text
stringlengths
5
22M
id
stringlengths
12
177
metadata
dict
__index_level_0__
int64
0
1.37k
#!/bin/bash set -o errexit set -o pipefail set -o nounset # Uncomment this line to see each command for debugging (careful: this will show secrets!) # set -o xtrace export TF_LOG="" # This script assumes you have created an .env from the sample and the variables # will come from there. # shellcheck disable=SC2154 terraform init -input=false -backend=true -reconfigure \ -backend-config="resource_group_name=$TF_VAR_mgmt_resource_group_name" \ -backend-config="storage_account_name=$TF_VAR_mgmt_storage_account_name" \ -backend-config="container_name=$TF_VAR_terraform_state_container_name" \ -backend-config="key=tre-workspace-service-gitea-${TF_VAR_id}" terraform plan terraform apply -auto-approve
AzureTRE/templates/workspace_services/gitea/terraform/deploy.sh/0
{ "file_path": "AzureTRE/templates/workspace_services/gitea/terraform/deploy.sh", "repo_id": "AzureTRE", "token_count": 254 }
128
<html> <head> <script type="text/javascript"> if (window.location.href.indexOf("?") != -1) { window.location = window.location.href.replace("?", "guacamole/#"); } else { window.location = window.location.href + "guacamole/"; } </script> </head> <body> Redirecting to Guacamole... </body> </html>
AzureTRE/templates/workspace_services/guacamole/guacamole-server/docker/index.jsp/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/guacamole-server/docker/index.jsp", "repo_id": "AzureTRE", "token_count": 134 }
129
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.guacamole.auth.azuretre; import com.auth0.jwk.UrlJwkProvider; import com.google.common.base.Strings; import org.apache.guacamole.GuacamoleException; import org.apache.guacamole.auth.azuretre.connection.ConnectionService; import org.apache.guacamole.auth.azuretre.user.AzureTREAuthenticatedUser; import org.apache.guacamole.auth.azuretre.user.TreUserContext; import org.apache.guacamole.net.auth.AbstractAuthenticationProvider; import org.apache.guacamole.net.auth.AuthenticatedUser; import org.apache.guacamole.net.auth.Credentials; import org.apache.guacamole.net.auth.UserContext; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.net.URL; public class AzureTREAuthenticationProvider extends AbstractAuthenticationProvider { public static final String ROOT_CONNECTION_GROUP = "ROOT"; private static final Logger LOGGER = LoggerFactory.getLogger(AzureTREAuthenticationProvider.class); private final AuthenticationProviderService authenticationProviderService; public AzureTREAuthenticationProvider() { this.authenticationProviderService = new AuthenticationProviderService(); } public AzureTREAuthenticationProvider( AuthenticationProviderService authenticationProviderService) { if (authenticationProviderService == null) { this.authenticationProviderService = new AuthenticationProviderService(); } else { this.authenticationProviderService = authenticationProviderService; } } @Override public String getIdentifier() { return "azuretre"; } @Override public AuthenticatedUser updateAuthenticatedUser(AuthenticatedUser authenticatedUser, Credentials credentials) throws GuacamoleException { LOGGER.info("updateAuthenticatedUser"); AuthenticatedUser updated = authenticateUser(credentials); LOGGER.info("updateAuthenticatedUser - done"); return updated; } @Override public AzureTREAuthenticatedUser authenticateUser(final Credentials credentials) { LOGGER.info("Authenticating user"); // Getting headers from the oauth2 proxy final String accessToken = credentials.getRequest().getHeader("X-Forwarded-Access-Token"); final String prefUsername = credentials.getRequest().getHeader("X-Forwarded-Preferred-Username"); if (Strings.isNullOrEmpty(accessToken)) { LOGGER.error("access token was not provided"); return null; } if (Strings.isNullOrEmpty(prefUsername)) { LOGGER.error("preferred username was not present in the token"); return null; } return new AzureTREAuthenticatedUser(credentials, accessToken, prefUsername, null, this); } @Override public UserContext getUserContext(final AuthenticatedUser authenticatedUser) throws GuacamoleException { LOGGER.debug("Getting user context."); if (authenticatedUser instanceof AzureTREAuthenticatedUser) { final AzureTREAuthenticatedUser user = (AzureTREAuthenticatedUser) authenticatedUser; final String accessToken = user.getAccessToken(); LOGGER.debug("Getting configurations in order to populate user context."); var connections = ConnectionService.getConnections(user); LOGGER.debug("Creating user context."); final TreUserContext treUserContext = new TreUserContext(this, connections); treUserContext.init(user); // Validate the token 'again', the OpenID extension verified it, but it didn't verify // that we got the correct roles. The fact that a valid token was returned doesn't mean // this user is an Owner or a Researcher. If its not, break, don't try to get any VMs. // Note: At the moment there is NO apparent way to UN-Authorize a user that a previous // extension authorized... (The user will see an empty list of VMs) // Note2: The API app will also verify the token an in any case will not return any vms // in this case. try { LOGGER.info("Validating token"); final UrlJwkProvider jwkProvider = new UrlJwkProvider(new URL(System.getenv("OAUTH2_PROXY_JWKS_ENDPOINT"))); authenticationProviderService.validateToken(accessToken, jwkProvider); } catch (final Exception ex) { // Failed to validate the token LOGGER.error("Failed to validate token. ex: " + ex); return null; } return treUserContext; } return null; } @Override public UserContext updateUserContext(UserContext context, AuthenticatedUser authenticatedUser, Credentials credentials) throws GuacamoleException { LOGGER.debug("Updating usercontext"); var userContext = getUserContext(authenticatedUser); return userContext; } }
AzureTRE/templates/workspace_services/guacamole/guacamole-server/guacamole-auth-azure/src/main/java/org/apache/guacamole/auth/azuretre/AzureTREAuthenticationProvider.java/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/guacamole-server/guacamole-auth-azure/src/main/java/org/apache/guacamole/auth/azuretre/AzureTREAuthenticationProvider.java", "repo_id": "AzureTRE", "token_count": 1998 }
130
package org.apache.guacamole.auth.azuretre.user; /* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ import org.apache.guacamole.net.auth.Credentials; import org.junit.Test; import static org.junit.jupiter.api.Assertions.assertEquals; import static org.junit.jupiter.api.Assertions.assertNull; import static org.mockito.Mockito.mock; public class AzureTREAuthenticatedUserTest { String dummyAccessToken = "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6ImtnMkxZczJUMENUaklmajRydDZKSXluZW4zOCJ9.eyJhdWQiOiI2ZjY3ZjI3Y" + "S04NTk4LTQ4ZGMtYTM1OC00MDVkMzAyOThhMDMiLCJpc3MiOiJodHRwczovL2xvZ2luLm1pY3Jvc29mdG9ubGluZS5jb20vYWY0MTg" + "0ZGItNjdhOC00ZDMxLWJjMDYtYmUwN2IwMGJlYWQwL3YyLjAiLCJpYXQiOjE2MDIxNzUxODQsIm5iZiI6MTYwMjE3NTE4NCwiZXhwI" + "joxNjAyMTc5MDg0LCJhaW8iOiJBVFFBeS84UkFBQUFRWVRQZW8yM3NpN0ZuQjZXbEtIZUs5MnhFZGN5T3NKWDhzSXBkRUpRd2dnR1g" + "3M0ZFL0hPTCtDZU1STjdrQlJoIiwiYXpwIjoiNmY2N2YyN2EtODU5OC00OGRjLWEzNTgtNDA1ZDMwMjk4YTAzIiwiYXpwYWNyIjoiM" + "SIsIm5hbWUiOiJNYXJjdXMgVGVzdCIsIm9pZCI6IjYzYTE3NzY0LThiZWEtNDk4Yi1hYzEyLWZjNTRlMzMwMDAxNyIsInByZWZlcnJ" + "lZF91c2VybmFtZSI6Im1hcmN1c3Rlc3RAZHJlZGV2Mm91dGxvb2sub25taWNyb3NvZnQuY29tIiwicmgiOiIwLkFBQUEyNFJCcjZob" + "k1VMjhCcjRIc0F2cTBIcnlaMi1ZaGR4SW8xaEFYVEFwaWdOMEFITS4iLCJyb2xlcyI6WyJQcm9qZWN0LUFkbWluaXN0cmF0b3IiLCJ" + "Qcm9qZWN0LVVzZXIiXSwic2NwIjoiZW1haWwgb3BlbmlkIHByb2ZpbGUgVXNlci5SZWFkIiwic3ViIjoiLUg2aFdjR0pRd2hJVE9Za" + "kNJY1RkV2V3UkNfMUZHZXFHZnZpQV91Q0JVRSIsInRpZCI6ImFmNDE4NGRiLTY3YTgtNGQzMS1iYzA2LWJlMDdiMDBiZWFkMCIsInV" + "wbiI6Im1hcmN1c3Rlc3RAZHJlZGV2Mm91dGxvb2sub25taWNyb3NvZnQuY29tIiwidXRpIjoiMk1wVHo3WExXVTJzQV9ENVRWaTZBQ" + "SIsInZlciI6IjIuMCIsIndpZHMiOlsiYjc5ZmJmNGQtM2VmOS00Njg5LTgxNDMtNzZiMTk0ZTg1NTA5Il19.qG8CZ7_AIxvt7YTy9U" + "qhLUujv_fIdwTWrnKZlN9AE5tJvaHCNP_7URJWbE9J3tcH2Ot6pYORHqqhcRAYe6pGP1w4FZFLt-GRLBfZ80V6uuYTIA3BmZEimVBM" + "QchPfwpZm6kJhT8Jc9qeMXoZbPVNoeMAf1mFthgQ_VfffGt_tnX-vf9CCsQcS7D175RNpbbpKXvQVoupIt_iwdxhwb6_cJSTolV8P4" + "ohJWKcU3dP61wzWuHP50wgxbvDIVqk7ltTTNFG36TAwlzd9-C_sztIoaIKRss_WIhSAu01SY6bWAw75M33KqRZt0KmvQRpwd14yeuG" + "K1ulUa8_-t3lynqWfw"; @Test public void authenticatedUserReturnsClaims() { final Credentials credentialsMock = mock(Credentials.class); final AzureTREAuthenticatedUser authenticatedUser = new AzureTREAuthenticatedUser(credentialsMock, dummyAccessToken, "dummy_username", "dummy_objectId", null); assertEquals("dummy_objectId", authenticatedUser.getObjectId()); assertEquals("dummy_username", authenticatedUser.getIdentifier()); assertEquals(dummyAccessToken, authenticatedUser.getAccessToken()); assertEquals(credentialsMock, authenticatedUser.getCredentials()); assertNull(authenticatedUser.getAuthenticationProvider()); } }
AzureTRE/templates/workspace_services/guacamole/guacamole-server/guacamole-auth-azure/src/test/java/org/apache/guacamole/auth/azuretre/user/AzureTREAuthenticatedUserTest.java/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/guacamole-server/guacamole-auth-azure/src/test/java/org/apache/guacamole/auth/azuretre/user/AzureTREAuthenticatedUserTest.java", "repo_id": "AzureTRE", "token_count": 1962 }
131
resource "azurerm_healthcare_workspace" "healthcare_workspace" { name = "hs${local.service_resource_name_suffix}" resource_group_name = data.azurerm_resource_group.ws.name location = data.azurerm_resource_group.ws.location tags = local.workspace_service_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_healthcare_fhir_service" "fhir" { count = var.deploy_fhir ? 1 : 0 name = "fhir${local.service_resource_name_suffix}" resource_group_name = data.azurerm_resource_group.ws.name location = data.azurerm_resource_group.ws.location workspace_id = azurerm_healthcare_workspace.healthcare_workspace.id kind = "fhir-${var.fhir_kind}" tags = local.workspace_service_tags authentication { authority = local.authority audience = "https://hs${local.service_resource_name_suffix}-fhir${local.service_resource_name_suffix}.fhir.azurehealthcareapis.com" } identity { type = "SystemAssigned" } lifecycle { ignore_changes = [tags] } } resource "azurerm_healthcare_dicom_service" "dicom" { count = var.deploy_dicom ? 1 : 0 name = "dicom${local.service_resource_name_suffix}" workspace_id = azurerm_healthcare_workspace.healthcare_workspace.id location = data.azurerm_resource_group.ws.location tags = local.workspace_service_tags identity { type = "SystemAssigned" } lifecycle { ignore_changes = [tags] } } resource "azurerm_private_endpoint" "health_services_private_endpoint" { name = "pe-${azurerm_healthcare_workspace.healthcare_workspace.name}" location = data.azurerm_resource_group.ws.location resource_group_name = data.azurerm_resource_group.ws.name subnet_id = data.azurerm_subnet.services.id tags = local.workspace_service_tags private_dns_zone_group { name = "private-dns-zone-group" private_dns_zone_ids = [data.azurerm_private_dns_zone.health.id, data.azurerm_private_dns_zone.dicom.id] } private_service_connection { private_connection_resource_id = azurerm_healthcare_workspace.healthcare_workspace.id name = "psc-${azurerm_healthcare_workspace.healthcare_workspace.name}" subresource_names = ["healthcareworkspace"] is_manual_connection = false } depends_on = [ azurerm_healthcare_fhir_service.fhir, azurerm_healthcare_dicom_service.dicom ] lifecycle { ignore_changes = [tags] } }
AzureTRE/templates/workspace_services/health-services/terraform/main.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/health-services/terraform/main.tf", "repo_id": "AzureTRE", "token_count": 1122 }
132
export TF_LOG="" terraform init -input=false -backend=true -reconfigure \ -backend-config="resource_group_name=$TF_VAR_mgmt_resource_group_name" \ -backend-config="storage_account_name=$TF_VAR_mgmt_storage_account_name" \ -backend-config="container_name=$TF_VAR_terraform_state_container_name" \ -backend-config="key=tre-service-innereye-${TF_VAR_id}" terraform plan terraform apply -auto-approve
AzureTRE/templates/workspace_services/innereye/terraform/deploy.sh/0
{ "file_path": "AzureTRE/templates/workspace_services/innereye/terraform/deploy.sh", "repo_id": "AzureTRE", "token_count": 159 }
133
export AZURE_STORAGE_CONNECTION_STRING="${MLFlow_Connection_String}" pip install mlflow==1.24.0 pip install azure-storage-blob==12.10.0 pip install azure-identity==1.8.0
AzureTRE/templates/workspace_services/mlflow/mlflow-vm-config/linux/template_config.sh/0
{ "file_path": "AzureTRE/templates/workspace_services/mlflow/mlflow-vm-config/linux/template_config.sh", "repo_id": "AzureTRE", "token_count": 69 }
134
ID="__CHANGE_ME__" WORKSPACE_ID="__CHANGE_ME__" SQL_SKU="__CHANGE_ME__" STORAGE_MB="__CHANGE_ME__" DB_NAME="__CHANGE_ME__"
AzureTRE/templates/workspace_services/mysql/.env.sample/0
{ "file_path": "AzureTRE/templates/workspace_services/mysql/.env.sample", "repo_id": "AzureTRE", "token_count": 63 }
135
{ "schemaType": "ParameterSet", "schemaVersion": "1.0.1", "namespace": "", "name": "tre-workspace-service-ohdsi", "parameters": [ { "name": "tre_id", "source": { "env": "TRE_ID" } }, { "name": "id", "source": { "env": "ID" } }, { "name": "tfstate_container_name", "source": { "env": "TERRAFORM_STATE_CONTAINER_NAME" } }, { "name": "tfstate_resource_group_name", "source": { "env": "MGMT_RESOURCE_GROUP_NAME" } }, { "name": "tfstate_storage_account_name", "source": { "env": "MGMT_STORAGE_ACCOUNT_NAME" } }, { "name": "workspace_id", "source": { "env": "WORKSPACE_ID" } }, { "name": "address_space", "source": { "env": "ADDRESS_SPACE" } }, { "name": "arm_environment", "source": { "env": "ARM_ENVIRONMENT" } }, { "name": "azure_environment", "source": { "env": "AZURE_ENVIRONMENT" } }, { "name": "configure_data_source", "source": { "env": "CONFIGURE_DATA_SOURCE" } }, { "name": "data_source_config", "source": { "env": "DATA_SOURCE_CONFIG" } }, { "name": "data_source_daimons", "source": { "env": "DATA_SOURCE_DAIMONS" } } ] }
AzureTRE/templates/workspace_services/ohdsi/parameters.json/0
{ "file_path": "AzureTRE/templates/workspace_services/ohdsi/parameters.json", "repo_id": "AzureTRE", "token_count": 816 }
136
resource "random_password" "atlas_security_admin_password" { length = 8 special = false } resource "azurerm_key_vault_secret" "atlas_security_admin_password" { name = "atlas-security-admin-password-${local.short_service_id}" key_vault_id = data.azurerm_key_vault.ws.id value = random_password.atlas_security_admin_password.result tags = local.tre_workspace_service_tags lifecycle { ignore_changes = [tags] } } resource "terraform_data" "deployment_atlas_security" { triggers_replace = { postgres_database_id = azurerm_postgresql_flexible_server_database.db.id } provisioner "local-exec" { environment = { OHDSI_ADMIN_CONNECTION_STRING = "host=${azurerm_postgresql_flexible_server.postgres.fqdn} port=5432 dbname=${local.postgres_webapi_database_name} user=${local.postgres_webapi_admin_username} password=${azurerm_key_vault_secret.postgres_webapi_admin_password.value} sslmode=require" ATLAS_SECURITY_ADMIN_PASSWORD = azurerm_key_vault_secret.atlas_security_admin_password.value ATLAS_USERS = "admin,${azurerm_key_vault_secret.atlas_security_admin_password.value}" WEB_API_URL = local.ohdsi_webapi_url } command = "../scripts/atlas_security.sh" } depends_on = [ azurerm_postgresql_flexible_server_database.db, terraform_data.deployment_ohdsi_webapi_init, terraform_data.postgres_core_dns_link, azurerm_private_endpoint.webapi_private_endpoint, azurerm_subnet_network_security_group_association.postgres ] }
AzureTRE/templates/workspace_services/ohdsi/terraform/atlas_security.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/ohdsi/terraform/atlas_security.tf", "repo_id": "AzureTRE", "token_count": 643 }
137
{ "schemaType": "ParameterSet", "schemaVersion": "1.0.1", "namespace": "", "name": "tre-workspace-airlock-import-review", "parameters": [ { "name": "address_spaces", "source": { "env": "ADDRESS_SPACES" } }, { "name": "azure_location", "source": { "env": "LOCATION" } }, { "name": "tre_id", "source": { "env": "TRE_ID" } }, { "name": "id", "source": { "env": "ID" } }, { "name": "tfstate_container_name", "source": { "env": "TERRAFORM_STATE_CONTAINER_NAME" } }, { "name": "tfstate_resource_group_name", "source": { "env": "MGMT_RESOURCE_GROUP_NAME" } }, { "name": "tfstate_storage_account_name", "source": { "env": "MGMT_STORAGE_ACCOUNT_NAME" } }, { "name": "enable_local_debugging", "source": { "env": "ENABLE_LOCAL_DEBUGGING" } }, { "name": "register_aad_application", "source": { "env": "REGISTER_AAD_APPLICATION" } }, { "name": "create_aad_groups", "source": { "env": "CREATE_AAD_GROUPS" } }, { "name": "client_id", "source": { "env": "CLIENT_ID" } }, { "name": "client_secret", "source": { "env": "CLIENT_SECRET" } }, { "name": "scope_id", "source": { "env": "SCOPE_ID" } }, { "name": "workspace_owner_object_id", "source": { "env": "WORKSPACE_OWNER_OBJECT_ID" } }, { "name": "sp_id", "source": { "env": "SP_ID" } }, { "name": "app_role_id_workspace_owner", "source": { "env": "APP_ROLE_ID_WORKSPACE_OWNER" } }, { "name": "app_role_id_workspace_researcher", "source": { "env": "APP_ROLE_ID_WORKSPACE_RESEARCHER" } }, { "name": "app_role_id_workspace_airlock_manager", "source": { "env": "APP_ROLE_ID_WORKSPACE_AIRLOCK_MANAGER" } }, { "name": "aad_redirect_uris", "source": { "env": "AAD_REDIRECT_URIS" } }, { "name": "app_service_plan_sku", "source": { "env": "WORKSPACE_APP_SERVICE_PLAN_SKU" } }, { "name": "arm_environment", "source": { "env": "ARM_ENVIRONMENT" } }, { "name": "azure_environment", "source": { "env": "AZURE_ENVIRONMENT" } } ] }
AzureTRE/templates/workspaces/airlock-import-review/parameters.json/0
{ "file_path": "AzureTRE/templates/workspaces/airlock-import-review/parameters.json", "repo_id": "AzureTRE", "token_count": 1500 }
138
data "azurerm_user_assigned_identity" "airlock_id" { name = "id-airlock-${var.tre_id}" resource_group_name = "rg-${var.tre_id}" } data "azurerm_user_assigned_identity" "api_id" { name = "id-api-${var.tre_id}" resource_group_name = "rg-${var.tre_id}" } data "azurerm_private_dns_zone" "blobcore" { name = module.terraform_azurerm_environment_configuration.private_links["privatelink.blob.core.windows.net"] resource_group_name = local.core_resource_group_name } data "azurerm_servicebus_namespace" "airlock_sb" { name = "sb-${var.tre_id}" resource_group_name = local.core_resource_group_name } data "azurerm_servicebus_topic" "blob_created" { name = local.blob_created_topic_name resource_group_name = local.core_resource_group_name namespace_name = data.azurerm_servicebus_namespace.airlock_sb.name }
AzureTRE/templates/workspaces/base/terraform/airlock/data.tf/0
{ "file_path": "AzureTRE/templates/workspaces/base/terraform/airlock/data.tf", "repo_id": "AzureTRE", "token_count": 403 }
139
locals { short_workspace_id = substr(var.tre_resource_id, -4, -1) workspace_resource_name_suffix = "${var.tre_id}-ws-${local.short_workspace_id}" storage_name = lower(replace("stg${substr(local.workspace_resource_name_suffix, -8, -1)}", "-", "")) keyvault_name = lower("kv-${substr(local.workspace_resource_name_suffix, -20, -1)}") redacted_senstive_value = "REDACTED" tre_workspace_tags = { tre_id = var.tre_id tre_workspace_id = var.tre_resource_id } }
AzureTRE/templates/workspaces/base/terraform/locals.tf/0
{ "file_path": "AzureTRE/templates/workspaces/base/terraform/locals.tf", "repo_id": "AzureTRE", "token_count": 259 }
140
body { margin: 0; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; } h1 { margin-top: 0; font-weight: normal; } h2 { font-weight: normal; } code { font-family: source-code-pro, Menlo, Monaco, Consolas, 'Courier New', monospace; } .tre-logout-message { margin: 40px auto; width: 70%; } .tre-top-nav { box-shadow: 0 1px 2px 0px #033d68; z-index: 100; } .ms-CommandBar { background-color: transparent; padding-left: 0px; .ms-Button { background-color: transparent; } } .tre-notifications-button { position: relative; top: 7px; color: #fff; i { font-size: 20px !important; } } .tre-notifications-button i { font-size: 24px; } .tre-notifications-dismiss { text-align: right; padding-top: 10px; } ul.tre-notifications-list { margin: 0; padding: 0; } .tre-notifications-list li { list-style: none; margin-top: 20px; padding-bottom: 10px; border-bottom: 1px #ccc solid; } ul.tre-notifications-steps-list { padding: 5px 15px 15px 15px; background-color: #f9f9f9; margin: 10px 0 0 0; } ul.tre-notifications-steps-list li { border: none; } .tre-notification-time { font-style: italic; text-align: right; font-size: 12px; } .tre-home-link { color: #fff; text-decoration: none; font-size:1.2rem; } .tre-user-menu { margin-top: 2px; .ms-Persona-primaryText:hover { color: #fff; } .ms-Persona-primaryText { color: #fff; } .ms-Icon { margin-top: 3px; } } .tre-table { .ms-Persona-primaryText { font-size: 12px; color: rgb(108, 108, 108); } .ms-DetailsRow-cell { align-self: baseline; } } .tre-hide-chevron i[data-icon-name=ChevronDown] { display: none; } .tre-body { height: 100%; overflow: hidden; } .tre-body-inner { height: 100%; overflow: hidden; } .tre-body-content { padding-left: 10px; } .tre-left-nav { width: 200px; overflow-y: auto; box-shadow: 1px 0 8px 0px #ccc; z-index: 100; } .tre-body-content { width: calc(100% - 200px); overflow-y: scroll; background-color: #faf9f8; padding-bottom: 80px; } .tre-workspace-header h1 { margin: 10px 0 10px 0; } .tre-context-menu button { text-transform: capitalize; } .tre-panel { margin: 10px 15px 10px 10px; padding: 10px; } .tre-resource-panel { box-shadow: 1px 0px 5px 0px #ccc; margin: 10px 15px 10px 10px; padding: 10px; background-color: #fff; } .ms-Pivot { margin-bottom: 10px; } input[readonly]{ background-color:#efefef; } .tre-badge{ border-radius:4px; background-color: #efefef; padding:2px 6px; text-transform: capitalize; display:inline-block; font-size:12px; } .tre-badge-in-progress{ background-color: #ce7b00; color: #fff; } .tre-badge-failed{ background-color: #990000; color: #fff; padding-top: 4px; padding-left: 7px; font-size: 16px; } .tre-badge-success{ background-color: #006600; color: #fff; } .tre-complex-list{ list-style: none; padding:0 0 0 20px; margin:0; } .tre-complex-list-border{ border-bottom: 1px #ccc solid; margin-left:-15px; } .tre-complex-list-string{ padding-left:20px; } .tre-complex-list .ms-Icon{ font-size:12px!important; font-weight: bold; position: relative; top:2px; } // Classes for rendering power state badges .tre-power-badge { text-align: center; color: #636262; margin: 6px; .tre-power-on, .tre-power-off { height: 8px; width: 8px; background-color: #006600; border-radius: 50%; display: inline-block; margin-right: 5px; } .tre-power-off { background-color: #990000; } } /* hide fields explicitly */ .tre-hidden { display: none; } /* create form overrides */ /* panel header */ .ms-Panel-commands { background: #fff; border-bottom: 1px #ccc solid; padding-bottom: 10px; } /* template description at top of panel */ .rjsf > .ms-Grid-col { margin-top: -25px; } .rjsf > .ms-Grid-col > span:first-of-type { display: block; background-color: #efefef; padding: 10px; margin-bottom: 15px; font-style: normal; } /* border around sub-blocks */ .ms-Panel-content .rjsf > .ms-Grid-col > .ms-Grid > .ms-Grid-row > .field-object, .ms-Panel-content .rjsf > .ms-Grid-col > .ms-Grid > .ms-Grid-row > .field-array { border: 1px #ccc dashed; padding: 10px; background-color: #fcfcfc; } /* sub titles and sub-sub titles */ .ms-Panel-content .rjsf > .ms-Grid-col > .ms-Grid > .ms-Grid-row > .field-object > label.ms-Label, .ms-Panel-content .rjsf > .ms-Grid-col > .ms-Grid > .ms-Grid-row > .field-array > label.ms-Label { font-size: 20px; } .ms-Panel-content .rjsf > .ms-Grid-col > .ms-Grid > .ms-Grid-row > .field-object > .ms-Grid > .ms-Grid-row > .ms-Grid-col > label.ms-Label, .ms-Panel-content .rjsf > .ms-Grid-col > .ms-Grid > .ms-Grid-row > .field-array > .ms-Grid > .ms-Grid-row > .ms-Grid-col > label.ms-Label { font-size: 16px; } /* remove secondary template description at the bottom of each template + sub blocks */ .rjsf > .ms-Grid-col > span:last-of-type, .rjsf > .ms-Grid-col > .ms-Grid > .ms-Grid-row > .field-object > span:last-of-type, .rjsf > .ms-Grid-col > .ms-Grid > .ms-Grid-row > .field-object > .ms-Grid > .ms-Grid-row > .ms-Grid-col > span:last-of-type { display: none; } /* make descriptive text italic */ .field span { font-style: italic; } .field span.ms-Checkbox-text { font-style: normal; }
AzureTRE/ui/app/src/App.scss/0
{ "file_path": "AzureTRE/ui/app/src/App.scss", "repo_id": "AzureTRE", "token_count": 2337 }
141
import React, { useEffect, useState } from 'react'; import { AnimationClassNames, Callout, IconButton, FontWeights, Stack, Text, getTheme, mergeStyles, mergeStyleSets, StackItem, IButtonStyles } from '@fluentui/react'; import { HttpMethod, useAuthApiCall } from '../../hooks/useAuthApiCall'; import { ApiEndpoint } from '../../models/apiEndpoints'; import config from "../../config.json"; // TODO: // - change text to link // - include any small print export const Footer: React.FunctionComponent = () => { const [showInfo, setShowInfo] = useState(false); const [apiMetadata, setApiMetadata] = useState<any>(); const [health, setHealth] = useState<{services: [{service: string, status: string}]}>(); const apiCall = useAuthApiCall(); useEffect(() => { const getMeta = async() => { const result = await apiCall(ApiEndpoint.Metadata, HttpMethod.Get); setApiMetadata(result); }; const getHealth = async() => { const result = await apiCall(ApiEndpoint.Health, HttpMethod.Get); setHealth(result); }; getMeta(); getHealth(); }, [apiCall]); const uiConfig = config as any; return ( <div className={contentClass}> <Stack horizontal style={{alignItems:'center'}}> <StackItem grow={1}>Azure Trusted Research Environment</StackItem> <StackItem> <IconButton styles={iconButtonStyles} iconProps={{iconName:'Info'}} id="info" onClick={() => setShowInfo(!showInfo)} /> </StackItem> </Stack> { showInfo && <Callout className={styles.callout} ariaLabelledBy="info-label" ariaDescribedBy="info-description" role="dialog" gapSpace={0} target="#info" onDismiss={() => setShowInfo(false)} setInitialFocus > <Text block variant="xLarge" className={styles.title} id="info-label"> Azure TRE </Text> <Stack tokens={{childrenGap: 5}}> { uiConfig.version && <Stack horizontal horizontalAlign='space-between'> <Stack.Item>UI Version:</Stack.Item> <Stack.Item>{uiConfig.version}</Stack.Item> </Stack> } { apiMetadata?.api_version && <Stack horizontal horizontalAlign='space-between'> <Stack.Item>API Version:</Stack.Item> <Stack.Item>{apiMetadata.api_version}</Stack.Item> </Stack> } </Stack> <Stack tokens={{childrenGap: 5}} style={{marginTop: 10, paddingTop: 8, borderTop: '1px solid #e8e8e8'}}> { health?.services.map(s => { return <Stack horizontal horizontalAlign='space-between' key={s.service}> <Stack.Item>{s.service}:</Stack.Item> <Stack.Item>{s.status}</Stack.Item> </Stack> }) } </Stack> </Callout> } </div> ); }; const theme = getTheme(); const contentClass = mergeStyles([ { alignItems: 'center', backgroundColor: theme.palette.themeDark, color: theme.palette.white, lineHeight: '25px', padding: '0 20px', }, AnimationClassNames.scaleUpIn100 ]); const iconButtonStyles: Partial<IButtonStyles> = { root: { color: theme.palette.white, }, rootHovered: { color: theme.palette.neutralDark, }, }; const styles = mergeStyleSets({ callout: { width: 250, padding: '20px 24px', }, title: { marginBottom: 12, fontWeight: FontWeights.semilight } });
AzureTRE/ui/app/src/components/shared/Footer.tsx/0
{ "file_path": "AzureTRE/ui/app/src/components/shared/Footer.tsx", "repo_id": "AzureTRE", "token_count": 1635 }
142
import React, { useEffect, useState } from 'react'; import { useNavigate, useParams } from 'react-router-dom'; import { ApiEndpoint } from '../../models/apiEndpoints'; import { useAuthApiCall, HttpMethod } from '../../hooks/useAuthApiCall'; import { Spinner, SpinnerSize } from '@fluentui/react'; import { LoadingState } from '../../models/loadingState'; import { SharedService } from '../../models/sharedService'; import { ResourceHeader } from './ResourceHeader'; import { useComponentManager } from '../../hooks/useComponentManager'; import { Resource } from '../../models/resource'; import { ResourceBody } from './ResourceBody'; import { APIError } from '../../models/exceptions'; import { ExceptionLayout } from './ExceptionLayout'; interface SharedServiceItemProps { readonly?: boolean } export const SharedServiceItem: React.FunctionComponent<SharedServiceItemProps> = (props: SharedServiceItemProps) => { const { sharedServiceId } = useParams(); const [sharedService, setSharedService] = useState({} as SharedService); const [loadingState, setLoadingState] = useState(LoadingState.Loading); const navigate = useNavigate(); const apiCall = useAuthApiCall(); const [apiError, setApiError] = useState({} as APIError); const latestUpdate = useComponentManager( sharedService, (r: Resource) => setSharedService(r as SharedService), (r: Resource) => navigate(`/${ApiEndpoint.SharedServices}`) ); useEffect(() => { const getData = async () => { try { let ss = await apiCall(`${ApiEndpoint.SharedServices}/${sharedServiceId}`, HttpMethod.Get); setSharedService(ss.sharedService); setLoadingState(LoadingState.Ok); } catch (err:any) { err.userMessage = "Error retrieving shared service"; setApiError(err); setLoadingState(LoadingState.Error) } }; getData(); }, [apiCall, sharedServiceId]); switch (loadingState) { case LoadingState.Ok: return ( <> <ResourceHeader resource={sharedService} latestUpdate={latestUpdate} readonly={props.readonly} /> <ResourceBody resource={sharedService} readonly={props.readonly} /> </> ); case LoadingState.Error: return ( <ExceptionLayout e={apiError} /> ); default: return ( <div style={{ marginTop: '20px' }}> <Spinner label="Loading Shared Service" ariaLive="assertive" labelPosition="top" size={SpinnerSize.large} /> </div> ) } };
AzureTRE/ui/app/src/components/shared/SharedServiceItem.tsx/0
{ "file_path": "AzureTRE/ui/app/src/components/shared/SharedServiceItem.tsx", "repo_id": "AzureTRE", "token_count": 875 }
143
{ "id": "36847de7-aa82-40a8-bbe7-d211bd677467", "resourceId": "8c70974a-5f66-4ae9-9502-7a54e9e0bb86", "resourcePath": "/workspaces/1e800001-7385-46a1-9f6d-490a6201ea01/workspace-services/8c70974a-5f66-4ae9-9502-7a54e9e0bb86", "resourceVersion": 0, "status": "deploying", "action": "install", "message": "8c70974a-5f66-4ae9-9502-7a54e9e0bb86: install action completed successfully.", "createdWhen": 1650653543.343581, "updatedWhen": 1650653543.343581, "user": { "id": "7f9756c3-7925-4b78-a10b-83927ab9c008", "name": "[email protected] Lopes de Almeida", "email": "", "roles": [ "WorkspaceOwner" ], "roleAssignments": [] } }
AzureTRE/ui/app/src/components/shared/notifications/dummyOp.json/0
{ "file_path": "AzureTRE/ui/app/src/components/shared/notifications/dummyOp.json", "repo_id": "AzureTRE", "token_count": 393 }
144
import { TypedUseSelectorHook, useDispatch, useSelector } from 'react-redux'; import { RootState, AppDispatch } from '../store/store'; // basically alias the generic hooks to give them type information for nicer usage throughout the app export const useAppDispatch = () => useDispatch<AppDispatch>(); export const useAppSelector: TypedUseSelectorHook<RootState> = useSelector;
AzureTRE/ui/app/src/hooks/customReduxHooks.ts/0
{ "file_path": "AzureTRE/ui/app/src/hooks/customReduxHooks.ts", "repo_id": "AzureTRE", "token_count": 100 }
145
export interface User { email: string, id: string, name: string, roleAssignments: Array<any>, roles: Array<string> }
AzureTRE/ui/app/src/models/user.ts/0
{ "file_path": "AzureTRE/ui/app/src/models/user.ts", "repo_id": "AzureTRE", "token_count": 53 }
146
{ "chemical2id": { "lithium carbonate": "D016651", "lithium": "D008094", "phenobarbital": "D010634", "ammonia": "D000641", "valproic acid": "D014635", "vpa": "D014635", "nh3": "D000641", "haloperidol": "D006220", "apomorphine": "D001058", "da": "D004298", "dopac": "D015102", "isoproterenol": "D007545", "iso": "D007545", "hydroxyproline": "D006909", "retinyl acetate": "C009166", "butylated hydroxyanisole": "D002083", "ra": "C009166", "bha": "D002083", "ketanserin": "D007650", "alfentanil": "D015760", "serotonin": "D012701", "chlordiazepoxide": "D002707", "glycopyrronium": "D006024", "edrophonium": "D004491", "fentanyl": "D005283", "ketamine": "D007649", "co2": "D002245", "prazosin": "D011224", "epsilon-aminocaproic acid": "D015119", "cyclophosphamide": "D003520", "mesna": "D015080", "benzodiazepine": "D001569", "flumazenil": "D005442", "diazepam": "D003975", "meperidine": "D008614", "morphine": "D009020", "oral contraceptives": "D003276", "heparin": "D006493", "sodium warfarin": "D014859", "paracetamol": "D000082", "methamphetamine": "D008694", "5-ht": "D012701", "clozapine": "D003024", "olanzapine": "C076029", "d-amphetamine": "D003913", "phencyclidine": "D010622", "meth": "D008694", "bupropion hydrochloride": "D016642", "bupropion": "D016642", "bupropion hcl": "D016642", "penicillin": "D010406", "urethane": "D014520", "penicillin-g potassium": "D010400", "dexmedetomidine": "D020927", "pentobarbital": "D010424", "oxygen": "D010100", "lamotrigine": "C047781", "ltg": "C047781", "levodopa": "D007980", "propofol": "D015742", "hepatitis b surface antigen": "D006514", "doxorubicin": "D004317", "superoxide": "D013481", "citrate": "C102006", "amphotericin b": "D000666", "didanosine": "D016049", "hydroxyzine": "D006919", "promethazine": "D011398", "hydrocortisone": "D006854", "prochlorperazine": "D011346", "phenytoin": "D010672", "lorazepam": "D008140", "amphotercin b": "D000666", "alcohol": "D000431", "tobramycin": "D014031", "tobramicyn": "D014031", "creatinine": "D003404", "anthracycline": "D018943", "sm-5887": "C055866", "pilocarpine": "D010862", "pilo": "D010862", "steroid": "D013256", "corticosteroid": "D000305", "daunorubicin": "D003630", "benzodiazepines": "D001569", "isoniazid": "D007538", "iopentol": "C053571", "iohexol": "D007472", "metrizoate": "D008794", "oral contraceptive": "D003276", "thallium": "D013793", "dipyridamole": "D004176", "furosemide": "D005665", "steroids": "D013256", "everolimus": "C107135", "tacrolimus": "D016559", "methotrexate": "D008727", "sirolimus": "D020123", "loreclezole": "C066440", "valproate": "D014635", "clonazepam": "D002998", "carbamazepine": "D002220", "bicuculline": "D001640", "n-methyl-d-aspartic acid": "D016202", "bay k-8644": "D001498", "calcium": "D002118", "aminophylline": "D000628", "carbimazole": "D002231", "propranolol": "D011433", "oestrogens": "D004967", "progestogens": "D011374", "oestrogen": "D004967", "mannitol": "D008353", "lidocaine": "D008012", "succinylcholine": "D013390", "rocuronium": "C061870", "thiopental": "D013874", "levofloxacin": "D064704", "prostacyclin": "D011464", "beraprost": "C048081", "cilostazol": "C045645", "bpt": "C048081", "clz": "C045645", "camp": "D000242", "cyclic adenosine 3',5'-monophosphate": "D000242", "etoricoxib": "C422649", "diclofenac sodium": "D004008", "diclofenac": "D004008", "aspirin": "D001241", "quetiapine": "C069541", "divalproex": "D014635", "qtp": "C069541", "li": "D008094", "dvp": "D014635", "captopril": "D002216", "dietary sodium chloride": "D017673", "sodium chloride": "D012965", "clonidine": "D003000", "hexamethonium": "D018738", "alpha2-adrenergic receptor agonist": "D058647", "corticosterone": "D003345", "organophosphorus": "D010755", "tri-ortho-tolyl phosphate": "C025541", "totp": "C025541", "0,0'-diisopropyl phosphorofluoridate": "D007531", "dfp": "D007531", "organophosphorous": "D010755", "adenosine a2a/a1 receptor antagonist": "D058915", "adenosine a(2a)/a(1) receptor antagonist": "D058915", "reserpine": "D012110", "6-hydroxydopamine": "D016627", "6-ohda": "D016627", "mptp": "D015632", "pegylated interferon alpha-2b": "C417083", "ribavirin": "D012254", "paroxetine": "D017374", "alprazolam": "D000525", "creatine": "D003401", "aspartate": "D001224", "alanine": "D000409", "bromocriptine": "D001971", "cyclooxygenase inhibitors": "D016861", "prostaglandin": "D011453", "n-terminal pro brain natriuretic peptide": "C109794", "nt-probnp": "C109794", "angiotensin": "D000809", "enalapril": "D004656", "diuretic": "D004232", "pemoline": "D010389", "oxazolidine": "C064210", "amphetamines": "D000662", "methylphenidate": "D008774", "ifosfamide": "D007069", "ammonium acetate": "C018824", "nh4ac": "C018824", "acetylcholine": "D000109", "catecholamine": "D002395", "kcl": "D011189", "acetaldehyde": "D000079", "verapamil": "D014700", "amphetamine": "D000661", "metrazol": "D010433", "contrast media": "D003287", "cm": "D003287", "iopromide": "C038192", "sodium": "D012964", "na": "D012964", "potassium": "D011188", "k": "D011188", "cr": "D003404", "caffeine": "D002110", "ethambutol": "D004977", "emb": "D004977", "valdecoxib": "C406224", "ibuprofen": "D007052", "naproxen": "D009288", "ephedrine": "D004809", "fluoxetine": "D005473", "sertraline": "D020280", "dopamine": "D004298", "a-86929": "C095427", "skf-82958": "C071262", "6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1h-3-benzaze pine hydrobromide": "C071262", "a-77636": "C079415", "[1r, 3s] 3-[1'-admantyl]-1-aminomethyl-3,4-dihydro-5,6-dihydroxy-1h-2-benzo pyran hydrochloride": "C079415", "1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine": "D015632", "[-]-[5ar,11bs]-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-+ ++azacyclopent-1- ena[c]phenathrene-9-10-diol": "C095427", "ly-171555": "C416545", "[4ar-trans]-4,4a,5,6,7,8,8a,9-o-dihydro-5n-propyl-2h-pyrazo lo-3-4-quinoline hydrochloride": "C416545", "bupivacaine": "D002045", "chloroprocaine": "C004616", "naloxone": "D009270", "angiotensin-converting enzyme inhibitors": "D000806", "nmda": "D016202", "amino acid": "D000596", "glutamate": "D018698", "mk-801": "D016291", "ap7": "C031231", "n-methyl-d-aspartate": "D016202", "n,n'-dibenzhydrylethane-1,2-diamine dihydrochloride": "C507346", "amn082": "C507346", "nimodipine": "D009553", "nitroglycerin": "D005996", "nimo": "D009553", "ntg": "D005996", "warfarin": "D014859", "flavonoids": "D005419", "fat": "D004041", "adriamycin": "D004317", "triglycerides": "D014280", "atp": "D000255", "doxorubicinol": "C010013", "amp": "D000249", "adp": "D000244", "ziprasidone": "C092292", "mangiferin": "C013592", "polyphenol": "D059808", "isph": "D007545", "lactate": "D019344", "uric acid": "D014527", "iron": "D007501", "triphenyl tetrazolium chloride": "C009591", "ttc": "C009591", "glutathione": "D005978", "vitamin c": "D001205", "vitamin e": "D014810", "dimethyl sulphoxide": "D004121", "remifentanil": "C071741", "etomidate": "D005045", "daidzein": "C004742", "choline": "D002794", "ach": "D000109", "4',7-dihydroxy-isoflavone": "C004742", "scopolamine": "D012601", "azithromycin": "D017963", "baclofen": "D001418", "dexamethasone": "D003907", "methylprednisolone": "D008775", "midazolam": "D008874", "macrolide": "D018942", "macrolides": "D018942", "glyceryl trinitrate": "D005996", "nitric oxide": "D009569", "no": "D009569", "gtn": "D005996", "cocaine": "D003042", "tamoxifen": "D013629", "crack cocaine": "D016578", "crack": "D016578", "levomepromazine": "D008728", "fluvoxamine": "D016666", "phenothiazines": "D010640", "eaca": "D015119", "ranitidine": "D011899", "cimetidine": "D002927", "histamine": "D006632", "salicylate": "D012459", "acetaminophen": "D000082", "salicylates": "D012459", "methysergide": "D008784", "ergot": "D004876", "oxprenolol": "D010096", "terbutaline": "D013726", "methyldopa": "D008750", "5,7-dihydroxytryptamine": "D015116", "5,7-dht": "D015116", "yohimbine": "D015016", "clomipramine": "D002997", "dilevalol": "D007741", "puromycin aminonucleoside": "D011692", "8-oh-dpat": "D017371", "iron dextran": "D007505", "tyrosine": "D014443", "coumarin": "C030123", "saxitoxin": "D012530", "stx": "D012530", "benzoylecgonine": "C005618", "methadone": "D008691", "hydromorphone": "D004091", "ketorolac": "D020910", "pan": "D011692", "estrogen": "D004967", "estrogens": "D004967", "17beta-estradiol": "D004958", "e2": "D004958", "pravastatin": "D017035", "lovastatin": "D008148", "simvastatin": "D019821", "dxr": "D004317", "chloramphenicol": "D002701", "trihexyphenidyl hydrochloride": "D014282", "trihexyphenidyl": "D014282", "cyclosporine": "D016572", "csa": "D016572", "gentamicin": "D005839", "amphothericin b": "D000666", "ketoconazole": "D007654", "nicotine": "D009538", "spiperone": "D013134", "norepinephrine": "D009638", "suprofen": "D013496", "deoxycholic acid": "D003840", "ethinyl estradiol": "D004997", "taurodeoxycholic acid": "D013657", "sodium deoxycholate": "D003840", "bile acid": "D001647", "taurocholic acid": "D013656", "ouabain": "D010042", "digitalis glycosides": "D004071", "cisapride": "D020117", "diltiazem": "D004110", "erythromycin": "D004917", "azole": "D001393", "paclitaxel": "D017239", "carboplatin": "D016190", "taxol": "D017239", "netilmicin": "D009428", "netilmicin sulfate": "D009428", "tobramycin sulfate": "D014031", "piperacillin sodium": "D010878", "piperacillin": "D010878", "aminoglycoside": "D000617", "prostaglandins": "D011453", "pgs": "D011453", "flurothyl": "D005481", "picrotoxin": "D010852", "pentetrazol": "D010433", "ptz": "D010433", "sulindac": "D013467", "mefenamic acid": "D008528", "meclofenamic acid": "D008469", "fluorthyl": "D005481", "amlodipine": "D017311", "benazapril": "C044946", "15-f(2t)-isoprostane": "C075750", "15-f(2t)-isop": "C075750", "lipid hydroperoxides": "D008054", "lpo": "D008054", "thiobarbituric acid reactive substances": "D017392", "tbars": "D017392", "4-ene-vpa": "C045022", "2,4-diene-vpa": "C556631", "amisulpride": "C012052", "tiapride": "D063325", "nicardipine": "D009529", "benzamide": "C037689", "catecholamines": "D002395", "isosorbide": "D007547", "nitrate": "D009566", "adrenaline": "D004837", "epinephrine": "D004837", "fenoprofen calcium": "D005279", "gold": "D006046", "beta-adrenergic blocking drugs": "D000319", "bendrofluazide": "D001539", "urea": "D014508", "chloroquine": "D002738", "azathioprine": "D001379", "cq": "D002738", "cidofovir": "C059262", "guanosine": "D006151", "amiodarone": "D000638", "tenofovir": "C096918", "vancomycin": "D014640", "tenofovir disoproxil fumarate": "C418563", "5-fluorouracil": "D005472", "carmofur": "C017367", "capecitabine": "C110904", "desipramine": "D003891", "tricaine": "C003636", "interferon": "D007372", "viramidine": "C026956", "calcium carbonate": "D002119", "1,25-dihydroxyvitamin d": "C097949", "pamidronate": "C019248", "vitamin d": "D014807", "interferon-alpha": "D016898", "amine": "D000588", "n-acetyl serotonin": "C006389", "melatonin": "D008550", "amines": "D000588", "azelastine": "C020976", "chlorpheniramine": "D002744", "chlorpheniramine maleate": "D002744", "calcium carbon-ate": "D002119", "sodium bicarbonate": "D017693", "nondepolarizing neuromuscular blocking agents": "D003473", "corticosteroids": "D000305", "nd-nmba": "D003473", "nd-nmbas": "D003473", "vecuronium": "D014673", "prostaglandin e2": "D015232", "tachykinins": "D015320", "prostaglandin (pg) e2": "D015232", "rp 67,580": "C071693", "sr 48,968": "C073839", "pge2": "D015232", "pg": "D011453", "prostanoids": "D011453", "thiazide": "D049971", "hydrochlorothiazide": "D006852", "hctc": "D006852", "hctz": "D006852", "amiloride": "D000584", "chlorthalidone": "D002752", "noradrenaline": "D009638", "gaba": "D005680", "glycine": "D005998", "thiosemicarbazide": "C005151", "amino acids": "D000596", "hbsag": "D006514", "hepatitis b e antigen": "D006513", "hbeag": "D006513", "hepatitis b vaccine": "D017325", "prostaglandin d2": "D015230", "prostaglandin f2 alpha": "D015237", "acetic acid": "D019342", "ah6809": "C053876", "salbutamol": "D000420", "atenolol": "D001262", "coenzyme q10": "C024989", "cisplatin": "D002945", "blood urea nitrogen": "D001806", "reduced glutathione": "D005978", "platinum": "D010984", "selenium": "D012643", "zinc": "D015032", "metformin": "D008687", "sorafenib": "C471405", "ca": "D002118", "nitrates": "D009566", "nicorandil": "D020108", "ciprofloxacin": "D002939", "norfloxacin": "D009643", "fluoroquinolones": "D024841", "azt": "D015215", "zidovudine": "D015215", "3'-azido-2',3'-deoxythymidine": "D015215", "ritanserin": "D016713", "dmso": "D004121", "anthracyclines": "D018943", "mitoxantrone": "D008942", "fenoldopam": "D018818", "theophylline": "D013806", "low-molecular-weight heparin": "D006495", "unfractionated heparin": "D006493", "uh": "D006493", "lmwh": "D006495", "topiramate": "C052342", "calcium phosphate": "C020243", "spironolactone": "D013148", "amb": "D000666", "kainic acid": "D007608", "ka": "D007608", "risperidone": "D018967", "cabergoline": "C047047", "metformin hydrochloride": "D008687", "vigabatrin": "D020888", "rapamycin": "D020123", "rapa": "D020123", "tac": "D016559", "adr": "D004317", "gamma-aminobutyric acid": "D005680", "chloralose": "D002698", "pindolol": "D010869", "labetalol": "D007741", "carbachol": "D002217", "methylatropine": "C006649", "folic acid": "D005492", "clarithromycin": "D017291", "vasopressin": "D014667", "rosen's t5 or t10 protocol": "C053519", "magnesium": "D008274", "glutamic acid": "D018698", "digoxigenin": "D004076", "cresyl violet": "C028911", "misoprostol": "D016595", "indomethacin": "D007213", "bun": "D001806", "kanamycin": "D007612", "aminoglycosides": "D000617", "gyki-41 099": "C025725", "chlorpropanol": "C025725", "tobanum": "C025725", "gyki-41 900": "-1", "14c-41 099": "-1", "oral contraception": "D003276", "l-dopa": "D007980", "nh4cl": "D000643", "ammonium salt": "D064751", "unfractionated heparin sodium": "D006493", "ufh": "D006493", "low-molecular weight heparin": "D006495", "ptu": "D011441", "propylthiouracil": "D011441", "sch": "D013390", "droperidol": "D004329", "aluminum": "D000535", "cyanoacrylate": "D003487", "dx": "D004317", "etoposide": "D005047", "digoxin": "D004077", "testosterone": "D013739", "estradiol": "D004958", "allopurinol": "D000493", "aminonucleoside": "D011692", "fatty acids": "D005227", "triacylglycerol": "D014280", "cholesteryl esters": "D002788", "tolazamide": "D014042", "thiamine": "D013831", "thiamine pyrophosphate": "D013835", "tpp": "D013835", "thyroxine": "D013974", "azidothymidine": "D015215", "3'-azido-3'dideoxythymidine": "D015215", "phenylhydrazine": "C030299", "phz": "C030299", "iodine-125-metaiodobenzylguanidine": "D019797", "radiolabeled metaiodobenzylguanidine": "D019797", "mibg": "D019797", "ne": "D009638", "rauwolscine": "D015016", "cirazoline": "C014282", "abbott-53693": "C056299", "progesterone": "D011374", "levobupivacaine": "C476513", "ropivacaine": "C037663", "22-oxacalcitriol": "C051883", "calcitriol": "D002117", "oct": "C051883", "phosphate": "D010710", "phenylpropanolamine": "D010665", "ppa": "D010665", "calcium chloride": "D002122", "4-aminopyridine": "D015761", "cacl2": "D002122", "nahco3": "D017693", "13-cis-retinoic acid": "D015474", "cis-ra": "D015474", "eserine": "D010830", "atropine": "D001285", "penicillamine": "D010396", "mellaril": "D013881", "thioridazine": "D013881", "thorazine": "D002746", "chlorpromazine": "D002746", "aventyl": "D009661", "nortriptyline": "D009661", "elavil": "D000639", "amitriptyline": "D000639", "muscimol": "D009118", "5-hydroxytryptophan": "D006916", "mk-212": "C014896", "5-htp": "D006916", "prednisone": "D011241", "crocin": "C029036", "streptozocin": "D013311", "carotenoids": "D002338", "crocins": "C029036", "stz": "D013311", "pimecrolimus": "C117268", "poly-l-lactid acid": "-1", "tacrine": "D013619", "licl": "D018021", "aconitine": "D000157", "4-damp": "C042375", "4-diphenylacetoxy-n-methylpiperidine-methiodide": "C042375", "disulfiram": "D004221", "lamivudine": "D019259", "barbiturate": "C032232", "sodium thiopenthal": "D013874", "nik-247": "C049860", "e-2020": "C076946", "tramadol": "D014147", "dosulepine hydrochloride": "D004308", "d-penicillamine": "D010396", "hexachloro-1:3-butadiene": "C001335", "hcbd": "C001335", "2-bromoethylamine": "C004504", "bea": "C004504", "glucose": "D005947", "magnesium sulfate": "D008278", "nifedipine": "D009543", "clomiphene citrate": "D002996", "cc": "D002996", "pb": "D010634", "nimesulide": "C012655", "nsaid": "D000894", "nonsteroidal anti-inflammatory drugs": "D000894", "nsaids": "D000894", "nadolol": "D009248", "ivmp": "D008775", "thymidine": "D013936", "nad": "D009243", "nicotinic acid amide": "D009536", "poly(adp-ribose)": "D011064", "aap": "D000082", "ethanol": "D000431", "oxaloacetate": "D062907", "pyruvate": "D019289", "naa": "D009536", "cibenzoline": "C032151", "digitalis": "D004070", "mexiletine": "D008801", "tocainide": "D016677", "diatrizoate": "D003973", "renografin 76%": "C027278", "hypaque 76%": "C027278", "renografin": "D003974", "sodium citrate": "C102006", "disodium edetate": "D004492", "hypaque": "D003973", "calcium disodium edetate": "D004492", "prothrombin complex concentrate": "C025667", "pcc": "C025667", "tolterodine": "C099041", "thalidomide": "D013792", "(rs)-1-aminoindan-1,5-dicarboxylic acid": "C095756", "aida": "C095756", "(2r,4r)-4-aminopyrrolidine-2,4-dicarboxylate": "C097299", "2r,4r-apdc": "C097299", "isoflurane": "D007530", "dipyrone": "D004177", "bilirubin": "D001663", "dobutamine": "D004280", "lead": "D007854", "nitrotyrosine": "C002744", "lead acetate": "C008261", "malondialdehyde": "D008315", "mda": "D008315", "fenfluramine": "D005277", "dexfenfluramine": "D020372", "phentermine": "D010645", "cbdca": "D016190", "cddp": "D002945", "fluoxetine hydrochloride": "D005473", "thiopentone": "D013874", "nitrazepam": "D009567", "mitomycin c": "D016685", "fluorouracil": "D005472", "5-fu": "D005472", "dipivalyl epinephrine": "C015173", "timolol": "D013999", "aldosterone": "D000450", "prostaglandin e": "D011458", "pge(2)": "D015232", "cl": "D002713", "chondroitin sulfate": "D002809", "dox": "D004317", "sulfasalazine": "D012460", "amikacin": "D000583", "ecstasy": "D018817", "mdma": "D018817", "3,4-methylenedioxymethamphetamine": "D018817", "hal": "D006220", "prl": "D011388", "t": "D013739", "folate": "D005492", "beta-carotene": "D019207", "cyproterone acetate": "D017373", "ethinylestradiol": "D004997", "cpa": "D017373", "ee": "D004997", "combined oral contraceptives": "D003277", "cocs": "D003277", "coc": "D003277", "levonorgestrel": "D016912", "lindane": "D001556", "n-nitrosodimethylamine": "D004128", "ndma": "D004128", "3-methylcholanthrene": "D008748", "mc": "D008748", "cobalt chloride": "C018021", "iodixanol": "C044834", "capsaicin": "D002211", "benzisoxazole": "C441200", "dantrolene": "D003620", "puromycin amino-nucleoside": "D011692", "lignocaine": "D008012", "chlorpropamide": "D002747", "diabenese": "D002747", "urea nitrogen": "D001806", "para-aminohippurate": "D010130", "pah": "D010130", "nitrous oxide": "D009609", "debrisoquine": "D003647", "metoprolol": "D008790", "sparteine": "D013034", "alpha-hydroxymetoprolol": "C029504", "cefotetan": "D015313", "penicillins": "D010406", "cephalosporins": "D002511", "rifampicin": "D012293", "venlafaxine": "C047426", "tranylcypromine": "D014191", "l-dopa/benserazide": "C005177", "physostigmine": "D010830", "5-mdot": "-1", "ccnu": "D008130", "lomustine": "D008130", "1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea": "D008130", "3 alpha-hydroxy pregnane-20-ones": "D011374", "deoxycorticosterone": "D003900", "3 alpha-hydroxy pregnane-21-diol-20-ones": "D003900", "n-butyl-deoxynojirimycin": "C059896", "sc-48334": "C059896", "n10-propargyl-5,8-dideazafolic acid": "C031662", "cb 3717": "C031662", "ethopropazine": "C084820", "benztropine": "D001590", "fluphenazine enanthate": "C017610", "procyclidine": "D011352", "procyclindine": "D011352", "alpha-tocopherol": "D024502", "deferoxamine": "D003676", "ma": "D008694", "alpha-tc": "D024502", "dfo": "D003676", "ifs": "D007069", "dizocilpine": "D016291", "apomophine": "D001058", "prostigmine": "D009388", "nitrolingual": "D005996", "m": "D008775", "triamcinolone": "D014221", "antipurine": "D000983", "lometrexol": "C045894", "ddathf": "C045894", "glycinamide ribonucleotide": "C402896", "purine": "D011687", "tyr-d-ala-gly-nme-phe-gly-ol": "D020875", "morphiceptin": "C028889", "trans-3,4-dichloro-n-methyl-n[2-(1-pyrrolidinyl) cyclohexyl]benzeneactemide": "D019900", "[d-pen2.5]-enkephalin": "D020881", "[d-ser2]-[leu]enkephalin-thr": "C034318", "8-bromo cyclic adenosine monophosphate": "D015124", "cyclic adenosine monophosphate": "D000242", "h": "D006859", "anastrozole": "C090450", "nitrite": "D009573", "aminoguanidine": "C004479", "ag": "C004479", "phenylephrine": "D010656", "carteolol hydrochloride": "D002354", "carteolol": "D002354", "biperiden": "D001712", "antiplatelet agents": "D010975", "sevoflurane": "C009250", "umb24": "C519696", "sm 21": "C107044", "1-(2-phenethyl)-4-(2-pyridyl)-piperazine": "C519696", "3alpha-tropanyl-2-(4-chorophenoxy)butyrate": "C107044", "methimazole": "D008713", "sodium valproate": "D014635", "zonisamide": "C022189", "milrinone": "D020105", "halothane": "D006221", "enflurane": "D004737", "trifluoroacetyl": "D014269", "bupivacaine hydrochloride": "D002045", "mepivacaine hydrochloride": "D008619", "lidocaine hydrochloride": "D008012", "mepivacaine": "D008619", "aryl-piperazine": "-1", "buspirone": "D002065", "5-hydroxytryptaminergic agonists": "D058825", "5-hydroxytryptamine": "D012701", "chloride": "D002712", "cbz": "D002220", "fenoldopam mesylate": "D018818", "nitroprusside": "D009599", "hibiscus rosa sinensis": "D010936", "5 flourouracil": "D005472", "heroin": "D003932", "buprenorphine": "D002047", "cytosine arabinoside": "D003561", "atorvastatin": "C065179", "atorva": "C065179", "dex": "D003907", "kainate": "D007608", "formalin": "D005557", "carrageenan": "D002351", "mycophenolate mofetil": "C063008", "n-nitro-l-arginine-methyl ester": "D019331", "l-name": "D019331", "l-arginine": "D001120", "technetium-99m sestamibi": "D017256", "predobutamine": "-1", "prednisolone": "D011239", "d-tubocurarine": "D014403", "ketoprofen": "D007660", "adenosine diphosphate": "D000244", "mp": "D008775", "vincristine": "D014750", "adalat": "D009543", "cyclosporin a": "D016572", "fk506": "D016559", "fujimycine": "D016559", "periodic acid": "D010504", "diethylnitrosamine": "D004052", "den": "D004052", "mmc": "D016685", "phlorizin": "D010695", "streptozotocin": "D013311", "p": "D010695", "metoclopramide": "D008787", "penicillin g": "D010400", "penicillin-g": "D010400", "s-ketamine": "-1", "l-dihydroxyphenylalanine": "D007980", "alpha-methyl-para-tyrosine": "D019805", "tranexamic acid": "D014148", "txa": "D014148", "pyrazinamide": "D011718", "difluoromethylornithine": "D000518", "dfmo": "D000518", "parachlorophenylalanine": "-1", "pcpa": "-1", "5-hydroxyindoleacetic acid": "D006897", "5-hiaa": "D006897", "dextromethorphan": "D003915", "dm": "D003915", "3-hydroxy-n-methylmorphinan": "D007981", "trazodone": "D014196", "quinidine phenylethylbarbiturate": "C033457", "quinidine": "D011802", "phenylethylbarbiturate": "C033457", "quinine": "D011803", "alpha-benzene hexachloride": "D001556", "ethyl-alpha-p-chlorophenoxyisobutyrate": "C012282", "lactic acid": "D019344", "cholesteryl hemisuccinate": "C013440", "carbon tetrachloride": "D002251", "chloroform": "D002725", "galactosamine": "D005688", "tris salt": "-1", "cs": "-1", "ccl4": "D002251", "gamma-cholesteryloxybutyric acid": "C103872", "cse": "-1", "chcl3": "D002725", "bortezomib": "C400082", "telmisartan": "C084178", "oxacillin": "D010068", "naloxazone": "C024224", "dexrazoxane": "D064730", "epipodophyllotoxin": "D011034", "icrf-187": "D064730", "aniracetam": "C036466", "ro 13-5057": "C036466", "1-anisoyl-2-pyrrolidinone": "C036466", "cycloheximide": "D003513", "piracetam": "D010889", "pyrrolidinone": "D011760", "mecamylamine": "D008464", "myocet": "D004317", "bn 52021": "C045856", "benzylacyclouridine": "C034753", "uridine": "D014529", "urd": "D014529", "bau": "C034753", "cp": "D003520", "acrolein": "D000171", "fluphenazine": "D005476", "sch 23390": "C534628", "sulpiride": "D013469", "skf 38393": "D015647", "quinpirole": "D019257", "dextran": "D003911", "etodolac": "D017308", "e": "D017308", "n-acylimidazole": "-1", "eai": "-1", "all- trans-retinoic acid": "D014212", "atra": "D014212", "valsartan": "C081489", "angiotensin ii": "D000804", "dihydropyridine": "C038806", "kf17837": "C081198", "adenosine": "D000241", "cgs 21680": "C061282", "l-3,4-dihydroxyphenylalanine": "D007980", "benserazide": "D001545", "methoxamine": "D008729", "nomifensine": "D009627", "citalopram": "D015283", "t4": "D013974", "tri-iodo-thyronine": "D014284", "t3": "D014284", "m-chlorophenylpiperazine": "C015068", "mcpp": "C015068", "pentylenetetrazole": "D010433", "sulphasalazine": "D012460", "acetylsalicylic acid": "D001241", "asa": "D001241", "procainamide": "D011342", "tiopronin": "D008625", "thiosulphate": "-1", "diphenylhydantoin": "D010672", "dph": "D010672", "pgf2alpha": "D015237", "pgi2": "D011464", "edaravone": "C005435", "streptomycin": "D013307", "glycopyrrolate": "D006024", "pregnenolone sulphate": "C018370", "pregs": "C018370", "11-ketopregnenolone sulphate": "-1", "epipregnanolone ([3beta-hydroxy-5beta-pregnan-20-one] sulphate": "C018370", "epipregnanolone sulphate": "C018370", "5,7-dichlorokynurenic acid": "C066192", "5,7-dcka": "C066192", "cholesterol": "D002784", "quipazine": "D011814", "6-thioguanine": "D013866", "sodium 2-mercaptoethane sulphonate": "D015080", "thiol": "D013438", "if": "D007069", "hypaque 76": "C027278", "n-nitroso-n-methylurea": "D008770", "testosterone propionate": "D043343", "tp": "D043343", "msh": "D009074", "acth": "D000324", "d-med": "D020927", "medetomidine": "D020926", "idazoxan": "D019329", "dg-5128": "C032368", "alf": "D015760", "imipenem": "D015378", "imipenem/cilastatin": "C044650", "beta-lactam": "D047090", "bethanechol": "D018723", "2,3,5-triphenyltetrazolium": "C009591", "rifampin": "D012293", "oxytocin": "D010121", "cyp": "D003520", "fluocinolone acetonide": "D005446", "fa": "D005446", "dexatrim": "D010665", "lsd": "D008238", "pj34": "C434926", "fluconazole": "D015725", "tropicamide": "D014331", "acetazolamide": "D000086", "hydrogen peroxide": "D006861", "formyl-methionyl-leucyl-phenylalanine": "D009240", "fmlp": "D009240", "pentamidine": "D010419", "pentamidine isethionate": "D010419", "oxypurines": "-1", "nucleosides": "D009705", "acetylsalicylate": "D001241", "echothiophate iodide": "D004456", "androgen": "D000728", "androgens": "D000728", "ketone": "D007659", "tiazofurin": "C033706", "ro15-1788": "D005442", "phentolamine": "D010646", "hydroxychloroquine": "D006886", "dextrose": "D005947" }, "disease2id": { "tricuspid valve regurgitation": "D014262", "toxicity": "D064420", "tricuspid regurgitation": "D014262", "atrial flutter": "D001282", "congestive heart failure": "D006333", "cardiac disease": "D006331", "congenital heart disease": "D006331", "neurologic depression": "D003866", "cyanosis": "D003490", "cardiac arrhythmia": "D001145", "dyskinesia": "D004409", "neurologically-impaired": "D009422", "neurologic impairment": "D009422", "seizures": "D012640", "movement disorders": "D009069", "epileptic": "D004827", "drowsiness": "D006970", "catalepsy": "D002375", "hyperactivity": "D006948", "cardiac hypertrophy": "D006332", "hypertrophic": "D006984", "hypertrophy": "D006984", "hyperplasia": "D006965", "carcinogenic": "D063646", "forestomach carcinogenesis": "D013274", "forestomach tumorigenesis": "D013274", "forestomach tumors": "D013274", "squamous cell papilloma": "D010212", "carcinoma": "D002277", "epithelial hyperplasia": "D017573", "tumors": "D009369", "papillomas": "D010212", "muscle rigidity": "D009127", "rigidity": "D009127", "cardiovascular depression": "D002318", "respiratory depression": "D012131", "bradycardias": "D001919", "muscular rigidity": "D009127", "cerebral sinus thrombosis": "D012851", "menorrhagia": "D008595", "sagittal sinus thrombosis": "D020225", "left transverse sinus thrombosis": "D020227", "blood loss": "D006473", "thromboembolic disease": "D013923", "hemorrhagic": "D006470", "cystitis": "D003556", "nausea": "D009325", "vomiting": "D014839", "pain": "D010146", "adenomas": "D000236", "focal nodular hyperplasia": "D020518", "adenoma": "D000236", "thromboembolism": "D013923", "thrombocytopenia": "D013921", "arterial occlusion": "D001157", "thrombi": "D013927", "ischemia": "D007511", "gastrointestinal symptoms": "D005767", "musculoskeletal symptoms": "D009140", "ischemic": "D007511", "platelet aggregation": "D001791", "acute liver failure": "D017114", "acute liver injury": "D056486", "liver injury": "D056486", "liver disease": "D008107", "substance abuse": "D019966", "liver failure": "D017093", "psychosis": "D011605", "psychotic disorders": "D011605", "schizophrenia": "D012559", "paranoid type schizophrenia": "D012563", "convulsive": "D012640", "convulsions": "D012640", "epileptiform activity": "D004827", "epilepsy": "D004827", "epilepsies": "D004827", "bradycardia": "D001919", "aggressiveness": "D001523", "aggressive behaviors": "D001523", "psychiatric disorders": "D001523", "myoclonus": "D009207", "idiopathic generalized epilepsies": "C562694", "ige": "C562694", "myoclonic jerks": "D009207", "mj": "D009207", "myoclonic status": "D009207", "dyskinesias": "D004409", "parkinson disease": "D010300", "dyskinetic": "D004409", "drug-induced dyskinesias": "D004409", "amnesia": "D000647", "inability to repeat words": "D000647", "retrograde amnesia": "D000648", "hepatitis b": "D006509", "rubella": "D012409", "tumor": "D009369", "heart failure": "D006333", "nephrosis": "D009401", "nephropathy": "D007674", "glomerular and late-onset tubular lesions": "D007674", "mitochondrial injury": "D028361", "glomerular and tubular injury": "D007674", "glomerular and tubular lesions": "D007674", "tubular lesions": "D007674", "glomerular lesions": "D007674", "renal lesions": "D007674", "aids": "D000163", "seizure": "D012640", "grand mal seizures": "D004830", "cryptococcal meningitis": "D016919", "alcohol abuse": "D000437", "nephrotoxicity": "D007674", "decreased auditory function": "D034381", "auditory loss": "D034381", "cardiomyopathy": "D009202", "cardiotoxic": "D066126", "cardiotoxicity": "D066126", "parkinson's disease": "D010300", "parkinsonism": "D010302", "bradykinesia": "D018476", "temporal lobe epilepsy": "D004833", "tle": "D004833", "status epilepticus": "D013226", "brain damage": "D001930", "elevated intraocular pressure": "D009798", "iop rise": "D009798", "kaposi's sarcoma": "D012514", "oedema": "D004487", "toxicities": "D064420", "neutropenia": "D009503", "thrombosis": "D013927", "cardiac arrhythmias": "D001145", "overdose": "D062787", "tonic-clonic seizure": "D012640", "neuropathy": "D009422", "ventricular fibrillation": "D014693", "venous thrombosis": "D020246", "deep venous thrombosis": "D020246", "coronary stenosis": "D023921", "coronary occlusion": "D054059", "coronary stenoses": "D023921", "hyperemic": "D006940", "hyperemia": "D006940", "renal insufficiency": "D051437", "renal function significantly deteriorated": "D058186", "renal failure": "D051437", "weight loss": "D015431", "diabetes insipidus": "D003919", "liver tumors": "D008113", "hamartoma": "D006222", "hepatoma": "D006528", "rupture": "D012421", "graft-versus-host disease": "D006086", "sinusoidal obstruction syndrome": "D006504", "microangiopathy": "D014652", "gvhd": "D006086", "myelodysplastic syndrome": "D009190", "mds": "D009436", "acute myeloid leukemia": "D015470", "aml": "D015470", "mucositis": "D052016", "transplantation-associated microangiopathy": "D014652", "tma": "D014652", "acute renal failure": "D058186", "sos": "D006504", "hyperthyroidism": "D006980", "drug-induced acute liver injury": "D056486", "sepsis": "D018805", "coagulopathy": "D001778", "hepatotoxicity": "D056486", "acute liver insult": "D017114", "hepatotoxic": "D056486", "cardiovascular disease": "D002318", "osteoporosis": "D010024", "dementia": "D003704", "cancer": "D009369", "gallbladder disease": "D005705", "fractures": "D050723", "menstrual disorders": "D008599", "venous thrombo-embolism": "D054556", "stroke": "D020521", "breast cancer": "D001943", "colon cancer": "D003110", "gliomas": "D005910", "brain edema": "D001929", "elevated icp": "D019586", "brain tumor": "D001932", "malignant glioma": "D005910", "metastases": "D009362", "meningioma": "D008579", "edematous": "D004487", "glioma": "D005910", "edema": "D004487", "postoperative myalgia": "D010149", "myalgia": "D063806", "fasciculation": "D005207", "muscle fasciculation": "D005207", "sinusitis": "D012852", "diarrhea": "D003967", "flatulence": "D005414", "headache": "D006261", "facial flush": "D005483", "rheumatoid arthritis": "D001172", "ra": "D001172", "thrombotic cardiovascular": "D002318", "gi aes": "D005767", "hypertension": "D006973", "extrapyramidal symptoms": "D001480", "eps": "D001480", "bipolar mania": "D001714", "akathisia": "D017109", "tremor": "D014202", "extrapyramidal syndrome": "D001480", "hypertensive": "D006973", "increase in map": "D006973", "neurotoxic": "D020258", "degenerating myelinated fibers": "D009410", "akinesia": "D004409", "delusional parasitosis": "D063726", "chronic hepatitis c": "D019698", "depression": "D003866", "psychogenic parasitosis": "D063726", "neuroleptic malignant syndrome": "D009459", "depressive symptoms": "D003866", "psychiatric": "D001523", "insomnia": "D007319", "loss of appetite": "D001068", "agitation": "D011595", "psychomotor retardation": "D011596", "tremors": "D014202", "fever": "D005334", "nms": "D009459", "depressive": "D003866", "dehydration": "D003681", "malnutrition": "D044342", "impairment in auditory location discrimination": "D001308", "deficits in auditory discrimination": "D001308", "impairment in auditory discrimination": "D001308", "impaired auditory location discrimination": "D001308", "myocardial infarction": "D009203", "cardiovascular toxicity": "D002318", "decreased renal function": "D051437", "left ventricular dysfunction": "D018487", "chf": "D006333", "reduction in renal function": "D051437", "diabetes": "D003920", "renal impairment": "D007674", "attention deficit disorder": "D001289", "movement disorder": "D009069", "emesis": "D014839", "hyperammonemia": "D022124", "incoordination": "D001259", "analgesia": "D000699", "cin": "D007674", "injury to the kidney": "D058186", "failure of kidney function": "D051437", "loss of kidney function": "D051437", "renal damage": "D058186", "renal injury": "D058186", "congenital heart diseases": "D006331", "ventricular tachycardia": "D017180", "ventricular ectopy": "D018879", "arrhythmia": "D001145", "ventricular arrhythmias": "D001145", "optic neuropathy": "D009901", "axonal degeneration": "D009410", "tuberculosis": "D014376", "visual deficits": "D014786", "optic neuropathies": "D009901", "thrombotic": "D013927", "arthritis": "D001168", "osteoarthritis": "D010003", "sexual dysfunction": "D020018", "sexually dysfunctional": "D020018", "erectile dysfunction": "D007172", "parkinsonian": "D020734", "pd": "D010300", "cardiopulmonary arrest": "D006323", "myoclonic seizures": "D004831", "absence seizures": "D004832", "atypical absence seizures": "D004832", "ceroid lipofuscinosis": "D009472", "hypotension": "D007022", "hypotensive": "D007022", "cardiac dysfunction": "D006331", "atrioventricular block": "D054537", "sinus tachycardias": "D013616", "bradyarrhythmias": "D001919", "atrioventricular conduction delay": "D054537", "akinetic": "D018476", "memory impairment": "D008569", "cognitive dysfunction": "D003072", "haemopericardium": "D010490", "gastrointestinal haemorrhage": "D006471", "haemorrhage": "D006470", "myocardial injury": "D009202", "myocardial damage": "D009202", "myocardial hyperactivity": "D009202", "ischaemic injury": "D007511", "obese": "D009765", "obesity": "D009765", "ob": "D009765", "renal toxicity": "D007674", "hepatic toxicity": "D056486", "sinus node dysfunction": "D012804", "atrioventricular (av) block": "D054537", "syncopal attacks": "D013575", "mi": "D009203", "ischemic myocardium": "D017202", "cardiac damage": "D006331", "pruritus": "D011537", "apnea": "D001049", "alzheimer's disease": "D000544", "ad": "D000544", "impairments of learning": "D007859", "impairments of memory": "D008569", "hiccups": "D006606", "pharyngitis": "D010612", "hemorrhage": "D006470", "bleeding": "D006470", "intracranial bleeding": "D020300", "haemorrhagic": "D006470", "myocarditis": "D009205", "migraine without aura": "D020326", "migraine with aura": "D020325", "migraineurs": "D008881", "strokes": "D020521", "endometrial cancer": "D016889", "breast-cancer": "D001943", "vascular events": "D014652", "hypertriglyceridaemia": "D015228", "pupillary oscillation": "D011681", "paranoia": "D010259", "cip": "D010259", "myopathy": "D009135", "necrotizing": "D009336", "subarachnoid haemorrhage": "D013345", "sah": "D013345", "zollinger-ellison syndrome": "D015043", "systemic mastocytosis": "D034721", "impotence": "D007172", "hematologic toxicity": "D006402", "reye": "D012202", "reye syndrome": "D012202", "st. anthony's fire": "D004881", "vasospasm": "D014652", "gangrene": "D005734", "migraine headache": "D008881", "migraine": "D008881", "hypokalemia": "D007008", "sexual side effects": "D020018", "male impotence": "D007172", "obsessive compulsive disorder": "D009771", "trichotillomania": "D014256", "anxiety": "D001008", "affective disorders": "D019964", "hypersensitivity": "D004342", "hepatitis": "D056486", "myocardial hypertrophy": "D006332", "cardiac toxicity": "D066126", "idiopathic parkinson's disease": "D010300", "homonymous hemianopsia": "D006423", "nephrotic syndrome": "D009404", "hematological abnormalities": "D006402", "renal dysfunction": "D007674", "hyperlipidemia": "D006949", "left ventricular apical ballooning syndrome": "D054549", "takotsubo cardiomyopathy": "D054549", "apical ballooning": "D054549", "apical ballooning syndrome": "D054549", "locomotor hyperactivity": "D006948", "degeneration of dopaminergic neurons": "D009410", "leukocytoclastic vasculitis": "C535509", "lv": "C535509", "cutaneous small vessel vasculitis": "C565222", "skin eruptions": "D012871", "skin lesion": "D012871", "lv cutaneous lesions": "D018366", "spinal cord ischemia": "D020760", "aortic occlusion": "D001157", "spastic paraparesis": "D020336", "cocaine abuse": "D019970", "amphetamine abuse": "D019969", "drug abuse": "D019966", "lid": "D004409", "opioid addicts": "D009293", "pain-intolerant": "D006930", "renal tubular dysfunction": "D005198", "proteinuria": "D011507", "pituitary tumors": "D010911", "cancers": "D009369", "carcinogenesis": "D063646", "inflammatory myopathy": "D009220", "non-insulin-dependent diabetes mellitus": "D003924", "hypercholesterolemia": "D006937", "hypothyroidism": "D007037", "autoimmune thyroiditis": "D013967", "cm": "D009202", "myocardial disease": "D009202", "aplastic anemia": "D000741", "cataract": "D002386", "pancytopenia": "D010198", "bone marrow hypoplasia": "D001855", "ocular toxicity": "D005128", "schizophrenic": "D012559", "nephrotoxic": "D007674", "increased cardiac output": "D016534", "rise in resting blood pressure": "D006973", "acute declines in renal function": "D058186", "cholestasis": "D002779", "coronary artery disease": "D003324", "left ventricular end-diastolic volume falls": "D002303", "prolongation of the qt interval": "D008133", "gastrointestinal motility disorders": "D015835", "prolongation of qt interval": "D008133", "torsades de pointes": "D016171", "sudden cardiac death": "D016757", "gastroesophageal reflux disorder": "D005764", "syncope": "D013575", "qt-interval prolongation": "D008133", "ovarian cancer": "D010051", "myelosuppression": "D001855", "leukopenia": "D007970", "granulocytopenia": "D000380", "neurotoxicity": "D020258", "(insulin-dependent) diabetes mellitus": "D003922", "iddm": "D003922", "gastrointestinal (gi) toxicity": "D005767", "gi toxicity": "D005767", "post-transplant lmphoproliferate disease": "D008232", "ptld": "D008232", "hemolytic anemia": "D000743", "infections": "D007239", "ototoxicity": "D006311", "angioedema": "D000799", "abdominal pain": "D015746", "ascites": "D001201", "intestinal": "D007410", "liver toxicity": "D056486", "inflammation": "D007249", "necrosis": "D009336", "steatosis": "D005234", "pheochromocytoma": "D010673", "hyperkinesia": "D006948", "psychotic symptoms": "D011605", "stereotypies": "D019956", "asystolic": "D006323", "cardiac arrest": "D006323", "tonic-clonic seizures": "D004830", "asystole": "D006323", "renal papillary necrosis": "D007681", "rpn": "D007681", "ischaemic heart disease": "D017202", "cardiac failure": "D006333", "impaired glucose tolerance": "D018149", "gout": "D006073", "raynaud's phenomenon": "D011928", "dyspnoea": "D004417", "corneal disease": "D003316", "myocardial ischaemia": "D017202", "systemic lupus erythematosus": "D008180", "sle": "D008180", "renal involvement": "D007674", "arthralgia": "D018771", "myositis": "D009220", "muscular weakness": "D018908", "muscular atrophy": "D009133", "polymyositis": "D017285", "affection of the musculoskeletal system": "D009140", "adenovirus disease": "D000257", "respiratory syncytial virus infection": "D018357", "hepatitis c": "D006526", "infection with hemorrhagic fever viruses": "D006482", "anemia": "D000740", "adenovirus infection": "D000257", "adenovirus": "D000257", "pneumonia": "D011014", "digeorge syndrome": "D004062", "progressive renal failure": "D058186", "immunodeficiency": "D007153", "infection": "D007239", "tachyarrhythmias": "D013610", "cholestatic": "D002779", "hepatic injury": "D056486", "alcoholic hepatitis": "D006519", "cirrhosis of the liver": "D008103", "cholestatic injury": "D002779", "hepatomegaly": "D006529", "cataleptic": "D002375", "osteomyelitis": "D010019", "fanconi syndrome": "D005198", "leukoencephalopathy": "D056784", "cerebrovascular accident": "D002544", "leukaemia": "D007938", "cerebrovascular accidents": "D002544", "lesions within the subcortical white matter": "D056784", "white matter abnormalities": "D056784", "cytotoxic oedema within cerebral white matter": "D001929", "infected with hepatitis c virus": "D006526", "chronic infection with hepatitis c virus": "D019698", "cirrhosis": "D005355", "hepatocellular carcinoma": "D006528", "end-stage liver disease": "D058625", "hcv infection": "D006526", "hemolysis": "D006461", "renal disorders": "D007674", "cardiovascular disorders": "D002318", "milk-alkali syndrome": "D006934", "hypercalcemia": "D006934", "acute renal insufficiency": "D058186", "metabolic alkalosis": "D000471", "hypocalcemia": "D006996", "chc": "D019698", "riha": "D000743", "catatonia": "D002389", "spring allergic rhinitis": "D006255", "altered taste perception": "D013651", "seasonal allergic rhinitis": "D006255", "hypercalcaemia": "D006934", "nephrolithiasis": "D053040", "paralysis": "D010243", "muscle weakness": "D018908", "respiratory insufficiency": "D012131", "weakness": "D018908", "acidosis": "D000138", "loss of thick, myosin filaments": "D009135", "pathology at both the neuromuscular junction": "D009468", "hepatic dysfunction": "D008107", "bladder hyperactivity": "D053201", "diastolic hypertension": "C563897", "arrhythmias": "D001145", "coronary disease": "D003327", "ventricular ectopic beats": "D018879", "respiratory paralysis": "D012133", "respiratory arrest": "D012131", "infection by hepatitis b virus": "D006509", "hyperalgesic": "D006930", "hyperalgesia": "D006930", "atrial tachyarrhythmia": "D013617", "siat": "D013617", "tachycardia": "D013610", "acute renal injury": "D058186", "renal tissue damage": "D007674", "vascular dysfunction": "D014652", "kidney dysfunction": "D007674", "postoperative delirium": "D011183", "delirium": "D003693", "hip fracture": "D006620", "mental disorders": "D001523", "coronary artery spasm": "D003329", "renal cell carcinoma": "D002292", "chest pain": "D002637", "subendocardial infarction": "D009203", "stable angina": "D060050", "anxious behaviour": "D001008", "dilated cardiomyopathy": "D002311", "dcm": "D002311", "hiv-infected": "D015658", "acquired immunodeficiency syndrome": "D000163", "cardiac and skeletal myopathies": "C538496", "cardiac dilation": "D002311", "chorea": "D002819", "encephalopathy": "D001927", "nonketotic hyperglycinemia": "D020158", "disorder of amino acid metabolism": "D000592", "hypotonia": "D009123", "language delay": "D007805", "mental retardation": "D008607", "hypoxia": "D000860", "renal disease": "D007674", "diseased kidney": "D007674", "tubulointerstitial injury": "-1", "hypoxic": "D000860", "glomerular diseases": "D007674", "autoimmune diseases": "D001327", "systemic sclerosis": "D012595", "multiple sclerosis": "D009103", "heart damage": "D006331", "autoimmune disease": "D001327", "arteritis": "D001167", "thromboembolic": "D013923", "refractory seizures": "D004827", "metabolic acidosis": "D000138", "neutropenic": "D009503", "hematological disorders": "D006402", "fungal infection": "D009181", "epileptic seizures": "D004827", "excitotoxicity": "-1", "neurodegeneration": "D019636", "hyperprolactinemia": "D006966", "prolactinomas": "D015175", "delayed puberty": "D011628", "bipolar disorder": "D001714", "psychoses": "D011605", "cholestatic jaundice": "D041781", "jaundice": "D007565", "visual field constriction": "D014786", "visual field loss": "D014786", "facial dysmorphism": "-1", "posttransplant lymphoproliferative disorder": "D008232", "pneumocystis carinii pneumonia": "D011020", "infectious mononucleosis": "D007244", "bronchiolitis obliterans": "D001989", "aphtous ulcers": "D013281", "structural and functional impairment of mitochondria": "D028361", "cardiovascular arrhythmias": "D001145", "swelling": "D004487", "mitochondrial structural and functional impairment": "D028361", "birth defects": "D000014", "cleft lip": "D002971", "cleft palate": "D002972", "systemic lupus erythematodes": "D008180", "stillbirth": "D050497", "lupus": "D008180", "irritable bowel syndrome": "D043183", "disordered gastrointestinal motility": "D005767", "ibs": "D043183", "constipation": "D003248", "diarrhoea": "D003967", "gastroenteritis": "D005759", "ventricular dysrhythmias": "D001145", "dysrhythmias": "D001145", "nephrogenic diabetes insipidus": "D018500", "head injury": "D006259", "polyuric": "D011141", "polyuria": "D011141", "bone tumor": "D001859", "bone tumors": "D001859", "ventricular dilation": "D002311", "cardiac abnormalities": "D006331", "venous complications": "D014652", "tetany": "D013746", "rhabdomyolysis": "D012206", "hypomagnesemia": "C537153", "muscle spasms": "D013035", "neuronal degeneration": "D009410", "neuronal loss": "D009410", "impairment of renal reabsorption": "D007674", "rheumatic fever": "D012213", "coma": "D003128", "encephalopathic": "D001927", "hit": "D013921", "vasculitis": "D014657", "turner syndrome": "D014424", "graves' disease": "D006111", "purpura": "D011693", "purpuric lesions": "D011693", "masseter muscle rigidity": "D014313", "malignant hyperthermia": "D008305", "jaw of steel": "D014313", "neurological dysfunction": "D009422", "asphyxia": "D001237", "malformations": "D000014", "periventricular leukomalacia": "D007969", "neurological dysfunctions": "D009422", "ventricular septal defect": "D018658", "ventricular septal rupture": "D018658", "septal rupture": "D018658", "angioneurotic edema": "D000799", "quincke's disease": "D000799", "upper-airway obstruction": "D000402", "drug allergies": "D004342", "tongue swelling": "D014060", "visual hallucinations": "D006212", "chronic renal failure": "D007676", "uremia": "D014511", "end-stage renal disease": "D007676", "esrd": "D007676", "glomerulonephritis": "D005921", "coronary heart disease": "D003327", "rheumatic heart disease": "D012214", "decrease in sexual desire": "D020018", "albuminuria": "D000419", "nephrotic": "D009404", "acute hepatic necrosis": "D017114", "fulminant hepatic failure": "D017093", "viral hepatitis": "D006525", "wernicke's encephalopathy": "D014899", "diabetic": "D003920", "wernicke-korsakoff syndrome": "D020915", "myocardial ischemia": "D017202", "angina": "D000787", "contralateral rotation": "D009069", "substantia nigra lesion": "-1", "sn lesion": "-1", "ipsilateral circling": "D009069", "rotational behavior": "D009069", "rotation": "D009069", "hypothyroid": "D007037", "immunodeficient": "C565469", "anaemia": "D000740", "reticulocytosis": "D045262", "vacuolar degeneration of myocardial cells": "C536522", "myocardial impairment": "D009202", "vacuolar degeneration": "C536522", "amnestic syndrome": "D000647", "alzheimer": "D000544", "apnoea": "D001049", "orthostatic hypotension": "D007024", "cerebral venous sinus thrombosis": "D012851", "internal carotid artery thrombosis": "D002341", "hemiparesis": "D010291", "diabetes mellitus": "D003920", "dm": "D003920", "infarct": "D002544", "occlusion of the left internal carotid artery": "D001157", "venous sinus thrombosis": "D012851", "cerebral artery occlusion": "D002544", "the venous sinus occlusion": "-1", "thrombosis of the ica": "D002341", "thrombosis of the venous sinus": "D012851", "heart block": "D006327", "blindness": "D001766", "deterioration of vision": "D015354", "fatiguability": "D005221", "dizziness": "D004244", "retinopathy": "D012164", "right bundle branch block": "D002037", "blind": "D001766", "secondary hyperparathyroidism": "D006962", "low bone turnover": "D001851", "suppression of bone turnover": "D001851", "adynamic bone disease": "D001851", "impaired renal function": "D007674", "hyperphosphatemia": "D054559", "woven osteoid": "-1", "fibrosis": "D005355", "non-small cell lung cancer": "D002289", "ovarian carcinoma": "D010051", "breast carcinoma": "D001943", "nsclc": "D002289", "polyneuropathy": "D011115", "cerebral hemorrhage": "D002543", "subarachnoid hemorrhage": "D013345", "vt": "D017180", "vf": "D014693", "ataxia": "D001259", "anorexia": "D000855", "visual halos or blurring": "D014786", "thyroid function abnormalities": "D013959", "pulmonary interstitial infiltrates": "-1", "central nervous system toxicity": "D002493", "neuroblastoma": "D009447", "rash": "D005076", "mydriasis": "D015878", "clonic-tonic convulsions": "D004830", "skin rashes": "D005076", "myasthenia gravis": "D009157", "elastosis perforans serpiginosa": "C536202", "wilson's disease": "D006527", "supraventricular tachycardia": "D013617", "left bundle branch block": "D002037", "heart disease": "D006331", "cardiac complications": "D005117", "hyperglycemic": "D006943", "acidotic": "D000140", "kearns-sayre syndrome": "D007625", "lethargy": "D053609", "somnolence": "D006970", "polydipsia": "D059606", "polyphagia": "D006963", "hyperglycemia": "D006943", "lactic acidosis": "D000140", "ketosis": "D007662", "respiratory failure": "D012131", "metabolic-endocrine failure": "-1", "learning impairment": "D007859", "cognitive deficits": "D003072", "neurodegenerative diseases": "D019636", "dermatitis": "D003872", "rosacea": "D012393", "eruptions": "D003875", "facial dermatitis": "D005148", "telangiectasia": "D013684", "hippocampal damage": "D001930", "damage of neuronal cells": "D001930", "arrhythmic": "D001145", "peripheral neuropathy": "D010523", "alcohol dependence": "D000437", "loss of vision": "D014786", "headaches": "D006261", "paraesthesia": "D010292", "numbness": "D006987", "scotomata": "D012607", "hepatitis b virus (hbv) infection": "D006509", "liver cirrhosis": "D008103", "narcosis": "D053608", "hallucinations": "D006212", "tetraparetic": "-1", "chronic pain": "D059350", "synovitis": "D013585", "injury to different regions of the kidney": "D007674", "acute experimental models of renal damage": "D058186", "protein excretion": "D011507", "glomerular damage": "D007674", "excretion of proteins": "D011507", "neuromuscular blockade": "D020879", "hematuria": "D006417", "confusion": "D003221", "coronary thrombosis": "D003328", "radiation injury": "D011832", "hepatonecrosis": "-1", "cholangitis": "D002761", "bronchopneumonia": "D001996", "liver damage": "D056486", "chronic hepatic enzyme dysfunction": "D056487", "visual loss": "D014786", "bitemporal hemianopia": "D006423", "loss of central visual acuity, colour vision (ishihara) and visual field": "D014786", "loss of visual function": "D014786", "urticaria": "D014581", "atrial fibrillation": "D001281", "atrial tachycardia": "D013617", "af": "D001281", "pulmonary-renal syndrome": "C538458", "hemoptysis": "D006469", "hypoxemia": "D000860", "ventricular arrhythmia": "D001145", "sudden death": "D003645", "myelodysplasia": "D009190", "macrocytic anemia": "D000748", "myelodysplastic": "D009190", "hyperplastic marrow": "D001855", "dysmyelopoiesis": "D009190", "hypocellular marrow": "D001855", "dyserythropoiesis": "-1", "hemosiderosis": "D006486", "liver injuries": "D056486", "hepatic damage": "D056486", "glomerular disease": "D007674", "membranous glomerulonephritis": "D015433", "intracerebral hemorrhage": "D002543", "ich": "D002543", "hematomas": "D006406", "growth impairment": "D006130", "reduced cerebellar growth": "D006130", "decreased cranial to body growth": "D006130", "overactive bladder": "D053201", "oab": "D053201", "nocturia": "D053158", "dry month": "D014987", "dry mouth": "D014987", "neurovascular complications": "D013901", "aneurysmal": "D017542", "gastric lymphoma": "C535648", "myotonic dystrophy": "D009223", "steinert's disease": "D009223", "muscular dystrophy": "D009136", "renal cell cancer": "D002292", "halothane hepatitis": "C562477", "tension-type headache": "D018781", "primary headaches": "D051270", "coronary artery stenosis": "D023921", "coronary spasm": "D003329", "coronary spastic angina": "D000788", "anginal": "D000787", "variant angina": "D000788", "valvular heart disease": "D006349", "valvular disease": "D006349", "valvular abnormalities": "D006349", "valvulopathy": "D006349", "aortic regurgitation": "D001022", "mitral regurgitation": "D008944", "bicuspid aortic valve": "C562388", "aortic insufficiency": "D001022", "peripheral nervous system damage": "D010523", "peripheral neurotoxicity": "D010523", "endometrial carcinoma": "D016889", "advanced disease": "D020178", "endometrial cancers": "D016889", "granulosa cell tumor of the ovary": "C537296", "liver dysfunction": "D017093", "granulosa cell tumors": "D006106", "adenomyosis": "D062788", "hearing impairment": "D034381", "auditory dysfunction": "D006311", "myocardial lesions": "D001768", "acute myeloblastic leukemia": "D015470", "leukemia": "D007938", "wilms tumor": "D009396", "prostate adenocarcinomas": "D011471", "prostate cancer": "D011471", "prostatitis": "D011472", "hemolytic uremic syndrome": "D006463", "hus": "D006463", "pulmonary edema": "D011654", "gastric adenocarcinoma": "D013274", "anuria": "D001002", "postrenal failure": "D007674", "tubulopathies": "D007674", "vein thrombosis": "D020246", "glaucoma": "D005901", "cardiac apoptosis": "D006331", "hepatic failure": "D017093", "skin rash": "D005076", "eosinophilia": "D004802", "interstitial nephritis": "D009395", "febrile neutropenia": "D009503", "hematologic disorder": "D006402", "oncologic disorder": "D009369", "neurotoxic lesions": "D020258", "impaired memory functioning": "D008569", "memory impairments": "D008569", "atherosclerosis": "D050197", "venous thromboembolism": "D054556", "vte": "D054556", "sleep deprivation": "D012892", "painful": "D010146", "cluster headache": "D003027", "ns": "D009404", "bladder cancer": "D001749", "urothelial cancer": "D014523", "bladder tumor": "D001749", "bladder tumors": "D001749", "leg and back pain": "D001416", "pain in the legs and/or back": "D001416", "leg and/or back pain": "D001416", "hypertensives": "D006973", "hallucinatory": "D006212", "adult-onset diabetes": "D003924", "toxic optic neuropathy": "D009901", "diabetics": "D003920", "dystonic": "D020821", "thalamic lesions": "D013786", "bile duct injury": "D002779", "type b hepatitis": "D006509", "serotonin syndrome": "D020230", "salivation": "D012798", "hyperthermia": "D005334", "hypoventilation": "D007040", "paralyzed": "D010243", "haematological toxicities": "D006402", "renal toxicities": "D007674", "hepatic toxicities": "D056486", "gastrointestinal toxicities": "D005767", "lymphoma": "D008223", "mast cell tumour": "D034801", "brain tumour": "D001932", "histiocytic tumours": "D015620", "epitheliotropic lymphoma": "D008223", "gastrointestinal toxicosis": "D005767", "hiv-1 infection": "D015658", "cytotoxicity": "D064420", "mesothelioma": "D008654", "malaise": "D005221", "parkinsonian symptoms": "D010302", "tardive dyskinesia": "D004409", "neuronal damage": "D009422", "orofacial dyskinesia": "D009069", "oral dyskinesia": "D009069", "abnormal movements": "D004409", "tardive dsykinesia": "D004409", "sphincter of oddi spasm": "D046628", "spasm": "D013035", "sphincter of oddi dyskinesia": "D046628", "reduction of food intake": "D000855", "loss in body weight": "D015431", "tetanic": "D013746", "atrophy": "D001284", "muscle atrophy": "D009133", "cardiogenic shock": "D012770", "tumours": "D009369", "hypoalbuminemia": "D034141", "detrimental effect on memory": "D008569", "detrimental effect on cognition": "D003072", "mesangial proliferation": "C537346", "tubulointerstitial inflammation": "D009395", "hyperlocomotion": "D009069", "rpgn": "D005921", "hiv disease": "D015658", "fatigue": "D005221", "megaloblastosis": "-1", "bilateral optic neuropathy": "D009901", "bilateral retrobulbar neuropathy": "D009901", "scotoma": "D012607", "blood coagulation": "D001778", "hypercoagulability": "D019851", "thrombophlebitis": "D013924", "thromboembolic episodes": "D013923", "cerebral palsy": "D002547", "seizure disorder": "D004827", "restlessness": "D011595", "itching": "D011537", "icterus": "D007565", "hyperbilirubinemia": "D006932", "autoimmune hemolytic anemia": "D000744", "syndrome of inappropriate secretion of antidiuretic hormone": "D007177", "siadh": "D007177", "tonic-clonic convulsions": "D004830", "weakness of the central nervous system": "D002493", "bladder tumours": "D001749", "liver tumours": "D008113", "bladder carcinomas": "D001749", "bladder calculi": "D001744", "hepatocarcinogens": "D008113", "muscle degeneration": "D009135", "muscle damage": "D009135", "diplopia": "D004172", "localized scleroderma": "D012594", "contractures": "D003286", "adrenaline arrhythmia": "D001145", "open-angle glaucoma": "D005902", "ocular hypertension": "D009798", "abs": "D054549", "acute cardiac syndrome": "D006331", "hyperkinesis": "D006948", "epicardial coronary disease": "D003327", "colorectal cancer": "D015179", "akinesis": "D018476", "coronary vasospasm": "D003329", "thrombus": "D013927", "fetal pulmonary hypertension": "D005315", "pulmonary hypertension": "D006976", "pulmonary hypertension syndrome": "D006976", "qt prolongation": "D008133", "torsade de pointes": "D016171", "tdp": "D016171", "prolonged qtc interval": "D008133", "thermal hyperalgesia": "D006930", "mechanical hyperalgesia": "D006930", "sarcoma": "D012509", "convulsion": "D012640", "muscle dysfunction": "D018908", "neuromuscular dysfunction": "D009468", "aneurysmal subarachnoid hemorrhage": "D013345", "hematoma": "D006406", "artery aneurysms": "D002532", "non-hodgkin's lymphoma": "D008228", "neuropathic symptoms": "D012678", "primary biliary cirrhosis": "D008105", "rheumatologic diseases": "D012216", "dermatomyositis": "D003882", "flushing": "D005483", "cerebral edema": "D001929", "hepatocarcinogenesis": "D063646", "preneoplastic foci": "D011230", "precancerous lesions": "D011230", "inhibition of lactation": "D007775", "glycosuria": "D006029", "arf": "D058186", "tubular necrosis": "D009956", "involuntary movements": "D004409", "dystonia": "D004421", "glutamatergic dysfunction": "D018754", "dopaminergic deficits": "D009461", "brainstem dysgenesis": "-1", "fetal anomalies": "D005315", "multiple cranial-nerve involvement": "D003389", "cocaine-addicted": "D019970", "diabetic nephropathy": "D003928", "cerebral ischemic injury": "D001930", "ischemic brain injury": "D001930", "neurological abnormalities": "D009422", "brain ischemic": "D002546", "dysosmia": "D000857", "hyperuricemia": "D033461", "olfactory disorder": "D000857", "colorectal adenomas": "D015179", "adenomatous polyps": "D018256", "hearing loss": "D034381", "mental slowing": "D003072", "mental slowness": "D003072", "irritability": "D001523", "aggression": "D001523", "aggressive behavior": "D001523", "glioblastoma": "D005909", "brain tumors": "D001932", "obsessive-compulsive symptoms": "D009771", "treatment-resistant depression": "D061218", "obsessive-compulsive behavior": "D009771", "obsessive-compulsive disorder": "D009771", "hemolytic anemias": "D000743", "cauda equina syndrome": "D011128", "neurological deficits": "D009461", "hyperkinetic": "D006948", "abnormal involuntary movement": "D004409", "corticosteroid glaucoma": "D005901", "hypertensive eyes": "D009798", "open angle glaucoma": "D005902", "steroid glaucoma": "D005901", "primary open angle glaucoma": "D005902", "cognitive deterioration": "D003072", "nystagmus": "C564088", "flank pain": "D021501", "hay fever": "D006255", "asthma": "D001249", "kidney stones": "D007669", "hemolytic-uremic syndrome": "D006463", "pyeloureteritis cystica": "D011702", "submucosal hemorrhage": "D006470", "hepatomas": "D006528", "liver lesions": "D017093", "myeloma": "D009101", "multiple myeloma": "D009101", "mm": "D009101", "hematological toxicities": "D006402", "cough": "D003371", "cutaneous leucocytoclastic vasculitis": "D018366", "staphylococcus aureus bacteremia": "D013203", "bacteremia": "D016470", "necrotic": "D009336", "blisters": "D001768", "leucocytoclastic vasculitis": "D018366", "collagen vascular disease": "D003095", "neoplasia": "D009369", "hypothermia": "D007035", "impaired learning": "D007859", "impaired memory": "D008569", "impaired cognitive functions": "D003072", "hypercapnia": "D006935", "mbc": "D001943", "cardiovascular impairments": "D002318", "decrease of mean arterial blood pressure (mbp)": "D007022", "decrease of heart rate (hr)": "D001919", "decrease of mbp": "D007022", "decrease of hr": "D001919", "cardiovascular alterations": "D018376", "marrow suppression": "D001855", "anemic": "D000740", "leukopenic": "D007970", "marrow toxicity": "D001855", "visceral pain": "D059265", "behavioral disorders": "D001523", "painful syndromes": "D010146", "hyperesthesia": "D006941", "neuralgia": "D009437", "writhing": "D010146", "hypertrophic cardiomyopathy": "D002312", "eosinophilic": "D004802", "biventricular failure": "D018754", "erythema nodosum": "D004893", "acute promyelocytic leukemia": "D015473", "apl": "D015473", "erythematous nodules": "D004893", "arterial thromboemboli": "D001157", "venous thromboemboli": "D054556", "thromboemboli": "D013923", "pulmonary emboli": "D011655", "myxedemic": "D009230", "myxedema": "D009230", "startle": "D012021", "ulcerative colitis": "D003093", "red eyes": "D005128", "pleural effusion": "D010996", "urinary abnormalities": "D001745", "segmental necrotizing glomerulonephritis": "D005923", "pleural effusions": "D010996", "hypothermic": "D007035", "chiari malformation": "D001139", "tic-like symptoms": "D013981", "tic disorders": "D013981", "involuntary eye-blinking movements": "D020820", "developmental anomalies": "D000014", "gastrointestinal toxicity": "D005767", "ventricular septal defects": "D006345", "vsds": "D006345", "midline defects": "D009436", "diaphragmatic hernia": "D065630", "dh": "D065630", "md": "D009436", "vsd": "D006345", "hydrocephalus": "D006849", "long qt syndrome": "D008133", "edds": "D003693", "a falling platelet count": "D001791", "hemorrhagic complications": "D006470", "thromboembolic complications": "D013923", "colon carcinoma": "D003110", "metastasis": "D009362", "prinzmetal's angina": "D000788", "nephritis": "D009393", "cerebellar dysfunction": "D002526", "cerebral damage": "D001927", "low back pain": "D017116", "progressive supranuclear palsy": "D013494", "multiple system atrophy": "D019578", "dystonias": "D004421", "psp": "D013494", "oromandibular dystonia": "D008538", "omd": "D008538", "vestibulotoxicity": "D015837", "cerebral infarction": "D002544", "amnesic": "D000647", "acute pain": "D059787", "allodynia": "D006930", "neuropathic pain": "D009437", "thyroid disease": "D013959", "thyroid illness": "D013959", "psoriasis": "D011565", "capillary leak syndrome": "D019559", "capillary leak": "D019559", "inflammatory diseases": "D007249", "rem sleep deprivation": "D012892", "remd": "D012892", "head twitches": "D009069", "hepatic veno-occlusive disease": "D006504", "veno-occlusive disease of the liver": "D006504", "acute lymphocytic leukemia": "D054198", "urothelial toxicity": "D001745", "lung cancer": "D008175", "haematuria": "D006417", "bladder irritation": "D001745", "pollakisuria": "D014555", "qtc prolongation": "D008133", "pas": "D011471", "pa": "D011471", "muscle flaccidity": "D009123", "cerebral vascular accident": "D020521", "cva": "D020521", "head trauma": "D006259", "cerebral ischemia": "D002545", "middle cerebral artery occlusion": "D020244", "mcao": "D020244", "neuronal injury": "D009410", "neuronal dysfunction": "D009410", "pulmonary toxicity": "D008171", "pneumonitis": "D000542", "malignancy": "D009369", "tuberculous": "D014376", "hypokalaemia": "D007008", "bladder inflammation": "D001745", "bladder dysfunction": "D001745", "uveitis": "D014605", "hypotony": "D015814", "visual disturbances": "D010468", "premature ventricular contractions": "D018879", "nsvt": "D017180", "spinal cord injury": "D013119", "damage to the muscle": "D009135", "impairment in word recall": "D008569", "gerstmann syndrome": "D005862", "hypomania": "D001714", "psychotic disorder": "D011618", "bacterial infections": "D001424", "alf": "D017114", "cognitive impairment": "D003072", "impairment of cognitive function": "D003072", "ventricular tachyarrhythmias": "D017180", "qtc interval prolongation": "D008133", "embryonal rhabdomyosarcoma": "D018233", "hodgkin disease": "D006689", "ovarian failure": "D010049", "obstructive sleep apnea syndrome": "D020181", "syndrome of obstructive sleep apnea": "D020181", "obstructive sleep apnea": "D020181", "sleep apnea": "D012891", "renal abnormality": "D007674", "cerebral lesions": "D001927", "cerebral abnormalities": "D001927", "juvenile rheumatoid arthritis": "D001171", "iridocyclitis": "D015863", "ocular pain": "D058447", "decreased visual acuity": "D014786", "photophobia": "D020795", "band keratopathy": "C562399", "chorioretinopathy": "D012164", "cataracts": "D002386", "keratoconjunctivitis": "D007637", "water intoxication": "D014869", "abortion": "D000031", "abortions": "D000031", "asthenia": "D001247" } }
BioGPT/data/BC5CDR/raw/valid.entities.json/0
{ "file_path": "BioGPT/data/BC5CDR/raw/valid.entities.json", "repo_id": "BioGPT", "token_count": 45139 }
147
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. DATA_DIR=../../data/PubMedQA prefix=biogpt-large-pqal_qcl_ansis RAW_DATA_DIR=${DATA_DIR}/raw OUTPUT_DIR=${DATA_DIR}/${prefix}-bin if [ -d "${OUTPUT_DIR}" ]; then rm -rf ${OUTPUT_DIR} fi python rebuild_data.py ${RAW_DATA_DIR} ${prefix} cp ${DATA_DIR}/../biogpt_large_dict.txt ${RAW_DATA_DIR}/ cp ${DATA_DIR}/../biogpt_large_bpecodes ${RAW_DATA_DIR}/ SPLIT=(train valid test) for ff in ${SPLIT[@]}; do if [ -f "${RAW_DATA_DIR}/${prefix}_$ff.y" ]; then echo "Preprocessing ${ff}" perl ${MOSES}/scripts/tokenizer/tokenizer.perl -l en -a -threads 8 < ${RAW_DATA_DIR}/${prefix}_$ff.x > ${RAW_DATA_DIR}/${prefix}_$ff.tok.x perl ${MOSES}/scripts/tokenizer/tokenizer.perl -l en -a -threads 8 < ${RAW_DATA_DIR}/${prefix}_$ff.y > ${RAW_DATA_DIR}/${prefix}_$ff.tok.y ${FASTBPE}/fast applybpe ${RAW_DATA_DIR}/${prefix}_$ff.tok.bpe.x ${RAW_DATA_DIR}/${prefix}_$ff.tok.x ${RAW_DATA_DIR}/biogpt_large_bpecodes ${FASTBPE}/fast applybpe ${RAW_DATA_DIR}/${prefix}_$ff.tok.bpe.y ${RAW_DATA_DIR}/${prefix}_$ff.tok.y ${RAW_DATA_DIR}/biogpt_large_bpecodes rm ${RAW_DATA_DIR}/${prefix}_$ff.tok.x ${RAW_DATA_DIR}/${prefix}_$ff.tok.y fi done # do binarize fairseq-preprocess \ -s x -t y --workers 8 \ --joined-dictionary \ --trainpref ${RAW_DATA_DIR}/${prefix}_train.tok.bpe \ --validpref ${RAW_DATA_DIR}/${prefix}_valid.tok.bpe \ --testpref ${RAW_DATA_DIR}/${prefix}_test.tok.bpe \ --destdir ${OUTPUT_DIR} \ --srcdict ${RAW_DATA_DIR}/biogpt_large_dict.txt
BioGPT/examples/QA-PubMedQA/preprocess_large.sh/0
{ "file_path": "BioGPT/examples/QA-PubMedQA/preprocess_large.sh", "repo_id": "BioGPT", "token_count": 761 }
148
# Contributing That would be awesome if you want to contribute something to BitBLAS! - [Contributing](contributing.md#contributing) - [Reporting Bugs](contributing.md#reporting-bugs) - [Asking Questions](contributing.md#asking-questions) - [Submitting Pull Requests](contributing.md#submitting-pull-requests) - [Repository Setup](contributing.md#repository-setup) - [Running Tests](contributing.md#running-tests) ## Reporting Bugs If you run into any weird behavior while using BitBLAS, feel free to open a new issue in this repository! Please run a **search before opening** a new issue, to make sure that someone else hasn't already reported or solved the bug you've found. Any issue you open must include: - Code snippet that reproduces the bug with a minimal setup. - A clear explanation of what the issue is. ## Asking Questions Please ask questions in issues. ## Submitting Pull Requests All pull requests are super welcomed and greatly appreciated! Issues in need of a solution are marked with a [`♥ help`](https://github.com/ianstormtaylor/BitBLAS/issues?q=is%3Aissue+is%3Aopen+label%3A%22%E2%99%A5+help%22) label if you're looking for somewhere to start. Please run `./format.sh` before submitting a pull request to make sure that your code is formatted correctly. Please include tests and docs with every pull request! ## Repository Setup To run the build, you need to have the BitBLAS repository cloned to your computer. After that, you need to `cd` into the directory where you cloned it, and install the dependencies with `python`: ```bash python setup.py install ``` ## Running Tests To run the tests, start by building the project as described in the [Repository Setup](contributing.md#repository-setup) section. Then you can rerun the tests with: ```text python -m pytest testing ```
BitBLAS/CONTRIBUTING.md/0
{ "file_path": "BitBLAS/CONTRIBUTING.md", "repo_id": "BitBLAS", "token_count": 513 }
149
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import argparse import torch from modeling_bitnet import BitnetForCausalLM torch.set_grad_enabled(False) parser = argparse.ArgumentParser() parser.add_argument('--hf_path', default='1bitLLM/bitnet_b1_58-3B', type=str) def profile(model, input_data): import time import numpy as np model = model.cuda() model.eval() def get_runtime(num_repeats=1): tic = time.time() for _ in range(num_repeats): _ = model(input_data) torch.cuda.synchronize() return (time.time() - tic) * 1000 / num_repeats with torch.no_grad(): st = time.time() while time.time() - st < 1.0: get_runtime() # warmup warmup_runtime = get_runtime() num_repeats = max(1, int(1000 / warmup_runtime)) times = get_runtime(num_repeats) return np.mean(times) def main(): model = BitnetForCausalLM.from_pretrained( '1bitLLM/bitnet_b1_58-3B', device_map='auto', low_cpu_mem_usage=True, use_flash_attention_2=True, torch_dtype=torch.float16, ).half() with torch.no_grad(): model._post_process_weights() benchmark_sets = [ (1, 1), (128, 1), (1, 2048) ] for batch_size, seq_len in benchmark_sets: input_id = torch.ones(batch_size, seq_len).long().cuda() latency = profile(model, input_id) print(f"Batch size: {batch_size}, Seq len: {seq_len}, Latency: {latency}") if __name__ == '__main__': main()
BitBLAS/integration/BitNet/benchmark_inference_latency.py/0
{ "file_path": "BitBLAS/integration/BitNet/benchmark_inference_latency.py", "repo_id": "BitBLAS", "token_count": 723 }
150
// Copyright (c) Microsoft Corporation. // Licensed under the MIT License. #include <cuda_runtime.h> #include <assert.h> #include "ladder_kernel.h" #include "mma.h" // nvcc ladder_kernel.cu -gencode arch=compute_80,code=sm_80 ${kernel_body} int ladder_gemm_fp16xint2_fp16(half *input_0, half *input_1, half *output, const int M, const int N, const int K, const int trans_a, const int trans_b, half *workspace_ptr) { assert(trans_a == 0 && trans_b == 1); ${kernel_call} return -1; }
BitBLAS/integration/bitdistiller/template/kernel_template.int2.bitblas.cu.template/0
{ "file_path": "BitBLAS/integration/bitdistiller/template/kernel_template.int2.bitblas.cu.template", "repo_id": "BitBLAS", "token_count": 190 }
151
#!/bin/bash # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # install torch pip install torch==2.1.0 # install llvm apt-get install llvm-10 # clone and build tvm git submodule update --init --recursive cd 3rdparty/tvm mkdir build cp cmake/config.cmake build cd build echo "set(USE_LLVM llvm-config-10)" >> config.cmake && echo "set(USE_CUDA ON)" >> config.cmake cmake .. && make -j && cd ../../.. echo "export TVM_HOME=$(pwd)/3rdparty/tvm" >> ~/.bashrc echo "export PYTHONPATH=\$TVM_HOME/python:$(pwd)/python:\$PYTHONPATH" >> ~/.bashrc source ~/.bashrc
BitBLAS/maint/scripts/installation.sh/0
{ "file_path": "BitBLAS/maint/scripts/installation.sh", "repo_id": "BitBLAS", "token_count": 219 }
152
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """Hint definition for schedule""" from typing import Dict, List, Tuple from . import PrimFuncNode import numpy as np from .rasterization import * class TensorCoreExtraConfig: """ This class is used to store extra information for tensorcore """ def __init__( self, AS_shape: Tuple[int], BS_shape: Tuple[int], AF_shape: Tuple[int], BF_shape: Tuple[int], tc_axis: Tuple[int], ) -> None: self.AS_shape: Tuple[int] = AS_shape self.BS_shape: Tuple[int] = BS_shape self.AF_shape: Tuple[int] = AF_shape self.BF_shape: Tuple[int] = BF_shape self.tc_axis: Tuple[int] = tc_axis class Stride: """ Manages stride information for a given axis of a tensor. """ def __init__(self, stride: int = 1, ax: int = -1) -> None: # which axis to put stride on self._ax: int = int(ax) # the stride size of the axis self._stride: int = int(stride) @property def ax(self) -> int: return self._ax @property def stride(self) -> int: return self._stride def compute_strides_from_shape(self, shape: List[int]) -> List[int]: ndim = len(shape) strides = [1 for _ in shape] for i in range(ndim - 2, -1, -1): if i == self.ax: strides[i] = self.stride else: strides[i] = int(strides[i + 1] * shape[i + 1]) return strides def compute_elements_from_shape(self, shape: List[int]) -> int: original_shape = np.prod(shape) if not self.is_valid(): strided_elem = original_shape else: assert self.ax < len(shape) strided_elem = np.prod(shape[0:self.ax + 1]) * self.stride assert strided_elem >= original_shape return int(strided_elem) def is_valid(self) -> bool: return self.ax >= 0 def __repr__(self) -> str: return f"<Stride, {self._ax}, {self._stride}>" class TileDict: """ Manages tiling information and configurations for computational tasks. """ def __init__(self, output_tile) -> None: self.output_tile = output_tile # schedule config self.tile_map = {} self.rstep_map = {} self.cached_tensors_map = {} self.output_strides_map = {} self.tensor_strides_map = {} # analysis self.traffic = -1 self.smem_cost = -1 self.block_per_SM = -1 self.num_wave = -1 self.grid_size = -1 self.valid = True def get_tile(self, func) -> List[int]: return self.tile_map[func] def get_rstep(self, func) -> Dict[str, int]: return self.rstep_map def __hash__(self) -> int: return hash(tuple(self.output_tile)) class IntrinInfo: """ The information of tensorcore intrinsic related information """ def __init__( self, in_dtype: str, out_dtype: str, trans_b: bool, input_transform_kind: int = 0, weight_transform_kind: int = 0, ) -> None: self.in_dtype = in_dtype self.out_dtype = out_dtype self.trans_a = False self.trans_b = trans_b self.input_transform_kind = input_transform_kind self.weight_transform_kind = weight_transform_kind def __repr__(self) -> str: return f"<IntrinInfo, {self.in_dtype}, {self.out_dtype}, {self.trans_b}, {self.propagate_b}>" @property def smooth_a(self) -> bool: return self.input_transform_kind >= 2 @property def smooth_b(self) -> bool: return self.weight_transform_kind >= 2 @property def inter_transform_a(self) -> bool: return self.input_transform_kind >= 1 @property def inter_transform_b(self) -> bool: return self.weight_transform_kind >= 1 class Hint(object): """ Central configuration class for managing various parameters of computational tasks. """ def __init__(self) -> None: self.arch = None self.use_tc = None # todo(lei): this should be renamed. # special axes tiling info self.block = [] self.thread = [] # special axes for tensorCore self.warp = [] # reduce axes tiling info self.rstep = [] self.reduce_thread = [] self.rasterization_plan = NoRasterization() self.cached_tensors = [] self.output_strides = {} self.schedule_stages = None # Experimental self._raxis_order = [] self._step = [] self.vectorize: Dict[str, int] = {} self.pipeline_stage = 1 self.use_async = False self.opt_shapes: Dict[str, int] = {} self.intrin_info = IntrinInfo("float16", "float16", True) self.shared_scope: str = "shared" self.pass_context: Dict = {} def to_dict(self) -> Dict: dic = {} dic["block"] = self.block if self.use_tc: dic["warp"] = self.warp else: dic["thread"] = self.thread dic["rstep"] = self.rstep if np.prod(self.reduce_thread) > 1: dic["reduce_thread"] = self.reduce_thread if self.use_tc: dic["use_tc"] = self.use_tc if self.output_strides: dic["strides"] = {} for k, stride in self.output_strides.items(): if stride.is_valid(): dic["strides"][k] = stride if len(dic["strides"]) == 0: del dic["strides"] if np.prod(self._step) > 1: dic["step"] = self._step if self._raxis_order != []: dic["raxis_order"] = self._raxis_order if self.vectorize != {}: dic["vectorize"] = self.vectorize return dic def from_dict(self, dic: Dict) -> "Hint": self.__init__() for k, v in dic.items(): setattr(self, k, v) return self @property def raxis_order(self) -> List[int]: if self._raxis_order != []: return self._raxis_order return list(range(len(self.rstep))) @property def step(self) -> List[int]: if self._step != []: return self._step return [1 for _ in self.block] def __repr__(self) -> str: return str(self.to_dict()) def complete_config(self, node: PrimFuncNode): # analysis pass context, for int8 mma, we should merge static shared memory merge_static_smem = False if self.use_tc and self.intrin_info.in_dtype == "int8": merge_static_smem = True self.pass_context = {"tir.merge_static_smem": merge_static_smem} return self
BitBLAS/python/bitblas/base/roller/hint.py/0
{ "file_path": "BitBLAS/python/bitblas/base/roller/hint.py", "repo_id": "BitBLAS", "token_count": 3200 }
153
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """ GPU-generic schedule rules. For CUDA/ROCm/Vulkan/Metal-specific rules, use `tvm.dlight.cuda/rocm/vulkan/metal` instead """ from .fallback import Fallback # noqa: F401 from .element_wise import ElementWise # noqa: F401 from .gemv import GEMV # noqa: F401 from .gemv_dequantize import GEMVWithDequantizeInfo # noqa: F401 from .general_reduction import GeneralReduction # noqa: F401 from .matmul import ( Matmul, # noqa: F401 MatmulTensorizationMMA, # noqa: F401 MatmulTensorizationWMMA, # noqa: F401 ) from .matmul_mma_dequantize import ( MatmulTensorizationMMAWithDequantizeInfo, # noqa: F401 ) from .matmul_wmma import MatmulTensorizationLegacy # noqa: F401 from .reduction import Reduction # noqa: F401 from .transpose import Transpose # noqa: F401
BitBLAS/python/bitblas/gpu/__init__.py/0
{ "file_path": "BitBLAS/python/bitblas/gpu/__init__.py", "repo_id": "BitBLAS", "token_count": 319 }
154
# Copyright 2018 The apache/tvm Authors. All Rights Reserved. # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # Modifications Copyright (c) Microsoft. # The code below is mostly copied from apache/tvm transpose.py in dlight. """Reduction rule for operators including softmax, layer norm, RMS norm, etc""" from typing import List, Union from tvm import arith, tir from tvm.target import Target from tvm.tir import Schedule from tvm.tir.schedule import BlockRV from ..base import ( detect_dominant_read, normalize_prim_func, try_inline_contiguous_spatial, ) from .base import GPUScheduleRule class Transpose(GPUScheduleRule): """Schedule rule for transpose""" def is_transpose(self, sch: Schedule, block_rv: BlockRV): block = sch.get(block_rv) if isinstance(block.body, tir.BufferStore): rhs = block.body.value if isinstance(rhs, tir.BufferLoad): lhs_indices = block.body.indices rhs_indices = rhs.indices if list(lhs_indices) != list(rhs_indices) and set(lhs_indices) == set(rhs_indices): return True return False def apply( # pylint: disable=too-many-locals self, func: tir.PrimFunc, target: Target, _: bool, ) -> Union[None, tir.Schedule, List[tir.Schedule]]: # pylint: disable=invalid-name if not isinstance(func, tir.PrimFunc) or not self.is_target_available(target): return None if target.kind.name == "cuda": len_tx = 16 len_ty = 8 unroll_depth = 256 else: len_tx = 8 len_ty = 4 unroll_depth = 64 len_vec = 4 sch = tir.Schedule(func) blocks = normalize_prim_func(sch) transpose_block_idx = -1 for idx, block in reversed(list(enumerate(blocks))): if self.is_transpose(sch, block.block_rv): transpose_block_idx = idx break if not block.is_injective(): return None if transpose_block_idx == -1: return None transpose_block = blocks[transpose_block_idx].block_rv prologue = None # the optional decoding block if transpose_block_idx > 0: spatials = try_inline_contiguous_spatial(sch, blocks[: transpose_block_idx - 1]) assert len(spatials) == 0 prologue = blocks[transpose_block_idx - 1].block_rv loops = sch.get_loops(transpose_block) if len(loops) != 2: # transpose with more than 2 axes is not supported return None c_factor = 1 if prologue is not None: block_stmt = sch.get(prologue) result = arith.normalize_to_iter_sum( detect_dominant_read(block_stmt), input_iters={i.var: i.dom.extent for i in block_stmt.iter_vars}, ) if len(result.args) > 0: c_factor = int(result.args[0].lower_factor) i, j = loops i, vi = sch.split(i, factors=[None, c_factor], preserve_unit_iters=True) bi, ti = sch.split(i, factors=[None, len_ty], preserve_unit_iters=True) bj, tj = sch.split(j, factors=[None, len_tx], preserve_unit_iters=True) sch.reorder(bi, bj, ti, tj, vi) sch.bind(bi, "blockIdx.y") sch.bind(bj, "blockIdx.x") sch.bind(ti, "threadIdx.y") sch.bind(tj, "threadIdx.x") len_vec = min(len_vec, c_factor) _, vi = sch.split(vi, factors=[None, len_vec]) if len_vec > 1: sch.vectorize(vi) cache_read = sch.cache_read(transpose_block, read_buffer_index=0, storage_scope="shared") sch.compute_at(cache_read, bj) loops = sch.get_loops(cache_read)[2:] fused = sch.fuse(*loops) _, ty, tx, v = sch.split(fused, factors=[None, len_ty, len_tx, c_factor]) sch.bind(ty, "threadIdx.y") sch.bind(tx, "threadIdx.x") sch.unroll(v) sch.storage_align(block=cache_read, buffer_index=0, axis=0, factor=32, offset=1) sch.annotate(bi, ann_key="pragma_auto_unroll_max_step", ann_val=unroll_depth) sch.annotate(bi, ann_key="pragma_unroll_explicit", ann_val=1) if prologue is not None: sch.compute_inline(prologue) return sch
BitBLAS/python/bitblas/gpu/transpose.py/0
{ "file_path": "BitBLAS/python/bitblas/gpu/transpose.py", "repo_id": "BitBLAS", "token_count": 2290 }
155
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from abc import ABC, abstractmethod import tvm from tvm import IRModule from tvm.target import Target from tvm.tir import PrimFunc from tvm.contrib.dlpack import to_pytorch_func from tvm._ffi.base import _LIB, raise_last_ffi_error from tvm._ffi._ctypes.types import TVMValue, ArgTypeCode import bitblas import ctypes from typing import List, Dict, Any, Optional import numpy as np from ..base import fast_tune, fast_tune_with_dynamic_range from copy import deepcopy from bitblas.base.roller.arch import get_arch from bitblas.wrapper import CUDASourceWrapper, CUDASourceWrapperWithDynamic from dataclasses import dataclass from enum import IntEnum import logging logger = logging.getLogger(__name__) class TransformKind(IntEnum): NonTransform = 0 InterWarpTransform = 1 IntraWarpTransform = 2 @dataclass class OperatorConfig: """Base class for operator configurations. Used for typing.""" pass class Operator(ABC): def __init__(self, name, config: OperatorConfig, target: Target = None): if isinstance(target, str): target = Target(target) self.name = name self.config = config self.target = target self.prim_func_mod = self._select_implementation() self.optimized_func = None self.rt_mod = None self.time_evaluator = None self.profile_tensors = None self.arch = get_arch(target) if target else None self.dynamic_range = None self.pass_context: Dict = {} self.num_args = len(self.prim_func.params) self.function_handle = None self.num_output_args: int = ( 1 # todo(lei): should be analyzed from the prim_func. ) self.wrapper = None self.src_name = None self.lib_name = None self.lib = None def get_source(self, target: Target = None) -> str: if target is None: target = self.target if self.rt_mod is None: self._build_runtime_module(target) return self.rt_mod.imported_modules[0].get_source() if self.rt_mod else None def _build_runtime_module(self, target: Target): """ Builds the runtime module based on the architecture platform. This function attempts to build a runtime module (rt_mod) for the specified target. If the platform is CUDA and an optimized function is available, it tries to build using the optimized function with a specific pass context. Otherwise, it falls back to building with the primary function. After successful build, it initializes a time evaluator for performance measurement. Args: target (Target): The compilation target specification. Returns: The compiled runtime module or None if the build was unsuccessful. """ # Initialize rt_mod as None to handle cases where build fails or is skipped rt_mod = None # Check if the platform is CUDA and we have an optimized function if self.arch.platform == "CUDA": if self.optimized_func is None: return None @tvm.register_func(func_name="tvm_callback_cuda_postproc", override=True) def tvm_callback_cuda_postproc(code, _): return self.post_process(code) try: # Use a specific TVM pass context for CUDA platforms with tvm.transform.PassContext(config={ "tir.use_async_copy": True, **self.pass_context }): rt_mod = tvm.build(self.optimized_func, target=target, name=self.name) except Exception as e: rt_build_error = e # noqa logger.debug( "Failed to build optimized function for CUDA target with default schedule, Please consider enable hardware aware tuning!" ) else: # For non-CUDA platforms or when no optimized function is available, build with the primary function rt_mod = tvm.build(self.prim_func, target=target, name=self.name) # If the runtime module was successfully built, set up for evaluation if rt_mod: self.rt_mod = rt_mod # Initialize a time evaluator with the built module, specifying the device and the number of runs self.time_evaluator = rt_mod.time_evaluator( rt_mod.entry_name, self.arch.device, number=10) self.function_handle = rt_mod.get_function(rt_mod.entry_name).handle self.torch_func = to_pytorch_func(rt_mod) if self.arch.platform == "CUDA": try: if (self.dynamic_range is not None and len(self.optimized_func.functions) > 1): wrapper = CUDASourceWrapperWithDynamic(self.optimized_func, self.get_source(target), self.arch) else: wrapper = CUDASourceWrapper(self.optimized_func, self.get_source(target), self.arch) wrapper.compile_lib() self.wrapper = wrapper self.src_name = self.wrapper.src_name self.lib_name = self.wrapper.lib_name self.lib = self.wrapper.load_lib() self.lib.init() except Exception as e: build_runtime_library_error = e logger.debug( "Failed to build runtime library {}".format(build_runtime_library_error)) return rt_mod def apply_default_schedule(self, func_mod: IRModule, target: Target) -> IRModule: mod_for_opt = deepcopy(func_mod) with target: optimized_mod = ( bitblas.ApplyDefaultSchedule( # pylint: disable=not-callable bitblas.gpu.Matmul(), bitblas.gpu.GEMV(), bitblas.gpu.Reduction(), bitblas.gpu.GeneralReduction(), bitblas.gpu.Fallback(), )(mod_for_opt)) if optimized_mod is not None: return optimized_mod return None def post_process(self, code: str) -> str: return code def apply_fast_tuning(self, func: PrimFunc, target: Target, topk: int = 20, parallel_build=True) -> IRModule: _, best = fast_tune(func, target, topk=topk, parallel_build=parallel_build) if best is not None: return best.sch.mod self.pass_context = best.config.pass_context return None def apply_fast_tuning_with_dynamic_range( self, func: PrimFunc, target: Target, topk: int = 20, dynamic_range: Dict[str, List[int]] = None, ): optimized_mod = fast_tune_with_dynamic_range( func, target, topk=topk, parallel_build=True, dynamic_range=dynamic_range) if optimized_mod is not None: return optimized_mod return None def hardware_aware_finetune(self, topk: int = 20, target: tvm.target.Target = None, parallel_build=True): if target is None: target = self.target dynamic_range = self.dynamic_range func = self.prim_func if dynamic_range is not None: self.optimized_func = self.apply_fast_tuning_with_dynamic_range( func, target, topk, dynamic_range) else: self.optimized_func = self.apply_fast_tuning( func, target, topk, parallel_build=parallel_build) self._build_runtime_module(self.target) def get_profile_tensors(self, dynamic_symbolic_constrains: Optional[Dict] = None): if dynamic_symbolic_constrains is None: dynamic_symbolic_constrains = {} func = self.prim_func device = self.arch.device def var_warpper(v): if isinstance(v, tvm.tir.Var): if v.name in dynamic_symbolic_constrains: return dynamic_symbolic_constrains[v.name] assert "opt_shapes" in func.attrs assert v.name in func.attrs["opt_shapes"] return func.attrs["opt_shapes"][v.name].value elif isinstance(v, tvm.tir.IntImm): return v.value else: raise RuntimeError("Not supported type: ", type(v)) def map_numpy_type(intype): typemap = { 'e4m3_float8': 'float8_e4m3fn', 'e5m2_float8': 'float8_e5m2', } if intype in typemap: return typemap[intype] else: return intype profile_tensors = [] for param in func.params: if param not in func.buffer_map: # in case of dynamic symbolic may in params continue arg = func.buffer_map[param] numpy_dtype = map_numpy_type(arg.dtype) profile_tensors.append( tvm.nd.array( np.random.uniform(0, 1, [var_warpper(i) for i in arg.shape]).astype(numpy_dtype), device=device, )) self.profile_tensors = profile_tensors return profile_tensors def profile_latency(self, dynamic_symbolic_constrains: Optional[Dict] = None) -> str: if dynamic_symbolic_constrains is None: dynamic_symbolic_constrains = {} profile_tensors = self.get_profile_tensors(dynamic_symbolic_constrains) latency = self.time_evaluator(*profile_tensors).mean * 1e3 return latency def _tensor_adapter(self, tensor, device): import torch from torch.utils.dlpack import to_dlpack if isinstance(tensor, tvm.te.Tensor): return tensor elif isinstance(tensor, torch.Tensor): return tvm.runtime.ndarray.from_dlpack(to_dlpack(tensor)) elif isinstance(tensor, np.ndarray): return tvm.nd.array(tensor, device=device) else: raise RuntimeError("Not supported type: ", type(tensor)) def _forward_from_tvm_args(self, *args): _tvm_args = [self._tensor_adapter(arg, self.arch.device) for arg in args] self.rt_mod(*_tvm_args) def _forward_from_tvm_nd_array(self, *args): self.rt_mod(*args) def _forward_from_torch_func(self, *args): # torch func is not reliable as some datatypes they don't support # like float8. self.torch_func(*args) return args[-1] def forward(self, *args): return self._forward_from_torch_func(*args) def _forward_from_prebuild_lib(self, *args, stream=0): ctypes_args = [ ctypes.c_void_p(arr.data_ptr()) if not isinstance(arr, int) else arr for arr in args ] ctypes_args.append(ctypes.c_void_p(stream)) self.lib.call(*ctypes_args) def call_lib(self, *args, stream=0): self.lib.call(*args, ctypes.c_void_p(stream)) def _forward_from_tvm_lib_func(self, values): tcodes = (ctypes.c_int * self.num_args)() ret_val = TVMValue() ret_tcode = ctypes.c_int() for i in range(self.num_args): tcodes[i] = ArgTypeCode.NDARRAY_HANDLE if (_LIB.TVMFuncCall( self.function_handle, values, tcodes, ctypes.c_int(self.num_args), ctypes.byref(ret_val), ctypes.byref(ret_tcode), ) != 0): raise_last_ffi_error() def __call__(self, *args: Any) -> Any: return self.forward(*args) def update_func(self, func: PrimFunc): self.prim_func_mod["main"] = func def update_runtime_module(self, rt_mod, src_name=None, lib_name=None): self.rt_mod = rt_mod self.time_evaluator = rt_mod.time_evaluator(rt_mod.entry_name, self.arch.device, number=10) self.function_handle = rt_mod.get_function(rt_mod.entry_name).handle self.torch_func = to_pytorch_func(rt_mod) if src_name is not None: self.src_name = src_name if lib_name is not None: self.lib_name = lib_name self.lib = ctypes.CDLL(lib_name) self.lib.init() @abstractmethod def _select_implementation(self) -> IRModule: pass @property def prim_func(self): return self.prim_func_mod["main"]
BitBLAS/python/bitblas/ops/operator.py/0
{ "file_path": "BitBLAS/python/bitblas/ops/operator.py", "repo_id": "BitBLAS", "token_count": 6197 }
156
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import pytest import bitblas from bitblas.ops.lop3_permutate import LOP3Permutate, LOP3PermutateConfig import tvm target = tvm.target.Target("llvm") # fmt: off @pytest.mark.parametrize("M,N,datatype,dequantize_bits,storage_dtype", [ (1024, 1024, "float16", 4, "uint32"), ]) def test_lop3_permutate_profile_latency( M, N, datatype, dequantize_bits, storage_dtype ): lop3_permutate_config = LOP3PermutateConfig( M=M, N=N, datatype=datatype, dequantize_bits=dequantize_bits, storage_dtype=storage_dtype ) lop3_permutate = LOP3Permutate( config=lop3_permutate_config, target=target, ) latency = lop3_permutate.profile_latency() assert latency # fmt: on if __name__ == "__main__": bitblas.testing.main()
BitBLAS/testing/python/operators/test_lop3_permutate_ops.py/0
{ "file_path": "BitBLAS/testing/python/operators/test_lop3_permutate_ops.py", "repo_id": "BitBLAS", "token_count": 404 }
157
from ..datasets import VisualGenomeCaptionDataset from .datamodule_base import BaseDataModule class VisualGenomeCaptionDataModule(BaseDataModule): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @property def dataset_cls(self): return VisualGenomeCaptionDataset @property def dataset_name(self): return "vg"
BridgeTower/src/datamodules/vg_caption_datamodule.py/0
{ "file_path": "BridgeTower/src/datamodules/vg_caption_datamodule.py", "repo_id": "BridgeTower", "token_count": 145 }
158
import torch import torch.nn as nn import pytorch_lightning as pl import torch.nn.functional as F from .bert_model import BertConfig, BertModel, BertCrossLayer from . import swin_transformer as swin from . import vit_model as vit from .vit_model import resize_pos_embed from . import heads, objectives, meter_utils from .clip_model import build_model, adapt_position_encoding from .swin_helpers import swin_adapt_position_encoding from transformers import RobertaConfig, RobertaModel class BTTransformer(pl.LightningModule): def __init__(self, config): super().__init__() self.save_hyperparameters() self.prepare_data_per_node = False self.is_clip= ('CLIP' in config["vit"]) self.is_swin= ('swin' in config["vit"]) self.is_vit= ('vit' in config["vit"]) self.jump_val_first_for_irtr_itm_irc = True if 'roberta' in config['tokenizer']: bert_config = RobertaConfig( vocab_size=config["vocab_size"], hidden_size=config["hidden_size"], num_hidden_layers=config["num_layers"], num_attention_heads=config["num_heads"], intermediate_size=config["hidden_size"] * config["mlp_ratio"], max_position_embeddings=config["max_text_len"], hidden_dropout_prob=config["drop_rate"], attention_probs_dropout_prob=config["drop_rate"], ) else: bert_config = BertConfig( vocab_size=config["vocab_size"], hidden_size=config["hidden_size"], num_hidden_layers=config["num_layers"], num_attention_heads=config["num_heads"], intermediate_size=config["hidden_size"] * config["mlp_ratio"], max_position_embeddings=config["max_text_len"], hidden_dropout_prob=config["drop_rate"], attention_probs_dropout_prob=config["drop_rate"], ) resolution_after = config['image_size'] self.cross_modal_text_transform = nn.Linear(config['input_text_embed_size'], config['hidden_size']) self.cross_modal_image_transform = nn.Linear(config['input_image_embed_size'], config['hidden_size']) self.cross_modal_text_transform.apply(objectives.init_weights) self.cross_modal_image_transform.apply(objectives.init_weights) self.token_type_embeddings = nn.Embedding(2, config["hidden_size"]) self.token_type_embeddings.apply(objectives.init_weights) if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: if self.is_clip: build_model(config["vit"], resolution_after=resolution_after, model_type=config["model_type"], vit_layernorm_shared=config["vit_layernorm_shared"], vit_remove_last=config["vit_remove_last"]) elif self.is_swin: getattr(swin, config["vit"])(pretrained=True, config=config,) else: getattr(vit, config["vit"])(pretrained=True, img_size=resolution_after, model_type=config["model_type"],) if 'roberta' in config['tokenizer']: RobertaModel.from_pretrained(config['tokenizer']) else: BertModel.from_pretrained(config['tokenizer']) torch.distributed.barrier() if self.is_clip: self.vit_model = build_model(config["vit"], resolution_after=resolution_after, model_type=config["model_type"], vit_layernorm_shared=config["vit_layernorm_shared"], vit_remove_last=config["vit_remove_last"]) elif self.is_swin: self.vit_model = getattr(swin, config["vit"])( pretrained=True, config=config, ) self.avgpool = nn.AdaptiveAvgPool1d(1) else: self.vit_model = getattr(vit, config["vit"])(pretrained=True, img_size=resolution_after, model_type=config["model_type"],) if 'roberta' in config['tokenizer']: self.text_transformer = RobertaModel.from_pretrained(config['tokenizer']) else: self.text_transformer = BertModel.from_pretrained(config['tokenizer']) if not config["vit_layernorm_shared"] and config["vit_layernorm_init_from_vit"]: for ln in self.vit_model.visual.cross_modal_ln_separate: ln.weight.data = self.vit_model.visual.ln_post.weight.data ln.bias.data = self.vit_model.visual.ln_post.bias.data self.cross_modal_image_layers = nn.ModuleList([BertCrossLayer(bert_config) for _ in range(config['num_layers'])]) self.cross_modal_image_layers.apply(objectives.init_weights) self.cross_modal_text_layers = nn.ModuleList([BertCrossLayer(bert_config) for _ in range(config['num_layers'])]) self.cross_modal_text_layers.apply(objectives.init_weights) # Class token => Linear => Tanh self.cross_modal_image_pooler = heads.Pooler(config["hidden_size"]) self.cross_modal_image_pooler.apply(objectives.init_weights) self.cross_modal_text_pooler = heads.Pooler(config["hidden_size"]) self.cross_modal_text_pooler.apply(objectives.init_weights) # Temperature for image text contrastive learning self.temperature = nn.Parameter(torch.ones([]) * config['temperature']) if config["loss_names"]["mlm"] > 0: # MLM Head weights don't tie with BERT Embedding weights. Train from scratch. self.mlm_score = heads.MLMHead(bert_config) self.mlm_score.apply(objectives.init_weights) if config["loss_names"]["itm"] > 0 or config["loss_names"]["itm_itc"] > 0 or config["loss_names"]["irtr_itm_itc"] > 0: self.itm_score = heads.ITMHead(config["hidden_size"] * 2) self.itm_score.apply(objectives.init_weights) if config["loss_names"]["itc"] > 0 or config["loss_names"]["itm_itc"] > 0 or config["loss_names"]["irtr_itm_itc"] > 0: self.itc_text_head = heads.ITCHead(config['hidden_size'], config['contrastive_hidden_size']) self.itc_text_head.apply(objectives.init_weights) self.itc_image_head = heads.ITCHead(config['hidden_size'], config['contrastive_hidden_size']) self.itc_image_head.apply(objectives.init_weights) hs = config["hidden_size"] # ===================== Initialize BT Components ===================== # # just for first layer self.cross_modal_text_layernorm = nn.LayerNorm(config["hidden_size"]) self.cross_modal_text_layernorm.apply(objectives.init_weights) self.cross_modal_image_layernorm = nn.LayerNorm(config["hidden_size"]) self.cross_modal_image_layernorm.apply(objectives.init_weights) self.cross_modal_text_link_tower = nn.ModuleList([heads.LinkTower(config) for _ in range(config['num_layers'] - 1)]) self.cross_modal_image_link_tower = nn.ModuleList([heads.LinkTower(config) for _ in range(config['num_layers'] - 1)]) self.cross_modal_text_link_tower.apply(objectives.init_weights) self.cross_modal_image_link_tower.apply(objectives.init_weights) # ===================== Load Pretrained METER Weights ===================== if (config["load_path"] != "" and not config["test_only"]): ckpt = torch.load(config["load_path"], map_location="cpu") state_dict = ckpt["state_dict"] if self.is_clip: state_dict = adapt_position_encoding(state_dict, after=resolution_after, patch_size=config['patch_size']) elif self.is_swin: state_dict = swin_adapt_position_encoding(state_dict, after=resolution_after, before=config['resolution_before']) else: state_dict['vit_model.pos_embed'] = resize_pos_embed(state_dict['vit_model.pos_embed'], self.vit_model.pos_embed, getattr(self.vit_model, 'num_tokens', 1), self.vit_model.patch_embed.grid_size) self.load_state_dict(state_dict, strict=False) # ===================== Downstream ===================== # hscale = config["head_hidden_scale"] if config["loss_names"]["vqa"] > 0: vs = config["vqav2_label_size"] if config["task_head_layers"] == 1: self.vqa_classifier = nn.Sequential( nn.Linear(hs * 2, vs), ) elif config["task_head_layers"] == 2: self.vqa_classifier = nn.Sequential( nn.Linear(hs * 2, hs * 2 * hscale), nn.LayerNorm(hs * 2 * hscale), nn.GELU(), nn.Linear(hs * 2 * hscale, vs), ) self.vqa_classifier.apply(objectives.init_weights) if config["loss_names"]["nlvr2"] > 0: if config["task_head_layers"] == 1: self.nlvr2_classifier = nn.Sequential( nn.Linear(hs * 4, 2), ) elif config["task_head_layers"] == 2: self.nlvr2_classifier = nn.Sequential( nn.Linear(hs * 4, int(hs * 2 * hscale)), nn.LayerNorm(int(hs * 2 * hscale)), nn.GELU(), nn.Linear(int(hs * 2 * hscale), 2), ) self.nlvr2_classifier.apply(objectives.init_weights) if config["nlvr2_drop_rate"] > 0: self.nlvr2_classifier_dropout = nn.Dropout(config['nlvr2_drop_rate']) emb_data = self.token_type_embeddings.weight.data self.token_type_embeddings = nn.Embedding(3, hs) self.token_type_embeddings.apply(objectives.init_weights) self.token_type_embeddings.weight.data[0, :] = emb_data[0, :] self.token_type_embeddings.weight.data[1, :] = emb_data[1, :] self.token_type_embeddings.weight.data[2, :] = emb_data[1, :] if config["loss_names"]["snli"] > 0: if config["task_head_layers"] == 1: self.snli_classifier = nn.Sequential( nn.Linear(hs * 2, 3), ) elif config["task_head_layers"] == 2: self.snli_classifier = nn.Sequential( nn.Linear(hs * 2, hs * 2 * hscale), nn.LayerNorm(hs * 2 * hscale), nn.GELU(), nn.Linear(hs * 2 * hscale, 3), ) self.snli_classifier.apply(objectives.init_weights) if config["loss_names"]["irtr"] > 0: self.rank_output = nn.Linear(hs * 2, 1) self.rank_output.weight.data = self.itm_score.fc.weight.data[1:] self.rank_output.bias.data = self.itm_score.fc.bias.data[1:] for p in self.itm_score.parameters(): p.requires_grad = False # ===================== load downstream (test_only) ====================== if config["load_path"] != "" and config["test_only"]: ckpt = torch.load(config["load_path"], map_location="cpu") state_dict = ckpt["state_dict"] if self.is_clip: state_dict = adapt_position_encoding(state_dict, after=resolution_after, patch_size=config['patch_size']) elif self.is_swin: state_dict = swin_adapt_position_encoding(state_dict, after=resolution_after, before=config['resolution_before']) else: state_dict['vit_model.pos_embed'] = resize_pos_embed(state_dict['vit_model.pos_embed'], self.vit_model.pos_embed, getattr(self.vit_model, 'num_tokens', 1), self.vit_model.patch_embed.grid_size) self.load_state_dict(state_dict, strict=False) meter_utils.set_metrics(self) self.current_tasks = list() def get_cls_feats(self, text_feats, image_feats): cls_feats_text = self.cross_modal_text_pooler(text_feats) if self.is_clip: cls_feats_image = self.cross_modal_image_pooler(image_feats) elif self.is_swin: avg_image_feats = self.avgpool(image_feats.transpose(1, 2)).view(image_feats.size(0), 1, -1) cls_feats_image = self.cross_modal_image_pooler(avg_image_feats) else: cls_feats_image = self.cross_modal_image_pooler(image_feats) return torch.cat([cls_feats_text, cls_feats_image], dim=-1) def get_uni_modal_features(self, batch, fusion_features=False, itc=False): img = batch["image"][0] text_ids = batch[f"text_ids"] text_labels = batch[f"text_labels"] text_masks = batch[f"text_masks"] text_embeds = self.text_transformer.embeddings(input_ids=text_ids) input_shape = text_masks.size() extend_text_masks = self.text_transformer.get_extended_attention_mask(text_masks, input_shape, self.device) text_embedss = [] split_index = len(self.text_transformer.encoder.layer) - self.hparams.config['num_layers'] index = 0 for layer in self.text_transformer.encoder.layer: text_embeds = layer(text_embeds, extend_text_masks)[0] index += 1 if index > split_index: text_embedss.append(text_embeds) text_embedss = torch.stack(text_embedss, dim=0) image_embedss = self.vit_model(img) image_embedss = image_embedss[len(image_embedss) - self.hparams.config['num_layers']:] if itc: unimodal_feats_text = F.normalize(self.itc_text_head(text_embedss[-1][:, 0, :]), dim=-1, p=2) unimodal_feats_image = F.normalize(self.itc_image_head(image_embedss[-1][:, 0, :]), dim=-1, p=2) if not fusion_features: ret = { 'unimodal_feats_text': unimodal_feats_text, 'unimodal_feats_image': unimodal_feats_image, } return ret # cross_modal transform text_embedss = self.cross_modal_text_transform(text_embedss) image_embedss = self.cross_modal_image_transform(image_embedss) if not itc: ret = { "extend_text_masks": extend_text_masks, "text_embedss": text_embedss, "image_embedss": image_embedss, "text_labels": text_labels, "text_ids": text_ids, "text_masks": text_masks, } else: if fusion_features: ret = { 'unimodal_feats_text': unimodal_feats_text, 'unimodal_feats_image': unimodal_feats_image, "extend_text_masks": extend_text_masks, "text_embedss": text_embedss, "image_embedss": image_embedss, "text_labels": text_labels, "text_ids": text_ids, "text_masks": text_masks, } return ret def infer_text( self, batch, mask_text=False, itc=False, ): do_mlm = "_mlm" if mask_text else "" text_ids = batch[f"text_ids{do_mlm}"] text_masks = batch[f"text_masks"] text_embeds = self.text_transformer.embeddings(input_ids=text_ids) input_shape = text_masks.size() extend_text_masks = self.text_transformer.get_extended_attention_mask(text_masks, input_shape, self.device) text_embedss = [] split_index = len(self.text_transformer.encoder.layer) - self.hparams.config['num_layers'] index = 0 for layer in self.text_transformer.encoder.layer: text_embeds = layer(text_embeds, extend_text_masks)[0] index += 1 if index > split_index: text_embedss.append(text_embeds) text_embedss = torch.stack(text_embedss, dim=0) if itc: unimodal_feats_text = F.normalize(self.itc_text_head(text_embedss[-1][:, 0, :]), dim=-1, p=2) text_embedss = self.cross_modal_text_transform(text_embedss) if itc: return text_embedss, extend_text_masks, unimodal_feats_text else: return text_embedss, extend_text_masks def infer_image( self, img, itc=False, ): image_embedss = self.vit_model(img) image_embedss = image_embedss[len(image_embedss) - self.hparams.config['num_layers']:] if itc: unimodal_feats_image = F.normalize(self.itc_image_head(image_embedss[-1][:, 0, :]), dim=-1, p=2) image_embedss = self.cross_modal_image_transform(image_embedss) if itc: return image_embedss, unimodal_feats_image else: return image_embedss def infer_fusion( self, image_embedss, text_embedss, extend_text_masks, image_token_type_idx=1, irtr_len_image=0, irtr_len_text=0, ): if irtr_len_image > 0: image_masks = torch.ones((irtr_len_image, image_embedss.size(1)), dtype=torch.long, device=self.device) else: image_masks = torch.ones((image_embedss[0].size(0), image_embedss[0].size(1)), dtype=torch.long, device=self.device) extend_image_masks = self.text_transformer.get_extended_attention_mask(image_masks, image_masks.size(), self.device) text_token_type_embeddings = self.token_type_embeddings(torch.zeros(1).long().to(self.device)).expand_as(text_embedss) image_token_type_embeddings = self.token_type_embeddings(torch.zeros(1).long().to(self.device).fill_(image_token_type_idx)).expand_as(image_embedss) text_embedss, image_embedss = ( text_embedss + text_token_type_embeddings, image_embedss + image_token_type_embeddings, ) # first layer if irtr_len_text > 0: _L, _D = text_embedss.size(1), text_embedss.size(2) x = self.cross_modal_text_layernorm(text_embedss[0]).unsqueeze(0).expand(irtr_len_text, _L, _D) else: x = self.cross_modal_text_layernorm(text_embedss[0]) if irtr_len_image > 0: _L, _D = image_embedss.size(1), image_embedss.size(2) y = self.cross_modal_image_layernorm(image_embedss[0]).unsqueeze(0).expand(irtr_len_image, _L, _D) else: y = self.cross_modal_image_layernorm(image_embedss[0]) x1 = self.cross_modal_text_layers[0](x, y, extend_text_masks, extend_image_masks)[0] y1 = self.cross_modal_image_layers[0](y, x, extend_image_masks, extend_text_masks)[0] # link tower fusion layer_index = 0 for x, y, text_layer, image_layer in zip(text_embedss[1:], image_embedss[1:], self.cross_modal_text_layers[1:], self.cross_modal_image_layers[1:]): text_link_tower = self.cross_modal_text_link_tower[layer_index] image_link_tower = self.cross_modal_image_link_tower[layer_index] if irtr_len_text > 0: x1_ = text_link_tower(x.unsqueeze(0).expand(irtr_len_text, _L, _D), x1) else: x1_ = text_link_tower(x, x1) if irtr_len_image > 0: y1_ = image_link_tower(y.unsqueeze(0).expand(irtr_len_image, _L, _D), y1) else: y1_ = image_link_tower(y, y1) x1 = text_layer(x1_, y1_, extend_text_masks, extend_image_masks)[0] y1 = image_layer(y1_, x1_, extend_image_masks, extend_text_masks)[0] layer_index += 1 text_feats, image_feats = x1, y1 cls_feats = self.get_cls_feats(text_feats, image_feats) ret = { "text_feats": text_feats, "image_feats": image_feats, "cls_feats": cls_feats, } return ret def infer( self, batch, mask_text=False, mask_image=False, image_token_type_idx=1, img=None, irtr_len_text=0, ): if img is None: if f"image_{image_token_type_idx - 1}" in batch: imgkey = f"image_{image_token_type_idx - 1}" else: imgkey = "image" img = batch[imgkey][0] do_mlm = "_mlm" if mask_text else "" text_ids = batch[f"text_ids{do_mlm}"] text_labels = batch[f"text_labels{do_mlm}"] text_masks = batch[f"text_masks"] text_embeds = self.text_transformer.embeddings(input_ids=text_ids) input_shape = text_masks.size() extend_text_masks = self.text_transformer.get_extended_attention_mask(text_masks, input_shape, self.device) split_index = len(self.text_transformer.encoder.layer) - self.hparams.config['num_layers'] + 1 for layer in self.text_transformer.encoder.layer[:split_index]: text_embeds = layer(text_embeds, extend_text_masks)[0] if self.is_clip: image_embeds = self.vit_model.visual.forward_pre(img.type(self.vit_model.dtype)) for block in self.vit_model.visual.transformer.resblocks[:split_index]: image_embeds = block(image_embeds) image_embeds_ = self.vit_model.visual.forward_post(image_embeds.type(self.vit_model.dtype)) else: image_embeds = self.vit_model.forward_pre(img) for block in self.vit_model.blocks[:split_index]: image_embeds = block(image_embeds) image_embeds_ = self.vit_model.forward_post(image_embeds) if self.hparams.config["num_layers"] == 0: cls_feats = self.get_cls_feats(text_embeds, image_embeds_) ret = { "text_feats": text_embeds, "image_feats": image_embeds_, "cls_feats": cls_feats, "text_labels": text_labels, "text_ids": text_ids, "text_masks": text_masks, } return ret # first layer x = self.cross_modal_text_transform(text_embeds) text_token_type_embeddings = self.token_type_embeddings(torch.zeros(1).long().to(self.device)).expand_as(x) x = self.cross_modal_text_layernorm(x + text_token_type_embeddings) image_embeds_ = self.cross_modal_image_transform(image_embeds_) image_token_type_embeddings = self.token_type_embeddings(torch.zeros(1).long().to(self.device).fill_(image_token_type_idx)).expand_as(image_embeds_) image_embeds_ = image_embeds_ + image_token_type_embeddings y = self.cross_modal_image_layernorm(image_embeds_) if irtr_len_text > 0: _bs, _L, _D = image_embeds_.size() y = y.unsqueeze(1).expand(_bs, irtr_len_text, _L, _D).contiguous().view(-1, _L, _D) image_masks = torch.ones((y.size(0), y.size(1)), dtype=torch.long, device=self.device) extend_image_masks = self.text_transformer.get_extended_attention_mask(image_masks, image_masks.size(), self.device) x1 = self.cross_modal_text_layers[0](x, y, extend_text_masks, extend_image_masks)[0] y1 = self.cross_modal_image_layers[0](y, x, extend_image_masks, extend_text_masks)[0] link_layer_index = 0 # link tower fusion for i in range(split_index, len(self.text_transformer.encoder.layer)): text_embeds = self.text_transformer.encoder.layer[i](text_embeds, extend_text_masks)[0] if self.is_clip: image_embeds = self.vit_model.visual.transformer.resblocks[i](image_embeds).type(self.vit_model.dtype) image_embeds_ = self.cross_modal_image_transform(self.vit_model.visual.forward_post(image_embeds)) + image_token_type_embeddings else: image_embeds = self.vit_model.blocks[i](image_embeds) image_embeds_ = self.cross_modal_image_transform(self.vit_model.forward_post(image_embeds)) + image_token_type_embeddings text_link_tower = self.cross_modal_text_link_tower[link_layer_index] image_link_tower = self.cross_modal_image_link_tower[link_layer_index] x1_ = text_link_tower(self.cross_modal_text_transform(text_embeds) + text_token_type_embeddings, x1) if irtr_len_text > 0: y1_ = image_link_tower(image_embeds_.unsqueeze(1).expand(_bs, irtr_len_text, _L, _D).contiguous().view(-1, _L, _D), y1) else: y1_ = image_link_tower(image_embeds_, y1) x1 = self.cross_modal_text_layers[link_layer_index + 1](x1_, y1_, extend_text_masks, extend_image_masks)[0] y1 = self.cross_modal_image_layers[link_layer_index + 1](y1_, x1_, extend_image_masks, extend_text_masks)[0] link_layer_index += 1 text_feats, image_feats = x1, y1 cls_feats = self.get_cls_feats(text_feats, image_feats) ret = { "text_feats": text_feats, "image_feats": image_feats, "cls_feats": cls_feats, "text_labels": text_labels, "text_ids": text_ids, "text_masks": text_masks, } return ret def forward(self, batch, split): ret = dict() if len(self.current_tasks) == 0: ret.update(self.infer(batch)) return ret # Masked Language Modeling if "mlm" in self.current_tasks: ret.update(objectives.compute_mlm(self, batch, split)) # Image Text Matching if "itm" in self.current_tasks: ret.update(objectives.compute_itm(self, batch, split)) if "itc" in self.current_tasks: ret.update(objectives.compute_itc(self, batch, split)) if "itm_itc" in self.current_tasks: ret.update(objectives.compute_itm_itc(self, batch, split, pretrain=True)) if "irtr_itm_itc" in self.current_tasks: ret.update(objectives.compute_itm_itc(self, batch, split, pretrain=False)) # Visual Question Answering if "vqa" in self.current_tasks: ret.update(objectives.compute_vqa(self, batch, split)) # Natural Language for Visual Reasoning 2 if "nlvr2" in self.current_tasks: ret.update(objectives.compute_nlvr2(self, batch, split)) # SNLI Visual Entailment if "snli" in self.current_tasks: ret.update(objectives.compute_snli(self, batch, split)) # Image Retrieval and Text Retrieval if "irtr" in self.current_tasks: ret.update(objectives.compute_irtr(self, batch, split)) return ret def training_step(self, batch, batch_idx): meter_utils.set_task(self) output = self(batch, 'train') total_loss = sum([v for k, v in output.items() if "loss" in k]) return total_loss def training_epoch_end(self, outs): meter_utils.epoch_wrapup(self, 'train') def validation_step(self, batch, batch_idx): meter_utils.set_task(self) output = self(batch, 'val') def validation_epoch_end(self, outs): if self.jump_val_first_for_irtr_itm_irc and "irtr_itm_itc" in self.hparams.config["group_name"]: old_get_recall_metric = self.hparams.config["get_recall_metric"] self.hparams.config["get_recall_metric"] = False meter_utils.epoch_wrapup(self, 'val') self.hparams.config["get_recall_metric"] = old_get_recall_metric self.jump_val_first_for_irtr_itm_irc = False else: meter_utils.epoch_wrapup(self, 'val') def test_step(self, batch, batch_idx): meter_utils.set_task(self) output = self(batch, 'test') ret = dict() if self.hparams.config["loss_names"]["vqa"] > 0: ret.update(objectives.vqa_test_step(self, batch, output)) return ret def test_epoch_end(self, outs): model_name = self.hparams.config["load_path"].split("/")[-2] checkpoint_name = self.hparams.config["load_path"].split("/")[-1][:-5] if self.hparams.config["loss_names"]["vqa"] > 0: objectives.vqa_test_wrapup(outs, f"{model_name}_{checkpoint_name}", self.hparams.config["log_dir"]) meter_utils.epoch_wrapup(self, 'test') def configure_optimizers(self): # Optimizer: AdamW; Scheduler: linear_schedule_with_warmup # Parameters for cross-modal and each task head will be multiply by lr_mult_cross_modal or lr_mult_head # New task heads need to enroll here. return meter_utils.set_schedule(self)
BridgeTower/src/modules/bt_module.py/0
{ "file_path": "BridgeTower/src/modules/bt_module.py", "repo_id": "BridgeTower", "token_count": 14215 }
159
import re contractions = { "aint": "ain't", "arent": "aren't", "cant": "can't", "couldve": "could've", "couldnt": "couldn't", "couldn'tve": "couldn't've", "couldnt've": "couldn't've", "didnt": "didn't", "doesnt": "doesn't", "dont": "don't", "hadnt": "hadn't", "hadnt've": "hadn't've", "hadn'tve": "hadn't've", "hasnt": "hasn't", "havent": "haven't", "hed": "he'd", "hed've": "he'd've", "he'dve": "he'd've", "hes": "he's", "howd": "how'd", "howll": "how'll", "hows": "how's", "Id've": "I'd've", "I'dve": "I'd've", "Im": "I'm", "Ive": "I've", "isnt": "isn't", "itd": "it'd", "itd've": "it'd've", "it'dve": "it'd've", "itll": "it'll", "let's": "let's", "maam": "ma'am", "mightnt": "mightn't", "mightnt've": "mightn't've", "mightn'tve": "mightn't've", "mightve": "might've", "mustnt": "mustn't", "mustve": "must've", "neednt": "needn't", "notve": "not've", "oclock": "o'clock", "oughtnt": "oughtn't", "ow's'at": "'ow's'at", "'ows'at": "'ow's'at", "'ow'sat": "'ow's'at", "shant": "shan't", "shed've": "she'd've", "she'dve": "she'd've", "she's": "she's", "shouldve": "should've", "shouldnt": "shouldn't", "shouldnt've": "shouldn't've", "shouldn'tve": "shouldn't've", "somebody'd": "somebodyd", "somebodyd've": "somebody'd've", "somebody'dve": "somebody'd've", "somebodyll": "somebody'll", "somebodys": "somebody's", "someoned": "someone'd", "someoned've": "someone'd've", "someone'dve": "someone'd've", "someonell": "someone'll", "someones": "someone's", "somethingd": "something'd", "somethingd've": "something'd've", "something'dve": "something'd've", "somethingll": "something'll", "thats": "that's", "thered": "there'd", "thered've": "there'd've", "there'dve": "there'd've", "therere": "there're", "theres": "there's", "theyd": "they'd", "theyd've": "they'd've", "they'dve": "they'd've", "theyll": "they'll", "theyre": "they're", "theyve": "they've", "twas": "'twas", "wasnt": "wasn't", "wed've": "we'd've", "we'dve": "we'd've", "weve": "we've", "werent": "weren't", "whatll": "what'll", "whatre": "what're", "whats": "what's", "whatve": "what've", "whens": "when's", "whered": "where'd", "wheres": "where's", "whereve": "where've", "whod": "who'd", "whod've": "who'd've", "who'dve": "who'd've", "wholl": "who'll", "whos": "who's", "whove": "who've", "whyll": "why'll", "whyre": "why're", "whys": "why's", "wont": "won't", "wouldve": "would've", "wouldnt": "wouldn't", "wouldnt've": "wouldn't've", "wouldn'tve": "wouldn't've", "yall": "y'all", "yall'll": "y'all'll", "y'allll": "y'all'll", "yall'd've": "y'all'd've", "y'alld've": "y'all'd've", "y'all'dve": "y'all'd've", "youd": "you'd", "youd've": "you'd've", "you'dve": "you'd've", "youll": "you'll", "youre": "you're", "youve": "you've", } manual_map = { "none": "0", "zero": "0", "one": "1", "two": "2", "three": "3", "four": "4", "five": "5", "six": "6", "seven": "7", "eight": "8", "nine": "9", "ten": "10", } articles = ["a", "an", "the"] period_strip = re.compile("(?!<=\d)(\.)(?!\d)") comma_strip = re.compile("(\d)(\,)(\d)") punct = [ ";", r"/", "[", "]", '"', "{", "}", "(", ")", "=", "+", "\\", "_", "-", ">", "<", "@", "`", ",", "?", "!", ] def normalize_word(token): _token = token for p in punct: if (p + " " in token or " " + p in token) or ( re.search(comma_strip, token) != None ): _token = _token.replace(p, "") else: _token = _token.replace(p, " ") token = period_strip.sub("", _token, re.UNICODE) _token = [] temp = token.lower().split() for word in temp: word = manual_map.setdefault(word, word) if word not in articles: _token.append(word) for i, word in enumerate(_token): if word in contractions: _token[i] = contractions[word] token = " ".join(_token) token = token.replace(",", "") return token
BridgeTower/src/utils/glossary.py/0
{ "file_path": "BridgeTower/src/utils/glossary.py", "repo_id": "BridgeTower", "token_count": 2254 }
160
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch.utils.data as data from PIL import Image import os IMG_EXTENSIONS = [ ".jpg", ".JPG", ".jpeg", ".JPEG", ".png", ".PNG", ".ppm", ".PPM", ".bmp", ".BMP", ".tiff", ".webp", ] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def make_dataset_rec(dir, images): assert os.path.isdir(dir), "%s is not a valid directory" % dir for root, dnames, fnames in sorted(os.walk(dir, followlinks=True)): for fname in fnames: if is_image_file(fname): path = os.path.join(root, fname) images.append(path) def make_dataset(dir, recursive=False, read_cache=False, write_cache=False): images = [] if read_cache: possible_filelist = os.path.join(dir, "files.list") if os.path.isfile(possible_filelist): with open(possible_filelist, "r") as f: images = f.read().splitlines() return images if recursive: make_dataset_rec(dir, images) else: assert os.path.isdir(dir) or os.path.islink(dir), "%s is not a valid directory" % dir for root, dnames, fnames in sorted(os.walk(dir)): for fname in fnames: if is_image_file(fname): path = os.path.join(root, fname) images.append(path) if write_cache: filelist_cache = os.path.join(dir, "files.list") with open(filelist_cache, "w") as f: for path in images: f.write("%s\n" % path) print("wrote filelist cache at %s" % filelist_cache) return images def default_loader(path): return Image.open(path).convert("RGB") class ImageFolder(data.Dataset): def __init__(self, root, transform=None, return_paths=False, loader=default_loader): imgs = make_dataset(root) if len(imgs) == 0: raise ( RuntimeError( "Found 0 images in: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS) ) ) self.root = root self.imgs = imgs self.transform = transform self.return_paths = return_paths self.loader = loader def __getitem__(self, index): path = self.imgs[index] img = self.loader(path) if self.transform is not None: img = self.transform(img) if self.return_paths: return img, path else: return img def __len__(self): return len(self.imgs)
Bringing-Old-Photos-Back-to-Life/Face_Enhancement/data/image_folder.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Face_Enhancement/data/image_folder.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 1309 }
161
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os import time import numpy as np # Helper class that keeps track of training iterations class IterationCounter: def __init__(self, opt, dataset_size): self.opt = opt self.dataset_size = dataset_size self.first_epoch = 1 self.total_epochs = opt.niter + opt.niter_decay self.epoch_iter = 0 # iter number within each epoch self.iter_record_path = os.path.join(self.opt.checkpoints_dir, self.opt.name, "iter.txt") if opt.isTrain and opt.continue_train: try: self.first_epoch, self.epoch_iter = np.loadtxt( self.iter_record_path, delimiter=",", dtype=int ) print("Resuming from epoch %d at iteration %d" % (self.first_epoch, self.epoch_iter)) except: print( "Could not load iteration record at %s. Starting from beginning." % self.iter_record_path ) self.total_steps_so_far = (self.first_epoch - 1) * dataset_size + self.epoch_iter # return the iterator of epochs for the training def training_epochs(self): return range(self.first_epoch, self.total_epochs + 1) def record_epoch_start(self, epoch): self.epoch_start_time = time.time() self.epoch_iter = 0 self.last_iter_time = time.time() self.current_epoch = epoch def record_one_iteration(self): current_time = time.time() # the last remaining batch is dropped (see data/__init__.py), # so we can assume batch size is always opt.batchSize self.time_per_iter = (current_time - self.last_iter_time) / self.opt.batchSize self.last_iter_time = current_time self.total_steps_so_far += self.opt.batchSize self.epoch_iter += self.opt.batchSize def record_epoch_end(self): current_time = time.time() self.time_per_epoch = current_time - self.epoch_start_time print( "End of epoch %d / %d \t Time Taken: %d sec" % (self.current_epoch, self.total_epochs, self.time_per_epoch) ) if self.current_epoch % self.opt.save_epoch_freq == 0: np.savetxt(self.iter_record_path, (self.current_epoch + 1, 0), delimiter=",", fmt="%d") print("Saved current iteration count at %s." % self.iter_record_path) def record_current_iter(self): np.savetxt(self.iter_record_path, (self.current_epoch, self.epoch_iter), delimiter=",", fmt="%d") print("Saved current iteration count at %s." % self.iter_record_path) def needs_saving(self): return (self.total_steps_so_far % self.opt.save_latest_freq) < self.opt.batchSize def needs_printing(self): return (self.total_steps_so_far % self.opt.print_freq) < self.opt.batchSize def needs_displaying(self): return (self.total_steps_so_far % self.opt.display_freq) < self.opt.batchSize
Bringing-Old-Photos-Back-to-Life/Face_Enhancement/util/iter_counter.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Face_Enhancement/util/iter_counter.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 1311 }
162
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn as nn import torch.nn.functional as F from detection_models.sync_batchnorm import DataParallelWithCallback from detection_models.antialiasing import Downsample class UNet(nn.Module): def __init__( self, in_channels=3, out_channels=3, depth=5, conv_num=2, wf=6, padding=True, batch_norm=True, up_mode="upsample", with_tanh=False, sync_bn=True, antialiasing=True, ): """ Implementation of U-Net: Convolutional Networks for Biomedical Image Segmentation (Ronneberger et al., 2015) https://arxiv.org/abs/1505.04597 Using the default arguments will yield the exact version used in the original paper Args: in_channels (int): number of input channels out_channels (int): number of output channels depth (int): depth of the network wf (int): number of filters in the first layer is 2**wf padding (bool): if True, apply padding such that the input shape is the same as the output. This may introduce artifacts batch_norm (bool): Use BatchNorm after layers with an activation function up_mode (str): one of 'upconv' or 'upsample'. 'upconv' will use transposed convolutions for learned upsampling. 'upsample' will use bilinear upsampling. """ super().__init__() assert up_mode in ("upconv", "upsample") self.padding = padding self.depth = depth - 1 prev_channels = in_channels self.first = nn.Sequential( *[nn.ReflectionPad2d(3), nn.Conv2d(in_channels, 2 ** wf, kernel_size=7), nn.LeakyReLU(0.2, True)] ) prev_channels = 2 ** wf self.down_path = nn.ModuleList() self.down_sample = nn.ModuleList() for i in range(depth): if antialiasing and depth > 0: self.down_sample.append( nn.Sequential( *[ nn.ReflectionPad2d(1), nn.Conv2d(prev_channels, prev_channels, kernel_size=3, stride=1, padding=0), nn.BatchNorm2d(prev_channels), nn.LeakyReLU(0.2, True), Downsample(channels=prev_channels, stride=2), ] ) ) else: self.down_sample.append( nn.Sequential( *[ nn.ReflectionPad2d(1), nn.Conv2d(prev_channels, prev_channels, kernel_size=4, stride=2, padding=0), nn.BatchNorm2d(prev_channels), nn.LeakyReLU(0.2, True), ] ) ) self.down_path.append( UNetConvBlock(conv_num, prev_channels, 2 ** (wf + i + 1), padding, batch_norm) ) prev_channels = 2 ** (wf + i + 1) self.up_path = nn.ModuleList() for i in reversed(range(depth)): self.up_path.append( UNetUpBlock(conv_num, prev_channels, 2 ** (wf + i), up_mode, padding, batch_norm) ) prev_channels = 2 ** (wf + i) if with_tanh: self.last = nn.Sequential( *[nn.ReflectionPad2d(1), nn.Conv2d(prev_channels, out_channels, kernel_size=3), nn.Tanh()] ) else: self.last = nn.Sequential( *[nn.ReflectionPad2d(1), nn.Conv2d(prev_channels, out_channels, kernel_size=3)] ) if sync_bn: self = DataParallelWithCallback(self) def forward(self, x): x = self.first(x) blocks = [] for i, down_block in enumerate(self.down_path): blocks.append(x) x = self.down_sample[i](x) x = down_block(x) for i, up in enumerate(self.up_path): x = up(x, blocks[-i - 1]) return self.last(x) class UNetConvBlock(nn.Module): def __init__(self, conv_num, in_size, out_size, padding, batch_norm): super(UNetConvBlock, self).__init__() block = [] for _ in range(conv_num): block.append(nn.ReflectionPad2d(padding=int(padding))) block.append(nn.Conv2d(in_size, out_size, kernel_size=3, padding=0)) if batch_norm: block.append(nn.BatchNorm2d(out_size)) block.append(nn.LeakyReLU(0.2, True)) in_size = out_size self.block = nn.Sequential(*block) def forward(self, x): out = self.block(x) return out class UNetUpBlock(nn.Module): def __init__(self, conv_num, in_size, out_size, up_mode, padding, batch_norm): super(UNetUpBlock, self).__init__() if up_mode == "upconv": self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2) elif up_mode == "upsample": self.up = nn.Sequential( nn.Upsample(mode="bilinear", scale_factor=2, align_corners=False), nn.ReflectionPad2d(1), nn.Conv2d(in_size, out_size, kernel_size=3, padding=0), ) self.conv_block = UNetConvBlock(conv_num, in_size, out_size, padding, batch_norm) def center_crop(self, layer, target_size): _, _, layer_height, layer_width = layer.size() diff_y = (layer_height - target_size[0]) // 2 diff_x = (layer_width - target_size[1]) // 2 return layer[:, :, diff_y : (diff_y + target_size[0]), diff_x : (diff_x + target_size[1])] def forward(self, x, bridge): up = self.up(x) crop1 = self.center_crop(bridge, up.shape[2:]) out = torch.cat([up, crop1], 1) out = self.conv_block(out) return out class UnetGenerator(nn.Module): """Create a Unet-based generator""" def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_type="BN", use_dropout=False): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super().__init__() if norm_type == "BN": norm_layer = nn.BatchNorm2d elif norm_type == "IN": norm_layer = nn.InstanceNorm2d else: raise NameError("Unknown norm layer") # construct unet structure unet_block = UnetSkipConnectionBlock( ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True ) # add the innermost layer for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock( ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout, ) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock( ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer ) unet_block = UnetSkipConnectionBlock( ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer ) unet_block = UnetSkipConnectionBlock( ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer ) self.model = UnetSkipConnectionBlock( output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer ) # add the outermost layer def forward(self, input): return self.model(input) class UnetSkipConnectionBlock(nn.Module): """Defines the Unet submodule with skip connection. -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__( self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False, ): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer user_dropout (bool) -- if use dropout layers. """ super().__init__() self.outermost = outermost use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.LeakyReLU(0.2, True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d( inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias ) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1) # ============================================ # Network testing # ============================================ if __name__ == "__main__": from torchsummary import summary device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = UNet_two_decoders( in_channels=3, out_channels1=3, out_channels2=1, depth=4, conv_num=1, wf=6, padding=True, batch_norm=True, up_mode="upsample", with_tanh=False, ) model.to(device) model_pix2pix = UnetGenerator(3, 3, 5, ngf=64, norm_type="BN", use_dropout=False) model_pix2pix.to(device) print("customized unet:") summary(model, (3, 256, 256)) print("cyclegan unet:") summary(model_pix2pix, (3, 256, 256)) x = torch.zeros(1, 3, 256, 256).requires_grad_(True).cuda() g = make_dot(model(x)) g.render("models/Digraph.gv", view=False)
Bringing-Old-Photos-Back-to-Life/Global/detection_models/networks.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Global/detection_models/networks.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 5734 }
163
# TEXT ENCODER CONFIG text_model: 'gpt2' text_len: 77 transformer_embed_dim: 768 freeze_text_encoder_weights: True # AUDIO ENCODER CONFIG audioenc_name: 'HTSAT' out_emb: 768 sampling_rate: 44100 duration: 7 fmin: 50 fmax: 8000 #14000 n_fft: 1024 # 1028 hop_size: 320 mel_bins: 64 window_size: 1024 # PROJECTION SPACE CONFIG d_proj: 1024 temperature: 0.003 # TRAINING AND EVALUATION CONFIG num_classes: 527 batch_size: 1024 demo: False
CLAP/msclap/configs/config_2023.yml/0
{ "file_path": "CLAP/msclap/configs/config_2023.yml", "repo_id": "CLAP", "token_count": 180 }
164
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # fairseq documentation build configuration file, created by # sphinx-quickstart on Fri Aug 17 21:45:30 2018. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. import os import sys from fairseq import __version__ # source code directory, relative to this file, for sphinx-autobuild sys.path.insert(0, os.path.abspath("..")) source_suffix = [".rst"] # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.intersphinx", "sphinx.ext.viewcode", "sphinx.ext.napoleon", "sphinxarg.ext", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The master toctree document. master_doc = "index" # General information about the project. project = "fairseq" copyright = "Facebook AI Research (FAIR)" author = "Facebook AI Research (FAIR)" github_doc_root = "https://github.com/pytorch/fairseq/tree/master/docs/" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = __version__ # The full version, including alpha/beta/rc tags. release = __version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" highlight_language = "python" # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] html_context = { "css_files": [ "_static/theme_overrides.css", # override wide tables in RTD theme ], } # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars # html_sidebars = { # '**': [ # 'about.html', # 'navigation.html', # 'relations.html', # needs 'show_related': True theme option to display # 'searchbox.html', # 'donate.html', # ] # } # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { "numpy": ("http://docs.scipy.org/doc/numpy/", None), "python": ("https://docs.python.org/", None), "torch": ("https://pytorch.org/docs/master/", None), }
COCO-LM/fairseq/docs/conf.py/0
{ "file_path": "COCO-LM/fairseq/docs/conf.py", "repo_id": "COCO-LM", "token_count": 1307 }
165
.. role:: hidden :class: hidden-section .. module:: fairseq.tasks .. _Tasks: Tasks ===== Tasks store dictionaries and provide helpers for loading/iterating over Datasets, initializing the Model/Criterion and calculating the loss. Tasks can be selected via the ``--task`` command-line argument. Once selected, a task may expose additional command-line arguments for further configuration. Example usage:: # setup the task (e.g., load dictionaries) task = fairseq.tasks.setup_task(args) # build model and criterion model = task.build_model(args) criterion = task.build_criterion(args) # load datasets task.load_dataset('train') task.load_dataset('valid') # iterate over mini-batches of data batch_itr = task.get_batch_iterator( task.dataset('train'), max_tokens=4096, ) for batch in batch_itr: # compute the loss loss, sample_size, logging_output = task.get_loss( model, criterion, batch, ) loss.backward() Translation ----------- .. autoclass:: fairseq.tasks.translation.TranslationTask .. _language modeling: Language Modeling ----------------- .. autoclass:: fairseq.tasks.language_modeling.LanguageModelingTask Adding new tasks ---------------- .. autofunction:: fairseq.tasks.register_task .. autoclass:: fairseq.tasks.FairseqTask :members: :undoc-members:
COCO-LM/fairseq/docs/tasks.rst/0
{ "file_path": "COCO-LM/fairseq/docs/tasks.rst", "repo_id": "COCO-LM", "token_count": 483 }
166
# Cross-lingual Retrieval for Iterative Self-Supervised Training https://arxiv.org/pdf/2006.09526.pdf ## Introduction CRISS is a multilingual sequence-to-sequnce pretraining method where mining and training processes are applied iteratively, improving cross-lingual alignment and translation ability at the same time. ## Requirements: * faiss: https://github.com/facebookresearch/faiss * mosesdecoder: https://github.com/moses-smt/mosesdecoder * flores: https://github.com/facebookresearch/flores * LASER: https://github.com/facebookresearch/LASER ## Unsupervised Machine Translation ##### 1. Download and decompress CRISS checkpoints ``` cd examples/criss wget https://dl.fbaipublicfiles.com/criss/criss_3rd_checkpoints.tar.gz tar -xf criss_checkpoints.tar.gz ``` ##### 2. Download and preprocess Flores test dataset Make sure to run all scripts from examples/criss directory ``` bash download_and_preprocess_flores_test.sh ``` ##### 3. Run Evaluation on Sinhala-English ``` bash unsupervised_mt/eval.sh ``` ## Sentence Retrieval ##### 1. Download and preprocess Tatoeba dataset ``` bash download_and_preprocess_tatoeba.sh ``` ##### 2. Run Sentence Retrieval on Tatoeba Kazakh-English ``` bash sentence_retrieval/sentence_retrieval_tatoeba.sh ``` ## Mining ##### 1. Install faiss Follow instructions on https://github.com/facebookresearch/faiss/blob/master/INSTALL.md ##### 2. Mine pseudo-parallel data between Kazakh and English ``` bash mining/mine_example.sh ``` ## Citation ```bibtex @article{tran2020cross, title={Cross-lingual retrieval for iterative self-supervised training}, author={Tran, Chau and Tang, Yuqing and Li, Xian and Gu, Jiatao}, journal={arXiv preprint arXiv:2006.09526}, year={2020} } ```
COCO-LM/fairseq/examples/criss/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/criss/README.md", "repo_id": "COCO-LM", "token_count": 561 }
167
# GottBERT: a pure German language model ## Introduction [GottBERT](http://arxiv.org/abs/2012.02110) is a pretrained language model trained on 145GB of German text based on RoBERTa. ## Example usage ### fairseq ##### Load GottBERT from torch.hub (PyTorch >= 1.1): ```python import torch gottbert = torch.hub.load('pytorch/fairseq', 'gottbert-base') gottbert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Load GottBERT (for PyTorch 1.0 or custom models): ```python # Download gottbert model wget https://dl.gottbert.de/fairseq/models/gottbert-base.tar.gz tar -xzvf gottbert.tar.gz # Load the model in fairseq from fairseq.models.roberta import GottbertModel gottbert = GottbertModel.from_pretrained('/path/to/gottbert') gottbert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks: ```python masked_line = 'Gott ist <mask> ! :)' gottbert.fill_mask(masked_line, topk=3) # [('Gott ist gut ! :)', 0.3642110526561737, ' gut'), # ('Gott ist überall ! :)', 0.06009674072265625, ' überall'), # ('Gott ist großartig ! :)', 0.0370681993663311, ' großartig')] ``` ##### Extract features from GottBERT ```python # Extract the last layer's features line = "Der erste Schluck aus dem Becher der Naturwissenschaft macht atheistisch , aber auf dem Grunde des Bechers wartet Gott !" tokens = gottbert.encode(line) last_layer_features = gottbert.extract_features(tokens) assert last_layer_features.size() == torch.Size([1, 27, 768]) # Extract all layer's features (layer 0 is the embedding layer) all_layers = gottbert.extract_features(tokens, return_all_hiddens=True) assert len(all_layers) == 13 assert torch.all(all_layers[-1] == last_layer_features) ``` ## Citation If you use our work, please cite: ```bibtex @misc{scheible2020gottbert, title={GottBERT: a pure German Language Model}, author={Raphael Scheible and Fabian Thomczyk and Patric Tippmann and Victor Jaravine and Martin Boeker}, year={2020}, eprint={2012.02110}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
COCO-LM/fairseq/examples/gottbert/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/gottbert/README.md", "repo_id": "COCO-LM", "token_count": 785 }
168
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from torch.nn.modules.loss import _Loss class LatentLayersKLLoss(_Loss): def __init__(self, args): super().__init__() self.args = args def forward(self, layer_samples, lang_idx, update_num, sample_size): prior = self.args.prior samples = layer_samples[lang_idx] eps = 1e-7 if prior == "uniform": # uniform prior kl_loss = (samples * (torch.log(samples + eps) - math.log(0.5))).sum(-1) elif prior == "agged_posterior": # aggregated posterior y_t = torch.stack([x.detach() for x in layer_samples], dim=0) agged_q = torch.sum(y_t, dim=0) row_norm = agged_q.sum(-1) normed_agg_q = agged_q / row_norm kl_loss = ( samples * (torch.log(samples + eps) - torch.log(normed_agg_q + eps)) ).sum(-1) else: raise NotImplementedError("The specified prior is not implemented.") # normalized by number of layers kl_loss /= layer_samples[0].size()[0] kl_weight = min( self.args.sparsity_weight, (update_num - self.args.soft_update) * self.args.sparsity_weight / self.args.anneal_updates, ) kl_loss *= kl_weight * sample_size return kl_loss class LatentLayersSparsityLoss(_Loss): def __init__(self, args): super().__init__() self.args = args def is_valid(self, update_num): if self.args.target_layers <= 0: return False return update_num > (self.args.soft_update + self.args.anneal_updates) def forward(self, layer_samples_list, update_num, sample_size): batch_loss = 0 share_loss = 0 global_sparsity_loss = 0 layer_samples = torch.stack(layer_samples_list, dim=0) if ( self.args.target_layers > 0 or self.args.share_weight > 0 ) and update_num > (self.args.soft_update + self.args.anneal_updates): # anneal sparsity weight if update_num < (self.args.anneal_updates + self.args.soft_update): weight_anneal = 0 elif update_num < (2 * self.args.anneal_updates + self.args.soft_update): weight_anneal = ( (update_num - self.args.soft_update - self.args.anneal_updates) * self.args.share_weight / self.args.anneal_updates ) else: weight_anneal = 1 # compute ratio among languages layer_utilization = torch.sum(layer_samples, dim=0) layer_utilization /= layer_samples.size()[0] if self.args.share_weight > 0: # encouraging sharing across languages share_loss = sum( -1.0 * v * math.log(v) for v in layer_utilization if v > 0 ) batch_loss += ( weight_anneal * self.args.share_weight * sample_size * share_loss ) if self.args.target_layers > 0: # computed expected number of layers selected expeted_layers = sum(layer_utilization) # compute l2 loss wrt target number of layers global_sparsity_loss = (expeted_layers - self.args.target_layers) ** 2 batch_loss += ( weight_anneal * self.args.share_weight * sample_size * global_sparsity_loss ) return batch_loss
COCO-LM/fairseq/examples/latent_depth/latent_depth_src/loss/latent_depth.py/0
{ "file_path": "COCO-LM/fairseq/examples/latent_depth/latent_depth_src/loss/latent_depth.py", "repo_id": "COCO-LM", "token_count": 1908 }
169
# Beyond English-Centric Multilingual Machine Translation ## Introduction In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively with the best single systems of WMT. If you are new to using fairseq, read the following walkthrough. Otherwise, skip to the sections below. 0. **Generation Data** To download the generation data, follow the below commands. Note that all datasets need to be detokenized *before* applying SPM in the data preprocessing step. If you use these evaluation datasets, please cite their associated papers. ```bash # WMT - use sacrebleu, example here: sacrebleu -t wmt14 -l fr-en --echo src > wmt.test.fr-en.fr sacrebleu -t wmt14 -l fr-en --echo ref > wmt.test.fr-en.en # WAT wget http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/wat2020.my-en.zip unzip wat2020.my-en.zip # FLORES # download from: https://github.com/facebookresearch/flores # TED - need to detokenize with Moses! # from: https://github.com/neulab/word-embeddings-for-nmt wget http://phontron.com/data/ted_talks.tar.gz # Autshumato # request to download: https://repo.sadilar.org/handle/20.500.12185/397 # Tatoeba Challenge # available here: https://github.com/Helsinki-NLP/Tatoeba-Challenge ``` 1. **Training Data** To produce the training data, we use a combination of [CCMatrix](https://arxiv.org/abs/1911.04944) and [CCAligned](https://arxiv.org/abs/1911.06154). Check out the instructions [here](https://github.com/facebookresearch/LASER/tree/master/tasks/CCMatrix) to download the raw data. 2. **Preprocess Data** After downloading raw data, you will need to postprocess the data, then apply SPM, then binarize. Note that it is very important you run the postprocessing script, because this removes any instance of the evaluation data in the mined training data. ```bash # preprocess data # remove sentences with more than 50% punctuation python /path/to/fairseq/examples/m2m_100/process_data/remove_too_much_punc.py # deduplicate training data paste /path/to/datadir/train.$src /path/to/datadir/train.$tgt | awk '!x[$0]++' > /path/to/datadir/train.dedup echo "keeping $(wc -l /path/to/datadir/train.dedup) bitext out of $(wc -l /path/to/datadir/train.$src)" cut -f1 /path/to/datadir/train.dedup > /path/to/datadir/train.$src cut -f2 /path/to/datadir/train.dedup > /path/to/datadir/train.$tgt # remove all instances of evaluation data from the training data python /path/to/fairseq/examples/m2m_100/process_data/dedup_data.py # frequency cleaning wget https://dl.fbaipublicfiles.com/m2m_100/histograms.tar.gz tar -xvzf histograms.tar.gz python /path/to/fairseq/examples/m2m_100/process_data/clean_histogram.py --src $src --tgt $tgt --src-file /path/to/source/file --tgt-file /path/to/output/file --src-output-file source_output.$src --tgt-output-file target_output.$tgt --histograms /path/to/histograms # apply SPM wget https://dl.fbaipublicfiles.com/m2m_100/spm.128k.model python /path/to/fairseq/scripts/spm_encode.py \ --model spm.128k.model \ --output_format=piece \ --inputs=/path/to/input/file/here \ --outputs=/path/to/output/file/here # length ratio cleaning perl mosesdecoder/scripts/training/clean-corpus-n.perl --ratio 3 /path/to/training/data/train.spm.$src-$tgt $src $tgt /path/to/output/directory/train.spm.$src-$tgt 1 250 # binarize data wget https://dl.fbaipublicfiles.com/m2m_100/data_dict.128k.txt fairseq-preprocess \ --source-lang $src --target-lang $tgt \ --testpref spm.$src.$tgt \ --thresholdsrc 0 --thresholdtgt 0 \ --destdir data_bin \ --srcdict data_dict.128k.txt --tgtdict data_dict.128k.txt ``` 3. **Training Scripts** To reproduce the training of our models, we train with fairseq-py's multilingual translation [task](https://github.com/pytorch/fairseq/tree/master/examples/multilingual). If you are interested in model parallel training, also check out [fairscale](https://github.com/facebookresearch/fairscale). 4. **Generation** To generate from our models, follow the the commands in the generation section below. If you use any of the resources listed here, please cite: ```bibtex @article{fan2020beyond, title={Beyond English-Centric Multilingual Machine Translation}, author={Fan, Angela and Bhosale, Shruti and Schwenk, Holger and Ma, Zhiyi and El-Kishky, Ahmed and Goyal, Siddharth and Baines, Mandeep and Celebi, Onur and Wenzek, Guillaume and Chaudhary, Vishrav and Goyal, Naman and Birch, Tom and Liptchinsky, Vitaliy and Edunov, Sergey and Grave, Edouard and Auli, Michael and Joulin, Armand}, journal={arXiv preprint}, year={2020} } @article{schwenk2019ccmatrix, title={Ccmatrix: Mining billions of high-quality parallel sentences on the web}, author={Schwenk, Holger and Wenzek, Guillaume and Edunov, Sergey and Grave, Edouard and Joulin, Armand}, journal={arXiv preprint arXiv:1911.04944}, year={2019} } @article{el2019massive, title={A Massive Collection of Cross-Lingual Web-Document Pairs}, author={El-Kishky, Ahmed and Chaudhary, Vishrav and Guzman, Francisco and Koehn, Philipp}, journal={arXiv preprint arXiv:1911.06154}, year={2019} } ``` ## Trained Models ### 418M and 1.2B Model We include the last checkpoint for both of these models. ```bash wget https://dl.fbaipublicfiles.com/m2m_100/model_dict.128k.txt wget https://dl.fbaipublicfiles.com/m2m_100/language_pairs_small_models.txt # 418M parameter model wget https://dl.fbaipublicfiles.com/m2m_100/418M_last_checkpoint.pt # 1.2B parameter model wget https://dl.fbaipublicfiles.com/m2m_100/1.2B_last_checkpoint.pt # Generation: fairseq-generate $binarized_data_path --batch-size 32 --path $path_to_model --fixed-dictionary model_dict.128k.txt -s en -t fr --remove-bpe 'sentencepiece' --beam 5 --task translation_multi_simple_epoch --lang-pairs language_pairs_small_models.txt --decoder-langtok --encoder-langtok src --gen-subset test > gen_out ``` ### 12B Model 12B parameter model trained on many-to-many training data for 100 languages. We include the last checkpoint, average of last 5 checkpoints, average of last 10 checkpoints. There isn't a universally best choice out of these three, but all three versions are pretty close in accuracy. You can either sweep over the 3 checkpoints on a dev test and use the best performing checkpoint for final testing. Or the last checkpoint can be a good default choice. **Model Download Links** Configuration | 2 32GB GPUs | 4 16GB GPUs | 6 12GB GPUs | 8 8GB GPUs :--|:--|:--|:--|:-- Last Checkpoint | [12b_last_chk_2_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_last_chk_2_gpus.pt) | [12b_last_chk_4_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_last_chk_4_gpus.pt) | [12b_last_chk_6_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_last_chk_6_gpus.pt) | [12b_last_chk_8_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_last_chk_8_gpus.pt) Average of last 5 checkpoints | [12b_avg5_chk_2_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg5_chk_2_gpus.pt) | [12b_avg5_chk_4_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg5_chk_4_gpus.pt) | [12b_avg5_chk_6_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg5_chk_6_gpus.pt) | [12b_avg5_chk_8_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg5_chk_8_gpus.pt) Average of last 10 checkpoints | [12b_avg10_chk_2_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg10_chk_2_gpus.pt) | [12b_avg10_chk_4_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg10_chk_4_gpus.pt) | [12b_avg10_chk_6_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg10_chk_6_gpus.pt) | [12b_avg10_chk_8_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg10_chk_8_gpus.pt) **Generation Arguments** Configuration | 2 32GB GPUs | 4 16GB GPUs | 6 12GB GPUs | 8 8GB GPUs :--|:--|:--|:--|:-- `--pipeline-encoder-balance` | `[26]` | `[1,15,10]` | `[1,9,9,7]` | `[1,6,6,6,7]` `--pipeline-encoder-devices` | `[0]` | `[0,1,0]` | `[0,1,2,0]` | `[0,4,5,1,0]` `--pipeline-decoder-balance` | `[3,22,1]` | `[3,11,11,1]` | `[3,7,7,8,1]` | `[1,6,6,6,6,1]` `--pipeline-decoder-devices` | `[0,1,0]` | `[0,2,3,0]` | `[0,3,4,5,0]` | `[0,2,6,7,3,0]` ## SentencePiece Model ```bash wget https://dl.fbaipublicfiles.com/m2m_100/spm.128k.model ``` ## Generation with M2M-100 ### Encode using our SentencePiece Model Note: Install SentencePiece from [here](https://github.com/google/sentencepiece) ```bash fairseq=/path/to/fairseq cd $fairseq sacrebleu --echo src -l de-fr -t wmt19 | head -n 20 > raw_input.de-fr.de sacrebleu --echo ref -l de-fr -t wmt19 | head -n 20 > raw_input.de-fr.fr wget https://dl.fbaipublicfiles.com/m2m_100/spm.128k.model for lang in de fr ; do python scripts/spm_encode.py \ --model spm.128k.model \ --output_format=piece \ --inputs=raw_input.de-fr.${lang} \ --outputs=spm.de-fr.${lang} done ``` ### Binarization ```bash wget https://dl.fbaipublicfiles.com/m2m_100/data_dict.128k.txt fairseq-preprocess \ --source-lang de --target-lang fr \ --testpref spm.de-fr \ --thresholdsrc 0 --thresholdtgt 0 \ --destdir data_bin \ --srcdict data_dict.128k.txt --tgtdict data_dict.128k.txt ``` ### Generation for the 12B model Note that generation can currently be run using 2 32GB / 4 16GB / 6 12GB / 8 8GB GPUs, and the corresponding model checkpoints and pipeline arguments can be found in the [12B Model Section](#12b-model). Generation on CPUs will be added in the future. ```bash wget https://dl.fbaipublicfiles.com/m2m_100/model_dict.128k.txt wget https://dl.fbaipublicfiles.com/m2m_100/language_pairs.txt wget https://dl.fbaipublicfiles.com/m2m_100/12b_last_chk_4_gpus.pt fairseq-generate \ data_bin \ --batch-size 1 \ --path 12b_last_chk_4_gpus.pt \ --fixed-dictionary model_dict.128k.txt \ -s de -t fr \ --remove-bpe 'sentencepiece' \ --beam 5 \ --task translation_multi_simple_epoch \ --lang-pairs language_pairs.txt \ --decoder-langtok --encoder-langtok src \ --gen-subset test \ --fp16 \ --dataset-impl mmap \ --distributed-world-size 1 --distributed-no-spawn \ --pipeline-model-parallel \ --pipeline-chunks 1 \ --pipeline-encoder-balance '[1,15,10]' \ --pipeline-encoder-devices '[0,1,0]' \ --pipeline-decoder-balance '[3,11,11,1]' \ --pipeline-decoder-devices '[0,2,3,0]' > gen_out ``` ## Evaluation with M2M-100 ### Tokenization Note: Refer to tokenizers/README.md for more details on tokenization. ```bash cd ${fairseq}/examples/m2m_100 cat ${fairseq}/gen_out | grep -P "^H" | sort -V | cut -f 3- | sh tok.sh fr > hyp cat ${fairseq}/raw_input.de-fr.fr | sh tok.sh fr > ref ``` ### BLEU ```bash sacrebleu -tok 'none' ref < hyp ```
COCO-LM/fairseq/examples/m2m_100/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/m2m_100/README.md", "repo_id": "COCO-LM", "token_count": 4271 }
170
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import fileinput import sacremoses def main(): parser = argparse.ArgumentParser(description="") parser.add_argument("files", nargs="*", help="input files") args = parser.parse_args() detok = sacremoses.MosesDetokenizer() for line in fileinput.input(args.files, openhook=fileinput.hook_compressed): print( detok.detokenize(line.strip().split(" ")) .replace(" @", "") .replace("@ ", "") .replace(" =", "=") .replace("= ", "=") .replace(" – ", "–") ) if __name__ == "__main__": main()
COCO-LM/fairseq/examples/megatron_11b/detok.py/0
{ "file_path": "COCO-LM/fairseq/examples/megatron_11b/detok.py", "repo_id": "COCO-LM", "token_count": 332 }
171
#!/bin/bash # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. if [ -z $WORKDIR_ROOT ] ; then echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..." exit fi SRCDIR=$WORKDIR_ROOT/indic_languages_corpus DESTDIR=$WORKDIR_ROOT/ML50/raw mkdir -p $SRCDIR mkdir -p $DESTDIR WAT_MY_EN=wat2020.my-en.zip cd $SRCDIR # please refer to http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/ for latest URL if the following url expired #- The data used for WAT2020 are identical to those used in WAT2019. wget http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/$WAT_MY_EN unzip $WAT_MY_EN SRC_EXTRACT_DIR=$SRCDIR/wat2020.my-en/alt cp $SRC_EXTRACT_DIR/train.alt.en $DESTDIR/train.my_MM-en_XX.en_XX cp $SRC_EXTRACT_DIR/train.alt.my $DESTDIR/train.my_MM-en_XX.my_MM cp $SRC_EXTRACT_DIR/dev.alt.en $DESTDIR/valid.my_MM-en_XX.en_XX cp $SRC_EXTRACT_DIR/dev.alt.my $DESTDIR/valid.my_MM-en_XX.my_MM cp $SRC_EXTRACT_DIR/test.alt.en $DESTDIR/test.my_MM-en_XX.en_XX cp $SRC_EXTRACT_DIR/test.alt.my $DESTDIR/test.my_MM-en_XX.my_MM
COCO-LM/fairseq/examples/multilingual/data_scripts/download_wat19_my.sh/0
{ "file_path": "COCO-LM/fairseq/examples/multilingual/data_scripts/download_wat19_my.sh", "repo_id": "COCO-LM", "token_count": 527 }
172
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq import options def get_reranking_parser(default_task="translation"): parser = options.get_parser("Generation and reranking", default_task) add_reranking_args(parser) return parser def get_tuning_parser(default_task="translation"): parser = options.get_parser("Reranking tuning", default_task) add_reranking_args(parser) add_tuning_args(parser) return parser def add_reranking_args(parser): group = parser.add_argument_group("Reranking") # fmt: off group.add_argument('--score-model1', '-s1', type=str, metavar='FILE', required=True, help='path to first model or ensemble of models for rescoring') group.add_argument('--score-model2', '-s2', type=str, metavar='FILE', required=False, help='path to second model or ensemble of models for rescoring') group.add_argument('--num-rescore', '-n', type=int, metavar='N', default=10, help='the number of candidate hypothesis to rescore') group.add_argument('-bz', '--batch-size', type=int, metavar='N', default=128, help='batch size for generating the nbest list') group.add_argument('--gen-subset', default='test', metavar='SET', choices=['test', 'train', 'valid'], help='data subset to generate (train, valid, test)') group.add_argument('--gen-model', default=None, metavar='FILE', help='the model to generate translations') group.add_argument('-b1', '--backwards1', action='store_true', help='whether or not the first model group is backwards') group.add_argument('-b2', '--backwards2', action='store_true', help='whether or not the second model group is backwards') group.add_argument('-a', '--weight1', default=1, nargs='+', type=float, help='the weight(s) of the first model') group.add_argument('-b', '--weight2', default=1, nargs='+', type=float, help='the weight(s) of the second model, or the gen model if using nbest from interactive.py') group.add_argument('-c', '--weight3', default=1, nargs='+', type=float, help='the weight(s) of the third model') # lm arguments group.add_argument('-lm', '--language-model', default=None, metavar='FILE', help='language model for target language to rescore translations') group.add_argument('--lm-dict', default=None, metavar='FILE', help='the dict of the language model for the target language') group.add_argument('--lm-name', default=None, help='the name of the language model for the target language') group.add_argument('--lm-bpe-code', default=None, metavar='FILE', help='the bpe code for the language model for the target language') group.add_argument('--data-dir-name', default=None, help='name of data directory') group.add_argument('--lenpen', default=1, nargs='+', type=float, help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences') group.add_argument('--score-dict-dir', default=None, help='the directory with dictionaries for the scoring models') group.add_argument('--right-to-left1', action='store_true', help='whether the first model group is a right to left model') group.add_argument('--right-to-left2', action='store_true', help='whether the second model group is a right to left model') group.add_argument('--post-process', '--remove-bpe', default='@@ ', help='the bpe symbol, used for the bitext and LM') group.add_argument('--prefix-len', default=None, type=int, help='the length of the target prefix to use in rescoring (in terms of words wo bpe)') group.add_argument('--sampling', action='store_true', help='use sampling instead of beam search for generating n best list') group.add_argument('--diff-bpe', action='store_true', help='bpe for rescoring and nbest list not the same') group.add_argument('--rescore-bpe-code', default=None, help='bpe code for rescoring models') group.add_argument('--nbest-list', default=None, help='use predefined nbest list in interactive.py format') group.add_argument('--write-hypos', default=None, help='filename prefix to write hypos to') group.add_argument('--ref-translation', default=None, help='reference translation to use with nbest list from interactive.py') group.add_argument('--backwards-score-dict-dir', default=None, help='the directory with dictionaries for the backwards model,' 'if None then it is assumed the fw and backwards models share dictionaries') # extra scaling args group.add_argument('--gen-model-name', default=None, help='the name of the models that generated the nbest list') group.add_argument('--model1-name', default=None, help='the name of the set for model1 group ') group.add_argument('--model2-name', default=None, help='the name of the set for model2 group') group.add_argument('--shard-id', default=0, type=int, help='the id of the shard to generate') group.add_argument('--num-shards', default=1, type=int, help='the number of shards to generate across') group.add_argument('--all-shards', action='store_true', help='use all shards') group.add_argument('--target-prefix-frac', default=None, type=float, help='the fraction of the target prefix to use in rescoring (in terms of words wo bpe)') group.add_argument('--source-prefix-frac', default=None, type=float, help='the fraction of the source prefix to use in rescoring (in terms of words wo bpe)') group.add_argument('--normalize', action='store_true', help='whether to normalize by src and target len') # fmt: on return group def add_tuning_args(parser): group = parser.add_argument_group("Tuning") group.add_argument( "--lower-bound", default=[-0.7], nargs="+", type=float, help="lower bound of search space", ) group.add_argument( "--upper-bound", default=[3], nargs="+", type=float, help="upper bound of search space", ) group.add_argument( "--tune-param", default=["lenpen"], nargs="+", choices=["lenpen", "weight1", "weight2", "weight3"], help="the parameter(s) to tune", ) group.add_argument( "--tune-subset", default="valid", choices=["valid", "test", "train"], help="the subset to tune on ", ) group.add_argument( "--num-trials", default=1000, type=int, help="number of trials to do for random search", ) group.add_argument( "--share-weights", action="store_true", help="share weight2 and weight 3" ) return group
COCO-LM/fairseq/examples/noisychannel/rerank_options.py/0
{ "file_path": "COCO-LM/fairseq/examples/noisychannel/rerank_options.py", "repo_id": "COCO-LM", "token_count": 3147 }
173
# Training with Quantization Noise for Extreme Model Compression ({Fan\*, Stock\*} *et al.*, 2020) This page contains information for how to train and quantize models with Quantization Noise, for both scalar quantization like `int8` and Iterative Product Quantization. Check out our paper [here](https://arxiv.org/abs/2004.07320). Looking for pretrained models? They will be added shortly. Looking for code to train vision models? We are working on open sourcing our code as part of ClassyVision. Please check back, but note that both the Scalar and Iterative Product Quantization counterparts of the `nn.Conv2d` module are already included in this release. **Contents**: - [Walk through of code](#walk-through-the-code) - [Reproduce NLP Results](#looking-to-reproduce-the-nlp-results-in-the-paper) - [Reproduce Vision Results](#looking-to-reproduce-the-vision-results-in-the-paper) ## Citation ```bibtex @article{fan2020training, title={Training with Quantization Noise for Extreme Model Compression}, author={Angela Fan* and Pierre Stock* and and Benjamin Graham and Edouard Grave and Remi Gribonval and Herve Jegou and Armand Joulin}, year={2020}, eprint={2004.07320}, archivePrefix={arXiv}, primaryClass={cs.ML} } ``` ## Walk through the code Training a model with Quant-Noise improves the performance in subsequent inference-time quantization by training models to be robust to quantization. This technique is useful for both scalar and product quantization methods, as well as multiple domains. We detail below our approach to train, quantize models and integrate our code to quantize your favorite models. ### Scalar Quantization Unlike the section [Iterative Product Quantization](#iterative-product-quantization) which gives state-of-the-art compression, this section showcases the usefulness of our approach for simple scalar quantization baselines such as int8 using on-GPU Fake Quantization. #### Training Scalar quantization with Quant-Noise consists in randomly quantizing a proportion `p` of the weights during training. Scalar quantization is implemented [here](https://github.com/pytorch/fairseq/tree/master/fairseq/modules/quantization/scalar) under the form of Fake Quantization, meaning that we emulate int8 on GPU by quantizing and de-quantizing both the weights and the activations. We rely on PyTorch's [quantization primitives](https://github.com/pytorch/pytorch/tree/master/torch/quantization). To train a model with Quant-Noise, add the following flag: ``` --quant-noise-scalar 0.5 ``` Large values of noise make the network easier to quantize but may result in higher non-quantized test and validation perplexities. #### Quantization When evaluating a network, all quantized modules and activation hooks automatically switch to `p=1` so the validation accuracy reported by Fairseq is actually the quantized one, nothing more to do. #### Integration with your own code Looking to quantize your own models with Quant-Noise + Scalar Quantization? - Use the function `quantize_model_` implemented [here](https://github.com/pytorch/fairseq/tree/master/fairseq/modules/quantization/scalar/utils.py) to (1) replace all your modules by their quantized counterparts and (2) add hooks to those modules to quantize the activations. - Then, perform your training as usual. Note that in `eval()` mode, the network is always fully quantized (weights and activations) by default (`p=1`). ### Iterative Product Quantization Iterative Product Quantization with Quant-Noise proceeds in two steps. First, a model must be trained uncompressed with Quant-Noise. Second, the model must be quantized with iPQ. Note that we implement here the simplest form of noise, which consists in randomly dropping a proportion `p` of blocks, and that worked as well as assigning those blocks to their current centroid. #### Training To train a model with Quant-Noise, add the following flags: ``` --quant-noise-pq 0.1 --quant-noise-pq-block-size 8 ``` `quant-noise-pq` controls how much dropout is applied to the blocks of the weight matrix. `quant-noise-pq-block-size` controls the size of the weight matrix blocks. We recommend training with 0.05 to 0.2 Quant-Noise, a value that worked well in our experiments. For the block-size, we recommend training with block-size of 8. Note that the block size must be a multiple of `input_features`, see the size checks [here](https://github.com/pytorch/fairseq/tree/master/fairseq/modules/quant_noise.py). Large block sizes result in higher compression ratio but may induce a loss in accuracy. We currently support training Transformer based models, such as sequence-to-sequence, language models, and BERT architectures. The `quant_noise` function [here](https://github.com/pytorch/fairseq/tree/master/fairseq/modules/quant_noise.py) wraps a module. It splits a weight matrix into blocks and applies random dropout to these blocks. In the Transformer architectures, quant-noise is applied to the input and output embeddings, the attention, and the FFN. Quant-Noise can also be combined with **LayerDrop** (see [here](https://github.com/pytorch/fairseq/tree/master/examples/layerdrop)) to add its pruning effect to the quantized model and make the model even smaller. We recommend training with LayerDrop 0.1 or 0.2. #### Quantization We implement an improved version of product quantization from Stock et al, **iPQ**, described [here](https://arxiv.org/abs/1907.05686), see code with old API [here](https://github.com/facebookresearch/kill-the-bits). Note that we improved the iPQ API in terms of both compute speed and usability as described below. For the particular case of PQ, quantization is made sequentially. We recommend first quantizing the FFNs, then the EMBs, and finally the ATTNs. Quantization is done in two sub-steps: - First, perform `n` steps of Product Quantization (generally `n=20` is enough). - Then, finetune the obtained centroids. #### Integration with your own code Looking to quantize your own models with Quant-Noise + iPQ? - First wrap your modules with the `quant_noise` function [here](https://github.com/pytorch/fairseq/tree/master/fairseq/modules/quant_noise.py), which is module-agnostic and train your favorite model. - Then, quantize your trained model using the code [here](https://github.com/pytorch/fairseq/tree/master/fairseq/modules/quantization/pq). This can be done *without any changes to your training loop*. Below is an example code for integration. Note that we tried our approach only on Transformers and various Convolutional Models such as EfficientNets. ```python from fairseq.modules.quantization.pq import quantize_model_, SizeTracker # get configuration parameters n_centroids_config = config["n_centroids"] block_sizes_config = config["block_sizes"] layers_to_quantize = config["layers_to_quantize"] # size tracker for keeping track of assignments, centroids and non-compressed sizes size_tracker = SizeTracker(model) # Quantize model by stages for step in range(len(layers_to_quantize)): # quantize model in-place quantized_layers = quantize_model_( model, size_tracker, layers_to_quantize, block_sizes_config, n_centroids_config, step=step, ) logger.info(f"Finetuning stage {step}, quantized layers: {quantized_layers}") logger.info(f"{size_tracker}") # Don't forget to re-create/update trainer/optimizer since model parameters have changed optimizer = ... # Finetune the centroids with your usual training loop for a few epochs trainer.train_epoch() ``` ## Looking to reproduce the NLP results in the paper? We detail below how to reproduce the state-of-the-art results in reported in the paper for Quant-Noise + Iterative Product Quantization. ### Training with Quant-Noise To **train** RoBERTa + QuantNoise, we followed this setting [here](https://github.com/pytorch/fairseq/tree/master/examples/roberta). The following command can be used to train a RoBERTa Base + QuantNoise model: ```bash TOTAL_UPDATES=125000 WARMUP_UPDATES=10000 PEAK_LR=0.0005 TOKENS_PER_SAMPLE=512 MAX_POSITIONS=512 MAX_SENTENCES=16 UPDATE_FREQ=2 DATA_DIR=/path/to/data/here fairseq-train $DATA_DIR \ --task masked_lm --criterion masked_lm --arch roberta_base \ --sample-break-mode complete \ --tokens-per-sample $TOKENS_PER_SAMPLE --max-positions $MAX_POSITIONS \ --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 \ --clip-norm 0.0 \ --lr-scheduler polynomial_decay --lr $PEAK_LR \ --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \ --dropout 0.1 --attention-dropout 0.1 \ --weight-decay 0.01 \ --batch-size $MAX_SENTENCES \ --update-freq $UPDATE_FREQ --max-update $TOTAL_UPDATES \ --save-dir checkpoint/roberta \ --ddp-backend legacy_ddp --encoder-layerdrop 0.2 \ --quant-noise-pq 0.2 --quant-noise-pq-block-size 8 --untie-weights-roberta ``` To **finetune** RoBERTa + QuantNoise, we followed this setting [here](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.md). The following command can be used to finetune a RoBERTa Base + QuantNoise model on the RTE dataset: ```bash TOTAL_NUM_UPDATES=2036 WARMUP_UPDATES=122 LR=2e-05 NUM_CLASSES=2 MAX_SENTENCES=16 ROBERTA_PATH=/path/to/roberta_quantnoise/model.pt fairseq-train /path/to/rte/data/ \ --restore-file $ROBERTA_PATH \ --max-positions 512 \ --batch-size $MAX_SENTENCES \ --max-tokens 4400 \ --task sentence_prediction \ --reset-optimizer --reset-dataloader --reset-meters \ --required-batch-size-multiple 1 \ --init-token 0 --separator-token 2 \ --arch roberta_large \ --criterion sentence_prediction \ --num-classes $NUM_CLASSES \ --dropout 0.1 --attention-dropout 0.1 \ --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \ --clip-norm 0.0 \ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ --max-epoch 10 \ --find-unused-parameters \ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \ --ddp-backend legacy_ddp \ --quant-noise-pq 0.2 --quant-noise-pq-block-size 8 ``` To **train** Language Models on Wikitext-103, we followed this setting [here](https://github.com/pytorch/fairseq/tree/master/examples/language_model). The following command can be used to train a Transformer + QuantNoise model on Wikitext-103: ```bash fairseq-train --task language_modeling /path/to/wikitext-103/data \ --save-dir checkpoints/transformer_wikitext-103 \ --adaptive-input --adaptive-input-cutoff 20000,60000 --adaptive-input-factor 4 \ --adaptive-softmax-cutoff 20000,60000 --adaptive-softmax-dropout 0.2 --adaptive-softmax-factor 4.0 \ --tie-adaptive-proj --tie-adaptive-weights \ --arch transformer_lm_gbw \ --attention-dropout 0.1 --dropout 0.2 --relu-dropout 0.1 \ --clip-norm 0.1 --criterion adaptive_loss \ --ddp-backend legacy_ddp \ --decoder-attention-heads 8 --decoder-embed-dim 1024 --decoder-ffn-embed-dim 4096 --decoder-input-dim 1024 \ --decoder-layers 16 --decoder-normalize-before --decoder-output-dim 1024 \ --min-lr 0.0001 --lr-period-updates 270000 --lr-scheduler cosine --lr-shrink 0.75 --lr 1.0 --t-mult 2.0 \ --max-tokens 3072 --tokens-per-sample 3072 --momentum 0.99 --optimizer nag \ --sample-break-mode none --update-freq 3 \ --warmup-init-lr 1e-07 --warmup-updates 16000 \ --weight-decay 0 --seed 1 --stop-min-lr 1e-09 \ --quant-noise-pq 0.05 --quant-noise-pq-block-size 8 ``` To **evaluate** this model, note you need to use the `eval.py` script. The following command can be used to evaluate: ```bash fairseq-eval-lm /path/to/wikitext-103/data --path /path/to/model/checkpoint \ --sample-break-mode complete \ --max-tokens 3072 \ --context-window 2560 \ --softmax-batch 1024 \ --gen-subset valid ``` and change the `--gen-subset` to `test` if you would like to evaluate on the test set instead. ### Iterative Product Quantization To quantize the finetuned RoBERTa model, we use this command on 1 GPU. This should run in a day. ```bash TOTAL_NUM_UPDATES=6108 # 2036 updates for each iteration WARMUP_UPDATES=122 LR=2e-05 NUM_CLASSES=2 MAX_SENTENCES=16 fairseq-train --task sentence_prediction /path/to/data/ \ --restore-file $ROBERTA_PATH \ --save-dir checkpoints/roberta_finetuned \ --max-positions 512 \ --batch-size $MAX_SENTENCES \ --max-tokens 4400 \ --init-token 0 --separator-token 2 \ --arch roberta_large \ --criterion sentence_prediction \ --num-classes $NUM_CLASSES \ --dropout 0.1 --attention-dropout 0.1 \ --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \ --clip-norm 0.0 --lr-scheduler polynomial_decay \ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ --no-progress-bar --skip-invalid-size-inputs-valid-test --ddp-backend legacy_ddp \ --quantization-config-path /path/to/config/yaml ``` To quantize the trained Language Model, we use this command on 8 V100 23GB GPUs. This should run in a couple of hours. ```bash fairseq-train --task language_modeling /path/to/wikitext-103/data \ --save-dir checkpoints/transformer_wikitext-103 \ --adaptive-input --adaptive-input-cutoff 20000,60000 --adaptive-input-factor 4 \ --adaptive-softmax-cutoff 20000,60000 --adaptive-softmax-dropout 0.2 --adaptive-softmax-factor 4.0 \ --arch transformer_lm_gbw \ --attention-dropout 0.1 --dropout 0.2 --relu-dropout 0.1 \ --bucket-cap-mb 25 --char-embedder-highway-layers 2 --character-embedding-dim 4 \ --clip-norm 0.1 --criterion adaptive_loss \ --ddp-backend legacy_ddp \ --decoder-attention-heads 8 --decoder-embed-dim 1024 --decoder-ffn-embed-dim 4096 --decoder-input-dim 1024 --decoder-layers 16 --decoder-normalize-before --decoder-output-dim 1024 \ --fp16 --keep-last-epochs -1 \ --min-lr 0.0001 --lr-period-updates 270000 --lr-scheduler cosine --lr-shrink 0.75 --lr 0.05 --stop-min-lr 1e-09 \ --max-tokens 2944 --tokens-per-sample 2944\ --momentum 0.99 --no-epoch-checkpoints --no-progress-bar --optimizer nag --required-batch-size-multiple 8 \ --sample-break-mode none --t-mult 2.0 --skip-invalid-size-inputs-valid-test \ --tie-adaptive-proj --tie-adaptive-weights --update-freq 3 --weight-decay 0 --seed 1 \ --log-interval 100 --no-progress-bar --skip-invalid-size-inputs-valid-test \ --restore-file path/to/trained/lm/with/quant/noise \ --max-update 13500 --quantization-config-path /path/to/config/yaml ``` If you have less capacity or if your distributed training freezes, try reducing `--max-tokens` and `--tokens-per-sample` (this may reduce the quantized accuracy a bit). ### Remarks We try to keep the open-sourced code as readable and as easy-to-plug as possible. Therefore, we did not test it for the following cases: - Scalar quantization with RoBERTa. - Quantization with iPQ and `int8` combined. If you have trouble adapting it, we will be more than happy to help! ## Looking to reproduce the Vision results in the paper? We are working on open sourcing our code as part of ClassyVision. Please check back. ## Having an issue or have a question? Please open an issue in this repository with the details of your question. Thanks!
COCO-LM/fairseq/examples/quant_noise/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/quant_noise/README.md", "repo_id": "COCO-LM", "token_count": 5153 }
174
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import wsc_criterion # noqa from . import wsc_task # noqa
COCO-LM/fairseq/examples/roberta/wsc/__init__.py/0
{ "file_path": "COCO-LM/fairseq/examples/roberta/wsc/__init__.py", "repo_id": "COCO-LM", "token_count": 70 }
175
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import DEFAULT_EOS, GET, register_agent from .simul_trans_agent import SimulTransAgent from .word_splitter import SPLITTER_DICT @register_agent("simul_trans_text") class SimulTransTextAgent(SimulTransAgent): def build_word_splitter(self, args): self.word_splitter = {} self.word_splitter["src"] = SPLITTER_DICT[args.src_splitter_type]( getattr(args, f"src_splitter_path") ) self.word_splitter["tgt"] = SPLITTER_DICT[args.tgt_splitter_type]( getattr(args, f"tgt_splitter_path") ) def load_dictionary(self, task): self.dict = {} self.dict["tgt"] = task.target_dictionary self.dict["src"] = task.source_dictionary def update_states(self, states, new_state): if states["finish_read"]: return states new_word = new_state["segment"] # Split words and index the token if new_word not in [DEFAULT_EOS]: tokens = self.word_splitter["src"].split(new_word) # Get indices from dictionary # You can change to you own dictionary indices = ( self.dict["src"] .encode_line( tokens, line_tokenizer=lambda x: x, add_if_not_exist=False, append_eos=False, ) .tolist() ) else: tokens = [new_word] indices = [self.dict["src"].eos()] states["finish_read"] = True # Update states states["segments"]["src"] += [new_word] states["tokens"]["src"] += tokens self._append_indices(states, indices, "src") return states def read_action(self, states): # Increase source step by one states["steps"]["src"] += 1 # At leat one word is read if len(states["tokens"]["src"]) == 0: return {"key": GET, "value": None} # Only request new word if there is no buffered tokens if len(states["tokens"]["src"]) <= states["steps"]["src"]: return {"key": GET, "value": None} return None def finish_read(self, states): # The first means all segments (full words) has been read from server # The second means all tokens (subwords) has been read locally return ( states["finish_read"] and len(states["tokens"]["src"]) == states["steps"]["src"] )
COCO-LM/fairseq/examples/simultaneous_translation/eval/agents/simul_trans_text_agent.py/0
{ "file_path": "COCO-LM/fairseq/examples/simultaneous_translation/eval/agents/simul_trans_text_agent.py", "repo_id": "COCO-LM", "token_count": 1234 }
176
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the criterions/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("examples.simultaneous_translation.utils." + module)
COCO-LM/fairseq/examples/simultaneous_translation/utils/__init__.py/0
{ "file_path": "COCO-LM/fairseq/examples/simultaneous_translation/utils/__init__.py", "repo_id": "COCO-LM", "token_count": 163 }
177
# Flashlight Decoder This script runs decoding for pre-trained speech recognition models. ## Usage Assuming a few variables: ```bash exp_dir=<path-to-experiment-directory> data=<path-to-data-directory> lm_model=<path-to-language-model> lexicon=<path-to-lexicon> ``` Example usage for decoding a fine-tuned Wav2Vec model: ```bash python $FAIRSEQ_ROOT/examples/speech_recognition/hydra/infer.py --multirun \ task=audio_pretraining \ task.data=$data \ task.labels=ltr \ decoding.exp_dir=$exp_dir \ decoding.decoder.name=kenlm \ decoding.decoder.lexicon=$lexicon \ decoding.decoder.lmpath=$lm_model \ dataset.gen_subset=dev_clean,dev_other,test_clean,test_other ``` Example usage for using Ax to sweep WER parameters (requires `pip install hydra-ax-sweeper`): ```bash python $FAIRSEQ_ROOT/examples/speech_recognition/hydra/infer.py --multirun \ hydra/sweeper=ax \ task=audio_pretraining \ task.data=$data \ task.labels=ltr \ decoding.exp_dir=$exp_dir \ decoding.decoder.name=kenlm \ decoding.decoder.lexicon=$lexicon \ decoding.decoder.lmpath=$lm_model \ decoding.write_sentences=false \ decoding.unique_wer_file=true \ dataset.gen_subset=dev_other ```
COCO-LM/fairseq/examples/speech_recognition/hydra/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/speech_recognition/hydra/README.md", "repo_id": "COCO-LM", "token_count": 482 }
178
[[Back]](..) # S2T Example: Speech Recognition (ASR) on LibriSpeech [LibriSpeech](https://www.danielpovey.com/files/2015_icassp_librispeech.pdf) is a de-facto standard English ASR benchmark. We provide competitive vanilla [Transformer](https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf) baselines. ## Data preparation Download and preprocess LibriSpeech data with ```bash # additional Python packages for S2T data processing/model training pip install pandas torchaudio sentencepiece python examples/speech_to_text/prep_librispeech_data.py \ --output-root ${LS_ROOT} --vocab-type unigram --vocab-size 10000 ``` where `LS_ROOT` is the root path for downloaded data as well as generated files (manifest, features, vocabulary and data configuration). [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/librispeech_vocab_unigram10000.zip) our vocabulary files if you want to use our pre-trained models. ## Training ```bash fairseq-train ${LS_ROOT} --save-dir ${SAVE_DIR} \ --config-yaml config.yaml --train-subset train --valid-subset dev \ --num-workers 4 --max-tokens 40000 --max-update 300000 \ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \ --arch s2t_transformer_s --share-decoder-input-output-embed \ --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt --warmup-updates 10000 \ --clip-norm 10.0 --seed 1 --update-freq 8 ``` where `SAVE_DIR` is the checkpoint root path. Here we use `--arch s2t_transformer_s` (31M parameters) as example. For better performance, you may switch to `s2t_transformer_m` (71M, with `--lr 1e-3`) or `s2t_transformer_l` (268M, with `--lr 5e-4`). We set `--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU. ## Inference & Evaluation Average the last 10 checkpoints and evaluate on the 4 splits (`dev-clean`, `dev-other`, `test-clean` and `test-other`): ```bash CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt python scripts/average_checkpoints.py --inputs ${SAVE_DIR} \ --num-epoch-checkpoints 10 \ --output "${SAVE_DIR}/${CHECKPOINT_FILENAME}" for SUBSET in dev-clean dev-other test-clean test-other; do fairseq-generate ${LS_ROOT} --config-yaml config.yaml --gen-subset ${SUBSET} \ --task speech_to_text --path ${SAVE_DIR}/${CHECKPOINT_FILENAME} \ --max-tokens 50000 --beam 5 --scoring wer done ``` ## Interactive Decoding Launch the interactive console via ```bash fairseq-interactive ${LS_ROOT} --config-yaml config.yaml --task speech_to_text \ --path ${SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 ``` Type in WAV/FLAC/OGG audio paths (one per line) after the prompt. ## Results | --arch | Params | dev-clean | dev-other | test-clean | test-other | Model | |---|---|---|---|---|---|---| | s2t_transformer_s | 30M | 3.8 | 8.9 | 4.4 | 9.0 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/librispeech_transformer_s.pt) | | s2t_transformer_m | 71M | 3.2 | 8.0 | 3.4 | 7.9 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/librispeech_transformer_m.pt) | | s2t_transformer_l | 268M | 3.0 | 7.5 | 3.2 | 7.5 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/librispeech_transformer_l.pt) | [[Back]](..)
COCO-LM/fairseq/examples/speech_to_text/docs/librispeech_example.md/0
{ "file_path": "COCO-LM/fairseq/examples/speech_to_text/docs/librispeech_example.md", "repo_id": "COCO-LM", "token_count": 1197 }
179
# Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019) This page includes instructions for reproducing results from the paper [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](https://arxiv.org/abs/1902.07816). ## Download data First, follow the [instructions to download and preprocess the WMT'17 En-De dataset](../translation#prepare-wmt14en2desh). Make sure to learn a joint vocabulary by passing the `--joined-dictionary` option to `fairseq-preprocess`. ## Train a model Then we can train a mixture of experts model using the `translation_moe` task. Use the `--method` flag to choose the MoE variant; we support hard mixtures with a learned or uniform prior (`--method hMoElp` and `hMoEup`, respectively) and soft mixures (`--method sMoElp` and `sMoEup`). The model is trained with online responsibility assignment and shared parameterization. The following command will train a `hMoElp` model with `3` experts: ```bash fairseq-train --ddp-backend='legacy_ddp' \ data-bin/wmt17_en_de \ --max-update 100000 \ --task translation_moe --user-dir examples/translation_moe/translation_moe_src \ --method hMoElp --mean-pool-gating-network \ --num-experts 3 \ --arch transformer_wmt_en_de --share-all-embeddings \ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 4000 \ --lr 0.0007 \ --dropout 0.1 --weight-decay 0.0 --criterion cross_entropy \ --max-tokens 3584 ``` ## Translate Once a model is trained, we can generate translations from different experts using the `--gen-expert` option. For example, to generate from expert 0: ```bash fairseq-generate data-bin/wmt17_en_de \ --path checkpoints/checkpoint_best.pt \ --beam 1 --remove-bpe \ --task translation_moe --user-dir examples/translation_moe/translation_moe_src \ --method hMoElp --mean-pool-gating-network \ --num-experts 3 \ --gen-expert 0 ``` ## Evaluate First download a tokenized version of the WMT'14 En-De test set with multiple references: ```bash wget dl.fbaipublicfiles.com/fairseq/data/wmt14-en-de.extra_refs.tok ``` Next apply BPE on the fly and run generation for each expert: ```bash BPE_CODE=examples/translation/wmt17_en_de/code for EXPERT in $(seq 0 2); do \ cat wmt14-en-de.extra_refs.tok \ | grep ^S | cut -f 2 \ | fairseq-interactive data-bin/wmt17_en_de \ --path checkpoints/checkpoint_best.pt \ --beam 1 \ --bpe subword_nmt --bpe-codes $BPE_CODE \ --buffer-size 500 --max-tokens 6000 \ --task translation_moe --user-dir examples/translation_moe/translation_moe_src \ --method hMoElp --mean-pool-gating-network \ --num-experts 3 \ --gen-expert $EXPERT ; \ done > wmt14-en-de.extra_refs.tok.gen.3experts ``` Finally use `score_moe.py` to compute pairwise BLUE and average oracle BLEU: ```bash python examples/translation_moe/score.py --sys wmt14-en-de.extra_refs.tok.gen.3experts --ref wmt14-en-de.extra_refs.tok # pairwise BLEU: 48.26 # #refs covered: 2.11 # multi-reference BLEU (leave-one-out): 59.46 ``` This matches row 3 from Table 7 in the paper. ## Citation ```bibtex @article{shen2019mixture, title = {Mixture Models for Diverse Machine Translation: Tricks of the Trade}, author = {Tianxiao Shen and Myle Ott and Michael Auli and Marc'Aurelio Ranzato}, journal = {International Conference on Machine Learning}, year = 2019, } ```
COCO-LM/fairseq/examples/translation_moe/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/translation_moe/README.md", "repo_id": "COCO-LM", "token_count": 1289 }
180
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Data pre-processing: build vocabularies and binarize training data. """ import argparse import glob import os import random import soundfile def get_parser(): parser = argparse.ArgumentParser() parser.add_argument( "root", metavar="DIR", help="root directory containing flac files to index" ) parser.add_argument( "--valid-percent", default=0.01, type=float, metavar="D", help="percentage of data to use as validation set (between 0 and 1)", ) parser.add_argument( "--dest", default=".", type=str, metavar="DIR", help="output directory" ) parser.add_argument( "--ext", default="flac", type=str, metavar="EXT", help="extension to look for" ) parser.add_argument("--seed", default=42, type=int, metavar="N", help="random seed") parser.add_argument( "--path-must-contain", default=None, type=str, metavar="FRAG", help="if set, path must contain this substring for a file to be included in the manifest", ) return parser def main(args): assert args.valid_percent >= 0 and args.valid_percent <= 1.0 if not os.path.exists(args.dest): os.makedirs(args.dest) dir_path = os.path.realpath(args.root) search_path = os.path.join(dir_path, "**/*." + args.ext) rand = random.Random(args.seed) with open(os.path.join(args.dest, "train.tsv"), "w") as train_f, open( os.path.join(args.dest, "valid.tsv"), "w" ) as valid_f: print(dir_path, file=train_f) print(dir_path, file=valid_f) for fname in glob.iglob(search_path, recursive=True): file_path = os.path.realpath(fname) if args.path_must_contain and args.path_must_contain not in file_path: continue frames = soundfile.info(fname).frames dest = train_f if rand.random() > args.valid_percent else valid_f print( "{}\t{}".format(os.path.relpath(file_path, dir_path), frames), file=dest ) if __name__ == "__main__": parser = get_parser() args = parser.parse_args() main(args)
COCO-LM/fairseq/examples/wav2vec/wav2vec_manifest.py/0
{ "file_path": "COCO-LM/fairseq/examples/wav2vec/wav2vec_manifest.py", "repo_id": "COCO-LM", "token_count": 991 }
181
/** * Copyright 2017-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the license found in the * LICENSE file in the root directory of this source tree. */ #include <torch/torch.h> // @manual=//caffe2:torch_extension #include <pybind11/detail/common.h> #include <pybind11/pybind11.h> #include <vector> #include <algorithm> #include <cstdint> #include <iosfwd> #include <memory> #include <new> #include <string> #include <utility> using namespace ::std; vector<vector<uint32_t>> edit_distance2_with_dp( vector<uint32_t>& x, vector<uint32_t>& y) { uint32_t lx = x.size(); uint32_t ly = y.size(); vector<vector<uint32_t>> d(lx + 1, vector<uint32_t>(ly + 1)); for (uint32_t i = 0; i < lx + 1; i++) { d[i][0] = i; } for (uint32_t j = 0; j < ly + 1; j++) { d[0][j] = j; } for (uint32_t i = 1; i < lx + 1; i++) { for (uint32_t j = 1; j < ly + 1; j++) { d[i][j] = min(min(d[i - 1][j], d[i][j - 1]) + 1, d[i - 1][j - 1] + 2 * (x.at(i - 1) == y.at(j - 1) ? 0 : 1)); } } return d; } vector<vector<uint32_t>> edit_distance2_backtracking( vector<vector<uint32_t>>& d, vector<uint32_t>& x, vector<uint32_t>& y, uint32_t terminal_symbol) { vector<uint32_t> seq; vector<vector<uint32_t>> edit_seqs(x.size() + 2, vector<uint32_t>()); /* edit_seqs: 0~x.size() cell is the insertion sequences last cell is the delete sequence */ if (x.size() == 0) { edit_seqs.at(0) = y; return edit_seqs; } uint32_t i = d.size() - 1; uint32_t j = d.at(0).size() - 1; while ((i >= 0) && (j >= 0)) { if ((i == 0) && (j == 0)) { break; } if ((j > 0) && (d.at(i).at(j - 1) < d.at(i).at(j))) { seq.push_back(1); // insert seq.push_back(y.at(j - 1)); j--; } else if ((i > 0) && (d.at(i - 1).at(j) < d.at(i).at(j))) { seq.push_back(2); // delete seq.push_back(x.at(i - 1)); i--; } else { seq.push_back(3); // keep seq.push_back(x.at(i - 1)); i--; j--; } } uint32_t prev_op, op, s, word; prev_op = 0, s = 0; for (uint32_t k = 0; k < seq.size() / 2; k++) { op = seq.at(seq.size() - 2 * k - 2); word = seq.at(seq.size() - 2 * k - 1); if (prev_op != 1) { s++; } if (op == 1) // insert { edit_seqs.at(s - 1).push_back(word); } else if (op == 2) // delete { edit_seqs.at(x.size() + 1).push_back(1); } else { edit_seqs.at(x.size() + 1).push_back(0); } prev_op = op; } for (uint32_t k = 0; k < edit_seqs.size(); k++) { if (edit_seqs[k].size() == 0) { edit_seqs[k].push_back(terminal_symbol); } } return edit_seqs; } vector<vector<uint32_t>> edit_distance2_backtracking_with_delete( vector<vector<uint32_t>>& d, vector<uint32_t>& x, vector<uint32_t>& y, uint32_t terminal_symbol, uint32_t deletion_symbol) { vector<uint32_t> seq; vector<vector<uint32_t>> edit_seqs(x.size() + 1, vector<uint32_t>()); /* edit_seqs: 0~x.size() cell is the insertion sequences last cell is the delete sequence */ if (x.size() == 0) { edit_seqs.at(0) = y; return edit_seqs; } uint32_t i = d.size() - 1; uint32_t j = d.at(0).size() - 1; while ((i >= 0) && (j >= 0)) { if ((i == 0) && (j == 0)) { break; } if ((j > 0) && (d.at(i).at(j - 1) < d.at(i).at(j))) { seq.push_back(1); // insert seq.push_back(y.at(j - 1)); j--; } else if ((i > 0) && (d.at(i - 1).at(j) < d.at(i).at(j))) { seq.push_back(2); // delete seq.push_back(x.at(i - 1)); i--; } else { seq.push_back(3); // keep seq.push_back(x.at(i - 1)); i--; j--; } } uint32_t prev_op, op, s, word; prev_op = 0, s = 0; for (uint32_t k = 0; k < seq.size() / 2; k++) { op = seq.at(seq.size() - 2 * k - 2); word = seq.at(seq.size() - 2 * k - 1); if (prev_op != 1) { s++; } if (op == 1) // insert { edit_seqs.at(s - 1).push_back(word); } else if (op == 2) // delete { edit_seqs.at(s - 1).push_back(deletion_symbol); } prev_op = op; } for (uint32_t k = 0; k < edit_seqs.size(); k++) { if (edit_seqs.at(k).size() == 0) { edit_seqs.at(k).push_back(terminal_symbol); } } return edit_seqs; } vector<uint32_t> compute_ed2( vector<vector<uint32_t>>& xs, vector<vector<uint32_t>>& ys) { vector<uint32_t> distances(xs.size()); for (uint32_t i = 0; i < xs.size(); i++) { vector<vector<uint32_t>> d = edit_distance2_with_dp(xs.at(i), ys.at(i)); distances.at(i) = d.at(xs.at(i).size()).at(ys.at(i).size()); } return distances; } vector<vector<vector<uint32_t>>> suggested_ed2_path( vector<vector<uint32_t>>& xs, vector<vector<uint32_t>>& ys, uint32_t terminal_symbol) { vector<vector<vector<uint32_t>>> seq(xs.size()); for (uint32_t i = 0; i < xs.size(); i++) { vector<vector<uint32_t>> d = edit_distance2_with_dp(xs.at(i), ys.at(i)); seq.at(i) = edit_distance2_backtracking(d, xs.at(i), ys.at(i), terminal_symbol); } return seq; } vector<vector<vector<uint32_t>>> suggested_ed2_path_with_delete( vector<vector<uint32_t>>& xs, vector<vector<uint32_t>>& ys, uint32_t terminal_symbol, uint32_t deletion_symbol) { vector<vector<vector<uint32_t>>> seq(xs.size()); for (uint32_t i = 0; i < xs.size(); i++) { vector<vector<uint32_t>> d = edit_distance2_with_dp(xs.at(i), ys.at(i)); seq.at(i) = edit_distance2_backtracking_with_delete( d, xs.at(i), ys.at(i), terminal_symbol, deletion_symbol); } return seq; } PYBIND11_MODULE(libnat, m) { m.def("compute_ed2", &compute_ed2, "compute_ed2"); m.def("suggested_ed2_path", &suggested_ed2_path, "suggested_ed2_path"); m.def( "suggested_ed2_path_with_delete", &suggested_ed2_path_with_delete, "suggested_ed2_path_with_delete"); }
COCO-LM/fairseq/fairseq/clib/libnat/edit_dist.cpp/0
{ "file_path": "COCO-LM/fairseq/fairseq/clib/libnat/edit_dist.cpp", "repo_id": "COCO-LM", "token_count": 2924 }
182
# @package _group_ quantize_targets: true final_dim: 256 encoder_layerdrop: 0.05 dropout_input: 0.1 dropout_features: 0.1 feature_grad_mult: 0.1
COCO-LM/fairseq/fairseq/config/model/wav2vec2/wav2vec2_base.yaml/0
{ "file_path": "COCO-LM/fairseq/fairseq/config/model/wav2vec2/wav2vec2_base.yaml", "repo_id": "COCO-LM", "token_count": 61 }
183
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion @register_criterion("sentence_ranking") class SentenceRankingCriterion(FairseqCriterion): def __init__(self, task, ranking_head_name, save_predictions, num_classes): super().__init__(task) self.ranking_head_name = ranking_head_name if save_predictions is not None: self.prediction_h = open(save_predictions, "w") else: self.prediction_h = None self.num_classes = num_classes def __del__(self): if self.prediction_h is not None: self.prediction_h.close() @staticmethod def add_args(parser): # fmt: off parser.add_argument('--save-predictions', metavar='FILE', help='file to save predictions to') parser.add_argument('--ranking-head-name', default='sentence_classification_head', help='name of the ranking head to use') # fmt: on def forward(self, model, sample, reduce=True): """Compute ranking loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ assert ( hasattr(model, "classification_heads") and self.ranking_head_name in model.classification_heads ), "model must provide sentence ranking head for --criterion=sentence_ranking" scores = [] for idx in range(self.num_classes): score, _ = model( **sample["net_input{idx}".format(idx=idx + 1)], classification_head_name=self.ranking_head_name, ) scores.append(score) logits = torch.cat(scores, dim=1) sample_size = logits.size(0) if "target" in sample: targets = model.get_targets(sample, [logits]).view(-1) lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32) loss = F.nll_loss(lprobs, targets, reduction="sum") else: targets = None loss = torch.tensor(0.0, requires_grad=True) if self.prediction_h is not None: preds = logits.argmax(dim=1) for i, (id, pred) in enumerate(zip(sample["id"].tolist(), preds.tolist())): if targets is not None: label = targets[i].item() print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h) else: print("{}\t{}".format(id, pred), file=self.prediction_h) logging_output = { "loss": loss.data, "ntokens": sample["ntokens"], "nsentences": sample_size, "sample_size": sample_size, } if targets is not None: logging_output["ncorrect"] = (logits.argmax(dim=1) == targets).sum() return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) if len(logging_outputs) > 0 and "ncorrect" in logging_outputs[0]: ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) metrics.log_scalar( "accuracy", 100.0 * ncorrect / nsentences, nsentences, round=1 ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
COCO-LM/fairseq/fairseq/criterions/sentence_ranking.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/criterions/sentence_ranking.py", "repo_id": "COCO-LM", "token_count": 2081 }
184
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch.nn.functional as F from fairseq.data import BaseWrapperDataset from fairseq.data.data_utils import get_buckets, get_bucketed_sizes class BucketPadLengthDataset(BaseWrapperDataset): """ Bucket and pad item lengths to the nearest bucket size. This can be used to reduce the number of unique batch shapes, which is important on TPUs since each new batch shape requires a recompilation. Args: dataset (FairseqDatset): dataset to bucket sizes (List[int]): all item sizes num_buckets (int): number of buckets to create pad_idx (int): padding symbol left_pad (bool): if True, pad on the left; otherwise right pad """ def __init__( self, dataset, sizes, num_buckets, pad_idx, left_pad, tensor_key=None, ): super().__init__(dataset) self.pad_idx = pad_idx self.left_pad = left_pad assert num_buckets > 0 self.buckets = get_buckets(sizes, num_buckets) self._bucketed_sizes = get_bucketed_sizes(sizes, self.buckets) self._tensor_key = tensor_key def _set_tensor(self, item, val): if self._tensor_key is None: return val item[self._tensor_key] = val return item def _get_tensor(self, item): if self._tensor_key is None: return item return item[self._tensor_key] def _pad(self, tensor, bucket_size, dim=-1): num_pad = bucket_size - tensor.size(dim) return F.pad( tensor, (num_pad if self.left_pad else 0, 0 if self.left_pad else num_pad), value=self.pad_idx, ) def __getitem__(self, index): item = self.dataset[index] bucket_size = self._bucketed_sizes[index] tensor = self._get_tensor(item) padded = self._pad(tensor, bucket_size) return self._set_tensor(item, padded) @property def sizes(self): return self._bucketed_sizes def num_tokens(self, index): return self._bucketed_sizes[index] def size(self, index): return self._bucketed_sizes[index]
COCO-LM/fairseq/fairseq/data/bucket_pad_length_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/bucket_pad_length_dataset.py", "repo_id": "COCO-LM", "token_count": 1024 }
185
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import numpy as np import torch from fairseq.data import FairseqDataset class BlockPairDataset(FairseqDataset): """Break a Dataset of tokens into sentence pair blocks for next sentence prediction as well as masked language model. High-level logics are: 1. break input tensor to tensor blocks 2. pair the blocks with 50% next sentence and 50% random sentence 3. return paired blocks as well as related segment labels Args: dataset (~torch.utils.data.Dataset): dataset to break into blocks sizes: array of sentence lengths dictionary: dictionary for the task block_size: maximum block size break_mode: mode for breaking copurs into block pairs. currently we support 2 modes doc: respect document boundaries and each part of the pair should belong to on document none: don't respect any boundary and cut tokens evenly short_seq_prob: probability for generating shorter block pairs doc_break_size: Size for empty line separating documents. Typically 1 if the sentences have eos, 0 otherwise. """ def __init__( self, dataset, dictionary, sizes, block_size, break_mode="doc", short_seq_prob=0.1, doc_break_size=1, ): super().__init__() self.dataset = dataset self.pad = dictionary.pad() self.eos = dictionary.eos() self.cls = dictionary.cls() self.mask = dictionary.mask() self.sep = dictionary.sep() self.break_mode = break_mode self.dictionary = dictionary self.short_seq_prob = short_seq_prob self.block_indices = [] assert len(dataset) == len(sizes) if break_mode == "doc": cur_doc = [] for sent_id, sz in enumerate(sizes): assert doc_break_size == 0 or sz != 0, ( "when doc_break_size is non-zero, we expect documents to be" "separated by a blank line with a single eos." ) # empty line as document separator if sz == doc_break_size: if len(cur_doc) == 0: continue self.block_indices.append(cur_doc) cur_doc = [] else: cur_doc.append(sent_id) max_num_tokens = block_size - 3 # Account for [CLS], [SEP], [SEP] self.sent_pairs = [] self.sizes = [] for doc_id, doc in enumerate(self.block_indices): self._generate_sentence_pair(doc, doc_id, max_num_tokens, sizes) elif break_mode is None or break_mode == "none": # each block should have half of the block size since we are constructing block pair sent_length = (block_size - 3) // 2 total_len = sum(dataset.sizes) length = math.ceil(total_len / sent_length) def block_at(i): start = i * sent_length end = min(start + sent_length, total_len) return (start, end) sent_indices = np.array([block_at(i) for i in range(length)]) sent_sizes = np.array([e - s for s, e in sent_indices]) dataset_index = self._sent_to_dataset_index(sent_sizes) # pair sentences self._pair_sentences(dataset_index) else: raise ValueError("Invalid break_mode: " + break_mode) def _pair_sentences(self, dataset_index): """ Give a list of evenly cut blocks/sentences, pair these sentences with 50% consecutive sentences and 50% random sentences. This is used for none break mode """ # pair sentences for sent_id, sent in enumerate(dataset_index): next_sent_label = ( 1 if np.random.rand() > 0.5 and sent_id != len(dataset_index) - 1 else 0 ) if next_sent_label: next_sent = dataset_index[sent_id + 1] else: next_sent = dataset_index[ self._skip_sampling(len(dataset_index), [sent_id, sent_id + 1]) ] self.sent_pairs.append((sent, next_sent, next_sent_label)) # The current blocks don't include the special tokens but the # sizes already account for this self.sizes.append(3 + sent[3] + next_sent[3]) def _sent_to_dataset_index(self, sent_sizes): """ Build index mapping block indices to the underlying dataset indices """ dataset_index = [] ds_idx, ds_remaining = -1, 0 for to_consume in sent_sizes: sent_size = to_consume if ds_remaining == 0: ds_idx += 1 ds_remaining = sent_sizes[ds_idx] start_ds_idx = ds_idx start_offset = sent_sizes[ds_idx] - ds_remaining while to_consume > ds_remaining: to_consume -= ds_remaining ds_idx += 1 ds_remaining = sent_sizes[ds_idx] ds_remaining -= to_consume dataset_index.append( ( start_ds_idx, # starting index in dataset start_offset, # starting offset within starting index ds_idx, # ending index in dataset sent_size, # sentence length ) ) assert ds_remaining == 0 assert ds_idx == len(self.dataset) - 1 return dataset_index def _generate_sentence_pair(self, doc, doc_id, max_num_tokens, sizes): """ Go through a single document and genrate sentence paris from it """ current_chunk = [] current_length = 0 curr = 0 # To provide more randomness, we decrease target seq length for parts of # samples (10% by default). Note that max_num_tokens is the hard threshold # for batching and will never be changed. target_seq_length = max_num_tokens if np.random.random() < self.short_seq_prob: target_seq_length = np.random.randint(2, max_num_tokens) # loop through all sentences in document while curr < len(doc): sent_id = doc[curr] current_chunk.append(sent_id) current_length = sum(sizes[current_chunk]) # split chunk and generate pair when exceed target_seq_length or # finish the loop if curr == len(doc) - 1 or current_length >= target_seq_length: # split the chunk into 2 parts a_end = 1 if len(current_chunk) > 2: a_end = np.random.randint(1, len(current_chunk) - 1) sent_a = current_chunk[:a_end] len_a = sum(sizes[sent_a]) # generate next sentence label, note that if there is only 1 sentence # in current chunk, label is always 0 next_sent_label = ( 1 if np.random.rand() > 0.5 and len(current_chunk) != 1 else 0 ) if not next_sent_label: # if next sentence label is 0, sample sent_b from a random doc target_b_length = target_seq_length - len_a rand_doc_id = self._skip_sampling(len(self.block_indices), [doc_id]) random_doc = self.block_indices[rand_doc_id] random_start = np.random.randint(0, len(random_doc)) sent_b = [] len_b = 0 for j in range(random_start, len(random_doc)): sent_b.append(random_doc[j]) len_b = sum(sizes[sent_b]) if len_b >= target_b_length: break # return the second part of the chunk since it's not used num_unused_segments = len(current_chunk) - a_end curr -= num_unused_segments else: # if next sentence label is 1, use the second part of chunk as sent_B sent_b = current_chunk[a_end:] len_b = sum(sizes[sent_b]) # currently sent_a and sent_B may be longer than max_num_tokens, # truncate them and return block idx and offsets for them sent_a, sent_b = self._truncate_sentences( sent_a, sent_b, max_num_tokens ) self.sent_pairs.append((sent_a, sent_b, next_sent_label)) self.sizes.append(3 + sent_a[3] + sent_b[3]) current_chunk = [] curr += 1 def _skip_sampling(self, total, skip_ids): """ Generate a random integer which is not in skip_ids. Sample range is [0, total) TODO: ids in skip_ids should be consecutive, we can extend it to more generic version later """ rand_id = np.random.randint(total - len(skip_ids)) return rand_id if rand_id < min(skip_ids) else rand_id + len(skip_ids) def _truncate_sentences(self, sent_a, sent_b, max_num_tokens): """ Trancate a pair of sentence to limit total length under max_num_tokens Logics: 1. Truncate longer sentence 2. Tokens to be truncated could be at the beginning or the end of the sentnce Returns: Truncated sentences represented by dataset idx """ len_a, len_b = sum(self.dataset.sizes[sent_a]), sum(self.dataset.sizes[sent_b]) front_cut_a = front_cut_b = end_cut_a = end_cut_b = 0 while True: total_length = ( len_a + len_b - front_cut_a - front_cut_b - end_cut_a - end_cut_b ) if total_length <= max_num_tokens: break if len_a - front_cut_a - end_cut_a > len_b - front_cut_b - end_cut_b: if np.random.rand() < 0.5: front_cut_a += 1 else: end_cut_a += 1 else: if np.random.rand() < 0.5: front_cut_b += 1 else: end_cut_b += 1 # calculate ds indices as well as offsets and return truncated_sent_a = self._cut_sentence(sent_a, front_cut_a, end_cut_a) truncated_sent_b = self._cut_sentence(sent_b, front_cut_b, end_cut_b) return truncated_sent_a, truncated_sent_b def _cut_sentence(self, sent, front_cut, end_cut): """ Cut a sentence based on the numbers of tokens to be cut from beginning and end Represent the sentence as dataset idx and return """ start_ds_idx, end_ds_idx, offset = sent[0], sent[-1], 0 target_len = sum(self.dataset.sizes[sent]) - front_cut - end_cut while front_cut > 0: if self.dataset.sizes[start_ds_idx] > front_cut: offset += front_cut break else: front_cut -= self.dataset.sizes[start_ds_idx] start_ds_idx += 1 while end_cut > 0: if self.dataset.sizes[end_ds_idx] > end_cut: break else: end_cut -= self.dataset.sizes[end_ds_idx] end_ds_idx -= 1 return start_ds_idx, offset, end_ds_idx, target_len def _fetch_block(self, start_ds_idx, offset, end_ds_idx, length): """ Fetch a block of tokens based on its dataset idx """ buffer = torch.cat( [self.dataset[idx] for idx in range(start_ds_idx, end_ds_idx + 1)] ) s, e = offset, offset + length return buffer[s:e] def __getitem__(self, index): block1, block2, next_sent_label = self.sent_pairs[index] block1 = self._fetch_block(*block1) block2 = self._fetch_block(*block2) return block1, block2, next_sent_label def __len__(self): return len(self.sizes) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): prefetch_idx = set() for index in indices: for block1, block2, _ in [self.sent_pairs[index]]: for ds_idx in range(block1[0], block1[2] + 1): prefetch_idx.add(ds_idx) for ds_idx in range(block2[0], block2[2] + 1): prefetch_idx.add(ds_idx) self.dataset.prefetch(prefetch_idx)
COCO-LM/fairseq/fairseq/data/legacy/block_pair_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/legacy/block_pair_dataset.py", "repo_id": "COCO-LM", "token_count": 6450 }
186
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict import torch from torch.utils.data.dataloader import default_collate from . import FairseqDataset def _flatten(dico, prefix=None): """Flatten a nested dictionary.""" new_dico = OrderedDict() if isinstance(dico, dict): prefix = prefix + "." if prefix is not None else "" for k, v in dico.items(): if v is None: continue new_dico.update(_flatten(v, prefix + k)) elif isinstance(dico, list): for i, v in enumerate(dico): new_dico.update(_flatten(v, prefix + ".[" + str(i) + "]")) else: new_dico = OrderedDict({prefix: dico}) return new_dico def _unflatten(dico): """Unflatten a flattened dictionary into a nested dictionary.""" new_dico = OrderedDict() for full_k, v in dico.items(): full_k = full_k.split(".") node = new_dico for k in full_k[:-1]: if k.startswith("[") and k.endswith("]"): k = int(k[1:-1]) if k not in node: node[k] = OrderedDict() node = node[k] node[full_k[-1]] = v return new_dico class NestedDictionaryDataset(FairseqDataset): def __init__(self, defn, sizes=None): super().__init__() self.defn = _flatten(defn) self.sizes = [sizes] if not isinstance(sizes, (list, tuple)) else sizes first = None for v in self.defn.values(): if not isinstance( v, ( FairseqDataset, torch.utils.data.Dataset, ), ): raise ValueError("Expected Dataset but found: {}".format(v.__class__)) first = first or v if len(v) > 0: assert len(v) == len(first), "dataset lengths must match" self._len = len(first) def __getitem__(self, index): return OrderedDict((k, ds[index]) for k, ds in self.defn.items()) def __len__(self): return self._len def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch suitable for forwarding with a Model """ if len(samples) == 0: return {} sample = OrderedDict() for k, ds in self.defn.items(): try: sample[k] = ds.collater([s[k] for s in samples]) except NotImplementedError: sample[k] = default_collate([s[k] for s in samples]) return _unflatten(sample) def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return max(s[index] for s in self.sizes) def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" if len(self.sizes) == 1: return self.sizes[0][index] else: return (s[index] for s in self.sizes) @property def supports_prefetch(self): """Whether this dataset supports prefetching.""" return any(ds.supports_prefetch for ds in self.defn.values()) def prefetch(self, indices): """Prefetch the data required for this epoch.""" for ds in self.defn.values(): if getattr(ds, "supports_prefetch", False): ds.prefetch(indices) @property def can_reuse_epoch_itr_across_epochs(self): return all(ds.can_reuse_epoch_itr_across_epochs for ds in self.defn.values()) def set_epoch(self, epoch): super().set_epoch(epoch) for ds in self.defn.values(): ds.set_epoch(epoch)
COCO-LM/fairseq/fairseq/data/nested_dictionary_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/nested_dictionary_dataset.py", "repo_id": "COCO-LM", "token_count": 1898 }
187
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from functools import lru_cache import numpy as np import torch from fairseq.data import Dictionary, data_utils from . import BaseWrapperDataset, LRUCacheDataset class SpanDataset(BaseWrapperDataset): """ A wrapper Dataset for sampling contigous span """ def __init__( self, dataset: torch.utils.data.Dataset, seed: int = 1, span: float = 0, ): self.dataset = LRUCacheDataset(dataset) self.span = span self.epoch = 0 self.seed = seed def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch def __getitem__(self, index: int): return self.__getitem_cached__(self.seed, self.epoch, index) @lru_cache(maxsize=16) def __getitem_cached__(self, seed: int, epoch: int, index: int): with data_utils.numpy_seed(self.seed, self.epoch, index): item = self.dataset[index] sz = len(item) if self.span > 1: span_length = min(int(self.span), sz) else: span_length = int(self.span * sz) start_idx = np.random.randint(0, sz - span_length + 1) new_item = item.clone() # it seems [CLS] could be removed in span, is that expected? return new_item[start_idx: start_idx + span_length]
COCO-LM/fairseq/fairseq/data/span_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/span_dataset.py", "repo_id": "COCO-LM", "token_count": 687 }
188
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import ast import inspect import logging import os import re from argparse import ArgumentError, ArgumentParser, Namespace from dataclasses import _MISSING_TYPE, MISSING from enum import Enum from typing import Any, Dict, List, Optional, Tuple, Type from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.configs import FairseqConfig from hydra.core.global_hydra import GlobalHydra from hydra.experimental import compose, initialize from omegaconf import DictConfig, OmegaConf, open_dict logger = logging.getLogger(__name__) def eval_str_list(x, x_type=float): if x is None: return None if isinstance(x, str): if len(x) == 0: return [] x = ast.literal_eval(x) try: return list(map(x_type, x)) except TypeError: return [x_type(x)] def interpret_dc_type(field_type): if isinstance(field_type, str): raise RuntimeError("field should be a type") if field_type == Any: return str typestring = str(field_type) if re.match( r"(typing.|^)Union\[(.*), NoneType\]$", typestring ) or typestring.startswith("typing.Optional"): return field_type.__args__[0] return field_type def gen_parser_from_dataclass( parser: ArgumentParser, dataclass_instance: FairseqDataclass, delete_default: bool = False, ) -> None: """convert a dataclass instance to tailing parser arguments""" def argparse_name(name: str): if name == "data": # normally data is positional args return name if name == "_name": # private member, skip return None return "--" + name.replace("_", "-") def get_kwargs_from_dc( dataclass_instance: FairseqDataclass, k: str ) -> Dict[str, Any]: """k: dataclass attributes""" kwargs = {} field_type = dataclass_instance._get_type(k) inter_type = interpret_dc_type(field_type) field_default = dataclass_instance._get_default(k) if isinstance(inter_type, type) and issubclass(inter_type, Enum): field_choices = [t.value for t in list(inter_type)] else: field_choices = None field_help = dataclass_instance._get_help(k) field_const = dataclass_instance._get_argparse_const(k) if isinstance(field_default, str) and field_default.startswith("${"): kwargs["default"] = field_default else: if field_default is MISSING: kwargs["required"] = True if field_choices is not None: kwargs["choices"] = field_choices if ( isinstance(inter_type, type) and (issubclass(inter_type, List) or issubclass(inter_type, Tuple)) ) or ("List" in str(inter_type) or "Tuple" in str(inter_type)): if "int" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, int) elif "float" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, float) elif "str" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, str) else: raise NotImplementedError( "parsing of type " + str(inter_type) + " is not implemented" ) if field_default is not MISSING: kwargs["default"] = ( ",".join(map(str, field_default)) if field_default is not None else None ) elif ( isinstance(inter_type, type) and issubclass(inter_type, Enum) ) or "Enum" in str(inter_type): kwargs["type"] = str if field_default is not MISSING: if isinstance(field_default, Enum): kwargs["default"] = field_default.value else: kwargs["default"] = field_default elif inter_type is bool: kwargs["action"] = ( "store_false" if field_default is True else "store_true" ) kwargs["default"] = field_default else: kwargs["type"] = inter_type if field_default is not MISSING: kwargs["default"] = field_default kwargs["help"] = field_help if field_const is not None: kwargs["const"] = field_const kwargs["nargs"] = "?" return kwargs for k in dataclass_instance._get_all_attributes(): field_name = argparse_name(dataclass_instance._get_name(k)) field_type = dataclass_instance._get_type(k) if field_name is None: continue elif inspect.isclass(field_type) and issubclass(field_type, FairseqDataclass): gen_parser_from_dataclass(parser, field_type(), delete_default) continue kwargs = get_kwargs_from_dc(dataclass_instance, k) field_args = [field_name] alias = dataclass_instance._get_argparse_alias(k) if alias is not None: field_args.append(alias) if "default" in kwargs: if isinstance(kwargs["default"], str) and kwargs["default"].startswith( "${" ): if kwargs["help"] is None: # this is a field with a name that will be added elsewhere continue else: del kwargs["default"] if delete_default and "default" in kwargs: del kwargs["default"] try: parser.add_argument(*field_args, **kwargs) except ArgumentError: pass def _set_legacy_defaults(args, cls): """Helper to set default arguments based on *add_args*.""" if not hasattr(cls, "add_args"): return import argparse parser = argparse.ArgumentParser( argument_default=argparse.SUPPRESS, allow_abbrev=False ) cls.add_args(parser) # copied from argparse.py: defaults = argparse.Namespace() for action in parser._actions: if action.dest is not argparse.SUPPRESS: if not hasattr(defaults, action.dest): if action.default is not argparse.SUPPRESS: setattr(defaults, action.dest, action.default) for key, default_value in vars(defaults).items(): if not hasattr(args, key): setattr(args, key, default_value) def _override_attr( sub_node: str, data_class: Type[FairseqDataclass], args: Namespace ) -> List[str]: overrides = [] if not inspect.isclass(data_class) or not issubclass(data_class, FairseqDataclass): return overrides def get_default(f): if not isinstance(f.default_factory, _MISSING_TYPE): return f.default_factory() return f.default for k, v in data_class.__dataclass_fields__.items(): if k.startswith("_"): # private member, skip continue val = get_default(v) if not hasattr(args, k) else getattr(args, k) field_type = interpret_dc_type(v.type) if ( isinstance(val, str) and not val.startswith("${") # not interpolation and field_type != str and ( not inspect.isclass(field_type) or not issubclass(field_type, Enum) ) # not choices enum ): # upgrade old models that stored complex parameters as string val = ast.literal_eval(val) if isinstance(val, tuple): val = list(val) v_type = getattr(v.type, "__origin__", None) if ( (v_type is List or v_type is list or v_type is Optional) # skip interpolation and not (isinstance(val, str) and val.startswith("${")) ): # if type is int but val is float, then we will crash later - try to convert here if hasattr(v.type, "__args__"): t_args = v.type.__args__ if len(t_args) == 1 and (t_args[0] is float or t_args[0] is int): val = list(map(t_args[0], val)) elif val is not None and ( field_type is int or field_type is bool or field_type is float ): try: val = field_type(val) except: pass # ignore errors here, they are often from interpolation args if val is None: overrides.append("{}.{}=null".format(sub_node, k)) elif val == "": overrides.append("{}.{}=''".format(sub_node, k)) elif isinstance(val, str): val = val.replace("'", r"\'") overrides.append("{}.{}='{}'".format(sub_node, k, val)) elif isinstance(val, FairseqDataclass): overrides += _override_attr(f"{sub_node}.{k}", type(val), args) elif isinstance(val, Namespace): sub_overrides, _ = override_module_args(val) for so in sub_overrides: overrides.append(f"{sub_node}.{k}.{so}") else: overrides.append("{}.{}={}".format(sub_node, k, val)) return overrides def migrate_registry( name, value, registry, args, overrides, deletes, use_name_as_val=False ): if value in registry: overrides.append("{}={}".format(name, value)) overrides.append("{}._name={}".format(name, value)) overrides.extend(_override_attr(name, registry[value], args)) elif use_name_as_val and value is not None: overrides.append("{}={}".format(name, value)) else: deletes.append(name) def override_module_args(args: Namespace) -> Tuple[List[str], List[str]]: """use the field in args to overrides those in cfg""" overrides = [] deletes = [] for k in FairseqConfig.__dataclass_fields__.keys(): overrides.extend( _override_attr(k, FairseqConfig.__dataclass_fields__[k].type, args) ) if args is not None: if hasattr(args, "task"): from fairseq.tasks import TASK_DATACLASS_REGISTRY migrate_registry( "task", args.task, TASK_DATACLASS_REGISTRY, args, overrides, deletes ) else: deletes.append("task") # these options will be set to "None" if they have not yet been migrated # so we can populate them with the entire flat args CORE_REGISTRIES = {"criterion", "optimizer", "lr_scheduler"} from fairseq.registry import REGISTRIES for k, v in REGISTRIES.items(): if hasattr(args, k): migrate_registry( k, getattr(args, k), v["dataclass_registry"], args, overrides, deletes, use_name_as_val=k not in CORE_REGISTRIES, ) else: deletes.append(k) no_dc = True if hasattr(args, "arch"): from fairseq.models import ARCH_MODEL_REGISTRY, ARCH_MODEL_NAME_REGISTRY if args.arch in ARCH_MODEL_REGISTRY: m_cls = ARCH_MODEL_REGISTRY[args.arch] dc = getattr(m_cls, "__dataclass", None) if dc is not None: m_name = ARCH_MODEL_NAME_REGISTRY[args.arch] overrides.append("model={}".format(m_name)) overrides.append("model._name={}".format(args.arch)) # override model params with those exist in args overrides.extend(_override_attr("model", dc, args)) no_dc = False if no_dc: deletes.append("model") return overrides, deletes def convert_namespace_to_omegaconf(args: Namespace) -> DictConfig: """Convert a flat argparse.Namespace to a structured DictConfig.""" # Here we are using field values provided in args to override counterparts inside config object overrides, deletes = override_module_args(args) # configs will be in fairseq/config after installation config_path = os.path.join("..", "config") GlobalHydra.instance().clear() with initialize(config_path=config_path): try: composed_cfg = compose("config", overrides=overrides, strict=False) except: logger.error("Error when composing. Overrides: " + str(overrides)) raise for k in deletes: composed_cfg[k] = None cfg = OmegaConf.create( OmegaConf.to_container(composed_cfg, resolve=True, enum_to_str=True) ) # hack to be able to set Namespace in dict config. this should be removed when we update to newer # omegaconf version that supports object flags, or when we migrate all existing models from omegaconf import _utils old_primitive = _utils.is_primitive_type _utils.is_primitive_type = lambda _: True if cfg.task is None and getattr(args, "task", None): cfg.task = Namespace(**vars(args)) from fairseq.tasks import TASK_REGISTRY _set_legacy_defaults(cfg.task, TASK_REGISTRY[args.task]) cfg.task._name = args.task if cfg.model is None and getattr(args, "arch", None): cfg.model = Namespace(**vars(args)) from fairseq.models import ARCH_MODEL_REGISTRY _set_legacy_defaults(cfg.model, ARCH_MODEL_REGISTRY[args.arch]) cfg.model._name = args.arch if cfg.optimizer is None and getattr(args, "optimizer", None): cfg.optimizer = Namespace(**vars(args)) from fairseq.optim import OPTIMIZER_REGISTRY _set_legacy_defaults(cfg.optimizer, OPTIMIZER_REGISTRY[args.optimizer]) cfg.optimizer._name = args.optimizer if cfg.lr_scheduler is None and getattr(args, "lr_scheduler", None): cfg.lr_scheduler = Namespace(**vars(args)) from fairseq.optim.lr_scheduler import LR_SCHEDULER_REGISTRY _set_legacy_defaults(cfg.lr_scheduler, LR_SCHEDULER_REGISTRY[args.lr_scheduler]) cfg.lr_scheduler._name = args.lr_scheduler if cfg.criterion is None and getattr(args, "criterion", None): cfg.criterion = Namespace(**vars(args)) from fairseq.criterions import CRITERION_REGISTRY _set_legacy_defaults(cfg.criterion, CRITERION_REGISTRY[args.criterion]) cfg.criterion._name = args.criterion _utils.is_primitive_type = old_primitive OmegaConf.set_struct(cfg, True) return cfg def populate_dataclass( dataclass: FairseqDataclass, args: Namespace, ) -> FairseqDataclass: for k in dataclass.__dataclass_fields__.keys(): if k.startswith("_"): # private member, skip continue if hasattr(args, k): setattr(dataclass, k, getattr(args, k)) return dataclass def overwrite_args_by_name(cfg: DictConfig, overrides: Dict[str, any]): # this will be deprecated when we get rid of argparse and model_overrides logic from fairseq.registry import REGISTRIES with open_dict(cfg): for k in cfg.keys(): # "k in cfg" will return false if its a "mandatory value (e.g. ???)" if k in cfg and isinstance(cfg[k], DictConfig): if k in overrides and isinstance(overrides[k], dict): for ok, ov in overrides[k].items(): if isinstance(ov, dict) and cfg[k][ok] is not None: overwrite_args_by_name(cfg[k][ok], ov) else: cfg[k][ok] = ov else: overwrite_args_by_name(cfg[k], overrides) elif k in cfg and isinstance(cfg[k], Namespace): for override_key, val in overrides.items(): setattr(cfg[k], override_key, val) elif k in overrides: if ( k in REGISTRIES and overrides[k] in REGISTRIES[k]["dataclass_registry"] ): cfg[k] = DictConfig( REGISTRIES[k]["dataclass_registry"][overrides[k]] ) overwrite_args_by_name(cfg[k], overrides) cfg[k]._name = overrides[k] else: cfg[k] = overrides[k] def merge_with_parent(dc: FairseqDataclass, cfg: FairseqDataclass): merged_cfg = OmegaConf.merge(dc, cfg) merged_cfg.__dict__["_parent"] = cfg.__dict__["_parent"] OmegaConf.set_struct(merged_cfg, True) return merged_cfg
COCO-LM/fairseq/fairseq/dataclass/utils.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/dataclass/utils.py", "repo_id": "COCO-LM", "token_count": 8103 }
189
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Wrapper around various loggers and progress bars (e.g., tqdm). """ import atexit import json import logging import os import sys from collections import OrderedDict from contextlib import contextmanager from numbers import Number from typing import Optional import torch from .meters import AverageMeter, StopwatchMeter, TimeMeter logger = logging.getLogger(__name__) def progress_bar( iterator, log_format: Optional[str] = None, log_interval: int = 100, epoch: Optional[int] = None, prefix: Optional[str] = None, tensorboard_logdir: Optional[str] = None, default_log_format: str = "tqdm", wandb_project: Optional[str] = None, wandb_run_name: Optional[str] = None, azureml_logging: Optional[bool] = False, ): if log_format is None: log_format = default_log_format if log_format == "tqdm" and not sys.stderr.isatty(): log_format = "simple" if log_format == "json": bar = JsonProgressBar(iterator, epoch, prefix, log_interval) elif log_format == "none": bar = NoopProgressBar(iterator, epoch, prefix) elif log_format == "simple": bar = SimpleProgressBar(iterator, epoch, prefix, log_interval) elif log_format == "tqdm": bar = TqdmProgressBar(iterator, epoch, prefix) else: raise ValueError("Unknown log format: {}".format(log_format)) if tensorboard_logdir: try: # [FB only] custom wrapper for TensorBoard import palaas # noqa from .fb_tbmf_wrapper import FbTbmfWrapper bar = FbTbmfWrapper(bar, log_interval) except ImportError: bar = TensorboardProgressBarWrapper(bar, tensorboard_logdir) if wandb_project: bar = WandBProgressBarWrapper(bar, wandb_project, run_name=wandb_run_name) if azureml_logging: bar = AzureMLProgressBarWrapper(bar) return bar def build_progress_bar( args, iterator, epoch: Optional[int] = None, prefix: Optional[str] = None, default: str = "tqdm", no_progress_bar: str = "none", ): """Legacy wrapper that takes an argparse.Namespace.""" if getattr(args, "no_progress_bar", False): default = no_progress_bar if getattr(args, "distributed_rank", 0) == 0: tensorboard_logdir = getattr(args, "tensorboard_logdir", None) else: tensorboard_logdir = None return progress_bar( iterator, log_format=args.log_format, log_interval=args.log_interval, epoch=epoch, prefix=prefix, tensorboard_logdir=tensorboard_logdir, default_log_format=default, ) def format_stat(stat): if isinstance(stat, Number): stat = "{:g}".format(stat) elif isinstance(stat, AverageMeter): stat = "{:.3f}".format(stat.avg) elif isinstance(stat, TimeMeter): stat = "{:g}".format(round(stat.avg)) elif isinstance(stat, StopwatchMeter): stat = "{:g}".format(round(stat.sum)) elif torch.is_tensor(stat): stat = stat.tolist() return stat class BaseProgressBar(object): """Abstract class for progress bars.""" def __init__(self, iterable, epoch=None, prefix=None): self.iterable = iterable self.n = getattr(iterable, "n", 0) self.epoch = epoch self.prefix = "" if epoch is not None: self.prefix += "epoch {:03d}".format(epoch) if prefix is not None: self.prefix += (" | " if self.prefix != "" else "") + prefix def __len__(self): return len(self.iterable) def __enter__(self): return self def __exit__(self, *exc): return False def __iter__(self): raise NotImplementedError def log(self, stats, tag=None, step=None): """Log intermediate stats according to log_interval.""" raise NotImplementedError def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" raise NotImplementedError def update_config(self, config): """Log latest configuration.""" pass def _str_commas(self, stats): return ", ".join(key + "=" + stats[key].strip() for key in stats.keys()) def _str_pipes(self, stats): return " | ".join(key + " " + stats[key].strip() for key in stats.keys()) def _format_stats(self, stats): postfix = OrderedDict(stats) # Preprocess stats according to datatype for key in postfix.keys(): postfix[key] = str(format_stat(postfix[key])) return postfix @contextmanager def rename_logger(logger, new_name): old_name = logger.name if new_name is not None: logger.name = new_name yield logger logger.name = old_name class JsonProgressBar(BaseProgressBar): """Log output in JSON format.""" def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000): super().__init__(iterable, epoch, prefix) self.log_interval = log_interval self.i = None self.size = None def __iter__(self): self.size = len(self.iterable) for i, obj in enumerate(self.iterable, start=self.n): self.i = i yield obj def log(self, stats, tag=None, step=None): """Log intermediate stats according to log_interval.""" step = step or self.i or 0 if step > 0 and self.log_interval is not None and step % self.log_interval == 0: update = ( self.epoch - 1 + (self.i + 1) / float(self.size) if self.epoch is not None else None ) stats = self._format_stats(stats, epoch=self.epoch, update=update) with rename_logger(logger, tag): logger.info(json.dumps(stats)) def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" self.stats = stats if tag is not None: self.stats = OrderedDict( [(tag + "_" + k, v) for k, v in self.stats.items()] ) stats = self._format_stats(self.stats, epoch=self.epoch) with rename_logger(logger, tag): logger.info(json.dumps(stats)) def _format_stats(self, stats, epoch=None, update=None): postfix = OrderedDict() if epoch is not None: postfix["epoch"] = epoch if update is not None: postfix["update"] = round(update, 3) # Preprocess stats according to datatype for key in stats.keys(): postfix[key] = format_stat(stats[key]) return postfix class NoopProgressBar(BaseProgressBar): """No logging.""" def __init__(self, iterable, epoch=None, prefix=None): super().__init__(iterable, epoch, prefix) def __iter__(self): for obj in self.iterable: yield obj def log(self, stats, tag=None, step=None): """Log intermediate stats according to log_interval.""" pass def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" pass class SimpleProgressBar(BaseProgressBar): """A minimal logger for non-TTY environments.""" def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000): super().__init__(iterable, epoch, prefix) self.log_interval = log_interval self.i = None self.size = None def __iter__(self): self.size = len(self.iterable) for i, obj in enumerate(self.iterable, start=self.n): self.i = i yield obj def log(self, stats, tag=None, step=None): """Log intermediate stats according to log_interval.""" step = step or self.i or 0 if step > 0 and self.log_interval is not None and step % self.log_interval == 0: stats = self._format_stats(stats) postfix = self._str_commas(stats) with rename_logger(logger, tag): logger.info( "{}: {:5d} / {:d} {}".format( self.prefix, self.i + 1, self.size, postfix ) ) def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" postfix = self._str_pipes(self._format_stats(stats)) with rename_logger(logger, tag): logger.info("{} | {}".format(self.prefix, postfix)) class TqdmProgressBar(BaseProgressBar): """Log to tqdm.""" def __init__(self, iterable, epoch=None, prefix=None): super().__init__(iterable, epoch, prefix) from tqdm import tqdm self.tqdm = tqdm( iterable, self.prefix, leave=False, disable=(logger.getEffectiveLevel() > logging.INFO), ) def __iter__(self): return iter(self.tqdm) def log(self, stats, tag=None, step=None): """Log intermediate stats according to log_interval.""" self.tqdm.set_postfix(self._format_stats(stats), refresh=False) def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" postfix = self._str_pipes(self._format_stats(stats)) with rename_logger(logger, tag): logger.info("{} | {}".format(self.prefix, postfix)) try: _tensorboard_writers = {} from torch.utils.tensorboard import SummaryWriter except ImportError: try: from tensorboardX import SummaryWriter except ImportError: SummaryWriter = None def _close_writers(): for w in _tensorboard_writers.values(): w.close() atexit.register(_close_writers) class TensorboardProgressBarWrapper(BaseProgressBar): """Log to tensorboard.""" def __init__(self, wrapped_bar, tensorboard_logdir): self.wrapped_bar = wrapped_bar self.tensorboard_logdir = tensorboard_logdir if SummaryWriter is None: logger.warning( "tensorboard not found, please install with: pip install tensorboard" ) def _writer(self, key): if SummaryWriter is None: return None _writers = _tensorboard_writers if key not in _writers: _writers[key] = SummaryWriter(os.path.join(self.tensorboard_logdir, key)) _writers[key].add_text("sys.argv", " ".join(sys.argv)) return _writers[key] def __iter__(self): return iter(self.wrapped_bar) def log(self, stats, tag=None, step=None): """Log intermediate stats to tensorboard.""" self._log_to_tensorboard(stats, tag, step) self.wrapped_bar.log(stats, tag=tag, step=step) def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" self._log_to_tensorboard(stats, tag, step) self.wrapped_bar.print(stats, tag=tag, step=step) def update_config(self, config): """Log latest configuration.""" # TODO add hparams to Tensorboard self.wrapped_bar.update_config(config) def _log_to_tensorboard(self, stats, tag=None, step=None): writer = self._writer(tag or "") if writer is None: return if step is None: step = stats["num_updates"] for key in stats.keys() - {"num_updates"}: if isinstance(stats[key], AverageMeter): writer.add_scalar(key, stats[key].val, step) elif isinstance(stats[key], Number): writer.add_scalar(key, stats[key], step) elif torch.is_tensor(stats[key]) and stats[key].numel() == 1: writer.add_scalar(key, stats[key].item(), step) writer.flush() try: import wandb except ImportError: wandb = None class WandBProgressBarWrapper(BaseProgressBar): """Log to Weights & Biases.""" def __init__(self, wrapped_bar, wandb_project, run_name=None): self.wrapped_bar = wrapped_bar if wandb is None: logger.warning("wandb not found, pip install wandb") return # reinit=False to ensure if wandb.init() is called multiple times # within one process it still references the same run wandb.init(project=wandb_project, reinit=False, name=run_name) def __iter__(self): return iter(self.wrapped_bar) def log(self, stats, tag=None, step=None): """Log intermediate stats to tensorboard.""" self._log_to_wandb(stats, tag, step) self.wrapped_bar.log(stats, tag=tag, step=step) def print(self, stats, tag=None, step=None): """Print end-of-epoch stats.""" self._log_to_wandb(stats, tag, step) self.wrapped_bar.print(stats, tag=tag, step=step) def update_config(self, config): """Log latest configuration.""" if wandb is not None: wandb.config.update(config) self.wrapped_bar.update_config(config) def _log_to_wandb(self, stats, tag=None, step=None): if wandb is None: return if step is None: step = stats["num_updates"] prefix = "" if tag is None else tag + "/" for key in stats.keys() - {"num_updates"}: if isinstance(stats[key], AverageMeter): wandb.log({prefix + key: stats[key].val}, step=step) elif isinstance(stats[key], Number): wandb.log({prefix + key: stats[key]}, step=step) try: from azureml.core import Run except ImportError: Run = None class AzureMLProgressBarWrapper(BaseProgressBar): """Log to Azure ML""" def __init__(self, wrapped_bar): self.wrapped_bar = wrapped_bar if Run is None: logger.warning("azureml.core not found, pip install azureml-core") return self.run = Run.get_context() def __exit__(self, *exc): if Run is not None: self.run.complete() return False def __iter__(self): return iter(self.wrapped_bar) def log(self, stats, tag=None, step=None): """Log intermediate stats to AzureML""" self._log_to_azureml(stats, tag, step) self.wrapped_bar.log(stats, tag=tag, step=step) def print(self, stats, tag=None, step=None): """Print end-of-epoch stats""" self._log_to_azureml(stats, tag, step) self.wrapped_bar.print(stats, tag=tag, step=step) def update_config(self, config): """Log latest configuration.""" self.wrapped_bar.update_config(config) def _log_to_azureml(self, stats, tag=None, step=None): if Run is None: return if step is None: step = stats['num_updates'] prefix = '' if tag is None else tag + '/' for key in stats.keys() - {'num_updates'}: name = prefix + key if isinstance(stats[key], AverageMeter): self.run.log_row(name=name, **{'step': step, key: stats[key].val}) elif isinstance(stats[key], Number): self.run.log_row(name=name, **{'step': step, key: stats[key]})
COCO-LM/fairseq/fairseq/logging/progress_bar.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/logging/progress_bar.py", "repo_id": "COCO-LM", "token_count": 6660 }
190
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import argparse import importlib import os from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import merge_with_parent, populate_dataclass from hydra.core.config_store import ConfigStore from .composite_encoder import CompositeEncoder from .distributed_fairseq_model import DistributedFairseqModel from .fairseq_decoder import FairseqDecoder from .fairseq_encoder import FairseqEncoder from .fairseq_incremental_decoder import FairseqIncrementalDecoder from .fairseq_model import ( BaseFairseqModel, FairseqEncoderDecoderModel, FairseqEncoderModel, FairseqLanguageModel, FairseqModel, FairseqMultiModel, ) MODEL_REGISTRY = {} MODEL_DATACLASS_REGISTRY = {} ARCH_MODEL_REGISTRY = {} ARCH_MODEL_NAME_REGISTRY = {} ARCH_MODEL_INV_REGISTRY = {} ARCH_CONFIG_REGISTRY = {} __all__ = [ "BaseFairseqModel", "CompositeEncoder", "DistributedFairseqModel", "FairseqDecoder", "FairseqEncoder", "FairseqEncoderDecoderModel", "FairseqEncoderModel", "FairseqIncrementalDecoder", "FairseqLanguageModel", "FairseqModel", "FairseqMultiModel", ] def build_model(cfg: FairseqDataclass, task): model = None model_type = getattr(cfg, "_name", None) or getattr(cfg, "arch", None) if not model_type and len(cfg) == 1: # this is hit if config object is nested in directory that is named after model type model_type = next(iter(cfg)) if model_type in MODEL_DATACLASS_REGISTRY: cfg = cfg[model_type] else: raise Exception( "Could not infer model type from directory. Please add _name field to indicate model type. " "Available models: " + str(MODEL_DATACLASS_REGISTRY.keys()) + " Requested model type: " + model_type ) if model_type in ARCH_MODEL_REGISTRY: # case 1: legacy models model = ARCH_MODEL_REGISTRY[model_type] elif model_type in MODEL_DATACLASS_REGISTRY: # case 2: config-driven models model = MODEL_REGISTRY[model_type] if model_type in MODEL_DATACLASS_REGISTRY: # set defaults from dataclass. note that arch name and model name can be the same dc = MODEL_DATACLASS_REGISTRY[model_type] if isinstance(cfg, argparse.Namespace): cfg = populate_dataclass(dc(), cfg) else: cfg = merge_with_parent(dc(), cfg) assert model is not None, ( f"Could not infer model type from {cfg}. " f"Available models: " + str(MODEL_DATACLASS_REGISTRY.keys()) + " Requested model type: " + model_type ) return model.build_model(cfg, task) def register_model(name, dataclass=None): """ New model types can be added to fairseq with the :func:`register_model` function decorator. For example:: @register_model('lstm') class LSTM(FairseqEncoderDecoderModel): (...) .. note:: All models must implement the :class:`BaseFairseqModel` interface. Typically you will extend :class:`FairseqEncoderDecoderModel` for sequence-to-sequence tasks or :class:`FairseqLanguageModel` for language modeling tasks. Args: name (str): the name of the model """ def register_model_cls(cls): if name in MODEL_REGISTRY: raise ValueError("Cannot register duplicate model ({})".format(name)) if not issubclass(cls, BaseFairseqModel): raise ValueError( "Model ({}: {}) must extend BaseFairseqModel".format(name, cls.__name__) ) MODEL_REGISTRY[name] = cls if dataclass is not None and not issubclass(dataclass, FairseqDataclass): raise ValueError( "Dataclass {} must extend FairseqDataclass".format(dataclass) ) cls.__dataclass = dataclass if dataclass is not None: MODEL_DATACLASS_REGISTRY[name] = dataclass cs = ConfigStore.instance() node = dataclass() node._name = name cs.store(name=name, group="model", node=node, provider="fairseq") @register_model_architecture(name, name) def noop(_): pass return cls return register_model_cls def register_model_architecture(model_name, arch_name): """ New model architectures can be added to fairseq with the :func:`register_model_architecture` function decorator. After registration, model architectures can be selected with the ``--arch`` command-line argument. For example:: @register_model_architecture('lstm', 'lstm_luong_wmt_en_de') def lstm_luong_wmt_en_de(cfg): args.encoder_embed_dim = getattr(cfg.model, 'encoder_embed_dim', 1000) (...) The decorated function should take a single argument *cfg*, which is a :class:`omegaconf.DictConfig`. The decorated function should modify these arguments in-place to match the desired architecture. Args: model_name (str): the name of the Model (Model must already be registered) arch_name (str): the name of the model architecture (``--arch``) """ def register_model_arch_fn(fn): if model_name not in MODEL_REGISTRY: raise ValueError( "Cannot register model architecture for unknown model type ({})".format( model_name ) ) if arch_name in ARCH_MODEL_REGISTRY: raise ValueError( "Cannot register duplicate model architecture ({})".format(arch_name) ) if not callable(fn): raise ValueError( "Model architecture must be callable ({})".format(arch_name) ) ARCH_MODEL_REGISTRY[arch_name] = MODEL_REGISTRY[model_name] ARCH_MODEL_NAME_REGISTRY[arch_name] = model_name ARCH_MODEL_INV_REGISTRY.setdefault(model_name, []).append(arch_name) ARCH_CONFIG_REGISTRY[arch_name] = fn return fn return register_model_arch_fn # automatically import any Python files in the models/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("fairseq.models." + model_name) # extra `model_parser` for sphinx if model_name in MODEL_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_archs = parser.add_argument_group("Named architectures") group_archs.add_argument( "--arch", choices=ARCH_MODEL_INV_REGISTRY[model_name] ) group_args = parser.add_argument_group("Additional command-line arguments") MODEL_REGISTRY[model_name].add_args(group_args) globals()[model_name + "_parser"] = parser
COCO-LM/fairseq/fairseq/models/__init__.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/__init__.py", "repo_id": "COCO-LM", "token_count": 3133 }
191
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from typing import Dict, List, Optional import torch from fairseq.models import ( FairseqIncrementalDecoder, FairseqLanguageModel, register_model, register_model_architecture, ) logger = logging.getLogger(__name__) DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("hf_gpt2") class HuggingFaceGPT2LanguageModel(FairseqLanguageModel): def __init__(self, decoder): super().__init__(decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--embed-dim', type=int, metavar='N', help='embedding dimension') parser.add_argument('--num-attention-heads', type=int, metavar='N', help='num attention heads') parser.add_argument('--num-layers', type=int, metavar='N', help='num layers') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability for all fully connected layers ' 'in the embeddings, encoder, and pooler') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" default_architecture(args) return cls(HuggingFaceGPT2Decoder(args, task)) class HuggingFaceGPT2Decoder(FairseqIncrementalDecoder): def __init__(self, args, task): try: from transformers import GPT2Config, GPT2LMHeadModel except ImportError: raise ImportError( "\n\nPlease install huggingface/transformers with:" "\n\n pip install transformers" ) super().__init__(task.target_dictionary) config = GPT2Config( vocab_size=len(task.target_dictionary), n_positions=args.max_target_positions + 1, n_ctx=args.max_target_positions, n_embd=args.embed_dim, n_layer=args.num_layers, n_head=args.num_attention_heads, resid_pdrop=args.dropout, embd_pdrop=args.dropout, attn_pdrop=args.attention_dropout, layer_norm_epsilon=1e-6, ) self.model = GPT2LMHeadModel(config) # set zero embedding for padding symbol self.pad_idx = task.target_dictionary.pad() self.model.transformer.wte.weight.data[self.pad_idx].zero_() self.model.transformer.wpe.weight.data[0].zero_() def forward( self, prev_output_tokens, src_lengths=None, incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None, encoder_out=None, ): features = self.extract_features(prev_output_tokens, incremental_state) lm_logits = self.model.lm_head(features) return (lm_logits,) def extract_features( self, prev_output_tokens, incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None, ): if incremental_state: past = self.get_incremental_state("past") else: past = None # don't attend to padding symbols attention_mask = prev_output_tokens.ne(self.pad_idx).int() # set position ids to exclude padding symbols position_ids = attention_mask * ( torch.arange(1, 1 + prev_output_tokens.size(1)) .to(prev_output_tokens) .repeat(prev_output_tokens.size(0), 1) ) outputs = self.model.transformer( input_ids=prev_output_tokens, past=past, attention_mask=attention_mask, position_ids=position_ids, ) last_hidden_states = outputs[0] if incremental_state: self.set_incremental_state(incremental_state, "past", outputs[1]) return last_hidden_states def max_positions(self): return self.model.config.n_positions - 1 @register_model_architecture("hf_gpt2", "hf_gpt2") def default_architecture(args): if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) args.embed_dim = getattr(args, "embed_dim", 768) args.num_attention_heads = getattr(args, "num_attention_heads", 12) args.num_layers = getattr(args, "num_layers", 12) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) @register_model_architecture("hf_gpt2", "hf_gpt2_medium") def hf_gpt2_medium(args): args.embed_dim = getattr(args, "embed_dim", 1024) args.num_attention_heads = getattr(args, "num_attention_heads", 16) args.num_layers = getattr(args, "num_layers", 24) default_architecture(args) @register_model_architecture("hf_gpt2", "hf_gpt2_large") def hf_gpt2_large(args): args.embed_dim = getattr(args, "embed_dim", 1280) args.num_attention_heads = getattr(args, "num_attention_heads", 20) args.num_layers = getattr(args, "num_layers", 36) default_architecture(args) @register_model_architecture("hf_gpt2", "hf_gpt2_xl") def hf_gpt2_xl(args): args.embed_dim = getattr(args, "embed_dim", 1600) args.num_attention_heads = getattr(args, "num_attention_heads", 25) args.num_layers = getattr(args, "num_layers", 48) default_architecture(args)
COCO-LM/fairseq/fairseq/models/huggingface/hf_gpt2.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/huggingface/hf_gpt2.py", "repo_id": "COCO-LM", "token_count": 2626 }
192
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq.models.nat import ( _apply_del_words, _apply_ins_masks, _apply_ins_words, _fill, _skip, _skip_encoder_out, ) class _EnsembleModelEncoder(object): def __init__(self, models): self.models = models def reorder_encoder_out(self, encoder_outs, new_order): encoder_outs = [ model.encoder.reorder_encoder_out(encoder_out, new_order) for model, encoder_out in zip(self.models, encoder_outs) ] return encoder_outs class BasicEnsembleModel(torch.nn.Module): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__() self.models = torch.nn.ModuleList(models) self.bos = self.models[0].decoder.dictionary.bos() self.eos = self.models[0].decoder.dictionary.eos() self.pad = self.models[0].decoder.dictionary.pad() self.unk = self.models[0].decoder.dictionary.unk() self.encoder = _EnsembleModelEncoder(self.models) def has_encoder(self): return hasattr(self.models[0], "encoder") def max_decoder_positions(self): return min(m.max_decoder_positions() for m in self.models) @torch.no_grad() def forward_encoder(self, encoder_input): if not self.has_encoder(): return None return [model.forward_encoder(encoder_input) for model in self.models] @torch.no_grad() def forward_decoder(self, *inputs): raise NotImplementedError def initialize_output_tokens(self, *inputs): raise NotImplementedError class EnsembleLevT(BasicEnsembleModel): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__(models) @torch.no_grad() def forward_decoder( self, decoder_out, encoder_outs, eos_penalty=0.0, max_ratio=None, **kwargs ): # LevT ensembling # A pipeline of three steps: deletion, placeholder, and word insertion. # We need to average scores in each step in a pipeline way because of dependence. # deletion output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores attn = decoder_out.attn bsz = output_tokens.size(0) if max_ratio is None: max_lens = output_tokens.new().fill_(255) else: if not encoder_outs[0]["encoder_padding_mask"]: src_lens = ( encoder_outs[0]["encoder_out"][0].new(bsz) .fill_(encoder_outs[0]["encoder_out"][0].size(1)) ) else: src_lens = (~encoder_outs[0]["encoder_padding_mask"][0]).sum(1) max_lens = (src_lens * max_ratio).clamp(min=10).long() # delete words # do not delete tokens if it is <s> </s> can_del_word = output_tokens.ne(self.pad).sum(1) > 2 if can_del_word.sum() != 0: # we cannot delete, skip output_tokens, output_scores, attn = self.forward_word_del( encoder_outs, output_tokens, output_scores, attn, can_del_word, ) # insert placeholders can_ins_mask = output_tokens.ne(self.pad).sum(1) < max_lens if can_ins_mask.sum() != 0: output_tokens, output_scores = self.forward_mask_ins( encoder_outs, output_tokens, output_scores, can_ins_mask, eos_penalty, max_lens, ) # insert words can_ins_word = output_tokens.eq(self.unk).sum(1) > 0 if can_ins_word.sum() != 0: output_tokens, output_scores, attn = self.forward_word_ins( encoder_outs, output_tokens, output_scores, attn, can_ins_word, ) # delete some unnecessary paddings cut_off = output_tokens.ne(self.pad).sum(1).max() output_tokens = output_tokens[:, :cut_off] output_scores = output_scores[:, :cut_off] attn = None if attn is None else attn[:, :cut_off, :] return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=attn, history=None, ) def forward_word_del( self, encoder_outs, output_tokens, output_scores, attn, can_del_word ): word_del_score_avg = [] word_del_attn_avg = [] for model, encoder_out in zip(self.models, encoder_outs): word_del_out, word_del_attn = model.decoder.forward_word_del( _skip(output_tokens, can_del_word), _skip_encoder_out(model.encoder, encoder_out, can_del_word), ) word_del_score = F.log_softmax(word_del_out, 2) word_del_score_avg.append(word_del_score) word_del_attn_avg.append(word_del_attn) word_del_score_avg = torch.logsumexp( torch.stack(word_del_score_avg, dim=0), dim=0 ) - math.log(len(self.models)) word_del_pred = word_del_score_avg.max(-1)[1].bool() if word_del_attn_avg[0] is not None: word_del_attn_avg = torch.stack(word_del_attn_avg, dim=0) / len(self.models) else: word_del_attn_avg = None _tokens, _scores, _attn = _apply_del_words( output_tokens[can_del_word], output_scores[can_del_word], word_del_attn_avg, word_del_pred, self.pad, self.bos, self.eos, ) output_tokens = _fill(output_tokens, can_del_word, _tokens, self.pad) output_scores = _fill(output_scores, can_del_word, _scores, 0) attn = _fill(attn, can_del_word, _attn, 0.0) return output_tokens, output_scores, attn def forward_mask_ins( self, encoder_outs, output_tokens, output_scores, can_ins_mask, eos_penalty, max_lens, ): mask_ins_score_avg = [] for model, encoder_out in zip(self.models, encoder_outs): mask_ins_out, _ = model.decoder.forward_mask_ins( _skip(output_tokens, can_ins_mask), _skip_encoder_out(model.encoder, encoder_out, can_ins_mask), ) mask_ins_score = F.log_softmax(mask_ins_out, 2) if eos_penalty > 0.0: mask_ins_score[:, :, 0] -= eos_penalty mask_ins_score_avg.append(mask_ins_score) mask_ins_score_avg = torch.logsumexp( torch.stack(mask_ins_score_avg, dim=0), dim=0 ) - math.log(len(self.models)) mask_ins_pred = mask_ins_score_avg.max(-1)[1] mask_ins_pred = torch.min( mask_ins_pred, max_lens[can_ins_mask, None].expand_as(mask_ins_pred) ) _tokens, _scores = _apply_ins_masks( output_tokens[can_ins_mask], output_scores[can_ins_mask], mask_ins_pred, self.pad, self.unk, self.eos, ) output_tokens = _fill(output_tokens, can_ins_mask, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_mask, _scores, 0) return output_tokens, output_scores def forward_word_ins( self, encoder_outs, output_tokens, output_scores, attn, can_ins_word ): word_ins_score_avg = [] word_ins_attn_avg = [] for model, encoder_out in zip(self.models, encoder_outs): word_ins_out, word_ins_attn = model.decoder.forward_word_ins( _skip(output_tokens, can_ins_word), _skip_encoder_out(model.encoder, encoder_out, can_ins_word), ) word_ins_score = F.log_softmax(word_ins_out, 2) word_ins_score_avg.append(word_ins_score) word_ins_attn_avg.append(word_ins_attn) word_ins_score_avg = torch.logsumexp( torch.stack(word_ins_score_avg, dim=0), dim=0 ) - math.log(len(self.models)) if word_ins_attn_avg[0] is not None: word_ins_attn_avg = torch.stack(word_ins_attn_avg, dim=0) / len(self.models) else: word_ins_attn_avg = None word_ins_score_max, word_ins_pred = word_ins_score_avg.max(-1) _tokens, _scores = _apply_ins_words( output_tokens[can_ins_word], output_scores[can_ins_word], word_ins_pred, word_ins_score_max, self.unk, ) output_tokens = _fill(output_tokens, can_ins_word, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_word, _scores, 0) attn = _fill(attn, can_ins_word, word_ins_attn, 0.0) return output_tokens, output_scores, attn def initialize_output_tokens(self, encoder_outs, src_tokens): # LevT doesn't do length prediction. return self.models[0].initialize_output_tokens(encoder_outs[0], src_tokens)
COCO-LM/fairseq/fairseq/models/nat/nonautoregressive_ensembles.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/nat/nonautoregressive_ensembles.py", "repo_id": "COCO-LM", "token_count": 4769 }
193
from .squad_head import * # noqa
COCO-LM/fairseq/fairseq/models/squad/__init__.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/squad/__init__.py", "repo_id": "COCO-LM", "token_count": 12 }
194
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn from torch.nn.modules.utils import _single from torch import Tensor class ConvTBC(torch.nn.Module): """1D convolution over an input of shape (time x batch x channel) The implementation uses gemm to perform the convolution. This implementation is faster than cuDNN for small kernel sizes. """ def __init__(self, in_channels, out_channels, kernel_size, padding=0): super(ConvTBC, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _single(kernel_size) self.padding = _single(padding) self.weight = torch.nn.Parameter( torch.Tensor(self.kernel_size[0], in_channels, out_channels) ) self.bias = torch.nn.Parameter(torch.Tensor(out_channels)) self.reset_parameters() def reset_parameters(self): nn.init.xavier_normal_(self.weight) nn.init.zeros_(self.bias) def conv_tbc(self, input: Tensor): return torch.conv_tbc( input.contiguous(), self.weight, self.bias, self.padding[0] ) def forward(self, input: Tensor): return self.conv_tbc(input) def __repr__(self): s = ( "{name}({in_channels}, {out_channels}, kernel_size={kernel_size}" ", padding={padding}" ) if self.bias is None: s += ", bias=False" s += ")" return s.format(name=self.__class__.__name__, **self.__dict__)
COCO-LM/fairseq/fairseq/modules/conv_tbc.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/conv_tbc.py", "repo_id": "COCO-LM", "token_count": 701 }
195
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ See "Gaussian Error Linear Units (GELUs)" by Dan Hendrycks and Kevin Gimpel with the corresponding GitHub repo: https://github.com/hendrycks/GELUs """ import math import torch import torch.nn as nn def gelu_accurate(x): if not hasattr(gelu_accurate, "_a"): gelu_accurate._a = math.sqrt(2 / math.pi) return ( 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) ) def gelu(x: torch.Tensor) -> torch.Tensor: # it is safe to use fp16/bf16 here, as pytorch already implemented fused_gelu (use fp32 for calculation internally) return torch.nn.functional.gelu(x)
COCO-LM/fairseq/fairseq/modules/gelu.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/gelu.py", "repo_id": "COCO-LM", "token_count": 295 }
196
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.quant_noise import quant_noise from torch import Tensor, nn from torch.nn import Parameter try: import fused_softmax_dropout_cuda except ImportError: fused_softmax_dropout_cuda = None print("import fused_softmax_dropout_cuda, please install fused_ops", file=sys.stderr) class SoftmaxDropout(torch.autograd.Function) : @staticmethod def forward(ctx, is_training, heads, inputs, dropout_prob): heads_t = torch.tensor([heads]) dropout_prob_t = torch.tensor([dropout_prob]) dropout_results, \ dropout_mask, \ softmax_results = \ fused_softmax_dropout_cuda.forward( \ is_training, \ heads, \ inputs, \ dropout_prob) if is_training: ctx.save_for_backward( heads_t, \ softmax_results, \ dropout_mask, \ dropout_prob_t) if is_training: return dropout_results.detach() else: return softmax_results.detach() @staticmethod def backward(ctx, output_grads): heads_t, \ softmax_results, \ dropout_mask, \ dropout_prob_t = ctx.saved_tensors input_grads = \ fused_softmax_dropout_cuda.backward( \ heads_t[0], \ output_grads, \ softmax_results, \ dropout_mask, \ dropout_prob_t[0]) return None, None, input_grads, None, fast_softmax_dropout_func = SoftmaxDropout.apply class SelfMultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, dropout=0.0, bias=True, scaling_factor=1, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = (self.head_dim * scaling_factor) ** -0.5 self.in_proj = nn.Linear(embed_dim, embed_dim * 3, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.onnx_trace = False self.tpu = False def prepare_for_onnx_export_(self): self.onnx_trace = True def prepare_for_tpu_(self, **kwargs): self.tpu = True def forward( self, query, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, attn_bias: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] q, k, v = self.in_proj(query).chunk(3,dim=-1) #, self.k_proj(query), self.v_proj(query) q = ( q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) * self.scaling ) if k is not None: k = ( k.contiguous().view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous().view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) assert k is not None src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len attn_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if not self.tpu: attn_weights.masked_fill_( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf") ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float('-inf')) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attn_bias is not None: attn_weights += attn_bias if before_softmax: return attn_weights, v attn_probs = fast_softmax_dropout_func(self.training, self.num_heads, attn_weights, self.dropout) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) ret_attn_weights = None if need_weights: ret_attn_weights = attn_weights.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads ret_attn_weights = attn_weights.mean(dim=0) return attn, ret_attn_weights @with_incremental_state class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads # self.dropout_module = FairseqDropout( # dropout, module_name=self.__class__.__name__ # ) self.dropout = dropout self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) # Edit if self.qkv_same_dim: self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) else: self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) # self.k_proj = quant_noise( # nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size # ) # self.v_proj = quant_noise( # nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size # ) # self.q_proj = quant_noise( # nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size # ) # self.out_proj = quant_noise( # nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size # ) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False self.enable_torch_version = False if hasattr(F, "multi_head_attention_forward"): self.enable_torch_version = True else: self.enable_torch_version = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): if self.qkv_same_dim: nn.init.xavier_uniform_(self.in_proj_weight) else: nn.init.xavier_uniform_(self.k_proj_weight) nn.init.xavier_uniform_(self.v_proj_weight) nn.init.xavier_uniform_(self.q_proj_weight) # if self.qkv_same_dim: # # Empirically observed the convergence to be much better with # # the scaled initialization # nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) # nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) # nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) # else: # nn.init.xavier_uniform_(self.k_proj.weight) # nn.init.xavier_uniform_(self.v_proj.weight) # nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.) nn.init.constant_(self.out_proj.bias, 0.) # if self.out_proj.bias is not None: # nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True is_tpu = query.device.type == "xla" tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if self.enable_torch_version and not self.onnx_trace and incremental_state is None and not static_kv: if self.qkv_same_dim: return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask) else: return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) # if ( # not self.onnx_trace # and not is_tpu # don't use PyTorch version on TPUs # and incremental_state is None # and not static_kv # # A workaround for quantization to work. Otherwise JIT compilation # # treats bias in linear module as method. # and not torch.jit.is_scripting() # ): # assert key is not None and value is not None # return F.multi_head_attention_forward( # query, # key, # value, # self.embed_dim, # self.num_heads, # torch.empty([0]), # torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), # self.bias_k, # self.bias_v, # self.add_zero_attn, # self.dropout_module.p, # self.out_proj.weight, # self.out_proj.bias, # self.training or self.dropout_module.apply_during_inference, # key_padding_mask, # need_weights, # attn_mask, # use_separate_proj_weight=True, # q_proj_weight=self.q_proj.weight, # k_proj_weight=self.k_proj.weight, # v_proj_weight=self.v_proj.weight, # ) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if not is_tpu: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = utils.softmax( attn_weights, dim=-1, onnx_trace=self.onnx_trace ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: filler = torch.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) elif key_padding_mask is not None: filler = torch.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask @torch.jit.export def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: if self.encoder_decoder_attention and input_buffer_k.size( 0 ) == new_order.size(0): break input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + "in_proj_weight"): # in_proj_weight used to be q + k + v with same dimensions dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] keys_to_remove.append(k) k_bias = prefix + "in_proj_bias" if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ dim : 2 * dim ] items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] keys_to_remove.append(prefix + "in_proj_bias") for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value
COCO-LM/fairseq/fairseq/modules/multihead_attention.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/multihead_attention.py", "repo_id": "COCO-LM", "token_count": 16513 }
197
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from torch.nn.modules.conv import _ConvNd from torch.nn.modules.utils import _pair from ..ops import emulate_int class IntConv2d(_ConvNd): """ Quantized counterpart of the nn.Conv2d module that applies QuantNoise during training. Args: - standard nn.Conv2d parameters - p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights) - bits: number of bits - method: choose among {"tensor", "histogram", "channel"} - update_step: recompute scale and zero_point every update_steps iterations Remarks: - We use the straight-thgourh estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - At test time, the weights are fully quantized """ def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode="zeros", p=0, bits=8, method="histogram", update_step=1000, ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(IntConv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode, ) # quantization parameters self.p = p self.bits = bits self.method = method self.update_step = update_step self.counter = 0 def _conv_forward(self, input, weight): if self.padding_mode != "zeros": return F.conv2d( F.pad(input, self._padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups, ) return F.conv2d( input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups, ) def forward(self, input): # train with QuantNoise and evaluate the fully quantized network p = self.p if self.training else 1 # update parameters every 100 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # quantize weight weight_quantized, self.scale, self.zero_point = emulate_int( self.weight.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(self.weight) mask.bernoulli_(1 - p) noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) weight = ( torch.clamp(self.weight, clamp_low.item(), clamp_high.item()) + noise.detach() ) # return output output = self._conv_forward(input, weight) return output def extra_repr(self): return ( "in_channels={}, out_channels={}, kernel_size={}, stride={}, " "padding={}, dilation={}, groups={}, bias={}, quant_noise={}, " "bits={}, method={}".format( self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding, self.dilation, self.groups, self.bias is not None, self.p, self.bits, self.method, ) )
COCO-LM/fairseq/fairseq/modules/quantization/scalar/modules/qconv.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/quantization/scalar/modules/qconv.py", "repo_id": "COCO-LM", "token_count": 2199 }
198
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals from collections.abc import Iterable from itertools import repeat import torch import torch.nn as nn def _pair(v): if isinstance(v, Iterable): assert len(v) == 2, "len(v) != 2" return v return tuple(repeat(v, 2)) def infer_conv_output_dim(conv_op, input_dim, sample_inchannel): sample_seq_len = 200 sample_bsz = 10 x = torch.randn(sample_bsz, sample_inchannel, sample_seq_len, input_dim) # N x C x H x W # N: sample_bsz, C: sample_inchannel, H: sample_seq_len, W: input_dim x = conv_op(x) # N x C x H x W x = x.transpose(1, 2) # N x H x C x W bsz, seq = x.size()[:2] per_channel_dim = x.size()[3] # bsz: N, seq: H, CxW the rest return x.contiguous().view(bsz, seq, -1).size(-1), per_channel_dim class VGGBlock(torch.nn.Module): """ VGG motibated cnn module https://arxiv.org/pdf/1409.1556.pdf Args: in_channels: (int) number of input channels (typically 1) out_channels: (int) number of output channels conv_kernel_size: convolution channels pooling_kernel_size: the size of the pooling window to take a max over num_conv_layers: (int) number of convolution layers input_dim: (int) input dimension conv_stride: the stride of the convolving kernel. Can be a single number or a tuple (sH, sW) Default: 1 padding: implicit paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: None layer_norm: (bool) if layer norm is going to be applied. Default: False Shape: Input: BxCxTxfeat, i.e. (batch_size, input_size, timesteps, features) Output: BxCxTxfeat, i.e. (batch_size, input_size, timesteps, features) """ def __init__( self, in_channels, out_channels, conv_kernel_size, pooling_kernel_size, num_conv_layers, input_dim, conv_stride=1, padding=None, layer_norm=False, ): assert ( input_dim is not None ), "Need input_dim for LayerNorm and infer_conv_output_dim" super(VGGBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.conv_kernel_size = _pair(conv_kernel_size) self.pooling_kernel_size = _pair(pooling_kernel_size) self.num_conv_layers = num_conv_layers self.padding = ( tuple(e // 2 for e in self.conv_kernel_size) if padding is None else _pair(padding) ) self.conv_stride = _pair(conv_stride) self.layers = nn.ModuleList() for layer in range(num_conv_layers): conv_op = nn.Conv2d( in_channels if layer == 0 else out_channels, out_channels, self.conv_kernel_size, stride=self.conv_stride, padding=self.padding, ) self.layers.append(conv_op) if layer_norm: conv_output_dim, per_channel_dim = infer_conv_output_dim( conv_op, input_dim, in_channels if layer == 0 else out_channels ) self.layers.append(nn.LayerNorm(per_channel_dim)) input_dim = per_channel_dim self.layers.append(nn.ReLU()) if self.pooling_kernel_size is not None: pool_op = nn.MaxPool2d(kernel_size=self.pooling_kernel_size, ceil_mode=True) self.layers.append(pool_op) self.total_output_dim, self.output_dim = infer_conv_output_dim( pool_op, input_dim, out_channels ) def forward(self, x): for i, _ in enumerate(self.layers): x = self.layers[i](x) return x
COCO-LM/fairseq/fairseq/modules/vggblock.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/vggblock.py", "repo_id": "COCO-LM", "token_count": 1898 }
199
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.optim import LegacyFairseqOptimizer, register_optimizer @register_optimizer("lamb") class FairseqLAMB(LegacyFairseqOptimizer): """LAMB optimizer.""" def __init__(self, args, params): super().__init__(args) try: from apex.optimizers import FusedLAMB self._optimizer = FusedLAMB(params, **self.optimizer_config) except ImportError: raise ImportError("Please install apex to use LAMB optimizer") @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--lamb-betas', default='(0.9, 0.999)', metavar='B', help='betas for LAMB optimizer') parser.add_argument('--lamb-eps', type=float, default=1e-8, metavar='D', help='epsilon for LAMB optimizer') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.args.lr[0], "betas": eval(self.args.lamb_betas), "eps": self.args.lamb_eps, "weight_decay": self.args.weight_decay, } @property def supports_flat_params(self): return False
COCO-LM/fairseq/fairseq/optim/fused_lamb.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/optim/fused_lamb.py", "repo_id": "COCO-LM", "token_count": 794 }
200
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import multiprocessing import os import pdb import sys __all__ = ["set_trace"] _stdin = [None] _stdin_lock = multiprocessing.Lock() try: _stdin_fd = sys.stdin.fileno() except Exception: _stdin_fd = None class MultiprocessingPdb(pdb.Pdb): """A Pdb wrapper that works in a multiprocessing environment. Usage: `from fairseq import pdb; pdb.set_trace()` """ def __init__(self): pdb.Pdb.__init__(self, nosigint=True) def _cmdloop(self): stdin_bak = sys.stdin with _stdin_lock: try: if _stdin_fd is not None: if not _stdin[0]: _stdin[0] = os.fdopen(_stdin_fd) sys.stdin = _stdin[0] self.cmdloop() finally: sys.stdin = stdin_bak def set_trace(): pdb = MultiprocessingPdb() pdb.set_trace(sys._getframe().f_back)
COCO-LM/fairseq/fairseq/pdb.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/pdb.py", "repo_id": "COCO-LM", "token_count": 518 }
201
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from fairseq import utils from fairseq.data import ( AppendTokenDataset, Dictionary, IdDataset, LMContextWindowDataset, MonolingualDataset, NestedDictionaryDataset, NumelDataset, PadDataset, PrependTokenDataset, StripTokenDataset, TokenBlockDataset, TruncatedDictionary, data_utils, ) from fairseq.data.indexed_dataset import get_available_dataset_impl from fairseq.data.shorten_dataset import maybe_shorten_dataset from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.tasks import LegacyFairseqTask, register_task from omegaconf import II SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) logger = logging.getLogger(__name__) @dataclass class LanguageModelingConfig(FairseqDataclass): data: Optional[str] = field( default=None, metadata={"help": "path to data directory"} ) sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( default="none", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) output_dictionary_size: int = field( default=-1, metadata={"help": "limit the size of output dictionary"} ) self_target: bool = field(default=False, metadata={"help": "include self target"}) future_target: bool = field( default=False, metadata={"help": "include future target"} ) past_target: bool = field(default=False, metadata={"help": "include past target"}) add_bos_token: bool = field( default=False, metadata={"help": "prepend beginning of sentence token (<s>)"} ) max_target_positions: Optional[int] = field( default=None, metadata={"help": "max number of tokens in the target sequence"} ) shorten_method: SHORTEN_METHOD_CHOICES = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed --tokens-per-sample" }, ) shorten_data_split_list: str = field( default="", metadata={ "help": "comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)' }, ) # TODO common vars below add to parent seed: int = II("common.seed") dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( "dataset.dataset_impl" ) data_buffer_size: int = II("dataset.data_buffer_size") tpu: bool = II("common.tpu") use_plasma_view: bool = II("common.use_plasma_view") plasma_path: str = II("common.plasma_path") @register_task("language_modeling", dataclass=LanguageModelingConfig) class LanguageModelingTask(LegacyFairseqTask): """ Train a language model. Args: dictionary (~fairseq.data.Dictionary): the dictionary for the input of the language model output_dictionary (~fairseq.data.Dictionary): the dictionary for the output of the language model. In most cases it will be the same as *dictionary*, but could possibly be a more limited version of the dictionary (if ``--output-dictionary-size`` is used). targets (List[str]): list of the target types that the language model should predict. Can be one of "self", "future", and "past". Defaults to "future". .. note:: The language modeling task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate`, :mod:`fairseq-interactive` and :mod:`fairseq-eval-lm`. The language modeling task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.language_modeling_parser :prog: """ def __init__(self, args, dictionary, output_dictionary=None, targets=None): super().__init__(args) self.dictionary = dictionary self.output_dictionary = output_dictionary or dictionary if targets is None: targets = ["future"] self.targets = targets @classmethod def setup_dictionary(cls, args, **kwargs): dictionary = None output_dictionary = None if args.data: paths = utils.split_paths(args.data) assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(dictionary))) output_dictionary = dictionary if args.output_dictionary_size >= 0: output_dictionary = TruncatedDictionary( dictionary, args.output_dictionary_size ) return (dictionary, output_dictionary) @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ dictionary, output_dictionary = cls.setup_dictionary(args, **kwargs) # upgrade old checkpoints if getattr(args, "exclude_self_target", False): args.self_target = False targets = [] if getattr(args, "self_target", False): targets.append("self") if getattr(args, "future_target", False): targets.append("future") if getattr(args, "past_target", False): targets.append("past") if len(targets) == 0: # standard language modeling targets = ["future"] return cls(args, dictionary, output_dictionary, targets=targets) def build_model(self, args): model = super().build_model(args) for target in self.targets: if target not in model.supported_targets: raise ValueError( "Unsupported language modeling target: {}".format(target) ) return model def load_dataset( self, split: str, epoch=1, combine=False, **kwargs ) -> MonolingualDataset: """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) # each process has its own copy of the raw data (likely to be an np.memmap) dataset = data_utils.load_indexed_dataset( split_path, self.dictionary, self.args.dataset_impl, combine=combine ) if dataset is None: raise FileNotFoundError(f"Dataset not found: {split} ({split_path})") dataset = maybe_shorten_dataset( dataset, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.tokens_per_sample, self.args.seed, ) dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample, pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode=self.args.sample_break_mode, include_targets=True, use_plasma_view=self.args.use_plasma_view, split_path=split_path, plasma_path=self.args.plasma_path, ) add_eos_for_other_targets = ( self.args.sample_break_mode is not None and self.args.sample_break_mode != "none" ) self.datasets[split] = MonolingualDataset( dataset=dataset, sizes=dataset.sizes, src_vocab=self.dictionary, tgt_vocab=self.output_dictionary, add_eos_for_other_targets=add_eos_for_other_targets, shuffle=True, targets=self.targets, add_bos_token=self.args.add_bos_token, ) def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): """ Generate batches for inference. We prepend an eos token to src_tokens (or bos if `--add-bos-token` is set) and we append a <pad> to target. This is convenient both for generation with a prefix and LM scoring. """ dataset = StripTokenDataset( TokenBlockDataset( src_tokens, src_lengths, block_size=None, # ignored for "eos" break mode pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ), # remove eos from (end of) target sequence self.source_dictionary.eos(), ) src_dataset = PrependTokenDataset( dataset, token=( self.source_dictionary.bos() if getattr(self.args, "add_bos_token", False) else self.source_dictionary.eos() ), ) tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad()) return NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": PadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), "src_lengths": NumelDataset(src_dataset, reduce=False), }, "target": PadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False ), }, sizes=[np.array(src_lengths)], ) def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): # Generation will always be conditioned on bos_token if getattr(self.args, "add_bos_token", False): bos_token = self.source_dictionary.bos() else: bos_token = self.source_dictionary.eos() if constraints is not None: raise NotImplementedError( "Constrained decoding with the language_modeling task is not supported" ) # SequenceGenerator doesn't use src_tokens directly, we need to # pass the `prefix_tokens` argument instead if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement(): prefix_tokens = sample["net_input"]["src_tokens"] if prefix_tokens[:, 0].eq(bos_token).all(): prefix_tokens = prefix_tokens[:, 1:] return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token ) def eval_lm_dataloader( self, dataset, max_tokens: Optional[int] = 36000, batch_size: Optional[int] = None, max_positions: Optional[int] = None, num_shards: int = 1, shard_id: int = 0, num_workers: int = 1, data_buffer_size: int = 10, # ensures that every evaluated token has access to a context of at least # this size, if possible context_window: int = 0, ): if context_window > 0: dataset = LMContextWindowDataset( dataset=dataset, tokens_per_sample=self.args.tokens_per_sample, context_window=context_window, pad_idx=self.source_dictionary.pad(), ) return self.get_batch_iterator( dataset=dataset, max_tokens=max_tokens, max_sentences=batch_size, max_positions=max_positions, ignore_invalid_inputs=True, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, data_buffer_size=data_buffer_size, ).next_epoch_itr(shuffle=False) @property def source_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self.dictionary @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self.output_dictionary
COCO-LM/fairseq/fairseq/tasks/language_modeling.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/tasks/language_modeling.py", "repo_id": "COCO-LM", "token_count": 6013 }
202
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Implements tracking of constraints for a beam item. A list of constraints is given as a list of one or more token sequences, each of length at least one token. For example, for an input sentence > Die maschinelle Übersetzung ist schwer zu kontrollieren. We could have the constraints: * to influence * hard There are two implementations: * OrderedConstraintState: Tracks progress through an ordered list of multitoken constraints. * UnorderedConstraintState: Tracks progress through an unordered list of multitoken constraints. The difference is that in the first, the constraints are assumed to be in order; the algorithm will permit zero or more tokens between them. In the second, the constraints are not ordered, so many orderings will be explored. The same sequence can be present any number of times, and will appear that many times in the output. """ from collections import Counter from typing import List, Optional, Set, Tuple import torch class ConstraintState: def __init__(self): pass def pack_constraints(batch_constraints: List[List[torch.Tensor]]) -> torch.Tensor: """Takes a list of list of constraints in tensor form (a list of tensor constraints for each sentence) and transforms it into a packed Tensor. For example, here is a batch of size 3 with 3, 0, and 1 constraints: [ [ [3 1 2], [3], [4 5 6 7], ] [], [ [1 8 9 10 1 4 11 12], ] ] Its corresponding packed structure is: [ [ 3 3 1 2 0 3 0 4 5 6 7 0], [ 0 0 0 0 0 0 0 0 0 0 0 0], [ 1 1 8 9 10 1 4 11 12 0 0 0] ] The packed tensor has shape (batch size, maxlen), where maxlen is defined below. Each row contains concatenated constraint tokens for that sentence, with 0 appended after each constraint. The first item in each row is the number of constraints for that sentence. So maxlen is the maximum of (number of constraints) + (sum length of constraints) + 1. across all sentences in the batch. """ # The maximum word length of concatenated constraints for any sentence max_constraints_len = 1 for sentence_constraints in batch_constraints: if len(sentence_constraints): # number of constraints, plus sum of constrain lens, plus a zero after each constraints_len = ( 1 + sum([c.size(0) for c in sentence_constraints]) + len(sentence_constraints) ) max_constraints_len = max(max_constraints_len, constraints_len) batch_size = len(batch_constraints) constraints_tensor = torch.zeros((batch_size, max_constraints_len)).long() for i, sentence_constraints in enumerate(batch_constraints): constraints_tensor[i, 0] = len(sentence_constraints) offset = 1 for j, constraint in enumerate(sentence_constraints): this_len = constraint.size(0) constraints_tensor[i, offset : offset + this_len] = constraint offset += this_len + 1 return constraints_tensor.long() def unpack_constraints(constraint_tensor: torch.Tensor) -> List[torch.Tensor]: """ Transforms *one row* of a packed constraint tensor (e.g., for one sentence in the batch) into a list of constraint tensors. """ constraint_list = [] num_constraints = constraint_tensor[0] constraints = constraint_tensor.tolist() offset = 1 for i in range(num_constraints): where = constraints.index(0, offset) constraint_list.append(constraint_tensor[offset:where]) offset = where + 1 return constraint_list class ConstraintNode: """ Represents a node in a trie managing unordered constraints. """ def __init__(self, token: int = None, parent=None): # The token associate with this node (None for the root) self.token = int(token) if token is not None else None # The parent (None at the root) self.parent = parent # Whether this node is a completed constraint self.terminal = 0 # List of child nodes self.children = {} # The cumulative number of constraints from this point in the # trie forward self.num_constraints = 0 @property def id(self): return self.token def __str__(self): term = self.terminal != 0 return f"[{self.token}].{term}#{self.num_constraints}" def __getitem__(self, key: int): return self.children.get(key, None) def next_tokens(self) -> Set[int]: """The set of child labels.""" return set(self.children.keys()) @staticmethod def create(constraints: List[List[int]]): root = ConstraintNode() for sequence in constraints: root.add_sequence(sequence) return root @staticmethod def print_graph(node: "ConstraintNode"): if len(node.children) == 0: return str(node) else: s = f"({node}" for child in node.children.values(): s += " " + ConstraintNode.print_graph(child) s += ")" return s def token_counts(self) -> Counter: """Returns a counter of the number of times each token is used in a constraint. """ token_counts = Counter() kids = list(self.children.values()) while len(kids) > 0: kid = kids.pop() token_counts[kid.id] += kid.num_constraints kids += list(kid.children.values()) return token_counts def tokens(self) -> Set[int]: """Returns the set of tokens in constraints.""" return set(self.token_counts().keys()) def add_sequence(self, sequence: List[int]): """Adds a constraint, represented as a list of integers, to the trie.""" assert len(sequence) > 0 token = int(sequence[0]) if token not in self.children: self.children[token] = ConstraintNode(token, parent=self) node = self.children[token] if len(sequence) == 1: node.terminal += 1 node.num_constraints += 1 parent = node.parent while parent is not None: parent.num_constraints += 1 parent = parent.parent else: node.add_sequence(sequence[1:]) class UnorderedConstraintState(ConstraintState): """ Records progress through the set of constraints for each item in the beam using a trie. """ def __init__(self, node: ConstraintNode, copy_from: "ConstraintState" = None): self.node = node if copy_from is None: # The root node self.root = node # The set of states in the graph that have been completed self.completed = Counter() # The... self.generated = Counter() # The list of tokens we need to generate self.needed_tokens = self.root.tokens() else: self.completed = Counter(copy_from.completed) self.generated = Counter(copy_from.generated) self.root = copy_from.root # Mark the node as generated if self.node != self.root: self.generated[node] += 1 @staticmethod def create(constraint_tensor: torch.Tensor): constraint_list = unpack_constraints(constraint_tensor) constraint_trie_root = ConstraintNode.create(constraint_list) return UnorderedConstraintState(constraint_trie_root) def __str__(self): gen_str = ",".join([str(node) for node in self.generated]) return f"{self.name}/{self.bank}({gen_str})x{self.num_completed}" def __copy__(self): copied_state = UnorderedConstraintState(self.node, copy_from=self) return copied_state def copy(self): return self.__copy__() @property def name(self): if self.node.id is None: return "ROOT" else: return str(self.node.id) @property def is_root(self): return self.node == self.root @property def bank(self): return sum(self.generated.values()) @property def num_completed(self): """The number of constraints (not constraint tokens) that are completed. In addition to the already-completed states, we need to account for the current state, which might get marked as completed when another token is generated. """ in_final = self.node.terminal and self.completed[self.node] < self.node.terminal return sum(self.completed.values()) + in_final @property def finished(self): return self.root.num_constraints - self.num_completed == 0 @property def token_counts(self): return self.root.token_counts() @property def tokens(self): return self.root.tokens() @property def num_constraint_tokens(self): return sum(self.token_counts.values()) def next_tokens(self) -> Set[int]: """Returns the list of tokens that could come next. These are (a) all tokens extending the root state and, for non-root states, additionally all tokens extending the current state.""" if self.node != self.root: return self.root.next_tokens().union(self.node.next_tokens()) else: return self.root.next_tokens() def advance(self, token: int): """Reads in a token and advances the state. Here's how it works. We can advance to the next state if: - there is a matching child - its path isn't blocked A path is blocked when all constraints that are descendants of that node have already been generated, in the current state. If we are not able to advance from the current state, we "fall off the graph" and return to the root state. There, we again try to advance, checking the same criteria. In any case, when falling off the graph, we need to do some bookkeeping. We: - check whether any constraints were met (all prefixes of current state) - if one is found, mark it as completed - adjust visited nodes accordingly """ token = int(token) next_state = None child = self.node[token] if child is not None and self.generated[child] < child.num_constraints: next_state = UnorderedConstraintState(child, copy_from=self) def rewind(): """If we're mid-trie and an "illegal" token is chosen next, we need to reset our state to the root state. However, along the way, we need to check whether a prefix of the current trie state represents a state we could mark as completed. """ node = self.node while node != self.root: if node.terminal and self.completed[node] < node.terminal: next_state.completed[node] += 1 return next_state.generated[node] -= 1 node = node.parent # Fall off the graph, check the root if next_state is None and token in self.root.next_tokens(): child = self.root[token] # We can only traverse this edge if it's not saturated if self.generated[child] < child.num_constraints: next_state = UnorderedConstraintState(child, copy_from=self) else: next_state = UnorderedConstraintState(self.root, copy_from=self) # Rewind rewind() elif next_state is None: next_state = UnorderedConstraintState(self.root, copy_from=self) # Rewind rewind() return next_state class ConstraintSequence: def __init__(self, sequences: List[List[int]]): """Represents a set of possibly multitoken constraints by concatenating them and internally recording the end points. """ self.sequences = [] self.endpoints = [] self.num_tokens = 0 self.tokens = set() for sequence in sequences: for token in sequence: self.tokens.add(token) self.num_tokens += len(sequence) self.endpoints += [False for x in range(len(sequence) - 1)] + [True] self.sequences += sequence def __getitem__(self, key: int): return self.sequences[key] def __len__(self): return len(self.sequences) def __str__(self): return str(self.sequences) class OrderedConstraintState(ConstraintState): """ Records progress through the set of linear nonbranching constraints with gaps. """ def __init__(self, sequence: ConstraintSequence, state: int = -1): self.sequence = sequence self.state = state @staticmethod def create(constraint_tensor: torch.Tensor): constraint_list = unpack_constraints(constraint_tensor) return OrderedConstraintState(ConstraintSequence(constraint_list), -1) def __str__(self): return f"{self.state}/{self.bank}x{self.num_completed}" def __copy__(self): return OrderedConstraintState(self.sequence, self.state) def copy(self): return self.__copy__() @property def num_completed(self): if self.state == -1: return 0 count = len( list(filter(lambda x: x, self.sequence.endpoints[0 : self.state + 1])) ) return count @property def is_root(self): return self.state == -1 @property def name(self): if self.state == -1: return "ROOT" else: return str(self.sequence[self.state]) @property def bank(self) -> int: return self.state + 1 @property def finished(self): return self.state + 1 == len(self.sequence) @property def token_counts(self): return self.sequence.token_counts() @property def tokens(self): return self.sequence.tokens @property def num_constraint_tokens(self): return sum(self.token_counts.values()) def next_tokens(self) -> Set[int]: """Returns the list of tokens that could come next. These are (a) all tokens extending the root state and, for non-root states, additionally all tokens extending the current state.""" tokens = set() if self.state > 0: tokens.add(self.sequence[0]) if not self.finished: tokens.add(self.sequence[self.state + 1]) return tokens def advance(self, token: int): """Reads in a token and advances the state. Here's how it works. We can advance to the next state if: - there is a matching child - its path isn't blocked A path is blocked when all constraints that are descendants of that node have already been generated, in the current state. If we are not able to advance from the current state, we "fall off the graph" and return to the root state. There, we again try to advance, checking the same criteria. In any case, when falling off the graph, we need to do some bookkeeping. We: - check whether any constraints were met (all prefixes of current state) - if one is found, mark it as completed - adjust visited nodes accordingly """ token = int(token) # print(f"{self} ADVANCE({token}) {self.sequence} -> ", end="") if self.finished: # Accept anything next_state = self.copy() elif self.sequence[self.state + 1] == token: # Advance to the next token next_state = OrderedConstraintState(self.sequence, self.state + 1) elif self.sequence.endpoints[self.state]: # Accept anything between constraints (*) next_state = self.copy() elif token == self.sequence[0]: # Start over having generated the first token next_state = OrderedConstraintState(self.sequence, 0) else: # Start over from the root next_state = OrderedConstraintState(self.sequence, -1) return next_state
COCO-LM/fairseq/fairseq/token_generation_constraints.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/token_generation_constraints.py", "repo_id": "COCO-LM", "token_count": 6770 }
203
#include <torch/extension.h> void fused_adam_cuda(at::Tensor & p, at::Tensor & m, at::Tensor & v, at::Tensor & g, float lr, float beta1, float beta2, float eps, float grad_scale, int step, int bias_correction, float decay); #define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) void adam(at::Tensor & p, at::Tensor & m, at::Tensor & v, at::Tensor & g, float lr, float beta1, float beta2, float eps, float grad_scale, int step, int bias_correction, float decay) { CHECK_INPUT(p); CHECK_INPUT(m); CHECK_INPUT(v); CHECK_INPUT(g); int64_t num_elem = p.numel(); AT_ASSERTM(m.numel() == num_elem, "number of elements in m and p tensors should be equal"); AT_ASSERTM(v.numel() == num_elem, "number of elements in v and p tensors should be equal"); AT_ASSERTM(g.numel() == num_elem, "number of elements in g and p tensors should be equal"); fused_adam_cuda(p, m, v, g, lr, beta1, beta2, eps, grad_scale, step, bias_correction, decay); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("adam", &adam, "Adam optimized CUDA implementation."); }
COCO-LM/fairseq/fused_ops/csrc/adam/interface.cpp/0
{ "file_path": "COCO-LM/fairseq/fused_ops/csrc/adam/interface.cpp", "repo_id": "COCO-LM", "token_count": 516 }
204
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import functools import importlib dependencies = [ "dataclasses", "hydra", "numpy", "omegaconf", "regex", "requests", "torch", ] # Check for required dependencies and raise a RuntimeError if any are missing. missing_deps = [] for dep in dependencies: try: importlib.import_module(dep) except ImportError: # Hack: the hydra package is provided under the "hydra-core" name in # pypi. We don't want the user mistakenly calling `pip install hydra` # since that will install an unrelated package. if dep == "hydra": dep = "hydra-core" missing_deps.append(dep) if len(missing_deps) > 0: raise RuntimeError("Missing dependencies: {}".format(", ".join(missing_deps))) # only do fairseq imports after checking for dependencies from fairseq.hub_utils import ( # noqa; noqa BPEHubInterface as bpe, TokenizerHubInterface as tokenizer, ) from fairseq.models import MODEL_REGISTRY # noqa # torch.hub doesn't build Cython components, so if they are not found then try # to build them here try: import fairseq.data.token_block_utils_fast # noqa except ImportError: try: import cython # noqa import os from setuptools import sandbox sandbox.run_setup( os.path.join(os.path.dirname(__file__), "setup.py"), ["build_ext", "--inplace"], ) except ImportError: print( "Unable to build Cython components. Please make sure Cython is " "installed if the torch.hub model you are loading depends on it." ) # automatically expose models defined in FairseqModel::hub_models for _model_type, _cls in MODEL_REGISTRY.items(): for model_name in _cls.hub_models().keys(): globals()[model_name] = functools.partial( _cls.from_pretrained, model_name, )
COCO-LM/fairseq/hubconf.py/0
{ "file_path": "COCO-LM/fairseq/hubconf.py", "repo_id": "COCO-LM", "token_count": 807 }
205
-- Copyright (c) Facebook, Inc. and its affiliates. -- -- This source code is licensed under the MIT license found in the -- LICENSE file in the root directory of this source tree. -- -- Usage: convert_dictionary.lua <dict.th7> require 'fairseq' require 'torch' require 'paths' if #arg < 1 then print('usage: convert_dictionary.lua <dict.th7>') os.exit(1) end if not paths.filep(arg[1]) then print('error: file does not exit: ' .. arg[1]) os.exit(1) end dict = torch.load(arg[1]) dst = paths.basename(arg[1]):gsub('.th7', '.txt') assert(dst:match('.txt$')) f = io.open(dst, 'w') for idx, symbol in ipairs(dict.index_to_symbol) do if idx > dict.cutoff then break end f:write(symbol) f:write(' ') f:write(dict.index_to_freq[idx]) f:write('\n') end f:close()
COCO-LM/fairseq/scripts/convert_dictionary.lua/0
{ "file_path": "COCO-LM/fairseq/scripts/convert_dictionary.lua", "repo_id": "COCO-LM", "token_count": 314 }
206
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import signal import time import unittest import torch from torch import nn from fairseq.distributed import DistributedTimeoutWrapper class ModuleWithDelay(nn.Module): def __init__(self, delay): super().__init__() self.delay = delay def forward(self, x): time.sleep(self.delay) return x class TestDistributedTimeoutWrapper(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_no_timeout(self): module = DistributedTimeoutWrapper(ModuleWithDelay(1), 0, signal.SIGINT) module(torch.rand(5)) module.stop_timeout() def test_timeout_safe(self): module = DistributedTimeoutWrapper(ModuleWithDelay(1), 10, signal.SIGINT) module(torch.rand(5)) module.stop_timeout() def test_timeout_killed(self): with self.assertRaises(KeyboardInterrupt): module = DistributedTimeoutWrapper(ModuleWithDelay(5), 1, signal.SIGINT) module(torch.rand(5)) module.stop_timeout() if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/distributed/test_distributed_timeout_wrapper.py/0
{ "file_path": "COCO-LM/fairseq/tests/distributed/test_distributed_timeout_wrapper.py", "repo_id": "COCO-LM", "token_count": 525 }
207
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import logging import json import os import random import sys import tempfile import unittest from io import StringIO from typing import List, Dict import torch from fairseq import options from fairseq_cli import eval_lm, train, validate from tests.utils import ( create_dummy_data, generate_main, preprocess_lm_data, preprocess_summarization_data, preprocess_translation_data, create_laser_data_and_config_json, train_translation_model, ) try: import transformers # noqa has_hf_transformers = True except ImportError: has_hf_transformers = False class TestTranslation(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_fconv(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_fconv") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, "fconv_iwslt_de_en") generate_main(data_dir) def test_raw(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_fconv_raw") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--dataset-impl", "raw"]) train_translation_model( data_dir, "fconv_iwslt_de_en", ["--dataset-impl", "raw"] ) generate_main(data_dir, ["--dataset-impl", "raw"]) def test_update_freq(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_update_freq") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "fconv_iwslt_de_en", ["--update-freq", "3"] ) generate_main(data_dir) def test_max_positions(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_max_positions") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) with self.assertRaises(Exception) as context: train_translation_model( data_dir, "fconv_iwslt_de_en", ["--max-target-positions", "5"], ) self.assertTrue( "skip this example with --skip-invalid-size-inputs-valid-test" in str(context.exception) ) train_translation_model( data_dir, "fconv_iwslt_de_en", [ "--max-target-positions", "5", "--skip-invalid-size-inputs-valid-test", ], ) with self.assertRaises(Exception) as context: generate_main(data_dir) generate_main(data_dir, ["--skip-invalid-size-inputs-valid-test"]) def test_generation(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_sampling") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, "fconv_iwslt_de_en") generate_main( data_dir, [ "--sampling", "--temperature", "2", "--beam", "2", "--nbest", "2", ], ) generate_main( data_dir, [ "--sampling", "--sampling-topk", "3", "--beam", "2", "--nbest", "2", ], ) generate_main( data_dir, [ "--sampling", "--sampling-topp", "0.2", "--beam", "2", "--nbest", "2", ], ) generate_main( data_dir, [ "--diversity-rate", "0.5", "--beam", "6", ], ) with self.assertRaises(ValueError): generate_main( data_dir, [ "--diverse-beam-groups", "4", "--match-source-len", ], ) generate_main(data_dir, ["--prefix-size", "2"]) generate_main(data_dir, ["--retain-dropout"]) def test_eval_bleu(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_eval_bleu") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "fconv_iwslt_de_en", [ "--eval-bleu", "--eval-bleu-print-samples", "--eval-bleu-remove-bpe", "--eval-bleu-detok", "space", "--eval-bleu-args", '{"beam": 4, "min_len": 10}', ], ) def test_lstm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lstm") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "lstm_wiseman_iwslt_de_en", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--decoder-out-embed-dim", "8", ], ) generate_main(data_dir) def test_lstm_bidirectional(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lstm_bidirectional") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "lstm", [ "--encoder-layers", "2", "--encoder-bidirectional", "--encoder-hidden-size", "16", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--decoder-out-embed-dim", "8", "--decoder-layers", "2", ], ) generate_main(data_dir) def test_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_transformer") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "transformer_iwslt_de_en", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", ], run_validation=True, ) generate_main(data_dir) def test_multilingual_transformer(self): # test with all combinations of encoder/decoder lang tokens encoder_langtok_flags = [ [], ["--encoder-langtok", "src"], ["--encoder-langtok", "tgt"], ] decoder_langtok_flags = [[], ["--decoder-langtok"]] with contextlib.redirect_stdout(StringIO()): for i in range(len(encoder_langtok_flags)): for j in range(len(decoder_langtok_flags)): enc_ltok_flag = encoder_langtok_flags[i] dec_ltok_flag = decoder_langtok_flags[j] with tempfile.TemporaryDirectory( f"test_multilingual_transformer_{i}_{j}" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, arch="multilingual_transformer", task="multilingual_translation", extra_flags=[ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", ] + enc_ltok_flag + dec_ltok_flag, lang_flags=["--lang-pairs", "in-out,out-in"], run_validation=True, extra_valid_flags=enc_ltok_flag + dec_ltok_flag, ) generate_main( data_dir, extra_flags=[ "--task", "multilingual_translation", "--lang-pairs", "in-out,out-in", "--source-lang", "in", "--target-lang", "out", ] + enc_ltok_flag + dec_ltok_flag, ) @unittest.skipIf( sys.platform.lower() == "darwin", "skip latent depth test on MacOS" ) def test_multilingual_translation_latent_depth(self): # test with latent depth in encoder, decoder, or both encoder_latent_layer = [[], ["--encoder-latent-layer"]] decoder_latent_layer = [[], ["--decoder-latent-layer"]] with contextlib.redirect_stdout(StringIO()): for i in range(len(encoder_latent_layer)): for j in range(len(decoder_latent_layer)): if i == 0 and j == 0: continue enc_ll_flag = encoder_latent_layer[i] dec_ll_flag = decoder_latent_layer[j] with tempfile.TemporaryDirectory( f"test_multilingual_translation_latent_depth_{i}_{j}" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data( data_dir, extra_flags=["--joined-dictionary"] ) train_translation_model( data_dir, arch="latent_multilingual_transformer", task="multilingual_translation_latent_depth", extra_flags=[ "--user-dir", "examples/latent_depth/latent_depth_src", "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--share-encoders", "--share-decoders", "--sparsity-weight", "0.1", ] + enc_ll_flag + dec_ll_flag, lang_flags=["--lang-pairs", "in-out,out-in"], run_validation=True, extra_valid_flags=[ "--user-dir", "examples/latent_depth/latent_depth_src", ] + enc_ll_flag + dec_ll_flag, ) generate_main( data_dir, extra_flags=[ "--user-dir", "examples/latent_depth/latent_depth_src", "--task", "multilingual_translation_latent_depth", "--lang-pairs", "in-out,out-in", "--source-lang", "in", "--target-lang", "out", ] + enc_ll_flag + dec_ll_flag, ) def test_translation_multi_simple_epoch(self): # test with all combinations of encoder/decoder lang tokens encoder_langtok_flags = [ [], ["--encoder-langtok", "src"], ["--encoder-langtok", "tgt"], ] decoder_langtok_flags = [[], ["--decoder-langtok"]] with contextlib.redirect_stdout(StringIO()): for i in range(len(encoder_langtok_flags)): for j in range(len(decoder_langtok_flags)): enc_ltok_flag = encoder_langtok_flags[i] dec_ltok_flag = decoder_langtok_flags[j] with tempfile.TemporaryDirectory( f"test_translation_multi_simple_epoch_{i}_{j}" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data( data_dir, extra_flags=["--joined-dictionary"] ) train_translation_model( data_dir, arch="transformer", task="translation_multi_simple_epoch", extra_flags=[ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--sampling-method", "temperature", "--sampling-temperature", "1.5", "--virtual-epoch-size", "1000", ] + enc_ltok_flag + dec_ltok_flag, lang_flags=["--lang-pairs", "in-out,out-in"], run_validation=True, extra_valid_flags=enc_ltok_flag + dec_ltok_flag, ) generate_main( data_dir, extra_flags=[ "--task", "translation_multi_simple_epoch", "--lang-pairs", "in-out,out-in", "--source-lang", "in", "--target-lang", "out", ] + enc_ltok_flag + dec_ltok_flag, ) def test_translation_multi_simple_epoch_no_vepoch(self): # test with all combinations of encoder/decoder lang tokens with contextlib.redirect_stdout(StringIO()): enc_ltok_flag = ["--encoder-langtok", "src"] dec_ltok_flag = ["--decoder-langtok"] with tempfile.TemporaryDirectory( "test_translation_multi_simple_epoch_dict" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, extra_flags=[]) train_translation_model( data_dir, arch="transformer", task="translation_multi_simple_epoch", extra_flags=[ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--sampling-method", "temperature", "--sampling-temperature", "1.5", ] + enc_ltok_flag + dec_ltok_flag, lang_flags=["--lang-pairs", "in-out"], run_validation=True, extra_valid_flags=enc_ltok_flag + dec_ltok_flag, ) generate_main( data_dir, extra_flags=[ "--task", "translation_multi_simple_epoch", "--lang-pairs", "in-out", "--source-lang", "in", "--target-lang", "out", ] + enc_ltok_flag + dec_ltok_flag, ) def test_translation_multi_simple_epoch_dicts(self): # test with all combinations of encoder/decoder lang tokens with contextlib.redirect_stdout(StringIO()): enc_ltok_flag = ["--encoder-langtok", "src"] dec_ltok_flag = ["--decoder-langtok"] with tempfile.TemporaryDirectory( "test_translation_multi_simple_epoch_dict" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, extra_flags=[]) train_translation_model( data_dir, arch="transformer", task="translation_multi_simple_epoch", extra_flags=[ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--sampling-method", "temperature", "--sampling-temperature", "1.5", "--virtual-epoch-size", "1000", ] + enc_ltok_flag + dec_ltok_flag, lang_flags=["--lang-pairs", "in-out"], run_validation=True, extra_valid_flags=enc_ltok_flag + dec_ltok_flag, ) generate_main( data_dir, extra_flags=[ "--task", "translation_multi_simple_epoch", "--lang-pairs", "in-out", "--source-lang", "in", "--target-lang", "out", ] + enc_ltok_flag + dec_ltok_flag, ) def test_translation_multi_simple_epoch_src_tgt_dict_spec(self): # test the specification of explicit --src-dict and --tgt-dict with contextlib.redirect_stdout(StringIO()): enc_ltok_flag = ["--encoder-langtok", "src"] dec_ltok_flag = ["--decoder-langtok"] with tempfile.TemporaryDirectory( "test_translation_multi_simple_epoch_dict" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, extra_flags=[]) train_translation_model( data_dir, arch="transformer", task="translation_multi_simple_epoch", extra_flags=[ "--source-dict", f"{data_dir}/dict.in.txt", "--target-dict", f"{data_dir}/dict.out.txt", "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--sampling-method", "temperature", "--sampling-temperature", "1.5", "--virtual-epoch-size", "1000", ] + enc_ltok_flag + dec_ltok_flag, lang_flags=["--lang-pairs", "in-out"], run_validation=True, extra_valid_flags=enc_ltok_flag + dec_ltok_flag, ) generate_main( data_dir, extra_flags=[ "--task", "translation_multi_simple_epoch", "--lang-pairs", "in-out", "--source-lang", "in", "--target-lang", "out", ] + enc_ltok_flag + dec_ltok_flag, ) def test_transformer_cross_self_attention(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_transformer_cross_self_attention" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "transformer_iwslt_de_en", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--decoder-embed-dim", "8", "--no-cross-attention", "--cross-self-attention", ], run_validation=True, ) generate_main(data_dir, extra_flags=[]) def test_transformer_pointer_generator(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_transformer_pointer_generator" ) as data_dir: create_dummy_data(data_dir) preprocess_summarization_data(data_dir) train_translation_model( data_dir, "transformer_pointer_generator", extra_flags=[ "--user-dir", "examples/pointer_generator/pointer_generator_src", "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--alignment-layer", "-1", "--alignment-heads", "1", "--source-position-markers", "0", ], run_validation=True, extra_valid_flags=[ "--user-dir", "examples/pointer_generator/pointer_generator_src", ], ) generate_main( data_dir, extra_flags=[ "--user-dir", "examples/pointer_generator/pointer_generator_src", ], ) def test_lightconv(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lightconv") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "lightconv_iwslt_de_en", [ "--encoder-conv-type", "lightweight", "--decoder-conv-type", "lightweight", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", ], ) generate_main(data_dir) def test_dynamicconv(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_dynamicconv") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "lightconv_iwslt_de_en", [ "--encoder-conv-type", "dynamic", "--decoder-conv-type", "dynamic", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", ], ) generate_main(data_dir) def test_cmlm_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_cmlm_transformer") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--joined-dictionary"]) train_translation_model( data_dir, "cmlm_transformer", [ "--apply-bert-init", "--criterion", "nat_loss", "--noise", "full_mask", "--pred-length-offset", "--length-loss-factor", "0.1", ], task="translation_lev", ) generate_main( data_dir, [ "--task", "translation_lev", "--iter-decode-max-iter", "9", "--iter-decode-eos-penalty", "0", "--print-step", ], ) def test_nonautoregressive_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_nonautoregressive_transformer" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--joined-dictionary"]) train_translation_model( data_dir, "nonautoregressive_transformer", [ "--apply-bert-init", "--src-embedding-copy", "--criterion", "nat_loss", "--noise", "full_mask", "--pred-length-offset", "--length-loss-factor", "0.1", ], task="translation_lev", ) generate_main( data_dir, [ "--task", "translation_lev", "--iter-decode-max-iter", "0", "--iter-decode-eos-penalty", "0", "--print-step", ], ) # def test_nat_crf_transformer(self): # with contextlib.redirect_stdout(StringIO()): # with tempfile.TemporaryDirectory('test_nat_crf_transformer') as data_dir: # create_dummy_data(data_dir) # preprocess_translation_data(data_dir, ['--joined-dictionary']) # train_translation_model(data_dir, 'nacrf_transformer', [ # '--apply-bert-init', '--criterion', # 'nat_loss', '--noise', 'full_mask', '--pred-length-offset', # '--length-loss-factor', '0.1', # '--word-ins-loss-factor', '0.5', # '--crf-lowrank-approx', '1', # '--crf-beam-approx', '1' # ], task='translation_lev') # generate_main(data_dir, [ # '--task', 'translation_lev', # '--iter-decode-max-iter', '0', # '--iter-decode-eos-penalty', '0', # '--print-step', # ]) def test_iterative_nonautoregressive_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_iterative_nonautoregressive_transformer" ) as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--joined-dictionary"]) train_translation_model( data_dir, "iterative_nonautoregressive_transformer", [ "--apply-bert-init", "--src-embedding-copy", "--criterion", "nat_loss", "--noise", "full_mask", "--stochastic-approx", "--dae-ratio", "0.5", "--train-step", "3", ], task="translation_lev", ) generate_main( data_dir, [ "--task", "translation_lev", "--iter-decode-max-iter", "9", "--iter-decode-eos-penalty", "0", "--print-step", ], ) def test_insertion_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_insertion_transformer") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ["--joined-dictionary"]) train_translation_model( data_dir, "insertion_transformer", [ "--apply-bert-init", "--criterion", "nat_loss", "--noise", "random_mask", ], task="translation_lev", ) generate_main( data_dir, [ "--task", "translation_lev", "--iter-decode-max-iter", "9", "--iter-decode-eos-penalty", "0", "--print-step", ], ) def test_mixture_of_experts(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_moe") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "transformer_iwslt_de_en", [ "--task", "translation_moe", "--user-dir", "examples/translation_moe/translation_moe_src", "--method", "hMoElp", "--mean-pool-gating-network", "--num-experts", "3", "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", ], ) generate_main( data_dir, [ "--task", "translation_moe", "--user-dir", "examples/translation_moe/translation_moe_src", "--method", "hMoElp", "--mean-pool-gating-network", "--num-experts", "3", "--gen-expert", "0", ], ) def test_alignment(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_alignment") as data_dir: create_dummy_data(data_dir, alignment=True) preprocess_translation_data(data_dir, ["--align-suffix", "align"]) train_translation_model( data_dir, "transformer_align", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--load-alignments", "--alignment-layer", "1", "--criterion", "label_smoothed_cross_entropy_with_alignment", ], run_validation=True, ) generate_main(data_dir) def test_laser_lstm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_laser_lstm") as data_dir: laser_config_file = create_laser_data_and_config_json(data_dir) train_translation_model( laser_config_file.name, "laser_lstm", [ "--user-dir", "examples/laser/laser_src", "--weighting-alpha", "0.3", "--encoder-bidirectional", "--encoder-hidden-size", "512", "--encoder-layers", "5", "--decoder-layers", "1", "--encoder-embed-dim", "320", "--decoder-embed-dim", "320", "--decoder-lang-embed-dim", "32", "--save-dir", data_dir, "--disable-validation", ], task="laser", lang_flags=[], ) def test_laser_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_laser_transformer") as data_dir: laser_config_file = create_laser_data_and_config_json(data_dir) train_translation_model( laser_config_file.name, "laser_transformer", [ "--user-dir", "examples/laser/laser_src", "--weighting-alpha", "0.3", "--encoder-embed-dim", "320", "--decoder-embed-dim", "320", "--decoder-lang-embed-dim", "32", "--save-dir", data_dir, "--disable-validation", ], task="laser", lang_flags=[], ) def test_alignment_full_context(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_alignment") as data_dir: create_dummy_data(data_dir, alignment=True) preprocess_translation_data(data_dir, ["--align-suffix", "align"]) train_translation_model( data_dir, "transformer_align", [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--load-alignments", "--alignment-layer", "1", "--criterion", "label_smoothed_cross_entropy_with_alignment", "--full-context-alignment", ], run_validation=True, ) generate_main(data_dir) def test_transformer_layerdrop(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_transformer_layerdrop") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model( data_dir, "transformer_iwslt_de_en", [ "--encoder-layers", "3", "--decoder-layers", "3", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--encoder-layerdrop", "0.01", "--decoder-layerdrop", "0.01", ], ) generate_main(data_dir) generate_main( data_dir, [ "--model-overrides", "{'encoder_layers_to_keep':'0,2','decoder_layers_to_keep':'1'}", ], ) class TestStories(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_fconv_self_att_wp(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_fconv_self_att_wp") as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) config = [ "--encoder-layers", "[(128, 3)] * 2", "--decoder-layers", "[(128, 3)] * 2", "--decoder-attention", "True", "--encoder-attention", "False", "--gated-attention", "True", "--self-attention", "True", "--project-input", "True", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--decoder-out-embed-dim", "8", "--multihead-self-attention-nheads", "2", ] train_translation_model(data_dir, "fconv_self_att_wp", config) generate_main(data_dir) # fusion model os.rename( os.path.join(data_dir, "checkpoint_last.pt"), os.path.join(data_dir, "pretrained.pt"), ) config.extend( [ "--pretrained", "True", "--pretrained-checkpoint", os.path.join(data_dir, "pretrained.pt"), "--save-dir", os.path.join(data_dir, "fusion_model"), ] ) train_translation_model(data_dir, "fconv_self_att_wp", config) class TestLanguageModeling(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_fconv_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_fconv_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "fconv_lm", [ "--decoder-layers", "[(850, 3)] * 2 + [(1024,4)]", "--decoder-embed-dim", "280", "--optimizer", "nag", "--lr", "0.1", ], ) eval_lm_main(data_dir) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) def test_transformer_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_transformer_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "transformer_lm", ["--add-bos-token", '--nval', '1'], run_validation=True, ) eval_lm_main(data_dir) eval_lm_main(data_dir, extra_flags=["--context-window", "25"]) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) def test_transformer_lm_with_adaptive_softmax(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_transformer_lm_with_adaptive_softmax" ) as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "transformer_lm", [ "--add-bos-token", "--criterion", "adaptive_loss", "--adaptive-softmax-cutoff", "5,10,15", ], run_validation=True, ) eval_lm_main(data_dir) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) def test_lightconv_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lightconv_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "lightconv_lm", ["--add-bos-token"], run_validation=True, ) eval_lm_main(data_dir) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) def test_lstm_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lstm_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "lstm_lm", ["--add-bos-token"], run_validation=True, ) eval_lm_main(data_dir) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) def test_lstm_lm_residuals(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_lstm_lm_residuals") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, "lstm_lm", ["--add-bos-token", "--residuals"], run_validation=True, ) eval_lm_main(data_dir) generate_main( data_dir, [ "--task", "language_modeling", "--sample-break-mode", "eos", "--tokens-per-sample", "500", ], ) @unittest.skipIf(not has_hf_transformers, "skip test if transformers is missing") def test_transformer_xl_bptt_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_transformer_xl_bptt_lm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) task_flags = [ "--user-dir", "examples/truncated_bptt", "--task", "truncated_bptt_lm", "--batch-size", "2", "--tokens-per-sample", "50", ] train_language_model( data_dir=data_dir, arch="transformer_xl", extra_flags=task_flags + [ "--n-layer", "2", ], task="truncated_bptt_lm", run_validation=True, extra_valid_flags=task_flags, ) eval_lm_main(data_dir, extra_flags=task_flags) # Train with activation offloading train_language_model( data_dir=data_dir, arch="transformer_xl", extra_flags=task_flags + [ "--n-layer", "2", "--offload-activations", ], task="truncated_bptt_lm", run_validation=True, extra_valid_flags=task_flags, ) class TestMaskedLanguageModel(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_legacy_masked_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_legacy_mlm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_legacy_masked_language_model(data_dir, "masked_lm") def test_roberta_masked_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_roberta_mlm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_masked_lm( data_dir, "roberta_base", extra_flags=["--encoder-layers", "2"] ) def test_roberta_sentence_prediction(self): num_classes = 3 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_roberta_head") as data_dir: create_dummy_roberta_head_data(data_dir, num_classes=num_classes) preprocess_lm_data(os.path.join(data_dir, "input0")) preprocess_lm_data(os.path.join(data_dir, "label")) train_roberta_head(data_dir, "roberta_base", num_classes=num_classes) def test_roberta_regression_single(self): num_classes = 1 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_roberta_regression_single" ) as data_dir: create_dummy_roberta_head_data( data_dir, num_classes=num_classes, regression=True ) preprocess_lm_data(os.path.join(data_dir, "input0")) train_roberta_head( data_dir, "roberta_base", num_classes=num_classes, extra_flags=["--regression-target"], ) def test_roberta_regression_multiple(self): num_classes = 3 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_roberta_regression_multiple" ) as data_dir: create_dummy_roberta_head_data( data_dir, num_classes=num_classes, regression=True ) preprocess_lm_data(os.path.join(data_dir, "input0")) train_roberta_head( data_dir, "roberta_base", num_classes=num_classes, extra_flags=["--regression-target"], ) def test_linformer_roberta_masked_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_linformer_roberta_mlm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_masked_lm( data_dir, "linformer_roberta_base", extra_flags=[ "--user-dir", "examples/linformer/linformer_src", "--encoder-layers", "2", ], ) def test_linformer_roberta_sentence_prediction(self): num_classes = 3 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_linformer_roberta_head") as data_dir: create_dummy_roberta_head_data(data_dir, num_classes=num_classes) preprocess_lm_data(os.path.join(data_dir, "input0")) preprocess_lm_data(os.path.join(data_dir, "label")) train_roberta_head( data_dir, "linformer_roberta_base", num_classes=num_classes, extra_flags=["--user-dir", "examples/linformer/linformer_src"], ) def test_linformer_roberta_regression_single(self): num_classes = 1 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_linformer_roberta_regression_single" ) as data_dir: create_dummy_roberta_head_data( data_dir, num_classes=num_classes, regression=True ) preprocess_lm_data(os.path.join(data_dir, "input0")) train_roberta_head( data_dir, "linformer_roberta_base", num_classes=num_classes, extra_flags=[ "--regression-target", "--user-dir", "examples/linformer/linformer_src", ], ) def test_linformer_roberta_regression_multiple(self): num_classes = 3 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory( "test_linformer_roberta_regression_multiple" ) as data_dir: create_dummy_roberta_head_data( data_dir, num_classes=num_classes, regression=True ) preprocess_lm_data(os.path.join(data_dir, "input0")) train_roberta_head( data_dir, "linformer_roberta_base", num_classes=num_classes, extra_flags=[ "--regression-target", "--user-dir", "examples/linformer/linformer_src", ], ) def _test_pretrained_masked_lm_for_translation(self, learned_pos_emb, encoder_only): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_mlm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_legacy_masked_language_model( data_dir, arch="masked_lm", extra_args=("--encoder-learned-pos",) if learned_pos_emb else (), ) with tempfile.TemporaryDirectory( "test_mlm_translation" ) as translation_dir: create_dummy_data(translation_dir) preprocess_translation_data( translation_dir, extra_flags=["--joined-dictionary"] ) # Train transformer with data_dir/checkpoint_last.pt train_translation_model( translation_dir, arch="transformer_from_pretrained_xlm", extra_flags=[ "--decoder-layers", "1", "--decoder-embed-dim", "32", "--decoder-attention-heads", "1", "--decoder-ffn-embed-dim", "32", "--encoder-layers", "1", "--encoder-embed-dim", "32", "--encoder-attention-heads", "1", "--encoder-ffn-embed-dim", "32", "--pretrained-xlm-checkpoint", "{}/checkpoint_last.pt".format(data_dir), "--activation-fn", "gelu", "--max-source-positions", "500", "--max-target-positions", "500", ] + ( ["--encoder-learned-pos", "--decoder-learned-pos"] if learned_pos_emb else [] ) + (["--init-encoder-only"] if encoder_only else []), task="translation_from_pretrained_xlm", ) def test_pretrained_masked_lm_for_translation_learned_pos_emb(self): self._test_pretrained_masked_lm_for_translation(True, False) def test_pretrained_masked_lm_for_translation_sinusoidal_pos_emb(self): self._test_pretrained_masked_lm_for_translation(False, False) def test_pretrained_masked_lm_for_translation_encoder_only(self): self._test_pretrained_masked_lm_for_translation(True, True) def test_r4f_roberta(self): num_classes = 3 with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_r4f_roberta_head") as data_dir: create_dummy_roberta_head_data(data_dir, num_classes=num_classes) preprocess_lm_data(os.path.join(data_dir, "input0")) preprocess_lm_data(os.path.join(data_dir, "label")) train_roberta_head( data_dir, "roberta_base", num_classes=num_classes, extra_flags=[ "--user-dir", "examples/rxf/rxf_src", "--criterion", "sentence_prediction_r3f", "--spectral-norm-classification-head", ], ) def train_legacy_masked_language_model(data_dir, arch, extra_args=()): train_parser = options.get_training_parser() # TODO: langs should be in and out right? train_args = options.parse_args_and_arch( train_parser, [ "--task", "cross_lingual_lm", data_dir, "--arch", arch, # Optimizer args "--optimizer", "adam", "--lr-scheduler", "reduce_lr_on_plateau", "--lr-shrink", "0.5", "--lr", "0.0001", "--stop-min-lr", "1e-09", # dropout, attention args "--dropout", "0.1", "--attention-dropout", "0.1", # MLM args "--criterion", "legacy_masked_lm_loss", "--masked-lm-only", "--monolingual-langs", "in,out", "--num-segment", "5", # Transformer args: use a small transformer model for fast training "--encoder-layers", "1", "--encoder-embed-dim", "32", "--encoder-attention-heads", "1", "--encoder-ffn-embed-dim", "32", # Other training args "--max-tokens", "500", "--tokens-per-sample", "500", "--save-dir", data_dir, "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", "1", "--dataset-impl", "raw", "--num-workers", "0", ] + list(extra_args), ) train.main(train_args) class TestOptimizers(unittest.TestCase): def setUp(self): logging.disable(logging.CRITICAL) def tearDown(self): logging.disable(logging.NOTSET) def test_optimizers(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_optimizers") as data_dir: # Use just a bit of data and tiny model to keep this test runtime reasonable create_dummy_data(data_dir, num_examples=10, maxlen=5) preprocess_translation_data(data_dir) optimizers = ["adafactor", "adam", "nag", "adagrad", "sgd", "adadelta"] last_checkpoint = os.path.join(data_dir, "checkpoint_last.pt") for optimizer in optimizers: if os.path.exists(last_checkpoint): os.remove(last_checkpoint) train_translation_model( data_dir, "lstm", [ "--required-batch-size-multiple", "1", "--encoder-layers", "1", "--encoder-hidden-size", "32", "--decoder-layers", "1", "--optimizer", optimizer, ], ) generate_main(data_dir) def read_last_log_entry( logs: List[logging.LogRecord], logger_name: str ) -> Dict[str, float]: for x in reversed(logs): if x.name == logger_name: return json.loads(x.message) raise ValueError(f"No entries from {logger_name} found in captured logs") class TestActivationCheckpointing(unittest.TestCase): base_flags = [ "--encoder-layers", "2", "--decoder-layers", "2", "--encoder-embed-dim", "8", "--decoder-embed-dim", "8", "--restore-file", "x.pt", "--log-format", "json", "--log-interval", "1", "--max-update", "2", ] def _train(self, data_dir, extra_flags): with self.assertLogs() as logs: train_translation_model( data_dir, "transformer_iwslt_de_en", self.base_flags + extra_flags, run_validation=True, extra_valid_flags=["--log-format", "json"], ) return logs.records def test_activation_offloading_does_not_change_metrics(self): """Neither ----checkpoint-activations nor --offload-activations should change loss""" with tempfile.TemporaryDirectory("test_transformer_with_act_cpt") as data_dir: with self.assertLogs(): create_dummy_data(data_dir, num_examples=20) preprocess_translation_data(data_dir) offload_logs = self._train(data_dir, ["--offload-activations"]) baseline_logs = self._train(data_dir, []) assert len(baseline_logs) == len(offload_logs) baseline_valid_stats = read_last_log_entry(baseline_logs, "valid") offload_valid_stats = read_last_log_entry(offload_logs, "valid") baseline_train_stats = read_last_log_entry(baseline_logs, "train") offload_train_stats = read_last_log_entry(offload_logs, "train") assert ( baseline_train_stats["train_loss"] == offload_train_stats["train_loss"] ) assert ( baseline_valid_stats["valid_loss"] == offload_valid_stats["valid_loss"] ) def test_activation_checkpointing_does_not_change_metrics(self): """--checkpoint-activations should not change loss""" with tempfile.TemporaryDirectory("test_transformer_with_act_cpt") as data_dir: with self.assertLogs(): create_dummy_data(data_dir, num_examples=20) preprocess_translation_data(data_dir) ckpt_logs = self._train(data_dir, ["--checkpoint-activations"]) baseline_logs = self._train(data_dir, []) assert len(baseline_logs) == len(ckpt_logs) baseline_train_stats = read_last_log_entry(baseline_logs, "train") ckpt_train_stats = read_last_log_entry(ckpt_logs, "train") assert baseline_train_stats["train_loss"] == ckpt_train_stats["train_loss"] baseline_valid_stats = read_last_log_entry(baseline_logs, "valid") ckpt_valid_stats = read_last_log_entry(ckpt_logs, "valid") assert baseline_valid_stats["valid_loss"] == ckpt_valid_stats["valid_loss"] def create_dummy_roberta_head_data( data_dir, num_examples=100, maxlen=10, num_classes=2, regression=False ): input_dir = "input0" def _create_dummy_data(filename): random_data = torch.rand(num_examples * maxlen) input_data = 97 + torch.floor(26 * random_data).int() if regression: output_data = torch.rand((num_examples, num_classes)) else: output_data = 1 + torch.floor(num_classes * torch.rand(num_examples)).int() with open(os.path.join(data_dir, input_dir, filename + ".out"), "w") as f_in: label_filename = filename + ".label" if regression else filename + ".out" with open(os.path.join(data_dir, "label", label_filename), "w") as f_out: offset = 0 for i in range(num_examples): # write example input ex_len = random.randint(1, maxlen) ex_str = " ".join(map(chr, input_data[offset : offset + ex_len])) print(ex_str, file=f_in) # write example label if regression: class_str = " ".join(map(str, output_data[i].numpy())) print(class_str, file=f_out) else: class_str = "class{}".format(output_data[i]) print(class_str, file=f_out) offset += ex_len os.mkdir(os.path.join(data_dir, input_dir)) os.mkdir(os.path.join(data_dir, "label")) _create_dummy_data("train") _create_dummy_data("valid") _create_dummy_data("test") def train_masked_lm(data_dir, arch, extra_flags=None): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", "masked_lm", data_dir, "--arch", arch, "--optimizer", "adam", "--lr", "0.0001", "--criterion", "masked_lm", "--batch-size", "500", "--save-dir", data_dir, "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", "1", "--ddp-backend", "no_c10d", "--num-workers", "0", ] + (extra_flags or []), ) train.main(train_args) def train_roberta_head(data_dir, arch, num_classes=2, extra_flags=None): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", "sentence_prediction", data_dir, "--arch", arch, "--encoder-layers", "2", "--num-classes", str(num_classes), "--optimizer", "adam", "--lr", "0.0001", "--criterion", "sentence_prediction", "--max-tokens", "500", "--max-positions", "500", "--batch-size", "500", "--save-dir", data_dir, "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", "1", "--ddp-backend", "no_c10d", "--num-workers", "0", ] + (extra_flags or []), ) train.main(train_args) def train_language_model( data_dir, arch, extra_flags=None, run_validation=False, extra_valid_flags=None, task="language_modeling", ): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", task, data_dir, "--arch", arch, "--optimizer", "adam", "--lr", "0.0001", "--max-tokens", "500", "--tokens-per-sample", "500", "--save-dir", data_dir, "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", "1", "--ddp-backend", "no_c10d", "--num-workers", "0", ] + (extra_flags or []), ) train.main(train_args) if run_validation: # test validation validate_parser = options.get_validation_parser() validate_args = options.parse_args_and_arch( validate_parser, [ "--task", task, data_dir, "--path", os.path.join(data_dir, "checkpoint_last.pt"), "--valid-subset", "valid", "--max-tokens", "500", "--no-progress-bar", "--num-workers", "0", ] + (extra_valid_flags or []), ) validate.main(validate_args) def eval_lm_main(data_dir, extra_flags=None): eval_lm_parser = options.get_eval_lm_parser() eval_lm_args = options.parse_args_and_arch( eval_lm_parser, [ data_dir, "--path", os.path.join(data_dir, "checkpoint_last.pt"), "--no-progress-bar", "--num-workers", "0", ] + (extra_flags or []), ) eval_lm.main(eval_lm_args) if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/test_binaries.py/0
{ "file_path": "COCO-LM/fairseq/tests/test_binaries.py", "repo_id": "COCO-LM", "token_count": 47182 }
208
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq.data import MonolingualDataset from fairseq.tasks.language_modeling import LanguageModelingTask, LanguageModelingConfig from tests import utils as test_utils class TestLMContextWindow(unittest.TestCase): def test_eval_dataloader(self): dictionary = test_utils.dummy_dictionary(10) assert len(dictionary) == 14 # 4 extra special symbols assert dictionary.pad() == 1 dataset = test_utils.TestDataset([ torch.tensor([4, 5, 6, 7], dtype=torch.long), torch.tensor([8, 9, 10, 11], dtype=torch.long), torch.tensor([12, 13], dtype=torch.long), ]) dataset = MonolingualDataset(dataset, sizes=[4, 4, 2], src_vocab=dictionary) config = LanguageModelingConfig(tokens_per_sample=4) task = LanguageModelingTask(config, dictionary) eval_dataloader = task.eval_lm_dataloader( dataset=dataset, batch_size=1, context_window=2, ) batch = next(eval_dataloader) assert batch["net_input"]["src_tokens"][0].tolist() == [4, 5, 6, 7, 1, 1] assert batch["target"][0].tolist() == [4, 5, 6, 7, 1, 1] batch = next(eval_dataloader) assert batch["net_input"]["src_tokens"][0].tolist() == [6, 7, 8, 9, 10, 11] assert batch["target"][0].tolist() == [1, 1, 8, 9, 10, 11] batch = next(eval_dataloader) assert batch["net_input"]["src_tokens"][0].tolist() == [10, 11, 12, 13] assert batch["target"][0].tolist() == [1, 1, 12, 13] if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/test_lm_context_window.py/0
{ "file_path": "COCO-LM/fairseq/tests/test_lm_context_window.py", "repo_id": "COCO-LM", "token_count": 788 }
209
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq import utils class TestUtils(unittest.TestCase): def test_convert_padding_direction(self): pad = 1 left_pad = torch.LongTensor( [ [2, 3, 4, 5, 6], [1, 7, 8, 9, 10], [1, 1, 1, 11, 12], ] ) right_pad = torch.LongTensor( [ [2, 3, 4, 5, 6], [7, 8, 9, 10, 1], [11, 12, 1, 1, 1], ] ) self.assertAlmostEqual( right_pad, utils.convert_padding_direction( left_pad, pad, left_to_right=True, ), ) self.assertAlmostEqual( left_pad, utils.convert_padding_direction( right_pad, pad, right_to_left=True, ), ) def test_make_positions(self): pad = 1 left_pad_input = torch.LongTensor( [ [9, 9, 9, 9, 9], [1, 9, 9, 9, 9], [1, 1, 1, 9, 9], ] ) left_pad_output = torch.LongTensor( [ [2, 3, 4, 5, 6], [1, 2, 3, 4, 5], [1, 1, 1, 2, 3], ] ) right_pad_input = torch.LongTensor( [ [9, 9, 9, 9, 9], [9, 9, 9, 9, 1], [9, 9, 1, 1, 1], ] ) right_pad_output = torch.LongTensor( [ [2, 3, 4, 5, 6], [2, 3, 4, 5, 1], [2, 3, 1, 1, 1], ] ) self.assertAlmostEqual( left_pad_output, utils.make_positions(left_pad_input, pad), ) self.assertAlmostEqual( right_pad_output, utils.make_positions(right_pad_input, pad), ) def test_clip_grad_norm_(self): params = torch.nn.Parameter(torch.zeros(5)).requires_grad_(False) grad_norm = utils.clip_grad_norm_(params, 1.0) self.assertTrue(torch.is_tensor(grad_norm)) self.assertEqual(grad_norm, 0.0) params = [torch.nn.Parameter(torch.zeros(5)) for i in range(3)] for p in params: p.grad = torch.full((5,), fill_value=2.0) grad_norm = utils.clip_grad_norm_(params, 1.0) exp_grad_norm = torch.full((15,), fill_value=2.0).norm() self.assertTrue(torch.is_tensor(grad_norm)) self.assertEqual(grad_norm, exp_grad_norm) grad_norm = utils.clip_grad_norm_(params, 1.0) self.assertAlmostEqual(grad_norm, torch.tensor(1.0)) def test_resolve_max_positions_with_tuple(self): resolved = utils.resolve_max_positions(None, (2000, 100, 2000), 12000) self.assertEqual(resolved, (2000, 100, 2000)) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess(utils.item((t1 - t2).abs().max()), 1e-4) if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/test_utils.py/0
{ "file_path": "COCO-LM/fairseq/tests/test_utils.py", "repo_id": "COCO-LM", "token_count": 1891 }
210
""" Official evaluation script for SQuAD version 2.0. Modified by XLNet authors to update `find_best_threshold` scripts for SQuAD V2.0 In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted probability that a question is unanswerable. """ import argparse import collections import json import numpy as np import os import re import string import sys class EVAL_OPTS(): def __init__(self, data_file, pred_file, out_file="", na_prob_file="na_prob.json", na_prob_thresh=1.0, out_image_dir=None, verbose=False): self.data_file = data_file self.pred_file = pred_file self.out_file = out_file self.na_prob_file = na_prob_file self.na_prob_thresh = na_prob_thresh self.out_image_dir = out_image_dir self.verbose = verbose OPTS = None def parse_args(): parser = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.') parser.add_argument('data_file', metavar='data.json', help='Input data JSON file.') parser.add_argument('pred_file', metavar='pred.json', help='Model predictions.') parser.add_argument('--out-file', '-o', metavar='eval.json', help='Write accuracy metrics to file (default is stdout).') parser.add_argument('--na-prob-file', '-n', metavar='na_prob.json', help='Model estimates of probability of no answer.') parser.add_argument('--na-prob-thresh', '-t', type=float, default=1.0, help='Predict "" if no-answer probability exceeds this (default = 1.0).') parser.add_argument('--out-image-dir', '-p', metavar='out_images', default=None, help='Save precision-recall curves to directory.') parser.add_argument('--verbose', '-v', action='store_true') if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def make_qid_to_has_ans(dataset): qid_to_has_ans = {} for article in dataset: for p in article['paragraphs']: for qa in p['qas']: qid_to_has_ans[qa['id']] = bool(qa['answers']) return qid_to_has_ans def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) return re.sub(regex, ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def get_tokens(s): if not s: return [] return normalize_answer(s).split() def compute_exact(a_gold, a_pred): return int(normalize_answer(a_gold) == normalize_answer(a_pred)) def compute_f1(a_gold, a_pred): gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def get_raw_scores(dataset, preds): exact_scores = {} f1_scores = {} for article in dataset: for p in article['paragraphs']: for qa in p['qas']: qid = qa['id'] gold_answers = [a['text'] for a in qa['answers'] if normalize_answer(a['text'])] if not gold_answers: # For unanswerable questions, only correct answer is empty string gold_answers = [''] if qid not in preds: print('Missing prediction for %s' % qid) continue a_pred = preds[qid] # Take max over all gold answers exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers) f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers) return exact_scores, f1_scores def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): new_scores = {} for qid, s in scores.items(): pred_na = na_probs[qid] > na_prob_thresh if pred_na: new_scores[qid] = float(not qid_to_has_ans[qid]) else: new_scores[qid] = s return new_scores def make_eval_dict(exact_scores, f1_scores, qid_list=None): if not qid_list: total = len(exact_scores) return collections.OrderedDict([ ('exact', 100.0 * sum(exact_scores.values()) / total), ('f1', 100.0 * sum(f1_scores.values()) / total), ('total', total), ]) else: total = len(qid_list) return collections.OrderedDict([ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total), ('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total), ('total', total), ]) def merge_eval(main_eval, new_eval, prefix): for k in new_eval: main_eval['%s_%s' % (prefix, k)] = new_eval[k] def plot_pr_curve(precisions, recalls, out_image, title): plt.step(recalls, precisions, color='b', alpha=0.2, where='post') plt.fill_between(recalls, precisions, step='post', alpha=0.2, color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(title) plt.savefig(out_image) plt.clf() def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans, out_image=None, title=None): qid_list = sorted(na_probs, key=lambda k: na_probs[k]) true_pos = 0.0 cur_p = 1.0 cur_r = 0.0 precisions = [1.0] recalls = [0.0] avg_prec = 0.0 for i, qid in enumerate(qid_list): if qid_to_has_ans[qid]: true_pos += scores[qid] cur_p = true_pos / float(i+1) cur_r = true_pos / float(num_true_pos) if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i+1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(cur_p) recalls.append(cur_r) if out_image: plot_pr_curve(precisions, recalls, out_image, title) return {'ap': 100.0 * avg_prec} def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans, out_image_dir): if out_image_dir and not os.path.exists(out_image_dir): os.makedirs(out_image_dir) num_true_pos = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return pr_exact = make_precision_recall_eval( exact_raw, na_probs, num_true_pos, qid_to_has_ans, out_image=os.path.join(out_image_dir, 'pr_exact.png'), title='Precision-Recall curve for Exact Match score') pr_f1 = make_precision_recall_eval( f1_raw, na_probs, num_true_pos, qid_to_has_ans, out_image=os.path.join(out_image_dir, 'pr_f1.png'), title='Precision-Recall curve for F1 score') oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()} pr_oracle = make_precision_recall_eval( oracle_scores, na_probs, num_true_pos, qid_to_has_ans, out_image=os.path.join(out_image_dir, 'pr_oracle.png'), title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)') merge_eval(main_eval, pr_exact, 'pr_exact') merge_eval(main_eval, pr_f1, 'pr_f1') merge_eval(main_eval, pr_oracle, 'pr_oracle') def histogram_na_prob(na_probs, qid_list, image_dir, name): if not qid_list: return x = [na_probs[k] for k in qid_list] weights = np.ones_like(x) / float(len(x)) plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0)) plt.xlabel('Model probability of no-answer') plt.ylabel('Proportion of dataset') plt.title('Histogram of no-answer probability: %s' % name) plt.savefig(os.path.join(image_dir, 'na_prob_hist_%s.png' % name)) plt.clf() def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for i, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] return 100.0 * best_score / len(scores), best_thresh def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for i, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] has_ans_score, has_ans_cnt = 0, 0 for qid in qid_list: if not qid_to_has_ans[qid]: continue has_ans_cnt += 1 if qid not in scores: continue has_ans_score += scores[qid] return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans) main_eval['best_exact'] = best_exact main_eval['best_exact_thresh'] = exact_thresh main_eval['best_f1'] = best_f1 main_eval['best_f1_thresh'] = f1_thresh def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans) main_eval['best_exact'] = best_exact main_eval['best_exact_thresh'] = exact_thresh main_eval['best_f1'] = best_f1 main_eval['best_f1_thresh'] = f1_thresh main_eval['has_ans_exact'] = has_ans_exact main_eval['has_ans_f1'] = has_ans_f1 def main(OPTS): with open(OPTS.data_file) as f: dataset_json = json.load(f) dataset = dataset_json['data'] with open(OPTS.pred_file) as f: preds = json.load(f) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: na_probs = json.load(f) else: na_probs = {k: 0.0 for k in preds} qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact_raw, f1_raw = get_raw_scores(dataset, preds) exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans, OPTS.na_prob_thresh) f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans, OPTS.na_prob_thresh) out_eval = make_eval_dict(exact_thresh, f1_thresh) if has_ans_qids: has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids) merge_eval(out_eval, has_ans_eval, 'HasAns') if no_ans_qids: no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids) merge_eval(out_eval, no_ans_eval, 'NoAns') if OPTS.na_prob_file: find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans, OPTS.out_image_dir) histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, 'hasAns') histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, 'noAns') if OPTS.out_file: with open(OPTS.out_file, 'w') as f: json.dump(out_eval, f) else: print(json.dumps(out_eval, indent=2)) return out_eval if __name__ == '__main__': OPTS = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main(OPTS)
COCO-LM/huggingface/utils_squad_evaluate.py/0
{ "file_path": "COCO-LM/huggingface/utils_squad_evaluate.py", "repo_id": "COCO-LM", "token_count": 5684 }
211
# ------------------------------------------ # CSWin Transformer # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # written By Xiaoyi Dong # ------------------------------------------ import glob import operator import os import logging import torch from timm.utils.model import unwrap_model, get_state_dict import shutil _logger = logging.getLogger(__name__) class CheckpointSaver: def __init__( self, model, optimizer, args=None, model_ema=None, amp_scaler=None, checkpoint_prefix='checkpoint', recovery_prefix='recovery', checkpoint_dir='', recovery_dir='', decreasing=False, max_history=10, unwrap_fn=unwrap_model): # objects to save state_dicts of self.model = model self.optimizer = optimizer self.args = args self.model_ema = model_ema self.amp_scaler = amp_scaler # state self.checkpoint_files = [] # (filename, metric) tuples in order of decreasing betterness self.best_epoch = None self.best_metric = None self.curr_recovery_file = '' self.last_recovery_file = '' # config self.checkpoint_dir = checkpoint_dir self.recovery_dir = recovery_dir self.save_prefix = checkpoint_prefix self.recovery_prefix = recovery_prefix self.extension = '.pth.tar' self.decreasing = decreasing # a lower metric is better if True self.cmp = operator.lt if decreasing else operator.gt # True if lhs better than rhs self.max_history = max_history self.unwrap_fn = unwrap_fn assert self.max_history >= 1 def save_checkpoint(self, epoch, metric=None): assert epoch >= 0 tmp_save_path = os.path.join(self.checkpoint_dir, 'tmp' + self.extension) last_save_path = os.path.join(self.checkpoint_dir, 'last' + self.extension) self._save(tmp_save_path, epoch, metric) if os.path.exists(last_save_path): #os.unlink(last_save_path) # required for Windows support. os.remove(last_save_path) os.rename(tmp_save_path, last_save_path) worst_file = self.checkpoint_files[-1] if self.checkpoint_files else None if (len(self.checkpoint_files) < self.max_history or metric is None or self.cmp(metric, worst_file[1])): if len(self.checkpoint_files) >= self.max_history: self._cleanup_checkpoints(1) filename = '-'.join([self.save_prefix, str(epoch)]) + self.extension save_path = os.path.join(self.checkpoint_dir, filename) #os.link(last_save_path, save_path) shutil.copyfile(last_save_path, save_path) self.checkpoint_files.append((save_path, metric)) self.checkpoint_files = sorted( self.checkpoint_files, key=lambda x: x[1], reverse=not self.decreasing) # sort in descending order if a lower metric is not better checkpoints_str = "Current checkpoints:\n" for c in self.checkpoint_files: checkpoints_str += ' {}\n'.format(c) _logger.info(checkpoints_str) if metric is not None and (self.best_metric is None or self.cmp(metric, self.best_metric)): self.best_epoch = epoch self.best_metric = metric best_save_path = os.path.join(self.checkpoint_dir, 'model_best' + self.extension) if os.path.exists(best_save_path): os.unlink(best_save_path) #os.link(last_save_path, best_save_path) shutil.copyfile(last_save_path, best_save_path) return (None, None) if self.best_metric is None else (self.best_metric, self.best_epoch) def _save(self, save_path, epoch, metric=None): save_state = { 'epoch': epoch, 'arch': type(self.model).__name__.lower(), 'state_dict': get_state_dict(self.model, self.unwrap_fn), 'optimizer': self.optimizer.state_dict(), 'version': 2, # version < 2 increments epoch before save } if self.args is not None: save_state['arch'] = self.args.model save_state['args'] = self.args if self.amp_scaler is not None: save_state[self.amp_scaler.state_dict_key] = self.amp_scaler.state_dict() if self.model_ema is not None: save_state['state_dict_ema'] = get_state_dict(self.model_ema, self.unwrap_fn) if metric is not None: save_state['metric'] = metric torch.save(save_state, save_path) def _cleanup_checkpoints(self, trim=0): trim = min(len(self.checkpoint_files), trim) delete_index = self.max_history - trim if delete_index <= 0 or len(self.checkpoint_files) <= delete_index: return to_delete = self.checkpoint_files[delete_index:] for d in to_delete: try: _logger.debug("Cleaning checkpoint: {}".format(d)) os.remove(d[0]) except Exception as e: _logger.error("Exception '{}' while deleting checkpoint".format(e)) self.checkpoint_files = self.checkpoint_files[:delete_index] def save_recovery(self, epoch, batch_idx=0): assert epoch >= 0 filename = '-'.join([self.recovery_prefix, str(epoch), str(batch_idx)]) + self.extension save_path = os.path.join(self.recovery_dir, filename) self._save(save_path, epoch) if os.path.exists(self.last_recovery_file): try: _logger.debug("Cleaning recovery: {}".format(self.last_recovery_file)) os.remove(self.last_recovery_file) except Exception as e: _logger.error("Exception '{}' while removing {}".format(e, self.last_recovery_file)) self.last_recovery_file = self.curr_recovery_file self.curr_recovery_file = save_path def find_recovery(self): recovery_path = os.path.join(self.recovery_dir, self.recovery_prefix) files = glob.glob(recovery_path + '*' + self.extension) files = sorted(files) if len(files): return files[0] else: return ''
CSWin-Transformer/checkpoint_saver.py/0
{ "file_path": "CSWin-Transformer/checkpoint_saver.py", "repo_id": "CSWin-Transformer", "token_count": 2948 }
212
datadir: /data/CMIP6/AWI-ESM name: 10m_u_component_of_wind cmip_name: uas era_name: u10 run: r1i1p1f1 res: - 1.40625 # - 5.625
ClimaX/snakemake_configs/AWI-ESM/config_10m_u_component_of_wind.yml/0
{ "file_path": "ClimaX/snakemake_configs/AWI-ESM/config_10m_u_component_of_wind.yml", "repo_id": "ClimaX", "token_count": 72 }
213
datadir: /data/CMIP6/HAMMOZ name: 2m_temperature cmip_name: tas era_name: t2m run: r1i1p1f1 version: v20190628 res: - 1.40625 # - 5.625
ClimaX/snakemake_configs/HAMMOZ/config_2m_temperature.yml/0
{ "file_path": "ClimaX/snakemake_configs/HAMMOZ/config_2m_temperature.yml", "repo_id": "ClimaX", "token_count": 73 }
214
datadir: /data/CMIP6/TaiESM1 server_prefix: https://esgf.ceda.ac.uk/thredds/fileServer/esg_cmip6/CMIP6/CMIP name: 2m_temperature cmip_name: tas era_name: t2m run: r1i1p1f1 res: - 1.40625 # - 5.625
ClimaX/snakemake_configs/TaiESM1/config_2m_temperature.yml/0
{ "file_path": "ClimaX/snakemake_configs/TaiESM1/config_2m_temperature.yml", "repo_id": "ClimaX", "token_count": 105 }
215
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # credits: https://github.com/ashleve/lightning-hydra-template/blob/main/src/models/mnist_module.py from typing import Any import torch from pytorch_lightning import LightningModule from torchvision.transforms import transforms from climax.arch import ClimaX from climax.utils.lr_scheduler import LinearWarmupCosineAnnealingLR from climax.utils.metrics import ( lat_weighted_acc, lat_weighted_mse, lat_weighted_mse_val, lat_weighted_rmse, ) from climax.utils.pos_embed import interpolate_pos_embed class GlobalForecastModule(LightningModule): """Lightning module for global forecasting with the ClimaX model. Args: net (ClimaX): ClimaX model. pretrained_path (str, optional): Path to pre-trained checkpoint. lr (float, optional): Learning rate. beta_1 (float, optional): Beta 1 for AdamW. beta_2 (float, optional): Beta 2 for AdamW. weight_decay (float, optional): Weight decay for AdamW. warmup_epochs (int, optional): Number of warmup epochs. max_epochs (int, optional): Number of total epochs. warmup_start_lr (float, optional): Starting learning rate for warmup. eta_min (float, optional): Minimum learning rate. """ def __init__( self, net: ClimaX, pretrained_path: str = "", lr: float = 5e-4, beta_1: float = 0.9, beta_2: float = 0.99, weight_decay: float = 1e-5, warmup_epochs: int = 10000, max_epochs: int = 200000, warmup_start_lr: float = 1e-8, eta_min: float = 1e-8, ): super().__init__() self.save_hyperparameters(logger=False, ignore=["net"]) self.net = net if len(pretrained_path) > 0: self.load_pretrained_weights(pretrained_path) def load_pretrained_weights(self, pretrained_path): if pretrained_path.startswith("http"): checkpoint = torch.hub.load_state_dict_from_url(pretrained_path) else: checkpoint = torch.load(pretrained_path, map_location=torch.device("cpu")) print("Loading pre-trained checkpoint from: %s" % pretrained_path) checkpoint_model = checkpoint["state_dict"] # interpolate positional embedding interpolate_pos_embed(self.net, checkpoint_model, new_size=self.net.img_size) state_dict = self.state_dict() if self.net.parallel_patch_embed: if "token_embeds.proj_weights" not in checkpoint_model.keys(): raise ValueError( "Pretrained checkpoint does not have token_embeds.proj_weights for parallel processing. Please convert the checkpoints first or disable parallel patch_embed tokenization." ) # checkpoint_keys = list(checkpoint_model.keys()) for k in list(checkpoint_model.keys()): if "channel" in k: checkpoint_model[k.replace("channel", "var")] = checkpoint_model[k] del checkpoint_model[k] for k in list(checkpoint_model.keys()): if k not in state_dict.keys() or checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] # load pre-trained model msg = self.load_state_dict(checkpoint_model, strict=False) print(msg) def set_denormalization(self, mean, std): self.denormalization = transforms.Normalize(mean, std) def set_lat_lon(self, lat, lon): self.lat = lat self.lon = lon def set_pred_range(self, r): self.pred_range = r def set_val_clim(self, clim): self.val_clim = clim def set_test_clim(self, clim): self.test_clim = clim def training_step(self, batch: Any, batch_idx: int): x, y, lead_times, variables, out_variables = batch loss_dict, _ = self.net.forward(x, y, lead_times, variables, out_variables, [lat_weighted_mse], lat=self.lat) loss_dict = loss_dict[0] for var in loss_dict.keys(): self.log( "train/" + var, loss_dict[var], on_step=True, on_epoch=False, prog_bar=True, ) loss = loss_dict["loss"] return loss def validation_step(self, batch: Any, batch_idx: int): x, y, lead_times, variables, out_variables = batch if self.pred_range < 24: log_postfix = f"{self.pred_range}_hours" else: days = int(self.pred_range / 24) log_postfix = f"{days}_days" all_loss_dicts = self.net.evaluate( x, y, lead_times, variables, out_variables, transform=self.denormalization, metrics=[lat_weighted_mse_val, lat_weighted_rmse, lat_weighted_acc], lat=self.lat, clim=self.val_clim, log_postfix=log_postfix, ) loss_dict = {} for d in all_loss_dicts: for k in d.keys(): loss_dict[k] = d[k] for var in loss_dict.keys(): self.log( "val/" + var, loss_dict[var], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, ) return loss_dict def test_step(self, batch: Any, batch_idx: int): x, y, lead_times, variables, out_variables = batch if self.pred_range < 24: log_postfix = f"{self.pred_range}_hours" else: days = int(self.pred_range / 24) log_postfix = f"{days}_days" all_loss_dicts = self.net.evaluate( x, y, lead_times, variables, out_variables, transform=self.denormalization, metrics=[lat_weighted_mse_val, lat_weighted_rmse, lat_weighted_acc], lat=self.lat, clim=self.test_clim, log_postfix=log_postfix, ) loss_dict = {} for d in all_loss_dicts: for k in d.keys(): loss_dict[k] = d[k] for var in loss_dict.keys(): self.log( "test/" + var, loss_dict[var], on_step=False, on_epoch=True, prog_bar=False, sync_dist=True, ) return loss_dict def configure_optimizers(self): decay = [] no_decay = [] for name, m in self.named_parameters(): if "var_embed" in name or "pos_embed" in name or "time_pos_embed" in name: no_decay.append(m) else: decay.append(m) optimizer = torch.optim.AdamW( [ { "params": decay, "lr": self.hparams.lr, "betas": (self.hparams.beta_1, self.hparams.beta_2), "weight_decay": self.hparams.weight_decay, }, { "params": no_decay, "lr": self.hparams.lr, "betas": (self.hparams.beta_1, self.hparams.beta_2), "weight_decay": 0, }, ] ) lr_scheduler = LinearWarmupCosineAnnealingLR( optimizer, self.hparams.warmup_epochs, self.hparams.max_epochs, self.hparams.warmup_start_lr, self.hparams.eta_min, ) scheduler = {"scheduler": lr_scheduler, "interval": "step", "frequency": 1} return {"optimizer": optimizer, "lr_scheduler": scheduler}
ClimaX/src/climax/global_forecast/module.py/0
{ "file_path": "ClimaX/src/climax/global_forecast/module.py", "repo_id": "ClimaX", "token_count": 3936 }
216
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # Position embedding utils # -------------------------------------------------------- import numpy as np import torch # -------------------------------------------------------- # 2D sine-cosine position embedding # References: # Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py # MoCo v3: https://github.com/facebookresearch/moco-v3 # -------------------------------------------------------- def get_2d_sincos_pos_embed(embed_dim, grid_size_h, grid_size_w, cls_token=False): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size_h, dtype=np.float32) grid_w = np.arange(grid_size_w, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size_h, grid_size_w]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token: pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb # -------------------------------------------------------- # Interpolate position embeddings for high-resolution # References: # DeiT: https://github.com/facebookresearch/deit # -------------------------------------------------------- def interpolate_pos_embed(model, checkpoint_model, new_size=(64, 128)): if "net.pos_embed" in checkpoint_model: pos_embed_checkpoint = checkpoint_model["net.pos_embed"] embedding_size = pos_embed_checkpoint.shape[-1] orig_num_patches = pos_embed_checkpoint.shape[-2] patch_size = model.patch_size w_h_ratio = 2 orig_h = int((orig_num_patches // w_h_ratio) ** 0.5) orig_w = w_h_ratio * orig_h orig_size = (orig_h, orig_w) new_size = (new_size[0] // patch_size, new_size[1] // patch_size) # print (orig_size) # print (new_size) if orig_size[0] != new_size[0]: print("Interpolate PEs from %dx%d to %dx%d" % (orig_size[0], orig_size[1], new_size[0], new_size[1])) pos_tokens = pos_embed_checkpoint.reshape(-1, orig_size[0], orig_size[1], embedding_size).permute( 0, 3, 1, 2 ) new_pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size[0], new_size[1]), mode="bicubic", align_corners=False ) new_pos_tokens = new_pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) checkpoint_model["net.pos_embed"] = new_pos_tokens def interpolate_channel_embed(checkpoint_model, new_len): if "net.channel_embed" in checkpoint_model: channel_embed_checkpoint = checkpoint_model["net.channel_embed"] old_len = channel_embed_checkpoint.shape[1] if new_len <= old_len: checkpoint_model["net.channel_embed"] = channel_embed_checkpoint[:, :new_len]
ClimaX/src/climax/utils/pos_embed.py/0
{ "file_path": "ClimaX/src/climax/utils/pos_embed.py", "repo_id": "ClimaX", "token_count": 1756 }
217
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn as nn import torch.nn.functional as F from util.util import feature_normalize, mse_loss class ContextualLoss_forward(nn.Module): ''' input is Al, Bl, channel = 1, range ~ [0, 255] ''' def __init__(self, opt): super(ContextualLoss_forward, self).__init__() self.opt = opt return None def forward(self, X_features, Y_features, h=0.1, feature_centering=True): ''' X_features&Y_features are are feature vectors or feature 2d array h: bandwidth return the per-sample loss ''' batch_size = X_features.shape[0] feature_depth = X_features.shape[1] feature_size = X_features.shape[2] # to normalized feature vectors if feature_centering: if self.opt.PONO: X_features = X_features - Y_features.mean(dim=1).unsqueeze(dim=1) Y_features = Y_features - Y_features.mean(dim=1).unsqueeze(dim=1) else: X_features = X_features - Y_features.view(batch_size, feature_depth, -1).mean(dim=-1).unsqueeze(dim=-1).unsqueeze(dim=-1) Y_features = Y_features - Y_features.view(batch_size, feature_depth, -1).mean(dim=-1).unsqueeze(dim=-1).unsqueeze(dim=-1) # X_features = X_features - Y_features.mean(dim=1).unsqueeze(dim=1) # Y_features = Y_features - Y_features.mean(dim=1).unsqueeze(dim=1) X_features = feature_normalize(X_features).view(batch_size, feature_depth, -1) # batch_size * feature_depth * feature_size * feature_size Y_features = feature_normalize(Y_features).view(batch_size, feature_depth, -1) # batch_size * feature_depth * feature_size * feature_size # X_features = F.unfold( # X_features, kernel_size=self.opt.match_kernel, stride=1, padding=int(self.opt.match_kernel // 2)) # batch_size * feature_depth_new * feature_size^2 # Y_features = F.unfold( # Y_features, kernel_size=self.opt.match_kernel, stride=1, padding=int(self.opt.match_kernel // 2)) # batch_size * feature_depth_new * feature_size^2 # conine distance = 1 - similarity X_features_permute = X_features.permute(0, 2, 1) # batch_size * feature_size^2 * feature_depth d = 1 - torch.matmul(X_features_permute, Y_features) # batch_size * feature_size^2 * feature_size^2 # normalized distance: dij_bar # d_norm = d d_norm = d / (torch.min(d, dim=-1, keepdim=True)[0] + 1e-3) # batch_size * feature_size^2 * feature_size^2 # pairwise affinity w = torch.exp((1 - d_norm) / h) A_ij = w / torch.sum(w, dim=-1, keepdim=True) # contextual loss per sample CX = torch.mean(torch.max(A_ij, dim=-1)[0], dim=1) loss = -torch.log(CX) # contextual loss per batch # loss = torch.mean(loss) return loss
CoCosNet-v2/models/networks/ContextualLoss.py/0
{ "file_path": "CoCosNet-v2/models/networks/ContextualLoss.py", "repo_id": "CoCosNet-v2", "token_count": 1301 }
218
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from .base_options import BaseOptions class TrainOptions(BaseOptions): def initialize(self, parser): BaseOptions.initialize(self, parser) # for displays parser.add_argument('--display_freq', type=int, default=2000, help='frequency of showing training results on screen') parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') parser.add_argument('--save_epoch_freq', type=int, default=10, help='frequency of saving checkpoints at the end of epochs') # for training parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') parser.add_argument('--niter', type=int, default=100, help='# of iter at starting learning rate. This is NOT the total #epochs. Totla #epochs is niter + niter_decay') parser.add_argument('--niter_decay', type=int, default=0, help='# of iter to linearly decay learning rate to zero') parser.add_argument('--optimizer', type=str, default='adam') parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') parser.add_argument('--beta2', type=float, default=0.999, help='momentum term of adam') parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') parser.add_argument('--D_steps_per_G', type=int, default=1, help='number of discriminator iterations per generator iterations.') # for discriminators parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer') parser.add_argument('--netD', type=str, default='multiscale', help='(n_layers|multiscale|image)') parser.add_argument('--no_TTUR', action='store_true', help='Use TTUR training scheme') parser.add_argument('--real_reference_probability', type=float, default=0.0, help='self-supervised training probability') parser.add_argument('--hard_reference_probability', type=float, default=0.0, help='hard reference training probability') # training loss weights parser.add_argument('--weight_warp_self', type=float, default=0.0, help='push warp self to ref') parser.add_argument('--weight_warp_cycle', type=float, default=0.0, help='push warp cycle to ref') parser.add_argument('--weight_novgg_featpair', type=float, default=10.0, help='in no vgg setting, use pair feat loss in domain adaptation') parser.add_argument('--gan_mode', type=str, default='hinge', help='(ls|original|hinge)') parser.add_argument('--weight_gan', type=float, default=10.0, help='weight of all loss in stage1') parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss') parser.add_argument('--weight_ganFeat', type=float, default=10.0, help='weight for feature matching loss') parser.add_argument('--which_perceptual', type=str, default='4_2', help='relu5_2 or relu4_2') parser.add_argument('--weight_perceptual', type=float, default=0.001) parser.add_argument('--weight_vgg', type=float, default=10.0, help='weight for vgg loss') parser.add_argument('--weight_contextual', type=float, default=1.0, help='ctx loss weight') parser.add_argument('--weight_fm_ratio', type=float, default=1.0, help='vgg fm loss weight comp with ctx loss') self.isTrain = True return parser
CoCosNet-v2/options/train_options.py/0
{ "file_path": "CoCosNet-v2/options/train_options.py", "repo_id": "CoCosNet-v2", "token_count": 1340 }
219
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import re import sys import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from models.networks.sync_batchnorm import SynchronizedBatchNorm2d import torch.nn.utils.spectral_norm as spectral_norm try: import apex from apex import amp except: print('apex not found') pass # Returns a function that creates a normalization function # that does not condition on semantic map def get_nonspade_norm_layer(opt, norm_type='instance'): # helper function to get # output channels of the previous layer def get_out_channel(layer): if hasattr(layer, 'out_channels'): return getattr(layer, 'out_channels') return layer.weight.size(0) # this function will be returned def add_norm_layer(layer): nonlocal norm_type if norm_type.startswith('spectral'): if opt.eqlr_sn: layer = equal_lr(layer) else: layer = spectral_norm(layer) subnorm_type = norm_type[len('spectral'):] if subnorm_type == 'none' or len(subnorm_type) == 0: return layer # remove bias in the previous layer, which is meaningless # since it has no effect after normalization if getattr(layer, 'bias', None) is not None: delattr(layer, 'bias') layer.register_parameter('bias', None) if subnorm_type == 'batch': norm_layer = nn.BatchNorm2d(get_out_channel(layer), affine=True) elif subnorm_type == 'sync_batch': if opt.apex: norm_layer = apex.parallel.SyncBatchNorm(get_out_channel(layer), affine=True) else: norm_layer = SynchronizedBatchNorm2d(get_out_channel(layer), affine=True) elif subnorm_type == 'instance': norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False) else: raise ValueError('normalization layer %s is not recognized' % subnorm_type) return nn.Sequential(layer, norm_layer) return add_norm_layer def PositionalNorm2d(x, epsilon=1e-5): # x: B*C*W*H normalize in C dim mean = x.mean(dim=1, keepdim=True) std = x.var(dim=1, keepdim=True).add(epsilon).sqrt() output = (x - mean) / std return output # Creates SPADE normalization layer based on the given configuration # SPADE consists of two steps. First, it normalizes the activations using # your favorite normalization method, such as Batch Norm or Instance Norm. # Second, it applies scale and bias to the normalized output, conditioned on # the segmentation map. # The format of |config_text| is spade(norm)(ks), where # (norm) specifies the type of parameter-free normalization. # (e.g. syncbatch, batch, instance) # (ks) specifies the size of kernel in the SPADE module (e.g. 3x3) # Example |config_text| will be spadesyncbatch3x3, or spadeinstance5x5. # Also, the other arguments are # |norm_nc|: the #channels of the normalized activations, hence the output dim of SPADE # |label_nc|: the #channels of the input semantic map, hence the input dim of SPADE class SPADE(nn.Module): def __init__(self, config_text, norm_nc, label_nc, PONO=False, use_apex=False): super().__init__() assert config_text.startswith('spade') parsed = re.search('spade(\D+)(\d)x\d', config_text) param_free_norm_type = str(parsed.group(1)) ks = int(parsed.group(2)) self.pad_type = 'nozero' if PONO: self.param_free_norm = PositionalNorm2d elif param_free_norm_type == 'instance': self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) elif param_free_norm_type == 'syncbatch': if use_apex: self.param_free_norm = apex.parallel.SyncBatchNorm(norm_nc, affine=False) else: self.param_free_norm = SynchronizedBatchNorm2d(norm_nc, affine=False) elif param_free_norm_type == 'batch': self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False) else: raise ValueError('%s is not a recognized param-free norm type in SPADE' % param_free_norm_type) # The dimension of the intermediate embedding space. Yes, hardcoded. nhidden = 128 pw = ks // 2 if self.pad_type != 'zero': self.mlp_shared = nn.Sequential( nn.ReflectionPad2d(pw), nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=0), nn.ReLU() ) self.pad = nn.ReflectionPad2d(pw) self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=0) self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=0) else: self.mlp_shared = nn.Sequential( nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), nn.ReLU() ) self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) def forward(self, x, segmap, similarity_map=None): # Part 1. generate parameter-free normalized activations normalized = self.param_free_norm(x) # Part 2. produce scaling and bias conditioned on semantic map segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') actv = self.mlp_shared(segmap) if self.pad_type != 'zero': gamma = self.mlp_gamma(self.pad(actv)) beta = self.mlp_beta(self.pad(actv)) else: gamma = self.mlp_gamma(actv) beta = self.mlp_beta(actv) if similarity_map is not None: similarity_map = F.interpolate(similarity_map, size=gamma.size()[2:], mode='nearest') gamma = gamma * similarity_map beta = beta * similarity_map # apply scale and bias out = normalized * (1 + gamma) + beta return out class SPADE_TwoPath(nn.Module): def __init__(self, config_text, norm_nc, label_nc_example, label_nc_imagine, PONO=False, use_apex=False): super().__init__() assert config_text.startswith('spade') parsed = re.search('spade(\D+)(\d)x\d', config_text) param_free_norm_type = str(parsed.group(1)) ks = int(parsed.group(2)) self.pad_type = 'nozero' if PONO: self.param_free_norm = PositionalNorm2d elif param_free_norm_type == 'instance': self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) elif param_free_norm_type == 'syncbatch': if use_apex: self.param_free_norm = apex.parallel.SyncBatchNorm(norm_nc, affine=False) else: self.param_free_norm = SynchronizedBatchNorm2d(norm_nc, affine=False) elif param_free_norm_type == 'batch': self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False) else: raise ValueError('%s is not a recognized param-free norm type in SPADE' % param_free_norm_type) # The dimension of the intermediate embedding space. Yes, hardcoded. nhidden = 128 pw = ks // 2 if self.pad_type != 'zero': self.mlp_shared_example = nn.Sequential( nn.ReflectionPad2d(pw), nn.Conv2d(label_nc_example, nhidden, kernel_size=ks, padding=0), nn.ReLU() ) self.pad = nn.ReflectionPad2d(pw) self.mlp_gamma_example = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=0) self.mlp_beta_example = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=0) self.mlp_shared_imagine = nn.Sequential( nn.ReflectionPad2d(pw), nn.Conv2d(label_nc_imagine, nhidden, kernel_size=ks, padding=0), nn.ReLU() ) self.mlp_gamma_imagine = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=0) self.mlp_beta_imagine = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=0) else: self.mlp_shared_example = nn.Sequential( nn.Conv2d(label_nc_example, nhidden, kernel_size=ks, padding=pw), nn.ReLU() ) self.mlp_gamma_example = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) self.mlp_beta_example = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) self.mlp_shared_imagine = nn.Sequential( nn.Conv2d(label_nc_imagine, nhidden, kernel_size=ks, padding=pw), nn.ReLU() ) self.mlp_gamma_imagine = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) self.mlp_beta_imagine = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) def forward(self, x, warpmap, segmap, similarity_map): similarity_map = similarity_map.detach() # Part 1. generate parameter-free normalized activations normalized = self.param_free_norm(x) # Part 2. produce scaling and bias conditioned on semantic map segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') warpmap = F.interpolate(warpmap, size=x.size()[2:], mode='nearest') actv_example = self.mlp_shared_example(warpmap) actv_imagine = self.mlp_shared_imagine(segmap) if self.pad_type != 'zero': gamma_example = self.mlp_gamma_example(self.pad(actv_example)) beta_example = self.mlp_beta_example(self.pad(actv_example)) gamma_imagine = self.mlp_gamma_imagine(self.pad(actv_imagine)) beta_imagine = self.mlp_beta_imagine(self.pad(actv_imagine)) else: gamma_example = self.mlp_gamma_example(actv_example) beta_example = self.mlp_beta_example(actv_example) gamma_imagine = self.mlp_gamma_imagine(actv_imagine) beta_imagine = self.mlp_beta_imagine(actv_imagine) similarity_map = F.interpolate(similarity_map, size=x.size()[2:], mode='nearest') gamma = gamma_example * similarity_map + gamma_imagine * (1 - similarity_map) beta = beta_example * similarity_map + beta_imagine * (1 - similarity_map) # apply scale and bias out = normalized * (1 + gamma) + beta return out class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * np.sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) def equal_lr(module, name='weight'): EqualLR.apply(module, name) return module
CoCosNet/models/networks/normalization.py/0
{ "file_path": "CoCosNet/models/networks/normalization.py", "repo_id": "CoCosNet", "token_count": 5275 }
220
""" Evaluation metrics to measure functional correctness of traces. """ text_identifier_num = 0 gold_identifier_num = 0 correct_identifier_num = 0 def get_output_from_trace(text): output_list = [] parse_loc = [] start_len = 0 while True: num = text.find("<line>",start_len) if num == -1: break parse_loc.append(num) start_len = num + 1 start_len = 0 while True: num = text.find("<output>",start_len) if num == -1: break parse_loc.append(num) start_len = num + 1 # add 0 and len(text) parse_loc.append(0) parse_loc.append(len(text)) parse_loc = list(set(parse_loc)) parse_loc.sort() for i, loc in enumerate(parse_loc): if i == 0: continue # remove the last incomplete sentence in gold if i == len(parse_loc)-1: if "</state>" not in text[parse_loc[i-1]:loc]: continue if "<output>" in text[parse_loc[i-1]:loc]: my_output = text[parse_loc[i-1]+len("<output> "):loc].strip() if "_____event" in my_output: my_output = my_output[0:my_output.find("_____event")].strip() if len(my_output) > 0: output_list.append(my_output) return output_list def parse_text_into_sent(text): text_list = [] parse_loc = [] start_len = 0 while True: num = text.find("<line>",start_len) if num == -1: break parse_loc.append(num) start_len = num + 1 start_len = 0 while True: num = text.find("<output>",start_len) if num == -1: break parse_loc.append(num) start_len = num + 1 # add 0 and len(text) parse_loc.append(0) parse_loc.append(len(text)) parse_loc = list(set(parse_loc)) parse_loc.sort() for i, loc in enumerate(parse_loc): if i == 0: continue # remove the last incomplete sentence in text if i == len(parse_loc)-1: if "</state>" not in text[parse_loc[i-1]:loc]: continue text_list.append(text[parse_loc[i-1]:loc]) return text_list def parse_gold_into_sent(text): text_list = [] parse_loc = [] start_len = 0 while True: num = text.find("<line>",start_len) if num == -1: break parse_loc.append(num) start_len = num + 1 start_len = 0 while True: num = text.find("<output>",start_len) if num == -1: break parse_loc.append(num) start_len = num + 1 # add 0 and len(text) parse_loc.append(0) parse_loc.append(len(text)) parse_loc = list(set(parse_loc)) parse_loc.sort() for i, loc in enumerate(parse_loc): if i == 0: continue # remove the last incomplete sentence in gold if i == len(parse_loc)-1: if "</state>" not in text[parse_loc[i-1]:loc]: continue text_list.append(text[parse_loc[i-1]:loc]) return text_list def dict_same_key_value_num(d1, d2): d1_keys = set(d1.keys()) d2_keys = set(d2.keys()) intersect_keys = d1_keys.intersection(d2_keys) same_num = 0 for key in intersect_keys: if d1[key] == d2[key]: same_num += 1 return same_num def same_sent(text,gold): if "<output>" in text or "<output>" in gold: if text == gold: return True else: return False if "<state>" not in text or "<state>" not in gold: if text == gold: return True else: return False text_sep = text text_linenum_info = text[0:text.find("<state>")].strip() text_sep = text_sep[text_sep.find("<state>"):].strip() if text_sep.startswith("<state>"): text_sep = text_sep[len("<state>"):] if text_sep.endswith("</state>"): text_sep = text_sep[:-len("</state>")] text_sep = text_sep.split("<dictsep>") text_dict = {} for state in text_sep: if ":" in state: text_dict[state[0:state.index(":")].strip()] = state[state.index(":")+1:].strip() gold_sep = gold gold_linenum_info = gold[0:gold.find("<state>")].strip() gold_sep = gold_sep[gold_sep.find("<state>"):].strip() if gold_sep.startswith("<state>"): gold_sep = gold_sep[len("<state>"):] if gold_sep.endswith("</state>"): gold_sep = gold_sep[:-len("</state>")] gold_sep = gold_sep.split("<dictsep>") gold_dict = {} for state in gold_sep: if ":" in state: gold_dict[state[0:state.index(":")].strip()] = state[state.index(":")+1:].strip() global correct_identifier_num if text_linenum_info == gold_linenum_info: correct_identifier_num += dict_same_key_value_num(text_dict,gold_dict) if text_linenum_info == gold_linenum_info and text_dict == gold_dict: return True return False def get_identifier_num(text_list): res = 0 for text in text_list: text_sep = text text_linenum_info = text[0:text.find("<state>")].strip() text_sep = text_sep[text_sep.find("<state>"):].strip() if text_sep.startswith("<state>"): text_sep = text_sep[len("<state>"):] if text_sep.endswith("</state>"): text_sep = text_sep[:-len("</state>")] text_sep = text_sep.split("<dictsep>") text_dict = {} for state in text_sep: if ":" in state: text_dict[state[0:state.index(":")].strip()] = state[state.index(":")+1:].strip() res += len(text_dict) return res # Compute metrics in the Tutorial or CodeNetMut dataset. def compute_metrics(preds, golds): assert(len(preds) == len(golds)) em_num = 0 total_num = 0 output_same_num = 0 gold_has_output_num = 0 precision_list_line = [] recall_list_line = [] precision_list_id = [] recall_list_id = [] right_all_num = 0 text_all_num = 0 gold_all_num = 0 right_id_all_num = 0 text_id_all_num = 0 gold_id_all_num = 0 global correct_identifier_num for i, pred in enumerate(preds): text = pred.strip() gold = golds[i].strip() total_num += 1 gold_output = get_output_from_trace(gold) predict_output = get_output_from_trace(text) if len(gold_output) > 0: gold_has_output_num += 1 if len(gold_output) > 0 and gold_output == predict_output: output_same_num += 1 text_list = parse_text_into_sent(text) gold_list = parse_gold_into_sent(gold) text_sent_num = len(text_list) gold_sent_num = len(gold_list) same_sent_num = 0 text_identifier_num = 0 gold_identifier_num = 0 global correct_identifier_num correct_identifier_num = 0 for i in range(0,gold_sent_num): if i < text_sent_num and same_sent(text_list[i],gold_list[i]) == True: same_sent_num += 1 text_identifier_num = get_identifier_num(text_list) gold_identifier_num = get_identifier_num(gold_list) precision_tmp = same_sent_num/text_sent_num if text_sent_num != 0 else 0 recall_tmp = same_sent_num/gold_sent_num if gold_sent_num != 0 else 0 precision_list_line.append(precision_tmp) recall_list_line.append(recall_tmp) right_all_num += same_sent_num text_all_num += text_sent_num gold_all_num += gold_sent_num precision_id = correct_identifier_num/text_identifier_num if text_identifier_num != 0 else 0 recall_id = correct_identifier_num/gold_identifier_num if gold_identifier_num != 0 else 0 precision_list_id.append(precision_id) recall_list_id.append(recall_id) right_id_all_num += correct_identifier_num text_id_all_num += text_identifier_num gold_id_all_num += gold_identifier_num if same_sent_num == gold_sent_num and text_sent_num == gold_sent_num: em_num += 1 metric_list = [] output_acc = output_same_num /gold_has_output_num em = em_num/total_num metric_list.append(round(100 * output_acc, 2)) metric_list.append(round(100 * em, 2)) line_micro_precision = right_all_num/text_all_num line_macro_precision = sum(precision_list_line)/len(precision_list_line) line_micro_recall = right_all_num/gold_all_num line_macro_recall = sum(recall_list_line)/len(recall_list_line) line_f1 = 2 * line_micro_precision * line_micro_recall / (line_micro_precision + line_micro_recall) metric_list.append(round(100 * line_micro_precision, 2)) metric_list.append(round(100 * line_micro_recall, 2)) metric_list.append(round(100 * line_f1, 2)) id_micro_precision = right_id_all_num/text_id_all_num id_macro_precision = sum(precision_list_id)/len(precision_list_id) id_micro_recall = right_id_all_num/gold_id_all_num id_macro_recall = sum(recall_list_id)/len(recall_list_id) id_f1 = 2 * id_micro_precision * id_micro_recall / (id_micro_precision + id_micro_recall) metric_list.append(round(100 * id_micro_precision, 2)) metric_list.append(round(100 * id_micro_recall, 2)) metric_list.append(round(100 * id_f1, 2)) return metric_list # Evaluation metrics to measure correctness of single-line traces, especially designed for the SingleLine dataset. def compute_singleline_metrics(pred_list, gold_list): assert(len(pred_list) == len(gold_list)) em_num = 0 total_num = 0 precision_list_id = [] recall_list_id = [] right_id_all_num = 0 text_id_all_num = 0 gold_id_all_num = 0 for i, pred in enumerate(pred_list): text = pred.strip() gold = gold_list[i].strip() total_num += 1 text_sep = text if text_sep.startswith("<state>"): text_sep = text_sep[len("<state>"):] if text_sep.endswith("</state>"): text_sep = text_sep[:-len("</state>")] text_sep = text_sep.split("<dictsep>") text_dict = {} for state in text_sep: if ":" in state: text_dict[state.split(":")[0].strip()] = state.split(":")[1].strip() gold_sep = gold if gold_sep.startswith("<state>"): gold_sep = gold_sep[len("<state>"):] if gold_sep.endswith("</state>"): gold_sep = gold_sep[:-len("</state>")] gold_sep = gold_sep.split("<dictsep>") gold_dict = {} for state in gold_sep: if ":" in state: gold_dict[state.split(":")[0].strip()] = state.split(":")[1].strip() correct_id_num = dict_same_key_value_num(text_dict,gold_dict) text_identifier_num = len(text_dict) gold_identifier_num = len(gold_dict) precision_id = correct_id_num/text_identifier_num if text_identifier_num != 0 else 0 recall_id = correct_id_num/gold_identifier_num if gold_identifier_num != 0 else 0 precision_list_id.append(precision_id) recall_list_id.append(recall_id) right_id_all_num += correct_id_num text_id_all_num += text_identifier_num gold_id_all_num += gold_identifier_num if text_dict == gold_dict: em_num += 1 metric_list = [] em = em_num/total_num metric_list.append(round(100 * em, 2)) id_micro_precision = right_id_all_num/text_id_all_num id_macro_precision = sum(precision_list_id)/len(precision_list_id) id_micro_recall = right_id_all_num/gold_id_all_num id_macro_recall = sum(recall_list_id)/len(recall_list_id) id_f1 = 2 * id_micro_precision * id_micro_recall / (id_micro_precision + id_micro_recall) metric_list.append(round(100 * id_micro_precision, 2)) metric_list.append(round(100 * id_micro_recall, 2)) metric_list.append(round(100 * id_f1, 2)) return metric_list
CodeBERT/CodeExecutor/inference/metric.py/0
{ "file_path": "CodeBERT/CodeExecutor/inference/metric.py", "repo_id": "CodeBERT", "token_count": 5504 }
221
import os, json import torch import logging import argparse import random import numpy as np from tqdm import tqdm import multiprocessing import time from itertools import cycle from torch.utils.data import DataLoader, SequentialSampler, RandomSampler from torch.utils.data.distributed import DistributedSampler from transformers import AdamW, get_linear_schedule_with_warmup from models import build_or_load_gen_model from configs import add_args, set_seed, set_dist from torch.nn.parallel import DistributedDataParallel as DDP import torch.distributed as dist from utils import CommentGenDataset, SimpleGenDataset from evaluator.smooth_bleu import bleu_fromstr logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger = logging.getLogger(__name__) def get_loader(data_file, args, tokenizer, pool): def fn(features): return features logger.info(f"Start data file {data_file}.") if args.raw_input: dataset = SimpleGenDataset(tokenizer, pool, args, data_file) else: dataset = CommentGenDataset(tokenizer, pool, args, data_file) sampler = SequentialSampler(dataset) dataloader = DataLoader(dataset, sampler=sampler, batch_size=args.eval_batch_size, num_workers=args.cpu_count, collate_fn=fn) logger.info(f"Finish data files {data_file}.") return dataset, sampler, dataloader def eval_epoch_bleu(args, eval_dataloader, model, tokenizer): logger.info(f" ***** Running bleu evaluation on {args.eval_file} *****") logger.info(" Batch size = %d", args.eval_batch_size) model.eval() if hasattr(model, "module"): model = model.module pred_ids, ex_ids = [], [] for step, examples in tqdm(enumerate(eval_dataloader, 1)): source_ids = torch.tensor( [ex.source_ids for ex in examples], dtype=torch.long ).to(args.local_rank) ids = [ex.example_id for ex in examples] source_mask = source_ids.ne(tokenizer.pad_id) preds = model.generate(source_ids, attention_mask=source_mask, use_cache=True, num_beams=args.beam_size, early_stopping=True, max_length=args.max_target_length) top_preds = list(preds.cpu().numpy()) pred_ids.extend(top_preds) if args.break_cnt > 0 and len(pred_ids) >= args.break_cnt: break # [2:] to remove beginning '<s>' '<msg>' pred_nls = [tokenizer.decode(id[2:], skip_special_tokens=True, clean_up_tokenization_spaces=False) for id in pred_ids] valid_file = args.eval_file out_file = args.out_file outdics = [] golds = [] with open(valid_file, "r") as f: for line in f: outdics.append(json.loads(line)) golds.append(outdics[-1]["msg"]) outdics = outdics[:len(pred_nls)] golds = golds[:len(pred_nls)] with open(os.path.join(args.model_name_or_path, "preds.txt"), "w", encoding="utf-8") as f: for pred in pred_nls: f.write(pred.strip() + "\n") with open(os.path.join(args.model_name_or_path, "golds.txt"), "w", encoding="utf-8") as f: for gold in golds: f.write(gold.strip() + "\n") with open(out_file, "w", encoding="utf-8") as f: for i, outdic in enumerate(outdics): outdic["gen"] = pred_nls[i] f.write(json.dumps(outdic) + "\n") bleu = bleu_fromstr(pred_nls, golds, rmstop=False) return bleu def main(args): dist.init_process_group(backend="nccl") local_rank = dist.get_rank() % args.gpu_per_node args.global_rank = local_rank + args.node_index * args.gpu_per_node args.local_rank = local_rank args.world_size = dist.get_world_size() logger.warning("Process rank: %s, global rank: %s, world size: %s, bs: %s", args.local_rank, args.global_rank, \ torch.distributed.get_world_size(), \ args.eval_batch_size) torch.cuda.set_device(local_rank) set_seed(args) config, model, tokenizer = build_or_load_gen_model(args) model = DDP(model.cuda(), device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True) pool = multiprocessing.Pool(args.cpu_count) data_file = args.eval_file set_seed(args) _, _, dataloader = get_loader(data_file, args, tokenizer, pool) # WARNING: this is a iterator, to save memory model.eval() bleu = eval_epoch_bleu(args, dataloader, model, tokenizer) logger.warning(f"BLEU: {bleu}") if __name__ == "__main__": parser = argparse.ArgumentParser() args = add_args(parser) args.cpu_count = multiprocessing.cpu_count() # remove long tokenization warning. ref: https://github.com/huggingface/transformers/issues/991 logging.getLogger("transformers.tokenization_utils_base").setLevel(logging.ERROR) logger.info(args) main(args) logger.info("Test finished.") # torch.multiprocessing.spawn(main, args=(args,), nprocs=torch.cuda.device_count())
CodeBERT/CodeReviewer/code/run_infer_msg.py/0
{ "file_path": "CodeBERT/CodeReviewer/code/run_infer_msg.py", "repo_id": "CodeBERT", "token_count": 2234 }
222
# Code Translation ## Task Definition Code translation aims to migrate legacy software from one programming language in a platform toanother. Given a piece of Java (C#) code, the task is to translate the code into C# (Java) version. Models are evaluated by BLEU scores and accuracy (exactly match). ## Dataset The dataset is collected from several public repos, including Lucene(http://lucene.apache.org/), POI(http://poi.apache.org/), JGit(https://github.com/eclipse/jgit/) and Antlr(https://github.com/antlr/). We collect both the Java and C# versions of the codes and find the parallel functions. After removing duplicates and functions with the empty body, we split the whole dataset into training, validation and test sets. ### Data Format The dataset is in the "data" folder. Each line of the files is a function, and the suffix of the file indicates the programming language. You can get data using the following command: ``` unzip data.zip ``` ### Data Statistics Data statistics of the dataset are shown in the below table: | | #Examples | | ----- | :-------: | | Train | 10,300 | | Valid | 500 | | Test | 1,000 | ## Pipeline-GraphCodeBERT ### Dependency - pip install torch - pip install transformers - pip install tree_sitter ### Tree-sitter (optional) If the built file "parser/my-languages.so" doesn't work for you, please rebuild as the following command: ```shell cd parser bash build.sh cd .. ``` ### Fine-tune We use 4*V100-16G to fine-tune. Taking Java to C# translation as example: ```shell source=java target=cs lr=1e-4 batch_size=32 beam_size=10 source_length=320 target_length=256 output_dir=saved_models/$source-$target/ train_file=data/train.java-cs.txt.$source,data/train.java-cs.txt.$target dev_file=data/valid.java-cs.txt.$source,data/valid.java-cs.txt.$target epochs=100 pretrained_model=microsoft/graphcodebert-base mkdir -p $output_dir python run.py \ --do_train \ --do_eval \ --model_type roberta \ --source_lang $source \ --model_name_or_path $pretrained_model \ --tokenizer_name microsoft/graphcodebert-base \ --config_name microsoft/graphcodebert-base \ --train_filename $train_file \ --dev_filename $dev_file \ --output_dir $output_dir \ --max_source_length $source_length \ --max_target_length $target_length \ --beam_size $beam_size \ --train_batch_size $batch_size \ --eval_batch_size $batch_size \ --learning_rate $lr \ --num_train_epochs $epochs 2>&1| tee $output_dir/train.log ``` ### Inference We use full test data for inference. ```shell batch_size=64 dev_file=data/valid.java-cs.txt.$source,data/valid.java-cs.txt.$target test_file=data/test.java-cs.txt.$source,data/test.java-cs.txt.$target load_model_path=$output_dir/checkpoint-best-bleu/pytorch_model.bin #checkpoint for test python run.py \ --do_test \ --model_type roberta \ --source_lang $source \ --model_name_or_path $pretrained_model \ --tokenizer_name microsoft/graphcodebert-base \ --config_name microsoft/graphcodebert-base \ --load_model_path $load_model_path \ --dev_filename $dev_file \ --test_filename $test_file \ --output_dir $output_dir \ --max_source_length $source_length \ --max_target_length $target_length \ --beam_size $beam_size \ --eval_batch_size $batch_size 2>&1| tee $output_dir/test.log ``` ## Result The results on the test set are shown as below: Java to C#: | Method | BLEU | Acc (100%) | | -------------- | :-------: | :--------: | | Naive copy | 18.54 | 0.0 | | PBSMT | 43.53 | 12.5 | | Transformer | 55.84 | 33.0 | | Roborta (code) | 77.46 | 56.1 | | CodeBERT | 79.92 | 59.0 | | GraphCodeBERT | **80.58** | **59.4** | C# to Java: | Method | BLEU | Acc (100%) | | -------------- | :-------: | :--------: | | Naive copy | 18.69 | 0.0 | | PBSMT | 40.06 | 16.1 | | Transformer | 50.47 | 37.9 | | Roborta (code) | 71.99 | 57.9 | | CodeBERT | 72.14 | 58.0 | | GraphCodeBERT | **72.64** | **58.8** |
CodeBERT/GraphCodeBERT/translation/README.md/0
{ "file_path": "CodeBERT/GraphCodeBERT/translation/README.md", "repo_id": "CodeBERT", "token_count": 1538 }
223
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os import json from tqdm import tqdm def files(path): g = os.walk(path) file=[] for path,dir_list,file_list in g: for file_name in file_list: file.append(os.path.join(path, file_name)) return file cont=0 with open("train.jsonl",'w') as f: for i in tqdm(range(1,65),total=64): items=files("ProgramData/{}".format(i)) for item in items: js={} js['label']=item.split('/')[1] js['index']=str(cont) js['code']=open(item,encoding='latin-1').read() f.write(json.dumps(js)+'\n') cont+=1 with open("valid.jsonl",'w') as f: for i in tqdm(range(65,81),total=16): items=files("ProgramData/{}".format(i)) for item in items: js={} js['label']=item.split('/')[1] js['index']=str(cont) js['code']=open(item,encoding='latin-1').read() f.write(json.dumps(js)+'\n') cont+=1 with open("test.jsonl",'w') as f: for i in tqdm(range(81,195),total=24): items=files("ProgramData/{}".format(i)) for item in items: js={} js['label']=item.split('/')[1] js['index']=str(cont) js['code']=open(item,encoding='latin-1').read() f.write(json.dumps(js)+'\n') cont+=1
CodeBERT/UniXcoder/downstream-tasks/clone-detection/POJ-104/dataset/preprocess.py/0
{ "file_path": "CodeBERT/UniXcoder/downstream-tasks/clone-detection/POJ-104/dataset/preprocess.py", "repo_id": "CodeBERT", "token_count": 774 }
224
#!/usr/bin/python ''' This script was adapted from the original version by hieuhoang1972 which is part of MOSES. ''' # $Id: bleu.py 1307 2007-03-14 22:22:36Z hieuhoang1972 $ '''Provides: cook_refs(refs, n=4): Transform a list of reference sentences as strings into a form usable by cook_test(). cook_test(test, refs, n=4): Transform a test sentence as a string (together with the cooked reference sentences) into a form usable by score_cooked(). score_cooked(alltest, n=4): Score a list of cooked test sentences. score_set(s, testid, refids, n=4): Interface with dataset.py; calculate BLEU score of testid against refids. The reason for breaking the BLEU computation into three phases cook_refs(), cook_test(), and score_cooked() is to allow the caller to calculate BLEU scores for multiple test sets as efficiently as possible. ''' import sys, math, re, xml.sax.saxutils import subprocess import os # Added to bypass NIST-style pre-processing of hyp and ref files -- wade nonorm = 0 preserve_case = False eff_ref_len = "shortest" normalize1 = [ ('<skipped>', ''), # strip "skipped" tags (r'-\n', ''), # strip end-of-line hyphenation and join lines (r'\n', ' '), # join lines # (r'(\d)\s+(?=\d)', r'\1'), # join digits ] normalize1 = [(re.compile(pattern), replace) for (pattern, replace) in normalize1] normalize2 = [ (r'([\{-\~\[-\` -\&\(-\+\:-\@\/])',r' \1 '), # tokenize punctuation. apostrophe is missing (r'([^0-9])([\.,])',r'\1 \2 '), # tokenize period and comma unless preceded by a digit (r'([\.,])([^0-9])',r' \1 \2'), # tokenize period and comma unless followed by a digit (r'([0-9])(-)',r'\1 \2 ') # tokenize dash when preceded by a digit ] normalize2 = [(re.compile(pattern), replace) for (pattern, replace) in normalize2] def normalize(s): '''Normalize and tokenize text. This is lifted from NIST mteval-v11a.pl.''' # Added to bypass NIST-style pre-processing of hyp and ref files -- wade if (nonorm): return s.split() if type(s) is not str: s = " ".join(s) # language-independent part: for (pattern, replace) in normalize1: s = re.sub(pattern, replace, s) s = xml.sax.saxutils.unescape(s, {'&quot;':'"'}) # language-dependent part (assuming Western languages): s = " %s " % s if not preserve_case: s = s.lower() # this might not be identical to the original for (pattern, replace) in normalize2: s = re.sub(pattern, replace, s) return s.split() def count_ngrams(words, n=4): counts = {} for k in range(1,n+1): for i in range(len(words)-k+1): ngram = tuple(words[i:i+k]) counts[ngram] = counts.get(ngram, 0)+1 return counts def cook_refs(refs, n=4): '''Takes a list of reference sentences for a single segment and returns an object that encapsulates everything that BLEU needs to know about them.''' refs = [normalize(ref) for ref in refs] maxcounts = {} for ref in refs: counts = count_ngrams(ref, n) for (ngram,count) in counts.items(): maxcounts[ngram] = max(maxcounts.get(ngram,0), count) return ([len(ref) for ref in refs], maxcounts) def cook_test(test, item, n=4): '''Takes a test sentence and returns an object that encapsulates everything that BLEU needs to know about it.''' (reflens, refmaxcounts)=item test = normalize(test) result = {} result["testlen"] = len(test) # Calculate effective reference sentence length. if eff_ref_len == "shortest": result["reflen"] = min(reflens) elif eff_ref_len == "average": result["reflen"] = float(sum(reflens))/len(reflens) elif eff_ref_len == "closest": min_diff = None for reflen in reflens: if min_diff is None or abs(reflen-len(test)) < min_diff: min_diff = abs(reflen-len(test)) result['reflen'] = reflen result["guess"] = [max(len(test)-k+1,0) for k in range(1,n+1)] result['correct'] = [0]*n counts = count_ngrams(test, n) for (ngram, count) in counts.items(): result["correct"][len(ngram)-1] += min(refmaxcounts.get(ngram,0), count) return result def score_cooked(allcomps, n=4, ground=0, smooth=1): totalcomps = {'testlen':0, 'reflen':0, 'guess':[0]*n, 'correct':[0]*n} for comps in allcomps: for key in ['testlen','reflen']: totalcomps[key] += comps[key] for key in ['guess','correct']: for k in range(n): totalcomps[key][k] += comps[key][k] logbleu = 0.0 all_bleus = [] for k in range(n): correct = totalcomps['correct'][k] guess = totalcomps['guess'][k] addsmooth = 0 if smooth == 1 and k > 0: addsmooth = 1 logbleu += math.log(correct + addsmooth + sys.float_info.min)-math.log(guess + addsmooth+ sys.float_info.min) if guess == 0: all_bleus.append(-10000000) else: all_bleus.append(math.log(correct + sys.float_info.min)-math.log( guess )) logbleu /= float(n) all_bleus.insert(0, logbleu) brevPenalty = min(0,1-float(totalcomps['reflen'] + 1)/(totalcomps['testlen'] + 1)) for i in range(len(all_bleus)): if i ==0: all_bleus[i] += brevPenalty all_bleus[i] = math.exp(all_bleus[i]) return all_bleus def bleu(refs, candidate, ground=0, smooth=1): refs = cook_refs(refs) test = cook_test(candidate, refs) return score_cooked([test], ground=ground, smooth=smooth) def splitPuncts(line): return ' '.join(re.findall(r"[\w]+|[^\s\w]", line)) def computeMaps(predictions, goldfile): predictionMap = {} goldMap = {} gf = open(goldfile, 'r') for row in predictions: cols = row.strip().split('\t') if len(cols) == 1: (rid, pred) = (cols[0], '') else: (rid, pred) = (cols[0], cols[1]) predictionMap[rid] = [splitPuncts(pred.strip().lower())] for row in gf: (rid, pred) = row.split('\t') if rid in predictionMap: # Only insert if the id exists for the method if rid not in goldMap: goldMap[rid] = [] goldMap[rid].append(splitPuncts(pred.strip().lower())) sys.stderr.write('Total: ' + str(len(goldMap)) + '\n') return (goldMap, predictionMap) #m1 is the reference map #m2 is the prediction map def bleuFromMaps(m1, m2): score = [0] * 5 num = 0.0 for key in m1: if key in m2: bl = bleu(m1[key], m2[key][0]) score = [ score[i] + bl[i] for i in range(0, len(bl))] num += 1 return [s * 100.0 / num for s in score] if __name__ == '__main__': reference_file = sys.argv[1] predictions = [] for row in sys.stdin: predictions.append(row) (goldMap, predictionMap) = computeMaps(predictions, reference_file) print (bleuFromMaps(goldMap, predictionMap)[0])
CodeBERT/UniXcoder/downstream-tasks/code-summarization/bleu.py/0
{ "file_path": "CodeBERT/UniXcoder/downstream-tasks/code-summarization/bleu.py", "repo_id": "CodeBERT", "token_count": 2960 }
225
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for named entity recognition on CoNLL-2003. """ import sys import logging import os from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import pdb import numpy as np from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score from torch import nn import scipy from verifier_metrics import VerifierMetrics import utils_io import shutil import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask from deberta_model import DebertaV2ForTokenClassification import pdb logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) dataset_name: str = field( metadata={"help": "Name of the dataset to be run"} ) previous_run_dir: Optional[str] = field( default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) previous_run_epoch: Optional[int] = field( default=1, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) task_type: Optional[str] = field( default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ train_data: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) test_data: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) data_labels: Optional[str] = field( default="labels.txt", metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}, ) max_seq_length: int = field( default=512, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) alpha: Optional[float] = field( default=0.0, metadata={"help": "help"} ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) module = import_module("tasks") try: token_classification_task_clazz = getattr(module, model_args.task_type) token_classification_task: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Prepare CONLL-2003 task labels = token_classification_task.get_labels(data_args.data_labels) label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)} num_labels = len(labels) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.previous_run_dir is not None: ckpt_path_list = [x for x in os.listdir(model_args.previous_run_dir) if "checkpoint" in x] ckpt_path_list = sorted(ckpt_path_list, key=lambda x : int(x.split("-")[1])) load_model_dir = ckpt_path_list[model_args.previous_run_epoch - 1] # index starts from 0 model_args.model_name_or_path = os.path.join(model_args.previous_run_dir, load_model_dir) config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, id2label=label_map, label2id={label: i for i, label in enumerate(labels)}, cache_dir=model_args.cache_dir, ) # pdb.set_trace() # code change begin config.task_specific_params = {} config.task_specific_params["solution_correct_loss_weight"] = 1.0 config.task_specific_params["solution_incorrect_loss_weight"] = 1.0 config.task_specific_params["step_correct_loss_weight"] = data_args.alpha config.task_specific_params["step_incorrect_loss_weight"] = data_args.alpha config.task_specific_params["other_label_loss_weight"] = 0.0 # code change end print("alpha:", data_args.alpha) print("alpha:", config.task_specific_params["step_correct_loss_weight"]) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast, ) model = DebertaV2ForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # data_dir = data_args.train_data.replace("train.txt", "") # for debug use data_dir = os.path.join(training_args.output_dir, "data/") print("[data_dir]:", data_dir) os.makedirs(data_dir, exist_ok=True) shutil.copy(utils_io.get_file(data_args.train_data), data_dir) print(f"train file copied to: {data_dir}") shutil.copy(utils_io.get_file(data_args.test_data), data_dir + "dev.txt") print(f"dev file copied to: {data_dir}") shutil.copy(utils_io.get_file(data_args.test_data), data_dir) print(f"test file copied to: {data_dir}") shutil.copy(utils_io.get_file(data_args.data_labels), data_dir) print(f"labels file copied to: {data_dir}") # Get datasets train_dataset = ( TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) eval_dataset = ( TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) # save the texual sequences of eval dataset eval_sequences = [tokenizer.decode(x.input_ids) for x in eval_dataset] first_test_case_question = eval_sequences[0].split("&&")[-1].strip() pred_num_per_case = 0 for i, seq in enumerate(eval_sequences[1:]): if seq.split("&&")[-1].strip() == first_test_case_question: pred_num_per_case += 1 else: break print("pred_num_per_case:", pred_num_per_case) def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: preds = np.argmax(predictions, axis=2) batch_size, seq_len = preds.shape out_label_list = [[] for _ in range(batch_size)] preds_list = [[] for _ in range(batch_size)] for i in range(batch_size): for j in range(seq_len): if j == 1: # only pick the second index # if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) return preds_list, out_label_list def get_solution_logits(predictions: np.ndarray): scores = [] for i in range(predictions.shape[0]): solution_correct_index = config.label2id["SOLUTION-CORRECT"] score = scipy.special.softmax(predictions[i][1])[solution_correct_index].item() scores.append(score) return scores # gsm8k_metric = datasets.load_metric("./gsm8k_verifier_metrics") metric = VerifierMetrics( eval_sequences=eval_sequences, pred_num_per_case=pred_num_per_case, dataset_name=model_args.dataset_name, ) def compute_metrics(p: EvalPrediction) -> Dict: scores = get_solution_logits(p.predictions) return metric.compute(predictions=scores, references=scores) # Data collator data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, data_collator=data_collator, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) results.update(result) # Predict if training_args.do_predict: test_dataset = TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.test, ) predictions, label_ids, metrics = trainer.predict(test_dataset) preds_list, _ = align_predictions(predictions, label_ids) output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt") if trainer.is_world_process_zero(): with open(output_test_results_file, "w") as writer: for key, value in metrics.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) # Save predictions output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") if trainer.is_world_process_zero(): with open(output_test_predictions_file, "w") as writer: with open(os.path.join(data_dir, "test.txt"), "r") as f: token_classification_task.write_predictions_to_file(writer, f, preds_list) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
CodeT/DIVERSE/code/src/run_ner.py/0
{ "file_path": "CodeT/DIVERSE/code/src/run_ner.py", "repo_id": "CodeT", "token_count": 6324 }
226
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os os.environ["TOKENIZERS_PARALLELISM"] = "false" from make_window import MakeWindowWrapper from build_vector import BuildVectorWrapper, BagOfWords from search_code import CodeSearchWrapper from build_prompt import BuildPromptWrapper from utils import CONSTANTS, CodexTokenizer def make_repo_window(repos, window_sizes, slice_sizes): worker = MakeWindowWrapper(None, repos, window_sizes, slice_sizes) worker.window_for_repo_files() def run_RG1_and_oracle_method(benchmark, repos, window_sizes, slice_sizes): # build code snippets for all the repositories make_repo_window(repos, window_sizes, slice_sizes) # build code snippets for vanilla retrieval-augmented approach and ground truth MakeWindowWrapper(benchmark, repos, window_sizes, slice_sizes).window_for_baseline_and_ground() # build vector for vanilla retrieval-augmented approach and ground truth vectorizer = BagOfWords BuildVectorWrapper(benchmark, vectorizer, repos, window_sizes, slice_sizes).vectorize_baseline_and_ground_windows() # search code for vanilla retrieval-augmented approach and ground truth CodeSearchWrapper('one-gram', benchmark, repos, window_sizes, slice_sizes).search_baseline_and_ground() # build prompt for vanilla retrieval-augmented approach and ground truth tokenizer = CodexTokenizer mode = CONSTANTS.rg output_file_path = 'prompts/rg-one-gram-ws-20-ss-2.jsonl' BuildPromptWrapper('one-gram', benchmark, repos, window_sizes, slice_sizes, tokenizer).build_first_search_prompt(mode, output_file_path) mode = CONSTANTS.gt output_file_path = 'prompts/gt-one-gram-ws-20-ss-2.jsonl' BuildPromptWrapper('one-gram', benchmark, repos, window_sizes, slice_sizes, tokenizer).build_first_search_prompt(mode, output_file_path) def run_RepoCoder_method(benchmark, repos, window_sizes, slice_sizes, prediction_path): mode = CONSTANTS.rgrg MakeWindowWrapper(benchmark, repos, window_sizes, slice_sizes).window_for_prediction(mode, prediction_path) vectorizer = BagOfWords BuildVectorWrapper(benchmark, vectorizer, repos, window_sizes, slice_sizes).vectorize_prediction_windows(mode, prediction_path) CodeSearchWrapper('one-gram', benchmark, repos, window_sizes, slice_sizes).search_prediction(mode, prediction_path) tokenizer = CodexTokenizer output_file_path = 'prompts/repocoder-one-gram-ws-20-ss-2.jsonl' BuildPromptWrapper('one-gram', benchmark, repos, window_sizes, slice_sizes, tokenizer).build_prediction_prompt(mode, prediction_path, output_file_path) if __name__ == '__main__': repos = [ 'huggingface_diffusers', 'nerfstudio-project_nerfstudio', 'awslabs_fortuna', 'huggingface_evaluate', 'google_vizier', 'alibaba_FederatedScope', 'pytorch_rl', 'opendilab_ACE', ] window_sizes = [20] slice_sizes = [2] # 20 / 2 = 10 # build prompt for the RG1 and oracle methods run_RG1_and_oracle_method(CONSTANTS.api_benchmark, repos, window_sizes, slice_sizes) # build prompt for the RepoCoder method prediction_path = 'predictions/rg-one-gram-ws-20-ss-2_samples.0.jsonl' run_RepoCoder_method(CONSTANTS.api_benchmark, repos, window_sizes, slice_sizes, prediction_path)
CodeT/RepoCoder/run_pipeline.py/0
{ "file_path": "CodeT/RepoCoder/run_pipeline.py", "repo_id": "CodeT", "token_count": 1228 }
227