_dict(feature_extractor_dict, **kwargs) def save_pretrained(self, save_directory: Union[str, os.PathLike]): """ Save a feature_extractor object to the directory ``save_directory``, so that it can be re-loaded using the :func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.from_pretrained` class method. Args: save_directory (:obj:`str` or :obj:`os.PathLike`): Directory where the feature extractor JSON file will be saved (will be created if it does not exist). """ if os.path.isfile(save_directory): raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) # If we save using the predefined names, we can load using `from_pretrained` output_feature_extractor_file = os.path.join(save_directory, FEATURE_EXTRACTOR_NAME) self.to_json_file(output_feature_extractor_file) logger.info(f"Configuration saved in {output_feature_extractor_file}") @classmethod def get_feature_extractor_dict( cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs ) -> Tuple[Dict[str, Any], Dict[str, Any]]: """ From a ``pretrained_model_name_or_path``, resolve to a dictionary of parameters, to be used for instantiating a feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` using ``from_dict``. Parameters: pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. Returns: :obj:`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor object. """ cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) use_auth_token = kwargs.pop("use_auth_token", None) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True pretrained_model_name_or_path = str(pretrained_model_name_or_path) if os.path.isdir(pretrained_model_name_or_path): feature_extractor_file = os.path.join(pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): feature_extractor_file = pretrained_model_name_or_path else: feature_extractor_file = hf_bucket_url( pretrained_model_name_or_path, filename=FEATURE_EXTRACTOR_NAME, revision=revision, mirror=None ) try: # Load from URL or cache if already cached resolved_feature_extractor_file = cached_path( feature_extractor_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, ) # Load feature_extractor dict with open(resolved_feature_extractor_file, "r", encoding="utf-8") as reader: text = reader.read() feature_extractor_dict = json.loads(text) except EnvironmentError as err: logger.error(err) msg = ( f"Can't load feature extractor for '{pretrained_model_name_or_path}'. Make sure that:\n\n" f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {FEATURE_EXTRACTOR_NAME} file\n\n" ) raise EnvironmentError(msg) except json.JSONDecodeError: msg = ( f"Couldn't reach server at '{feature_extractor_file}' to download feature extractor configuration file or " "feature extractor configuration file is not a valid JSON file. " f"Please check network or file content here: {resolved_feature_extractor_file}." ) raise EnvironmentError(msg) if resolved_feature_extractor_file == feature_extractor_file: logger.info(f"loading feature extractor configuration file {feature_extractor_file}") else: logger.info( f"loading feature extractor configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}" ) return feature_extractor_dict, kwargs @classmethod def from_dict(cls, feature_extractor_dict: Dict[str, Any], **kwargs) -> PreTrainedFeatureExtractor: """ Instantiates a type of :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from a Python dictionary of parameters. Args: feature_extractor_dict (:obj:`Dict[str, Any]`): Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging the :func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.to_dict` method. kwargs (:obj:`Dict[str, Any]`): Additional parameters from which to initialize the feature extractor object. Returns: :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`: The feature extractor object instantiated from those parameters. """ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) feature_extractor = cls(**feature_extractor_dict) # Update feature_extractor with kwargs if needed to_remove = [] for key, value in kwargs.items(): if hasattr(feature_extractor, key): setattr(feature_extractor, key, value) to_remove.append(key) for key in to_remove: kwargs.pop(key, None) logger.info(f"Feature extractor {feature_extractor}") if return_unused_kwargs: return feature_extractor, kwargs else: return feature_extractor def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: :obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this feature extractor instance. """ output = copy.deepcopy(self.__dict__) return output @classmethod def from_json_file(cls, json_file: Union[str, os.PathLike]) -> PreTrainedFeatureExtractor: """ Instantiates a feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from the path to a JSON file of parameters. Args: json_file (:obj:`str` or :obj:`os.PathLike`): Path to the JSON file containing the parameters. Returns: A feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`: The feature_extractor object instantiated from that JSON file. """ with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() feature_extractor_dict = json.loads(text) return cls(**feature_extractor_dict) def to_json_string(self) -> str: """ Serializes this instance to a JSON string. Returns: :obj:`str`: String containing all the attributes that make up this feature_extractor instance in JSON format. """ return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (:obj:`str` or :obj:`os.PathLike`): Path to the JSON file in which this feature_extractor instance's parameters will be saved. """ with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string()) def __repr__(self): return f"{self.__class__.__name__} {self.to_json_string()}"
AdaMix/src/transformers/feature_extraction_utils.py/0
{ "file_path": "AdaMix/src/transformers/feature_extraction_utils.py", "repo_id": "AdaMix", "token_count": 8845 }
51
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import re import warnings from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union import torch from torch import Tensor, device, dtype, nn from torch.nn import CrossEntropyLoss from torch.nn import functional as F from .activations import get_activation from .configuration_utils import PretrainedConfig from .file_utils import ( DUMMY_INPUTS, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_NAME, ModelOutput, cached_path, hf_bucket_url, is_offline_mode, is_remote_url, replace_return_docstrings, ) from .generation_utils import GenerationMixin from .utils import logging logger = logging.get_logger(__name__) try: from torch.nn import Identity except ImportError: # Older PyTorch compatibility class Identity(nn.Module): r"""A placeholder identity operator that is argument-insensitive.""" def __init__(self, *args, **kwargs): super().__init__() def forward(self, input): return input def find_pruneable_heads_and_indices( heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int] ) -> Tuple[Set[int], torch.LongTensor]: """ Finds the heads and their indices taking :obj:`already_pruned_heads` into account. Args: heads (:obj:`List[int]`): List of the indices of heads to prune. n_heads (:obj:`int`): The number of heads in the model. head_size (:obj:`int`): The size of each head. already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads. Returns: :obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices. """ mask = torch.ones(n_heads, head_size) heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in already_pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index: torch.LongTensor = torch.arange(len(mask))[mask].long() return heads, index def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]): try: return next(parameter.parameters()).device except StopIteration: # For nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = parameter._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].device def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]): try: return next(parameter.parameters()).dtype except StopIteration: # For nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = parameter._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].dtype class ModuleUtilsMixin: """ A few utilities for :obj:`torch.nn.Modules`, to be used as a mixin. """ @staticmethod def _hook_rss_memory_pre_forward(module, *args, **kwargs): try: import psutil except (ImportError): raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") process = psutil.Process(os.getpid()) mem = process.memory_info() module.mem_rss_pre_forward = mem.rss return None @staticmethod def _hook_rss_memory_post_forward(module, *args, **kwargs): try: import psutil except (ImportError): raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") process = psutil.Process(os.getpid()) mem = process.memory_info() module.mem_rss_post_forward = mem.rss mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0) return None def add_memory_hooks(self): """ Add a memory hook before and after each sub-module forward pass to record increase in memory consumption. Increase in memory consumption is stored in a :obj:`mem_rss_diff` attribute for each module and can be reset to zero with :obj:`model.reset_memory_hooks_state()`. """ for module in self.modules(): module.register_forward_pre_hook(self._hook_rss_memory_pre_forward) module.register_forward_hook(self._hook_rss_memory_post_forward) self.reset_memory_hooks_state() def reset_memory_hooks_state(self): """ Reset the :obj:`mem_rss_diff` attribute of each module (see :func:`~transformers.modeling_utils.ModuleUtilsMixin.add_memory_hooks`). """ for module in self.modules(): module.mem_rss_diff = 0 module.mem_rss_post_forward = 0 module.mem_rss_pre_forward = 0 @property def device(self) -> device: """ :obj:`torch.device`: The device on which the module is (assuming that all the module parameters are on the same device). """ return get_parameter_device(self) @property def dtype(self) -> dtype: """ :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). """ return get_parameter_dtype(self) def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor: """ Invert an attention mask (e.g., switches 0. and 1.). Args: encoder_attention_mask (:obj:`torch.Tensor`): An attention mask. Returns: :obj:`torch.Tensor`: The inverted attention mask. """ if encoder_attention_mask.dim() == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility if self.dtype == torch.float16: encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4 elif self.dtype == torch.float32: encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9 else: raise ValueError( "{} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`".format( self.dtype ) ) return encoder_extended_attention_mask def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (:obj:`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (:obj:`Tuple[int]`): The shape of the input to the model. device: (:obj:`torch.device`): The device of the input to the model. Returns: :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] # in case past_key_values are used we need to add a prefix ones mask to the causal mask # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) if causal_mask.shape[1] < attention_mask.shape[1]: prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] causal_mask = torch.cat( [ torch.ones( (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype ), causal_mask, ], axis=-1, ) extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask( self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False ) -> Tensor: """ Prepare the head mask if needed. Args: head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`): The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). num_hidden_layers (:obj:`int`): The number of hidden layers in the model. is_attention_chunked: (:obj:`bool`, `optional, defaults to :obj:`False`): Whether or not the attentions scores are computed by chunks or not. Returns: :obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with :obj:`[None]` for each layer. """ if head_mask is not None: head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) if is_attention_chunked is True: head_mask = head_mask.unsqueeze(-1) else: head_mask = [None] * num_hidden_layers return head_mask def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers): """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]""" if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}" head_mask = head_mask.to(dtype=self.dtype) # switch to float if need + fp16 compatibility return head_mask def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: """ Get number of (optionally, trainable or non-embeddings) parameters in the module. Args: only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return only the number of trainable parameters exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return only the number of non-embeddings parameters Returns: :obj:`int`: The number of parameters. """ def parameter_filter(x): return (x.requires_grad or not only_trainable) and not ( isinstance(x, torch.nn.Embedding) and exclude_embeddings ) params = filter(parameter_filter, self.parameters()) if only_trainable else self.parameters() return sum(p.numel() for p in params) def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int: """ Helper function to estimate the total number of tokens from the model inputs. Args: inputs (:obj:`dict`): The model inputs. Returns: :obj:`int`: The total number of tokens. """ token_inputs = [tensor for key, tensor in input_dict.items() if "input" in key] if token_inputs: return sum([token_input.numel() for token_input in token_inputs]) else: warnings.warn( "Could not estimate the number of tokens of the input, floating-point operations will not be computed" ) return 0 def floating_point_ops( self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True ) -> int: """ Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a batch with this transformer model. Default approximation neglects the quadratic dependency on the number of tokens (valid if :obj:`12 * d_model << sequence_length`) as laid out in `this paper <https://arxiv.org/pdf/2001.08361.pdf>`__ section 2.1. Should be overridden for transformers with parameter re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths. Args: batch_size (:obj:`int`): The batch size for the forward pass. sequence_length (:obj:`int`): The number of tokens in each line of the batch. exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to count embedding and softmax operations. Returns: :obj:`int`: The number of floating-point operations. """ return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings) class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin): r""" Base class for all models. :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading, downloading and saving models as well as a few methods common to all models to: * resize the input embeddings, * prune heads in the self-attention heads. Class attributes (overridden by derived classes): - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture. - **load_tf_weights** (:obj:`Callable`) -- A python `method` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments: - **model** (:class:`~transformers.PreTrainedModel`) -- An instance of the model on which to load the TensorFlow checkpoint. - **config** (:class:`~transformers.PreTrainedConfig`) -- An instance of the configuration associated to the model. - **path** (:obj:`str`) -- A path to the TensorFlow checkpoint. - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. - **is_parallelizable** (:obj:`bool`) -- A flag indicating whether this model supports model parallelization. """ config_class = None base_model_prefix = "" # a list of re pattern of tensor names to ignore from the model when loading the model weights # (and avoid unnecessary warnings). _keys_to_ignore_on_load_missing = None # a list of re pattern of tensor names to ignore from the weights when loading the model weights # (and avoid unnecessary warnings). _keys_to_ignore_on_load_unexpected = None # a list of of tensor names to ignore when saving the model (useful for keys that aren't # trained, but which are deterministic) _keys_to_ignore_on_save = None is_parallelizable = False @property def dummy_inputs(self) -> Dict[str, torch.Tensor]: """ :obj:`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network. """ return {"input_ids": torch.tensor(DUMMY_INPUTS)} def __init__(self, config: PretrainedConfig, *inputs, **kwargs): super().__init__() if not isinstance(config, PretrainedConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. " "To create a model from a pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ ) ) # Save config and origin of the pretrained weights if given in model self.config = config self.name_or_path = config.name_or_path @property def base_model(self) -> nn.Module: """ :obj:`torch.nn.Module`: The main body of the model. """ return getattr(self, self.base_model_prefix, self) def get_input_embeddings(self) -> nn.Module: """ Returns the model's input embeddings. Returns: :obj:`nn.Module`: A torch module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: return base_model.get_input_embeddings() else: raise NotImplementedError def set_input_embeddings(self, value: nn.Module): """ Set model's input embeddings. Args: value (:obj:`nn.Module`): A module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: base_model.set_input_embeddings(value) else: raise NotImplementedError def get_output_embeddings(self) -> nn.Module: """ Returns the model's output embeddings. Returns: :obj:`nn.Module`: A torch module mapping hidden states to vocabulary. """ return None # Overwrite for models with output embeddings def tie_weights(self): """ Tie the weights between the input embeddings and the output embeddings. If the :obj:`torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the weights instead. """ output_embeddings = self.get_output_embeddings() if output_embeddings is not None and self.config.tie_word_embeddings: self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) if self.config.is_encoder_decoder and self.config.tie_encoder_decoder: if hasattr(self, self.base_model_prefix): self = getattr(self, self.base_model_prefix) self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix) @staticmethod def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str): uninitialized_encoder_weights: List[str] = [] if decoder.__class__ != encoder.__class__: logger.info( f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized." ) def tie_encoder_to_decoder_recursively( decoder_pointer: nn.Module, encoder_pointer: nn.Module, module_name: str, uninitialized_encoder_weights: List[str], depth=0, ): assert isinstance(decoder_pointer, nn.Module) and isinstance( encoder_pointer, nn.Module ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module" if hasattr(decoder_pointer, "weight"): assert hasattr(encoder_pointer, "weight") encoder_pointer.weight = decoder_pointer.weight if hasattr(decoder_pointer, "bias"): assert hasattr(encoder_pointer, "bias") encoder_pointer.bias = decoder_pointer.bias return encoder_modules = encoder_pointer._modules decoder_modules = decoder_pointer._modules if len(decoder_modules) > 0: assert ( len(encoder_modules) > 0 ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()]) encoder_layer_pos = 0 for name, module in decoder_modules.items(): if name.isdigit(): encoder_name = str(int(name) + encoder_layer_pos) decoder_name = name if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len( encoder_modules ) != len(decoder_modules): # this can happen if the name corresponds to the position in a list module list of layers # in this case the decoder has added a cross-attention that the encoder does not have # thus skip this step and subtract one layer pos from encoder encoder_layer_pos -= 1 continue elif name not in encoder_modules: continue elif depth > 500: raise ValueError( "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model." ) else: decoder_name = encoder_name = name tie_encoder_to_decoder_recursively( decoder_modules[decoder_name], encoder_modules[encoder_name], module_name + "/" + name, uninitialized_encoder_weights, depth=depth + 1, ) all_encoder_weights.remove(module_name + "/" + encoder_name) uninitialized_encoder_weights += list(all_encoder_weights) # tie weights recursively tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights) if len(uninitialized_encoder_weights) > 0: logger.warning( f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}" ) def _tie_or_clone_weights(self, output_embeddings, input_embeddings): """Tie or clone module weights depending of whether we are using TorchScript or not""" if self.config.torchscript: output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) else: output_embeddings.weight = input_embeddings.weight if getattr(output_embeddings, "bias", None) is not None: output_embeddings.bias.data = torch.nn.functional.pad( output_embeddings.bias.data, ( 0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0], ), "constant", 0, ) if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): output_embeddings.out_features = input_embeddings.num_embeddings def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> torch.nn.Embedding: """ Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`. Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method. Arguments: new_num_tokens (:obj:`int`, `optional`): The number of new tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens :obj:`torch.nn.Embedding` module of the model without doing anything. Return: :obj:`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model. """ model_embeds = self._resize_token_embeddings(new_num_tokens) if new_num_tokens is None: return model_embeds # Update base model and current model config self.config.vocab_size = new_num_tokens self.vocab_size = new_num_tokens # Tie weights again if needed self.tie_weights() return model_embeds def _resize_token_embeddings(self, new_num_tokens): old_embeddings = self.get_input_embeddings() new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.set_input_embeddings(new_embeddings) # if word embeddings are not tied, make sure that lm head is resized as well if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings: old_lm_head = self.get_output_embeddings() new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens) self.set_output_embeddings(new_lm_head) return self.get_input_embeddings() def _get_resized_embeddings( self, old_embeddings: torch.nn.Embedding, new_num_tokens: Optional[int] = None ) -> torch.nn.Embedding: """ Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end Args: old_embeddings (:obj:`torch.nn.Embedding`): Old embeddings to be resized. new_num_tokens (:obj:`int`, `optional`): New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens :obj:`torch.nn.Embedding`` module of the model without doing anything. Return: :obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if :obj:`new_num_tokens` is :obj:`None` """ if new_num_tokens is None: return old_embeddings old_num_tokens, old_embedding_dim = old_embeddings.weight.size() if old_num_tokens == new_num_tokens: return old_embeddings if not isinstance(old_embeddings, nn.Embedding): raise TypeError( f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}." f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}." ) # Build new embeddings new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim).to(self.device) # initialize all new embeddings (in particular added tokens) self._init_weights(new_embeddings) # Copy token embeddings from the previous weights num_tokens_to_copy = min(old_num_tokens, new_num_tokens) new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :] return new_embeddings def _get_resized_lm_head( self, old_lm_head: torch.nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False ) -> torch.nn.Linear: """ Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end Args: old_lm_head (:obj:`torch.nn.Linear`): Old lm head liner layer to be resized. new_num_tokens (:obj:`int`, `optional`): New number of tokens in the linear matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens :obj:`torch.nn.Linear`` module of the model without doing anything. transposed (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether ``old_lm_head`` is transposed or not. If True ``old_lm_head.size()`` is ``lm_head_dim, vocab_size`` else ``vocab_size, lm_head_dim``. Return: :obj:`torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if :obj:`new_num_tokens` is :obj:`None` """ if new_num_tokens is None: return old_lm_head old_num_tokens, old_lm_head_dim = ( old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size() ) if old_num_tokens == new_num_tokens: return old_lm_head if not isinstance(old_lm_head, nn.Linear): raise TypeError( f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}." f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Linear}." ) # Build new lm head new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim) has_new_lm_head_bias = old_lm_head.bias is not None new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias).to(self.device) # initialize new lm head (in particular added tokens) self._init_weights(new_lm_head) num_tokens_to_copy = min(old_num_tokens, new_num_tokens) # Copy old lm head weights to new lm head if not transposed: new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :] else: new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy] # Copy bias weights to new lm head if has_new_lm_head_bias: new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy] return new_lm_head def init_weights(self): """ Initializes and prunes weights if needed. """ # Initialize weights self.apply(self._init_weights) # Prune heads if needed if self.config.pruned_heads: self.prune_heads(self.config.pruned_heads) # Tie weights if needed self.tie_weights() def prune_heads(self, heads_to_prune: Dict[int, List[int]]): """ Prunes heads of the base model. Arguments: heads_to_prune (:obj:`Dict[int, List[int]]`): Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list of heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. """ # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads for layer, heads in heads_to_prune.items(): union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON self.base_model._prune_heads(heads_to_prune) def save_pretrained( self, save_directory: Union[str, os.PathLike], save_config: bool = True, state_dict: Optional[dict] = None, save_function: Callable = torch.save, ): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method. Arguments: save_directory (:obj:`str` or :obj:`os.PathLike`): Directory to which to save. Will be created if it doesn't exist. save_config (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to save the config of the model. Useful when in distributed training like TPUs and need to call this function on all processes. In this case, set :obj:`save_config=True` only on the main process to avoid race conditions. state_dict (nested dictionary of :obj:`torch.Tensor`): The state dictionary of the model to save. Will default to :obj:`self.state_dict()`, but can be used to only save parts of the model or if special precautions need to be taken when recovering the state dictionary of a model (like when using model parallelism). save_function (:obj:`Callable`): The function to use to save the state dictionary. Useful on distributed training like TPUs when one need to replace :obj:`torch.save` by another method. """ if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) # Only save the model itself if we are using distributed training model_to_save = unwrap_model(self) # Attach architecture to the config model_to_save.config.architectures = [model_to_save.__class__.__name__] # Save the config if save_config: model_to_save.config.save_pretrained(save_directory) # Save the model if state_dict is None: state_dict = model_to_save.state_dict() # Handle the case where some state_dict keys shouldn't be saved if self._keys_to_ignore_on_save is not None: state_dict = {k: v for k, v in state_dict.items() if k not in self._keys_to_ignore_on_save} # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(save_directory, WEIGHTS_NAME) save_function(state_dict, output_model_file) logger.info("Model weights saved in {}".format(output_model_file)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): r""" Instantiate a pretrained pytorch model from a pre-trained model configuration. The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated). To train the model, you should first set it back in training mode with ``model.train()``. The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning task. The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those weights are discarded. Parameters: pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`, `optional`): Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``). model_args (sequence of positional arguments, `optional`): All remaning positional arguments will be passed to the underlying model's ``__init__`` method. config (:obj:`Union[PretrainedConfig, str, os.PathLike]`, `optional`): Can be either: - an instance of a class derived from :class:`~transformers.PretrainedConfig`, - a string or path valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`. Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the `model id` string of a pretrained model). - The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict (:obj:`Dict[str, torch.Tensor]`, `optional`): A state dictionary to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir (:obj:`Union[str, os.PathLike]`, `optional`): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`): Load the model weights from a TensorFlow checkpoint save file (see docstring of ``pretrained_model_name_or_path`` argument). force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (:obj:`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to only look at local files (i.e., do not try to download the model). use_auth_token (:obj:`str` or `bool`, `optional`): The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git. mirror(:obj:`str`, `optional`, defaults to :obj:`None`): Mirror source to accelerate downloads in China. If you are from China and have an accessibility problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. Please refer to the mirror site for more information. kwargs (remaining dictionary of keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. .. note:: Passing :obj:`use_auth_token=True` is required when you want to use a private model. Examples:: >>> from transformers import BertConfig, BertModel >>> # Download model and configuration from huggingface.co and cache. >>> model = BertModel.from_pretrained('bert-base-uncased') >>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable). >>> model = BertModel.from_pretrained('./test/saved_model/') >>> # Update configuration during loading. >>> model = BertModel.from_pretrained('bert-base-uncased', output_attentions=True) >>> assert model.config.output_attentions == True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). >>> config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') >>> model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) state_dict = kwargs.pop("state_dict", None) cache_dir = kwargs.pop("cache_dir", None) from_tf = kwargs.pop("from_tf", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) output_loading_info = kwargs.pop("output_loading_info", False) local_files_only = kwargs.pop("local_files_only", False) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) mirror = kwargs.pop("mirror", None) if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, model_kwargs = cls.config_class.from_pretrained( config_path, *model_args, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, **kwargs, ) else: model_kwargs = kwargs # Load model if pretrained_model_name_or_path is not None: pretrained_model_name_or_path = str(pretrained_model_name_or_path) if os.path.isdir(pretrained_model_name_or_path): if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")): # Load from a TF 1.0 checkpoint in priority if from_tf archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index") elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): # Load from a TF 2.0 checkpoint in priority if from_tf archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): # Load from a PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) else: raise EnvironmentError( "Error no file named {} found in directory {} or `from_tf` set to False".format( [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"], pretrained_model_name_or_path, ) ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): archive_file = pretrained_model_name_or_path elif os.path.isfile(pretrained_model_name_or_path + ".index"): assert ( from_tf ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format( pretrained_model_name_or_path + ".index" ) archive_file = pretrained_model_name_or_path + ".index" else: archive_file = hf_bucket_url( pretrained_model_name_or_path, filename=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME), revision=revision, mirror=mirror, ) try: # Load from URL or cache if already cached resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, ) except EnvironmentError as err: logger.error(err) msg = ( f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n" f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n" ) raise EnvironmentError(msg) if resolved_archive_file == archive_file: logger.info("loading weights file {}".format(archive_file)) else: logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file)) else: resolved_archive_file = None config.name_or_path = pretrained_model_name_or_path # Instantiate model. model = cls(config, *model_args, **model_kwargs) if state_dict is None and not from_tf: try: state_dict = torch.load(resolved_archive_file, map_location="cpu") except Exception: raise OSError( f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' " f"at '{resolved_archive_file}'" "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " ) missing_keys = [] unexpected_keys = [] error_msgs = [] if from_tf: if resolved_archive_file.endswith(".index"): # Load from a TensorFlow 1.X checkpoint - provided by original authors model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index' else: # Load from our TensorFlow 2.0 checkpoints try: from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True) except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise else: # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants # so we need to apply the function recursively. def load(module: nn.Module, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs, ) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + ".") # Make sure we are able to load base models as well as derived models (with heads) start_prefix = "" model_to_load = model has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()) if not hasattr(model, cls.base_model_prefix) and has_prefix_module: start_prefix = cls.base_model_prefix + "." if hasattr(model, cls.base_model_prefix) and not has_prefix_module: model_to_load = getattr(model, cls.base_model_prefix) load(model_to_load, prefix=start_prefix) if model.__class__.__name__ != model_to_load.__class__.__name__: base_model_state_dict = model_to_load.state_dict().keys() head_model_state_dict_without_base_prefix = [ key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys() ] missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict) # Some models may have keys that are not in the state by design, removing them before needlessly warning # the user. if cls._keys_to_ignore_on_load_missing is not None: for pat in cls._keys_to_ignore_on_load_missing: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if cls._keys_to_ignore_on_load_unexpected is not None: for pat in cls._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when " f"initializing {model.__class__.__name__}: {unexpected_keys}\n" f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task " f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n" f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect " f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " f"and are newly initialized: {missing_keys}\n" f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: logger.info( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n" f"If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {model.__class__.__name__} for predictions without further training." ) if len(error_msgs) > 0: raise RuntimeError( "Error(s) in loading state_dict for {}:\n\t{}".format( model.__class__.__name__, "\n\t".join(error_msgs) ) ) # make sure token embedding weights are still tied if needed model.tie_weights() # Set model in evaluation mode to deactivate DropOut modules by default model.eval() if output_loading_info: loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs, } return model, loading_info return model class Conv1D(nn.Module): """ 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). Basically works like a linear layer but the weights are transposed. Args: nf (:obj:`int`): The number of output features. nx (:obj:`int`): The number of input features. """ def __init__(self, nf, nx): super().__init__() self.nf = nf w = torch.empty(nx, nf) nn.init.normal_(w, std=0.02) self.weight = nn.Parameter(w) self.bias = nn.Parameter(torch.zeros(nf)) def forward(self, x): size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) x = x.view(*size_out) return x class PoolerStartLogits(nn.Module): """ Compute SQuAD start logits from sequence hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model. """ def __init__(self, config: PretrainedConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, 1) def forward( self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None ) -> torch.FloatTensor: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): The final hidden states of the model. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. Returns: :obj:`torch.FloatTensor`: The start logits for SQuAD. """ x = self.dense(hidden_states).squeeze(-1) if p_mask is not None: if get_parameter_dtype(self) == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerEndLogits(nn.Module): """ Compute SQuAD end logits from sequence hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the :obj:`layer_norm_eps` to use. """ def __init__(self, config: PretrainedConfig): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense_1 = nn.Linear(config.hidden_size, 1) def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`): The hidden states of the first tokens for the labeled span. start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): The position of the first token for the labeled span. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. .. note:: One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set, ``start_positions`` overrides ``start_states``. Returns: :obj:`torch.FloatTensor`: The end logits for SQuAD. """ assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: slen, hsz = hidden_states.shape[-2:] start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) x = self.activation(x) x = self.LayerNorm(x) x = self.dense_1(x).squeeze(-1) if p_mask is not None: if get_parameter_dtype(self) == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerAnswerClass(nn.Module): """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model. """ def __init__(self, config): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`): The hidden states of the first tokens for the labeled span. start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): The position of the first token for the labeled span. cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token. .. note:: One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set, ``start_positions`` overrides ``start_states``. Returns: :obj:`torch.FloatTensor`: The SQuAD 2.0 answer class. """ # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample. hsz = hidden_states.shape[-1] assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) if cls_index is not None: cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) else: cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) x = self.activation(x) x = self.dense_1(x).squeeze(-1) return x @dataclass class SquadHeadOutput(ModelOutput): """ Base class for outputs of question answering models using a :class:`~transformers.modeling_utils.SQuADHead`. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned if both :obj:`start_positions` and :obj:`end_positions` are provided): Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. start_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Log probabilities for the top config.start_n_top start token possibilities (beam-search). start_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Indices for the top config.start_n_top start token possibilities (beam-search). end_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). end_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). cls_logits (``torch.FloatTensor`` of shape ``(batch_size,)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Log probabilities for the ``is_impossible`` label of the answers. """ loss: Optional[torch.FloatTensor] = None start_top_log_probs: Optional[torch.FloatTensor] = None start_top_index: Optional[torch.LongTensor] = None end_top_log_probs: Optional[torch.FloatTensor] = None end_top_index: Optional[torch.LongTensor] = None cls_logits: Optional[torch.FloatTensor] = None class SQuADHead(nn.Module): r""" A SQuAD head inspired by XLNet. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the :obj:`layer_norm_eps` to use. """ def __init__(self, config): super().__init__() self.start_n_top = config.start_n_top self.end_n_top = config.end_n_top self.start_logits = PoolerStartLogits(config) self.end_logits = PoolerEndLogits(config) self.answer_class = PoolerAnswerClass(config) @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig) def forward( self, hidden_states: torch.FloatTensor, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, is_impossible: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, return_dict: bool = False, ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): Final hidden states of the model on the sequence tokens. start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Positions of the first token for the labeled span. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Positions of the last token for the labeled span. cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token. is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Whether the question has a possible answer in the paragraph or not. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. return_dict (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. Returns: """ start_logits = self.start_logits(hidden_states, p_mask=p_mask) if start_positions is not None and end_positions is not None: # If we are on multi-GPU, let's remove the dimension added by batch splitting for x in (start_positions, end_positions, cls_index, is_impossible): if x is not None and x.dim() > 1: x.squeeze_(-1) # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) loss_fct = CrossEntropyLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) loss_fct_cls = nn.BCEWithLogitsLoss() cls_loss = loss_fct_cls(cls_logits, is_impossible) # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss total_loss += cls_loss * 0.5 return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,) else: # during inference, compute the end logits based on beam search bsz, slen, hsz = hidden_states.size() start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen) start_top_log_probs, start_top_index = torch.topk( start_log_probs, self.start_n_top, dim=-1 ) # shape (bsz, start_n_top) start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( start_states ) # shape (bsz, slen, start_n_top, hsz) p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) end_top_log_probs, end_top_index = torch.topk( end_log_probs, self.end_n_top, dim=1 ) # shape (bsz, end_n_top, start_n_top) end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) if not return_dict: return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) else: return SquadHeadOutput( start_top_log_probs=start_top_log_probs, start_top_index=start_top_index, end_top_log_probs=end_top_log_probs, end_top_index=end_top_index, cls_logits=cls_logits, ) class SequenceSummary(nn.Module): r""" Compute a single vector summary of a sequence hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model. Relevant arguments in the config class of the model are (refer to the actual config class of your model for the default values it uses): - **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are: - :obj:`"last"` -- Take the last token hidden state (like XLNet) - :obj:`"first"` -- Take the first token hidden state (like Bert) - :obj:`"mean"` -- Take the mean of all tokens hidden states - :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2) - :obj:`"attn"` -- Not implemented now, use multi-head attention - **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction. - **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to :obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`). - **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the output, another string or :obj:`None` will add no activation. - **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and activation. - **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and activation. """ def __init__(self, config: PretrainedConfig): super().__init__() self.summary_type = getattr(config, "summary_type", "last") if self.summary_type == "attn": # We should use a standard multi-head attention module with absolute positional embedding for that. # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 # We can probably just use the multi-head attention module of PyTorch >=1.1.0 raise NotImplementedError self.summary = Identity() if hasattr(config, "summary_use_proj") and config.summary_use_proj: if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = nn.Linear(config.hidden_size, num_classes) activation_string = getattr(config, "summary_activation", None) self.activation: Callable = get_activation(activation_string) if activation_string else Identity() self.first_dropout = Identity() if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: self.first_dropout = nn.Dropout(config.summary_first_dropout) self.last_dropout = Identity() if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: self.last_dropout = nn.Dropout(config.summary_last_dropout) def forward( self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None ) -> torch.FloatTensor: """ Compute a single vector summary of a sequence hidden states. Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`[batch_size, seq_len, hidden_size]`): The hidden states of the last layer. cls_index (:obj:`torch.LongTensor` of shape :obj:`[batch_size]` or :obj:`[batch_size, ...]` where ... are optional leading dimensions of :obj:`hidden_states`, `optional`): Used if :obj:`summary_type == "cls_index"` and takes the last token of the sequence as classification token. Returns: :obj:`torch.FloatTensor`: The summary of the sequence hidden states. """ if self.summary_type == "last": output = hidden_states[:, -1] elif self.summary_type == "first": output = hidden_states[:, 0] elif self.summary_type == "mean": output = hidden_states.mean(dim=1) elif self.summary_type == "cls_index": if cls_index is None: cls_index = torch.full_like( hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long, ) else: cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) elif self.summary_type == "attn": raise NotImplementedError output = self.first_dropout(output) output = self.summary(output) output = self.activation(output) output = self.last_dropout(output) return output def unwrap_model(model: torch.nn.Module) -> torch.nn.Module: """ Recursively unwraps a model from potential containers (as used in distributed training). Args: model (:obj:`torch.nn.Module`): The model to unwrap. """ # since there could be multiple levels of wrapping, unwrap recursively if hasattr(model, "module"): return unwrap_model(model.module) else: return model def prune_linear_layer(layer: torch.nn.Linear, index: torch.LongTensor, dim: int = 0) -> torch.nn.Linear: """ Prune a linear layer to keep only entries in index. Used to remove heads. Args: layer (:obj:`torch.nn.Linear`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices. Returns: :obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if layer.bias is not None: if dim == 1: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True if layer.bias is not None: new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D: """ Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. Used to remove heads. Args: layer (:class:`~transformers.modeling_utils.Conv1D`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`, defaults to 1): The dimension on which to keep the indices. Returns: :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if dim == 0: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_layer( layer: Union[torch.nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None ) -> Union[torch.nn.Linear, Conv1D]: """ Prune a Conv1D or linear layer to keep only entries in index. Used to remove heads. Args: layer (:obj:`Union[torch.nn.Linear, Conv1D]`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`): The dimension on which to keep the indices. Returns: :obj:`torch.nn.Linear` or :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ if isinstance(layer, nn.Linear): return prune_linear_layer(layer, index, dim=0 if dim is None else dim) elif isinstance(layer, Conv1D): return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) else: raise ValueError("Can't prune layer of class {}".format(layer.__class__)) def apply_chunking_to_forward( forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors ) -> torch.Tensor: """ This function chunks the :obj:`input_tensors` into smaller input tensor parts of size :obj:`chunk_size` over the dimension :obj:`chunk_dim`. It then applies a layer :obj:`forward_fn` to each chunk independently to save memory. If the :obj:`forward_fn` is independent across the :obj:`chunk_dim` this function will yield the same result as directly applying :obj:`forward_fn` to :obj:`input_tensors`. Args: forward_fn (:obj:`Callable[..., torch.Tensor]`): The forward function of the model. chunk_size (:obj:`int`): The chunk size of a chunked tensor: :obj:`num_chunks = len(input_tensors[0]) / chunk_size`. chunk_dim (:obj:`int`): The dimension over which the :obj:`input_tensors` should be chunked. input_tensors (:obj:`Tuple[torch.Tensor]`): The input tensors of ``forward_fn`` which will be chunked Returns: :obj:`torch.Tensor`: A tensor with the same shape as the :obj:`forward_fn` would have given if applied`. Examples:: # rename the usual forward() fn to forward_chunk() def forward_chunk(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states # implement a chunked forward function def forward(self, hidden_states): return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) """ assert len(input_tensors) > 0, "{} has to be a tuple/list of tensors".format(input_tensors) tensor_shape = input_tensors[0].shape[chunk_dim] assert all( input_tensor.shape[chunk_dim] == tensor_shape for input_tensor in input_tensors ), "All input tenors have to be of the same shape" # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters) assert num_args_in_forward_chunk_fn == len( input_tensors ), "forward_chunk_fn expects {} arguments, but only {} input tensors are given".format( num_args_in_forward_chunk_fn, len(input_tensors) ) if chunk_size > 0: assert ( input_tensors[0].shape[chunk_dim] % chunk_size == 0 ), "The dimension to be chunked {} has to be a multiple of the chunk size {}".format( input_tensors[0].shape[chunk_dim], chunk_size ) num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size # chunk input tensor into tuples input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors) # apply forward fn to every tuple output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks)) # concatenate output at same dimension return torch.cat(output_chunks, dim=chunk_dim) return forward_fn(*input_tensors)
AdaMix/src/transformers/modeling_utils.py/0
{ "file_path": "AdaMix/src/transformers/modeling_utils.py", "repo_id": "AdaMix", "token_count": 38629 }
52
# coding=utf-8 # Copyright 2021, The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast tokenization class for BlenderbotSmall.""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/blenderbot_small-90M": 512, } class BlenderbotSmallTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" BlenderbotSmall tokenizer (backed by HuggingFace's `tokenizers` library). Args: vocab_file (:obj:`str`): Path to the vocabulary file. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = BlenderbotSmallTokenizer def __init__( self, vocab_file, merges_file, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, trim_offsets=True, **kwargs ): super().__init__( ByteLevelBPETokenizer( vocab_file=vocab_file, merges_file=merges_file, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, ), bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs, ) self.add_prefix_space = add_prefix_space def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BlenderbotSmall does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
AdaMix/src/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py/0
{ "file_path": "AdaMix/src/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py", "repo_id": "AdaMix", "token_count": 1745 }
53
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 CTRL model.""" import warnings import numpy as np import tensorflow as tf from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast, TFSequenceClassifierOutput from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFPreTrainedModel, TFSequenceClassificationLoss, TFSharedEmbeddings, get_initializer, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_ctrl import CTRLConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "ctrl" _CONFIG_FOR_DOC = "CTRLConfig" _TOKENIZER_FOR_DOC = "CTRLTokenizer" TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "ctrl" # See all CTRL models at https://huggingface.co/models?filter=ctrl ] def angle_defn(pos, i, d_model_size): angle_rates = 1 / np.power(10000, (2 * (i // 2)) / d_model_size) return pos * angle_rates def positional_encoding(position, d_model_size): # create the sinusoidal pattern for the positional encoding angle_rads = angle_defn(np.arange(position)[:, np.newaxis], np.arange(d_model_size)[np.newaxis, :], d_model_size) sines = np.sin(angle_rads[:, 0::2]) cosines = np.cos(angle_rads[:, 1::2]) pos_encoding = tf.convert_to_tensor(np.concatenate([sines, cosines], axis=-1)) return pos_encoding def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None): # calculate attention matmul_qk = tf.matmul(q, k, transpose_b=True) dk = tf.cast(shape_list(k)[-1], dtype=matmul_qk.dtype) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) if mask is not None: scaled_attention_logits += tf.cast(mask * -1e4, dtype=scaled_attention_logits.dtype) if attention_mask is not None: # Apply the attention mask attention_mask = tf.cast(attention_mask, dtype=scaled_attention_logits.dtype) scaled_attention_logits = scaled_attention_logits + attention_mask attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # Mask heads if we want to if head_mask is not None: attention_weights = attention_weights * head_mask output = tf.matmul(attention_weights, v) return output, attention_weights class TFMultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model_size, num_heads, output_attentions=False, **kwargs): super().__init__(**kwargs) self.num_heads = num_heads self.d_model_size = d_model_size self.output_attentions = output_attentions self.depth = int(d_model_size / self.num_heads) self.Wq = tf.keras.layers.Dense(d_model_size, name="Wq") self.Wk = tf.keras.layers.Dense(d_model_size, name="Wk") self.Wv = tf.keras.layers.Dense(d_model_size, name="Wv") self.dense = tf.keras.layers.Dense(d_model_size, name="dense") def split_into_heads(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, v, k, q, mask, layer_past, attention_mask, head_mask, use_cache, output_attentions, training=False): batch_size = shape_list(q)[0] q = self.Wq(q) k = self.Wk(k) v = self.Wv(v) q = self.split_into_heads(q, batch_size) k = self.split_into_heads(k, batch_size) v = self.split_into_heads(v, batch_size) if layer_past is not None: past_key, past_value = tf.unstack(layer_past, axis=0) k = tf.concat((past_key, k), axis=-2) v = tf.concat((past_value, v), axis=-2) if use_cache: present = tf.stack((k, v), axis=0) else: present = (None,) output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask) scaled_attention = tf.transpose(output[0], perm=[0, 2, 1, 3]) attn = output[1] original_size_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model_size)) output = self.dense(original_size_attention) outputs = (output, present) if output_attentions: outputs = outputs + (attn,) return outputs class TFPointWiseFeedForwardLayer(tf.keras.layers.Layer): def __init__(self, d_model_size, dff, **kwargs): super().__init__(**kwargs) self.dense_0 = tf.keras.layers.Dense(dff, activation="relu", name="0") self.dense_2 = tf.keras.layers.Dense(d_model_size, name="2") def call(self, inputs, trainable=False): dense_0_output = self.dense_0(inputs) dense_2_output = self.dense_2(dense_0_output) return dense_2_output class TFEncoderLayer(tf.keras.layers.Layer): def __init__( self, d_model_size, num_heads, dff, rate=0.1, layer_norm_epsilon=1e-6, output_attentions=False, **kwargs ): super().__init__(**kwargs) self.output_attentions = output_attentions self.multi_head_attention = TFMultiHeadAttention( d_model_size, num_heads, output_attentions=self.output_attentions, name="multi_head_attention" ) self.ffn = TFPointWiseFeedForwardLayer(d_model_size, dff, name="ffn") self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layernorm1") self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layernorm2") self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) def call(self, x, mask, layer_past, attention_mask, head_mask, use_cache, output_attentions, training=False): normed = self.layernorm1(x) attn_outputs = self.multi_head_attention( normed, normed, normed, mask, layer_past, attention_mask, head_mask, use_cache, output_attentions, training=training, ) attn_output = attn_outputs[0] attn_output = self.dropout1(attn_output, training=training) out1 = x + attn_output out2 = self.layernorm2(out1) ffn_output = self.ffn(out2) ffn_output = self.dropout2(ffn_output, training=training) out2 = out1 + ffn_output outputs = (out2,) + attn_outputs[1:] return outputs @keras_serializable class TFCTRLMainLayer(tf.keras.layers.Layer): config_class = CTRLConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.use_cache = config.use_cache self.return_dict = config.use_return_dict self.d_model_size = config.n_embd self.num_layers = config.n_layer self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size) self.w = TFSharedEmbeddings( config.vocab_size, config.n_embd, initializer_range=config.initializer_range, name="w" ) self.dropout = tf.keras.layers.Dropout(config.embd_pdrop) self.h = [ TFEncoderLayer( config.n_embd, config.n_head, config.dff, config.resid_pdrop, config.layer_norm_epsilon, self.output_attentions, name="h_._{}".format(i), ) for i in range(config.n_layer) ] self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="layernorm") def get_input_embeddings(self): return self.w def set_input_embeddings(self, value): self.w.weight = value self.w.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ raise NotImplementedError def call( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, past=past, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) # If using past key value states, only the last tokens # should be given as an input if inputs["past"] is not None: if inputs["input_ids"] is not None: inputs["input_ids"] = inputs["input_ids"][:, -1:] if inputs["inputs_embeds"] is not None: inputs["inputs_embeds"] = inputs["inputs_embeds"][:, -1:] if inputs["token_type_ids"] is not None: inputs["token_type_ids"] = inputs["token_type_ids"][:, -1:] if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) inputs["input_ids"] = tf.reshape(inputs["input_ids"], [-1, input_shape[-1]]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["past"] is None: past_length = 0 inputs["past"] = [None] * len(self.h) else: past_length = shape_list(inputs["past"][0][0])[-2] if inputs["position_ids"] is None: inputs["position_ids"] = tf.expand_dims( tf.range(past_length, input_shape[-1] + past_length, dtype=tf.int32), axis=0 ) inputs["position_ids"] = tf.tile(inputs["position_ids"], [input_shape[0], 1]) # Attention mask. if inputs["attention_mask"] is not None: # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. inputs["attention_mask"] = tf.reshape(inputs["attention_mask"], (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. one_cst = tf.constant(1.0) ten_thousand_cst = tf.constant(-10000.0) inputs["attention_mask"] = tf.cast(inputs["attention_mask"], dtype=one_cst.dtype) inputs["attention_mask"] = tf.multiply(tf.subtract(one_cst, inputs["attention_mask"]), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N if inputs["head_mask"] is not None: raise NotImplementedError else: inputs["head_mask"] = [None] * self.num_layers if inputs["token_type_ids"] is not None: inputs["token_type_ids"] = tf.reshape( inputs["token_type_ids"], [-1, shape_list(inputs["token_type_ids"])[-1]] ) token_type_embeds = self.w(inputs["token_type_ids"], mode="embedding") token_type_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, dtype=token_type_embeds.dtype)) else: token_type_embeds = tf.constant(0.0) inputs["position_ids"] = tf.reshape(inputs["position_ids"], [-1, shape_list(inputs["position_ids"])[-1]]) if inputs["inputs_embeds"] is None: inputs["inputs_embeds"] = self.w(inputs["input_ids"], mode="embedding") seq_len = input_shape[-1] mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0) inputs["inputs_embeds"] *= tf.math.sqrt(tf.cast(self.d_model_size, inputs["inputs_embeds"].dtype)) pos_embeds = tf.gather(self.pos_encoding, inputs["position_ids"]) pos_embeds = tf.cast(pos_embeds, dtype=token_type_embeds.dtype) hidden_states = inputs["inputs_embeds"] + pos_embeds + token_type_embeds hidden_states = self.dropout(hidden_states, training=inputs["training"]) output_shape = input_shape + [shape_list(hidden_states)[-1]] presents = () if inputs["use_cache"] else None all_hidden_states = () if inputs["output_hidden_states"] else None all_attentions = () if inputs["output_attentions"] else None for i, (h, layer_past) in enumerate(zip(self.h, inputs["past"])): if inputs["output_hidden_states"]: all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),) outputs = h( hidden_states, mask, layer_past, inputs["attention_mask"], inputs["head_mask"][i], inputs["use_cache"], inputs["output_attentions"], training=inputs["training"], ) hidden_states, present = outputs[:2] if inputs["use_cache"]: presents = presents + (present,) if inputs["output_attentions"]: all_attentions = all_attentions + (outputs[2],) hidden_states = self.layernorm(hidden_states) hidden_states = tf.reshape(hidden_states, output_shape) if inputs["output_hidden_states"]: all_hidden_states = all_hidden_states + (hidden_states,) if inputs["output_attentions"]: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:] all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions) if not inputs["return_dict"]: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_attentions, ) class TFCTRLPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CTRLConfig base_model_prefix = "transformer" CTRL_START_DOCSTRING = r""" This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Parameters: config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ CTRL_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, input_ids_length)`): :obj:`input_ids_length` = ``sequence_length`` if ``past`` is ``None`` else ``past[0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input sequence tokens in the vocabulary. If :obj:`past` is used, only input IDs that do not have their past calculated should be passed as ``input_ids``. Indices can be obtained using :class:`~transformers.CTRLTokenizer`. See :meth:`transformers.PreTrainedTokenizer.__call__` and :meth:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see :obj:`past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. attention_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`__ position_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, ``past`` key value states are returned and can be used to speed up decoding (see ``past``). output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare CTRL Model transformer outputting raw hidden-states without any specific head on top.", CTRL_START_DOCSTRING, ) class TFCTRLModel(TFCTRLPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFCTRLMainLayer(config, name="transformer") @add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, past=past, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.transformer( input_ids=inputs["input_ids"], past=inputs["past"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs # Copied from transformers.models.gpt2.modeling_tf_gpt2.TFGPT2Model.serving_output def serving_output(self, output): pkv = tf.convert_to_tensor(output.past_key_values) if self.config.use_cache else None hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutputWithPast( last_hidden_state=output.last_hidden_state, past_key_values=pkv, hidden_states=hs, attentions=attns ) class TFCTRLLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @add_start_docstrings( """ The CTRL Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, CTRL_START_DOCSTRING, ) class TFCTRLLMHeadModel(TFCTRLPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFCTRLMainLayer(config, name="transformer") self.lm_head = TFCTRLLMHead(config, self.transformer.w, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name def prepare_inputs_for_generation(self, inputs, past, **kwargs): # only last token for inputs_ids if past is defined in kwargs if past: inputs = tf.expand_dims(inputs[:, -1], -1) return {"input_ids": inputs, "past": past, "use_cache": kwargs["use_cache"]} @add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the cross entropy classification loss. Indices should be in ``[0, ..., config.vocab_size - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, past=past, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) transformer_outputs = self.transformer( input_ids=inputs["input_ids"], past=inputs["past"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) hidden_states = transformer_outputs[0] logits = self.lm_head(hidden_states) loss = None if inputs["labels"] is not None: # shift labels to the left and cut last logit token logits = logits[:, :-1] labels = inputs["labels"][:, 1:] loss = self.compute_loss(labels, logits) if not inputs["return_dict"]: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) # Copied from transformers.models.gpt2.modeling_tf_gpt2.TFGPT2LMHeadModel.serving_output def serving_output(self, output): pkv = tf.convert_to_tensor(output.past_key_values) if self.config.use_cache else None hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFCausalLMOutputWithPast(logits=output.logits, past_key_values=pkv, hidden_states=hs, attentions=attns) @add_start_docstrings( """ The CTRL Model transformer with a sequence classification head on top (linear layer). :class:`~transformers.TFCTRLForSequenceClassification` uses the last token in order to do the classification, as other causal models (e.g. GPT-1, GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a :obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take the last value in each row of the batch). """, CTRL_START_DOCSTRING, ) class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", use_bias=False, ) self.transformer = TFCTRLMainLayer(config, name="transformer") def get_output_embeddings(self): return self.transformer.w @add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the cross entropy classification loss. Indices should be in ``[0, ..., config.vocab_size - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, past=past, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) transformer_outputs = self.transformer( input_ids=inputs["input_ids"], past=inputs["past"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) hidden_states = transformer_outputs[0] logits = self.classifier(hidden_states) in_logits = None if self.config.pad_token_id is None: sequence_lengths = -1 else: if inputs["input_ids"] is not None: sequence_lengths = ( tf.reduce_sum( tf.cast( tf.math.not_equal(inputs["input_ids"], self.config.pad_token_id), dtype=inputs["input_ids"].dtype, ), -1, keepdims=False, ) - 1 ) in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) loss = None if inputs["labels"] is not None: if input_ids is not None: batch_size, sequence_length = shape_list(inputs["input_ids"])[:2] else: batch_size, sequence_length = shape_list(inputs["inputs_embeds"])[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if not tf.is_tensor(sequence_lengths): in_logits = logits[0:batch_size, sequence_lengths] loss = self.compute_loss( tf.reshape(inputs["labels"], [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels]) ) pooled_logits = in_logits if in_logits is not None else logits if not inputs["return_dict"]: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=pooled_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForSequenceClassification.serving_output def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
AdaMix/src/transformers/models/ctrl/modeling_tf_ctrl.py/0
{ "file_path": "AdaMix/src/transformers/models/ctrl/modeling_tf_ctrl.py", "repo_id": "AdaMix", "token_count": 16850 }
54
# coding=utf-8 # Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for FSMT.""" import json import os import re import unicodedata from typing import Dict, List, Optional, Tuple import sacremoses as sm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "src_vocab_file": "vocab-src.json", "tgt_vocab_file": "vocab-tgt.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "src_vocab_file": { "stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/vocab-src.json" }, "tgt_vocab_file": { "stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/vocab-tgt.json" }, "merges_file": {"stas/tiny-wmt19-en-de": "https://huggingface.co/stas/tiny-wmt19-en-de/resolve/main/merges.txt"}, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"stas/tiny-wmt19-en-de": 1024} PRETRAINED_INIT_CONFIGURATION = { "stas/tiny-wmt19-en-de": { "langs": ["en", "de"], "model_max_length": 1024, "special_tokens_map_file": None, "full_tokenizer_file": None, } } def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def replace_unicode_punct(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl """ text = text.replace(",", ",") text = re.sub(r"。\s*", ". ", text) text = text.replace("、", ",") text = text.replace("”", '"') text = text.replace("“", '"') text = text.replace("∶", ":") text = text.replace(":", ":") text = text.replace("?", "?") text = text.replace("《", '"') text = text.replace("》", '"') text = text.replace(")", ")") text = text.replace("!", "!") text = text.replace("(", "(") text = text.replace(";", ";") text = text.replace("1", "1") text = text.replace("」", '"') text = text.replace("「", '"') text = text.replace("0", "0") text = text.replace("3", "3") text = text.replace("2", "2") text = text.replace("5", "5") text = text.replace("6", "6") text = text.replace("9", "9") text = text.replace("7", "7") text = text.replace("8", "8") text = text.replace("4", "4") text = re.sub(r".\s*", ". ", text) text = text.replace("~", "~") text = text.replace("’", "'") text = text.replace("…", "...") text = text.replace("━", "-") text = text.replace("〈", "<") text = text.replace("〉", ">") text = text.replace("【", "[") text = text.replace("】", "]") text = text.replace("%", "%") return text def remove_non_printing_char(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl """ output = [] for char in text: cat = unicodedata.category(char) if cat.startswith("C"): continue output.append(char) return "".join(output) # Porting notes: # this one is modeled after XLMTokenizer # # added: # - src_vocab_file, # - tgt_vocab_file, # - langs, class FSMTTokenizer(PreTrainedTokenizer): """ Construct an FAIRSEQ Transformer tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: - Moses preprocessing and tokenization. - Normalizing all inputs text. - The arguments ``special_tokens`` and the function ``set_special_tokens``, can be used to add additional symbols (like "__classify__") to a vocabulary. - The argument :obj:`langs` defines a pair of languages. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: langs (:obj:`List[str]`): A list of two languages to translate from and to, for instance :obj:`["en", "ru"]`. src_vocab_file (:obj:`str`): File containing the vocabulary for the source language. tgt_vocab_file (:obj:`st`): File containing the vocabulary for the target language. merges_file (:obj:`str`): File containing the merges. do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to lowercase the input when tokenizing. unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. .. note:: When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the :obj:`cls_token`. sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): The token used for padding, for example when batching sequences of different lengths. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, langs=None, src_vocab_file=None, tgt_vocab_file=None, merges_file=None, do_lower_case=False, unk_token="<unk>", bos_token="<s>", sep_token="</s>", pad_token="<pad>", **kwargs ): super().__init__( langs=langs, src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, do_lower_case=do_lower_case, unk_token=unk_token, bos_token=bos_token, sep_token=sep_token, pad_token=pad_token, **kwargs, ) self.src_vocab_file = src_vocab_file self.tgt_vocab_file = tgt_vocab_file self.merges_file = merges_file self.do_lower_case = do_lower_case # cache of sm.MosesPunctNormalizer instance self.cache_moses_punct_normalizer = dict() # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = dict() self.cache_moses_detokenizer = dict() if langs and len(langs) == 2: self.src_lang, self.tgt_lang = langs else: raise ValueError( f"arg `langs` needs to be a list of 2 langs, e.g. ['en', 'ru'], but got {langs}. " "Usually that means that tokenizer can't find a mapping for the given model path " "in PRETRAINED_VOCAB_FILES_MAP, and other maps of this tokenizer." ) with open(src_vocab_file, encoding="utf-8") as src_vocab_handle: self.encoder = json.load(src_vocab_handle) with open(tgt_vocab_file, encoding="utf-8") as tgt_vocab_handle: tgt_vocab = json.load(tgt_vocab_handle) self.decoder = {v: k for k, v in tgt_vocab.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} # hack override def get_vocab(self) -> Dict[str, int]: return self.get_src_vocab() # hack override @property def vocab_size(self) -> int: return self.src_vocab_size def moses_punct_norm(self, text, lang): if lang not in self.cache_moses_punct_normalizer: punct_normalizer = sm.MosesPunctNormalizer(lang=lang) self.cache_moses_punct_normalizer[lang] = punct_normalizer return self.cache_moses_punct_normalizer[lang].normalize(text) def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer return self.cache_moses_tokenizer[lang].tokenize( text, aggressive_dash_splits=True, return_str=False, escape=True ) def moses_detokenize(self, tokens, lang): if lang not in self.cache_moses_tokenizer: moses_detokenizer = sm.MosesDetokenizer(lang=self.tgt_lang) self.cache_moses_detokenizer[lang] = moses_detokenizer return self.cache_moses_detokenizer[lang].detokenize(tokens) def moses_pipeline(self, text, lang): text = replace_unicode_punct(text) text = self.moses_punct_norm(text, lang) text = remove_non_printing_char(text) return text @property def src_vocab_size(self): return len(self.encoder) @property def tgt_vocab_size(self): return len(self.decoder) def get_src_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def get_tgt_vocab(self): return dict(self.decoder, **self.added_tokens_decoder) def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def _tokenize(self, text, lang="en", bypass_tokenizer=False): """ Tokenize a string given language code using Moses. Details of tokenization: - [sacremoses](https://github.com/alvations/sacremoses): port of Moses - Install with `pip install sacremoses` Args: - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported languages. However, we don't enforce it. - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) (bool). If True, we only apply BPE. Returns: List of tokens. """ # ignore `lang` which is currently isn't explicitly passed in tokenization_utils.py and always results in lang=en # if lang != self.src_lang: # raise ValueError(f"Expected lang={self.src_lang}, but got {lang}") lang = self.src_lang if self.do_lower_case: text = text.lower() if bypass_tokenizer: text = text.split() else: text = self.moses_pipeline(text, lang=lang) text = self.moses_tokenize(text, lang=lang) split_tokens = [] for token in text: if token: split_tokens.extend([t for t in self.bpe(token).split(" ")]) return split_tokens def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. """ # remove BPE tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens] tokens = "".join(tokens).split() # detokenize text = self.moses_detokenize(tokens, self.tgt_lang) return text def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A FAIRSEQ Transformer sequence has the following format: - single sequence: ``<s> X </s>`` - pair of sequences: ``<s> A </s> B </s>`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ sep = [self.sep_token_id] # no bos used in fairseq if token_ids_1 is None: return token_ids_0 + sep return token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` method. Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the token list is already formatted with special tokens for the model. Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list( map( lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0, ) ) # no bos used in fairseq if token_ids_1 is not None: return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ Transformer sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given sequence(s). Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An FAIRSEQ_TRANSFORMER sequence pair mask has the following format: """ sep = [self.sep_token_id] # no bos used in fairseq if token_ids_1 is None: return len(token_ids_0 + sep) * [0] return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return src_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["src_vocab_file"] ) tgt_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["tgt_vocab_file"] ) merges_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(src_vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, ensure_ascii=False)) with open(tgt_vocab_file, "w", encoding="utf-8") as f: tgt_vocab = {v: k for k, v in self.decoder.items()} f.write(json.dumps(tgt_vocab, ensure_ascii=False)) index = 0 with open(merges_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( "Saving vocabulary to {}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!".format(merges_file) ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return src_vocab_file, tgt_vocab_file, merges_file
AdaMix/src/transformers/models/fsmt/tokenization_fsmt.py/0
{ "file_path": "AdaMix/src/transformers/models/fsmt/tokenization_fsmt.py", "repo_id": "AdaMix", "token_count": 9015 }
55
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model LayoutLM.""" from ...utils import logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_layoutlm import LayoutLMTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/layoutlm-base-uncased": "https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/vocab.txt", "microsoft/layoutlm-large-uncased": "https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "microsoft/layoutlm-base-uncased": "https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/tokenizer.json", "microsoft/layoutlm-large-uncased": "https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/layoutlm-base-uncased": 512, "microsoft/layoutlm-large-uncased": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/layoutlm-base-uncased": {"do_lower_case": True}, "microsoft/layoutlm-large-uncased": {"do_lower_case": True}, } class LayoutLMTokenizerFast(BertTokenizerFast): r""" Constructs a "Fast" LayoutLMTokenizer. :class:`~transformers.LayoutLMTokenizerFast` is identical to :class:`~transformers.BertTokenizerFast` and runs end-to-end tokenization: punctuation splitting + wordpiece. Refer to superclass :class:`~transformers.BertTokenizerFast` for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION slow_tokenizer_class = LayoutLMTokenizer
AdaMix/src/transformers/models/layoutlm/tokenization_layoutlm_fast.py/0
{ "file_path": "AdaMix/src/transformers/models/layoutlm/tokenization_layoutlm_fast.py", "repo_id": "AdaMix", "token_count": 904 }
56
# coding=utf-8 # Copyright 2018 Hao Tan, Mohit Bansal, and the HuggingFace team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch LXMERT model. """ import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from torch.nn import CrossEntropyLoss, SmoothL1Loss from ...activations import ACT2FN, gelu from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_lxmert import LxmertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased" _CONFIG_FOR_DOC = "LxmertConfig" _TOKENIZER_FOR_DOC = "LxmertTokenizer" LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "unc-nlp/lxmert-base-uncased", ] class GeLU(nn.Module): def __init__(self): super().__init__() def forward(self, x): return gelu(x) @dataclass class LxmertModelOutput(ModelOutput): """ Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language, visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship" encoder") Args: language_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the language encoder. vision_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the visual encoder. pooled_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed by a Linear layer and a Tanh activation function. The Linear language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ language_output: Optional[torch.FloatTensor] = None vision_output: Optional[torch.FloatTensor] = None pooled_output: Optional[torch.FloatTensor] = None language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None language_attentions: Optional[Tuple[torch.FloatTensor]] = None vision_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LxmertForQuestionAnsweringOutput(ModelOutput): """ Output type of :class:`~transformers.LxmertForQuestionAnswering`. Args: loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.k. question_answering_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, n_qa_answers)`, `optional`): Prediction scores of question answering objective (classification). language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None question_answering_score: Optional[torch.FloatTensor] = None language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None language_attentions: Optional[Tuple[torch.FloatTensor]] = None vision_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LxmertForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.LxmertForPreTraining`. Args: loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). cross_relationship_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the textual matching objective (classification) head (scores of True/False continuation before SoftMax). question_answering_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, n_qa_answers)`): Prediction scores of question answering objective (classification). language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: [torch.FloatTensor] = None prediction_logits: Optional[torch.FloatTensor] = None cross_relationship_score: Optional[torch.FloatTensor] = None question_answering_score: Optional[torch.FloatTensor] = None language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None language_attentions: Optional[Tuple[torch.FloatTensor]] = None vision_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None def load_tf_weights_in_lxmert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in [ "adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step", ] for n in name ): logger.info("Skipping {}".format("/".join(name))) continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info("Skipping {}".format("/".join(name))) continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model class LxmertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() device = input_ids.device else: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device seq_length = input_shape[1] position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LxmertAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size # visual_dim = 2048 if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) if attention_mask is not None: attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LxmertCrossAttentionLayer(nn.Module): def __init__(self, config): super().__init__() self.att = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False): output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs class LxmertSelfAttentionLayer(nn.Module): def __init__(self, config): super().__init__() self.self = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_tensor, attention_mask, output_attentions=False): # Self attention attends to itself, thus keys and queries are the same (input_tensor). output = self.self( input_tensor, input_tensor, attention_mask, output_attentions=output_attentions, ) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs class LxmertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.intermediate_act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class LxmertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LxmertLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = LxmertSelfAttentionLayer(config) self.intermediate = LxmertIntermediate(config) self.output = LxmertOutput(config) def forward(self, hidden_states, attention_mask=None, output_attentions=False): outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) attention_output = outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + outputs[1:] # add attentions if we output them return outputs class LxmertXLayer(nn.Module): def __init__(self, config): super().__init__() # The cross-attention Layer self.visual_attention = LxmertCrossAttentionLayer(config) # Self-attention Layers self.lang_self_att = LxmertSelfAttentionLayer(config) self.visn_self_att = LxmertSelfAttentionLayer(config) # Intermediate and Output Layers (FFNs) self.lang_inter = LxmertIntermediate(config) self.lang_output = LxmertOutput(config) self.visn_inter = LxmertIntermediate(config) self.visn_output = LxmertOutput(config) def cross_att( self, lang_input, lang_attention_mask, visual_input, visual_attention_mask, output_x_attentions=False, ): # Cross Attention lang_att_output = self.visual_attention( lang_input, visual_input, ctx_att_mask=visual_attention_mask, output_attentions=output_x_attentions, ) visual_att_output = self.visual_attention( visual_input, lang_input, ctx_att_mask=lang_attention_mask, output_attentions=False, ) return lang_att_output, visual_att_output def self_att(self, lang_input, lang_attention_mask, visual_input, visual_attention_mask): # Self Attention lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions=False) visual_att_output = self.visn_self_att(visual_input, visual_attention_mask, output_attentions=False) return lang_att_output[0], visual_att_output[0] def output_fc(self, lang_input, visual_input): # FC layers lang_inter_output = self.lang_inter(lang_input) visual_inter_output = self.visn_inter(visual_input) # Layer output lang_output = self.lang_output(lang_inter_output, lang_input) visual_output = self.visn_output(visual_inter_output, visual_input) return lang_output, visual_output def forward( self, lang_feats, lang_attention_mask, visual_feats, visual_attention_mask, output_attentions=False, ): lang_att_output, visual_att_output = self.cross_att( lang_input=lang_feats, lang_attention_mask=lang_attention_mask, visual_input=visual_feats, visual_attention_mask=visual_attention_mask, output_x_attentions=output_attentions, ) attention_probs = lang_att_output[1:] lang_att_output, visual_att_output = self.self_att( lang_att_output[0], lang_attention_mask, visual_att_output[0], visual_attention_mask, ) lang_output, visual_output = self.output_fc(lang_att_output, visual_att_output) return ( ( lang_output, visual_output, attention_probs[0], ) if output_attentions else (lang_output, visual_output) ) class LxmertVisualFeatureEncoder(nn.Module): def __init__(self, config): super().__init__() feat_dim = config.visual_feat_dim pos_dim = config.visual_pos_dim # Object feature encoding self.visn_fc = nn.Linear(feat_dim, config.hidden_size) self.visn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12) # Box position encoding self.box_fc = nn.Linear(pos_dim, config.hidden_size) self.box_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, visual_feats, visual_pos): x = self.visn_fc(visual_feats) x = self.visn_layer_norm(x) y = self.box_fc(visual_pos) y = self.box_layer_norm(y) output = (x + y) / 2 output = self.dropout(output) return output class LxmertEncoder(nn.Module): def __init__(self, config): super().__init__() # Obj-level image embedding layer self.visn_fc = LxmertVisualFeatureEncoder(config) self.config = config # Number of layers self.num_l_layers = config.l_layers self.num_x_layers = config.x_layers self.num_r_layers = config.r_layers # Layers # Using self.layer instead of self.l_layer to support loading BERT weights. self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)]) self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)]) self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)]) def forward( self, lang_feats, lang_attention_mask, visual_feats, visual_pos, visual_attention_mask=None, output_attentions=None, ): vision_hidden_states = () language_hidden_states = () vision_attentions = () if output_attentions or self.config.output_attentions else None language_attentions = () if output_attentions or self.config.output_attentions else None cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None visual_feats = self.visn_fc(visual_feats, visual_pos) # Run language layers for layer_module in self.layer: l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions) lang_feats = l_outputs[0] language_hidden_states = language_hidden_states + (lang_feats,) if language_attentions is not None: language_attentions = language_attentions + (l_outputs[1],) # Run relational layers for layer_module in self.r_layers: v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions) visual_feats = v_outputs[0] vision_hidden_states = vision_hidden_states + (visual_feats,) if vision_attentions is not None: vision_attentions = vision_attentions + (v_outputs[1],) # Run cross-modality layers for layer_module in self.x_layers: x_outputs = layer_module( lang_feats, lang_attention_mask, visual_feats, visual_attention_mask, output_attentions=output_attentions, ) lang_feats, visual_feats = x_outputs[:2] vision_hidden_states = vision_hidden_states + (visual_feats,) language_hidden_states = language_hidden_states + (lang_feats,) if cross_encoder_attentions is not None: cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],) visual_encoder_outputs = ( vision_hidden_states, vision_attentions if output_attentions else None, ) lang_encoder_outputs = ( language_hidden_states, language_attentions if output_attentions else None, ) return ( visual_encoder_outputs, lang_encoder_outputs, cross_encoder_attentions if output_attentions else None, ) class LxmertPooler(nn.Module): def __init__(self, config): super(LxmertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class LxmertPredictionHeadTransform(nn.Module): def __init__(self, config): super(LxmertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = ACT2FN[config.hidden_act] self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class LxmertLMPredictionHead(nn.Module): def __init__(self, config, lxmert_model_embedding_weights): super(LxmertLMPredictionHead, self).__init__() self.transform = LxmertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear( lxmert_model_embedding_weights.size(1), lxmert_model_embedding_weights.size(0), bias=False, ) self.decoder.weight = lxmert_model_embedding_weights self.bias = nn.Parameter(torch.zeros(lxmert_model_embedding_weights.size(0))) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class LxmertVisualAnswerHead(nn.Module): def __init__(self, config, num_labels): super().__init__() hid_dim = config.hidden_size self.logit_fc = nn.Sequential( nn.Linear(hid_dim, hid_dim * 2), GeLU(), nn.LayerNorm(hid_dim * 2, eps=1e-12), nn.Linear(hid_dim * 2, num_labels), ) def forward(self, hidden_states): return self.logit_fc(hidden_states) class LxmertVisualObjHead(nn.Module): def __init__(self, config): super().__init__() self.transform = LxmertPredictionHeadTransform(config) # Decide the use of visual losses visual_losses = {} if config.visual_obj_loss: visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels} if config.visual_attr_loss: visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels} if config.visual_obj_loss: visual_losses["feat"] = { "shape": (-1, config.visual_feat_dim), "num": config.visual_feat_dim, } self.visual_losses = visual_losses # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder_dict = nn.ModuleDict( {key: nn.Linear(config.hidden_size, self.visual_losses[key]["num"]) for key in self.visual_losses} ) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) output = {} for key in self.visual_losses: output[key] = self.decoder_dict[key](hidden_states) return output class LxmertPreTrainingHeads(nn.Module): def __init__(self, config, lxmert_model_embedding_weights): super(LxmertPreTrainingHeads, self).__init__() self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class LxmertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LxmertConfig load_tf_weights = load_tf_weights_in_lxmert base_model_prefix = "lxmert" def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) LXMERT_START_DOCSTRING = r""" The LXMERT model was proposed in `LXMERT: Learning Cross-Modality Encoder Representations from Transformers <https://arxiv.org/abs/1908.07490>`__ by Hao Tan and Mohit Bansal. It's a vision and language transformer model, pretrained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MCSCOCO captions, and Visual genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss for question answering attribute prediction, and object tag prediction. This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.LxmertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ LXMERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.LxmertTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ visual_feats: (:obj:`torch.FloatTensor` of shape :obj:՝(batch_size, num_visual_features, visual_feat_dim)՝): This input represents visual features. They ROI pooled object features from bounding boxes using a faster-RCNN model) These are currently not provided by the transformers library. visual_pos: (:obj:`torch.FloatTensor` of shape :obj:՝(batch_size, num_visual_features, visual_pos_dim)՝): This input represents spacial features corresponding to their relative (via index) visual features. The pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to 1. These are currently not provided by the transformers library. attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ visual_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`__ inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.", LXMERT_START_DOCSTRING, ) class LxmertModel(LxmertPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = LxmertEmbeddings(config) self.encoder = LxmertEncoder(config) self.pooler = LxmertPooler(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings): self.embeddings.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=LxmertModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, visual_feats=None, visual_pos=None, attention_mask=None, visual_attention_mask=None, token_type_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") assert visual_feats is not None, "`visual_feats` cannot be `None`" assert visual_pos is not None, "`visual_pos` cannot be `None`" device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # Process the visual attention mask if visual_attention_mask is not None: extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2) extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=self.dtype) extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * -10000.0 else: extended_visual_attention_mask = None # Positional Word Embeddings embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds) # Run Lxmert encoder encoder_outputs = self.encoder( embedding_output, extended_attention_mask, visual_feats=visual_feats, visual_pos=visual_pos, visual_attention_mask=extended_visual_attention_mask, output_attentions=output_attentions, ) visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2] vision_hidden_states = visual_encoder_outputs[0] language_hidden_states = lang_encoder_outputs[0] all_attentions = () if output_attentions: language_attentions = lang_encoder_outputs[1] vision_attentions = visual_encoder_outputs[1] cross_encoder_attentions = encoder_outputs[2] all_attentions = ( language_attentions, vision_attentions, cross_encoder_attentions, ) hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else () visual_output = vision_hidden_states[-1] lang_output = language_hidden_states[-1] pooled_output = self.pooler(lang_output) if not return_dict: return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions return LxmertModelOutput( pooled_output=pooled_output, language_output=lang_output, vision_output=visual_output, language_hidden_states=language_hidden_states if output_hidden_states else None, vision_hidden_states=vision_hidden_states if output_hidden_states else None, language_attentions=language_attentions if output_attentions else None, vision_attentions=vision_attentions if output_attentions else None, cross_encoder_attentions=cross_encoder_attentions if output_attentions else None, ) @add_start_docstrings( """Lxmert Model with a specified pretraining head on top. """, LXMERT_START_DOCSTRING, ) class LxmertForPreTraining(LxmertPreTrainedModel): def __init__(self, config): super().__init__(config) # Configuration self.config = config self.num_qa_labels = config.num_qa_labels self.visual_loss_normalizer = config.visual_loss_normalizer # Use of pretraining tasks self.task_mask_lm = config.task_mask_lm self.task_obj_predict = config.task_obj_predict self.task_matched = config.task_matched self.task_qa = config.task_qa # Lxmert backbone self.lxmert = LxmertModel(config) # Pre-training heads self.cls = LxmertPreTrainingHeads(config, self.lxmert.embeddings.word_embeddings.weight) if self.task_obj_predict: self.obj_predict_head = LxmertVisualObjHead(config) if self.task_qa: self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels) # Weight initialization self.init_weights() # Loss functions self.loss_fcts = { "l2": SmoothL1Loss(reduction="none"), "visual_ce": CrossEntropyLoss(reduction="none"), "ce": CrossEntropyLoss(), } visual_losses = {} if config.visual_obj_loss: visual_losses["obj"] = { "shape": (-1,), "num": config.num_object_labels, "loss": "visual_ce", } if config.visual_attr_loss: visual_losses["attr"] = { "shape": (-1,), "num": config.num_attr_labels, "loss": "visual_ce", } if config.visual_obj_loss: visual_losses["feat"] = { "shape": (-1, config.visual_feat_dim), "num": config.visual_feat_dim, "loss": "l2", } self.visual_losses = visual_losses def resize_num_qa_labels(self, num_labels): """ Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size will add newly initialized weights. Reducing the size will remove weights from the end Args: num_labels (:obj:`int`, `optional`): New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized weights at the end. Reducing the size will remove weights from the end. If not provided or :obj:`None`, just returns a pointer to the qa labels :obj:`torch.nn.Linear`` module of the model without doing anything. Return: :obj:`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer """ cur_qa_logit_layer = self.get_qa_logit_layer() if num_labels is None or cur_qa_logit_layer is None: return new_qa_logit_layer = self._resize_qa_labels(num_labels) self.config.num_qa_labels = num_labels self.num_qa_labels = num_labels return new_qa_logit_layer def _resize_qa_labels(self, num_labels): cur_qa_logit_layer = self.get_qa_logit_layer() new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels) self._set_qa_logit_layer(new_qa_logit_layer) return self.get_qa_logit_layer() def get_qa_logit_layer(self) -> nn.Module: """ Returns the the linear layer that produces question answering logits. Returns: :obj:`nn.Module`: A torch module mapping the question answering prediction hidden states or :obj:`None` if LXMERT does not have a visual answering head. """ if hasattr(self, "answer_head"): return self.answer_head.logit_fc[-1] def _set_qa_logit_layer(self, qa_logit_layer): self.answer_head.logit_fc[-1] = qa_logit_layer def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels): if num_labels is None: return cur_qa_logit_layer cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size() if cur_qa_labels == num_labels: return cur_qa_logit_layer # Build new linear output if getattr(cur_qa_logit_layer, "bias", None) is not None: new_qa_logit_layer = nn.Linear(hidden_dim, num_labels) else: new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False) new_qa_logit_layer.to(cur_qa_logit_layer.weight.device) # initialize all new labels self._init_weights(new_qa_logit_layer) # Copy labels from the previous weights num_labels_to_copy = min(cur_qa_labels, num_labels) new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :] if getattr(cur_qa_logit_layer, "bias", None) is not None: new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy] return new_qa_logit_layer @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=LxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, visual_feats=None, visual_pos=None, attention_mask=None, visual_attention_mask=None, token_type_ids=None, inputs_embeds=None, labels=None, obj_labels=None, matched_label=None, ans=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): r""" labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` obj_labels: (``Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]``, `optional`): each key is named after each one of the visual losses and each element of the tuple is of the shape ``(batch_size, num_features)`` and ``(batch_size, num_features, visual_feature_dim)`` for each the label id and the label score respectively matched_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): Labels for computing the whether or not the text input matches the image (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: - 0 indicates that the sentence does not match the image, - 1 indicates that the sentence does match the image. ans: (``Torch.Tensor`` of shape ``(batch_size)``, `optional`): a one hot representation hof the correct answer `optional` Returns: """ if "masked_lm_labels" in kwargs: warnings.warn( "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.", FutureWarning, ) labels = kwargs.pop("masked_lm_labels") return_dict = return_dict if return_dict is not None else self.config.use_return_dict device = input_ids.device if input_ids is not None else inputs_embeds.device lxmert_output = self.lxmert( input_ids=input_ids, visual_feats=visual_feats, visual_pos=visual_pos, token_type_ids=token_type_ids, attention_mask=attention_mask, visual_attention_mask=visual_attention_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) lang_output, visual_output, pooled_output = ( lxmert_output[0], lxmert_output[1], lxmert_output[2], ) lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output) if self.task_qa: answer_score = self.answer_head(pooled_output) else: answer_score = pooled_output[0][0] total_loss = ( None if (labels is None and matched_label is None and obj_labels is None and ans is None) else torch.tensor(0.0, device=device) ) if labels is not None and self.task_mask_lm: masked_lm_loss = self.loss_fcts["ce"]( lang_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1), ) total_loss += masked_lm_loss if matched_label is not None and self.task_matched: matched_loss = self.loss_fcts["ce"](cross_relationship_score.view(-1, 2), matched_label.view(-1)) total_loss += matched_loss if obj_labels is not None and self.task_obj_predict: total_visual_loss = torch.tensor(0.0, device=input_ids.device) visual_prediction_scores_dict = self.obj_predict_head(visual_output) for key, key_info in self.visual_losses.items(): label, mask_conf = obj_labels[key] output_dim = key_info["num"] loss_fct_name = key_info["loss"] label_shape = key_info["shape"] weight = self.visual_loss_normalizer visual_loss_fct = self.loss_fcts[loss_fct_name] visual_prediction_scores = visual_prediction_scores_dict[key] visual_loss = visual_loss_fct( visual_prediction_scores.view(-1, output_dim), label.view(*label_shape), ) if visual_loss.dim() > 1: # Regression Losses visual_loss = visual_loss.mean(1) visual_loss = (visual_loss * mask_conf.view(-1)).mean() * weight total_visual_loss += visual_loss total_loss += total_visual_loss if ans is not None and self.task_qa: answer_loss = self.loss_fcts["ce"](answer_score.view(-1, self.num_qa_labels), ans.view(-1)) total_loss += answer_loss if not return_dict: output = ( lang_prediction_scores, cross_relationship_score, answer_score, ) + lxmert_output[3:] return ((total_loss,) + output) if total_loss is not None else output return LxmertForPreTrainingOutput( loss=total_loss, prediction_logits=lang_prediction_scores, cross_relationship_score=cross_relationship_score, question_answering_score=answer_score, language_hidden_states=lxmert_output.language_hidden_states, vision_hidden_states=lxmert_output.vision_hidden_states, language_attentions=lxmert_output.language_attentions, vision_attentions=lxmert_output.vision_attentions, cross_encoder_attentions=lxmert_output.cross_encoder_attentions, ) @add_start_docstrings( """Lxmert Model with a visual-answering head on top for downstream QA tasks""", LXMERT_START_DOCSTRING, ) class LxmertForQuestionAnswering(LxmertPreTrainedModel): def __init__(self, config): super().__init__(config) # Configuration self.config = config self.num_qa_labels = config.num_qa_labels self.visual_loss_normalizer = config.visual_loss_normalizer # Lxmert backbone self.lxmert = LxmertModel(config) self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels) # Weight initialization self.init_weights() # Loss function self.loss = CrossEntropyLoss() def resize_num_qa_labels(self, num_labels): """ Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size will add newly initialized weights. Reducing the size will remove weights from the end Args: num_labels (:obj:`int`, `optional`): New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized weights at the end. Reducing the size will remove weights from the end. If not provided or :obj:`None`, just returns a pointer to the qa labels :obj:`torch.nn.Linear`` module of the model without doing anything. Return: :obj:`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer """ cur_qa_logit_layer = self.get_qa_logit_layer() if num_labels is None or cur_qa_logit_layer is None: return new_qa_logit_layer = self._resize_qa_labels(num_labels) self.config.num_qa_labels = num_labels self.num_qa_labels = num_labels return new_qa_logit_layer def _resize_qa_labels(self, num_labels): cur_qa_logit_layer = self.get_qa_logit_layer() new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels) self._set_qa_logit_layer(new_qa_logit_layer) return self.get_qa_logit_layer() def get_qa_logit_layer(self) -> nn.Module: """ Returns the the linear layer that produces question answering logits Returns: :obj:`nn.Module`: A torch module mapping the question answering prediction hidden states. :obj:`None`: A NoneType object if Lxmert does not have the visual answering head. """ if hasattr(self, "answer_head"): return self.answer_head.logit_fc[-1] def _set_qa_logit_layer(self, qa_logit_layer): self.answer_head.logit_fc[-1] = qa_logit_layer def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels): if num_labels is None: return cur_qa_logit_layer cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size() if cur_qa_labels == num_labels: return cur_qa_logit_layer # Build new linear output if getattr(cur_qa_logit_layer, "bias", None) is not None: new_qa_logit_layer = nn.Linear(hidden_dim, num_labels) else: new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False) new_qa_logit_layer.to(cur_qa_logit_layer.weight.device) # initialize all new labels self._init_weights(new_qa_logit_layer) # Copy labels from the previous weights num_labels_to_copy = min(cur_qa_labels, num_labels) new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :] if getattr(cur_qa_logit_layer, "bias", None) is not None: new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy] return new_qa_logit_layer @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=LxmertForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, visual_feats=None, visual_pos=None, attention_mask=None, visual_attention_mask=None, token_type_ids=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels: (``Torch.Tensor`` of shape ``(batch_size)``, `optional`): A one-hot representation of the correct answer Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict lxmert_output = self.lxmert( input_ids=input_ids, visual_feats=visual_feats, visual_pos=visual_pos, token_type_ids=token_type_ids, attention_mask=attention_mask, visual_attention_mask=visual_attention_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) pooled_output = lxmert_output[2] answer_score = self.answer_head(pooled_output) loss = None if labels is not None: loss = self.loss(answer_score.view(-1, self.num_qa_labels), labels.view(-1)) if not return_dict: output = (answer_score,) + lxmert_output[3:] return (loss,) + output if loss is not None else output return LxmertForQuestionAnsweringOutput( loss=loss, question_answering_score=answer_score, language_hidden_states=lxmert_output.language_hidden_states, vision_hidden_states=lxmert_output.vision_hidden_states, language_attentions=lxmert_output.language_attentions, vision_attentions=lxmert_output.vision_attentions, cross_encoder_attentions=lxmert_output.cross_encoder_attentions, )
AdaMix/src/transformers/models/lxmert/modeling_lxmert.py/0
{ "file_path": "AdaMix/src/transformers/models/lxmert/modeling_lxmert.py", "repo_id": "AdaMix", "token_count": 27557 }
57
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 MPNet model. """ import math import warnings import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( MULTIPLE_CHOICE_DUMMY_INPUTS, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_mpnet import MPNetConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/mpnet-base" _CONFIG_FOR_DOC = "MPNetConfig" _TOKENIZER_FOR_DOC = "MPNetTokenizer" TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/mpnet-base", ] class TFMPNetPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MPNetConfig base_model_prefix = "mpnet" @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), } ] ) def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) class TFMPNetEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.padding_idx = 1 self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.embeddings_sum = tf.keras.layers.Add() self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) super().build(input_shape) def create_position_ids_from_input_ids(self, input_ids): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids: tf.Tensor Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) incremental_indices = tf.math.cumsum(mask, axis=1) * mask return incremental_indices + self.padding_idx def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (:obj:`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids=input_ids) else: position_ids = tf.expand_dims( tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0 ) position_ids = tf.tile(input=position_ids, multiples=(input_shape[0], 1)) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) final_embeddings = self.embeddings_sum(inputs=[inputs_embeds, position_embeds]) final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->MPNet class TFMPNetPooler(tf.keras.layers.Layer): def __init__(self, config: MPNetConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output class TFMPNetSelfAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads assert config.hidden_size % config.num_attention_heads == 0 self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.q = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="q" ) self.k = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="k" ) self.v = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="v" ) self.o = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="o" ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False): batch_size = shape_list(hidden_states)[0] q = self.q(hidden_states) k = self.k(hidden_states) v = self.v(hidden_states) q = self.transpose_for_scores(q, batch_size) k = self.transpose_for_scores(k, batch_size) v = self.transpose_for_scores(v, batch_size) attention_scores = tf.matmul(q, k, transpose_b=True) dk = tf.cast(shape_list(k)[-1], attention_scores.dtype) attention_scores = attention_scores / tf.math.sqrt(dk) # Apply relative position embedding (precomputed in MPNetEncoder) if provided. if position_bias is not None: attention_scores += position_bias if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = tf.nn.softmax(attention_scores, axis=-1) attention_probs = self.dropout(attention_probs, training=training) if head_mask is not None: attention_probs = attention_probs * head_mask c = tf.matmul(attention_probs, v) c = tf.transpose(c, perm=[0, 2, 1, 3]) c = tf.reshape(c, (batch_size, -1, self.all_head_size)) o = self.o(c) outputs = (o, attention_probs) if output_attentions else (o,) return outputs class TFMPNetAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.attn = TFMPNetSelfAttention(config, name="attn") self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def prune_heads(self, heads): raise NotImplementedError def call(self, input_tensor, attention_mask, head_mask, output_attentions, position_bias=None, training=False): self_outputs = self.attn( input_tensor, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training ) attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + input_tensor) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->MPNet class TFMPNetIntermediate(tf.keras.layers.Layer): def __init__(self, config: MPNetConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->MPNet class TFMPNetOutput(tf.keras.layers.Layer): def __init__(self, config: MPNetConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states class TFMPNetLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.attention = TFMPNetAttention(config, name="attention") self.intermediate = TFMPNetIntermediate(config, name="intermediate") self.out = TFMPNetOutput(config, name="output") def call(self, hidden_states, attention_mask, head_mask, output_attentions, position_bias=None, training=False): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions, position_bias=position_bias, training=training ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights intermediate_output = self.intermediate(attention_output) layer_output = self.out(intermediate_output, attention_output, training=training) outputs = (layer_output,) + outputs # add attentions if we output them return outputs class TFMPNetEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.n_heads = config.num_attention_heads self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.relative_attention_num_buckets = config.relative_attention_num_buckets self.initializer_range = config.initializer_range self.layer = [TFMPNetLayer(config, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers)] self.relative_attention_num_buckets = config.relative_attention_num_buckets def build(self, input_shape): with tf.name_scope("relative_attention_bias"): self.relative_attention_bias = self.add_weight( name="embeddings", shape=[self.relative_attention_num_buckets, self.n_heads], initializer=get_initializer(self.initializer_range), ) return super().build(input_shape) def call( self, hidden_states, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False, ): position_bias = self.compute_position_bias(hidden_states) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, position_bias=position_bias, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) @staticmethod def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128): ret = 0 n = -relative_position num_buckets //= 2 ret += tf.cast(tf.math.less(n, 0), dtype=relative_position.dtype) * num_buckets n = tf.math.abs(n) # now n is in the range [0, inf) max_exact = num_buckets // 2 is_small = tf.math.less(n, max_exact) val_if_large = max_exact + tf.cast( tf.math.log(n / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact), dtype=relative_position.dtype, ) val_if_large = tf.math.minimum(val_if_large, num_buckets - 1) ret += tf.where(is_small, n, val_if_large) return ret def compute_position_bias(self, x, position_ids=None): """ Compute binned relative position bias """ input_shape = shape_list(x) qlen, klen = input_shape[1], input_shape[1] if position_ids is not None: context_position = position_ids[:, :, None] memory_position = position_ids[:, None, :] else: context_position = tf.range(qlen)[:, None] memory_position = tf.range(klen)[None, :] relative_position = memory_position - context_position # shape (qlen, klen) rp_bucket = self._relative_position_bucket( relative_position, num_buckets=self.relative_attention_num_buckets, ) values = tf.gather(self.relative_attention_bias, rp_bucket) # shape (qlen, klen, num_heads) values = tf.expand_dims(tf.transpose(values, [2, 0, 1]), axis=0) # shape (1, num_heads, qlen, klen) return values @keras_serializable class TFMPNetMainLayer(tf.keras.layers.Layer): config_class = MPNetConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.encoder = TFMPNetEncoder(config, name="encoder") self.pooler = TFMPNetPooler(config, name="pooler") # The embeddings must be the last declaration in order to follow the weights order self.embeddings = TFMPNetEmbeddings(config, name="embeddings") # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def call( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["attention_mask"] is None: inputs["attention_mask"] = tf.fill(input_shape, 1) embedding_output = self.embeddings( inputs["input_ids"], inputs["position_ids"], inputs["inputs_embeds"], training=inputs["training"], ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(inputs["attention_mask"], (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if inputs["head_mask"] is not None: raise NotImplementedError else: inputs["head_mask"] = [None] * self.num_hidden_layers encoder_outputs = self.encoder( embedding_output, extended_attention_mask, inputs["head_mask"], inputs["output_attentions"], inputs["output_hidden_states"], inputs["return_dict"], training=inputs["training"], ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if not inputs["return_dict"]: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) MPNET_START_DOCSTRING = r""" This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensor in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "attention_mask": attention_mask})` Args: config (:class:`~transformers.MPNetConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ MPNET_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.MPNetTokenizer`. See :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ position_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare MPNet Model transformer outputing raw hidden-states without any specific head on top.", MPNET_START_DOCSTRING, ) class TFMPNetModel(TFMPNetPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mpnet = TFMPNetMainLayer(config, name="mpnet") @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.mpnet( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertModel.serving_output def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutputWithPooling( last_hidden_state=output.last_hidden_state, pooler_output=output.pooler_output, hidden_states=hs, attentions=attns, ) class TFMPNetLMHead(tf.keras.layers.Layer): """MPNet head for masked and permuted language modeling""" def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.act = get_tf_activation("gelu") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.decoder def set_output_embeddings(self, value): self.decoder.weight = value self.decoder.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.layer_norm(hidden_states) # project back to size of vocabulary with bias seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states @add_start_docstrings("""MPNet Model with a `language modeling` head on top. """, MPNET_START_DOCSTRING) class TFMPNetForMaskedLM(TFMPNetPreTrainedModel, TFMaskedLanguageModelingLoss): _keys_to_ignore_on_load_missing = [r"pooler"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mpnet = TFMPNetMainLayer(config, name="mpnet") self.lm_head = TFMPNetLMHead(config, self.mpnet.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.mpnet( inputs["input_ids"], attention_mask=inputs["attention_mask"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], prediction_scores) if not inputs["return_dict"]: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMaskedLM.serving_output def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns) class TFMPNetClassificationHead(tf.keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.out_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) def call(self, features, training=False): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, training=training) x = self.dense(x) x = self.dropout(x, training=training) x = self.out_proj(x) return x @add_start_docstrings( """ MPNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MPNET_START_DOCSTRING, ) class TFMPNetForSequenceClassification(TFMPNetPreTrainedModel, TFSequenceClassificationLoss): _keys_to_ignore_on_load_missing = [r"pooler"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mpnet = TFMPNetMainLayer(config, name="mpnet") self.classifier = TFMPNetClassificationHead(config, name="classifier") @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.mpnet( inputs["input_ids"], attention_mask=inputs["attention_mask"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] logits = self.classifier(sequence_output, training=training) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForSequenceClassification.serving_output def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ MPNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MPNET_START_DOCSTRING, ) class TFMPNetForMultipleChoice(TFMPNetPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mpnet = TFMPNetMainLayer(config, name="mpnet") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)} @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None: num_choices = shape_list(inputs["input_ids"])[1] seq_length = shape_list(inputs["input_ids"])[2] else: num_choices = shape_list(inputs["inputs_embeds"])[1] seq_length = shape_list(inputs["inputs_embeds"])[2] flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None flat_attention_mask = ( tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None ) flat_position_ids = ( tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None ) flat_inputs_embeds = ( tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) if inputs["inputs_embeds"] is not None else None ) outputs = self.mpnet( flat_input_ids, flat_attention_mask, flat_position_ids, inputs["head_mask"], flat_inputs_embeds, inputs["output_attentions"], inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=inputs["training"]) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], reshaped_logits) if not inputs["return_dict"]: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), } ] ) def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving_output def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ MPNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MPNET_START_DOCSTRING, ) class TFMPNetForTokenClassification(TFMPNetPreTrainedModel, TFTokenClassificationLoss): _keys_to_ignore_on_load_missing = [r"pooler"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mpnet = TFMPNetMainLayer(config, name="mpnet") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.mpnet( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=inputs["training"]) logits = self.classifier(sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForTokenClassification.serving_output def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ MPNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MPNET_START_DOCSTRING, ) class TFMPNetForQuestionAnswering(TFMPNetPreTrainedModel, TFQuestionAnsweringLoss): _keys_to_ignore_on_load_missing = [r"pooler"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mpnet = TFMPNetMainLayer(config, name="mpnet") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, **kwargs, ): r""" start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, start_positions=start_positions, end_positions=end_positions, training=training, kwargs_call=kwargs, ) outputs = self.mpnet( inputs["input_ids"], attention_mask=inputs["attention_mask"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if inputs["start_positions"] is not None and inputs["end_positions"] is not None: labels = {"start_position": inputs["start_positions"]} labels["end_position"] = inputs["end_positions"] loss = self.compute_loss(labels, (start_logits, end_logits)) if not inputs["return_dict"]: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForQuestionAnswering.serving_output def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns )
AdaMix/src/transformers/models/mpnet/modeling_tf_mpnet.py/0
{ "file_path": "AdaMix/src/transformers/models/mpnet/modeling_tf_mpnet.py", "repo_id": "AdaMix", "token_count": 24030 }
58
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OpenAI GPT configuration """ from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class OpenAIGPTConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a :class:`~transformers.OpenAIGPTModel` or a :class:`~transformers.TFOpenAIGPTModel`. It is used to instantiate a GPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the `GPT <https://huggingface.co/openai-gpt>`__ architecture from OpenAI. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, `optional`, defaults to 40478): Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.OpenAIGPTModel` or :class:`~transformers.TFOpenAIGPTModel`. n_positions (:obj:`int`, `optional`, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_ctx (:obj:`int`, `optional`, defaults to 512): Dimensionality of the causal mask (usually same as n_positions). n_embd (:obj:`int`, `optional`, defaults to 768): Dimensionality of the embeddings and hidden states. n_layer (:obj:`int`, `optional`, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (:obj:`int`, `optional`, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. afn (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. resid_pdrop (:obj:`float`, `optional`, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (:obj:`int`, `optional`, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (:obj:`float`, `optional`, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5): The epsilon to use in the layer normalization layers initializer_range (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. predict_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not special tokens should be predicted when the model has a language modeling head. summary_type (:obj:`str`, `optional`, defaults to :obj:`"cls_index"`): Argument used when doing sequence summary, used in the models :class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`. Has to be one of the following options: - :obj:`"last"`: Take the last token hidden state (like XLNet). - :obj:`"first"`: Take the first token hidden state (like BERT). - :obj:`"mean"`: Take the mean of all tokens hidden states. - :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - :obj:`"attn"`: Not implemented now, use multi-head attention. summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`): Argument used when doing sequence summary, used in the models :class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`. Whether or not to add a projection after the vector extraction. summary_activation (:obj:`str`, `optional`): Argument used when doing sequence summary, used in the models :class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`. Pass :obj:`"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (:obj:`bool`, `optional`, defaults to :obj:`True`): Argument used when doing sequence summary, used in the models :class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`. Whether the projection outputs should have :obj:`config.num_labels` or :obj:`config.hidden_size` classes. summary_first_dropout (:obj:`float`, `optional`, defaults to 0.1): Argument used when doing sequence summary, used in the models :class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`. The dropout ratio to be used after the projection and activation. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should return the last key/values attentions (not used by all models). Examples:: >>> from transformers import OpenAIGPTConfig, OpenAIGPTModel >>> # Initializing a GPT configuration >>> configuration = OpenAIGPTConfig() >>> # Initializing a model from the configuration >>> model = OpenAIGPTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "openai-gpt" def __init__( self, vocab_size=40478, n_positions=512, n_ctx=512, n_embd=768, n_layer=12, n_head=12, afn="gelu", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, predict_special_tokens=True, summary_type="cls_index", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, **kwargs ): super().__init__(**kwargs) self.vocab_size = vocab_size self.n_ctx = n_ctx self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.afn = afn self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.predict_special_tokens = predict_special_tokens self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_first_dropout = summary_first_dropout self.summary_proj_to_labels = summary_proj_to_labels @property def max_position_embeddings(self): return self.n_positions @property def hidden_size(self): return self.n_embd @property def num_attention_heads(self): return self.n_head @property def num_hidden_layers(self): return self.n_layer
AdaMix/src/transformers/models/openai/configuration_openai.py/0
{ "file_path": "AdaMix/src/transformers/models/openai/configuration_openai.py", "repo_id": "AdaMix", "token_count": 3284 }
59
# coding=utf-8 # Copyright 2020 Google and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/pegasus-xsum": 512, } logger = logging.get_logger(__name__) class PegasusTokenizer(PreTrainedTokenizer): r""" Construct a PEGASUS tokenizer. Based on `SentencePiece <https://github.com/google/sentencepiece>`__. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (:obj:`str`): `SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that contains the vocabulary necessary to instantiate a tokenizer. pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): The token used for padding, for example when batching sequences of different lengths. eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the :obj:`sep_token`. unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask_2>"`): The token used for masking single token values. This is the token used when training this model with masked language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining. It corresponds to `[MASK2]` in `PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization <https://arxiv.org/pdf/1912.08777.pdf>`__. mask_token_sent (:obj:`str`, `optional`, defaults to :obj:`"<mask_1>"`): The token used for masking whole target sentences. This is the token used when training this model with gap sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during pretraining. It corresponds to `[MASK1]` in `PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization <https://arxiv.org/pdf/1912.08777.pdf>`__. additional_special_tokens (:obj:`List[str]`, `optional`): Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and <unk_2, ..., unk_102> are used as additional special tokens corresponding to the `original PEGASUS tokenizer <https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66>`__ that uses the tokens 2 - 104 only for pretraining """ vocab_files_names = VOCAB_FILES_NAMES offset = 103 # entries 2 - 104 are only used for pretraining vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, pad_token="<pad>", eos_token="</s>", unk_token="<unk>", mask_token="<mask_2>", mask_token_sent="<mask_1>", additional_special_tokens=None, **kwargs ): if additional_special_tokens is not None: assert isinstance( additional_special_tokens, list ), f"additional_special_tokens should be of type {type(list)}, but is {type(additional_special_tokens)}" additional_special_tokens_extended = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1) ] if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended): raise ValueError( f"Please make sure that the provided additional_special_tokens do not contain an incorrectly shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) additional_special_tokens = additional_special_tokens_extended else: additional_special_tokens = [mask_token_sent] additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)] super().__init__( eos_token=eos_token, unk_token=unk_token, mask_token=mask_token, pad_token=pad_token, mask_token_sent=mask_token_sent, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) self.mask_token_sent = mask_token_sent # add special tokens to encoder dict self.encoder: Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, 2: self.mask_token_sent, 3: self.mask_token, } # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1)}) self.decoder: Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def vocab_size(self) -> int: return len(self.sp_model) + self.offset def get_vocab(self) -> Dict[str, int]: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def _tokenize(self, text, sample=False): """Take as input a string and return a list of strings (tokens) for words/sub-words""" if not sample: pieces = self.sp_model.EncodeAsPieces(text) else: pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1) return pieces def _convert_token_to_id(self, token: str) -> int: """ Converts a token (str) to an id using the vocab. """ if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] sp_id = self.sp_model.piece_to_id(token) return sp_id + self.offset def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) to a token (str) using the vocab.""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: token = self.sp_model.IdToPiece(index - self.offset) return token def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. """ out_string = self.sp_model.decode_pieces(tokens) return out_string def num_special_tokens_to_add(self, pair=False): """Just EOS""" return 1 def _special_token_mask(self, seq): all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special assert all_special_ids == set( range(len(self.additional_special_tokens) + 3) ), f"There should be 3 special tokens: mask_token, pad_token, and eos_token + {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}" return [1 if x in all_special_ids else 0 for x in seq] def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """Get list where entries are [1] if a token is [eos] or [pad] else 0.""" if already_has_special_tokens: return self._special_token_mask(token_ids_0) elif token_ids_1 is None: return self._special_token_mask(token_ids_0) + [1] else: return self._special_token_mask(token_ids_0 + token_ids_1) + [1] def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """ Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating and adding special tokens. A PEGASUS sequence has the following format, where ``X`` represents the sequence: - single sequence: ``X </s>`` - pair of sequences: ``A B </s>`` (not intended use) BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ if token_ids_1 is None: return token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_0 + token_ids_1 + [self.eos_token_id] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
AdaMix/src/transformers/models/pegasus/tokenization_pegasus.py/0
{ "file_path": "AdaMix/src/transformers/models/pegasus/tokenization_pegasus.py", "repo_id": "AdaMix", "token_count": 5005 }
60
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Reformer model configuration """ from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/reformer-crime-and-punishment": "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/config.json", "google/reformer-enwik8": "https://huggingface.co/google/reformer-enwik8/resolve/main/config.json", } class ReformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.ReformerModel`. It is used to instantiate a Reformer model according to the specified arguments, defining the model architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: attention_head_size (:obj:`int`, `optional`, defaults to 64): Dimensionality of the projected key, query and value vectors attn_layers (:obj:`List[str]`, `optional`, defaults to :obj:`["local", "lsh", "local", "lsh", "local", "lsh"]`): List of attention layer types in ascending order. It can be chosen between a LSHSelfAttention layer (:obj:`"lsh"`) and a LocalSelfAttention layer (:obj:`"local"`). For more information on LSHSelfAttention layer, see `LSH Self Attention <reformer.html#lsh-self-attention>`__. For more information on LocalSelfAttention layer, see `Local Self Attention <reformer.html#local-sensitive-hashing-self-attention>`__. axial_pos_embds (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to use axial position embeddings. For more information on how axial position embeddings work, see `Axial Position Encodings <reformer.html#axial-positional-encodings>`__. axial_norm_std (:obj:`float`, `optional`, defaults to 1.0): The standard deviation of the normal_initializer for initializing the weight matrices of the axial positional encodings. axial_pos_shape (:obj:`List[int]`, `optional`, defaults to :obj:`[64, 64]`): The position dims of the axial position encodings. During training the product of the position dims has to be equal to the sequence length. For more information on how axial position embeddings work, see `Axial Position Encodings <reformer.html#axial-positional-encodings>`__. axial_pos_embds_dim (:obj:`List[int]`, `optional`, defaults to :obj:`[64, 192]`): The embedding dims of the axial position encodings. The sum of the embedding dims has to be equal to the hidden size. For more information on how axial position embeddings work, see `Axial Position Encodings <reformer.html#axial-positional-encodings>`__. chunk_size_lm_head (:obj:`int`, `optional`, defaults to 0): The chunk size of the final language model feed forward head layer. A chunk size of 0 means that the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes n < sequence_length embeddings at a time. For more information on feed forward chunking, see `How does Feed Forward Chunking work? <../glossary.html#feed-forward-chunking>`__. eos_token_id (:obj:`int`, `optional`, defaults to 2): The token id for the end-of-sentence token. feed_forward_size (:obj:`int`, `optional`, defaults to 512): Dimensionality of the feed_forward layer in the residual attention block. hash_seed (:obj:`int`, `optional`): Seed that can be used to make local sensitive hashing in :obj:`LSHSelfAttention` deterministic. This should only be set for testing purposed. For evaluation and training purposes :obj:`hash_seed` should be left as :obj:`None` to ensure fully random rotations in local sensitive hashing scheme. hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"relu"`): The non-linear activation function (function or string) in the feed forward layer in the residual attention block. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.05): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. hidden_size (:obj:`int`, `optional`, defaults to 256): Dimensionality of the output hidden states of the residual attention blocks. initializer_range (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. is_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether ot not to use a causal mask in addition to the :obj:`attention_mask` passed to :class:`~transformers.ReformerModel`. When using the Reformer for causal language modeling, this argument should be set to :obj:`True`. layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): The epsilon used by the layer normalization layers. local_chunk_length (:obj:`int`, `optional`, defaults to 64): Length of chunk which attends to itself in :obj:`LocalSelfAttention`. Chunking reduces memory complexity from sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk length (chunked self attention). local_num_chunks_before (:obj:`int`, `optional`, defaults to 1): Number of previous neighbouring chunks to attend to in :obj:`LocalSelfAttention` layer to itself. local_num_chunks_after (:obj:`int`, `optional`, defaults to 0): Number of following neighbouring chunks to attend to in :obj:`LocalSelfAttention` layer in addition to itself. local_attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout ratio for the attention probabilities in :obj:`LocalSelfAttention`. lsh_attn_chunk_length (:obj:`int`, `optional`, defaults to 64): Length of chunk which attends to itself in :obj:`LSHSelfAttention`. Chunking reduces memory complexity from sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk length (chunked self attention). lsh_num_chunks_before (:obj:`int`, `optional`, defaults to 1): Number of previous neighbouring chunks to attend to in :obj:`LSHSelfAttention` layer to itself. lsh_num_chunks_after (:obj:`int`, `optional`, defaults to 0): Number of following neighbouring chunks to attend to in :obj:`LSHSelfAttention` layer to itself. lsh_attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout ratio for the attention probabilities in :obj:`LSHSelfAttention`. max_position_embeddings (:obj:`int`, `optional`, defaults to 4096): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). num_attention_heads (:obj:`int`, `optional`, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_buckets (:obj:`int` or :obj:`List[int]`, `optional`): Number of buckets, the key query vectors can be "hashed into" using the locality sensitive hashing scheme. Each query key vector is hashed into a hash in :obj:`1, ..., num_buckets`. The number of buckets can also be factorized into a list for improved memory complexity. In this case, each query key vector is hashed into a hash in :obj:`1-1, 1-2, ..., num_buckets[0]-1, ..., num_buckets[0]-num_buckets[1]` if :obj:`num_buckets` is factorized into two factors. The number of buckets (or the product the factors) should approximately equal sequence length / lsh_chunk_length. If :obj:`num_buckets` not set, a good value is calculated on the fly. num_hashes (:obj:`int`, `optional`, defaults to 1): Number of hashing rounds (e.g., number of random rotations) in Local Sensitive Hashing scheme. The higher :obj:`num_hashes`, the more accurate the :obj:`LSHSelfAttention` becomes, but also the more memory and time intensive the hashing becomes. pad_token_id (:obj:`int`, `optional`, defaults to 0): The token id for the padding token. vocab_size (:obj:`int`, `optional`, defaults to 320):\ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.ReformerModel`. tie_word_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to tie input and output embeddings. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should return the last key/values attentions (not used by all models). Examples:: >>> from transformers import ReformerModel, ReformerConfig >>> # Initializing a Reformer configuration >>> configuration = ReformerConfig() >>> # Initializing a Reformer model >>> model = ReformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "reformer" keys_to_ignore_at_inference = ["past_buckets_states"] def __init__( self, attention_head_size=64, attn_layers=["local", "lsh", "local", "lsh", "local", "lsh"], axial_norm_std=1.0, axial_pos_embds=True, axial_pos_shape=[64, 64], axial_pos_embds_dim=[64, 192], chunk_size_lm_head=0, eos_token_id=2, feed_forward_size=512, hash_seed=None, hidden_act="relu", hidden_dropout_prob=0.05, hidden_size=256, initializer_range=0.02, is_decoder=False, layer_norm_eps=1e-12, local_num_chunks_before=1, local_num_chunks_after=0, local_attention_probs_dropout_prob=0.05, local_attn_chunk_length=64, lsh_attn_chunk_length=64, lsh_attention_probs_dropout_prob=0.0, lsh_num_chunks_before=1, lsh_num_chunks_after=0, max_position_embeddings=4096, num_attention_heads=12, num_buckets=None, num_hashes=1, pad_token_id=0, vocab_size=320, tie_word_embeddings=False, use_cache=True, **kwargs ): super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_decoder=is_decoder, tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.hash_seed = hash_seed self.vocab_size = vocab_size self.attention_head_size = attention_head_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hashes = num_hashes self.num_hidden_layers = len(attn_layers) self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets self.lsh_attn_chunk_length = lsh_attn_chunk_length self.local_attn_chunk_length = local_attn_chunk_length self.lsh_num_chunks_after = lsh_num_chunks_after self.lsh_num_chunks_before = lsh_num_chunks_before self.local_num_chunks_after = local_num_chunks_after self.local_num_chunks_before = local_num_chunks_before self.hidden_act = hidden_act self.feed_forward_size = feed_forward_size self.hidden_dropout_prob = hidden_dropout_prob self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.axial_pos_embds = axial_pos_embds self.axial_pos_shape = tuple(axial_pos_shape) self.axial_pos_embds_dim = tuple(axial_pos_embds_dim) self.axial_norm_std = axial_norm_std self.chunk_size_lm_head = chunk_size_lm_head self.attn_layers = attn_layers self.use_cache = use_cache
AdaMix/src/transformers/models/reformer/configuration_reformer.py/0
{ "file_path": "AdaMix/src/transformers/models/reformer/configuration_reformer.py", "repo_id": "AdaMix", "token_count": 5297 }
61
# coding=utf-8 # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for SqueezeBERT.""" from ...utils import logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_squeezebert import SqueezeBertTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "squeezebert/squeezebert-uncased": "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt", }, "tokenizer_file": { "squeezebert/squeezebert-uncased": "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json", "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json", "squeezebert/squeezebert-mnli-headless": "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } PRETRAINED_INIT_CONFIGURATION = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class SqueezeBertTokenizerFast(BertTokenizerFast): r""" Constructs a "Fast" SqueezeBert tokenizer (backed by HuggingFace's `tokenizers` library). :class:`~transformers.SqueezeBertTokenizerFast` is identical to :class:`~transformers.BertTokenizerFast` and runs end-to-end tokenization: punctuation splitting + wordpiece. Refer to superclass :class:`~transformers.BertTokenizerFast` for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION slow_tokenizer_class = SqueezeBertTokenizer
AdaMix/src/transformers/models/squeezebert/tokenization_squeezebert_fast.py/0
{ "file_path": "AdaMix/src/transformers/models/squeezebert/tokenization_squeezebert_fast.py", "repo_id": "AdaMix", "token_count": 1135 }
62
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py """ from dataclasses import dataclass from typing import List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import CrossEntropyLoss, MSELoss from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_transfo_xl import TransfoXLConfig from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "transfo-xl-wt103" _CONFIG_FOR_DOC = "TransfoXLConfig" _TOKENIZER_FOR_DOC = "TransfoXLTokenizer" TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "transfo-xl-wt103", # See all Transformer XL models at https://huggingface.co/models?filter=transfo-xl ] def build_tf_to_pytorch_map(model, config): """ A map of modules from TF to PyTorch. This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible. """ tf_to_pt_map = {} if hasattr(model, "transformer"): # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax tf_to_pt_map.update( { "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight, "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias, } ) for i, (out_l, proj_l, tie_proj) in enumerate( zip(model.crit.out_layers, model.crit.out_projs, config.tie_projs) ): layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i if config.tie_word_embeddings: tf_to_pt_map.update({layer_str + "b": out_l.bias}) else: raise NotImplementedError # I don't think this is implemented in the TF code tf_to_pt_map.update({layer_str + "lookup_table": out_l.weight, layer_str + "b": out_l.bias}) if not tie_proj: tf_to_pt_map.update({layer_str + "proj": proj_l}) # Now load the rest of the transformer model = model.transformer # Embeddings for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)): layer_str = "transformer/adaptive_embed/cutoff_%d/" % i tf_to_pt_map.update({layer_str + "lookup_table": embed_l.weight, layer_str + "proj_W": proj_l}) # Transformer blocks for i, b in enumerate(model.layers): layer_str = "transformer/layer_%d/" % i tf_to_pt_map.update( { layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight, layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias, layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight, layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight, layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight, layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight, layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias, layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight, layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias, layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight, layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias, } ) # Relative positioning biases if config.untie_r: r_r_list = [] r_w_list = [] for b in model.layers: r_r_list.append(b.dec_attn.r_r_bias) r_w_list.append(b.dec_attn.r_w_bias) else: r_r_list = [model.r_r_bias] r_w_list = [model.r_w_bias] tf_to_pt_map.update({"transformer/r_r_bias": r_r_list, "transformer/r_w_bias": r_w_list}) return tf_to_pt_map def load_tf_weights_in_transfo_xl(model, config, tf_path): """Load tf checkpoints in a pytorch model""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Build TF to PyTorch weights loading map tf_to_pt_map = build_tf_to_pytorch_map(model, config) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) tf_weights = {} for name, shape in init_vars: logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) tf_weights[name] = array for name, pointer in tf_to_pt_map.items(): assert name in tf_weights array = tf_weights[name] # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if "kernel" in name or "proj" in name: array = np.transpose(array) if ("r_r_bias" in name or "r_w_bias" in name) and len(pointer) > 1: # Here we will split the TF weights assert len(pointer) == array.shape[0] for i, p_i in enumerate(pointer): arr_i = array[i, ...] try: assert p_i.shape == arr_i.shape except AssertionError as e: e.args += (p_i.shape, arr_i.shape) raise logger.info("Initialize PyTorch weight {} for layer {}".format(name, i)) p_i.data = torch.from_numpy(arr_i) else: try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + "/Adam", None) tf_weights.pop(name + "/Adam_1", None) logger.info("Weights not copied to PyTorch model: {}".format(", ".join(tf_weights.keys()))) return model class PositionalEmbedding(nn.Module): def __init__(self, demb): super().__init__() self.demb = demb inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) self.register_buffer("inv_freq", inv_freq) def forward(self, pos_seq, bsz=None): sinusoid_inp = torch.ger(pos_seq, self.inv_freq) pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) if bsz is not None: return pos_emb[:, None, :].expand(-1, bsz, -1) else: return pos_emb[:, None, :] class PositionwiseFF(nn.Module): def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5): super().__init__() self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.CoreNet = nn.Sequential( nn.Linear(d_model, d_inner), nn.ReLU(inplace=True), nn.Dropout(dropout), nn.Linear(d_inner, d_model), nn.Dropout(dropout), ) self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) self.pre_lnorm = pre_lnorm def forward(self, inp): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = self.CoreNet(self.layer_norm(inp)) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = self.CoreNet(inp) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class RelPartialLearnableMultiHeadAttn(nn.Module): def __init__( self, n_head, d_model, d_head, dropout, dropatt=0, pre_lnorm=False, r_r_bias=None, r_w_bias=None, layer_norm_epsilon=1e-5, ): super().__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.dropout = dropout self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) self.scale = 1 / (d_head ** 0.5) self.pre_lnorm = pre_lnorm if r_r_bias is None or r_w_bias is None: # Biases are not shared self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) else: self.r_r_bias = r_r_bias self.r_w_bias = r_w_bias self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False) def _rel_shift(self, x): zero_pad_shape = (x.size(0), 1) + x.size()[2:] zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=1) x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:] x_padded = x_padded.view(*x_padded_shape) x = x_padded[1:].view_as(x) return x def forward(self, w, r, attn_mask=None, mems=None, head_mask=None, output_attentions=False): qlen, rlen, bsz = w.size(0), r.size(0), w.size(1) if mems is not None: cat = torch.cat([mems, w], 0) if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(cat)) else: w_heads = self.qkv_net(cat) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) w_head_q = w_head_q[-qlen:] else: if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(w)) else: w_heads = self.qkv_net(w) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) klen = w_head_k.size(0) w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # qlen x n_head x d_head # compute attention score rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head AC = torch.einsum("ibnd,jbnd->ijbn", (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head rr_head_q = w_head_q + self.r_r_bias BD = torch.einsum("ibnd,jnd->ijbn", (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head BD = self._rel_shift(BD) # [qlen x klen x bsz x n_head] attn_score = AC + BD attn_score.mul_(self.scale) # compute attention probability if attn_mask is not None and torch.sum(attn_mask).item(): attn_mask = attn_mask == 1 # Switch to bool if attn_mask.dim() == 2: if next(self.parameters()).dtype == torch.float16: attn_score = ( attn_score.float().masked_fill(attn_mask[None, :, :, None], -65000).type_as(attn_score) ) else: attn_score = attn_score.float().masked_fill(attn_mask[None, :, :, None], -1e30).type_as(attn_score) elif attn_mask.dim() == 3: if next(self.parameters()).dtype == torch.float16: attn_score = attn_score.float().masked_fill(attn_mask[:, :, :, None], -65000).type_as(attn_score) else: attn_score = attn_score.float().masked_fill(attn_mask[:, :, :, None], -1e30).type_as(attn_score) # [qlen x klen x bsz x n_head] attn_prob = F.softmax(attn_score, dim=1) attn_prob = self.dropatt(attn_prob) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # compute attention vector attn_vec = torch.einsum("ijbn,jbnd->ibnd", (attn_prob, w_head_v)) # [qlen x bsz x n_head x d_head] attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: # residual connection outputs = [w + attn_out] else: # residual connection + layer normalization outputs = [self.layer_norm(w + attn_out)] if output_attentions: outputs.append(attn_prob) return outputs class RelPartialLearnableDecoderLayer(nn.Module): def __init__(self, n_head, d_model, d_head, d_inner, dropout, layer_norm_epsilon=1e-5, **kwargs): super().__init__() self.dec_attn = RelPartialLearnableMultiHeadAttn( n_head, d_model, d_head, dropout, layer_norm_epsilon=layer_norm_epsilon, **kwargs ) self.pos_ff = PositionwiseFF( d_model, d_inner, dropout, pre_lnorm=kwargs.get("pre_lnorm"), layer_norm_epsilon=layer_norm_epsilon ) def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None, output_attentions=False): attn_outputs = self.dec_attn( dec_inp, r, attn_mask=dec_attn_mask, mems=mems, head_mask=head_mask, output_attentions=output_attentions, ) ff_output = self.pos_ff(attn_outputs[0]) outputs = [ff_output] + attn_outputs[1:] return outputs class AdaptiveEmbedding(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, sample_softmax=False): super().__init__() self.n_token = n_token self.d_embed = d_embed self.cutoffs = cutoffs + [n_token] self.div_val = div_val self.d_proj = d_proj self.emb_scale = d_proj ** 0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = nn.ModuleList() self.emb_projs = nn.ParameterList() if div_val == 1: self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0)) if d_proj != d_embed: self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val ** i) self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i)) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) def forward(self, inp): if self.div_val == 1: embed = self.emb_layers[0](inp) if self.d_proj != self.d_embed: embed = F.linear(embed, self.emb_projs[0]) else: param = next(self.parameters()) inp_flat = inp.view(-1) emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) indices_i = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue inp_i = inp_flat.index_select(0, indices_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = F.linear(emb_i, self.emb_projs[i]) emb_flat.index_copy_(0, indices_i, emb_i) embed_shape = inp.size() + (self.d_proj,) embed = emb_flat.view(embed_shape) embed.mul_(self.emb_scale) return embed class TransfoXLPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TransfoXLConfig load_tf_weights = load_tf_weights_in_transfo_xl base_model_prefix = "transformer" def _init_weight(self, weight): if self.config.init == "uniform": nn.init.uniform_(weight, -self.config.init_range, self.config.init_range) elif self.config.init == "normal": nn.init.normal_(weight, 0.0, self.config.init_std) def _init_bias(self, bias): nn.init.constant_(bias, 0.0) def _init_weights(self, m): """Initialize the weights.""" classname = m.__class__.__name__ if classname.find("Linear") != -1: if hasattr(m, "weight") and m.weight is not None: self._init_weight(m.weight) if hasattr(m, "bias") and m.bias is not None: self._init_bias(m.bias) elif classname.find("AdaptiveEmbedding") != -1: if hasattr(m, "emb_projs"): for i in range(len(m.emb_projs)): if m.emb_projs[i] is not None: nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std) elif classname.find("Embedding") != -1: if hasattr(m, "weight"): self._init_weight(m.weight) elif classname.find("ProjectedAdaptiveLogSoftmax") != -1: if hasattr(m, "cluster_weight") and m.cluster_weight is not None: self._init_weight(m.cluster_weight) if hasattr(m, "cluster_bias") and m.cluster_bias is not None: self._init_bias(m.cluster_bias) if hasattr(m, "out_projs"): for i in range(len(m.out_projs)): if m.out_projs[i] is not None: nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std) elif classname.find("LayerNorm") != -1: if hasattr(m, "weight"): nn.init.normal_(m.weight, 1.0, self.config.init_std) if hasattr(m, "bias") and m.bias is not None: self._init_bias(m.bias) else: if hasattr(m, "r_emb"): self._init_weight(m.r_emb) if hasattr(m, "r_w_bias"): self._init_weight(m.r_w_bias) if hasattr(m, "r_r_bias"): self._init_weight(m.r_r_bias) if hasattr(m, "r_bias"): self._init_bias(m.r_bias) def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, layer: Optional[int] = -1): """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. Arguments: new_num_tokens: (`optional`) int: New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model. layer: (`optional`) int: Layer of the `AdaptiveEmbedding` where the resizing should be done. Per default the last layer will be resized. Be aware that when resizing other than the last layer, you have to ensure that the new token(s) in the tokenizer are at the corresponding position. Return: ``torch.nn.Embeddings`` Pointer to the input tokens Embeddings Module of the model """ base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed if new_num_tokens is None: return self.get_input_embeddings() new_num_tokens_layer, layer = self._get_new_num_tokens_layer(new_num_tokens, layer) assert new_num_tokens_layer > 0, "The size of the new embedding layer cannot be 0 or less" model_embeds = base_model._resize_token_embeddings(new_num_tokens_layer, layer) # Update base model and current model config self.config.vocab_size = new_num_tokens base_model.vocab_size = new_num_tokens base_model.n_token = new_num_tokens new_embedding_shapes = self._get_embedding_shapes() self._resize_cutoffs(new_num_tokens, new_num_tokens_layer, new_embedding_shapes, layer) # Tie weights again if needed self.tie_weights() return model_embeds def _get_new_num_tokens_layer(self, new_num_tokens, layer): embeddings = self.get_input_embeddings() if layer == -1: layer = len(embeddings.emb_layers) - 1 assert 0 <= layer <= len(embeddings.emb_layers) - 1 new_num_tokens_layer = ( new_num_tokens - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[:layer]]) - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[layer + 1 :]]) ) return new_num_tokens_layer, layer def _get_embedding_shapes(self): embeddings = self.get_input_embeddings() return [emb.weight.shape[0] for emb in embeddings.emb_layers] def _resize_token_embeddings(self, new_num_tokens, layer=-1): embeddings = self.get_input_embeddings() if new_num_tokens is None: return embeddings new_embeddings_layer = self._get_resized_embeddings(embeddings.emb_layers[layer], new_num_tokens) embeddings.emb_layers[layer] = new_embeddings_layer self.set_input_embeddings(embeddings) return self.get_input_embeddings() def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer): embeddings = self.get_input_embeddings() for i in range(layer, len(embeddings.cutoffs)): embeddings.cutoffs[i] = sum(new_embedding_shapes[: i + 1]) embeddings.cutoff_ends = [0] + embeddings.cutoffs embeddings.n_token = new_num_tokens self.config.cutoffs = embeddings.cutoffs[:-1] return embeddings.cutoffs @dataclass class TransfoXLModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mems (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see :obj:`mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor mems: List[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class TransfoXLSequenceClassifierOutputWithPast(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see :obj:`mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mems: List[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class TransfoXLLMHeadModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: losses (:obj:`torch.FloatTensor` of shape `(batch_size, sequence_length-1)`, `optional`, returned when ``labels`` is provided) Language modeling losses (not reduced). prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). mems (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see :obj:`mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ losses: Optional[torch.FloatTensor] = None prediction_scores: torch.FloatTensor = None mems: List[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @property def logits(self): # prediction scores are the output of the adaptive softmax, see # the file `modeling_transfo_xl_utilities`. Since the adaptive # softmax returns the log softmax value, `self.prediction_scores` # are strictly speaking not exactly `logits`, but behave the same # way logits do. return self.prediction_scores TRANSFO_XL_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.TransfoXLConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ TRANSFO_XL_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.TransfoXLTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ mems (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see :obj:`mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems given to this model should not be passed as :obj:`input_ids` as they have already been computed. head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", TRANSFO_XL_START_DOCSTRING, ) class TransfoXLModel(TransfoXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.n_token = config.vocab_size self.d_embed = config.d_embed self.d_model = config.d_model self.n_head = config.n_head self.d_head = config.d_head self.word_emb = AdaptiveEmbedding( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val ) self.drop = nn.Dropout(config.dropout) self.n_layer = config.n_layer self.mem_len = config.mem_len self.attn_type = config.attn_type if not config.untie_r: self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.layers = nn.ModuleList() if config.attn_type == 0: # the default attention for i in range(config.n_layer): self.layers.append( RelPartialLearnableDecoderLayer( config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout, dropatt=config.dropatt, pre_lnorm=config.pre_lnorm, r_w_bias=None if config.untie_r else self.r_w_bias, r_r_bias=None if config.untie_r else self.r_r_bias, layer_norm_epsilon=config.layer_norm_epsilon, ) ) else: # learnable embeddings and absolute embeddings are not used in our pretrained checkpoints raise NotImplementedError # Removed them to avoid maintaining dead code self.same_length = config.same_length self.clamp_len = config.clamp_len if self.attn_type == 0: # default attention self.pos_emb = PositionalEmbedding(self.d_model) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint self.init_weights() def get_input_embeddings(self): return self.word_emb def set_input_embeddings(self, new_embeddings): self.word_emb = new_embeddings def backward_compatible(self): self.sample_softmax = -1 def reset_memory_length(self, mem_len): self.mem_len = mem_len def _prune_heads(self, heads): logger.info("Head pruning is not implemented for Transformer-XL model") pass def init_mems(self, bsz): if self.mem_len > 0: mems = [] param = next(self.parameters()) for i in range(self.n_layer): empty = torch.zeros(self.mem_len, bsz, self.config.d_model, dtype=param.dtype, device=param.device) mems.append(empty) return mems else: return None def _update_mems(self, hids, mems, mlen, qlen): # does not deal with None if mems is None: return None # mems is not None assert len(hids) == len(mems), "len(hids) != len(mems)" # There are `mlen + qlen` steps that can be cached into mems with torch.no_grad(): new_mems = [] end_idx = mlen + max(0, qlen) beg_idx = max(0, end_idx - self.mem_len) for i in range(len(hids)): cat = torch.cat([mems[i], hids[i]], dim=0) new_mems.append(cat[beg_idx:end_idx].detach()) return new_mems @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TransfoXLModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, mems=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library # so we transpose here from shape [bsz, len] to shape [len, bsz] if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = input_ids.transpose(0, 1).contiguous() qlen, bsz = input_ids.size() elif inputs_embeds is not None: inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if mems is None: mems = self.init_mems(bsz) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to float if need + fp16 compatibility else: head_mask = [None] * self.n_layer if inputs_embeds is not None: word_emb = inputs_embeds else: word_emb = self.word_emb(input_ids) mlen = mems[0].size(0) if mems is not None else 0 klen = mlen + qlen if self.same_length: all_ones = word_emb.new_ones((qlen, klen), dtype=torch.uint8) mask_len = klen - self.mem_len if mask_len > 0: mask_shift_len = qlen - mask_len else: mask_shift_len = qlen dec_attn_mask = (torch.triu(all_ones, 1 + mlen) + torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1 else: dec_attn_mask = torch.triu(word_emb.new_ones((qlen, klen), dtype=torch.uint8), diagonal=1 + mlen)[ :, :, None ] hids = [] attentions = [] if output_attentions else None if self.attn_type == 0: # default pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device, dtype=word_emb.dtype) if self.clamp_len > 0: pos_seq.clamp_(max=self.clamp_len) pos_emb = self.pos_emb(pos_seq) core_out = self.drop(word_emb) pos_emb = self.drop(pos_emb) for i, layer in enumerate(self.layers): hids.append(core_out) mems_i = None if mems is None else mems[i] layer_outputs = layer( core_out, pos_emb, dec_attn_mask=dec_attn_mask, mems=mems_i, head_mask=head_mask[i], output_attentions=output_attentions, ) core_out = layer_outputs[0] if output_attentions: attentions.append(layer_outputs[1]) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint core_out = self.drop(core_out) new_mems = self._update_mems(hids, mems, mlen, qlen) if output_hidden_states: # Add last layer and transpose to library standard shape [bsz, len, hidden_dim] hids.append(core_out) hids = tuple(t.transpose(0, 1).contiguous() for t in hids) else: hids = None if output_attentions: # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions) # We transpose back here to shape [bsz, len, hidden_dim] core_out = core_out.transpose(0, 1).contiguous() if not return_dict: return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) return TransfoXLModelOutput( last_hidden_state=core_out, mems=new_mems, hidden_states=hids, attentions=attentions, ) @add_start_docstrings( """ The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive input embeddings) """, TRANSFO_XL_START_DOCSTRING, ) class TransfoXLLMHeadModel(TransfoXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = TransfoXLModel(config) self.sample_softmax = config.sample_softmax assert ( self.sample_softmax <= 0 ), "Sampling from the softmax is not implemented yet. Please look at issue: #3310: https://github.com/huggingface/transformers/issues/3310" self.crit = ProjectedAdaptiveLogSoftmax( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val ) self.init_weights() def tie_weights(self): """ Run this to be sure output and input (adaptive) softmax weights are tied """ if self.config.tie_word_embeddings: for i in range(len(self.crit.out_layers)): self._tie_or_clone_weights(self.crit.out_layers[i], self.transformer.word_emb.emb_layers[i]) if self.config.tie_projs: for i, tie_proj in enumerate(self.config.tie_projs): if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: if self.config.torchscript: self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone()) else: self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] elif tie_proj and self.config.div_val != 1: if self.config.torchscript: self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone()) else: self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i] def reset_memory_length(self, mem_len): self.transformer.reset_memory_length(mem_len) def init_mems(self, bsz): return self.transformer.init_mems(bsz) @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TransfoXLLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, mems=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None: bsz, tgt_len = input_ids.size(0), input_ids.size(1) elif inputs_embeds is not None: bsz, tgt_len = inputs_embeds.size(0), inputs_embeds.size(1) else: raise ValueError("You have to specify either input_ids or inputs_embeds") transformer_outputs = self.transformer( input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden = transformer_outputs[0] pred_hid = last_hidden[:, -tgt_len:] softmax_output = self.crit(pred_hid, labels) prediction_scores = softmax_output.view(bsz, tgt_len, -1) if labels is None else () loss = softmax_output.view(bsz, tgt_len - 1) if labels is not None else None if not return_dict: output = (prediction_scores,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TransfoXLLMHeadModelOutput( losses=loss, prediction_scores=prediction_scores, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def get_output_embeddings(self): """Double-check if you are using adaptive softmax.""" if self.sample_softmax > 0: return self.out_layer else: return self.crit.out_layers[-1] def prepare_inputs_for_generation(self, input_ids, past=None, **model_kwargs): inputs = {} # if past is defined in model kwargs then use it for faster decoding if past: inputs["mems"] = past inputs["input_ids"] = input_ids[:, -1].unsqueeze(-1) else: inputs["input_ids"] = input_ids return inputs def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer): new_cutoffs = super()._resize_cutoffs(new_num_tokens, new_emb_size, new_embedding_shapes, layer) self.crit.cutoffs = new_cutoffs self.crit.cutoff_ends = [0] + new_cutoffs self.crit.n_token = new_num_tokens @staticmethod def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]: """ This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is called. This is required to match :obj:`mems` with the correct beam_idx at every generation step. """ return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems] @add_start_docstrings( """ The Transformer-XL Model transformer with a sequence classification head on top (linear layer). :class:`~transformers.TransfoXLForSequenceClassification` uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a :obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take the last value in each row of the batch). """, TRANSFO_XL_START_DOCSTRING, ) class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel): _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = TransfoXLModel(config) self.score = nn.Linear(config.d_embed, self.num_labels, bias=False) self.init_weights() @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TransfoXLSequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, mems=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[range(batch_size), sequence_lengths] loss = None if labels is not None: if self.num_labels == 1: loss_fct = MSELoss() loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TransfoXLSequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
AdaMix/src/transformers/models/transfo_xl/modeling_transfo_xl.py/0
{ "file_path": "AdaMix/src/transformers/models/transfo_xl/modeling_transfo_xl.py", "repo_id": "AdaMix", "token_count": 24769 }
63
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...file_utils import ( _BaseLazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_xlm_roberta": ["XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig"], } if is_sentencepiece_available(): _import_structure["tokenization_xlm_roberta"] = ["XLMRobertaTokenizer"] if is_tokenizers_available(): _import_structure["tokenization_xlm_roberta_fast"] = ["XLMRobertaTokenizerFast"] if is_torch_available(): _import_structure["modeling_xlm_roberta"] = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", ] if is_tf_available(): _import_structure["modeling_tf_xlm_roberta"] = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig if is_sentencepiece_available(): from .tokenization_xlm_roberta import XLMRobertaTokenizer if is_tokenizers_available(): from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast if is_torch_available(): from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, ) if is_tf_available(): from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, ) else: import importlib import os import sys class _LazyModule(_BaseLazyModule): """ Module class that surfaces all objects but only performs associated imports when the objects are requested. """ __file__ = globals()["__file__"] __path__ = [os.path.dirname(__file__)] def _get_module(self, module_name: str): return importlib.import_module("." + module_name, self.__name__) sys.modules[__name__] = _LazyModule(__name__, _import_structure)
AdaMix/src/transformers/models/xlm_roberta/__init__.py/0
{ "file_path": "AdaMix/src/transformers/models/xlm_roberta/__init__.py", "repo_id": "AdaMix", "token_count": 1577 }
64
from ..file_utils import add_end_docstrings, is_tf_available, is_torch_available from ..tokenization_utils import TruncationStrategy from ..utils import logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING logger = logging.get_logger(__name__) @add_end_docstrings(PIPELINE_INIT_ARGS) class Text2TextGenerationPipeline(Pipeline): """ Pipeline for text to text generation using seq2seq models. This Text2TextGenerationPipeline pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"text2text-generation"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=seq2seq>`__. Usage:: text2text_generator = pipeline("text2text-generation") text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything") """ # Used in the return key of the pipeline. return_name = "generated" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def check_inputs(self, input_length: int, min_length: int, max_length: int): """ Checks wether there might be something wrong with given input with regard to the model. """ return True def __call__( self, *args, return_tensors=False, return_text=True, clean_up_tokenization_spaces=False, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **generate_kwargs ): r""" Generate the output text(s) using text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): Input text for the encoder. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. truncation (:obj:`TruncationStrategy`, `optional`, defaults to :obj:`TruncationStrategy.DO_NOT_TRUNCATE`): The truncation strategy for the tokenization within the pipeline. :obj:`TruncationStrategy.DO_NOT_TRUNCATE` (default) will never truncate, but it is sometimes desirable to truncate the input to fit the model's max_length instead of throwing an error down the line. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **generated_text** (:obj:`str`, present when ``return_text=True``) -- The generated text. - **generated_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the generated text. """ assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True" prefix = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0], list): assert ( self.tokenizer.pad_token_id is not None ), "Please make sure that the tokenizer has a pad_token_id when using a batch input" args = ([prefix + arg for arg in args[0]],) padding = True elif isinstance(args[0], str): args = (prefix + args[0],) padding = False else: raise ValueError( " `args[0]`: {} have the wrong format. The should be either of type `str` or type `list`".format( args[0] ) ) with self.device_placement(): inputs = self._parse_and_tokenize(*args, padding=padding, truncation=truncation) if self.framework == "pt": inputs = self.ensure_tensor_on_device(**inputs) input_length = inputs["input_ids"].shape[-1] elif self.framework == "tf": input_length = tf.shape(inputs["input_ids"])[-1].numpy() min_length = generate_kwargs.get("min_length", self.model.config.min_length) max_length = generate_kwargs.get("max_length", self.model.config.max_length) self.check_inputs(input_length, min_length, max_length) generations = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **generate_kwargs, ) results = [] for generation in generations: record = {} if return_tensors: record[f"{self.return_name}_token_ids"] = generation if return_text: record[f"{self.return_name}_text"] = self.tokenizer.decode( generation, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) results.append(record) return results @add_end_docstrings(PIPELINE_INIT_ARGS) class SummarizationPipeline(Text2TextGenerationPipeline): """ Summarize news articles and other documents. This summarizing pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"summarization"`. The models that this pipeline can use are models that have been fine-tuned on a summarization task, which is currently, '`bart-large-cnn`', '`t5-small`', '`t5-base`', '`t5-large`', '`t5-3b`', '`t5-11b`'. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=summarization>`__. Usage:: # use bart in pytorch summarizer = pipeline("summarization") summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20) # use t5 in tf summarizer = pipeline("summarization", model="t5-base", tokenizer="t5-base", framework="tf") summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20) """ # Used in the return key of the pipeline. return_name = "summary" def __call__(self, *args, **kwargs): r""" Summarize the text(s) given as inputs. Args: documents (`str` or :obj:`List[str]`): One or several articles (or one list of articles) to summarize. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **summary_text** (:obj:`str`, present when ``return_text=True``) -- The summary of the corresponding input. - **summary_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the summary. """ return super().__call__(*args, **kwargs) def check_inputs(self, input_length: int, min_length: int, max_length: int) -> bool: """ Checks wether there might be something wrong with given input with regard to the model. """ if input_length < min_length // 2: logger.warning( "Your min_length is set to {}, but you input_length is only {}. You might consider decreasing min_length manually, e.g. summarizer('...', min_length=10)".format( min_length, input_length ) ) if input_length < max_length: logger.warning( "Your max_length is set to {}, but you input_length is only {}. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)".format( max_length, input_length ) ) @add_end_docstrings(PIPELINE_INIT_ARGS) class TranslationPipeline(Text2TextGenerationPipeline): """ Translates from one language to another. This translation pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: :obj:`"translation_xx_to_yy"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on `huggingface.co/models <https://huggingface.co/models?filter=translation>`__. Usage:: en_fr_translator = pipeline("translation_en_to_fr") en_fr_translator("How old are you?") """ # Used in the return key of the pipeline. return_name = "translation" def check_inputs(self, input_length: int, min_length: int, max_length: int): if input_length > 0.9 * max_length: logger.warning( "Your input_length: {} is bigger than 0.9 * max_length: {}. You might consider increasing your max_length manually, e.g. translator('...', max_length=400)".format( input_length, max_length ) ) def __call__(self, *args, **kwargs): r""" Translate the text(s) given as inputs. Args: args (:obj:`str` or :obj:`List[str]`): Texts to be translated. return_tensors (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. return_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework `here <./model.html#generative-models>`__). Return: A list or a list of list of :obj:`dict`: Each result comes as a dictionary with the following keys: - **translation_text** (:obj:`str`, present when ``return_text=True``) -- The translation. - **translation_token_ids** (:obj:`torch.Tensor` or :obj:`tf.Tensor`, present when ``return_tensors=True``) -- The token ids of the translation. """ return super().__call__(*args, **kwargs)
AdaMix/src/transformers/pipelines/text2text_generation.py/0
{ "file_path": "AdaMix/src/transformers/pipelines/text2text_generation.py", "repo_id": "AdaMix", "token_count": 5145 }
65
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tensorflow trainer class.""" import datetime import math import os from typing import Callable, Dict, Optional, Tuple from .file_utils import ENV_VARS_TRUE_VALUES # Integrations must be imported before ML frameworks: from .integrations import ( # isort: split is_comet_available, is_wandb_available, ) import numpy as np import tensorflow as tf from tensorflow.python.distribute.values import PerReplica from .modeling_tf_utils import TFPreTrainedModel from .optimization_tf import GradientAccumulator, create_optimizer from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, IntervalStrategy, PredictionOutput, set_seed from .training_args_tf import TFTrainingArguments from .utils import logging if is_wandb_available(): import wandb if is_comet_available(): import comet_ml logger = logging.get_logger(__name__) class TFTrainer: """ TFTrainer is a simple but feature-complete training and eval loop for TensorFlow, optimized for 🤗 Transformers. Args: model (:class:`~transformers.TFPreTrainedModel`): The model to train, evaluate or use for predictions. args (:class:`~transformers.TFTrainingArguments`): The arguments to tweak training. train_dataset (:class:`~tf.data.Dataset`, `optional`): The dataset to use for training. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. eval_dataset (:class:`~tf.data.Dataset`, `optional`): The dataset to use for evaluation. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`): The function that will be used to compute metrics at evaluation. Must take a :class:`~transformers.EvalPrediction` and return a dictionary string to metric values. tb_writer (:obj:`tf.summary.SummaryWriter`, `optional`): Object to write to TensorBoard. optimizers (:obj:`Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule]`, `optional`): A tuple containing the optimizer and the scheduler to use. The optimizer default to an instance of :class:`tf.keras.optimizers.Adam` if :obj:`args.weight_decay_rate` is 0 else an instance of :class:`~transformers.AdamWeightDecay`. The scheduler will default to an instance of :class:`tf.keras.optimizers.schedules.PolynomialDecay` if :obj:`args.num_warmup_steps` is 0 else an instance of :class:`~transformers.WarmUp`. """ def __init__( self, model: TFPreTrainedModel, args: TFTrainingArguments, train_dataset: Optional[tf.data.Dataset] = None, eval_dataset: Optional[tf.data.Dataset] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, tb_writer: Optional[tf.summary.SummaryWriter] = None, optimizers: Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule] = ( None, None, ), ): self.model = model self.args = args self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.compute_metrics = compute_metrics self.optimizer, self.lr_scheduler = optimizers self.gradient_accumulator = GradientAccumulator() self.global_step = 0 self.epoch_logging = 0 self.eval_loss = tf.keras.metrics.Sum() if tb_writer is not None: self.tb_writer = tb_writer else: self.tb_writer = tf.summary.create_file_writer(self.args.logging_dir) if is_wandb_available(): self.setup_wandb() elif os.getenv("WANDB_DISABLED", "").upper() not in ENV_VARS_TRUE_VALUES: logger.info( "You are instantiating a Trainer but W&B is not installed. To use wandb logging, " "run `pip install wandb; wandb login` see https://docs.wandb.com/huggingface." ) if is_comet_available(): self.setup_comet() elif os.environ.get("COMET_MODE") != "DISABLED": logger.info( "To use comet_ml logging, run `pip/conda install comet_ml` " "see https://www.comet.ml/docs/python-sdk/huggingface/" ) set_seed(self.args.seed) def get_train_tfdataset(self) -> tf.data.Dataset: """ Returns the training :class:`~tf.data.Dataset`. Subclass and override this method if you want to inject some custom behavior. """ if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") self.total_train_batch_size = self.args.train_batch_size * self.args.gradient_accumulation_steps self.num_train_examples = self.train_dataset.cardinality().numpy() if self.num_train_examples < 0: raise ValueError("The training dataset must have an asserted cardinality") ds = ( self.train_dataset.repeat() .shuffle(self.num_train_examples, seed=self.args.seed) .batch(self.total_train_batch_size, drop_remainder=self.args.dataloader_drop_last) .prefetch(tf.data.experimental.AUTOTUNE) ) return self.args.strategy.experimental_distribute_dataset(ds) def get_eval_tfdataset(self, eval_dataset: Optional[tf.data.Dataset] = None) -> tf.data.Dataset: """ Returns the evaluation :class:`~tf.data.Dataset`. Args: eval_dataset (:class:`~tf.data.Dataset`, `optional`): If provided, will override `self.eval_dataset`. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. Subclass and override this method if you want to inject some custom behavior. """ if eval_dataset is None and self.eval_dataset is None: raise ValueError("Trainer: evaluation requires an eval_dataset.") eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset num_examples = eval_dataset.cardinality().numpy() if num_examples < 0: raise ValueError("The training dataset must have an asserted cardinality") approx = math.floor if self.args.dataloader_drop_last else math.ceil steps = approx(num_examples / self.args.eval_batch_size) ds = ( eval_dataset.repeat() .batch(self.args.eval_batch_size, drop_remainder=self.args.dataloader_drop_last) .prefetch(tf.data.experimental.AUTOTUNE) ) return self.args.strategy.experimental_distribute_dataset(ds), steps, num_examples def get_test_tfdataset(self, test_dataset: tf.data.Dataset) -> tf.data.Dataset: """ Returns a test :class:`~tf.data.Dataset`. Args: test_dataset (:class:`~tf.data.Dataset`): The dataset to use. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. Subclass and override this method if you want to inject some custom behavior. """ num_examples = test_dataset.cardinality().numpy() if num_examples < 0: raise ValueError("The training dataset must have an asserted cardinality") steps = math.ceil(num_examples / self.args.eval_batch_size) ds = test_dataset.batch(self.args.eval_batch_size).prefetch(tf.data.experimental.AUTOTUNE) return self.args.strategy.experimental_distribute_dataset(ds), steps, num_examples def create_optimizer_and_scheduler(self, num_training_steps: int): """ Setup the optimizer and the learning rate scheduler. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the TFTrainer's init through :obj:`optimizers`, or subclass and override this method. """ if not self.optimizer and not self.lr_scheduler: warmup_steps = ( self.args.warmup_steps if self.args.warmup_steps > 0 else math.ceil(num_training_steps * self.args.warmup_ratio) ) self.optimizer, self.lr_scheduler = create_optimizer( self.args.learning_rate, num_training_steps, warmup_steps, adam_beta1=self.args.adam_beta1, adam_beta2=self.args.adam_beta2, adam_epsilon=self.args.adam_epsilon, weight_decay_rate=self.args.weight_decay, power=self.args.poly_power, ) def setup_wandb(self): """ Setup the optional Weights & Biases (`wandb`) integration. One can subclass and override this method to customize the setup if needed. Find more information `here <https://docs.wandb.com/huggingface>`__. You can also override the following environment variables: Environment: WANDB_PROJECT: (Optional): str - "huggingface" by default, set this to a custom string to store results in a different project. WANDB_DISABLED: (Optional): boolean - defaults to false, set to "true" to disable wandb entirely. """ logger.info('Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"') combined_dict = {**self.model.config.to_dict(), **self.args.to_sanitized_dict()} wandb.init(project=os.getenv("WANDB_PROJECT", "huggingface"), config=combined_dict, name=self.args.run_name) def setup_comet(self): """ Setup the optional Comet.ml integration. Environment: COMET_MODE: (Optional): str - "OFFLINE", "ONLINE", or "DISABLED" COMET_PROJECT_NAME: (Optional): str - Comet.ml project name for experiments COMET_OFFLINE_DIRECTORY: (Optional): str - folder to use for saving offline experiments when `COMET_MODE` is "OFFLINE" For a number of configurable items in the environment, see `here <https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables>`__ """ comet_mode = os.getenv("COMET_MODE", "ONLINE").upper() args = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")} experiment = None if comet_mode == "ONLINE": experiment = comet_ml.Experiment(**args) logger.info("Automatic Comet.ml online logging enabled") elif comet_mode == "OFFLINE": args["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./") experiment = comet_ml.OfflineExperiment(**args) logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished") if experiment is not None: experiment._set_model_graph(self.model, framework="transformers") experiment._log_parameters(self.args, prefix="args/", framework="transformers") experiment._log_parameters(self.model.config, prefix="config/", framework="transformers") def prediction_loop( self, dataset: tf.data.Dataset, steps: int, num_examples: int, description: str, prediction_loss_only: Optional[bool] = None, ) -> PredictionOutput: """ Prediction/evaluation loop, shared by :func:`~transformers.TFTrainer.evaluate` and :func:`~transformers.TFTrainer.predict`. Works both with or without labels. """ prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) logger.info("***** Running %s *****", description) logger.info(" Num examples in dataset = %d", num_examples) if description == "Evaluation": logger.info(" Num examples in used in evaluation = %d", self.args.eval_batch_size * steps) logger.info(" Batch size = %d", self.args.eval_batch_size) label_ids: np.ndarray = None preds: np.ndarray = None self.eval_loss.reset_states() # Reset the past mems state at the beginning of the evaluation if necessary. if self.args.past_index >= 0: self._past = None for step, batch in enumerate(dataset): logits = self.distributed_prediction_steps(batch) _, labels = batch if not prediction_loss_only: if isinstance(logits, tuple): logits = logits[0] if isinstance(labels, tuple): labels = labels[0] if self.args.n_replicas > 1: for val in logits.values: if preds is None: preds = val.numpy() else: preds = np.append(preds, val.numpy(), axis=0) for val in labels.values: if label_ids is None: label_ids = val.numpy() else: label_ids = np.append(label_ids, val.numpy(), axis=0) else: if preds is None: preds = logits.numpy() else: preds = np.append(preds, logits.numpy(), axis=0) if label_ids is None: label_ids = labels.numpy() else: label_ids = np.append(label_ids, labels.numpy(), axis=0) if step == steps - 1: break if self.compute_metrics is not None and preds is not None and label_ids is not None: metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} metrics["eval_loss"] = self.eval_loss.result().numpy() / steps for key in list(metrics.keys()): if not key.startswith("eval_"): metrics[f"eval_{key}"] = metrics.pop(key) if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of training delattr(self, "_past") return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics) def log(self, logs: Dict[str, float]) -> None: """ Log :obj:`logs` on the various objects watching training. Subclass and override this method to inject custom behavior. Args: logs (:obj:`Dict[str, float]`): The values to log. """ logs["epoch"] = self.epoch_logging if self.tb_writer: with self.tb_writer.as_default(): for k, v in logs.items(): tf.summary.scalar(k, v, step=self.global_step) self.tb_writer.flush() if is_wandb_available(): wandb.log(logs, step=self.global_step) if is_comet_available(): experiment = comet_ml.config.get_global_experiment() if experiment is not None: experiment._log_metrics( logs, step=self.global_step, epoch=self.epoch_logging, framework="transformers" ) output = {**logs, **{"step": self.global_step}} logger.info(output) def evaluate(self, eval_dataset: Optional[tf.data.Dataset] = None) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init :obj:`compute_metrics` argument). Args: eval_dataset (:class:`~tf.data.Dataset`, `optional`): Pass a dataset if you wish to override :obj:`self.eval_dataset`. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. """ eval_ds, steps, num_examples = self.get_eval_tfdataset(eval_dataset) output = self.prediction_loop(eval_ds, steps, num_examples, description="Evaluation") logs = {**output.metrics} logs["epoch"] = self.epoch_logging self.log(logs) return output.metrics def prediction_step( self, features: tf.Tensor, labels: tf.Tensor, nb_instances_in_global_batch: tf.Tensor ) -> tf.Tensor: """ Compute the prediction on features and update the loss with labels. Subclass and override to inject some custom behavior. """ per_example_loss, logits = self.run_model(features, labels, False) scaled_loss = per_example_loss / tf.cast(nb_instances_in_global_batch, dtype=per_example_loss.dtype) self.eval_loss.update_state(scaled_loss) return logits @tf.function def distributed_prediction_steps(self, batch): nb_instances_in_batch = self._compute_nb_instances(batch) inputs = self._get_step_inputs(batch, nb_instances_in_batch) logits = self.args.strategy.run(self.prediction_step, inputs) return logits def train(self) -> None: """ Train method to train the model. """ train_ds = self.get_train_tfdataset() if self.args.debug: tf.summary.trace_on(graph=True, profiler=True) self.gradient_accumulator.reset() num_update_steps_per_epoch = self.num_train_examples / self.total_train_batch_size # In fact, ``self.args.dataloader_drop_last`` has no effect in `trainer_tf.py`, because # the dataset is repeated before being batched. # It has the effect only when TPU is used which requires explicit tensor shape in order to make # the gradient accumulation implementation work. approx = math.floor if self.args.dataloader_drop_last else math.ceil num_update_steps_per_epoch = approx(num_update_steps_per_epoch) # At least one update for each epoch. num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1) self.steps_per_epoch = num_update_steps_per_epoch if self.args.max_steps > 0: t_total = self.args.max_steps epochs = (self.args.max_steps // self.steps_per_epoch) + int( self.args.max_steps % self.steps_per_epoch > 0 ) else: t_total = self.steps_per_epoch * self.args.num_train_epochs epochs = self.args.num_train_epochs # Since ``self.args.num_train_epochs`` can be `float`, we make ``epochs`` be a `float` always. epochs = float(epochs) with self.args.strategy.scope(): self.create_optimizer_and_scheduler(num_training_steps=t_total) folder = os.path.join(self.args.output_dir, PREFIX_CHECKPOINT_DIR) ckpt = tf.train.Checkpoint(optimizer=self.optimizer, model=self.model) self.model.ckpt_manager = tf.train.CheckpointManager(ckpt, folder, max_to_keep=self.args.save_total_limit) iterations = self.optimizer.iterations epochs_trained = 0 steps_trained_in_current_epoch = 0 if self.model.ckpt_manager.latest_checkpoint: logger.info( "Checkpoint file %s found and restoring from checkpoint", self.model.ckpt_manager.latest_checkpoint ) ckpt.restore(self.model.ckpt_manager.latest_checkpoint).expect_partial() self.global_step = iterations.numpy() epochs_trained = self.global_step // self.steps_per_epoch steps_trained_in_current_epoch = self.global_step % self.steps_per_epoch logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", self.global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tf.summary.experimental.set_step(self.global_step) with self.tb_writer.as_default(): tf.summary.text("args", self.args.to_json_string()) self.tb_writer.flush() logger.info("***** Running training *****") logger.info(" Num examples = %d", self.num_train_examples) # TODO: We might want to print a more precise ``epochs`` if self.args.max_steps > 0 ? logger.info(" Num Epochs = %d", epochs) logger.info(" Instantaneous batch size per device = %d", self.args.per_device_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", self.total_train_batch_size ) logger.info(" Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps) logger.info(" Steps per epoch = %d", self.steps_per_epoch) logger.info(" Total optimization steps = %d", t_total) self.train_loss = tf.keras.metrics.Sum() start_time = datetime.datetime.now() for epoch_iter in range(epochs_trained, int(epochs)): # Reset the past mems state at the beginning of each epoch if necessary. if self.args.past_index >= 0: self._past = None for step, batch in enumerate(train_ds): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue self.distributed_training_steps(batch) self.global_step = iterations.numpy() self.epoch_logging = epoch_iter + (step + 1) / self.steps_per_epoch training_loss = self.train_loss.result() / (step + 1) if self.args.debug: logs = {} logs["loss"] = training_loss.numpy() logs["epoch"] = self.epoch_logging self.log(logs) if self.global_step == 1 and self.args.debug: with self.tb_writer.as_default(): tf.summary.trace_export( name="training", step=self.global_step, profiler_outdir=self.args.logging_dir ) if ( self.args.eval_steps > 0 and self.args.evaluation_strategy == IntervalStrategy.STEPS and self.global_step % self.args.eval_steps == 0 ): self.evaluate() if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or ( self.global_step == 1 and self.args.logging_first_step ): logs = {} logs["loss"] = training_loss.numpy() logs["learning_rate"] = self.lr_scheduler(self.global_step).numpy() logs["epoch"] = self.epoch_logging self.log(logs) if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0: ckpt_save_path = self.model.ckpt_manager.save() logger.info("Saving checkpoint for step {} at {}".format(self.global_step, ckpt_save_path)) if self.args.max_steps > 0 and self.global_step >= t_total: break if self.global_step % self.steps_per_epoch == 0: break self.train_loss.reset_states() if self.args.max_steps > 0 and self.global_step >= self.args.max_steps: break end_time = datetime.datetime.now() logger.info("Training took: {}".format(str(end_time - start_time))) if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of training delattr(self, "_past") def training_step(self, features, labels, nb_instances_in_global_batch): """ Perform a training step on features and labels. Subclass and override to inject some custom behavior. """ per_example_loss, _ = self.run_model(features, labels, True) scaled_loss = per_example_loss / tf.cast(nb_instances_in_global_batch, dtype=per_example_loss.dtype) gradients = tf.gradients(scaled_loss, self.model.trainable_variables) gradients = [ g if g is not None else tf.zeros_like(v) for g, v in zip(gradients, self.model.trainable_variables) ] if self.args.gradient_accumulation_steps > 1: self.gradient_accumulator(gradients) self.train_loss.update_state(scaled_loss) if self.args.gradient_accumulation_steps == 1: return gradients def apply_gradients(self, features, labels, nb_instances_in_global_batch): if self.args.gradient_accumulation_steps == 1: gradients = self.training_step(features, labels, nb_instances_in_global_batch) self.optimizer.apply_gradients(list(zip(gradients, self.model.trainable_variables))) else: for _ in tf.range(self.args.gradient_accumulation_steps): reduced_features = { k: ft[: self.args.train_batch_size // self.args.n_replicas] for k, ft in features.items() } if tf.is_tensor(labels): reduced_labels = labels[: self.args.train_batch_size // self.args.n_replicas] elif isinstance(labels, dict): reduced_labels = { k: lbl[: self.args.train_batch_size // self.args.n_replicas] for k, lbl in labels.items() } else: raise ValueError("The labels must be either a tf.Tensor or a dict.") self.training_step(reduced_features, reduced_labels, nb_instances_in_global_batch) features = { k: tf.concat( [ft[self.args.train_batch_size // self.args.n_replicas :], reduced_features[k]], axis=0, ) for k, ft in features.items() } if tf.is_tensor(labels): labels = tf.concat( [labels[self.args.train_batch_size // self.args.n_replicas :], reduced_labels], axis=0 ) elif isinstance(labels, dict): labels = { k: tf.concat( [lbl[self.args.train_batch_size // self.args.n_replicas :], reduced_labels[k]], axis=0, ) for k, lbl in labels.items() } else: raise ValueError("The labels must be either a tf.Tensor or a dict.") gradients = self.gradient_accumulator.gradients gradients = [ (tf.clip_by_value(grad, -self.args.max_grad_norm, self.args.max_grad_norm)) for grad in gradients ] self.optimizer.apply_gradients(list(zip(gradients, self.model.trainable_variables))) self.gradient_accumulator.reset() @tf.function def distributed_training_steps(self, batch): with self.args.strategy.scope(): nb_instances_in_batch = self._compute_nb_instances(batch) inputs = self._get_step_inputs(batch, nb_instances_in_batch) self.args.strategy.run(self.apply_gradients, inputs) @staticmethod def _compute_nb_instances(batch): labels = batch[-1] if isinstance(labels, PerReplica): labels = tf.concat(labels.values, axis=0) nb_instances = tf.reduce_sum(tf.cast(labels != -100, dtype=tf.int32)) return nb_instances @staticmethod def _get_step_inputs(batch, nb_instances): features, labels = batch if isinstance(labels, PerReplica): # need to make a `PerReplica` objects for ``nb_instances`` nb_instances = PerReplica([nb_instances] * len(labels.values)) step_inputs = (features, labels, nb_instances) return step_inputs def run_model(self, features, labels, training): """ Computes the loss of the given features and labels pair. Subclass and override this method if you want to inject some custom behavior. Args: features (:obj:`tf.Tensor`): A batch of input features. labels (:obj:`tf.Tensor`): A batch of labels. training (:obj:`bool`): Whether or not to run the model in training mode. Returns: A tuple of two :obj:`tf.Tensor`: The loss and logits. """ if self.args.past_index >= 0 and getattr(self, "_past", None) is not None: features["mems"] = self._past if isinstance(labels, (dict)): outputs = self.model(features, training=training, **labels)[:2] else: outputs = self.model(features, labels=labels, training=training)[:2] loss, logits = outputs[:2] if self.args.past_index >= 0: self._past = outputs[self.args.past_index] return loss, logits def predict(self, test_dataset: tf.data.Dataset) -> PredictionOutput: """ Run prediction and returns predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in :obj:`evaluate()`. Args: test_dataset (:class:`~tf.data.Dataset`): Dataset to run the predictions on. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)`` Returns: `NamedTuple` A namedtuple with the following keys: - predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`. - label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some). - metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset contained labels). """ test_ds, steps, num_examples = self.get_test_tfdataset(test_dataset) return self.prediction_loop(test_ds, steps, num_examples, description="Prediction") def save_model(self, output_dir: Optional[str] = None): """ Will save the model, so you can reload it using :obj:`from_pretrained()`. """ output_dir = output_dir if output_dir is not None else self.args.output_dir logger.info("Saving model in {}".format(output_dir)) if not isinstance(self.model, TFPreTrainedModel): raise ValueError("Trainer.model appears to not be a PreTrainedModel") self.model.save_pretrained(output_dir)
AdaMix/src/transformers/trainer_tf.py/0
{ "file_path": "AdaMix/src/transformers/trainer_tf.py", "repo_id": "AdaMix", "token_count": 15501 }
66
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..file_utils import requires_tf class TensorFlowBenchmarkArguments: def __init__(self, *args, **kwargs): requires_tf(self) class TensorFlowBenchmark: def __init__(self, *args, **kwargs): requires_tf(self) def tf_top_k_top_p_filtering(*args, **kwargs): requires_tf(tf_top_k_top_p_filtering) class TFPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFSequenceSummary: def __init__(self, *args, **kwargs): requires_tf(self) class TFSharedEmbeddings: def __init__(self, *args, **kwargs): requires_tf(self) def shape_list(*args, **kwargs): requires_tf(shape_list) TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFAlbertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFAlbertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFAlbertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAlbertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_MODEL_FOR_CAUSAL_LM_MAPPING = None TF_MODEL_FOR_MASKED_LM_MAPPING = None TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None TF_MODEL_FOR_PRETRAINING_MAPPING = None TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = None TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None TF_MODEL_MAPPING = None TF_MODEL_WITH_LM_HEAD_MAPPING = None class TFAutoModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForCausalLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForSeq2SeqLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFAutoModelWithLMHead: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBartForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBartModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBartPretrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFBertEmbeddings: def __init__(self, *args, **kwargs): requires_tf(self) class TFBertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_tf(self) class TFBertForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFBertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBlenderbotForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBlenderbotModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBlenderbotSmallForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFBlenderbotSmallModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFCamembertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCamembertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCamembertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCamembertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCamembertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCamembertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFConvBertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFConvBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFConvBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFConvBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFConvBertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFConvBertLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFConvBertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFConvBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFCTRLForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCTRLLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCTRLModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFCTRLPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFDistilBertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFDistilBertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFDistilBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFDPRContextEncoder: def __init__(self, *args, **kwargs): requires_tf(self) class TFDPRPretrainedContextEncoder: def __init__(self, *args, **kwargs): requires_tf(self) class TFDPRPretrainedQuestionEncoder: def __init__(self, *args, **kwargs): requires_tf(self) class TFDPRPretrainedReader: def __init__(self, *args, **kwargs): requires_tf(self) class TFDPRQuestionEncoder: def __init__(self, *args, **kwargs): requires_tf(self) class TFDPRReader: def __init__(self, *args, **kwargs): requires_tf(self) TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFElectraForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFElectraForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFElectraPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFFlaubertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFlaubertForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFlaubertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFlaubertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFlaubertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFlaubertWithLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFFunnelBaseModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFFunnelForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFFunnelModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFGPT2DoubleHeadsModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFGPT2ForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFGPT2LMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFGPT2MainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFGPT2Model: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFGPT2PreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLEDForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLEDModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLEDPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFLongformerForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLongformerSelfAttention: def __init__(self, *args, **kwargs): requires_tf(self) TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFLxmertForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFLxmertMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFLxmertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLxmertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFLxmertVisualFeatureEncoder: def __init__(self, *args, **kwargs): requires_tf(self) class TFMarian: def __init__(self, *args, **kwargs): requires_tf(self) class TFMarianMTModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMBartForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMBartModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFMobileBertForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertForNextSentencePrediction: def __init__(self, *args, **kwargs): requires_tf(self) class TFMobileBertForPreTraining: def __init__(self, *args, **kwargs): requires_tf(self) class TFMobileBertForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFMobileBertModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMobileBertPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFMPNetForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFMPNetModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMPNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMT5EncoderModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMT5ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFMT5Model: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFOpenAIGPTDoubleHeadsModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFOpenAIGPTForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFOpenAIGPTLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFOpenAIGPTMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFOpenAIGPTModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFOpenAIGPTPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFPegasusForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFPegasusModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRagModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRagSequenceForGeneration: def __init__(self, *args, **kwargs): requires_tf(self) class TFRagTokenForGeneration: def __init__(self, *args, **kwargs): requires_tf(self) TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFRobertaForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFRobertaModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFRobertaPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFT5EncoderModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFT5ForConditionalGeneration: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFT5Model: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFT5PreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFAdaptiveEmbedding: def __init__(self, *args, **kwargs): requires_tf(self) class TFTransfoXLForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFTransfoXLLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFTransfoXLMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFTransfoXLModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFTransfoXLPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFXLMForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFXLMModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMWithLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFXLMRobertaForMaskedLM: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMRobertaForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMRobertaForQuestionAnswering: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMRobertaForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMRobertaForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLMRobertaModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class TFXLNetForMultipleChoice: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetForQuestionAnsweringSimple: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetForSequenceClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetForTokenClassification: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetLMHeadModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetMainLayer: def __init__(self, *args, **kwargs): requires_tf(self) class TFXLNetModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class TFXLNetPreTrainedModel: def __init__(self, *args, **kwargs): requires_tf(self) @classmethod def from_pretrained(self, *args, **kwargs): requires_tf(self) class AdamWeightDecay: def __init__(self, *args, **kwargs): requires_tf(self) class GradientAccumulator: def __init__(self, *args, **kwargs): requires_tf(self) class WarmUp: def __init__(self, *args, **kwargs): requires_tf(self) def create_optimizer(*args, **kwargs): requires_tf(create_optimizer) class TFTrainer: def __init__(self, *args, **kwargs): requires_tf(self)
AdaMix/src/transformers/utils/dummy_tf_objects.py/0
{ "file_path": "AdaMix/src/transformers/utils/dummy_tf_objects.py", "repo_id": "AdaMix", "token_count": 15737 }
67
# coding=utf-8 # Copyright {{cookiecutter.authors}} and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ {{cookiecutter.modelname}} model configuration """ from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP = { "{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/config.json", # See all {{cookiecutter.modelname}} models at https://huggingface.co/models?filter={{cookiecutter.lowercase_modelname}} } class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model`. It is used to instantiate an {{cookiecutter.modelname}} model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the {{cookiecutter.modelname}} `{{cookiecutter.checkpoint_identifier}} <https://huggingface.co/{{cookiecutter.checkpoint_identifier}}>`__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: {% if cookiecutter.is_encoder_decoder_model == "False" -%} vocab_size (:obj:`int`, `optional`, defaults to 30522): Vocabulary size of the {{cookiecutter.modelname}} model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model` or :class:`~transformers.TF{{cookiecutter.camelcase_modelname}}Model`. Vocabulary size of the model. Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model`. hidden_size (:obj:`int`, `optional`, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (:obj:`int`, `optional`, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (:obj:`int`, `optional`, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (:obj:`int`, `optional`, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported. hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, `optional`, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (:obj:`int`, `optional`, defaults to 2): The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model` or :class:`~transformers.TF{{cookiecutter.camelcase_modelname}}Model`. initializer_range (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): The epsilon used by the layer normalization layers. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if ``config.is_decoder=True``. gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): If True, use gradient checkpointing to save memory at the expense of slower backward pass. {% else -%} vocab_size (:obj:`int`, `optional`, defaults to 50265): Vocabulary size of the {{cookiecutter.modelname}} model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model` or :class:`~transformers.TF{{cookiecutter.camelcase_modelname}}Model`. d_model (:obj:`int`, `optional`, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_layers (:obj:`int`, `optional`, defaults to 12): Number of encoder layers. decoder_layers (:obj:`int`, `optional`, defaults to 12): Number of decoder layers. encoder_attention_heads (:obj:`int`, `optional`, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (:obj:`int`, `optional`, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. dropout (:obj:`float`, `optional`, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (:obj:`float`, `optional`, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (:obj:`float`, `optional`, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. classifier_dropout (:obj:`float`, `optional`, defaults to 0.0): The dropout ratio for classifier. max_position_embeddings (:obj:`int`, `optional`, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0): The LayerDrop probability for the encoder. See the `LayerDrop paper <see https://arxiv.org/abs/1909.11556>`__ for more details. decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0): The LayerDrop probability for the decoder. See the `LayerDrop paper <see https://arxiv.org/abs/1909.11556>`__ for more details. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should return the last key/values attentions (not used by all models). {% endif -%} Example:: >>> from transformers import {{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}Config >>> # Initializing a {{cookiecutter.modelname}} {{cookiecutter.checkpoint_identifier}} style configuration >>> configuration = {{cookiecutter.camelcase_modelname}}Config() >>> # Initializing a model from the {{cookiecutter.checkpoint_identifier}} style configuration >>> model = {{cookiecutter.camelcase_modelname}}Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "{{cookiecutter.lowercase_modelname}}" {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else -%} keys_to_ignore_at_inference = ["past_key_values"] {% endif -%} def __init__( self, {% if cookiecutter.is_encoder_decoder_model == "False" -%} vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, use_cache=True, is_encoder_decoder=False, {% else -%} vocab_size=50265, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=2, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, {% endif -%} pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else -%} is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, {% endif -%} **kwargs ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings {% if cookiecutter.is_encoder_decoder_model == "False" -%} self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache {% else -%} self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.classifier_dropout = classifier_dropout self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.gradient_checkpointing = gradient_checkpointing self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True {% endif -%} {% if cookiecutter.is_encoder_decoder_model == "False" %} {%- else %} @property def num_attention_heads(self) -> int: return self.encoder_attention_heads @property def hidden_size(self) -> int: return self.d_model {%- endif %}
AdaMix/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/configuration_{{cookiecutter.lowercase_modelname}}.py/0
{ "file_path": "AdaMix/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/configuration_{{cookiecutter.lowercase_modelname}}.py", "repo_id": "AdaMix", "token_count": 5194 }
68
{ "modelname": "TemplateTF", "uppercase_modelname": "TEMPLATE_TF", "lowercase_modelname": "template_tf", "camelcase_modelname": "TemplateTf", "authors": "The HuggingFace Team", "checkpoint_identifier": "brand-new-bert-base-cased", "tokenizer_type": "Based on BERT", "generate_tensorflow_and_pytorch": "TensorFlow", "is_encoder_decoder_model": "False" }
AdaMix/templates/adding_a_new_model/tests/tf-encoder-bert-tokenizer.json/0
{ "file_path": "AdaMix/templates/adding_a_new_model/tests/tf-encoder-bert-tokenizer.json", "repo_id": "AdaMix", "token_count": 145 }
69
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKWOWN_IDENTIFIER SAMPLE_ROBERTA_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/dummy-config.json") class AutoConfigTest(unittest.TestCase): def test_config_from_model_shortcut(self): config = AutoConfig.from_pretrained("bert-base-uncased") self.assertIsInstance(config, BertConfig) def test_config_model_type_from_local_file(self): config = AutoConfig.from_pretrained(SAMPLE_ROBERTA_CONFIG) self.assertIsInstance(config, RobertaConfig) def test_config_model_type_from_model_identifier(self): config = AutoConfig.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER) self.assertIsInstance(config, RobertaConfig) def test_config_for_model_str(self): config = AutoConfig.for_model("roberta") self.assertIsInstance(config, RobertaConfig) def test_pattern_matching_fallback(self): """ In cases where config.json doesn't include a model_type, perform a few safety checks on the config mapping's order. """ # no key string should be included in a later key string (typical failure case) keys = list(CONFIG_MAPPING.keys()) for i, key in enumerate(keys): self.assertFalse(any(key in later_key for later_key in keys[i + 1 :]))
AdaMix/tests/test_configuration_auto.py/0
{ "file_path": "AdaMix/tests/test_configuration_auto.py", "repo_id": "AdaMix", "token_count": 759 }
70
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest from transformers.modelcard import ModelCard class ModelCardTester(unittest.TestCase): def setUp(self): self.inputs_dict = { "model_details": { "Organization": "testing", "Model date": "today", "Model version": "v2.1, Developed by Test Corp in 2019.", "Architecture": "Convolutional Neural Network.", }, "metrics": "BLEU and ROUGE-1", "evaluation_data": { "Datasets": {"BLEU": "My-great-dataset-v1", "ROUGE-1": "My-short-dataset-v2.1"}, "Preprocessing": "See details on https://arxiv.org/pdf/1810.03993.pdf", }, "training_data": { "Dataset": "English Wikipedia dump dated 2018-12-01", "Preprocessing": "Using SentencePiece vocabulary of size 52k tokens. See details on https://arxiv.org/pdf/1810.03993.pdf", }, "quantitative_analyses": {"BLEU": 55.1, "ROUGE-1": 76}, } def test_model_card_common_properties(self): modelcard = ModelCard.from_dict(self.inputs_dict) self.assertTrue(hasattr(modelcard, "model_details")) self.assertTrue(hasattr(modelcard, "intended_use")) self.assertTrue(hasattr(modelcard, "factors")) self.assertTrue(hasattr(modelcard, "metrics")) self.assertTrue(hasattr(modelcard, "evaluation_data")) self.assertTrue(hasattr(modelcard, "training_data")) self.assertTrue(hasattr(modelcard, "quantitative_analyses")) self.assertTrue(hasattr(modelcard, "ethical_considerations")) self.assertTrue(hasattr(modelcard, "caveats_and_recommendations")) def test_model_card_to_json_string(self): modelcard = ModelCard.from_dict(self.inputs_dict) obj = json.loads(modelcard.to_json_string()) for key, value in self.inputs_dict.items(): self.assertEqual(obj[key], value) def test_model_card_to_json_file(self): model_card_first = ModelCard.from_dict(self.inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: filename = os.path.join(tmpdirname, "modelcard.json") model_card_first.to_json_file(filename) model_card_second = ModelCard.from_json_file(filename) self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict()) def test_model_card_from_and_save_pretrained(self): model_card_first = ModelCard.from_dict(self.inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: model_card_first.save_pretrained(tmpdirname) model_card_second = ModelCard.from_pretrained(tmpdirname) self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict())
AdaMix/tests/test_model_card.py/0
{ "file_path": "AdaMix/tests/test_model_card.py", "repo_id": "AdaMix", "token_count": 1415 }
71
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertConfig, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class DistilBertModelTester(object): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_distilbert_model( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DistilBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, input_mask) result = model(input_ids) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def create_and_check_distilbert_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DistilBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_distilbert_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DistilBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_distilbert_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DistilBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_distilbert_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DistilBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_distilbert_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = DistilBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class DistilBertModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) test_pruning = True test_torchscript = True test_resize_embeddings = True def setUp(self): self.model_tester = DistilBertModelTester(self) self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37) def test_config(self): self.config_tester.run_common_tests() def test_distilbert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DistilBertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class DistilBertModelIntergrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = DistilBertModel.from_pretrained("distilbert-base-uncased") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
AdaMix/tests/test_modeling_distilbert.py/0
{ "file_path": "AdaMix/tests/test_modeling_distilbert.py", "repo_id": "AdaMix", "token_count": 5293 }
72
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch M2M100 model. """ import copy import tempfile import unittest from transformers import is_torch_available from transformers.file_utils import cached_property from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_generation_utils import GenerationTesterMixin from .test_modeling_common import ModelTesterMixin, ids_tensor if is_torch_available(): import torch from transformers import M2M100Config, M2M100ForConditionalGeneration, M2M100Model, M2M100Tokenizer from transformers.models.m2m_100.modeling_m2m_100 import M2M100Decoder, M2M100Encoder def prepare_m2m_100_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } @require_torch class M2M100ModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, encoder_layerdrop=0.0, decoder_layerdrop=0.0, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input input_ids = input_ids.clamp(self.pad_token_id + 1) decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1) config = M2M100Config( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, encoder_layerdrop=self.encoder_layerdrop, decoder_layerdrop=self.decoder_layerdrop, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) inputs_dict = prepare_m2m_100_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = M2M100Model(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = M2M100Model(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = M2M100Encoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = M2M100Decoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class M2M100ModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = ( ( M2M100Model, M2M100ForConditionalGeneration, ) if is_torch_available() else () ) all_generative_model_classes = (M2M100ForConditionalGeneration,) if is_torch_available() else () is_encoder_decoder = True test_pruning = False test_head_masking = False test_missing_keys = False def setUp(self): self.model_tester = M2M100ModelTester(self) self.config_tester = ConfigTester(self, config_class=M2M100Config) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (M2M100Model, M2M100ForConditionalGeneration): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = M2M100ForConditionalGeneration(config).eval().to(torch_device) if torch_device == "cuda": model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) TOLERANCE = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class M2M100ModelIntegrationTests(unittest.TestCase): @cached_property def default_tokenizer(self): return M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") def test_inference_no_head(self): model = M2M100Model.from_pretrained("facebook/m2m100_418M").to(torch_device) input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, 1024)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_inference_head(self): model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device) # change to intended input input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_seq_to_seq_generation(self): model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device) tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="fr", tgt_lang="en") src_fr = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams dct = tokenizer(src_fr, padding=True, return_tensors="pt") hypotheses_batch = model.generate( input_ids=dct["input_ids"].to(torch_device), attention_mask=dct["attention_mask"].to(torch_device), num_beams=5, forced_bos_token_id=tokenizer.get_lang_id("en"), ) expected_en = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S. Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all communications in France.", ] generated = tokenizer.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) assert generated == expected_en
AdaMix/tests/test_modeling_m2m_100.py/0
{ "file_path": "AdaMix/tests/test_modeling_m2m_100.py", "repo_id": "AdaMix", "token_count": 6895 }
73
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import AlbertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from .test_configuration_common import ConfigTester from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor if is_tf_available(): import tensorflow as tf from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING from transformers.models.albert.modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertModel, ) class TFAlbertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, embedding_size=16, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.embedding_size = 16 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, embedding_size=self.embedding_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_albert_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFAlbertModel(config=config) # inputs = {'input_ids': input_ids, # 'attention_mask': input_mask, # 'token_type_ids': token_type_ids} # sequence_output, pooled_output = model(**inputs) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_albert_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFAlbertForPreTraining(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, self.num_labels)) def create_and_check_albert_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFAlbertForMaskedLM(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_albert_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFAlbertForSequenceClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_albert_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFAlbertForQuestionAnswering(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_albert_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFAlbertForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices]) def create_and_check_albert_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFAlbertForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = ( ( TFAlbertModel, TFAlbertForPreTraining, TFAlbertForMaskedLM, TFAlbertForSequenceClassification, TFAlbertForQuestionAnswering, TFAlbertForTokenClassification, TFAlbertForMultipleChoice, ) if is_tf_available() else () ) test_head_masking = False test_onnx = False # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in TF_MODEL_FOR_PRETRAINING_MAPPING.values(): inputs_dict["sentence_order_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) return inputs_dict def setUp(self): self.model_tester = TFAlbertModelTester(self) self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_albert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_for_multiple_choice(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() list_lm_models = [TFAlbertForPreTraining, TFAlbertForMaskedLM] for model_class in self.all_model_classes: model = model_class(config) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class in list_lm_models: x = model.get_output_embeddings() assert isinstance(x, tf.keras.layers.Layer) name = model.get_bias() assert isinstance(name, dict) for k, v in name.items(): assert isinstance(v, tf.Variable) else: x = model.get_output_embeddings() assert x is None name = model.get_bias() assert name is None @slow def test_model_from_pretrained(self): for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFAlbertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFAlbertModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFAlbertForPreTraining.from_pretrained("albert-base-v2") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 30000] self.assertEqual(output.shape, expected_shape) expected_slice = tf.constant( [ [ [4.595668, 0.74462754, -1.818147], [4.5954347, 0.7454184, -1.8188258], [4.5954905, 0.7448235, -1.8182316], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
AdaMix/tests/test_modeling_tf_albert.py/0
{ "file_path": "AdaMix/tests/test_modeling_tf_albert.py", "repo_id": "AdaMix", "token_count": 6137 }
74
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import GPT2Config, is_tf_available from transformers.testing_utils import require_tf, slow from .test_configuration_common import ConfigTester from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor if is_tf_available(): import tensorflow as tf from transformers.models.gpt2.modeling_tf_gpt2 import ( TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, TFGPT2DoubleHeadsModel, TFGPT2ForSequenceClassification, TFGPT2LMHeadModel, TFGPT2Model, shape_list, ) class TFGPT2ModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_token_type_ids = True self.use_input_mask = True self.use_labels = True self.use_mc_token_ids = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.bos_token_id = self.vocab_size - 1 self.eos_token_id = self.vocab_size - 1 self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = GPT2Config( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, n_ctx=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=True, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) inputs = [input_ids, None, input_mask] # None is the input for 'past' result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_gpt2_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPT2Model(config=config) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12) def create_and_check_gpt2_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = TFGPT2Model(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] token_type_ids = token_type_ids[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask )["last_hidden_state"] output_from_past = model( next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past=past )["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2LMHeadModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_gpt2_double_head( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args ): model = TFGPT2DoubleHeadsModel(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "mc_token_ids": mc_token_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices)) def create_and_check_gpt2_for_sequence_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "labels": sequence_labels, } model = TFGPT2ForSequenceClassification(config) result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = ( (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel) if is_tf_available() else () ) all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else () test_head_masking = False test_onnx = True onnx_min_opset = 10 def setUp(self): self.model_tester = TFGPT2ModelTester(self) self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_gpt2_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model(*config_and_inputs) def test_gpt2_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs) def test_gpt2_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs) def test_gpt2_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs) def test_gpt2_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs) def test_gpt2_double_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class in self.all_generative_model_classes: x = model.get_output_embeddings() assert isinstance(x, tf.keras.layers.Layer) name = model.get_bias() assert name is None else: x = model.get_output_embeddings() assert x is None name = model.get_bias() assert name is None def test_gpt2_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFGPT2Model.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFGPT2ModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_gpt2(self): model = TFGPT2LMHeadModel.from_pretrained("gpt2") input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32) # The dog expected_output_ids = [ 464, 3290, 373, 1043, 287, 257, 2214, 1474, 262, 16246, 286, 2688, 290, 2688, 27262, 13, 198, 198, 464, 3290, ] # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids) @slow def test_lm_generate_distilgpt2(self): model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") input_ids = tf.convert_to_tensor([[464, 1893]], dtype=tf.int32) # The president expected_output_ids = [ 464, 1893, 286, 262, 1578, 1829, 11, 290, 262, 1893, 286, 262, 1578, 7526, 11, 423, 587, 287, 262, 2635, ] # The president of the United States, and the president of the United Kingdom, have been in the White output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
AdaMix/tests/test_modeling_tf_gpt2.py/0
{ "file_path": "AdaMix/tests/test_modeling_tf_gpt2.py", "repo_id": "AdaMix", "token_count": 8488 }
75
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from .test_configuration_common import ConfigTester from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor if is_tf_available(): import tensorflow as tf from transformers import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMModel, TFXLMWithLMHeadModel, XLMConfig, ) class TFXLMModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_lengths = True self.use_token_type_ids = True self.use_labels = True self.gelu_activation = True self.sinusoidal_embeddings = False self.causal = False self.asm = False self.n_langs = 2 self.vocab_size = 99 self.n_special = 0 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.summary_type = "last" self.use_proj = True self.scope = None self.bos_token_id = 0 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32) input_lengths = None if self.use_input_lengths: input_lengths = ( ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs) sequence_labels = None token_labels = None is_impossible_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = XLMConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, bos_token_id=self.bos_token_id, ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def create_and_check_xlm_model( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFXLMModel(config=config) inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_xlm_lm_head( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFXLMWithLMHeadModel(config) inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} outputs = model(inputs) result = outputs self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_xlm_qa( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFXLMForQuestionAnsweringSimple(config) inputs = {"input_ids": input_ids, "lengths": input_lengths} result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_xlm_sequence_classif( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFXLMForSequenceClassification(config) inputs = {"input_ids": input_ids, "lengths": input_lengths} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_xlm_for_token_classification( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): config.num_labels = self.num_labels model = TFXLMForTokenClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_xlm_for_multiple_choice( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): config.num_choices = self.num_choices model = TFXLMForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class TFXLMModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = ( ( TFXLMModel, TFXLMWithLMHeadModel, TFXLMForSequenceClassification, TFXLMForQuestionAnsweringSimple, TFXLMForTokenClassification, TFXLMForMultipleChoice, ) if is_tf_available() else () ) all_generative_model_classes = ( (TFXLMWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFXLMModelTester(self) self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37) def test_config(self): self.config_tester.run_common_tests() def test_xlm_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*config_and_inputs) def test_xlm_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs) def test_xlm_qa(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*config_and_inputs) def test_xlm_sequence_classif(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFXLMModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFXLMModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_xlm_mlm_en_2048(self): model = TFXLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048") input_ids = tf.convert_to_tensor([[14, 447]], dtype=tf.int32) # the president expected_output_ids = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
AdaMix/tests/test_modeling_tf_xlm.py/0
{ "file_path": "AdaMix/tests/test_modeling_tf_xlm.py", "repo_id": "AdaMix", "token_count": 5882 }
76
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import pipeline from transformers.testing_utils import require_tf, require_torch, slow from .test_pipelines_common import MonoInputPipelineCommonMixin EXPECTED_FILL_MASK_RESULT = [ [ {"sequence": "My name is John", "score": 0.00782308354973793, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007475061342120171, "token": 1573, "token_str": " Chris"}, ], [ { "sequence": "The largest city in France is Paris", "score": 0.2510891854763031, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.21418564021587372, "token": 12790, "token_str": " Lyon", }, ], ] EXPECTED_FILL_MASK_TARGET_RESULT = [EXPECTED_FILL_MASK_RESULT[0]] class FillMaskPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase): pipeline_task = "fill-mask" pipeline_loading_kwargs = {"top_k": 2} small_models = ["sshleifer/tiny-distilroberta-base"] # Models tested without the @slow decorator large_models = ["distilroberta-base"] # Models tested with the @slow decorator mandatory_keys = {"sequence", "score", "token"} valid_inputs = [ "My name is <mask>", "The largest city in France is <mask>", ] invalid_inputs = [ "This is <mask> <mask>" # More than 1 mask_token in the input is not supported "This is" # No mask_token is not supported ] expected_check_keys = ["sequence"] @require_torch def test_torch_fill_mask(self): valid_inputs = "My name is <mask>" nlp = pipeline(task="fill-mask", model=self.small_models[0]) outputs = nlp(valid_inputs) self.assertIsInstance(outputs, list) # This passes outputs = nlp(valid_inputs, targets=[" Patrick", " Clara"]) self.assertIsInstance(outputs, list) # This used to fail with `cannot mix args and kwargs` outputs = nlp(valid_inputs, something=False) self.assertIsInstance(outputs, list) @require_torch def test_torch_fill_mask_with_targets(self): valid_inputs = ["My name is <mask>"] valid_targets = [[" Teven", " Patrick", " Clara"], [" Sam"]] invalid_targets = [[], [""], ""] for model_name in self.small_models: nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="pt") for targets in valid_targets: outputs = nlp(valid_inputs, targets=targets) self.assertIsInstance(outputs, list) self.assertEqual(len(outputs), len(targets)) for targets in invalid_targets: self.assertRaises(ValueError, nlp, valid_inputs, targets=targets) @require_tf def test_tf_fill_mask_with_targets(self): valid_inputs = ["My name is <mask>"] valid_targets = [[" Teven", " Patrick", " Clara"], [" Sam"]] invalid_targets = [[], [""], ""] for model_name in self.small_models: nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="tf") for targets in valid_targets: outputs = nlp(valid_inputs, targets=targets) self.assertIsInstance(outputs, list) self.assertEqual(len(outputs), len(targets)) for targets in invalid_targets: self.assertRaises(ValueError, nlp, valid_inputs, targets=targets) @require_torch @slow def test_torch_fill_mask_results(self): mandatory_keys = {"sequence", "score", "token"} valid_inputs = [ "My name is <mask>", "The largest city in France is <mask>", ] valid_targets = [" Patrick", " Clara"] for model_name in self.large_models: nlp = pipeline( task="fill-mask", model=model_name, tokenizer=model_name, framework="pt", top_k=2, ) mono_result = nlp(valid_inputs[0], targets=valid_targets) self.assertIsInstance(mono_result, list) self.assertIsInstance(mono_result[0], dict) for mandatory_key in mandatory_keys: self.assertIn(mandatory_key, mono_result[0]) multi_result = [nlp(valid_input) for valid_input in valid_inputs] self.assertIsInstance(multi_result, list) self.assertIsInstance(multi_result[0], (dict, list)) for result, expected in zip(multi_result, EXPECTED_FILL_MASK_RESULT): for r, e in zip(result, expected): self.assertEqual(r["sequence"], e["sequence"]) self.assertEqual(r["token_str"], e["token_str"]) self.assertEqual(r["token"], e["token"]) self.assertAlmostEqual(r["score"], e["score"], places=3) if isinstance(multi_result[0], list): multi_result = multi_result[0] for result in multi_result: for key in mandatory_keys: self.assertIn(key, result) self.assertRaises(Exception, nlp, [None]) valid_inputs = valid_inputs[:1] mono_result = nlp(valid_inputs[0], targets=valid_targets) self.assertIsInstance(mono_result, list) self.assertIsInstance(mono_result[0], dict) for mandatory_key in mandatory_keys: self.assertIn(mandatory_key, mono_result[0]) multi_result = [nlp(valid_input) for valid_input in valid_inputs] self.assertIsInstance(multi_result, list) self.assertIsInstance(multi_result[0], (dict, list)) for result, expected in zip(multi_result, EXPECTED_FILL_MASK_TARGET_RESULT): for r, e in zip(result, expected): self.assertEqual(r["sequence"], e["sequence"]) self.assertEqual(r["token_str"], e["token_str"]) self.assertEqual(r["token"], e["token"]) self.assertAlmostEqual(r["score"], e["score"], places=3) if isinstance(multi_result[0], list): multi_result = multi_result[0] for result in multi_result: for key in mandatory_keys: self.assertIn(key, result) self.assertRaises(Exception, nlp, [None]) @require_tf @slow def test_tf_fill_mask_results(self): mandatory_keys = {"sequence", "score", "token"} valid_inputs = [ "My name is <mask>", "The largest city in France is <mask>", ] valid_targets = [" Patrick", " Clara"] for model_name in self.large_models: nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="tf", top_k=2) mono_result = nlp(valid_inputs[0], targets=valid_targets) self.assertIsInstance(mono_result, list) self.assertIsInstance(mono_result[0], dict) for mandatory_key in mandatory_keys: self.assertIn(mandatory_key, mono_result[0]) multi_result = [nlp(valid_input) for valid_input in valid_inputs] self.assertIsInstance(multi_result, list) self.assertIsInstance(multi_result[0], (dict, list)) for result, expected in zip(multi_result, EXPECTED_FILL_MASK_RESULT): for r, e in zip(result, expected): self.assertEqual(r["sequence"], e["sequence"]) self.assertEqual(r["token_str"], e["token_str"]) self.assertEqual(r["token"], e["token"]) self.assertAlmostEqual(r["score"], e["score"], places=3) if isinstance(multi_result[0], list): multi_result = multi_result[0] for result in multi_result: for key in mandatory_keys: self.assertIn(key, result) self.assertRaises(Exception, nlp, [None]) valid_inputs = valid_inputs[:1] mono_result = nlp(valid_inputs[0], targets=valid_targets) self.assertIsInstance(mono_result, list) self.assertIsInstance(mono_result[0], dict) for mandatory_key in mandatory_keys: self.assertIn(mandatory_key, mono_result[0]) multi_result = [nlp(valid_input) for valid_input in valid_inputs] self.assertIsInstance(multi_result, list) self.assertIsInstance(multi_result[0], (dict, list)) for result, expected in zip(multi_result, EXPECTED_FILL_MASK_TARGET_RESULT): for r, e in zip(result, expected): self.assertEqual(r["sequence"], e["sequence"]) self.assertEqual(r["token_str"], e["token_str"]) self.assertEqual(r["token"], e["token"]) self.assertAlmostEqual(r["score"], e["score"], places=3) if isinstance(multi_result[0], list): multi_result = multi_result[0] for result in multi_result: for key in mandatory_keys: self.assertIn(key, result) self.assertRaises(Exception, nlp, [None])
AdaMix/tests/test_pipelines_fill_mask.py/0
{ "file_path": "AdaMix/tests/test_pipelines_fill_mask.py", "repo_id": "AdaMix", "token_count": 4635 }
77
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPT2Tokenizer, GPT2TokenizerFast, RobertaTokenizer, RobertaTokenizerFast, ) from transformers.models.auto.configuration_auto import AutoConfig from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_tokenizers, slow, ) class AutoTokenizerTest(unittest.TestCase): @slow def test_tokenizer_from_pretrained(self): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): tokenizer = AutoTokenizer.from_pretrained(model_name) self.assertIsNotNone(tokenizer) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(tokenizer), 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): tokenizer = AutoTokenizer.from_pretrained(model_name) self.assertIsNotNone(tokenizer) self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast)) self.assertGreater(len(tokenizer), 0) def test_tokenizer_from_pretrained_identifier(self): tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 12) def test_tokenizer_from_model_type(self): tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER) self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 20) def test_tokenizer_from_tokenizer_class(self): config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER) self.assertIsInstance(config, RobertaConfig) # Check that tokenizer_type ≠ model_type tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 12) @require_tokenizers def test_tokenizer_identifier_with_correct_config(self): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased") self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) if isinstance(tokenizer, BertTokenizer): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False) else: self.assertEqual(tokenizer.do_lower_case, False) self.assertEqual(tokenizer.model_max_length, 512) @require_tokenizers def test_tokenizer_identifier_non_existent(self): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaises(EnvironmentError): _ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists") def test_parents_and_children_in_mappings(self): # Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered # by the parents and will return the wrong configuration type when using auto models mappings = (TOKENIZER_MAPPING,) for mapping in mappings: mapping = tuple(mapping.items()) for index, (child_config, _) in enumerate(mapping[1:]): for parent_config, _ in mapping[: index + 1]: with self.subTest( msg="Testing if {} is child of {}".format(child_config.__name__, parent_config.__name__) ): self.assertFalse(issubclass(child_config, parent_config)) @require_tokenizers def test_from_pretrained_use_fast_toggle(self): self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased", use_fast=False), BertTokenizer) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased"), BertTokenizerFast)
AdaMix/tests/test_tokenization_auto.py/0
{ "file_path": "AdaMix/tests/test_tokenization_auto.py", "repo_id": "AdaMix", "token_count": 1976 }
78
# coding=utf-8 # Copyright 2020 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from .test_tokenization_common import TokenizerTesterMixin @require_tokenizers class FunnelTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = FunnelTokenizer rust_tokenizer_class = FunnelTokenizerFast test_rust_tokenizer = True space_between_special_tokens = True def setUp(self): super().setUp() vocab_tokens = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_tokenizer(self, **kwargs): return FunnelTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9]) def test_token_type_ids(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: inputs = tokenizer("UNwant\u00E9d,running") sentence_len = len(inputs["input_ids"]) - 1 self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len) inputs = tokenizer("UNwant\u00E9d,running", "UNwant\u00E9d,running") self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len + [1] * sentence_len)
AdaMix/tests/test_tokenization_funnel.py/0
{ "file_path": "AdaMix/tests/test_tokenization_funnel.py", "repo_id": "AdaMix", "token_count": 1257 }
79
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from .test_tokenization_common import TokenizerTesterMixin @require_tokenizers class RobertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = RobertaTokenizer rust_tokenizer_class = RobertaTokenizerFast test_rust_tokenizer = True from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return RobertaTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "lower newer" bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) # , add_prefix_space=True) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) def roberta_dict_integration_testing(self): tokenizer = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!", add_special_tokens=False), [0, 31414, 232, 328, 2]) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418", add_special_tokens=False), [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2], ) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("roberta-base") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def test_space_encoding(self): tokenizer = self.get_tokenizer() sequence = "Encode this sequence." space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]] # Testing encoder arguments encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(first_char, space_encoding) tokenizer.add_special_tokens({"bos_token": "<s>"}) encoded = tokenizer.encode(sequence, add_special_tokens=True) first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(first_char, space_encoding) # Testing spaces after special tokens mask = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(mask, lstrip=True, rstrip=False)} ) # mask token has a left space mask_ind = tokenizer.convert_tokens_to_ids(mask) sequence = "Encode <mask> sequence" sequence_nospace = "Encode <mask>sequence" encoded = tokenizer.encode(sequence) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence_nospace) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(first_char, space_encoding) def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]), sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
AdaMix/tests/test_tokenization_roberta.py/0
{ "file_path": "AdaMix/tests/test_tokenization_roberta.py", "repo_id": "AdaMix", "token_count": 3882 }
80
# coding=utf-8 # Copyright 2020 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import BertTokenizer, EncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments from transformers.file_utils import is_datasets_available from transformers.testing_utils import TestCasePlus, require_datasets, require_torch, slow if is_datasets_available(): import datasets class Seq2seqTrainerTester(TestCasePlus): @slow @require_torch @require_datasets def test_finetune_bert2bert(self): bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny") tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size bert2bert.config.eos_token_id = tokenizer.sep_token_id bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id bert2bert.config.max_length = 128 train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]") val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]") train_dataset = train_dataset.select(range(32)) val_dataset = val_dataset.select(range(16)) batch_size = 4 def _map_to_encoder_decoder_inputs(batch): # Tokenizer will automatically set [BOS] <text> [EOS] inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512) outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask batch["decoder_input_ids"] = outputs.input_ids batch["labels"] = outputs.input_ids.copy() batch["labels"] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] batch["decoder_attention_mask"] = outputs.attention_mask assert all([len(x) == 512 for x in inputs.input_ids]) assert all([len(x) == 128 for x in outputs.input_ids]) return batch def _compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions # all unnecessary tokens are removed pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True) accuracy = sum([int(pred_str[i] == label_str[i]) for i in range(len(pred_str))]) / len(pred_str) return {"accuracy": accuracy} # map train dataset train_dataset = train_dataset.map( _map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) train_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # same for validation dataset val_dataset = val_dataset.map( _map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) val_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) output_dir = self.get_auto_remove_tmp_dir() training_args = Seq2SeqTrainingArguments( output_dir=output_dir, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, predict_with_generate=True, evaluation_strategy="steps", do_train=True, do_eval=True, warmup_steps=0, eval_steps=2, logging_steps=2, ) # instantiate trainer trainer = Seq2SeqTrainer( model=bert2bert, args=training_args, compute_metrics=_compute_metrics, train_dataset=train_dataset, eval_dataset=val_dataset, tokenizer=tokenizer, ) # start training trainer.train()
AdaMix/tests/test_trainer_seq2seq.py/0
{ "file_path": "AdaMix/tests/test_trainer_seq2seq.py", "repo_id": "AdaMix", "token_count": 2179 }
81
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import re import git import packaging.version PATH_TO_EXAMPLES = "examples/" REPLACE_PATTERNS = { "examples": (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), "init": (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), "setup": (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), "doc": (re.compile(r"^(\s*)release\s*=\s*u'[^']+'$", re.MULTILINE), "release = u'VERSION'\n"), } REPLACE_FILES = { "init": "src/transformers/__init__.py", "setup": "setup.py", "doc": "docs/source/conf.py", } README_FILE = "README.md" CUSTOM_JS_FILE = "docs/source/_static/js/custom.js" DEPLOY_SH_FILE = ".circleci/deploy.sh" def update_version_in_file(fname, version, pattern): """Update the version in one file using a specific pattern.""" with open(fname, "r", encoding="utf-8", newline="\n") as f: code = f.read() re_pattern, replace = REPLACE_PATTERNS[pattern] replace = replace.replace("VERSION", version) code = re_pattern.sub(replace, code) with open(fname, "w", encoding="utf-8", newline="\n") as f: f.write(code) def update_version_in_examples(version): """Update the version in all examples files.""" for folder, directories, fnames in os.walk(PATH_TO_EXAMPLES): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects") if "legacy" in directories: directories.remove("legacy") for fname in fnames: if fname.endswith(".py"): update_version_in_file(os.path.join(folder, fname), version, pattern="examples") def global_version_update(version, patch=False): """Update the version in all needed files.""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(fname, version, pattern) if not patch: update_version_in_examples(version) def clean_master_ref_in_model_list(): """Replace the links from master doc tp stable doc in the model list of the README.""" # If the introduction or the conclusion of the list change, the prompts may need to be updated. _start_prompt = "🤗 Transformers currently provides the following architectures" _end_prompt = "1. Want to contribute a new model?" with open(README_FILE, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Find the start of the list. start_index = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 index = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith("1."): lines[index] = lines[index].replace( "https://huggingface.co/transformers/master/model_doc", "https://huggingface.co/transformers/model_doc", ) index += 1 with open(README_FILE, "w", encoding="utf-8", newline="\n") as f: f.writelines(lines) def get_version(): """Reads the current version in the __init__.""" with open(REPLACE_FILES["init"], "r") as f: code = f.read() default_version = REPLACE_PATTERNS["init"][0].search(code).groups()[0] return packaging.version.parse(default_version) def pre_release_work(patch=False): """Do all the necessary pre-release steps.""" # First let's get the default version: base version if we are in dev, bump minor otherwise. default_version = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!") if default_version.is_devrelease: default_version = default_version.base_version elif patch: default_version = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: default_version = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. version = input(f"Which version are you releasing? [{default_version}]") if len(version) == 0: version = default_version print(f"Updating version to {version}.") global_version_update(version, patch=patch) if not patch: print("Cleaning main README") clean_master_ref_in_model_list() def update_custom_js(version, patch=False): """Update the version table in the custom.js file.""" with open(CUSTOM_JS_FILE, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() index = 0 # First let's put the right version while not lines[index].startswith("const stableVersion ="): index += 1 lines[index] = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith("const versionMapping = {"): index += 1 # We go until the end while not lines[index].startswith("}"): search = re.search(r'^(\s+)"": "([^"]+) \(stable\)",\s*\n$', lines[index]) if search is not None: indent, old_versions = search.groups() if patch: # We add the patch to the current stable doc old_versions = f"{old_versions}/v{version}" lines[index] = f'{indent}"": "{old_versions} (stable)",\n' else: # We only keep the last of the micro versions associated to that particular release old_version = old_versions.split("/")[-1] lines[index] = f'{indent}"": "v{version} (stable)",\n{indent}"{old_version}": "{old_versions}",\n' index += 1 with open(CUSTOM_JS_FILE, "w", encoding="utf-8", newline="\n") as f: lines = f.writelines(lines) def update_deploy_sh(version, commit): with open(DEPLOY_SH_FILE, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() index = len(lines) - 1 while len(lines[index]) <= 1: index -= 1 search = re.search(r'^deploy_doc\s+"(\S+)"\s+#\s+(v\S+)\s+', lines[index]) old_commit, old_version = search.groups() lines[ index ] = f'deploy_doc "{old_commit}" {old_version}\ndeploy_doc "{commit}" # v{version} Latest stable release' with open(DEPLOY_SH_FILE, "w", encoding="utf-8", newline="\n") as f: f.writelines(lines) def post_release_work(): """Do all the necesarry post-release steps.""" # First let's get the current version current_version = get_version() dev_version = f"{current_version.major}.{current_version.minor + 1}.0.dev0" current_version = current_version.base_version # Get the current commit hash repo = git.Repo(".", search_parent_directories=True) version_commit = repo.head.object.hexsha[:7] # Check with the user we got that right. version = input(f"Which version are we developing now? [{dev_version}]") commit = input(f"Commit hash to associate to v{current_version}? [{version_commit}]") if len(version) == 0: version = dev_version if len(commit) == 0: commit = version_commit print(f"Updating version to {version}.") global_version_update(version) print("Updating doc deployment and version navbar in the source documentation.") update_custom_js(current_version) update_deploy_sh(current_version, commit) def post_patch_work(): """Do all the necesarry post-patch steps.""" # Try to guess the right info: last patch in the minor release before current version and its commit hash. current_version = get_version() repo = git.Repo(".", search_parent_directories=True) repo_tags = repo.tags default_version = None version_commit = None for tag in repo_tags: if str(tag).startswith(f"v{current_version.major}.{current_version.minor - 1}"): if default_version is None: default_version = packaging.version.parse(str(tag)[1:]) version_commit = str(tag.commit)[:7] elif packaging.version.parse(str(tag)[1:]) > default_version: default_version = packaging.version.parse(str(tag)[1:]) version_commit = str(tag.commit)[:7] # Confirm with the user or ask for the info if not found. if default_version is None: version = input("Which patch version was just released?") commit = input("Commit hash to associated to it?") else: version = input(f"Which patch version was just released? [{default_version}]") commit = input(f"Commit hash to associated to it? [{version_commit}]") if len(version) == 0: version = default_version if len(commit) == 0: commit = version_commit print("Updating doc deployment and version navbar in the source documentation.") update_custom_js(version, patch=True) update_deploy_sh(version, commit) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") args = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: post_patch_work() else: post_release_work()
AdaMix/utils/release.py/0
{ "file_path": "AdaMix/utils/release.py", "repo_id": "AdaMix", "token_count": 3915 }
82
{ "editor.formatOnSave": true, "python.formatting.provider": "black" }
AirSim-Drone-Racing-Lab/.vscode/settings.json/0
{ "file_path": "AirSim-Drone-Racing-Lab/.vscode/settings.json", "repo_id": "AirSim-Drone-Racing-Lab", "token_count": 32 }
83
## Using Docker with Linux Binaries - Prerequisites: - Install [docker-ce](https://docs.docker.com/install/linux/docker-ce/ubuntu/). - Complete the desired [post-installation steps for linux](https://docs.docker.com/install/linux/linux-postinstall/) after installing docker. At the minimum, the page tells you how torun docker without root, and other useful setup options. - Install [nvidia-docker2](https://github.com/NVIDIA/nvidia-docker/wiki/Installation-(version-2.0)). - Dockerfile: We provide a sample [dockerfile](docker/Dockerfile) you can modify. It downloads the training and qualification binaries automatically, and installs the python client. By default, it uses Ubuntu 18.04 and CUDA 10.0 with OpenGL, and is build on top of [nvidia/cudagl:10.0-devel-ubuntu18.04](https://hub.docker.com/r/nvidia/cudagl). This can be changed of course, as explained in the following section. - Building the docker image: You can use [build_docker_image.py](docker/build_docker_image.py) to build the dockerfile above (or your own custom one) **Usage** (with default arguments) ```shell cd docker/; python3 build_docker_image.py \ --dockerfile Dockerfile \ --base_image nvidia/cudagl:10.0-devel-ubuntu18.04 \ -- target_image airsim_neurips:10.0-devel-ubuntu18.04 ``` - Running the docker image: See [docker/run_docker_image.sh](docker/run_docker_image.sh) to run the docker image: **Usage** - for running default image, training binaries, in windowed mode: `$ ./run_docker_image.sh "" training` - for running default image, training binaries, in headless mode: `$ ./run_docker_image.sh "" training headless` - for running a custom image in windowed mode, pass in you image name and tag: `$ ./run_docker_image.sh DOCKER_IMAGE_NAME:TAG` - for running a custom image in headless mode, pass in you image name and tag, followed by "headless": `$ ./run_docker_image.sh DOCKER_IMAGE_NAME:TAG headless`
AirSim-Drone-Racing-Lab/docs/docker.md/0
{ "file_path": "AirSim-Drone-Racing-Lab/docs/docker.md", "repo_id": "AirSim-Drone-Racing-Lab", "token_count": 665 }
84
import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import PercentFormatter def calculate_gate_stats(predictions, poses): # display averages mean_pred = np.mean(predictions, axis=0) mean_pose = np.mean(poses, axis=0) print('Means (prediction, GT) : R({} , {}) Theta({} , {}) Psi({} , {}) Phi_rel({} , {})'.format( mean_pred[0], mean_pose[0], mean_pred[1], mean_pose[1], mean_pred[2], mean_pose[2], mean_pred[3], mean_pose[3])) # display mean absolute error abs_diff = np.abs(predictions-poses) mae = np.mean(abs_diff, axis=0) mae[1:] = mae[1:] * 180/np.pi print('MAE : R({}) Theta({}) Psi({}) Phi_rel({})'.format(mae[0], mae[1], mae[2], mae[3])) # display standard deviation of error std = np.std(abs_diff, axis=0) / np.sqrt(abs_diff.shape[0]) std[1:] = std[1:] * 180 / np.pi print('Standard error: R({}) Theta({}) Psi({}) Phi_rel({})'.format(std[0], std[1], std[2], std[3])) # display max errors max_diff = np.max(abs_diff, axis=0) print('Max error : R({}) Theta({}) Psi({}) Phi_rel({})'.format(max_diff[0], max_diff[1], max_diff[2], max_diff[3])) fig, axs = plt.subplots(1, 4, tight_layout=True) weights = np.ones(len(abs_diff[:, 0]))/len(abs_diff[:, 0]) axs[0].hist(abs_diff[:, 0], bins=30, range=(0,2.0), weights=weights, density=False) axs[1].hist(abs_diff[:, 1]*180/np.pi, bins=30, range=(0, np.pi/20*180/np.pi), weights=weights, density=False) axs[2].hist(abs_diff[:, 2]*180/np.pi, bins=30, range=(0, np.pi/20*180/np.pi), weights=weights, density=False) axs[3].hist(abs_diff[:, 3]*180/np.pi, bins=50, range=(0, np.pi/4*180/np.pi), weights=weights, density=False) for idx in range(4): axs[idx].yaxis.set_major_formatter(PercentFormatter(xmax=1)) axs[0].set_title(r'$r$') axs[1].set_title(r'$\theta$') axs[2].set_title(r'$\phi$') axs[3].set_title(r'$\psi$') axs[0].set_xlabel('[m]') axs[1].set_xlabel(r'[deg]') axs[2].set_xlabel(r'[deg]') axs[3].set_xlabel(r'[deg]') # axs[1].set_xlabel(r'[$^{\circ}$]') # axs[2].set_xlabel(r'[$^{\circ}$]') # axs[3].set_xlabel(r'[$^{\circ}$]') axs[0].set_ylabel('Error Density') plt.show() print('bla') # fig, axs = plt.subplots(1, 4, tight_layout=True) # N, bins, patches = axs[0].hist(abs_diff[:, 0], bins=100, range=(0,3), density=True) # plt.title("R MAE histogram") # _ = plt.hist(abs_diff[:, 0], np.linspace(0.0, 10.0, num=1000)) # plt.show() # plt.title("Theta MAE histogram") # _ = plt.hist(abs_diff[:, 1], np.linspace(0.0, np.pi, num=1000)) # plt.show() # plt.title("Phi MAE histogram") # _ = plt.hist(abs_diff[:, 2], np.linspace(0.0, np.pi, num=1000)) # plt.show() # plt.title("Phi_rel MAE histogram") # _ = plt.hist(abs_diff[:, 3], np.linspace(0.0, np.pi, num=100)) # plt.show() def calculate_v_stats(predictions, v_gt): # display averages mean_pred = np.mean(predictions, axis=0) mean_v = np.mean(v_gt, axis=0) print('Means (prediction, GT) : R({} , {}) Theta({} , {}) Psi({} , {}) Phi_rel({} , {})'.format( mean_pred[0], mean_v[0], mean_pred[1], mean_v[1], mean_pred[2], mean_v[2], mean_pred[3], mean_v[3])) # display mean absolute error abs_diff = np.abs(predictions-v_gt) mae = np.mean(abs_diff, axis=0) print('Absolute errors : Vx({}) Vy({}) Vz({}) Vyaw({})'.format(mae[0], mae[1], mae[2], mae[3])) # display max errors max_diff = np.max(abs_diff, axis=0) print('Max error : Vx({}) Vy({}) Vz({}) Vyaw({})'.format(max_diff[0], max_diff[1], max_diff[2], max_diff[3])) plt.title("Vx Absolute Error histogram") _ = plt.hist(abs_diff[:, 0], np.linspace(0.0, 10.0, num=1000)) plt.show() plt.title("Vy Absolute Error histogram") _ = plt.hist(abs_diff[:, 1], np.linspace(0.0, 3, num=1000)) plt.show() plt.title("Vz Absolute Error histogram") _ = plt.hist(abs_diff[:, 2], np.linspace(0.0, 3, num=1000)) plt.show() plt.title("Vyaw Absolute Error histogram") _ = plt.hist(abs_diff[:, 3], np.linspace(0.0, 3, num=1000)) plt.show()
AirSim-Drone-Racing-VAE-Imitation/racing_utils/stats_utils.py/0
{ "file_path": "AirSim-Drone-Racing-VAE-Imitation/racing_utils/stats_utils.py", "repo_id": "AirSim-Drone-Racing-VAE-Imitation", "token_count": 1962 }
85
import glob import os import time disqualified_racers = set() finished_racers = set() def open_file(): list_of_files = glob.glob('*.log') latest_file = max(list_of_files, key=os.path.getctime) print("Opened file: " + latest_file) return open(latest_file, "r+") def follow(filename): filename.seek(0,2) while True: line = filename.readline() if not line: time.sleep(0.1) continue yield line def process(line): tokens = line.split() if len(tokens) != 3 and len(tokens) != 5: print("ERROR Bad line: " + line) print("Tokens: " + str(tokens)) return if tokens[3] == "disqualified" and tokens[4] == '1' and tokens[0] not in disqualified_racers: disqualified_racers.add(tokens[0]) handle_disqualified_racer(tokens[0]) return if tokens[3] == "finished" and tokens[4] == '1' and tokens[0] not in finished_racers: finished_racers.add(tokens[0]) handle_finished_racer(tokens[0]) return if tokens[3] == "gates_passed": handle_gate_passed(tokens[0], tokens[4]) def handle_disqualified_racer(racer_name): print(racer_name + " has been disqualified!") #Start a new race. def handle_finished_racer(racer_name): print(racer_name + " has finished!") #Start a new race. def handle_gate_passed(racer_name, gate_idx_passed): # log file gate indices are 1-indexed, not 0-indexed print("{} passed gate idx {}".format(racer_name, gate_idx_passed - 1)) def main(): f = open_file() for line in follow(f): process(line) if __name__ == "__main__": main()
AirSim-NeurIPS2019-Drone-Racing/scripts/logging/log_monitor.py/0
{ "file_path": "AirSim-NeurIPS2019-Drone-Racing/scripts/logging/log_monitor.py", "repo_id": "AirSim-NeurIPS2019-Drone-Racing", "token_count": 723 }
86
{ "name": "AzureTRE", // Uncomment when debugging using Jetbrains // "features": { // "ghcr.io/devcontainers/features/sshd:1": { // "version": "latest" // } // }, "build": { "context": "..", "dockerfile": "Dockerfile", "args": { // To ensure that the group ID for the docker group in the container // matches the group ID on the host, add this to your .bash_profile on the host // export DOCKER_GROUP_ID=$(getent group docker | awk -F ":" '{ print $3 }') "DOCKER_GROUP_ID": "${localEnv:DOCKER_GROUP_ID}", "INTERACTIVE": "true" } }, "runArgs": [ "--network", "host" ], "mounts": [ // Keep command history "type=volume,source=tre-bashhistory,target=/home/vscode/commandhistory", // Mounts the login details from the host machine to azcli works in the container "type=bind,source=${env:HOME}${env:USERPROFILE}/.azure,target=/home/vscode/.azure", // Mount docker socket for docker builds "type=bind,source=/var/run/docker.sock,target=/var/run/docker.sock", // Mounts the github cli login details from the host machine to the container (~/.config/gh/hosts.yml) "type=bind,source=${env:HOME}${env:USERPROFILE}/.config,target=/home/vscode/.config", ], "remoteUser": "vscode", "containerEnv": { "DOCKER_BUILDKIT": "1" }, "remoteEnv": { // this is used for SuperLinter "LOCAL_WORKSPACE_FOLDER": "${localWorkspaceFolder}" }, "customizations": { "vscode": { // Set *default* container specific settings.json values on container create. "settings": { "terminal.integrated.defaultProfile.linux": "bash", "python.pythonPath": "/usr/local/bin/python", "python.linting.enabled": true, "python.linting.pylintEnabled": false, "python.linting.flake8Enabled": true, "python.formatting.provider": "black", "python.formatting.autopep8Path": "/usr/local/py-utils/bin/autopep8", "python.formatting.blackPath": "/usr/local/py-utils/bin/black", "python.formatting.yapfPath": "/usr/local/py-utils/bin/yapf", "python.linting.banditPath": "/usr/local/py-utils/bin/bandit", "python.linting.flake8Path": "/usr/local/py-utils/bin/flake8", "python.linting.mypyPath": "/usr/local/py-utils/bin/mypy", "python.linting.pycodestylePath": "/usr/local/py-utils/bin/pycodestyle", "python.linting.pydocstylePath": "/usr/local/py-utils/bin/pydocstyle", "python.linting.pylintPath": "/usr/local/py-utils/bin/pylint", "python.testing.unittestEnabled": false, "python.testing.pytestEnabled": true, "python.testing.pytestArgs": [ "--ignore=e2e_tests", "-W ignore::DeprecationWarning" ], "python.testing.cwd": "${workspaceFolder}", "files.associations": { "*.terraform": "terraform" }, "launch": { "configurations": [ { "name": "TRE API", "type": "python", "module": "uvicorn", "request": "launch", "args": [ "main:app", "--reload", "--host", "::", "--port", "8000" ], "jinja": true, "justMyCode": false, "console": "integratedTerminal", "preLaunchTask": "Copy_env_file_for_api_debug", "cwd": "${workspaceFolder}/api_app", "envFile": "${workspaceFolder}/api_app/.env", "env": { "OTEL_RESOURCE_ATTRIBUTES": "service.name=api,service.instance.id=local_debug,service.version=dev" } }, { "name": "E2E Extended", "type": "python", "request": "launch", "module": "pytest", "justMyCode": true, "cwd": "${workspaceFolder}/e2e_tests/", "preLaunchTask": "Copy_env_file_for_e2e_debug", "args": [ "-m", "extended", "--verify", "false" ] }, { "name": "E2E Extended AAD", "type": "python", "request": "launch", "module": "pytest", "justMyCode": true, "cwd": "${workspaceFolder}/e2e_tests/", "preLaunchTask": "Copy_env_file_for_e2e_debug", "args": [ "-m", "extended_aad", "--verify", "false" ] }, { "name": "E2E Shared Services", "type": "python", "request": "launch", "module": "pytest", "justMyCode": true, "cwd": "${workspaceFolder}/e2e_tests/", "preLaunchTask": "Copy_env_file_for_e2e_debug", "args": [ "-m", "shared_services", "--verify", "false" ] }, { "name": "E2E Performance", "type": "python", "request": "launch", "module": "pytest", "justMyCode": true, "cwd": "${workspaceFolder}/e2e_tests/", "preLaunchTask": "Copy_env_file_for_e2e_debug", "args": [ "-m", "performance", "--verify", "false" ] }, { "name": "E2E Smoke", "type": "python", "request": "launch", "module": "pytest", "justMyCode": true, "cwd": "${workspaceFolder}/e2e_tests/", "preLaunchTask": "Copy_env_file_for_e2e_debug", "args": [ "-m", "smoke", "--verify", "false" ] }, { "name": "E2E Airlock", "type": "python", "request": "launch", "module": "pytest", "justMyCode": true, "cwd": "${workspaceFolder}/e2e_tests/", "preLaunchTask": "Copy_env_file_for_e2e_debug", "args": [ "-m", "airlock", "--verify", "false" ] }, { "name": "Resource Processor", "type": "python", "request": "launch", "program": "vmss_porter/runner.py", "console": "integratedTerminal", "preLaunchTask": "Install_resource_processor_dependencies", "cwd": "${workspaceFolder}/resource_processor", "envFile": "${workspaceFolder}/core/private.env", "env": { "PYTHONPATH": ".", "OTEL_RESOURCE_ATTRIBUTES": "service.name=resource_processor,service.instance.id=local_debug,service.version=dev" }, "justMyCode": false }, { "name": "Debug Python file", "type": "python", "request": "launch", "program": "${file}", "console": "integratedTerminal", "purpose": [ "debug-test" ] }, { "name": "Launch Edge (localhost)", "type": "pwa-msedge", "request": "launch", "url": "http://localhost:3000", "webRoot": "${workspaceFolder}/ui/app" }, { "name": "Launch Chrome (localhost)", "type": "pwa-chrome", "request": "launch", "url": "http://localhost:3000", "webRoot": "${workspaceFolder}/ui/app" } ], "compounds": [] }, "tasks": { "version": "2.0.0", "tasks": [ { "label": "Copy_env_file_for_api_debug", "command": "./.devcontainer/scripts/consolidate_env.sh ${workspaceFolder} ${workspaceFolder}/api_app/.env", "type": "shell" }, { "label": "Copy_env_file_for_e2e_debug", "command": "./.devcontainer/scripts/consolidate_env.sh ${workspaceFolder} ${workspaceFolder}/e2e_tests/.env", "type": "shell" }, { "label": "Install_resource_processor_dependencies", "command": "pip install -r ./resource_processor/vmss_porter/requirements.txt", "type": "shell" }, { "label": "Unit_tests", "group": { "kind": "test", "isDefault": true }, "command": "pytest", "args": [ "--ignore=e2e_tests" ] }, { "label": "Smoke_tests", "group": "test", "command": "python", "options": { "cwd": "${workspaceFolder}/e2e_tests/" }, "args": [ "-m", "pytest", "-m", "smoke" ] } ] } }, // Add the IDs of extensions you want installed when the container is created. "extensions": [ "ms-python.python", "ms-python.pylance", "hashicorp.terraform", "github.vscode-pull-request-github", "getporter.porter-vscode", "davidanson.vscode-markdownlint", "editorconfig.editorconfig", "mikestead.dotenv", "humao.rest-client", "timonwong.shellcheck", "ms-azuretools.vscode-azurefunctions" ] } }, "forwardPorts": [ 8000 ], // Run commands after the container is created. "postCreateCommand": "./.devcontainer/scripts/post-create.sh" }
AzureTRE/.devcontainer/devcontainer.json/0
{ "file_path": "AzureTRE/.devcontainer/devcontainer.json", "repo_id": "AzureTRE", "token_count": 5697 }
87
from distutils.util import strtobool import logging import azure.functions as func import datetime import uuid import json import os from shared_code import constants, blob_operations def main(msg: func.ServiceBusMessage, outputEvent: func.Out[func.EventGridOutputEvent]): logging.info("Python ServiceBus queue trigger processed message - Malware scan result arrived!") body = msg.get_body().decode('utf-8') logging.info(f'Python ServiceBus queue trigger processed message: {body}') status_message = None try: enable_malware_scanning = strtobool(os.environ["ENABLE_MALWARE_SCANNING"]) except KeyError as e: logging.error("environment variable 'ENABLE_MALWARE_SCANNING' does not exists. cannot continue.") raise e # Sanity if not enable_malware_scanning: # A scan result arrived despite the fact malware scanning should be disabled. This may result in unexpected behaviour. # Raise an exception and stop error_msg = "Malware scanning is disabled, however a malware scan result arrived. Ignoring it." logging.error(error_msg) raise Exception(error_msg) try: json_body = json.loads(body) blob_uri = json_body["data"]["blobUri"] verdict = json_body["data"]["scanResultType"] except KeyError as e: logging.error("body was not as expected {}", e) raise e # Extract request id _, request_id, _ = blob_operations.get_blob_info_from_blob_url(blob_url=blob_uri) # If clean, we can continue and move the request to the review stage # Otherwise, move the request to the blocked stage completed_step = constants.STAGE_SUBMITTED if verdict == constants.NO_THREATS: logging.info(f'No malware were found in request id {request_id}, moving to {constants.STAGE_IN_REVIEW} stage') new_status = constants.STAGE_IN_REVIEW else: logging.info(f'Malware was found in request id {request_id}, moving to {constants.STAGE_BLOCKING_INPROGRESS} stage') new_status = constants.STAGE_BLOCKING_INPROGRESS status_message = verdict # Send the event to indicate this step is done (and to request a new status change) outputEvent.set( func.EventGridOutputEvent( id=str(uuid.uuid4()), data={"completed_step": completed_step, "new_status": new_status, "request_id": request_id, "status_message": status_message}, subject=request_id, event_type="Airlock.StepResult", event_time=datetime.datetime.utcnow(), data_version=constants.STEP_RESULT_EVENT_DATA_VERSION))
AzureTRE/airlock_processor/ScanResultTrigger/__init__.py/0
{ "file_path": "AzureTRE/airlock_processor/ScanResultTrigger/__init__.py", "repo_id": "AzureTRE", "token_count": 980 }
88
from json import JSONDecodeError import os import pytest from mock import MagicMock, patch from pydantic import ValidationError from StatusChangedQueueTrigger import get_request_files, main, extract_properties, get_source_dest_for_copy, is_require_data_copy from azure.functions.servicebus import ServiceBusMessage from shared_code import constants class TestPropertiesExtraction(): def test_extract_prop_valid_body_return_all_values(self): message_body = "{ \"data\": { \"request_id\":\"123\",\"new_status\":\"456\" ,\"previous_status\":\"789\" , \"type\":\"101112\", \"workspace_id\":\"ws1\" }}" message = _mock_service_bus_message(body=message_body) req_prop = extract_properties(message) assert req_prop.request_id == "123" assert req_prop.new_status == "456" assert req_prop.previous_status == "789" assert req_prop.type == "101112" assert req_prop.workspace_id == "ws1" def test_extract_prop_missing_arg_throws(self): message_body = "{ \"data\": { \"status\":\"456\" , \"type\":\"789\", \"workspace_id\":\"ws1\" }}" message = _mock_service_bus_message(body=message_body) pytest.raises(ValidationError, extract_properties, message) message_body = "{ \"data\": { \"request_id\":\"123\", \"type\":\"789\", \"workspace_id\":\"ws1\" }}" message = _mock_service_bus_message(body=message_body) pytest.raises(ValidationError, extract_properties, message) message_body = "{ \"data\": { \"request_id\":\"123\",\"status\":\"456\" , \"workspace_id\":\"ws1\" }}" message = _mock_service_bus_message(body=message_body) pytest.raises(ValidationError, extract_properties, message) message_body = "{ \"data\": { \"request_id\":\"123\",\"status\":\"456\" , \"type\":\"789\" }}" message = _mock_service_bus_message(body=message_body) pytest.raises(ValidationError, extract_properties, message) def test_extract_prop_invalid_json_throws(self): message_body = "Hi" message = _mock_service_bus_message(body=message_body) pytest.raises(JSONDecodeError, extract_properties, message) class TestDataCopyProperties(): def test_only_specific_status_are_triggering_copy(self): assert not is_require_data_copy("Mitzi") assert not is_require_data_copy("") assert not is_require_data_copy("submit") assert not is_require_data_copy("approved") assert not is_require_data_copy("REJected") assert not is_require_data_copy("blocked") # Testing all values that should return true assert is_require_data_copy("submITted") assert is_require_data_copy("submitted") assert is_require_data_copy("approval_in_progress") assert is_require_data_copy("rejection_in_progress") assert is_require_data_copy("blocking_in_progress") def test_wrong_status_raises_when_getting_storage_account_properties(self): pytest.raises(Exception, get_source_dest_for_copy, "Miaow", "import") def test_wrong_type_raises_when_getting_storage_account_properties(self): pytest.raises(Exception, get_source_dest_for_copy, "accepted", "somethingelse") class TestFileEnumeration(): @patch("StatusChangedQueueTrigger.set_output_event_to_report_request_files") @patch("StatusChangedQueueTrigger.get_request_files") @patch("StatusChangedQueueTrigger.is_require_data_copy", return_value=False) @patch.dict(os.environ, {"TRE_ID": "tre-id"}, clear=True) def test_get_request_files_should_be_called_on_submit_stage(self, _, mock_get_request_files, mock_set_output_event_to_report_request_files): message_body = "{ \"data\": { \"request_id\":\"123\",\"new_status\":\"submitted\" ,\"previous_status\":\"draft\" , \"type\":\"export\", \"workspace_id\":\"ws1\" }}" message = _mock_service_bus_message(body=message_body) main(msg=message, stepResultEvent=MagicMock(), dataDeletionEvent=MagicMock()) assert mock_get_request_files.called assert mock_set_output_event_to_report_request_files.called @patch("StatusChangedQueueTrigger.set_output_event_to_report_failure") @patch("StatusChangedQueueTrigger.get_request_files") @patch("StatusChangedQueueTrigger.handle_status_changed") def test_get_request_files_should_not_be_called_if_new_status_is_not_submit(self, _, mock_get_request_files, mock_set_output_event_to_report_failure): message_body = "{ \"data\": { \"request_id\":\"123\",\"new_status\":\"fake-status\" ,\"previous_status\":\"None\" , \"type\":\"export\", \"workspace_id\":\"ws1\" }}" message = _mock_service_bus_message(body=message_body) main(msg=message, stepResultEvent=MagicMock(), dataDeletionEvent=MagicMock()) assert not mock_get_request_files.called assert not mock_set_output_event_to_report_failure.called @patch("StatusChangedQueueTrigger.set_output_event_to_report_failure") @patch("StatusChangedQueueTrigger.get_request_files") @patch("StatusChangedQueueTrigger.handle_status_changed", side_effect=Exception) def test_get_request_files_should_be_called_when_failing_during_submit_stage(self, _, mock_get_request_files, mock_set_output_event_to_report_failure): message_body = "{ \"data\": { \"request_id\":\"123\",\"new_status\":\"submitted\" ,\"previous_status\":\"draft\" , \"type\":\"export\", \"workspace_id\":\"ws1\" }}" message = _mock_service_bus_message(body=message_body) main(msg=message, stepResultEvent=MagicMock(), dataDeletionEvent=MagicMock()) assert mock_get_request_files.called assert mock_set_output_event_to_report_failure.called @patch("StatusChangedQueueTrigger.blob_operations.get_request_files") @patch.dict(os.environ, {"TRE_ID": "tre-id"}, clear=True) def test_get_request_files_called_with_correct_storage_account(self, mock_get_request_files): source_storage_account_for_submitted_stage = constants.STORAGE_ACCOUNT_NAME_EXPORT_INTERNAL + 'ws1' message_body = "{ \"data\": { \"request_id\":\"123\",\"new_status\":\"submitted\" ,\"previous_status\":\"draft\" , \"type\":\"export\", \"workspace_id\":\"ws1\" }}" message = _mock_service_bus_message(body=message_body) request_properties = extract_properties(message) get_request_files(request_properties) mock_get_request_files.assert_called_with(account_name=source_storage_account_for_submitted_stage, request_id=request_properties.request_id) class TestFilesDeletion(): @patch("StatusChangedQueueTrigger.set_output_event_to_trigger_container_deletion") @patch.dict(os.environ, {"TRE_ID": "tre-id"}, clear=True) def test_delete_request_files_should_be_called_on_cancel_stage(self, mock_set_output_event_to_trigger_container_deletion): message_body = "{ \"data\": { \"request_id\":\"123\",\"new_status\":\"cancelled\" ,\"previous_status\":\"draft\" , \"type\":\"export\", \"workspace_id\":\"ws1\" }}" message = _mock_service_bus_message(body=message_body) main(msg=message, stepResultEvent=MagicMock(), dataDeletionEvent=MagicMock()) assert mock_set_output_event_to_trigger_container_deletion.called def _mock_service_bus_message(body: str): encoded_body = str.encode(body, "utf-8") message = ServiceBusMessage(body=encoded_body, message_id="123", user_properties={}) return message
AzureTRE/airlock_processor/tests/test_status_change_queue_trigger.py/0
{ "file_path": "AzureTRE/airlock_processor/tests/test_status_change_queue_trigger.py", "repo_id": "AzureTRE", "token_count": 2766 }
89
from typing import Callable, Type from fastapi import HTTPException, status from db.errors import UnableToAccessDatabase from db.repositories.base import BaseRepository from resources.strings import UNABLE_TO_GET_STATE_STORE_CLIENT from services.logging import logger def get_repository(repo_type: Type[BaseRepository],) -> Callable: async def _get_repo() -> BaseRepository: try: return await repo_type.create() except UnableToAccessDatabase: logger.exception(UNABLE_TO_GET_STATE_STORE_CLIENT) raise HTTPException( status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail=UNABLE_TO_GET_STATE_STORE_CLIENT, ) return _get_repo
AzureTRE/api_app/api/helpers.py/0
{ "file_path": "AzureTRE/api_app/api/helpers.py", "repo_id": "AzureTRE", "token_count": 299 }
90
import asyncio from fastapi import APIRouter, Depends, HTTPException, Header, status, Request, Response from jsonschema.exceptions import ValidationError from api.helpers import get_repository from api.dependencies.workspaces import get_operation_by_id_from_path, get_workspace_by_id_from_path, get_deployed_workspace_by_id_from_path, get_deployed_workspace_service_by_id_from_path, get_workspace_service_by_id_from_path, get_user_resource_by_id_from_path from db.errors import InvalidInput, MajorVersionUpdateDenied, TargetTemplateVersionDoesNotExist, UserNotAuthorizedToUseTemplate, VersionDowngradeDenied from db.repositories.operations import OperationRepository from db.repositories.resource_templates import ResourceTemplateRepository from db.repositories.resources_history import ResourceHistoryRepository from db.repositories.user_resources import UserResourceRepository from db.repositories.workspaces import WorkspaceRepository from db.repositories.workspace_services import WorkspaceServiceRepository from models.domain.resource import ResourceType from models.domain.workspace import WorkspaceAuth, WorkspaceRole from models.schemas.operation import OperationInList, OperationInResponse from models.schemas.user_resource import UserResourceInResponse, UserResourceInCreate, UserResourcesInList from models.schemas.workspace import WorkspaceAuthInResponse, WorkspaceInCreate, WorkspacesInList, WorkspaceInResponse from models.schemas.workspace_service import WorkspaceServiceInCreate, WorkspaceServicesInList, WorkspaceServiceInResponse from models.schemas.resource import ResourceHistoryInList, ResourcePatch from models.schemas.resource_template import ResourceTemplateInformationInList from resources import strings from services.access_service import AuthConfigValidationError from services.authentication import get_current_admin_user, \ get_access_service, get_current_workspace_owner_user, get_current_workspace_owner_or_researcher_user, get_current_tre_user_or_tre_admin, \ get_current_workspace_owner_or_tre_admin, \ get_current_workspace_owner_or_researcher_user_or_airlock_manager, \ get_current_workspace_owner_or_airlock_manager, \ get_current_workspace_owner_or_researcher_user_or_airlock_manager_or_tre_admin from services.authentication import extract_auth_information from services.azure_resource_status import get_azure_resource_status from azure.cosmos.exceptions import CosmosAccessConditionFailedError from .resource_helpers import cascaded_update_resource, delete_validation, enrich_resource_with_available_upgrades, get_identity_role_assignments, save_and_deploy_resource, construct_location_header, send_uninstall_message, \ send_custom_action_message, send_resource_request_message, update_user_resource from models.domain.request_action import RequestAction from services.logging import logger workspaces_core_router = APIRouter(dependencies=[Depends(get_current_tre_user_or_tre_admin)]) workspaces_shared_router = APIRouter(dependencies=[Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager_or_tre_admin)]) workspace_services_workspace_router = APIRouter(dependencies=[Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager)]) user_resources_workspace_router = APIRouter(dependencies=[Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager)]) def validate_user_has_valid_role_for_user_resource(user, user_resource): if "WorkspaceOwner" in user.roles: return if ("WorkspaceResearcher" in user.roles or "AirlockManager" in user.roles) and user_resource.ownerId == user.id: return raise HTTPException(status_code=status.HTTP_403_FORBIDDEN, detail=strings.ACCESS_USER_IS_NOT_OWNER_OR_RESEARCHER) # WORKSPACE ROUTES @workspaces_core_router.get("/workspaces", response_model=WorkspacesInList, name=strings.API_GET_ALL_WORKSPACES) async def retrieve_users_active_workspaces(request: Request, user=Depends(get_current_tre_user_or_tre_admin), workspace_repo=Depends(get_repository(WorkspaceRepository)), resource_template_repo=Depends(get_repository(ResourceTemplateRepository))) -> WorkspacesInList: try: user = await get_current_admin_user(request) workspaces = await workspace_repo.get_active_workspaces() await asyncio.gather(*[enrich_resource_with_available_upgrades(workspace, resource_template_repo) for workspace in workspaces]) return WorkspacesInList(workspaces=workspaces) except Exception: workspaces = await workspace_repo.get_active_workspaces() access_service = get_access_service() user_role_assignments = get_identity_role_assignments(user) def _safe_get_workspace_role(user, workspace, user_role_assignments): # provide graceful failure if there is a workspace without auth info # to prevent it blocking listing other workspaces try: return access_service.get_workspace_role(user, workspace, user_role_assignments) except AuthConfigValidationError: return WorkspaceRole.NoRole user_workspaces = [workspace for workspace in workspaces if _safe_get_workspace_role(user, workspace, user_role_assignments) != WorkspaceRole.NoRole] await asyncio.gather(*[enrich_resource_with_available_upgrades(workspace, resource_template_repo) for workspace in user_workspaces]) return WorkspacesInList(workspaces=user_workspaces) @workspaces_shared_router.get("/workspaces/{workspace_id}", response_model=WorkspaceInResponse, name=strings.API_GET_WORKSPACE_BY_ID) async def retrieve_workspace_by_workspace_id(workspace=Depends(get_workspace_by_id_from_path), resource_template_repo=Depends(get_repository(ResourceTemplateRepository))) -> WorkspaceInResponse: await enrich_resource_with_available_upgrades(workspace, resource_template_repo) return WorkspaceInResponse(workspace=workspace) @workspaces_core_router.get("/workspaces/{workspace_id}/scopeid", response_model=WorkspaceAuthInResponse, name=strings.API_GET_WORKSPACE_SCOPE_ID_BY_WORKSPACE_ID) async def retrieve_workspace_scope_id_by_workspace_id(workspace=Depends(get_workspace_by_id_from_path)) -> WorkspaceAuthInResponse: wsAuth = WorkspaceAuth() if "scope_id" in workspace.properties: wsAuth.scopeId = workspace.properties["scope_id"] return WorkspaceAuthInResponse(workspaceAuth=wsAuth) @workspaces_core_router.post("/workspaces", status_code=status.HTTP_202_ACCEPTED, response_model=OperationInResponse, name=strings.API_CREATE_WORKSPACE, dependencies=[Depends(get_current_admin_user)]) async def create_workspace(workspace_create: WorkspaceInCreate, response: Response, user=Depends(get_current_admin_user), workspace_repo=Depends(get_repository(WorkspaceRepository)), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), operations_repo=Depends(get_repository(OperationRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository))) -> OperationInResponse: try: # TODO: This requires Directory.ReadAll ( Application.Read.All ) to be enabled in the Azure AD application to enable a users workspaces to be listed. This should be made optional. auth_info = extract_auth_information(workspace_create.properties) workspace, resource_template = await workspace_repo.create_workspace_item(workspace_create, auth_info, user.id, user.roles) except (ValidationError, ValueError) as e: logger.exception("Failed to create workspace model instance") raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(e)) except UserNotAuthorizedToUseTemplate as e: logger.exception("User not authorized to use template") raise HTTPException(status_code=status.HTTP_403_FORBIDDEN, detail=str(e)) except InvalidInput as e: raise HTTPException(status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, detail=str(e)) operation = await save_and_deploy_resource( resource=workspace, resource_repo=workspace_repo, operations_repo=operations_repo, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user, resource_template=resource_template) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) @workspaces_core_router.patch("/workspaces/{workspace_id}", status_code=status.HTTP_202_ACCEPTED, response_model=OperationInResponse, name=strings.API_UPDATE_WORKSPACE, dependencies=[Depends(get_current_admin_user)]) async def patch_workspace(resource_patch: ResourcePatch, response: Response, user=Depends(get_current_admin_user), workspace=Depends(get_workspace_by_id_from_path), workspace_repo: WorkspaceRepository = Depends(get_repository(WorkspaceRepository)), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), operations_repo=Depends(get_repository(OperationRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository)), etag: str = Header(...), force_version_update: bool = False) -> OperationInResponse: try: is_disablement = resource_patch.isEnabled is not None and not resource_patch.isEnabled if is_disablement: await cascaded_update_resource(resource_patch, workspace, user, force_version_update, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, resource_repo=workspace_repo) patched_workspace, _ = await workspace_repo.patch_workspace(workspace, resource_patch, etag, resource_template_repo, resource_history_repo, user, force_version_update) # Send the message to service bus operation = await send_resource_request_message( resource=patched_workspace, operations_repo=operations_repo, resource_repo=workspace_repo, user=user, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, action=RequestAction.Upgrade, is_cascade=is_disablement) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) except CosmosAccessConditionFailedError: raise HTTPException(status_code=status.HTTP_409_CONFLICT, detail=strings.ETAG_CONFLICT) except ValidationError as v: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=v.message) except (MajorVersionUpdateDenied, TargetTemplateVersionDoesNotExist, VersionDowngradeDenied) as e: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(e)) @workspaces_core_router.delete("/workspaces/{workspace_id}", response_model=OperationInResponse, name=strings.API_DELETE_WORKSPACE, dependencies=[Depends(get_current_admin_user)]) async def delete_workspace(response: Response, user=Depends(get_current_admin_user), workspace=Depends(get_workspace_by_id_from_path), operations_repo=Depends(get_repository(OperationRepository)), workspace_repo=Depends(get_repository(WorkspaceRepository)), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository))) -> OperationInResponse: if await delete_validation(workspace, workspace_repo): operation = await send_uninstall_message( resource=workspace, resource_repo=workspace_repo, operations_repo=operations_repo, resource_type=ResourceType.Workspace, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user, is_cascade=True ) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) @workspaces_core_router.post("/workspaces/{workspace_id}/invoke-action", status_code=status.HTTP_202_ACCEPTED, response_model=OperationInResponse, name=strings.API_INVOKE_ACTION_ON_WORKSPACE, dependencies=[Depends(get_current_admin_user)]) async def invoke_action_on_workspace(response: Response, action: str, user=Depends(get_current_admin_user), workspace=Depends(get_workspace_by_id_from_path), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), operations_repo=Depends(get_repository(OperationRepository)), workspace_repo=Depends(get_repository(WorkspaceRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository))) -> OperationInResponse: operation = await send_custom_action_message( resource=workspace, resource_repo=workspace_repo, custom_action=action, resource_type=ResourceType.Workspace, operations_repo=operations_repo, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) # workspace operations # This method only returns templates that the authenticated user is authorized to use @workspaces_shared_router.get("/workspaces/{workspace_id}/workspace-service-templates", response_model=ResourceTemplateInformationInList, name=strings.API_GET_WORKSPACE_SERVICE_TEMPLATES_IN_WORKSPACE) async def get_workspace_service_templates( workspace=Depends(get_workspace_by_id_from_path), template_repo=Depends(get_repository(ResourceTemplateRepository)), user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager_or_tre_admin)) -> ResourceTemplateInformationInList: template_infos = await template_repo.get_templates_information(ResourceType.WorkspaceService, user.roles) return ResourceTemplateInformationInList(templates=template_infos) # This method only returns templates that the authenticated user is authorized to use @workspaces_shared_router.get("/workspaces/{workspace_id}/workspace-service-templates/{service_template_name}/user-resource-templates", response_model=ResourceTemplateInformationInList, name=strings.API_GET_USER_RESOURCE_TEMPLATES_IN_WORKSPACE) async def get_user_resource_templates( service_template_name: str, workspace=Depends(get_workspace_by_id_from_path), template_repo=Depends(get_repository(ResourceTemplateRepository)), user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager_or_tre_admin)) -> ResourceTemplateInformationInList: template_infos = await template_repo.get_templates_information(ResourceType.UserResource, user.roles, service_template_name) return ResourceTemplateInformationInList(templates=template_infos) @workspaces_shared_router.get("/workspaces/{workspace_id}/operations", response_model=OperationInList, name=strings.API_GET_RESOURCE_OPERATIONS, dependencies=[Depends(get_current_workspace_owner_or_tre_admin)]) async def retrieve_workspace_operations_by_workspace_id(workspace=Depends(get_workspace_by_id_from_path), operations_repo=Depends(get_repository(OperationRepository))) -> OperationInList: return OperationInList(operations=await operations_repo.get_operations_by_resource_id(resource_id=workspace.id)) @workspaces_shared_router.get("/workspaces/{workspace_id}/operations/{operation_id}", response_model=OperationInResponse, name=strings.API_GET_RESOURCE_OPERATION_BY_ID, dependencies=[Depends(get_current_workspace_owner_or_tre_admin)]) async def retrieve_workspace_operation_by_workspace_id_and_operation_id(workspace=Depends(get_workspace_by_id_from_path), operation=Depends(get_operation_by_id_from_path)) -> OperationInList: return OperationInResponse(operation=operation) @workspaces_shared_router.get("/workspaces/{workspace_id}/history", response_model=ResourceHistoryInList, name=strings.API_GET_RESOURCE_HISTORY, dependencies=[Depends(get_current_workspace_owner_or_tre_admin)]) async def retrieve_workspace_history_by_workspace_id(workspace=Depends(get_workspace_by_id_from_path), resource_history_repo=Depends(get_repository(ResourceHistoryRepository))) -> ResourceHistoryInList: return ResourceHistoryInList(resource_history=await resource_history_repo.get_resource_history_by_resource_id(resource_id=workspace.id)) # WORKSPACE SERVICES ROUTES @workspace_services_workspace_router.get("/workspaces/{workspace_id}/workspace-services", response_model=WorkspaceServicesInList, name=strings.API_GET_ALL_WORKSPACE_SERVICES, dependencies=[Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager)]) async def retrieve_users_active_workspace_services(workspace=Depends(get_workspace_by_id_from_path), workspace_services_repo=Depends(get_repository(WorkspaceServiceRepository)), resource_template_repo=Depends(get_repository(ResourceTemplateRepository))) -> WorkspaceServicesInList: workspace_services = await workspace_services_repo.get_active_workspace_services_for_workspace(workspace.id) await asyncio.gather(*[enrich_resource_with_available_upgrades(workspace_service, resource_template_repo) for workspace_service in workspace_services]) return WorkspaceServicesInList(workspaceServices=workspace_services) @workspace_services_workspace_router.get("/workspaces/{workspace_id}/workspace-services/{service_id}", response_model=WorkspaceServiceInResponse, name=strings.API_GET_WORKSPACE_SERVICE_BY_ID, dependencies=[Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager), Depends(get_workspace_by_id_from_path)]) async def retrieve_workspace_service_by_id(workspace_service=Depends(get_workspace_service_by_id_from_path), resource_template_repo=Depends(get_repository(ResourceTemplateRepository))) -> WorkspaceServiceInResponse: await enrich_resource_with_available_upgrades(workspace_service, resource_template_repo) return WorkspaceServiceInResponse(workspaceService=workspace_service) @workspace_services_workspace_router.post("/workspaces/{workspace_id}/workspace-services", status_code=status.HTTP_202_ACCEPTED, response_model=OperationInResponse, name=strings.API_CREATE_WORKSPACE_SERVICE, dependencies=[Depends(get_current_workspace_owner_user)]) async def create_workspace_service(response: Response, workspace_service_input: WorkspaceServiceInCreate, user=Depends(get_current_workspace_owner_user), workspace_service_repo=Depends(get_repository(WorkspaceServiceRepository)), workspace_repo=Depends(get_repository(WorkspaceRepository)), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), operations_repo=Depends(get_repository(OperationRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository)), workspace=Depends(get_deployed_workspace_by_id_from_path)) -> OperationInResponse: try: workspace_service, resource_template = await workspace_service_repo.create_workspace_service_item(workspace_service_input, workspace.id, user.roles) except (ValidationError, ValueError) as e: logger.exception("Failed create workspace service model instance") raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(e)) except UserNotAuthorizedToUseTemplate as e: logger.exception("User not authorized to use template") raise HTTPException(status_code=status.HTTP_403_FORBIDDEN, detail=str(e)) # if template has address_space get an address space if resource_template.properties.get("address_space"): # check workspace has address_spaces property if not workspace.properties.get("address_spaces"): raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=strings.WORKSPACE_DOES_NOT_HAVE_ADDRESS_SPACES_PROPERTY) workspace_service.properties["address_space"] = await workspace_repo.get_address_space_based_on_size(workspace_service_input.properties) workspace_patch = ResourcePatch() workspace_patch.properties = {"address_spaces": workspace.properties["address_spaces"] + [workspace_service.properties["address_space"]]} # IP address allocation is managed by the API. Ideally this request would happen as a result of the workspace # service deployment via the reosurce processor. there is no such functionality so the database is being # updated directly, and an "update" on the workspace is called by the workspace service pipeline. try: await workspace_repo.patch_workspace(workspace, workspace_patch, workspace.etag, resource_template_repo, resource_history_repo, user, False) except CosmosAccessConditionFailedError: raise HTTPException(status_code=status.HTTP_409_CONFLICT, detail=strings.ETAG_CONFLICT) operation = await save_and_deploy_resource( resource=workspace_service, resource_repo=workspace_service_repo, operations_repo=operations_repo, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user, resource_template=resource_template) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) @workspace_services_workspace_router.patch("/workspaces/{workspace_id}/workspace-services/{service_id}", status_code=status.HTTP_202_ACCEPTED, response_model=OperationInResponse, name=strings.API_UPDATE_WORKSPACE_SERVICE, dependencies=[Depends(get_current_workspace_owner_or_researcher_user), Depends(get_workspace_by_id_from_path)]) async def patch_workspace_service(resource_patch: ResourcePatch, response: Response, user=Depends(get_current_workspace_owner_user), workspace_service_repo=Depends(get_repository(WorkspaceServiceRepository)), workspace_service=Depends(get_workspace_service_by_id_from_path), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), operations_repo=Depends(get_repository(OperationRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository)), etag: str = Header(...), force_version_update: bool = False) -> OperationInResponse: try: is_disablement = resource_patch.isEnabled is not None and not resource_patch.isEnabled if is_disablement: await cascaded_update_resource(resource_patch, workspace_service, user, force_version_update, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, resource_repo=workspace_service_repo) patched_workspace_service, _ = await workspace_service_repo.patch_workspace_service(workspace_service, resource_patch, etag, resource_template_repo, resource_history_repo, user, force_version_update) operation = await send_resource_request_message( resource=patched_workspace_service, operations_repo=operations_repo, resource_repo=workspace_service_repo, user=user, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, action=RequestAction.Upgrade, is_cascade=is_disablement) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) except CosmosAccessConditionFailedError: raise HTTPException(status_code=status.HTTP_409_CONFLICT, detail=strings.ETAG_CONFLICT) except ValidationError as v: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=v.message) except (MajorVersionUpdateDenied, TargetTemplateVersionDoesNotExist, VersionDowngradeDenied) as e: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(e)) @workspace_services_workspace_router.delete("/workspaces/{workspace_id}/workspace-services/{service_id}", response_model=OperationInResponse, name=strings.API_DELETE_WORKSPACE_SERVICE, dependencies=[Depends(get_current_workspace_owner_user)]) async def delete_workspace_service(response: Response, user=Depends(get_current_workspace_owner_user), workspace=Depends(get_workspace_by_id_from_path), workspace_service=Depends(get_workspace_service_by_id_from_path), workspace_service_repo=Depends(get_repository(WorkspaceServiceRepository)), user_resource_repo=Depends(get_repository(UserResourceRepository)), operations_repo=Depends(get_repository(OperationRepository)), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository))) -> OperationInResponse: if await delete_validation(workspace_service, workspace_service_repo): operation = await send_uninstall_message( resource=workspace_service, resource_repo=workspace_service_repo, operations_repo=operations_repo, resource_type=ResourceType.WorkspaceService, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user, is_cascade=True) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) @workspace_services_workspace_router.post("/workspaces/{workspace_id}/workspace-services/{service_id}/invoke-action", status_code=status.HTTP_202_ACCEPTED, response_model=OperationInResponse, name=strings.API_INVOKE_ACTION_ON_WORKSPACE_SERVICE, dependencies=[Depends(get_current_workspace_owner_user)]) async def invoke_action_on_workspace_service(response: Response, action: str, user=Depends(get_current_workspace_owner_user), workspace_service=Depends(get_workspace_service_by_id_from_path), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), operations_repo=Depends(get_repository(OperationRepository)), workspace_service_repo=Depends(get_repository(WorkspaceServiceRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository))) -> OperationInResponse: operation = await send_custom_action_message( resource=workspace_service, resource_repo=workspace_service_repo, custom_action=action, resource_type=ResourceType.WorkspaceService, operations_repo=operations_repo, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) # workspace service operations @workspace_services_workspace_router.get("/workspaces/{workspace_id}/workspace-services/{service_id}/operations", response_model=OperationInList, name=strings.API_GET_RESOURCE_OPERATIONS, dependencies=[Depends(get_current_workspace_owner_or_airlock_manager), Depends(get_workspace_by_id_from_path)]) async def retrieve_workspace_service_operations_by_workspace_service_id(workspace_service=Depends(get_workspace_service_by_id_from_path), operations_repo=Depends(get_repository(OperationRepository))) -> OperationInList: return OperationInList(operations=await operations_repo.get_operations_by_resource_id(resource_id=workspace_service.id)) @workspace_services_workspace_router.get("/workspaces/{workspace_id}/workspace-services/{service_id}/operations/{operation_id}", response_model=OperationInResponse, name=strings.API_GET_RESOURCE_OPERATION_BY_ID, dependencies=[Depends(get_current_workspace_owner_or_airlock_manager), Depends(get_workspace_by_id_from_path)]) async def retrieve_workspace_service_operation_by_workspace_service_id_and_operation_id(workspace_service=Depends(get_workspace_service_by_id_from_path), operation=Depends(get_operation_by_id_from_path)) -> OperationInList: return OperationInResponse(operation=operation) @workspace_services_workspace_router.get("/workspaces/{workspace_id}/workspace-services/{service_id}/history", response_model=ResourceHistoryInList, name=strings.API_GET_RESOURCE_HISTORY, dependencies=[Depends(get_current_workspace_owner_or_airlock_manager), Depends(get_workspace_by_id_from_path)]) async def retrieve_workspace_service_history_by_workspace_service_id(workspace_service=Depends(get_workspace_service_by_id_from_path), resource_history_repo=Depends(get_repository(ResourceHistoryRepository))) -> ResourceHistoryInList: return ResourceHistoryInList(resource_history=await resource_history_repo.get_resource_history_by_resource_id(resource_id=workspace_service.id)) # USER RESOURCE ROUTES @user_resources_workspace_router.get("/workspaces/{workspace_id}/workspace-services/{service_id}/user-resources", response_model=UserResourcesInList, name=strings.API_GET_MY_USER_RESOURCES, dependencies=[Depends(get_workspace_by_id_from_path)]) async def retrieve_user_resources_for_workspace_service( workspace_id: str, service_id: str, user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), user_resource_repo=Depends(get_repository(UserResourceRepository))) -> UserResourcesInList: user_resources = await user_resource_repo.get_user_resources_for_workspace_service(workspace_id, service_id) # filter only to the user - for researchers if ("WorkspaceResearcher" in user.roles or "AirlockManager" in user.roles) and "WorkspaceOwner" not in user.roles: user_resources = [resource for resource in user_resources if resource.ownerId == user.id] for user_resource in user_resources: if 'azure_resource_id' in user_resource.properties: user_resource.azureStatus = get_azure_resource_status(user_resource.properties['azure_resource_id']) await asyncio.gather(*[enrich_resource_with_available_upgrades(user_resource, resource_template_repo) for user_resource in user_resources]) return UserResourcesInList(userResources=user_resources) @user_resources_workspace_router.get("/workspaces/{workspace_id}/workspace-services/{service_id}/user-resources/{resource_id}", response_model=UserResourceInResponse, name=strings.API_GET_USER_RESOURCE, dependencies=[Depends(get_workspace_by_id_from_path)]) async def retrieve_user_resource_by_id( user_resource=Depends(get_user_resource_by_id_from_path), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager)) -> UserResourceInResponse: validate_user_has_valid_role_for_user_resource(user, user_resource) if 'azure_resource_id' in user_resource.properties: user_resource.azureStatus = get_azure_resource_status(user_resource.properties['azure_resource_id']) await enrich_resource_with_available_upgrades(user_resource, resource_template_repo) return UserResourceInResponse(userResource=user_resource) @user_resources_workspace_router.post("/workspaces/{workspace_id}/workspace-services/{service_id}/user-resources", status_code=status.HTTP_202_ACCEPTED, response_model=OperationInResponse, name=strings.API_CREATE_USER_RESOURCE) async def create_user_resource( response: Response, user_resource_create: UserResourceInCreate, user_resource_repo=Depends(get_repository(UserResourceRepository)), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), operations_repo=Depends(get_repository(OperationRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository)), user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager), workspace=Depends(get_deployed_workspace_by_id_from_path), workspace_service=Depends(get_deployed_workspace_service_by_id_from_path)) -> OperationInResponse: try: user_resource, resource_template = await user_resource_repo.create_user_resource_item(user_resource_create, workspace.id, workspace_service.id, workspace_service.templateName, user.id, user.roles) except (ValidationError, ValueError) as e: logger.exception("Failed create user resource model instance") raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(e)) except UserNotAuthorizedToUseTemplate as e: logger.exception("User not authorized to use template") raise HTTPException(status_code=status.HTTP_403_FORBIDDEN, detail=str(e)) operation = await save_and_deploy_resource( resource=user_resource, resource_repo=user_resource_repo, operations_repo=operations_repo, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user, resource_template=resource_template) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) @user_resources_workspace_router.delete("/workspaces/{workspace_id}/workspace-services/{service_id}/user-resources/{resource_id}", response_model=OperationInResponse, name=strings.API_DELETE_USER_RESOURCE) async def delete_user_resource( response: Response, user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager), user_resource=Depends(get_user_resource_by_id_from_path), workspace_service=Depends(get_workspace_service_by_id_from_path), user_resource_repo=Depends(get_repository(UserResourceRepository)), operations_repo=Depends(get_repository(OperationRepository)), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository))) -> OperationInResponse: validate_user_has_valid_role_for_user_resource(user, user_resource) if user_resource.isEnabled: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=strings.USER_RESOURCE_NEEDS_TO_BE_DISABLED_BEFORE_DELETION) operation = await send_uninstall_message( resource=user_resource, resource_repo=user_resource_repo, operations_repo=operations_repo, resource_type=ResourceType.UserResource, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) @user_resources_workspace_router.patch("/workspaces/{workspace_id}/workspace-services/{service_id}/user-resources/{resource_id}", status_code=status.HTTP_202_ACCEPTED, response_model=OperationInResponse, name=strings.API_UPDATE_USER_RESOURCE, dependencies=[Depends(get_workspace_by_id_from_path), Depends(get_workspace_service_by_id_from_path)]) async def patch_user_resource( user_resource_patch: ResourcePatch, response: Response, user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager), user_resource=Depends(get_user_resource_by_id_from_path), workspace_service=Depends(get_workspace_service_by_id_from_path), user_resource_repo=Depends(get_repository(UserResourceRepository)), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository)), operations_repo=Depends(get_repository(OperationRepository)), etag: str = Header(...), force_version_update: bool = False) -> OperationInResponse: validate_user_has_valid_role_for_user_resource(user, user_resource) try: operation = await update_user_resource(user_resource, user_resource_patch, force_version_update, user, etag, workspace_service, user_resource_repo, resource_template_repo, operations_repo, resource_history_repo) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) except CosmosAccessConditionFailedError: raise HTTPException(status_code=status.HTTP_409_CONFLICT, detail=strings.ETAG_CONFLICT) except ValidationError as v: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=v.message) except (MajorVersionUpdateDenied, TargetTemplateVersionDoesNotExist, VersionDowngradeDenied) as e: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(e)) # user resource actions @user_resources_workspace_router.post("/workspaces/{workspace_id}/workspace-services/{service_id}/user-resources/{resource_id}/invoke-action", status_code=status.HTTP_202_ACCEPTED, response_model=OperationInResponse, name=strings.API_INVOKE_ACTION_ON_USER_RESOURCE) async def invoke_action_on_user_resource( response: Response, action: str, user_resource=Depends(get_user_resource_by_id_from_path), workspace_service=Depends(get_workspace_service_by_id_from_path), resource_template_repo=Depends(get_repository(ResourceTemplateRepository)), user_resource_repo=Depends(get_repository(UserResourceRepository)), operations_repo=Depends(get_repository(OperationRepository)), resource_history_repo=Depends(get_repository(ResourceHistoryRepository)), user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager)) -> OperationInResponse: validate_user_has_valid_role_for_user_resource(user, user_resource) operation = await send_custom_action_message( resource=user_resource, resource_repo=user_resource_repo, custom_action=action, resource_type=ResourceType.UserResource, operations_repo=operations_repo, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user, parent_service_name=workspace_service.templateName) response.headers["Location"] = construct_location_header(operation) return OperationInResponse(operation=operation) # user resource operations @user_resources_workspace_router.get("/workspaces/{workspace_id}/workspace-services/{service_id}/user-resources/{resource_id}/operations", response_model=OperationInList, name=strings.API_GET_RESOURCE_OPERATIONS, dependencies=[Depends(get_workspace_by_id_from_path)]) async def retrieve_user_resource_operations_by_user_resource_id( user_resource=Depends(get_user_resource_by_id_from_path), user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager), operations_repo=Depends(get_repository(OperationRepository))) -> OperationInList: validate_user_has_valid_role_for_user_resource(user, user_resource) return OperationInList(operations=await operations_repo.get_operations_by_resource_id(resource_id=user_resource.id)) @user_resources_workspace_router.get("/workspaces/{workspace_id}/workspace-services/{service_id}/user-resources/{resource_id}/operations/{operation_id}", response_model=OperationInResponse, name=strings.API_GET_RESOURCE_OPERATION_BY_ID, dependencies=[Depends(get_workspace_by_id_from_path)]) async def retrieve_user_resource_operations_by_user_resource_id_and_operation_id( user_resource=Depends(get_user_resource_by_id_from_path), user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager), operation=Depends(get_operation_by_id_from_path)) -> OperationInList: validate_user_has_valid_role_for_user_resource(user, user_resource) return OperationInResponse(operation=operation) @user_resources_workspace_router.get("/workspaces/{workspace_id}/workspace-services/{service_id}/user-resources/{resource_id}/history", response_model=ResourceHistoryInList, name=strings.API_GET_RESOURCE_HISTORY, dependencies=[Depends(get_workspace_by_id_from_path)]) async def retrieve_user_resource_history_by_user_resource_id(user_resource=Depends(get_user_resource_by_id_from_path), user=Depends(get_current_workspace_owner_or_researcher_user_or_airlock_manager), resource_history_repo=Depends(get_repository(ResourceHistoryRepository))) -> ResourceHistoryInList: validate_user_has_valid_role_for_user_resource(user, user_resource) return ResourceHistoryInList(resource_history=await resource_history_repo.get_resource_history_by_resource_id(resource_id=user_resource.id))
AzureTRE/api_app/api/routes/workspaces.py/0
{ "file_path": "AzureTRE/api_app/api/routes/workspaces.py", "repo_id": "AzureTRE", "token_count": 13734 }
91
import copy import semantic_version from datetime import datetime from typing import Optional, Tuple, List from azure.cosmos.exceptions import CosmosResourceNotFoundError from core import config from db.errors import VersionDowngradeDenied, EntityDoesNotExist, MajorVersionUpdateDenied, TargetTemplateVersionDoesNotExist, UserNotAuthorizedToUseTemplate from db.repositories.resources_history import ResourceHistoryRepository from db.repositories.base import BaseRepository from db.repositories.resource_templates import ResourceTemplateRepository from jsonschema import ValidationError, validate from models.domain.authentication import User from models.domain.resource import Resource, ResourceType from models.domain.resource_template import ResourceTemplate from models.domain.shared_service import SharedService from models.domain.operation import Status from models.domain.user_resource import UserResource from models.domain.workspace import Workspace from models.domain.workspace_service import WorkspaceService from models.schemas.resource import ResourcePatch from pydantic import UUID4, parse_obj_as class ResourceRepository(BaseRepository): @classmethod async def create(cls): cls = ResourceRepository() await super().create(config.STATE_STORE_RESOURCES_CONTAINER) return cls @staticmethod def _active_resources_query(): # get active docs (not deleted) return f'SELECT * FROM c WHERE {IS_NOT_DELETED_CLAUSE}' def _active_resources_by_type_query(self, resource_type: ResourceType): return self._active_resources_query() + f' AND c.resourceType = "{resource_type}"' def _active_resources_by_id_query(self, resource_id: str): return self._active_resources_query() + f' AND c.id = "{resource_id}"' @staticmethod def _validate_resource_parameters(resource_input, resource_template): validate(instance=resource_input["properties"], schema=resource_template) async def _get_enriched_template(self, template_name: str, resource_type: ResourceType, parent_template_name: str = "") -> dict: template_repo = await ResourceTemplateRepository.create() template = await template_repo.get_current_template(template_name, resource_type, parent_template_name) return template_repo.enrich_template(template) @staticmethod def get_resource_base_spec_params(): return {"tre_id": config.TRE_ID} async def get_resource_dict_by_id(self, resource_id: UUID4) -> dict: try: resource = await self.read_item_by_id(str(resource_id)) except CosmosResourceNotFoundError: raise EntityDoesNotExist return resource async def get_resource_by_id(self, resource_id: UUID4) -> Resource: resource = await self.get_resource_dict_by_id(resource_id) if resource["resourceType"] == ResourceType.SharedService: return parse_obj_as(SharedService, resource) if resource["resourceType"] == ResourceType.Workspace: return parse_obj_as(Workspace, resource) if resource["resourceType"] == ResourceType.WorkspaceService: return parse_obj_as(WorkspaceService, resource) if resource["resourceType"] == ResourceType.UserResource: return parse_obj_as(UserResource, resource) return parse_obj_as(Resource, resource) async def get_active_resource_by_template_name(self, template_name: str) -> Resource: query = f"SELECT TOP 1 * FROM c WHERE c.templateName = '{template_name}' AND {IS_ACTIVE_RESOURCE}" resources = await self.query(query=query) if not resources: raise EntityDoesNotExist return parse_obj_as(Resource, resources[0]) async def validate_input_against_template(self, template_name: str, resource_input, resource_type: ResourceType, user_roles: Optional[List[str]] = None, parent_template_name: Optional[str] = None) -> ResourceTemplate: try: template = await self._get_enriched_template(template_name, resource_type, parent_template_name) except EntityDoesNotExist: if resource_type == ResourceType.UserResource: raise ValueError(f'The template "{template_name}" does not exist or is not valid for the workspace service type "{parent_template_name}"') else: raise ValueError(f'The template "{template_name}" does not exist') # If authorizedRoles is empty, template is available to all users if "authorizedRoles" in template and template["authorizedRoles"]: # If authorizedRoles is not empty, the user is required to have at least one of authorizedRoles if len(set(template["authorizedRoles"]).intersection(set(user_roles))) == 0: raise UserNotAuthorizedToUseTemplate(f"User not authorized to use template {template_name}") self._validate_resource_parameters(resource_input.dict(), template) return parse_obj_as(ResourceTemplate, template) async def patch_resource(self, resource: Resource, resource_patch: ResourcePatch, resource_template: ResourceTemplate, etag: str, resource_template_repo: ResourceTemplateRepository, resource_history_repo: ResourceHistoryRepository, user: User, force_version_update: bool = False) -> Tuple[Resource, ResourceTemplate]: await resource_history_repo.create_resource_history_item(resource) # now update the resource props resource.resourceVersion = resource.resourceVersion + 1 resource.user = user resource.updatedWhen = self.get_timestamp() if resource_patch.isEnabled is not None: resource.isEnabled = resource_patch.isEnabled if resource_patch.templateVersion is not None: await self.validate_template_version_patch(resource, resource_patch, resource_template_repo, resource_template, force_version_update) resource.templateVersion = resource_patch.templateVersion if resource_patch.properties is not None and len(resource_patch.properties) > 0: self.validate_patch(resource_patch, resource_template_repo, resource_template) # if we're here then we're valid - update the props + persist resource.properties.update(resource_patch.properties) await self.update_item_with_etag(resource, etag) return resource, resource_template async def get_resource_dependency_list(self, resource: Resource) -> List: # Get the parent resource path and id parent_resource_path = resource.resourcePath dependent_resources_list = [] # Get all related resources related_resources_query = f"SELECT * FROM c WHERE CONTAINS(c.resourcePath, '{parent_resource_path}') AND c.deploymentStatus != '{Status.Deleted}'" related_resources = await self.query(query=related_resources_query) for resource in related_resources: resource_path = resource["resourcePath"] resource_level = resource_path.count("/") dependent_resources_list.append((resource, resource_level)) # Sort resources list sorted_list = sorted(dependent_resources_list, key=lambda x: x[1], reverse=True) return [resource[0] for resource in sorted_list] async def validate_template_version_patch(self, resource: Resource, resource_patch: ResourcePatch, resource_template_repo: ResourceTemplateRepository, resource_template: ResourceTemplate, force_version_update: bool = False): parent_service_template_name = None if resource.resourceType == ResourceType.UserResource: try: resource_repo = await ResourceRepository.create() parent_service = await resource_repo.get_resource_by_id(resource.parentWorkspaceServiceId) parent_service_template_name = parent_service.templateName except EntityDoesNotExist: raise ValueError(f'Parent workspace service {resource.parentWorkspaceServiceId} not found') # validate Major upgrade try: desired_version = semantic_version.Version(resource_patch.templateVersion) current_version = semantic_version.Version(resource.templateVersion) except ValueError: raise ValidationError(f"Attempt to upgrade from {resource.templateVersion} to {resource_patch.templateVersion} denied. Invalid version format.") if not force_version_update: if desired_version.major > current_version.major: raise MajorVersionUpdateDenied(f'Attempt to upgrade from {current_version} to {desired_version} denied. major version upgrade is not allowed.') elif desired_version < current_version: raise VersionDowngradeDenied(f'Attempt to downgrade from {current_version} to {desired_version} denied. version downgrade is not allowed.') # validate if target template with desired version is registered try: await resource_template_repo.get_template_by_name_and_version(resource.templateName, resource_patch.templateVersion, resource_template.resourceType, parent_service_template_name) except EntityDoesNotExist: raise TargetTemplateVersionDoesNotExist(f"Template '{resource_template.name}' not found for resource type '{resource_template.resourceType}' with target template version '{resource_patch.templateVersion}'") def validate_patch(self, resource_patch: ResourcePatch, resource_template_repo: ResourceTemplateRepository, resource_template: ResourceTemplate): # get the enriched (combined) template enriched_template = resource_template_repo.enrich_template(resource_template, is_update=True) # validate the PATCH data against a cut down version of the full template. update_template = copy.deepcopy(enriched_template) update_template["required"] = [] update_template["properties"] = {} for prop_name, prop in enriched_template["properties"].items(): if ("updateable" in prop.keys() and prop["updateable"] is True): update_template["properties"][prop_name] = prop self._validate_resource_parameters(resource_patch.dict(), update_template) def get_timestamp(self) -> float: return datetime.utcnow().timestamp() # Cosmos query consts IS_NOT_DELETED_CLAUSE = f'c.deploymentStatus != "{Status.Deleted}"' IS_ACTIVE_RESOURCE = f'c.deploymentStatus != "{Status.Deleted}" and c.deploymentStatus != "{Status.DeploymentFailed}"'
AzureTRE/api_app/db/repositories/resources.py/0
{ "file_path": "AzureTRE/api_app/db/repositories/resources.py", "repo_id": "AzureTRE", "token_count": 3590 }
92
from pydantic import BaseConfig, BaseModel class AzureTREModel(BaseModel): class Config(BaseConfig): allow_population_by_field_name = True arbitrary_types_allowed = True
AzureTRE/api_app/models/domain/azuretremodel.py/0
{ "file_path": "AzureTRE/api_app/models/domain/azuretremodel.py", "repo_id": "AzureTRE", "token_count": 66 }
93
from models.domain.costs import generate_cost_report_dict_example, GranularityEnum, \ generate_workspace_cost_report_dict_example def get_cost_report_responses(): return { 200: { "description": "Success", "content": { "application/json": { "examples": { "daily": { "summary": "Daily granularity", "description": "each costs array will hold daily aggregation of costs between time period", "value": generate_cost_report_dict_example(GranularityEnum.daily), }, "none": { "summary": "No granularity", "description": "each costs array will hold aggregation of costs between time period", "value": generate_cost_report_dict_example(GranularityEnum.none), } } } } }, 401: { "description": "Unauthorized", "content": { "text/plain": { "example": "Not authenticated" } } }, 429: { "description": "Too Many Requests", "content": { "application/json": { "example": { "error": { "code": "429", "message": "Too many requests to Azure cost management API. Please retry.", "retry-after": "30" } } } } }, 503: { "description": "Service Unavailable", "content": { "application/json": { "example": { "error": { "code": "503", "message": "Azure cost management API is temporarly unavaiable. Please retry.", "retry-after": "30" } } } } } } def get_workspace_cost_report_responses(): return { 200: { "description": "Success", "content": { "application/json": { "examples": { "daily": { "summary": "Daily granularity", "description": "Each costs array will hold daily aggregation of costs between time period", "value": generate_workspace_cost_report_dict_example("My Workspace", GranularityEnum.daily), }, "none": { "summary": "No granularity", "description": "Each costs array will hold aggregation of costs between time period", "value": generate_workspace_cost_report_dict_example("My Workspace", GranularityEnum.none), } } } } }, 401: { "description": "Unauthorized", "content": { "text/plain": { "example": "Not authenticated" } } }, 429: { "description": "Too Many Requests", "content": { "application/json": { "example": { "error": { "code": "429", "message": "Too many requests to Azure cost management API. Please retry.", "retry-after": "30" } } } } }, 503: { "description": "Service Unavailable", "content": { "application/json": { "example": { "error": { "code": "503", "message": "Azure cost management API is temporarly unavaiable. Please retry.", "retry-after": "30" } } } } } }
AzureTRE/api_app/models/schemas/costs.py/0
{ "file_path": "AzureTRE/api_app/models/schemas/costs.py", "repo_id": "AzureTRE", "token_count": 2708 }
94
[pytest] filterwarnings = error
AzureTRE/api_app/pytest.ini/0
{ "file_path": "AzureTRE/api_app/pytest.ini", "repo_id": "AzureTRE", "token_count": 15 }
95
import json from db.repositories.resources import ResourceRepository from db.repositories.resource_templates import ResourceTemplateRepository from db.repositories.resources_history import ResourceHistoryRepository from service_bus.helpers import send_deployment_message, update_resource_for_step from models.domain.authentication import User from models.domain.request_action import RequestAction from models.domain.resource import Resource from models.domain.operation import Operation from db.repositories.operations import OperationRepository from services.logging import tracer async def send_resource_request_message(resource: Resource, operations_repo: OperationRepository, resource_repo: ResourceRepository, user: User, resource_template_repo: ResourceTemplateRepository, resource_history_repo: ResourceHistoryRepository, action: RequestAction = RequestAction.Install, is_cascade: str = False) -> Operation: """ Creates and sends a resource request message for the resource to the Service Bus. The resource ID is added to the message to serve as an correlation ID for the deployment process. :param resource: The resource to deploy. :param action: install, uninstall etc. """ with tracer.start_as_current_span("send_resource_request_message") as current_span: current_span.set_attribute("resource_id", resource.id) current_span.set_attribute("action", action) # Construct the resources to build an operation item for resources_list = [] if is_cascade: resources_list = await resource_repo.get_resource_dependency_list(resource) else: resources_list.append(resource.__dict__) # add the operation to the db - this will create all the steps needed (if any are defined in the template) operation = await operations_repo.create_operation_item( resource_id=resource.id, resource_list=resources_list, action=action, resource_path=resource.resourcePath, resource_version=resource.resourceVersion, user=user, resource_repo=resource_repo, resource_template_repo=resource_template_repo) current_span.set_attribute("operation_id", operation.id) # prep the first step to send in SB # resource at this point is the original object with unmaskked values first_step = operation.steps[0] current_span.set_attribute("step_id", first_step.id) resource_to_send = await update_resource_for_step( operation_step=first_step, resource_repo=resource_repo, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, root_resource=resource, step_resource=None, resource_to_update_id=first_step.resourceId, primary_action=action, user=user) # create + send the message content = json.dumps(resource_to_send.get_resource_request_message_payload(operation_id=operation.id, step_id=first_step.id, action=first_step.resourceAction)) await send_deployment_message(content=content, correlation_id=operation.id, session_id=first_step.resourceId, action=first_step.resourceAction) return operation
AzureTRE/api_app/service_bus/resource_request_sender.py/0
{ "file_path": "AzureTRE/api_app/service_bus/resource_request_sender.py", "repo_id": "AzureTRE", "token_count": 1158 }
96
import pytest import pytest_asyncio from mock import patch from fastapi import FastAPI from httpx import AsyncClient from models.domain.authentication import User @pytest.fixture(autouse=True, scope='module') def no_lifespan_events(): with patch("main.lifespan"): yield @pytest.fixture(autouse=True) def no_auth_token(): """ overrides validating and decoding tokens for all tests""" with patch('services.aad_authentication.AccessService.__call__', return_value="token"): with patch('services.aad_authentication.AzureADAuthorization._decode_token', return_value="decoded_token"): yield def create_test_user() -> User: return User( id="user-guid-here", name="Test User", email="[email protected]", roles=[], roleAssignments=[] ) def create_admin_user() -> User: user = create_test_user() user.roles = ["TREAdmin"] user.roleAssignments = [("ab123", "ab124")] return user def create_non_admin_user() -> User: user = create_test_user() user.roles = ["TREUser"] user.roleAssignments = [("ab123", "ab124")] return user def create_workspace_owner_user() -> User: user = create_test_user() user.roles = ["WorkspaceOwner"] return user def create_workspace_researcher_user() -> User: user = create_test_user() user.roles = ["WorkspaceResearcher"] return user def create_workspace_airlock_manager_user() -> User: user = create_test_user() user.roles = ["AirlockManager"] return user def override_get_user(): user = create_test_user() user.roles = [] user.roleAssignments = [("ab123", "ab124")] return user def get_required_roles(endpoint): dependencies = list(filter(lambda x: hasattr(x.dependency, 'require_one_of_roles'), endpoint.__defaults__)) required_roles = dependencies[0].dependency.require_one_of_roles return required_roles @pytest.fixture(scope='module') def admin_user(): def inner(): return create_admin_user() return inner @pytest.fixture(scope='module') def non_admin_user(): def inner(): return create_non_admin_user() return inner @pytest.fixture(scope='module') def owner_user(): def inner(): return create_workspace_owner_user() return inner @pytest.fixture(scope='module') def researcher_user(): def inner(): return create_workspace_researcher_user() return inner @pytest.fixture(scope='module') def airlock_manager_user(): def inner(): return create_workspace_airlock_manager_user() return inner @pytest.fixture(scope='module') def no_workspace_role_user(): def inner(): user = create_test_user() return user return inner @pytest_asyncio.fixture(scope='module') def app() -> FastAPI: from main import get_application the_app = get_application() return the_app @pytest_asyncio.fixture async def client(app: FastAPI) -> AsyncClient: async with AsyncClient(app=app, base_url="http://testserver", headers={"Content-Type": "application/json"}) as client: yield client
AzureTRE/api_app/tests_ma/test_api/conftest.py/0
{ "file_path": "AzureTRE/api_app/tests_ma/test_api/conftest.py", "repo_id": "AzureTRE", "token_count": 1185 }
97
import json import pytest from mock import patch from pydantic import parse_obj_as from starlette import status from services.authentication import get_current_admin_user, get_current_tre_user_or_tre_admin from db.errors import EntityDoesNotExist, EntityVersionExist, InvalidInput, UnableToAccessDatabase from models.domain.resource import ResourceType from models.domain.resource_template import ResourceTemplate from models.schemas.resource_template import ResourceTemplateInformation from models.domain.user_resource_template import UserResourceTemplate from models.schemas.workspace_template import WorkspaceTemplateInResponse from resources import strings from services.schema_service import enrich_workspace_service_template pytestmark = pytest.mark.asyncio @pytest.fixture def workspace_service_template_without_enriching(): def create_workspace_service_template(template_name: str = "base-service-template"): return ResourceTemplate( id="a7a7a7bd-7f4e-4a4e-b970-dc86a6b31dfb", name=template_name, description="base service bundle", version="0.1.0", resourceType=ResourceType.WorkspaceService, current=True, type="object", required=[], properties={}, actions=[] ) return create_workspace_service_template @pytest.fixture def user_resource_template_without_enriching(): def create_user_resource_template(template_name: str = "vm-resource-template", parent_service: str = "guacamole-service"): return UserResourceTemplate( id="a7a7a7bd-7f4e-4a4e-b970-dc86a6b31dfb", name=template_name, description="vm-bundle", version="0.1.0", resourceType=ResourceType.UserResource, current=True, type="object", required=[], properties={}, customActions=[], parentWorkspaceService=parent_service ) return create_user_resource_template class TestWorkspaceServiceTemplatesRequiringAdminRights: @pytest.fixture(autouse=True, scope='class') def _prepare(self, app, admin_user): app.dependency_overrides[get_current_tre_user_or_tre_admin] = admin_user app.dependency_overrides[get_current_admin_user] = admin_user yield app.dependency_overrides = {} # GET /workspace-service-templates/ @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_templates_information") async def test_get_workspace_service_templates_returns_template_names_and_description(self, get_templates_info_mock, app, client): expected_template_infos = [ ResourceTemplateInformation(name="template1", title="template 1", description="description1"), ResourceTemplateInformation(name="template2", title="template 2", description="description2") ] get_templates_info_mock.return_value = expected_template_infos response = await client.get(app.url_path_for(strings.API_GET_WORKSPACE_SERVICE_TEMPLATES)) assert response.status_code == status.HTTP_200_OK actual_template_infos = response.json()["templates"] assert len(actual_template_infos) == len(expected_template_infos) for template_info in expected_template_infos: assert template_info in actual_template_infos # POST /workspace-service-templates/ @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.create_template") @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_current_template") @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_template_by_name_and_version") async def test_when_updating_current_and_service_template_not_found_create_one(self, get_name_ver_mock, get_current_mock, create_template_mock, app, client, input_workspace_template, basic_workspace_service_template): get_name_ver_mock.side_effect = EntityDoesNotExist get_current_mock.side_effect = EntityDoesNotExist create_template_mock.return_value = basic_workspace_service_template response = await client.post(app.url_path_for(strings.API_CREATE_WORKSPACE_SERVICE_TEMPLATES), json=input_workspace_template.dict()) assert response.status_code == status.HTTP_201_CREATED # POST /workspace-service-templates/ @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.create_template") @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.update_item") @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_current_template") @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_template_by_name_and_version") async def test_when_updating_current_and_service_template_found_update_and_add(self, get_template_by_name_and_version_mock, get_current_template_mock, update_item_mock, create_template_mock, app, client, input_workspace_template, basic_workspace_service_template): get_template_by_name_and_version_mock.side_effect = EntityDoesNotExist get_current_template_mock.return_value = basic_workspace_service_template create_template_mock.return_value = basic_workspace_service_template response = await client.post(app.url_path_for(strings.API_CREATE_WORKSPACE_SERVICE_TEMPLATES), json=input_workspace_template.dict()) updated_current_workspace_template = basic_workspace_service_template updated_current_workspace_template.current = False update_item_mock.assert_called_once_with(updated_current_workspace_template.dict()) assert response.status_code == status.HTTP_201_CREATED # POST /workspace-service-templates/ @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.create_template") @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_current_template") @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_template_by_name_and_version") async def test_when_creating_service_template_enriched_service_template_is_returned(self, get_template_by_name_and_version_mock, get_current_template_mock, create_template_mock, app, client, input_workspace_template, basic_workspace_service_template): get_template_by_name_and_version_mock.side_effect = EntityDoesNotExist get_current_template_mock.side_effect = EntityDoesNotExist create_template_mock.return_value = basic_workspace_service_template response = await client.post(app.url_path_for(strings.API_CREATE_WORKSPACE_SERVICE_TEMPLATES), json=input_workspace_template.dict()) expected_template = parse_obj_as(WorkspaceTemplateInResponse, enrich_workspace_service_template(basic_workspace_service_template)) assert json.loads(response.text)["required"] == expected_template.dict(exclude_unset=True)["required"] assert json.loads(response.text)["properties"] == expected_template.dict(exclude_unset=True)["properties"] # POST /workspace-service-templates/ @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.create_template") @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_current_template") @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_template_by_name_and_version") async def test_when_creating_workspace_service_template_service_resource_type_is_set(self, get_template_by_name_and_version_mock, get_current_template_mock, create_template_mock, app, client, input_workspace_service_template, basic_workspace_service_template): get_template_by_name_and_version_mock.side_effect = EntityDoesNotExist get_current_template_mock.side_effect = EntityDoesNotExist create_template_mock.return_value = basic_workspace_service_template await client.post(app.url_path_for(strings.API_CREATE_WORKSPACE_SERVICE_TEMPLATES), json=input_workspace_service_template.dict()) create_template_mock.assert_called_once_with(input_workspace_service_template, ResourceType.WorkspaceService, '') # POST /workspace-service-templates/ @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.create_and_validate_template", side_effect=EntityVersionExist) async def test_creating_a_template_raises_409_conflict_if_template_version_exists(self, _, client, app, input_workspace_service_template): response = await client.post(app.url_path_for(strings.API_CREATE_WORKSPACE_SERVICE_TEMPLATES), json=input_workspace_service_template.dict()) assert response.status_code == status.HTTP_409_CONFLICT @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.create_and_validate_template", side_effect=InvalidInput) async def test_creating_a_workspace_service_template_raises_http_422_if_step_ids_are_duplicated(self, _, client, app, input_workspace_service_template): response = await client.post(app.url_path_for(strings.API_CREATE_WORKSPACE_SERVICE_TEMPLATES), json=input_workspace_service_template.dict()) assert response.status_code == status.HTTP_422_UNPROCESSABLE_ENTITY # GET /workspace-service-templates/{template_name} @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_current_template") async def test_workspace_service_templates_by_name_returns_enriched_workspace_service_template(self, get_current_template_mock, workspace_service_template_without_enriching, app, client): template_name = "template1" get_current_template_mock.return_value = workspace_service_template_without_enriching(template_name) response = await client.get(app.url_path_for(strings.API_GET_WORKSPACE_SERVICE_TEMPLATE_BY_NAME, service_template_name=template_name)) assert response.status_code == status.HTTP_200_OK assert response.json()["name"] == template_name assert "description" in response.json()["required"] # GET /workspace-service-templates/{template_name} @pytest.mark.parametrize("exception, expected_status", [ (EntityDoesNotExist, status.HTTP_404_NOT_FOUND), (UnableToAccessDatabase, status.HTTP_503_SERVICE_UNAVAILABLE) ]) @patch("api.routes.workspace_service_templates.ResourceTemplateRepository.get_current_template") async def test_workspace_service_templates_by_name_returns_error_status_based_on_exception(self, get_current_template_mock, exception, expected_status, app, client): get_current_template_mock.side_effect = exception response = await client.get(app.url_path_for(strings.API_GET_WORKSPACE_SERVICE_TEMPLATE_BY_NAME, service_template_name="template1")) assert response.status_code == expected_status
AzureTRE/api_app/tests_ma/test_api/test_routes/test_workspace_service_templates.py/0
{ "file_path": "AzureTRE/api_app/tests_ma/test_api/test_routes/test_workspace_service_templates.py", "repo_id": "AzureTRE", "token_count": 3886 }
98
import pytest from mock import patch import pytest_asyncio from db.repositories.resource_templates import ResourceTemplateRepository from models.domain.resource import ResourceType from models.domain.resource_template import ResourceTemplate from .test_resource_templates_repository import sample_resource_template_as_dict pytestmark = pytest.mark.asyncio @pytest_asyncio.fixture async def resource_template_repo(): with patch('api.dependencies.database.Database.get_container_proxy', return_value=None): resource_template_repo = await ResourceTemplateRepository().create() yield resource_template_repo # Because shared service templates repository uses generic ResourceTemplate repository, most test cases are already covered @patch('db.repositories.resource_templates.ResourceTemplateRepository.save_item') @patch('uuid.uuid4') async def test_create_shared_service_template_item_calls_create_item_with_the_correct_parameters(uuid_mock, save_item_mock, resource_template_repo, input_shared_service_template): uuid_mock.return_value = "1234" returned_template = await resource_template_repo.create_template(input_shared_service_template, ResourceType.SharedService) expected_resource_template = ResourceTemplate( id="1234", name=input_shared_service_template.name, title=input_shared_service_template.json_schema["title"], description=input_shared_service_template.json_schema["description"], version=input_shared_service_template.version, resourceType=ResourceType.SharedService, properties=input_shared_service_template.json_schema["properties"], actions=input_shared_service_template.customActions, required=input_shared_service_template.json_schema["required"], current=input_shared_service_template.current, ) save_item_mock.assert_called_once_with(expected_resource_template) assert expected_resource_template == returned_template @patch('db.repositories.resource_templates.ResourceTemplateRepository.query') async def test_get_templates_for_shared_services_queries_db(query_mock, resource_template_repo): expected_query = 'SELECT c.name, c.title, c.description, c.authorizedRoles FROM c WHERE c.resourceType = "shared-service" AND c.current = true' query_mock.return_value = [sample_resource_template_as_dict(name="test", version="1.0", resource_type=ResourceType.SharedService)] await resource_template_repo.get_templates_information(ResourceType.SharedService, parent_service_name="parent_service") query_mock.assert_called_once_with(query=expected_query)
AzureTRE/api_app/tests_ma/test_db/test_repositories/test_shared_service_templates_repository.py/0
{ "file_path": "AzureTRE/api_app/tests_ma/test_db/test_repositories/test_shared_service_templates_repository.py", "repo_id": "AzureTRE", "token_count": 831 }
99
import ipaddress import pytest from mock import patch import services.cidr_service generate_new_cidr_test_data = [ (["10.2.4.0/24", "10.1.0.0/16", "10.2.1.0/24", "10.2.3.0/24", "10.2.0.0/24", "10.2.2.0/24"], 24, "10.2.5.0/24"), (["10.2.4.0/24", "10.1.0.0/16", "10.2.1.0/24", "10.2.3.0/24", "10.2.0.0/24", "10.2.2.0/24"], 16, "10.3.0.0/16"), (["10.1.0.0/16"], 24, "10.2.0.0/24"), (["10.1.0.0/16"], 16, "10.2.0.0/16"), (["10.1.0.0/16", "10.2.1.0/24"], 24, "10.2.0.0/24"), (["10.2.1.0/24", "10.1.0.0/16"], 16, "10.3.0.0/16"), (["10.1.0.0/16", "10.5.1.0/24"], 16, "10.4.0.0/16"), (["10.2.1.0/24", "10.1.0.0/16"], 20, "10.2.16.0/20"), ] @pytest.mark.parametrize("input_addresses, input_network_size, expected_cidr", generate_new_cidr_test_data) @patch('core.config.CORE_ADDRESS_SPACE', "10.0.0.0/16") @patch('core.config.TRE_ADDRESS_SPACE', "10.0.0.0/12") def test_generate_new_cidr__returns_currect_block(input_addresses, input_network_size, expected_cidr): assert expected_cidr == services.cidr_service.generate_new_cidr(input_addresses, input_network_size) @patch('core.config.CORE_ADDRESS_SPACE', "10.5.0.0/16") def test_generate_new_cidr__invalid_netmask_raises_exception(): with pytest.raises(ipaddress.NetmaskValueError): services.cidr_service.generate_new_cidr(["10.2.1.0/24", "10.1.0.0/16"], 50) @patch('core.config.CORE_ADDRESS_SPACE', "10.5.0.0/16") def test_generate_new_cidr__invalid_network_raises_exception(): with pytest.raises(ipaddress.AddressValueError): services.cidr_service.generate_new_cidr(["10.1.0.300/16"], 24) @patch('core.config.CORE_ADDRESS_SPACE', "10.0.0.0/16") @patch('core.config.TRE_ADDRESS_SPACE', "10.0.0.0/12") def test_is_network_available__returns_false(): assert False is services.cidr_service.is_network_available([], "10.0.0.0/16") @patch('core.config.CORE_ADDRESS_SPACE', "10.0.0.0/16") @patch('core.config.TRE_ADDRESS_SPACE', "10.0.0.0/12") def test_is_network_available__returns_true(): assert True is services.cidr_service.is_network_available(["10.2.4.0/24", "10.1.0.0/16", "10.2.1.0/24", "10.2.3.0/24", "10.2.0.0/24", "10.2.2.0/24"], "10.2.5.0/24")
AzureTRE/api_app/tests_ma/test_services/test_cidr_service.py/0
{ "file_path": "AzureTRE/api_app/tests_ma/test_services/test_cidr_service.py", "repo_id": "AzureTRE", "token_count": 1116 }
100
import logging import click from tre.api_client import ApiClient from tre.output import output, output_option, query_option from .contexts import SharedServiceTemplateContext, pass_shared_service_template_context def template_name_completion(ctx: click.Context, param: click.Parameter, incomplete: str): log = logging.getLogger(__name__) client = ApiClient.get_api_client_from_config() response = client.call_api(log, 'GET', '/api/shared-service-templates') if response.is_success: names = [workspace["name"] for workspace in response.json()["templates"]] return [name for name in names if name.startswith(incomplete)] @click.group(name="shared-service-template", invoke_without_command=True, help="Perform actions on an shared-service-template") @click.argument('template_name', required=True, shell_complete=template_name_completion) @click.pass_context def shared_service_template(ctx: click.Context, template_name) -> None: ctx.obj = SharedServiceTemplateContext(template_name) @click.command(name="show", help="Show template") @output_option() @query_option() @pass_shared_service_template_context def shared_service_template_show(shared_service_template_context: SharedServiceTemplateContext, output_format, query) -> None: log = logging.getLogger(__name__) template_name = shared_service_template_context.template_name if template_name is None: raise click.UsageError('Missing template name') client = ApiClient.get_api_client_from_config() response = client.call_api( log, 'GET', f'/api/shared-service-templates/{template_name}', ) output(response, output_format=output_format, query=query, default_table_query=r"{id: id, name:name, title: title, version:version, description:description}") shared_service_template.add_command(shared_service_template_show)
AzureTRE/cli/tre/commands/shared_service_templates/shared_service_template.py/0
{ "file_path": "AzureTRE/cli/tre/commands/shared_service_templates/shared_service_template.py", "repo_id": "AzureTRE", "token_count": 601 }
101
import logging import click from tre.api_client import ApiClient from tre.commands.operation import operations_list from tre.output import output_option, query_option from .contexts import WorkspaceServiceContext, pass_workspace_service_context @click.group(name="operations", help="List operations ") def workspace_service_operations(): pass @click.command(name="list", help="List workspace service operations") @output_option() @query_option() @pass_workspace_service_context def workspace_service_operations_list(workspace_service_context: WorkspaceServiceContext, output_format, query): log = logging.getLogger(__name__) workspace_id = workspace_service_context.workspace_id if workspace_id is None: raise click.UsageError('Missing workspace ID') workspace_service_id = workspace_service_context.workspace_service_id if workspace_service_id is None: raise click.UsageError('Missing workspace-service ID') operations_url = f'/api/workspaces/{workspace_id}/workspace-services/{workspace_service_id}/operations' client = ApiClient.get_api_client_from_config() workspace_scope = client.get_workspace_scope(log, workspace_id) operations_list(log, operations_url, output_format, query, scope_id=workspace_scope) workspace_service_operations.add_command(workspace_service_operations_list)
AzureTRE/cli/tre/commands/workspaces/workspace_services/operations.py/0
{ "file_path": "AzureTRE/cli/tre/commands/workspaces/workspace_services/operations.py", "repo_id": "AzureTRE", "token_count": 416 }
102
data "azurerm_private_dns_zone" "eventgrid" { name = module.terraform_azurerm_environment_configuration.private_links["privatelink.eventgrid.azure.net"] resource_group_name = var.resource_group_name } # Below we assign a SYSTEM-assigned identity for the topics. note that a user-assigned identity will not work. # Event grid topics resource "azurerm_eventgrid_topic" "step_result" { name = local.step_result_topic_name location = var.location resource_group_name = var.resource_group_name public_network_access_enabled = var.enable_local_debugging identity { type = "SystemAssigned" } tags = merge(var.tre_core_tags, { Publishers = "Airlock Processor;" }) inbound_ip_rule = var.enable_local_debugging ? [{ ip_mask = var.myip action = "Allow" }] : null lifecycle { ignore_changes = [tags] } } resource "azurerm_role_assignment" "servicebus_sender_step_result" { scope = var.airlock_servicebus.id role_definition_name = "Azure Service Bus Data Sender" principal_id = azurerm_eventgrid_topic.step_result.identity[0].principal_id depends_on = [ azurerm_eventgrid_topic.step_result ] } resource "azurerm_private_endpoint" "eg_step_result" { name = "pe-eg-step-result-${var.tre_id}" location = var.location resource_group_name = var.resource_group_name subnet_id = var.airlock_events_subnet_id tags = var.tre_core_tags lifecycle { ignore_changes = [tags] } private_dns_zone_group { name = "private-dns-zone-group" private_dns_zone_ids = [data.azurerm_private_dns_zone.eventgrid.id] } private_service_connection { name = "psc-eg-${var.tre_id}" private_connection_resource_id = azurerm_eventgrid_topic.step_result.id is_manual_connection = false subresource_names = ["topic"] } } resource "azurerm_eventgrid_topic" "status_changed" { name = local.status_changed_topic_name location = var.location resource_group_name = var.resource_group_name public_network_access_enabled = var.enable_local_debugging identity { type = "SystemAssigned" } tags = merge(var.tre_core_tags, { Publishers = "TRE API;" }) inbound_ip_rule = var.enable_local_debugging ? [{ ip_mask = var.myip action = "Allow" }] : null lifecycle { ignore_changes = [tags] } } resource "azurerm_role_assignment" "servicebus_sender_status_changed" { scope = var.airlock_servicebus.id role_definition_name = "Azure Service Bus Data Sender" principal_id = azurerm_eventgrid_topic.status_changed.identity[0].principal_id depends_on = [ azurerm_eventgrid_topic.status_changed ] } resource "azurerm_private_endpoint" "eg_status_changed" { name = "pe-eg-status-changed-${var.tre_id}" location = var.location resource_group_name = var.resource_group_name subnet_id = var.airlock_events_subnet_id tags = var.tre_core_tags lifecycle { ignore_changes = [tags] } private_dns_zone_group { name = "private-dns-zone-group" private_dns_zone_ids = [data.azurerm_private_dns_zone.eventgrid.id] } private_service_connection { name = "psc-eg-${var.tre_id}" private_connection_resource_id = azurerm_eventgrid_topic.status_changed.id is_manual_connection = false subresource_names = ["topic"] } } resource "azurerm_eventgrid_topic" "data_deletion" { name = local.data_deletion_topic_name location = var.location resource_group_name = var.resource_group_name public_network_access_enabled = var.enable_local_debugging identity { type = "SystemAssigned" } tags = merge(var.tre_core_tags, { Publishers = "Airlock Processor;" }) lifecycle { ignore_changes = [tags] } } resource "azurerm_role_assignment" "servicebus_sender_data_deletion" { scope = var.airlock_servicebus.id role_definition_name = "Azure Service Bus Data Sender" principal_id = azurerm_eventgrid_topic.data_deletion.identity[0].principal_id depends_on = [ azurerm_eventgrid_topic.data_deletion ] } resource "azurerm_private_endpoint" "eg_data_deletion" { name = "pe-eg-data-deletion-${var.tre_id}" location = var.location resource_group_name = var.resource_group_name subnet_id = var.airlock_events_subnet_id tags = var.tre_core_tags lifecycle { ignore_changes = [tags] } private_dns_zone_group { name = "private-dns-zone-group" private_dns_zone_ids = [data.azurerm_private_dns_zone.eventgrid.id] } private_service_connection { name = "psc-eg-${var.tre_id}" private_connection_resource_id = azurerm_eventgrid_topic.data_deletion.id is_manual_connection = false subresource_names = ["topic"] } } resource "azurerm_eventgrid_topic" "scan_result" { count = var.enable_malware_scanning ? 1 : 0 name = local.scan_result_topic_name location = var.location resource_group_name = var.resource_group_name # This is mandatory for the scan result to be published since private networks are not supported yet public_network_access_enabled = true identity { type = "SystemAssigned" } tags = merge(var.tre_core_tags, { Publishers = "Airlock Processor;" }) lifecycle { ignore_changes = [tags] } } resource "azurerm_role_assignment" "servicebus_sender_scan_result" { count = var.enable_malware_scanning ? 1 : 0 scope = var.airlock_servicebus.id role_definition_name = "Azure Service Bus Data Sender" principal_id = azurerm_eventgrid_topic.scan_result[0].identity[0].principal_id depends_on = [ azurerm_eventgrid_topic.scan_result ] } # System topic resource "azurerm_eventgrid_system_topic" "import_inprogress_blob_created" { name = local.import_inprogress_sys_topic_name location = var.location resource_group_name = var.resource_group_name source_arm_resource_id = azurerm_storage_account.sa_import_in_progress.id topic_type = "Microsoft.Storage.StorageAccounts" identity { type = "SystemAssigned" } tags = merge(var.tre_core_tags, { Publishers = "airlock;import-in-progress-sa" }) depends_on = [ azurerm_storage_account.sa_import_in_progress ] lifecycle { ignore_changes = [tags] } } resource "azurerm_role_assignment" "servicebus_sender_import_inprogress_blob_created" { scope = var.airlock_servicebus.id role_definition_name = "Azure Service Bus Data Sender" principal_id = azurerm_eventgrid_system_topic.import_inprogress_blob_created.identity[0].principal_id depends_on = [ azurerm_eventgrid_system_topic.import_inprogress_blob_created ] } resource "azurerm_eventgrid_system_topic" "import_rejected_blob_created" { name = local.import_rejected_sys_topic_name location = var.location resource_group_name = var.resource_group_name source_arm_resource_id = azurerm_storage_account.sa_import_rejected.id topic_type = "Microsoft.Storage.StorageAccounts" identity { type = "SystemAssigned" } tags = merge(var.tre_core_tags, { Publishers = "airlock;import-rejected-sa" }) depends_on = [ azurerm_storage_account.sa_import_rejected, ] lifecycle { ignore_changes = [tags] } } resource "azurerm_role_assignment" "servicebus_sender_import_rejected_blob_created" { scope = var.airlock_servicebus.id role_definition_name = "Azure Service Bus Data Sender" principal_id = azurerm_eventgrid_system_topic.import_rejected_blob_created.identity[0].principal_id depends_on = [ azurerm_eventgrid_system_topic.import_rejected_blob_created ] } resource "azurerm_eventgrid_system_topic" "import_blocked_blob_created" { name = local.import_blocked_sys_topic_name location = var.location resource_group_name = var.resource_group_name source_arm_resource_id = azurerm_storage_account.sa_import_blocked.id topic_type = "Microsoft.Storage.StorageAccounts" identity { type = "SystemAssigned" } tags = merge(var.tre_core_tags, { Publishers = "airlock;import-blocked-sa" }) depends_on = [ azurerm_storage_account.sa_import_blocked, ] lifecycle { ignore_changes = [tags] } } resource "azurerm_role_assignment" "servicebus_sender_import_blocked_blob_created" { scope = var.airlock_servicebus.id role_definition_name = "Azure Service Bus Data Sender" principal_id = azurerm_eventgrid_system_topic.import_blocked_blob_created.identity[0].principal_id depends_on = [ azurerm_eventgrid_system_topic.import_blocked_blob_created ] } resource "azurerm_eventgrid_system_topic" "export_approved_blob_created" { name = local.export_approved_sys_topic_name location = var.location resource_group_name = var.resource_group_name source_arm_resource_id = azurerm_storage_account.sa_export_approved.id topic_type = "Microsoft.Storage.StorageAccounts" identity { type = "SystemAssigned" } tags = merge(var.tre_core_tags, { Publishers = "airlock;export-approved-sa" }) depends_on = [ azurerm_storage_account.sa_export_approved, ] lifecycle { ignore_changes = [tags] } } resource "azurerm_role_assignment" "servicebus_sender_export_approved_blob_created" { scope = var.airlock_servicebus.id role_definition_name = "Azure Service Bus Data Sender" principal_id = azurerm_eventgrid_system_topic.export_approved_blob_created.identity[0].principal_id depends_on = [ azurerm_eventgrid_system_topic.export_approved_blob_created ] } # Custom topic (for airlock notifications) resource "azurerm_eventgrid_topic" "airlock_notification" { name = local.notification_topic_name location = var.location resource_group_name = var.resource_group_name public_network_access_enabled = var.enable_local_debugging identity { type = "SystemAssigned" } tags = merge(var.tre_core_tags, { Publishers = "airlock;custom notification service;" }) inbound_ip_rule = var.enable_local_debugging ? [{ ip_mask = var.myip action = "Allow" }] : null lifecycle { ignore_changes = [tags] } } resource "azurerm_role_assignment" "servicebus_sender_airlock_notification" { scope = var.airlock_servicebus.id role_definition_name = "Azure Service Bus Data Sender" principal_id = azurerm_eventgrid_topic.airlock_notification.identity[0].principal_id depends_on = [ azurerm_eventgrid_topic.airlock_notification ] } resource "azurerm_private_endpoint" "eg_airlock_notification" { name = "pe-eg-airlock_notification-${var.tre_id}" location = var.location resource_group_name = var.resource_group_name subnet_id = var.airlock_events_subnet_id tags = var.tre_core_tags lifecycle { ignore_changes = [tags] } private_dns_zone_group { name = "private-dns-zone-group" private_dns_zone_ids = [data.azurerm_private_dns_zone.eventgrid.id] } private_service_connection { name = "psc-eg-${var.tre_id}" private_connection_resource_id = azurerm_eventgrid_topic.airlock_notification.id is_manual_connection = false subresource_names = ["topic"] } } ## Subscriptions resource "azurerm_eventgrid_event_subscription" "step_result" { name = local.step_result_eventgrid_subscription_name scope = azurerm_eventgrid_topic.step_result.id service_bus_queue_endpoint_id = azurerm_servicebus_queue.step_result.id delivery_identity { type = "SystemAssigned" } depends_on = [ azurerm_eventgrid_topic.step_result, azurerm_role_assignment.servicebus_sender_step_result ] } resource "azurerm_eventgrid_event_subscription" "status_changed" { name = local.status_changed_eventgrid_subscription_name scope = azurerm_eventgrid_topic.status_changed.id service_bus_queue_endpoint_id = azurerm_servicebus_queue.status_changed.id delivery_identity { type = "SystemAssigned" } depends_on = [ azurerm_eventgrid_topic.status_changed, azurerm_role_assignment.servicebus_sender_status_changed ] } resource "azurerm_eventgrid_event_subscription" "data_deletion" { name = local.data_deletion_eventgrid_subscription_name scope = azurerm_eventgrid_topic.data_deletion.id service_bus_queue_endpoint_id = azurerm_servicebus_queue.data_deletion.id delivery_identity { type = "SystemAssigned" } depends_on = [ azurerm_eventgrid_topic.data_deletion, azurerm_role_assignment.servicebus_sender_data_deletion ] } resource "azurerm_eventgrid_event_subscription" "scan_result" { count = var.enable_malware_scanning ? 1 : 0 name = local.scan_result_eventgrid_subscription_name scope = azurerm_eventgrid_topic.scan_result[0].id service_bus_queue_endpoint_id = azurerm_servicebus_queue.scan_result.id delivery_identity { type = "SystemAssigned" } depends_on = [ azurerm_eventgrid_topic.scan_result, azurerm_role_assignment.servicebus_sender_scan_result ] } resource "azurerm_eventgrid_event_subscription" "import_inprogress_blob_created" { name = local.import_inprogress_eventgrid_subscription_name scope = azurerm_storage_account.sa_import_in_progress.id service_bus_topic_endpoint_id = azurerm_servicebus_topic.blob_created.id delivery_identity { type = "SystemAssigned" } depends_on = [ azurerm_eventgrid_system_topic.import_inprogress_blob_created, azurerm_role_assignment.servicebus_sender_import_inprogress_blob_created ] } resource "azurerm_eventgrid_event_subscription" "import_rejected_blob_created" { name = local.import_rejected_eventgrid_subscription_name scope = azurerm_storage_account.sa_import_rejected.id service_bus_topic_endpoint_id = azurerm_servicebus_topic.blob_created.id delivery_identity { type = "SystemAssigned" } # Todo add Dead_letter depends_on = [ azurerm_eventgrid_system_topic.import_rejected_blob_created, azurerm_role_assignment.servicebus_sender_import_rejected_blob_created ] } resource "azurerm_eventgrid_event_subscription" "import_blocked_blob_created" { name = local.import_blocked_eventgrid_subscription_name scope = azurerm_storage_account.sa_import_blocked.id service_bus_topic_endpoint_id = azurerm_servicebus_topic.blob_created.id delivery_identity { type = "SystemAssigned" } # Todo add Dead_letter depends_on = [ azurerm_eventgrid_system_topic.import_blocked_blob_created, azurerm_role_assignment.servicebus_sender_import_blocked_blob_created ] } resource "azurerm_eventgrid_event_subscription" "export_approved_blob_created" { name = local.export_approved_eventgrid_subscription_name scope = azurerm_storage_account.sa_export_approved.id service_bus_topic_endpoint_id = azurerm_servicebus_topic.blob_created.id delivery_identity { type = "SystemAssigned" } depends_on = [ azurerm_eventgrid_system_topic.export_approved_blob_created, azurerm_role_assignment.servicebus_sender_export_approved_blob_created ] }
AzureTRE/core/terraform/airlock/eventgrid_topics.tf/0
{ "file_path": "AzureTRE/core/terraform/airlock/eventgrid_topics.tf", "repo_id": "AzureTRE", "token_count": 6464 }
103
# See https://microsoft.github.io/AzureTRE/tre-developers/letsencrypt/ resource "azurerm_storage_account" "staticweb" { name = local.staticweb_storage_name resource_group_name = var.resource_group_name location = var.location account_kind = "StorageV2" account_tier = "Standard" account_replication_type = "LRS" enable_https_traffic_only = true allow_nested_items_to_be_public = false tags = local.tre_core_tags static_website { index_document = "index.html" error_404_document = "index.html" } lifecycle { ignore_changes = [tags] } network_rules { bypass = ["AzureServices"] default_action = "Deny" } } # Assign the "Storage Blob Data Contributor" role needed for uploading certificates to the storage account resource "azurerm_role_assignment" "stgwriter" { scope = azurerm_storage_account.staticweb.id role_definition_name = "Storage Blob Data Contributor" principal_id = data.azurerm_client_config.deployer.object_id } resource "azurerm_private_endpoint" "webpe" { name = "pe-web-${local.staticweb_storage_name}" location = var.location resource_group_name = var.resource_group_name subnet_id = var.shared_subnet tags = local.tre_core_tags lifecycle { ignore_changes = [tags] } private_dns_zone_group { name = "private-dns-zone-group-web" private_dns_zone_ids = [var.static_web_dns_zone_id] } private_service_connection { name = "psc-web-${local.staticweb_storage_name}" private_connection_resource_id = azurerm_storage_account.staticweb.id is_manual_connection = false subresource_names = ["web"] } }
AzureTRE/core/terraform/appgateway/staticweb.tf/0
{ "file_path": "AzureTRE/core/terraform/appgateway/staticweb.tf", "repo_id": "AzureTRE", "token_count": 858 }
104
#!/bin/bash set -e echo "# Generated environment variables from tf output" jq -r ' [ { "path": "core_resource_group_name", "env_var": "RESOURCE_GROUP_NAME" }, { "path": "core_resource_group_location", "env_var": "RESOURCE_LOCATION" }, { "path": "app_gateway_name", "env_var": "APPLICATION_GATEWAY" }, { "path": "static_web_storage", "env_var": "STORAGE_ACCOUNT" }, { "path": "keyvault_name", "env_var": "KEYVAULT" }, { "path": "keyvault_uri", "env_var": "KEYVAULT_URI" }, { "path": "azure_tre_fqdn", "env_var": "FQDN" }, { "path": "service_bus_resource_id", "env_var": "SERVICE_BUS_RESOURCE_ID" }, { "path": "service_bus_namespace_fqdn", "env_var": "SERVICE_BUS_FULLY_QUALIFIED_NAMESPACE" }, { "path": "service_bus_workspace_queue", "env_var": "SERVICE_BUS_RESOURCE_REQUEST_QUEUE" }, { "path": "service_bus_deployment_status_queue", "env_var": "SERVICE_BUS_DEPLOYMENT_STATUS_UPDATE_QUEUE" }, { "path": "service_bus_step_result_queue", "env_var": "SERVICE_BUS_STEP_RESULT_QUEUE" }, { "path": "state_store_resource_id", "env_var": "STATE_STORE_RESOURCE_ID" }, { "path": "cosmosdb_mongo_resource_id", "env_var": "COSMOSDB_MONGO_RESOURCE_ID" }, { "path": "state_store_account_name", "env_var": "COSMOSDB_ACCOUNT_NAME" }, { "path": "cosmosdb_mongo_account_name", "env_var": "COSMOSDB_MONGO_ACCOUNT_NAME" }, { "path": "state_store_endpoint", "env_var": "STATE_STORE_ENDPOINT" }, { "path": "app_insights_connection_string", "env_var": "APPLICATIONINSIGHTS_CONNECTION_STRING" }, { "path": "mgmt_storage_account_name", "env_var": "MGMT_STORAGE_ACCOUNT_NAME" }, { "path": "mgmt_resource_group_name", "env_var": "MGMT_RESOURCE_GROUP_NAME" }, { "path": "terraform_state_container_name", "env_var": "TERRAFORM_STATE_CONTAINER_NAME" }, { "path": "registry_server", "env_var": "REGISTRY_SERVER" }, { "path": "event_grid_status_changed_topic_endpoint", "env_var": "EVENT_GRID_STATUS_CHANGED_TOPIC_ENDPOINT" }, { "path": "event_grid_airlock_notification_topic_endpoint", "env_var": "EVENT_GRID_AIRLOCK_NOTIFICATION_TOPIC_ENDPOINT" }, { "path": "event_grid_status_changed_topic_resource_id", "env_var": "EVENT_GRID_STATUS_CHANGED_TOPIC_RESOURCE_ID" }, { "path": "event_grid_airlock_notification_topic_resource_id", "env_var": "EVENT_GRID_AIRLOCK_NOTIFICATION_TOPIC_RESOURCE_ID" } ] as $env_vars_to_extract | with_entries( select ( .key as $a | any( $env_vars_to_extract[]; .path == $a) ) | .key |= . as $old_key | ($env_vars_to_extract[] | select (.path == $old_key) | .env_var) ) | to_entries | map("\(.key)=\"\(.value.value)\"") | .[] ' | sed "s/\"/'/g" # replace double quote with single quote to handle special chars
AzureTRE/core/terraform/json-to-env.sh/0
{ "file_path": "AzureTRE/core/terraform/json-to-env.sh", "repo_id": "AzureTRE", "token_count": 2201 }
105
data "local_file" "version" { filename = "${path.module}/../../../../resource_processor/_version.py" } data "azurerm_subscription" "current" {} data "azurerm_client_config" "current" {} data "template_file" "cloudconfig" { template = file("${path.module}/cloud-config.yaml") vars = { docker_registry_server = var.docker_registry_server terraform_state_container_name = var.terraform_state_container_name mgmt_resource_group_name = var.mgmt_resource_group_name mgmt_storage_account_name = var.mgmt_storage_account_name service_bus_deployment_status_update_queue = var.service_bus_deployment_status_update_queue service_bus_resource_request_queue = var.service_bus_resource_request_queue service_bus_namespace = var.service_bus_namespace_fqdn vmss_msi_id = azurerm_user_assigned_identity.vmss_msi.client_id arm_subscription_id = data.azurerm_subscription.current.subscription_id arm_tenant_id = data.azurerm_client_config.current.tenant_id resource_processor_vmss_porter_image_repository = var.resource_processor_vmss_porter_image_repository resource_processor_vmss_porter_image_tag = local.version app_insights_connection_string = var.app_insights_connection_string resource_processor_number_processes_per_instance = var.resource_processor_number_processes_per_instance key_vault_name = var.key_vault_name key_vault_url = var.key_vault_url arm_environment = var.arm_environment azure_environment = local.azure_environment aad_authority_url = module.terraform_azurerm_environment_configuration.active_directory_endpoint microsoft_graph_fqdn = regex("(?:(?P<scheme>[^:/?#]+):)?(?://(?P<fqdn>[^/?#:]*))?", module.terraform_azurerm_environment_configuration.microsoft_graph_endpoint).fqdn logging_level = var.logging_level rp_bundle_values = local.rp_bundle_values_formatted } } data "template_cloudinit_config" "config" { gzip = true base64_encode = true part { content_type = "text/cloud-config" content = data.template_file.cloudconfig.rendered } }
AzureTRE/core/terraform/resource_processor/vmss_porter/data.tf/0
{ "file_path": "AzureTRE/core/terraform/resource_processor/vmss_porter/data.tf", "repo_id": "AzureTRE", "token_count": 1296 }
106
#!/bin/bash set -euo pipefail # Use this for debug only # set -o xtrace # This script polls looking for an app registration with the given ID. # If after the number of retries no app registration is found, the function exits. function wait_for_new_service_principal() { servicePrincipalId=$1 retries=10 counter=0 local msGraphUri="" msGraphUri="$(az cloud show --query endpoints.microsoftGraphResourceId --output tsv)/v1.0" output=$(az rest --method GET --uri "${msGraphUri}/servicePrincipals/${servicePrincipalId}" 2>/dev/null || true) while [[ -z $output && $counter -lt $retries ]]; do counter=$((counter+1)) echo "Waiting for service principal with ID ${servicePrincipalId} to show up (${counter}/${retries})..." sleep 5 output=$(az rest --method GET --uri "${msGraphUri}/servicePrincipals/${servicePrincipalId}" 2>/dev/null || true) done if [[ -z $output ]]; then echo "Failed" exit 1 fi } # This script creates a new Service Principal or offers to update the password if it already exists. function create_or_update_service_principal() { applicationId=$1 autoResetPassword=$2 # See if a service principal already exists spId=$(az ad sp list --filter "appId eq '${applicationId}'" --query '[0].id' --output tsv --only-show-errors) resetPassword=0 REPLY="" # If not, create a new service principal if [[ -z "$spId" ]]; then spId=$(az ad sp create --id "${applicationId}" --query 'id' --output tsv --only-show-errors) wait_for_new_service_principal "${spId}" az ad app owner add --id "${applicationId}" --owner-object-id "${spId}" --only-show-errors resetPassword=1 elif [ "$autoResetPassword" == 1 ]; then resetPassword=1 else read -p "Service principal \"${spId}\" already exists. Do you wish to reset the password. DO NOT PRESS ENTER. (y/N)? " -rN1 if [[ ${REPLY::1} == [Yy] ]]; then resetPassword=1 fi fi spPassword="" if [[ "$resetPassword" == 1 ]]; then spPassword=$(az ad sp credential reset --id "${spId}" --query 'password' --output tsv --only-show-errors) fi # This tag ensures the app is listed in "Enterprise applications" # az ad sp update --id "$spId" --set tags="['WindowsAzureActiveDirectoryIntegratedApp']" --only-show-errors # Doesn't work in AZ CLI 2.37 - do we still need it? echo "${spPassword}" }
AzureTRE/devops/scripts/aad/create_or_update_service_principal.sh/0
{ "file_path": "AzureTRE/devops/scripts/aad/create_or_update_service_principal.sh", "repo_id": "AzureTRE", "token_count": 828 }
107
#!/bin/bash # This script is designed to be `source`d to create reusable helper functions function convert_azure_env_to_arm_env() { azure_environment=$1 declare -A arm_envs=( ["AzureCloud"]="public" ["AzureUSGovernment"]="usgovernment") echo "${arm_envs[${azure_environment}]}" }
AzureTRE/devops/scripts/convert_azure_env_to_arm_env.sh/0
{ "file_path": "AzureTRE/devops/scripts/convert_azure_env_to_arm_env.sh", "repo_id": "AzureTRE", "token_count": 98 }
108
#!/bin/bash set -e # This script adds the client (app) ID and the client secret (app password) of the service principal used for deploying # resources (workspaces and workspace services) to Key Vault. # # Running the script requires that Azure CLI login has been done with the credentials that have privileges to access # the Key Vault. # # Required environment variables: # # - TRE_ID - The TRE ID, used to deduce the Key Vault name # - ARM_SUBSCRIPTION_ID - The Azure subscription ID # - RESOURCE_PROCESSOR_CLIENT_ID - The client ID of the service principal # - RESOURCE_PROCESSOR_CLIENT_SECRET - The client secret of the service principal # echo -e "\n\e[34m»»» 🤖 \e[96mCreating (or updating) service principal ID and secret to Key Vault\e[0m..." key_vault_name="kv-$TRE_ID" az account set --subscription $ARM_SUBSCRIPTION_ID az keyvault secret set --name deployment-processor-azure-client-id --vault-name $key_vault_name --value $RESOURCE_PROCESSOR_CLIENT_ID az keyvault secret set --name deployment-processor-azure-client-secret --vault-name $key_vault_name --value $RESOURCE_PROCESSOR_CLIENT_SECRET > /dev/null
AzureTRE/devops/scripts/set_contributor_sp_secrets.sh/0
{ "file_path": "AzureTRE/devops/scripts/set_contributor_sp_secrets.sh", "repo_id": "AzureTRE", "token_count": 352 }
109
# Airlock In a Trusted Research Environment (TRE) the workspaces represent a security boundary that enables researchers to access data, execute analysis, apply algorithms and collect reports. The airlock capability is the only mechanism that allows users to `import` or `export` data, tools or other file based artefacts in a secure fashion with a human approval. This constitutes the mechanism focused on preventing data exfiltration and securing TRE and its workspaces from inappropriate data, while allowing researchers to work on their projects and execute their tasks. The airlock feature brings several actions: ingress/egress Mechanism; Data movement; Security gates; Approval mechanism and Notifications. As part of TRE's Safe settings all activity must be tracked for auditing purposes. The Airlock feature aims to address these goals: * Prevent unauthorised data import or export. * Provide a process to allow approved data to be imported through the security boundary of a TRE Workspace. * TRE provides functionality to track requests and decisions, supporting cycles of revision, approval or rejection. * Data being imported with an airlock import process can be automatically scanned for security issues. * Data being exported or imported must be manually reviewed by the Airlock Manager. * Notify the requesting researcher of the process progress and/or required actions. * All steps within the airlock process are audited. Typically in a TRE, the Airlock feature would be used to allow a researcher to export the outputs of a research project such as summary results. With the airlock, data to be exported must go through a human review, typically undertaken by a data governance team. The Airlock feature will create events on every meaningful step of the process. This will enable increased flexibility by allowing an organization to extend the notification mechanism. ## Ingress/Egress Mechanism The Airlock allows a TRE user to start the `import` or `export` process to a given workspace. A number of milestones must be reached in order to complete a successful import or export. These milestones are defined using the following states: 1. **Draft**: An Airlock request has been created but has not yet started. The TRE User/Researcher has now access to a storage location and they must identify the data to be processed. At this point the airlock import/export processes allow a single file to be processed. However a compressed file may be used (zip). 2. **Submitted**: The request was submitted by the researcher (not yet processed). 3. **In-Review**: The request is ready to be reviewed. This state can be reached directly from Submitted state or after going through a successful security scan (found clean). 4. **Approval In-progress**: The Airlock request has been approved, however data movement is still ongoing. 5. **Approved**: The Airlock request has been approved. At this state, data has been securely verified and manually reviewed. The data is now in its final location. For an import process the data is now available in the TRE workspace, it can be accessed by the requestor from within the workspace. 6. **Rejection In-progress**: The Airlock request has been rejected, however data movement is still ongoing. 7. **Rejected**: The Airlock request has been rejected. The data in the process was rejected manually by the Airlock Manager. 8. **Cancelled**: The Airlock request was manually cancelled by the requestor TRE user, a Workspace owner or a TRE administrator. The cancelation is only allowed when the request is not actively changing (i.e. **Draft** or **In-Review** state). 9. **Blocking In-progress**: The Airlock request has been blocked, however data movement is still ongoing. 10. **Blocked By Scan**: The Airlock request has been blocked. The security analysis found issues in the submitted data and consequently quarantined the data. ```mermaid graph TD A[Researcher wants to export data from TRE Workspace] -->|Request created| B[Request in state Draft] B-->|Researcher gets link to storage container and uploads data| B B-->|Request submitted| C[Submitted] C--> D{Security issues found?} D-->|Yes| E[Blocking In-progress] D-->|No| G[In-Review] E:::temporary--> F((Blocked By Scan)) G-->|Human Review| H{Is data appropriate to export?} H-->|Approve| I[Approval In-progress] H-->|Reject| J[Rejection In-progress] I:::temporary-->K((Approved)) J:::temporary-->L((Rejected)) B-->|Request Canceled| X((Canceled)) G-->|Request Canceled| X H-->|Request Canceled| X classDef temporary stroke-dasharray: 5 5 ``` > Airlock state flow diagram for an Airlock export request When an airlock process is created the initial state is **Draft** and the required infrastructure will get created providing a single container to isolate the data in the request. Once completed, the user will be able to get a link for this container inside the storage account (URL + SAS token) that they can use to upload the desired data to be processed (import or export). This storage location is external for import (`stalimex`) or internal for export (`stalexint`), however only accessible to the requestor (ex: a TRE user/researcher). The user will be able to upload a file to the provided storage location, using any tool of their preference: [Azure Storage Explorer](https://azure.microsoft.com/en-us/features/storage-explorer/) or [AzCopy](https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10) which is a command line tool. The user Submits the request (TRE API call) starting the data movement (to the `stalimip` - import in-progress or `stalexip` - export in-progress). The airlock request is now in state **Submitted**. If enabled, the Malware Scanning is started. The scan is done using Microsoft Defender for Storage, which is described in details [here](https://learn.microsoft.com/en-us/azure/defender-for-cloud/defender-for-storage-introduction). In the case that security flaws are found, the request state becomes **Blocking In-progress** while the data is moved to blocked storage (either import blocked `stalimblocked` or export blocked `stalexblocked`). In this case, the request is finalized with the state **Blocked By Scan**. If the Security Scanning does not identify any security flaws, the request state becomes **In-Review**. Simultaneously, a notification is sent to the Airlock Manager user. The user needs to ask for the container URL using the TRE API (SAS token + URL with READ permission). > The Security Scanning can be disabled, changing the request state from **Submitted** straight to **In-Review**. The Airlock Manager will manually review the data using the tools of their choice available in the TRE workspace. Once review is completed, the Airlock Manager will have to *Approve* or *Reject* the airlock proces, though a TRE API call. At this point, the request will change state to either **Approval In-progress** or **Rejection In-progress**, while the data movement occurs moving afterwards to **Approved** or **Rejected** accordingly. The data will now be in the final storage destination: `stalexapp` - export approved or `stalimapp` - import approved. With this state change, a notification will be triggered to the requestor including the location of the processed data in the form of an URL + SAS token. ## Data movement For any airlock process, there is data movement either **into** a TRE workspace (in import process) or **from** a TRE workspace (in export process). Being a TRE Workspace boundary, there are networking configurations designed to achieve this goal. The data movement will guarantee that the data is automatically verified for security flaws and manually reviewed, before placing data inside the TRE Workspace. Also, the process guarantees that data is not tampered with throughout the process. In an import process, data will transition from more public locations (yet confined to the requestor) to TRE workspace storage, after guaranteeing security automatically and by manual review. In an export process, data will transition from internal locations (available to the requestor) to public locations in the TRE, after going through a manual review. Considering that the Airlock requests may require large data movements, the operations can have longer durations, hence becoming the operations asynchronous. This is why states like **Approval In-progress**, **Rejection In-progress** or **Blocking In-progress** will be set while there are data movement operations. > The data movement mechanism is data-driven, allowing an organization to extend how request data transitions between ## Security Scan The identified data in a airlock proces, will be submited to a security scan. If the security scan identifies issues the data is quarantined and a report is added to the process metadata. Both the requestor and Workspace Owner are notified. For a successful security scan, the data will remain in state **In-progress**, and accessible to the Workspace Owner. > * The Security scan will be optional, behind a feature flag enabled by a script > * The outcome of the security scan will be either the in-progress (`stalexip`) storage or blocked (`stalexblocked`) > * An airlock process will guarantee that the content being imported/exported is secure. It is envisioned that a set of **security gates** are identified to be executed successfully for a process to be approved. ## Approval mechanism The approval mechanism, is bundled with any airlock process, providing a specific way to `approve` or `reject` the data. This mechanism will allow the Airlock Managers to explicitly approve/reject the process, after having access to the data. The Airlock Manager users will be able to execute a manual review on the data using the tools available to them in a review TRE Workspace. Once this manual review is executed, Airlock Managers can proactively approve or reject the airlock request. The only goal of the Approval mechanism is to provide a cycle of revision, approval or rejection while tracking the decision. This mechanism will provide access to the data in the airlock process, and will be able to use a VM in TRE workspace. The data review will be the Airlock Manager responsibility > * It is envisioned that this mechanism to be more flexible and extensible. > * The `Airlock Manager` is a role defined at the workspace instance level and assigned to identities. Initially, the `Owner` role will be used. ## Notifications Throughout the airlock process, the notification mechanism will notify the relevant people of the process. Both the requestor (TRE User/Researcher) and the Workspace Owner will be notified by email of the relevant process events. Whenever the airlock process changes to a state of **Draft**, **Submitted**, **Approved**, **Rejected**, **Approval In-progress**, **Rejection In-progress**, **Blocked By Scan** or **Cancelled**, the process requestor gets notified. When the state changes to `In-progress` the Workspace Owner (Airlock Manager) gets notified. > * The Notification mechanism is also data-driven, allowing an organization to extend the notifications behavior. The mechanism is exemplified with a Logic App determining the notifications logic. > * Notifications will work with All TRE users being Microsoft Entra ID users (guests or not), with email defined – if not, notifications will not be sent. ## Architecture The Airlock feature is supported by infrastructure at the TRE and workspace level, containing a set of storage accounts. Each Airlock request will provision and use unique storage containers with the request id in its name. ```mermaid graph LR subgraph TRE Workspace E[(stalimapp</br>import approved)] end subgraph TRE A[(stalimex</br>import external)]-->|Request Submitted| B B[(stalimip</br>import in-progress)]-->|Security issues found| D[(stalimblocked</br>import blocked)] B-->|No security issues found| review{Manual</br>Approval} review-->|Rejected| C[(stalimrej</br>import rejected)] review-->|Approved| E end subgraph External data(Data to import)-->A end ``` > Data movement in an Airlock import request TRE: * `stalimex` - storage (st) airlock (al) import (im) external (ex) * `stalimip` - storage (st) airlock (al) import (im) in-progress (ip) * `stalimrej` - storage (st) airlock (al) import (im) rejected (rej) * `stalimblocked` - storage (st) airlock (al) import (im) blocked * `stalexapp` - storage (st) airlock (al) export (ex) approved (app) Workspace: * `stalimapp` - workspace storage (st) airlock (al) import (im) approved (app) * `stalexint` - workspace storage (st) airlock (al) export (ex) internal (int) * `stalexip` - workspace storage (st) airlock (al) export (ex) in-progress (ip) * `stalexrej` - workspace storage (st) airlock (al) export (ex) rejected (rej) * `stalexblocked` - workspace storage (st) airlock (al) export (ex) blocked > * The external storage accounts (`stalimex`, `stalexapp`), are not bound to any vnet and are accessible (with SAS token) via the internet > * The internal storage account (`stalexint`) is bound to the workspace vnet, so ONLY TRE Users/Researchers on that workspace can access it > * The (export) in-progress storage account (`stalexip`) is bound to the workspace vnet > * The (export) blocked storage account (`stalexblocked`) is bound to the workspace vnet > * The (export) rejected storage account (`stalexrej`) is bound to the workspace vnet > * The (import) in-progress storage account (`stalimip`) is bound to the TRE CORE vnet > * The (import) blocked storage account (`stalimblocked`) is bound to the TRE CORE vnet > * The (import) rejected storage account (`stalimrej`) is bound to the TRE CORE vnet > * The (import) approved storage account (`stalimapp`) is bound to the workspace vnet [![Airlock networking](../assets/airlock-networking.png)](../assets/airlock-networking.png) In the TRE Core, the TRE API will provide the airlock API endpoints allowing to advance the process. The TRE API will expose the following methods: | Method | Endpoint | Description | |---|---|---| | `POST` | `/api/workspaces/{workspace_id}/requests` | Create an Airlock request (in **Draft**) | | `POST` | `/api/workspaces/{workspace_id}/requests/{airlock_request_id}/link` | Get the url and token to access an Airlock Request | `POST` | `/api/workspaces/{workspace_id}/requests/{airlock_request_id}/submit` | Submits an Airlock request | | `POST` | `/api/workspaces/{workspace_id}/requests/{airlock_request_id}/review` | Reviews an Airlock request | | `POST` | `/api/workspaces/{workspace_id}/requests/{airlock_request_id}/cancel` | Cancels an Airlock request | Also in the airlock feature there is the **Airlock Processor** which handles the events that are created throughout the process, signalling state changes from blobs created, status changed or security scans finalized. ## Airlock flow The following sequence diagram detailing the Airlock feature and its event driven behaviour: [![Airlock flow](../assets/airlock-swimlanes.png)](../assets/airlock-swimlanes.png)
AzureTRE/docs/azure-tre-overview/airlock.md/0
{ "file_path": "AzureTRE/docs/azure-tre-overview/airlock.md", "repo_id": "AzureTRE", "token_count": 3829 }
110
# Deploying Azure TRE You are now ready to deploy the Azure TRE instance. Execute the `all` action of the makefile using `make`: ```bash make all ``` Deploying a new Azure TRE instance takes approximately 30 minutes. Once the deployment is completed, you will be presented with a few output variables similar to the ones below: ```plaintext app_gateway_name = "agw-mytre" azure_tre_fqdn = "mytre.westeurope.cloudapp.azure.com" core_resource_group_name = "rg-mytre" keyvault_name = "kv-mytre" log_analytics_name = "log-mytre" static_web_storage = "stwebmytre" ``` The Azure TRE instance is initially deployed with an invalid self-signed SSL certificate. This certificate needs to be replaced with one valid for your configured domain name. To use a certificate from [Let's Encrypt](https://letsencrypt.org/), run the command: ```bash make letsencrypt ``` !!! caution There are rate limits with Let's Encrypt, so this should not be run when not needed. !!! info If you're using Codespaces, you'll encounter a bug when trying to run `make letsencrypt` where the incorrect IP will be whitelisted on the storage account and Codespaces won't be able to upload the test file due to a 403 error. The workaround until this is fixed is to temporarily disable the firewall on your `stweb{TRE_ID}` storage account before running the script, then re-enable afterwards. ## Validate the deployment ### Using curl Use `curl` to make a simple request to the health endpoint of the API: ```bash curl https://<azure_tre_fqdn>/api/health ``` The expected response is: ```json { "services": [ { "service": "Cosmos DB", "status": "OK", "message": "" }, { "service": "Service Bus", "status": "OK", "message": "" }, { "service": "Resource Processor", "status": "OK", "message": "" } ] } ``` ### Using the API docs Open your browser and navigate to the `/api/docs` route of the API: `https://<azure_tre_fqdn>/api/docs` and click `Try it out` on the operation of choice. ![Swagger UI](../../assets/quickstart_swaggerui.png) ## Next steps * [Configure Shared Services](configuring-shared-services.md) * [Enable users to access the Azure TRE instance](../auth.md#enabling-users)
AzureTRE/docs/tre-admins/setup-instructions/manual-deployment.md/0
{ "file_path": "AzureTRE/docs/tre-admins/setup-instructions/manual-deployment.md", "repo_id": "AzureTRE", "token_count": 733 }
111
# TRE Developers This section contains information relevant for developing against Azure TRE. See the topics in the index on the left.
AzureTRE/docs/tre-developers/index.md/0
{ "file_path": "AzureTRE/docs/tre-developers/index.md", "repo_id": "AzureTRE", "token_count": 27 }
112
# Azure Machine Learning Service bundle See: [https://azure.microsoft.com/services/machine-learning/](https://azure.microsoft.com/services/machine-learning/) This service installs the following resources into an existing virtual network within the workspace: ![Azure Machine Learning Service](images/aml_service.png) When deploying the service the Azure ML workspace can be exposed publicly or access restricted to the virtual network. Depending on the choice appropriate network security rules are added. This also means that in the public configuration compute instances can be deployed with public IPs, and in the private configuration they must be deployed with no public IP. Any users with the role of `Workspace Researcher` will be assigned the `AzureML Data Scientist` role within the AML workspace. To ensure AML compute instances are deployed with the appropriate configuration we suggest they are deployed using an Compute Instance User Resource. ## Prerequisites - [A base workspace bundle installed](../workspaces/base.md)
AzureTRE/docs/tre-templates/workspace-services/azure-ml.md/0
{ "file_path": "AzureTRE/docs/tre-templates/workspace-services/azure-ml.md", "repo_id": "AzureTRE", "token_count": 226 }
113
# Adding Firewall Rules as part of a workspace or service deployment !!! note Creating firewall rules will in the future only be allowed through the firewall shared services [#882](https://github.com/microsoft/AzureTRE/issues/882). A TRE service may require certain firewall rules to be opened in the TRE firewall. Examples include: - Access to an external authorisation endpoint - Access to an external data store - Access to an external API Please be aware when opening firewall rules there is the potential for data to be leaked from the workspace to the external location. ## Using Terraform to open firewall rules Until a mechanism to update shared services has been implemented, firewall rule updates should be done using terraform as part of the service deployment. The aim is to create a firewall rule that grants access from the workspace's address space to the external location. A challenge with this is that the rule must use a priority that has not been used by any other rule. 1. Create a `firewall.tf` file in the `terraform` directory of the workspace. 1. Add the following code to the `firewall.tf` file to enable the TRE firewall and workspace network to be referenced: ```terraform data "azurerm_firewall" "fw" { name = "fw-${var.tre_id}" resource_group_name = "rg-${var.tre_id}" } data "azurerm_virtual_network" "ws" { name = "vnet-${var.tre_id}-ws-${var.workspace_id}" resource_group_name = data.azurerm_resource_group.ws.name } ``` 1. Define a local variable that contains the locations that access should be allowed to, and the naming format for the service resources for example: ```terraform locals { allowed_urls = ["*.anaconda.com", "*.anaconda.org"] service_resource_name_suffix = "${var.tre_id}-ws-${var.workspace_id}-svc-${local.service_id}" } ``` 1. Log into the Azure CLI using service principal details: ```terraform resource "null_resource" "az_login" { provisioner "local-exec" { command = "az login --identity -u '${var.arm_client_id}'" } triggers = { timestamp = timestamp() } } ``` 1. Call the `get_firewall_priorities.sh` script to find the next available priority: ```terraform data "external" "rule_priorities" { program = ["bash", "-c", "./get_firewall_priorities.sh"] query = { firewall_name = data.azurerm_firewall.fw.name resource_group_name = data.azurerm_firewall.fw.resource_group_name service_resource_name_suffix = local.service_resource_name_suffix } depends_on = [ null_resource.az_login ] } ``` 1. Save the `get_firewall_priorities.sh` script as a file in the `terraform` directory: ```bash #!/bin/bash set -e eval "$(jq -r '@sh "firewall_name=\(.firewall_name) resource_group_name=\(.resource_group_name) service_resource_name_suffix=\(.service_resource_name_suffix)"')" if NETWORK_RULES=$(az network firewall network-rule list -g $resource_group_name -f $firewall_name --collection-name "nrc-$service_resource_name_suffix" -o json); then NETWORK_RULE_PRIORITY=$(echo $NETWORK_RULES | jq '.priority') else NETWORK_RULE_MAX_PRIORITY=$(az network firewall network-rule collection list -f $firewall_name -g $resource_group_name -o json --query 'not_null(max_by([],&priority).priority) || `100`') NETWORK_RULE_PRIORITY=$(($NETWORK_RULE_MAX_PRIORITY+1)) fi if APPLICATION_RULES=$(az network firewall application-rule list -g $resource_group_name -f $firewall_name --collection-name "arc-$service_resource_name_suffix" -o json); then APPLICATION_RULE_PRIORITY=$(echo $APPLICATION_RULES | jq '.priority') else APPLICATION_RULE_MAX_PRIORITY=$(az network firewall application-rule collection list -f $firewall_name -g $resource_group_name -o json --query 'not_null(max_by([],&priority).priority) || `100`') APPLICATION_RULE_PRIORITY=$(($APPLICATION_RULE_MAX_PRIORITY+1)) fi # Safely produce a JSON object containing the result value. jq -n --arg network_rule_priority "$NETWORK_RULE_PRIORITY" --arg application_rule_priority "$APPLICATION_RULE_PRIORITY" '{ "network_rule_priority":$network_rule_priority, "application_rule_priority":$application_rule_priority }' ``` 1. Create the firewall rule using a resource similar to the below: ```terraform resource "azurerm_firewall_application_rule_collection" "apprulecollection" { name = "arc-${local.service_resource_name_suffix}" azure_firewall_name = data.azurerm_firewall.fw.name resource_group_name = data.azurerm_firewall.fw.resource_group_name priority = data.external.rule_priorities.result.application_rule_priority action = "Allow" rule { name = "allowServiceXRules" source_addresses = data.azurerm_virtual_network.ws.address_space target_fqdns = local.allowed_urls protocol { port = "443" type = "Https" } protocol { port = "80" type = "Http" } } } ```
AzureTRE/docs/tre-workspace-authors/firewall-rules.md/0
{ "file_path": "AzureTRE/docs/tre-workspace-authors/firewall-rules.md", "repo_id": "AzureTRE", "token_count": 2094 }
114
# Using the Azure TRE for Research This section contains information relevant on how to conduct research in a TRE workspace.
AzureTRE/docs/using-tre/tre-for-research/index.md/0
{ "file_path": "AzureTRE/docs/using-tre/tre-for-research/index.md", "repo_id": "AzureTRE", "token_count": 25 }
115
import asyncio import logging from httpx import AsyncClient, Timeout from starlette import status from e2e_tests.helpers import assert_status, get_auth_header, get_full_endpoint from e2e_tests.resources.deployment import delete_done, install_done, patch_done from resources import strings LOGGER = logging.getLogger(__name__) TIMEOUT = Timeout(10, read=30) async def get_resource(endpoint, access_token, verify): async with AsyncClient(verify=verify, timeout=30.0) as client: full_endpoint = get_full_endpoint(endpoint) auth_headers = get_auth_header(access_token) response = await client.get(full_endpoint, headers=auth_headers, timeout=TIMEOUT) assert_status(response, [status.HTTP_200_OK], f"Failed to GET {full_endpoint}") return response.json() async def post_resource(payload, endpoint, access_token, verify, method="POST", wait=True, etag="*", access_token_for_wait=None): async with AsyncClient(verify=verify, timeout=30.0) as client: full_endpoint = get_full_endpoint(endpoint) auth_headers = get_auth_header(access_token) if method == "POST": response = await client.post(full_endpoint, headers=auth_headers, json=payload, timeout=TIMEOUT) check_method = install_done else: auth_headers["eTag"] = etag # defaulted as * to force the update. check_method = patch_done response = await client.patch(full_endpoint, headers=auth_headers, json=payload, timeout=TIMEOUT) assert_status(response, [status.HTTP_202_ACCEPTED], "The resource couldn't be sent") resource_path = response.json()["operation"]["resourcePath"] resource_id = response.json()["operation"]["resourceId"] operation_endpoint = response.headers["Location"] if wait: wait_auth_headers = get_auth_header(access_token_for_wait) if access_token_for_wait else auth_headers await wait_for(check_method, client, operation_endpoint, wait_auth_headers, [strings.RESOURCE_STATUS_DEPLOYMENT_FAILED, strings.RESOURCE_STATUS_UPDATING_FAILED]) return resource_path, resource_id async def disable_and_delete_resource(endpoint, access_token, verify): async with AsyncClient(verify=verify, timeout=TIMEOUT) as client: full_endpoint = get_full_endpoint(endpoint) auth_headers = get_auth_header(access_token) auth_headers["etag"] = "*" # for now, send in the wildcard to skip around etag checking # disable payload = {"isEnabled": False} response = await client.patch(full_endpoint, headers=auth_headers, json=payload, timeout=TIMEOUT) assert_status(response, [status.HTTP_202_ACCEPTED], "The resource couldn't be disabled") operation_endpoint = response.headers["Location"] await wait_for(patch_done, client, operation_endpoint, auth_headers, [strings.RESOURCE_STATUS_UPDATING_FAILED]) # delete response = await client.delete(full_endpoint, headers=auth_headers, timeout=TIMEOUT) assert_status(response, [status.HTTP_200_OK], "The resource couldn't be deleted") resource_id = response.json()["operation"]["resourceId"] operation_endpoint = response.headers["Location"] await wait_for(delete_done, client, operation_endpoint, auth_headers, [strings.RESOURCE_STATUS_DELETING_FAILED]) return resource_id async def wait_for(func, client, operation_endpoint, headers, failure_states: list): done, done_state, message, operation_steps = await func(client, operation_endpoint, headers) LOGGER.info(f'WAITING FOR OP: {operation_endpoint}') while not done: await asyncio.sleep(30) done, done_state, message, operation_steps = await func(client, operation_endpoint, headers) LOGGER.info(f"{done}, {done_state}, {message}") try: assert done_state not in failure_states except Exception: LOGGER.exception(f"Failed to deploy. Status message: {message}.\n{operation_steps}") raise
AzureTRE/e2e_tests/resources/resource.py/0
{ "file_path": "AzureTRE/e2e_tests/resources/resource.py", "repo_id": "AzureTRE", "token_count": 1497 }
116
--- site_name: Azure TRE site_url: https://microsoft.github.io/AzureTRE site_description: Azure TRE site_author: Microsoft repo_url: https://github.com/microsoft/AzureTre/ edit_uri: "" theme: name: material custom_dir: mkdocs-overrides font: text: Roboto code: Roboto Mono palette: scheme: default primary: blue grey accent: indigo logo: assets/ms_icon.png favicon: assets/ms_icon.png features: - navigation.instant - navigation.indexes extra: version: provider: mike default: latest plugins: - search markdown_extensions: - pymdownx.superfences: custom_fences: - name: mermaid class: mermaid format: !!python/name:pymdownx.superfences.fence_code_format - meta - admonition - pymdownx.highlight - pymdownx.pathconverter - mdx_truly_sane_lists - pymdownx.tabbed - pymdownx.tasklist nav: - Overview: # Pages to explain what the Azure TRE - Introducing the AzureTRE: index.md # Introduction to the concept of a TRE, and the AzureTRE - User Roles: azure-tre-overview/user-roles.md # The users and roles within an Azure TRE - Architecture: # Pages to help understand the components, infra, and networking - System Architecture: azure-tre-overview/architecture.md - Network Architecture: azure-tre-overview/networking.md - Azure Resources: azure-tre-overview/tre-resources-breakdown.md - Airlock: azure-tre-overview/airlock.md - Cost Reporting: azure-tre-overview/cost-reporting.md - Terms and Definitions: using-tre/terms-definitions.md # - Compliance: azure-tre-overview/compliance-info.md - QuickStart: # Setup steps for anyone performing an initial deployment of the AzureTRE for eval purposes - tre-admins/setup-instructions/index.md - 1. Prerequisites: tre-admins/setup-instructions/prerequisites.md - 2. Deployment Repository: tre-admins/setup-instructions/deployment-repo.md - 3. AD Tenant: tre-admins/setup-instructions/ad-tenant-choices.md - 4. Setup Auth: tre-admins/setup-instructions/setup-auth-entities.md - 5. Deployment: - Manual: - Pre-deployment Steps: tre-admins/setup-instructions/manual-pre-deployment-steps.md - Deployment Steps: tre-admins/setup-instructions/manual-deployment.md - CI/CD: - Pre-deployment Steps: tre-admins/setup-instructions/cicd-pre-deployment-steps.md - Deployment Steps: tre-admins/setup-instructions/cicd-deployment.md - 6. Configure Shared Services: tre-admins/setup-instructions/configuring-shared-services.md - 7. Install Base Workspace: tre-admins/setup-instructions/ui-install-base-workspace.md - 8. Install Workspace Service and User Resource: tre-admins/setup-instructions/ui-install-ws-and-ur.md - Using the Azure TRE: # Documentation for users of the TRE - Introduction: using-tre/index.md - Custom Templates: using-tre/templates/index.md - Using AzureTRE for Research: - Introduction: using-tre/tre-for-research/index.md - Set up of a Virtual Machine: using-tre/tre-for-research/using-vms.md - Importing/exporting data with Airlock: using-tre/tre-for-research/importing-exporting-data-airlock.md - Reviewing Airlock Requests: using-tre/tre-for-research/review-airlock-request.md - Templates and Services: # Docs to highlight and illustrate workspaces, workspace services etc - Workspaces: - Base: tre-templates/workspaces/base.md - Unrestricted: tre-templates/workspaces/unrestricted.md - Airlock Import Review: tre-templates/workspaces/airlock-import-review.md - Workspace Services: - Azure ML: tre-templates/workspace-services/azure-ml.md - Gitea: tre-templates/workspace-services/gitea.md - Guacamole: tre-templates/workspace-services/guacamole.md - InnerEye: tre-templates/workspace-services/inner-eye.md - MLFlow: tre-templates/workspace-services/mlflow.md - Health Services: tre-templates/workspace-services/health_services.md - Azure Databricks: tre-templates/workspace-services/databricks.md - OHDSI: tre-templates/workspace-services/ohdsi.md - Shared Services: - Gitea (Source Mirror): tre-templates/shared-services/gitea.md - Nexus (Package Mirror): tre-templates/shared-services/nexus.md - Azure CycleCloud (HPC Compute): tre-templates/shared-services/cyclecloud.md - Airlock Notifier: tre-templates/shared-services/airlock-notifier.md - User Resources: - Guacamole Windows VM: tre-templates/user-resources/guacamole-windows-vm.md - Guacamole Linux VM: tre-templates/user-resources/guacamole-linux-vm.md - Import Review VM: tre-templates/user-resources/import-reviewvm.md - Export Review VM: tre-templates/user-resources/export-reviewvm.md - Technical Guide: # All Technical Documentation (Admin, Development) - Administration: # Docs related to the deployment and operation of AzureTRE infrastructure - Starting and Stopping Azure TRE Services: tre-admins/start-stop.md - Environment Variables: tre-admins/environment-variables.md - Tear-down: tre-admins/tear-down.md - Authentication and Authorization: - Introduction: tre-admins/auth.md - Manual Setup: tre-admins/identities/auth-manual.md - Identities: - Application Admin: tre-admins/identities/application_admin.md - API: tre-admins/identities/api.md - Client: tre-admins/identities/client.md - Automation Test Account: tre-admins/identities/test-account.md - Workspaces: tre-admins/identities/workspace.md - Registering Templates: tre-admins/registering-templates.md - Install Resources via API: - Install Base Workspace: tre-admins/setup-instructions/installing-base-workspace.md # yamllint disable-line rule:line-length - Install Workspace Service and User Resource: tre-admins/setup-instructions/installing-workspace-service-and-user-resource.md - Upgrading AzureTRE Version: tre-admins/upgrading-tre.md - Upgrading Resources Version: tre-admins/upgrading-resources.md - Configuring Airlock Reviews: tre-admins/configure-airlock-review.md - Supported Clouds: tre-admins/supported-clouds.md - Development: # Docs related to the developing code for the AzureTRE - Local Development: using-tre/local-development/local-development.md - Contributing to AzureTRE: # Docs aimed at OSS developers, committing code to the AzureTRE repo - Introduction: tre-developers/index.md - API: tre-developers/api.md - UI: tre-developers/ui.md - Resource Processor: tre-developers/resource-processor.md - End to End Tests: tre-developers/end-to-end-tests.md - Letsencrypt: tre-developers/letsencrypt.md - Releases: tre-developers/release.md - GitHub Actions: tre-admins/setup-instructions/workflows.md - Developing Workspace Templates: # Docs aimed at developers creating workspace templates - Authoring Workspace Templates: tre-workspace-authors/authoring-workspace-templates.md - Firewall Rules: tre-workspace-authors/firewall-rules.md - Pipeline Templates: - Overview: tre-templates/pipeline-templates/overview.md - Pipeline Schema: tre-templates/pipeline-templates/pipeline-schema.md - AzureTRE CLI: tre-developers/CLI.md - Troubleshooting FAQ: # General Troubleshooting Section for Development - troubleshooting-faq/index.md - Enabling DEBUG logs: troubleshooting-faq/debug-logs.md - API logs using deployment center: troubleshooting-faq/api-logs-deployment-center.md - Checking the Service Bus: troubleshooting-faq/troubleshooting-sb.md - Checking Logs in Application Insights: troubleshooting-faq/app-insights-logs.md - Troubleshooting the Resource Processor: troubleshooting-faq/troubleshooting-rp.md - Troubleshooting the Airlock: troubleshooting-faq/airlock-troubleshooting.md - Manually edit resources in Cosmos DB: troubleshooting-faq/manually-editing-resources.md - Troubleshooting cloud-init: troubleshooting-faq/cloud-init.md - Contributing: contributing.md
AzureTRE/mkdocs.yml/0
{ "file_path": "AzureTRE/mkdocs.yml", "repo_id": "AzureTRE", "token_count": 3460 }
117
import os from _version import __version__ from shared.logging import logger, tracer VERSION = __version__ def get_config() -> dict: with tracer.start_as_current_span("get_config"): config = {} config["registry_server"] = os.environ["REGISTRY_SERVER"] config["tfstate_container_name"] = os.environ["TERRAFORM_STATE_CONTAINER_NAME"] config["tfstate_resource_group_name"] = os.environ["MGMT_RESOURCE_GROUP_NAME"] config["tfstate_storage_account_name"] = os.environ["MGMT_STORAGE_ACCOUNT_NAME"] config["deployment_status_queue"] = os.environ["SERVICE_BUS_DEPLOYMENT_STATUS_UPDATE_QUEUE"] config["resource_request_queue"] = os.environ["SERVICE_BUS_RESOURCE_REQUEST_QUEUE"] config["service_bus_namespace"] = os.environ["SERVICE_BUS_FULLY_QUALIFIED_NAMESPACE"] config["vmss_msi_id"] = os.environ.get("VMSS_MSI_ID", None) config["number_processes"] = os.environ.get("NUMBER_PROCESSES", "1") config["key_vault_url"] = os.environ.get("KEY_VAULT_URL", os.environ.get("KEYVAULT_URI", None)) config["arm_environment"] = os.environ.get("ARM_ENVIRONMENT", "public") config["azure_environment"] = os.environ.get("AZURE_ENVIRONMENT", "AzureCloud") config["aad_authority_url"] = os.environ.get("AAD_AUTHORITY_URL", "https://login.microsoftonline.com") config["microsoft_graph_fqdn"] = os.environ.get("MICROSOFT_GRAPH_FQDN", "graph.microsoft.com") try: config["number_processes_int"] = int(config["number_processes"]) except ValueError: logger.info("Invalid setting for NUMBER_PROCESSES, will default to 1") config["number_processes_int"] = 1 # Needed for running porter config["arm_use_msi"] = os.environ.get("ARM_USE_MSI", "false") config["arm_subscription_id"] = os.environ["AZURE_SUBSCRIPTION_ID"] config["arm_client_id"] = os.environ["ARM_CLIENT_ID"] config["arm_tenant_id"] = os.environ["AZURE_TENANT_ID"] if config["arm_use_msi"] == "false": # These are needed when running locally config["arm_client_secret"] = os.environ["ARM_CLIENT_SECRET"] config["aad_tenant_id"] = os.environ["AAD_TENANT_ID"] config["application_admin_client_id"] = os.environ["APPLICATION_ADMIN_CLIENT_ID"] config["application_admin_client_secret"] = os.environ["APPLICATION_ADMIN_CLIENT_SECRET"] else: config["arm_client_secret"] = "" # referenced in the credential set # when running in vscode devcontainer if "DEVCONTAINER" in os.environ: config["remote_containers_ipc"] = os.environ["REMOTE_CONTAINERS_IPC"] # Create env dict for porter config["porter_env"] = { "HOME": os.environ["HOME"], "PATH": os.environ["PATH"], "KEY_VAULT_URL": config["key_vault_url"], "ARM_ENVIRONMENT": config["arm_environment"], "AZURE_ENVIRONMENT": config["azure_environment"], # These are needed since they are referenced as credentials in every bundle and also in arm_auth credential set. "ARM_CLIENT_ID": config["arm_client_id"], "ARM_CLIENT_SECRET": config["arm_client_secret"], "ARM_SUBSCRIPTION_ID": config["arm_subscription_id"], "ARM_TENANT_ID": config["arm_tenant_id"], } if config["arm_use_msi"] == "false": config["porter_env"].update( { "AAD_TENANT_ID": config["aad_tenant_id"], "APPLICATION_ADMIN_CLIENT_ID": config["application_admin_client_id"], "APPLICATION_ADMIN_CLIENT_SECRET": config["application_admin_client_secret"], } ) # when running in vscode devcontainer if "DEVCONTAINER" in os.environ: config["porter_env"].update( { "REMOTE_CONTAINERS_IPC": config["remote_containers_ipc"] } ) # Load env vars for bundles def envvar_to_key(name: str) -> str: return name[len("RP_BUNDLE_"):].lower() config["bundle_params"] = { envvar_to_key(env_var_name): os.getenv(env_var_name) for env_var_name in os.environ if env_var_name.startswith("RP_BUNDLE") } return config
AzureTRE/resource_processor/shared/config.py/0
{ "file_path": "AzureTRE/resource_processor/shared/config.py", "repo_id": "AzureTRE", "token_count": 2038 }
118
{ "schemaType": "ParameterSet", "schemaVersion": "1.0.1", "namespace": "", "name": "tre-shared-service-admin-vm", "parameters": [ { "name": "tre_id", "source": { "env": "TRE_ID" } }, { "name": "id", "source": { "env": "ID" } }, { "name": "tfstate_container_name", "source": { "env": "TERRAFORM_STATE_CONTAINER_NAME" } }, { "name": "tfstate_resource_group_name", "source": { "env": "MGMT_RESOURCE_GROUP_NAME" } }, { "name": "tfstate_storage_account_name", "source": { "env": "MGMT_STORAGE_ACCOUNT_NAME" } }, { "name": "admin_jumpbox_vm_sku", "source": { "env": "ADMIN_JUMPBOX_VM_SKU" } }, { "name": "arm_environment", "source": { "env": "ARM_ENVIRONMENT" } } ] }
AzureTRE/templates/shared_services/admin-vm/parameters.json/0
{ "file_path": "AzureTRE/templates/shared_services/admin-vm/parameters.json", "repo_id": "AzureTRE", "token_count": 512 }
119
{ "version": "2.0", "extensionBundle": { "id": "Microsoft.Azure.Functions.ExtensionBundle.Workflows", "version": "[1.*, 2.0.0)" } }
AzureTRE/templates/shared_services/airlock_notifier/app/host.json/0
{ "file_path": "AzureTRE/templates/shared_services/airlock_notifier/app/host.json", "repo_id": "AzureTRE", "token_count": 67 }
120
# Local .terraform directories **/.terraform/*
AzureTRE/templates/shared_services/cyclecloud/.dockerignore/0
{ "file_path": "AzureTRE/templates/shared_services/cyclecloud/.dockerignore", "repo_id": "AzureTRE", "token_count": 15 }
121
{ "schemaType": "ParameterSet", "schemaVersion": "1.0.1", "namespace": "", "name": "tre-shared-service-firewall", "parameters": [ { "name": "tre_id", "source": { "env": "TRE_ID" } }, { "name": "id", "source": { "env": "ID" } }, { "name": "tfstate_container_name", "source": { "env": "TERRAFORM_STATE_CONTAINER_NAME" } }, { "name": "tfstate_resource_group_name", "source": { "env": "MGMT_RESOURCE_GROUP_NAME" } }, { "name": "tfstate_storage_account_name", "source": { "env": "MGMT_STORAGE_ACCOUNT_NAME" } }, { "name": "rule_collections", "source": { "env": "RULE_COLLECTIONS" } }, { "name": "network_rule_collections", "source": { "env": "NETWORK_RULE_COLLECTIONS" } }, { "name": "sku_tier", "source": { "env": "SKU_TIER" } }, { "name": "microsoft_graph_fqdn", "source": { "env": "MICROSOFT_GRAPH_FQDN" } }, { "name": "arm_environment", "source": { "env": "ARM_ENVIRONMENT" } } ] }
AzureTRE/templates/shared_services/firewall/parameters.json/0
{ "file_path": "AzureTRE/templates/shared_services/firewall/parameters.json", "repo_id": "AzureTRE", "token_count": 697 }
122
ARG GITEA_TAG=1.15 ARG CERTIFICATE_URL=https://www.digicert.com/CACerts/BaltimoreCyberTrustRoot.crt.pem FROM gitea/gitea:${GITEA_TAG} # need to pass args to stage ARG CERTIFICATE_URL RUN wget -nv -O /usr/local/share/ca-certificates/mysql.crt.pem ${CERTIFICATE_URL} && update-ca-certificates ENTRYPOINT ["/bin/bash", "-c", "sleep 120 && gitea admin user create --admin --access-token --username=${GITEA_USERNAME} --password=${GITEA_PASSWD} --email=${GITEA_EMAIL} --must-change-password=false & /usr/bin/entrypoint"]
AzureTRE/templates/shared_services/gitea/docker/Dockerfile/0
{ "file_path": "AzureTRE/templates/shared_services/gitea/docker/Dockerfile", "repo_id": "AzureTRE", "token_count": 210 }
123
variable "tre_id" { type = string } variable "tre_resource_id" { type = string description = "Resource ID" } variable "ssl_cert_name" { type = string }
AzureTRE/templates/shared_services/sonatype-nexus-vm/terraform/variables.tf/0
{ "file_path": "AzureTRE/templates/shared_services/sonatype-nexus-vm/terraform/variables.tf", "repo_id": "AzureTRE", "token_count": 66 }
124
resource "azurerm_network_security_group" "aml" { location = data.azurerm_virtual_network.ws.location name = "nsg-aml-${local.short_service_id}" resource_group_name = data.azurerm_virtual_network.ws.resource_group_name tags = local.tre_workspace_service_tags lifecycle { ignore_changes = [tags] } } # Using AzApi due to https://github.com/hashicorp/terraform-provider-azurerm/issues/14852 # resource "azurerm_subnet_service_endpoint_storage_policy" "aml" { # name = "aml-service-endpoint-policy" # resource_group_name = data.azurerm_virtual_network.ws.resource_group_name # location = data.azurerm_virtual_network.ws.location # # definition { # name = "aml-service-endpoint-policy" # service_resources = [ # azurerm_storage_account.aml.id, # "/services/Azure/MachineLearning" # ] # } # # tags = local.tre_workspace_service_tags # } resource "azapi_resource" "aml_service_endpoint_policy" { type = "Microsoft.Network/serviceEndpointPolicies@2022-05-01" name = "aml-service-endpoint-policy-${local.short_service_id}" location = data.azurerm_virtual_network.ws.location parent_id = data.azurerm_resource_group.ws.id tags = local.tre_workspace_service_tags body = jsonencode({ properties = { serviceEndpointPolicyDefinitions = [ { name = "aml-service-endpoint-policy-definition-storage-${local.short_service_id}" properties = { service = "Microsoft.Storage" serviceResources = [ azurerm_storage_account.aml.id ] } type = "Microsoft.Network/serviceEndpointPolicies/serviceEndpointPolicyDefinitions" }, { name = "aml-service-endpoint-policy-definition-azureml-${local.short_service_id}" properties = { service = "Global" serviceResources = [ "/services/Azure/MachineLearning" ] } type = "Microsoft.Network/serviceEndpointPolicies/serviceEndpointPolicyDefinitions" } ] } }) lifecycle { ignore_changes = [tags] } } resource "azurerm_subnet" "aml" { name = "AMLSubnet${local.short_service_id}" virtual_network_name = data.azurerm_virtual_network.ws.name resource_group_name = data.azurerm_virtual_network.ws.resource_group_name address_prefixes = [var.address_space] # need to be disabled for AML private compute private_endpoint_network_policies_enabled = false private_link_service_network_policies_enabled = false service_endpoints = [ "Microsoft.Storage" ] service_endpoint_policy_ids = [azapi_resource.aml_service_endpoint_policy.id] } resource "azurerm_subnet_network_security_group_association" "aml" { network_security_group_id = azurerm_network_security_group.aml.id subnet_id = azurerm_subnet.aml.id } resource "azurerm_network_security_rule" "allow_inbound_within_workspace_vnet" { access = "Allow" destination_port_range = "*" destination_address_prefixes = data.azurerm_virtual_network.ws.address_space source_address_prefixes = data.azurerm_virtual_network.ws.address_space direction = "Inbound" name = "inbound-within-workspace-vnet" network_security_group_name = azurerm_network_security_group.aml.name priority = 100 protocol = "*" resource_group_name = data.azurerm_resource_group.ws.name source_port_range = "*" } resource "azurerm_network_security_rule" "allow_batch_inbound" { count = var.is_exposed_externally ? 1 : 0 access = "Allow" destination_port_ranges = ["29876", "29877"] destination_address_prefix = "VirtualNetwork" source_address_prefix = "BatchNodeManagement" direction = "Inbound" name = "${local.short_service_id}-batch-inbound-29876" network_security_group_name = azurerm_network_security_group.aml.name priority = 101 protocol = "Tcp" resource_group_name = data.azurerm_resource_group.ws.name source_port_range = "*" } resource "azurerm_network_security_rule" "allow_aml_inbound" { count = var.is_exposed_externally ? 1 : 0 access = "Allow" destination_port_ranges = ["44224"] destination_address_prefix = "VirtualNetwork" source_address_prefix = "AzureMachineLearning" direction = "Inbound" name = "${local.short_service_id}-aml-inbound" network_security_group_name = azurerm_network_security_group.aml.name priority = 102 protocol = "Tcp" resource_group_name = data.azurerm_resource_group.ws.name source_port_range = "*" } resource "azurerm_network_security_rule" "allow_outbound_storage_445" { count = var.is_exposed_externally ? 1 : 0 access = "Allow" destination_port_range = "445" destination_address_prefix = "Storage" source_address_prefix = "VirtualNetwork" direction = "Outbound" name = "${local.short_service_id}-allow-Outbound_Storage_445" network_security_group_name = azurerm_network_security_group.aml.name priority = 103 protocol = "Tcp" resource_group_name = data.azurerm_resource_group.ws.name source_port_range = "*" } resource "azurerm_network_security_rule" "allow_outbound_to_shared_services" { access = "Allow" destination_address_prefixes = data.azurerm_subnet.shared.address_prefixes destination_port_range = "*" direction = "Outbound" name = "to-shared-services" network_security_group_name = azurerm_network_security_group.aml.name priority = 104 protocol = "*" resource_group_name = data.azurerm_resource_group.ws.name source_address_prefix = "*" source_port_range = "*" } resource "azurerm_network_security_rule" "allow_outbound_to_internet" { access = "Allow" destination_address_prefix = "INTERNET" destination_port_range = "443" direction = "Outbound" name = "to-internet" network_security_group_name = azurerm_network_security_group.aml.name priority = 105 protocol = "Tcp" resource_group_name = data.azurerm_resource_group.ws.name source_address_prefix = "*" source_port_range = "*" } resource "azurerm_network_security_rule" "allow_outbound_to_aml_udp_5831" { access = "Allow" destination_address_prefix = "AzureMachineLearning" destination_port_range = "5831" direction = "Outbound" name = "to-aml-udp" network_security_group_name = azurerm_network_security_group.aml.name priority = 106 protocol = "Udp" resource_group_name = data.azurerm_resource_group.ws.name source_address_prefix = "*" source_port_range = "*" } resource "azurerm_network_security_rule" "allow_outbound_to_aml_tcp_443" { access = "Allow" destination_address_prefix = "AzureMachineLearning" destination_port_range = "443" direction = "Outbound" name = "to-aml-tcp-443" network_security_group_name = azurerm_network_security_group.aml.name priority = 107 protocol = "Tcp" resource_group_name = data.azurerm_resource_group.ws.name source_address_prefix = "*" source_port_range = "*" } resource "azurerm_network_security_rule" "allow_outbound_to_aml_tcp_8787" { access = "Allow" destination_address_prefix = "AzureMachineLearning" destination_port_range = "8787" direction = "Outbound" name = "to-aml-tcp-8787-rstudio" network_security_group_name = azurerm_network_security_group.aml.name priority = 108 protocol = "Tcp" resource_group_name = data.azurerm_resource_group.ws.name source_address_prefix = "*" source_port_range = "*" } resource "azurerm_network_security_rule" "allow_outbound_to_aml_tcp_18881" { access = "Allow" destination_address_prefix = "AzureMachineLearning" destination_port_range = "18881" direction = "Outbound" name = "to-aml-tcp-18881-language-server" network_security_group_name = azurerm_network_security_group.aml.name priority = 109 protocol = "Tcp" resource_group_name = data.azurerm_resource_group.ws.name source_address_prefix = "*" source_port_range = "*" } resource "azurerm_network_security_rule" "allow_outbound_within_workspace_vnet" { access = "Allow" destination_port_range = "*" destination_address_prefixes = data.azurerm_virtual_network.ws.address_space source_address_prefixes = data.azurerm_virtual_network.ws.address_space direction = "Outbound" name = "outbound-within-workspace-subnet" network_security_group_name = azurerm_network_security_group.aml.name priority = 100 protocol = "*" resource_group_name = data.azurerm_resource_group.ws.name source_port_range = "*" } resource "azurerm_network_security_rule" "deny_outbound_override" { access = "Deny" destination_address_prefix = "*" destination_port_range = "*" direction = "Outbound" name = "deny-outbound-override" network_security_group_name = azurerm_network_security_group.aml.name priority = 4096 protocol = "*" resource_group_name = data.azurerm_resource_group.ws.name source_address_prefix = "*" source_port_range = "*" } resource "azurerm_network_security_rule" "deny_all_inbound_override" { access = "Deny" destination_address_prefix = "*" destination_port_range = "*" direction = "Inbound" name = "deny-inbound-override" network_security_group_name = azurerm_network_security_group.aml.name priority = 4096 protocol = "*" resource_group_name = data.azurerm_resource_group.ws.name source_address_prefix = "*" source_port_range = "*" } resource "azurerm_route_table" "aml" { count = var.is_exposed_externally ? 1 : 0 name = "rt-aml-${var.tre_id}-${local.short_service_id}" resource_group_name = data.azurerm_resource_group.ws.name location = data.azurerm_resource_group.ws.location disable_bgp_route_propagation = false tags = local.tre_workspace_service_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_route" "firewall" { count = var.is_exposed_externally ? 1 : 0 name = "rt-firewall-${var.tre_id}-${local.short_service_id}" resource_group_name = data.azurerm_resource_group.ws.name route_table_name = azurerm_route_table.aml[count.index].name address_prefix = data.azurerm_route_table.rt.route[0].address_prefix next_hop_type = data.azurerm_route_table.rt.route[0].next_hop_type next_hop_in_ip_address = data.azurerm_route_table.rt.route[0].next_hop_in_ip_address } resource "azurerm_route" "aml" { count = var.is_exposed_externally ? 1 : 0 name = "rt-aml-${var.tre_id}-${local.short_service_id}" resource_group_name = data.azurerm_resource_group.ws.name route_table_name = azurerm_route_table.aml[count.index].name address_prefix = "AzureMachineLearning" next_hop_type = "Internet" } resource "azurerm_route" "batch" { count = var.is_exposed_externally ? 1 : 0 name = "rt-batch-${var.tre_id}-${local.short_service_id}" resource_group_name = data.azurerm_resource_group.ws.name route_table_name = azurerm_route_table.aml[count.index].name address_prefix = "BatchNodeManagement" next_hop_type = "Internet" } resource "azurerm_subnet_route_table_association" "rt_aml_subnet_association" { count = var.is_exposed_externally ? 1 : 0 route_table_id = azurerm_route_table.aml[count.index].id subnet_id = azurerm_subnet.aml.id } resource "azurerm_subnet_route_table_association" "rt_core_aml_subnet_association" { count = var.is_exposed_externally ? 0 : 1 route_table_id = data.azurerm_route_table.rt.id subnet_id = azurerm_subnet.aml.id }
AzureTRE/templates/workspace_services/azureml/terraform/network.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/azureml/terraform/network.tf", "repo_id": "AzureTRE", "token_count": 6322 }
125
locals { short_user_resource_id = substr(var.tre_resource_id, -4, -1) short_service_id = substr(var.parent_service_id, -4, -1) short_workspace_id = substr(var.workspace_id, -4, -1) workspace_resource_name_suffix = "${var.tre_id}-ws-${local.short_workspace_id}" service_resource_name_suffix = "${var.tre_id}-ws-${local.short_workspace_id}-svc-${local.short_service_id}" aml_workspace_name = lower("ml-${substr(local.service_resource_name_suffix, -30, -1)}") aml_compute_id = "${local.short_service_id}${local.short_user_resource_id}" aml_compute_instance_name = "ci-${local.aml_compute_id}" tre_user_resources_tags = { tre_id = var.tre_id tre_workspace_id = var.workspace_id tre_workspace_service_id = var.parent_service_id tre_user_resource_id = var.tre_resource_id } }
AzureTRE/templates/workspace_services/azureml/user_resources/aml_compute/terraform/locals.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/azureml/user_resources/aml_compute/terraform/locals.tf", "repo_id": "AzureTRE", "token_count": 431 }
126
resource "azurerm_network_security_group" "nsg" { name = local.network_security_group_name location = data.azurerm_resource_group.ws.location resource_group_name = data.azurerm_resource_group.ws.name tags = local.tre_workspace_service_tags lifecycle { ignore_changes = [tags] } security_rule { name = "AllowInboundDatabricksWorkerNodesToCluster" description = "Required for worker nodes communication within a cluster." priority = 100 direction = "Inbound" access = "Allow" protocol = "*" source_port_range = "*" destination_port_range = "*" source_address_prefix = "VirtualNetwork" destination_address_prefix = "VirtualNetwork" } security_rule { name = "AllowOutboundDatabricksWorkerNodesToControlPlain" description = "Required for workers communication with Databricks Webapp." priority = 100 direction = "Outbound" access = "Allow" protocol = "Tcp" source_port_range = "*" destination_port_range = "443" source_address_prefix = "VirtualNetwork" destination_address_prefix = "AzureDatabricks" } security_rule { name = "AllowOutboundDatabricksWorkerNodesToAzureSQLServices" description = "Required for workers communication with Azure SQL services." priority = 101 direction = "Outbound" access = "Allow" protocol = "Tcp" source_port_range = "*" destination_port_range = "3306" source_address_prefix = "VirtualNetwork" destination_address_prefix = "Sql" } security_rule { name = "AllowOutboundDatabricksWorkerNodesToAzureStorage" description = "Required for workers communication with Azure Storage services." priority = 102 direction = "Outbound" access = "Allow" protocol = "Tcp" source_port_range = "*" destination_port_range = "443" source_address_prefix = "VirtualNetwork" destination_address_prefix = "Storage" } security_rule { name = "AllowOutboundDatabricksWorkerNodesWithinACluster" description = "Required for worker nodes communication within a cluster." priority = 103 direction = "Outbound" access = "Allow" protocol = "Tcp" source_port_range = "*" destination_port_range = "*" source_address_prefix = "VirtualNetwork" destination_address_prefix = "VirtualNetwork" } security_rule { name = "AllowOutboundWorkerNodesToAzureEventhub" description = "Required for worker communication with Azure Eventhub services." priority = 104 direction = "Outbound" access = "Allow" protocol = "Tcp" source_port_range = "*" destination_port_range = "9093" source_address_prefix = "VirtualNetwork" destination_address_prefix = "EventHub" } } resource "azurerm_subnet" "host" { name = local.host_subnet_name resource_group_name = data.azurerm_resource_group.ws.name virtual_network_name = data.azurerm_virtual_network.ws.name address_prefixes = [local.host_subnet_address_space] delegation { name = "db-host-vnet-integration" service_delegation { actions = [ "Microsoft.Network/virtualNetworks/subnets/join/action", "Microsoft.Network/virtualNetworks/subnets/prepareNetworkPolicies/action", "Microsoft.Network/virtualNetworks/subnets/unprepareNetworkPolicies/action", ] name = "Microsoft.Databricks/workspaces" } } } resource "azurerm_subnet" "container" { name = local.container_subnet_name resource_group_name = data.azurerm_resource_group.ws.name virtual_network_name = data.azurerm_virtual_network.ws.name address_prefixes = [local.container_subnet_address_space] delegation { name = "db-container-vnet-integration" service_delegation { actions = [ "Microsoft.Network/virtualNetworks/subnets/join/action", "Microsoft.Network/virtualNetworks/subnets/prepareNetworkPolicies/action", "Microsoft.Network/virtualNetworks/subnets/unprepareNetworkPolicies/action", ] name = "Microsoft.Databricks/workspaces" } } } resource "azurerm_route_table" "rt" { name = local.route_table_name location = data.azurerm_resource_group.ws.location resource_group_name = data.azurerm_resource_group.ws.name disable_bgp_route_propagation = false tags = local.tre_workspace_service_tags lifecycle { ignore_changes = [tags] } route { name = "to-firewall" address_prefix = "0.0.0.0/0" next_hop_type = "VirtualAppliance" next_hop_in_ip_address = data.azurerm_firewall.firewall.ip_configuration[0].private_ip_address } } resource "azurerm_subnet_network_security_group_association" "container" { subnet_id = azurerm_subnet.container.id network_security_group_id = azurerm_network_security_group.nsg.id } resource "azurerm_subnet_network_security_group_association" "host" { subnet_id = azurerm_subnet.host.id network_security_group_id = azurerm_network_security_group.nsg.id } resource "azurerm_subnet_route_table_association" "rt_container" { subnet_id = azurerm_subnet.container.id route_table_id = azurerm_route_table.rt.id } resource "azurerm_subnet_route_table_association" "rt_host" { subnet_id = azurerm_subnet.host.id route_table_id = azurerm_route_table.rt.id } resource "azurerm_private_endpoint" "databricks_control_plane_private_endpoint" { name = "pe-adb-cp-${local.service_resource_name_suffix}" location = data.azurerm_resource_group.ws.location resource_group_name = data.azurerm_resource_group.ws.name subnet_id = data.azurerm_subnet.services.id tags = local.tre_workspace_service_tags lifecycle { ignore_changes = [tags] } private_service_connection { name = "private-service-connection-databricks-control-plane-${local.service_resource_name_suffix}" private_connection_resource_id = azurerm_databricks_workspace.databricks.id is_manual_connection = false subresource_names = ["databricks_ui_api"] } private_dns_zone_group { name = "private-dns-zone-group-databricks-control-plane-${local.service_resource_name_suffix}" private_dns_zone_ids = [data.azurerm_private_dns_zone.databricks.id] } } resource "azurerm_private_endpoint" "databricks_filesystem_private_endpoint" { name = "pe-adb-fs-${local.service_resource_name_suffix}" location = data.azurerm_resource_group.ws.location resource_group_name = data.azurerm_resource_group.ws.name subnet_id = data.azurerm_subnet.services.id tags = local.tre_workspace_service_tags lifecycle { ignore_changes = [tags] } private_service_connection { name = "private-service-connection-databricks-filesystem-${local.service_resource_name_suffix}" private_connection_resource_id = join("", [azurerm_databricks_workspace.databricks.managed_resource_group_id, "/providers/Microsoft.Storage/storageAccounts/${local.storage_name}"]) is_manual_connection = false subresource_names = ["dfs"] } private_dns_zone_group { name = "private-dns-zone-group-databricks-filesystem-${local.service_resource_name_suffix}" private_dns_zone_ids = [data.azurerm_private_dns_zone.dfscore.id] } depends_on = [ azurerm_private_endpoint.databricks_control_plane_private_endpoint ] }
AzureTRE/templates/workspace_services/databricks/terraform/network.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/databricks/terraform/network.tf", "repo_id": "AzureTRE", "token_count": 3782 }
127