text
stringlengths
5
22M
id
stringlengths
12
177
metadata
dict
__index_level_0__
int64
0
1.37k
{ "$schema": "http://json-schema.org/draft-07/schema", "$id": "https://github.com/microsoft/AzureTRE/templates/workspace_services/databricks/template_schema.json", "type": "object", "title": "Azure Databricks", "description": "Azure Databricks", "required": [], "properties": { "display_name": { "type": "string", "title": "Name for the workspace service", "description": "The name of the workspace service to be displayed to users", "default": "Azure Databricks", "updateable": true }, "description": { "type": "string", "title": "Description of the workspace service", "description": "Description of the workspace service", "default": "Azure Databricks is a fast, easy, and collaborative Apache Spark-based big data analytics service designed for data science and data engineering.", "updateable": true }, "overview": { "type": "string", "title": "Workspace Service Overview", "description": "Long form description of the workspace service, in markdown syntax", "default": "The Azure Databricks Lakehouse Platform provides a unified set of tools for building, deploying, sharing, and maintaining enterprise-grade data solutions at scale.\nAzure Databricks integrates with cloud storage and security in your cloud account, and manages and deploys cloud infrastructure on your behalf.\n[Azure Databricks documentation](https://learn.microsoft.com/en-us/azure/databricks/introduction/)", "updateable": true }, "is_exposed_externally": { "$id": "#/properties/is_exposed_externally", "type": "boolean", "title": "Expose externally", "description": "Is the Databricks workspace accessible from outside of the workspace network", "default": false }, "address_space": { "$id": "#/properties/address_space", "type": "string", "title": "Address space", "description": "The address space of the databricks subnets" } }, "uiSchema": { "address_space": { "classNames": "tre-hidden" } }, "pipeline": { "install": [ { "stepId": "12ba0dad-ea6c-4d0d-9255-daa6212f5ffa", "stepTitle": "Upgrade to ensure aware of address space", "resourceType": "workspace", "resourceAction": "upgrade", "properties": [] }, { "stepId": "main" }, { "stepId": "7ec5fa90-23bd-4809-b0d7-2d32c94016b1", "stepTitle": "Add firewall rules for databricks", "resourceTemplateName": "tre-shared-service-firewall", "resourceType": "shared-service", "resourceAction": "upgrade", "properties": [ { "name": "network_rule_collections", "type": "array", "arraySubstitutionAction": "replace", "arrayMatchField": "name", "value": { "name": "nrc_svc_{{ resource.id }}_databricks", "action": "Allow", "rules": [ { "name": "databricks", "description": "Communication with Azure Databricks dependancies.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "destination_addresses": [ "AzureDatabricks"], "destination_ports": [ "443" ], "protocols": [ "TCP" ] }, { "name": "databricks-sql-metastore", "description": "Stores metadata for databases and child objects in a Azure Databricks workspace.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "destination_addresses": "{{ resource.properties.metastore_addresses }}", "destination_ports": [ "3306" ], "protocols": [ "TCP" ] }, { "name": "databricks-observability-eventhub", "description": "Transit for Azure Databricks on-cluster service specific telemetry.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "destination_addresses": "{{ resource.properties.event_hub_endpoint_addresses }}", "destination_ports": [ "9093" ], "protocols": [ "TCP" ] }, { "name": "AzureAD", "description": "AAD access", "source_addresses": "{{ resource.properties.workspace_address_spaces }}", "destination_addresses": ["AzureActiveDirectory"], "destination_ports": ["*"], "protocols": ["TCP"] } ] } }, { "name": "rule_collections", "type": "array", "arraySubstitutionAction": "replace", "arrayMatchField": "name", "value": { "name": "arc_svc_{{ resource.id }}_databricks", "action": "Allow", "rules": [ { "name": "databricks-spark-log-blob-storage", "description": "To store Azure Databricks audit and cluster logs (anonymized / masked) for support and troubleshooting.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "target_fqdns": "{{ resource.properties.log_blob_storage_domains }}", "protocols": [ { "port": "443", "type": "Https" } ] }, { "name": "databricks-artifact-blob-storage", "description": "Stores Databricks Runtime images to be deployed on cluster nodes.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "target_fqdns": "{{ resource.properties.artifact_blob_storage_domains }}", "protocols": [ { "port": "443", "type": "Https" } ] }, { "name": "databricks-dbfs", "description": "Azure Databricks workspace root storage.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "target_fqdns": [ "{{ resource.properties.dbfs_blob_storage_domain }}" ], "protocols": [ { "port": "443", "type": "Https" } ] }, { "name": "AAD CDN", "description": "AAD CDN", "source_addresses": "{{ resource.properties.workspace_address_spaces }}", "target_fqdns": [ "aadcdn.msftauth.net" ], "protocols": [ { "port": "443", "type": "Https" } ] } ] } } ] } ], "upgrade": [ { "stepId": "12baaaad-ea6c-4d0d-9255-d316212f5ffa", "stepTitle": "Upgrade to ensure aware of address space", "resourceType": "workspace", "resourceAction": "upgrade", "properties": [] }, { "stepId": "main" }, { "stepId": "260421b3-7308-491f-b531-e007cdc0aa46", "stepTitle": "Add firewall rules for databricks", "resourceTemplateName": "tre-shared-service-firewall", "resourceType": "shared-service", "resourceAction": "upgrade", "properties": [ { "name": "network_rule_collections", "type": "array", "arraySubstitutionAction": "replace", "arrayMatchField": "name", "value": { "name": "nrc_svc_{{ resource.id }}_databricks", "action": "Allow", "rules": [ { "name": "databricks", "description": "Communication with Azure Databricks dependancies.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "destination_addresses": [ "AzureDatabricks"], "destination_ports": [ "443" ], "protocols": [ "TCP" ] }, { "name": "databricks-sql-metastore", "description": "Stores metadata for databases and child objects in a Azure Databricks workspace.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "destination_addresses": "{{ resource.properties.metastore_addresses }}", "destination_ports": [ "3306" ], "protocols": [ "TCP" ] }, { "name": "databricks-observability-eventhub", "description": "Transit for Azure Databricks on-cluster service specific telemetry.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "destination_addresses": "{{ resource.properties.event_hub_endpoint_addresses }}", "destination_ports": [ "9093" ], "protocols": [ "TCP" ] }, { "name": "AzureAD", "description": "AAD access", "source_addresses": "{{ resource.properties.workspace_address_spaces }}", "destination_addresses": ["AzureActiveDirectory"], "destination_ports": ["*"], "protocols": ["TCP"] } ] } }, { "name": "rule_collections", "type": "array", "arraySubstitutionAction": "replace", "arrayMatchField": "name", "value": { "name": "arc_svc_{{ resource.id }}_databricks", "action": "Allow", "rules": [ { "name": "databricks-spark-log-blob-storage", "description": "To store Azure Databricks audit and cluster logs (anonymized / masked) for support and troubleshooting.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "target_fqdns": "{{ resource.properties.log_blob_storage_domains }}", "protocols": [ { "port": "443", "type": "Https" } ] }, { "name": "databricks-artifact-blob-storage", "description": "Stores Databricks Runtime images to be deployed on cluster nodes.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "target_fqdns": "{{ resource.properties.artifact_blob_storage_domains }}", "protocols": [ { "port": "443", "type": "Https" } ] }, { "name": "databricks-dbfs", "description": "Azure Databricks workspace root storage.", "source_addresses": "{{ resource.properties.databricks_address_prefixes }}", "target_fqdns": [ "{{ resource.properties.dbfs_blob_storage_domain }}" ], "protocols": [ { "port": "443", "type": "Https" } ] }, { "name": "AAD CDN", "description": "AAD CDN", "source_addresses": "{{ resource.properties.workspace_address_spaces }}", "target_fqdns": [ "aadcdn.msftauth.net" ], "protocols": [ { "port": "443", "type": "Https" } ] } ] } } ] } ], "uninstall": [ { "stepId": "da2d99a3-3940-4dcc-a934-53535f2e2451", "stepTitle": "Remove network firewall rules for databricks", "resourceTemplateName": "tre-shared-service-firewall", "resourceType": "shared-service", "resourceAction": "upgrade", "properties": [ { "name": "network_rule_collections", "type": "array", "arraySubstitutionAction": "remove", "arrayMatchField": "name", "value": { "name": "nrc_svc_{{ resource.id }}_databricks" } }, { "name": "rule_collections", "type": "array", "arraySubstitutionAction": "remove", "arrayMatchField": "name", "value": { "name": "arc_svc_{{ resource.id }}_databricks" } } ] }, { "stepId": "main" } ] } }
AzureTRE/templates/workspace_services/databricks/template_schema.json/0
{ "file_path": "AzureTRE/templates/workspace_services/databricks/template_schema.json", "repo_id": "AzureTRE", "token_count": 7802 }
133
#!/bin/bash while [[ "$(curl -s -o /dev/null -w ''%{http_code}'' http://localhost:3000/api/swagger)" != @("200"|"302") ]]; do echo "Waiting for web service" sleep 5 done if [ -z $GITEA_USERNAME ]; then echo "Gitea username is not set" s6-svc -k /etc/s6/gitea sleep 60 fi echo "Adding admin user" echo "gitea admin user create --admin --access-token --username='${GITEA_USERNAME}' --password='${GITEA_PASSWD}' --email='${GITEA_EMAIL}' --must-change-password=false" su gitea -c "gitea admin user create --admin --access-token --username='${GITEA_USERNAME}' --password='${GITEA_PASSWD}' --email='${GITEA_EMAIL}' --must-change-password=false" echo "Configuring OIDC" echo "gitea admin auth add-oauth --name oidc --provider openidConnect --key '${GITEA_OPENID_CLIENT_ID}' --secret '${GITEA_OPENID_CLIENT_SECRET}' --auto-discover-url '${GITEA_OPENID_AUTHORITY}/.well-known/openid-configuration' --group-claim-name 'roles' --admin-group 'WorkspaceOwner'" su gitea -c "gitea admin auth add-oauth --name oidc --provider openidConnect --key '${GITEA_OPENID_CLIENT_ID}' --secret '${GITEA_OPENID_CLIENT_SECRET}' --auto-discover-url '${GITEA_OPENID_AUTHORITY}/.well-known/openid-configuration' --group-claim-name 'roles' --admin-group 'WorkspaceOwner'"
AzureTRE/templates/workspace_services/gitea/docker/configure_gitea.sh/0
{ "file_path": "AzureTRE/templates/workspace_services/gitea/docker/configure_gitea.sh", "repo_id": "AzureTRE", "token_count": 504 }
134
#!/usr/bin/with-contenv sh echo >&2 "starting tomcat" sed -i "s#port=\"8080\"#port=\"8080\" maxHttpHeaderSize=\"65536\"#" /usr/share/tomcat9/conf/server.xml sed -i "s#unpackWARs=\"true\" autoDeploy=\"true\">#><Context path=\"guacamole\" docBase=\"${GUACAMOLE_HOME}guacamole.war\"/>#" /usr/share/tomcat9/conf/server.xml # uncomment below to debug #sed -i "s#</Host>#<Valve className=\"org.apache.catalina.valves.AccessLogValve\" directory=\"/proc/self/fd\" prefix=\"1\" suffix=\"\" rotatable=\"false\" pattern=\"%h %l %u %t %r; %s %b %{X-Access-Token}i\" /></Host>#" /etc/tomcat9/server.xml #cat /etc/tomcat9/server.xml exec sh /usr/share/tomcat9/bin/catalina.sh run
AzureTRE/templates/workspace_services/guacamole/guacamole-server/docker/services/tomcat/run/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/guacamole-server/docker/services/tomcat/run", "repo_id": "AzureTRE", "token_count": 268 }
135
output "authentication_callback_uri" { value = "https://${azurerm_linux_web_app.guacamole.default_hostname}/oauth2/callback" } output "web_apps_addresses" { value = jsonencode(data.azurerm_subnet.web_apps.address_prefixes) } output "admin_connection_uri" { value = "https://${azurerm_linux_web_app.guacamole.default_hostname}/guacamole" }
AzureTRE/templates/workspace_services/guacamole/terraform/outputs.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/terraform/outputs.tf", "repo_id": "AzureTRE", "token_count": 135 }
136
$DownloadPath = $env:Public + "\Desktop\ReviewData" mkdir $DownloadPath az storage blob download-batch -d $DownloadPath -s '"${airlock_request_sas_url}"'
AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-export-reviewvm/terraform/download_review_data.ps1/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-export-reviewvm/terraform/download_review_data.ps1", "repo_id": "AzureTRE", "token_count": 50 }
137
# This file is maintained automatically by "terraform init". # Manual edits may be lost in future updates. provider "registry.terraform.io/hashicorp/azurerm" { version = "3.41.0" constraints = "3.41.0" hashes = [ "h1:Kn7sqPk/YpsvORFEd/zHXa8U7KkVB551DXUMwvqiU0s=", "zh:123838b581a27499d0a1e3a9804a6f57304969f58c4ea7fbd938ae2a795b2a19", "zh:761a7bff3872a192202411aa62e3e6aedc3046f0df86967a1f9ed5a74207f451", "zh:83092681a9e14d5e548edccece5086d822f86de6ff8227bb78706b41f0041697", "zh:95fd6be4a3b995dc8ad40054646e2261e01365af7e8f8ebe0e62133cee8250cd", "zh:995c3eb0aa23fc6948f45e68173034facc4bd92f4865abc3bba4bd305596fc86", "zh:9f7b158d39f3e9fbc01ee27e6a63600838e34b7364715ebeea7d62717e48cb56", "zh:b23193883592a4889942e82e73782e70dfbb517561a4f24b09f8ab6cbdc46866", "zh:c4884d654d03a0546ec78f348563e32220ae35a2c76f22cb3c960f989dc6be48", "zh:dda1c6720c6cef052db2fb4886a9cd46dee849e4367d6d66b45ad9d5bb607b94", "zh:f0bc878d67785343bfc36a7d14ec58a67fa436f5b8b497221aea3931e3dccefd", "zh:f569b65999264a9416862bca5cd2a6177d94ccb0424f3a4ef424428912b9cb3c", "zh:f6aa3c25f7106619cc6760e1d34b29b0956c50f285994f009939890a85e7b058", ] } provider "registry.terraform.io/hashicorp/random" { version = "3.4.3" constraints = "3.4.3" hashes = [ "h1:xZGZf18JjMS06pFa4NErzANI98qi59SEcBsOcS2P2yQ=", "zh:41c53ba47085d8261590990f8633c8906696fa0a3c4b384ff6a7ecbf84339752", "zh:59d98081c4475f2ad77d881c4412c5129c56214892f490adf11c7e7a5a47de9b", "zh:686ad1ee40b812b9e016317e7f34c0d63ef837e084dea4a1f578f64a6314ad53", "zh:78d5eefdd9e494defcb3c68d282b8f96630502cac21d1ea161f53cfe9bb483b3", "zh:84103eae7251384c0d995f5a257c72b0096605048f757b749b7b62107a5dccb3", "zh:8ee974b110adb78c7cd18aae82b2729e5124d8f115d484215fd5199451053de5", "zh:9dd4561e3c847e45de603f17fa0c01ae14cae8c4b7b4e6423c9ef3904b308dda", "zh:bb07bb3c2c0296beba0beec629ebc6474c70732387477a65966483b5efabdbc6", "zh:e891339e96c9e5a888727b45b2e1bb3fcbdfe0fd7c5b4396e4695459b38c8cb1", "zh:ea4739860c24dfeaac6c100b2a2e357106a89d18751f7693f3c31ecf6a996f8d", "zh:f0c76ac303fd0ab59146c39bc121c5d7d86f878e9a69294e29444d4c653786f8", "zh:f143a9a5af42b38fed328a161279906759ff39ac428ebcfe55606e05e1518b93", ] } provider "registry.terraform.io/hashicorp/template" { version = "2.2.0" constraints = "2.2.0" hashes = [ "h1:94qn780bi1qjrbC3uQtjJh3Wkfwd5+tTtJHOb7KTg9w=", "zh:01702196f0a0492ec07917db7aaa595843d8f171dc195f4c988d2ffca2a06386", "zh:09aae3da826ba3d7df69efeb25d146a1de0d03e951d35019a0f80e4f58c89b53", "zh:09ba83c0625b6fe0a954da6fbd0c355ac0b7f07f86c91a2a97849140fea49603", "zh:0e3a6c8e16f17f19010accd0844187d524580d9fdb0731f675ffcf4afba03d16", "zh:45f2c594b6f2f34ea663704cc72048b212fe7d16fb4cfd959365fa997228a776", "zh:77ea3e5a0446784d77114b5e851c970a3dde1e08fa6de38210b8385d7605d451", "zh:8a154388f3708e3df5a69122a23bdfaf760a523788a5081976b3d5616f7d30ae", "zh:992843002f2db5a11e626b3fc23dc0c87ad3729b3b3cff08e32ffb3df97edbde", "zh:ad906f4cebd3ec5e43d5cd6dc8f4c5c9cc3b33d2243c89c5fc18f97f7277b51d", "zh:c979425ddb256511137ecd093e23283234da0154b7fa8b21c2687182d9aea8b2", ] }
AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-import-reviewvm/terraform/.terraform.lock.hcl/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-import-reviewvm/terraform/.terraform.lock.hcl", "repo_id": "AzureTRE", "token_count": 1922 }
138
#!/bin/bash set -o errexit set -o pipefail set -o nounset # Uncomment this line to see each command for debugging (careful: this will show secrets!) # set -o xtrace secret_name=$1 keyvault_name=$2 username=$3 resource_id=$4 password="$(LC_ALL=C tr -dc 'A-Za-z0-9_%@' </dev/urandom | head -c 16 ; echo)" secret_value="$username $password" # Persist new password to keyvault az keyvault secret set --name "$secret_name" --vault-name "$keyvault_name" --value "$secret_value" # Set new VM password az vm user update --ids "$resource_id" --username "$username" --password "$password"
AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-linuxvm/reset_password.sh/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-linuxvm/reset_password.sh", "repo_id": "AzureTRE", "token_count": 205 }
139
#!/bin/bash set -o errexit set -o pipefail set -o nounset # Uncomment this line to see each command for debugging # set -o xtrace # Delete any existing VM Extensions befroe a VM gets deleted. # This is needed to work around bug https://github.com/hashicorp/terraform-provider-azurerm/issues/6098 MGMT_RESOURCE_GROUP_NAME=$1 MGMT_STORAGE_ACCOUNT_NAME=$2 TF_STATE_CONTAINER_NAME=$3 ID=$4 pushd terraform terraform init -input=false -backend=true \ -backend-config="resource_group_name=${MGMT_RESOURCE_GROUP_NAME}" \ -backend-config="storage_account_name=${MGMT_STORAGE_ACCOUNT_NAME}" \ -backend-config="container_name=${TF_STATE_CONTAINER_NAME}" \ -backend-config="key=${ID}" echo "Running terraform state list" tf_state_list="$(terraform state list)" echo "State list result: ${tf_state_list}" # The [[ $? == 1 ]] part is here because grep will exit with code 1 if there are no matches, # which will fail the script because of set -o errexit setting. echo "${tf_state_list}" | { grep "azurerm_virtual_machine_extension." || [[ $? == 1 ]]; } | xargs -r terraform state rm echo "Script finished" popd
AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-windowsvm/delete_vm_extensions.sh/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-windowsvm/delete_vm_extensions.sh", "repo_id": "AzureTRE", "token_count": 398 }
140
# syntax=docker/dockerfile-upstream:1.4.0 FROM --platform=linux/amd64 debian:bullseye-slim # PORTER_INIT RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache # Git is required for terraform_azurerm_environment_configuration RUN --mount=type=cache,target=/var/cache/apt --mount=type=cache,target=/var/lib/apt \ apt-get update && apt-get install -y git jq --no-install-recommends # PORTER_MIXINS # Use the BUNDLE_DIR build argument to copy files into the bundle COPY --link . ${BUNDLE_DIR}/
AzureTRE/templates/workspace_services/health-services/Dockerfile.tmpl/0
{ "file_path": "AzureTRE/templates/workspace_services/health-services/Dockerfile.tmpl", "repo_id": "AzureTRE", "token_count": 223 }
141
#!/bin/bash set -e acr_domain_suffix=$(az cloud show --query suffixes.acrLoginServerEndpoint --output tsv) porter install tre-service-azureml --reference "${MGMT_ACR_NAME}${acr_domain_suffix}/tre-service-azureml:v0.1.9" \ --cred ./arm_auth_local_debugging.json \ --parameter-set ./parameters_service_azureml.json
AzureTRE/templates/workspace_services/innereye/install_service_azureml.sh/0
{ "file_path": "AzureTRE/templates/workspace_services/innereye/install_service_azureml.sh", "repo_id": "AzureTRE", "token_count": 128 }
142
locals { short_service_id = substr(var.tre_resource_id, -4, -1) short_workspace_id = substr(var.workspace_id, -4, -1) core_resource_group_name = "rg-${var.tre_id}" workspace_resource_name_suffix = "${var.tre_id}-ws-${local.short_workspace_id}" service_resource_name_suffix = "${var.tre_id}-ws-${local.short_workspace_id}-svc-${local.short_service_id}" webapp_name = "mlflow-${local.service_resource_name_suffix}" postgresql_server_name = "mlflow-${local.service_resource_name_suffix}" keyvault_name = lower("kv-${substr(local.workspace_resource_name_suffix, -20, -1)}") storage_name = lower(replace("stg${substr(local.workspace_resource_name_suffix, -8, -1)}", "-", "")) shared_storage_share = "vm-shared-storage" mlflow_artefacts_container_name = "mlartefacts" image_name = "mlflow-server" image_tag = replace(replace(replace(data.local_file.version.content, "__version__ = \"", ""), "\"", ""), "\n", "") tre_workspace_service_tags = { tre_id = var.tre_id tre_workspace_id = var.workspace_id tre_workspace_service_id = var.tre_resource_id } web_app_diagnostic_categories_enabled = [ "AppServiceHTTPLogs", "AppServiceConsoleLogs", "AppServiceAppLogs", "AppServiceFileAuditLogs", "AppServiceAuditLogs", "AppServiceIPSecAuditLogs", "AppServicePlatformLogs", "AppServiceAntivirusScanAuditLogs" ] identity_name = "id-${local.webapp_name}" }
AzureTRE/templates/workspace_services/mlflow/terraform/locals.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/mlflow/terraform/locals.tf", "repo_id": "AzureTRE", "token_count": 727 }
143
resource "random_password" "password" { length = 20 min_upper = 2 min_lower = 2 min_numeric = 2 min_special = 2 } resource "azurerm_mysql_flexible_server" "mysql" { name = "mysql-${local.service_resource_name_suffix}" resource_group_name = data.azurerm_resource_group.ws.name location = data.azurerm_resource_group.ws.location administrator_login = "mysqladmin" administrator_password = random_password.password.result sku_name = local.sql_sku[var.sql_sku].value version = "8.0.21" backup_retention_days = 7 geo_redundant_backup_enabled = false tags = local.workspace_service_tags lifecycle { ignore_changes = [tags, zone] } } resource "azurerm_mysql_flexible_database" "db" { name = var.db_name resource_group_name = data.azurerm_resource_group.ws.name server_name = azurerm_mysql_flexible_server.mysql.name charset = "utf8" collation = "utf8_unicode_ci" } resource "azurerm_private_endpoint" "mysql_private_endpoint" { name = "pe-${azurerm_mysql_flexible_server.mysql.name}" location = data.azurerm_resource_group.ws.location resource_group_name = data.azurerm_resource_group.ws.name subnet_id = data.azurerm_subnet.services.id tags = local.workspace_service_tags private_service_connection { private_connection_resource_id = azurerm_mysql_flexible_server.mysql.id name = "psc-${azurerm_mysql_flexible_server.mysql.name}" subresource_names = ["mysqlServer"] is_manual_connection = false } private_dns_zone_group { name = module.terraform_azurerm_environment_configuration.private_links["privatelink.mysql.database.azure.com"] private_dns_zone_ids = [data.azurerm_private_dns_zone.mysql.id] } lifecycle { ignore_changes = [tags] } } resource "azurerm_key_vault_secret" "db_password" { name = "${azurerm_mysql_flexible_server.mysql.name}-administrator-password" value = random_password.password.result key_vault_id = data.azurerm_key_vault.ws.id tags = local.workspace_service_tags lifecycle { ignore_changes = [tags] } }
AzureTRE/templates/workspace_services/mysql/terraform/mysql.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/mysql/terraform/mysql.tf", "repo_id": "AzureTRE", "token_count": 1086 }
144
-- This gives each new user access to all sources plus 'Atlas User' role. CREATE OR REPLACE FUNCTION function_default_user_roles() RETURNS TRIGGER AS $BODY$ BEGIN INSERT INTO webapi.sec_user_role (role_id, user_id) SELECT r.id as role_id, new.id as user_id FROM webapi.sec_role as r WHERE r.name LIKE 'Source user%' OR r.name = 'Atlas users'; RETURN new; END; $BODY$ language plpgsql; DROP TRIGGER IF EXISTS trigger_sec_user_insert ON webapi.sec_user; CREATE TRIGGER trigger_sec_user_insert AFTER INSERT ON webapi.sec_user FOR EACH ROW EXECUTE PROCEDURE function_default_user_roles(); DO $$ BEGIN RAISE NOTICE 'Finished setting up default roles procedures.'; END $$;
AzureTRE/templates/workspace_services/ohdsi/sql/atlas_default_roles.sql/0
{ "file_path": "AzureTRE/templates/workspace_services/ohdsi/sql/atlas_default_roles.sql", "repo_id": "AzureTRE", "token_count": 256 }
145
output "connection_uri" { value = local.atlas_ui_url description = "Atlas Endpoint" precondition { condition = local.atlas_ui_fqdn == azurerm_linux_web_app.atlas_ui.default_hostname error_message = "Computed FQDN is different than actual one." } } output "webapi_uri" { value = local.ohdsi_webapi_url description = "WebAPI Endpoint" precondition { condition = local.ohdsi_webapi_fqdn == azurerm_linux_web_app.ohdsi_webapi.default_hostname error_message = "Computed FQDN is different than actual one." } } output "authentication_callback_uri" { value = "${local.ohdsi_webapi_url_auth_callback}?client_name=OidcClient" } output "is_exposed_externally" { value = false }
AzureTRE/templates/workspace_services/ohdsi/terraform/outputs.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/ohdsi/terraform/outputs.tf", "repo_id": "AzureTRE", "token_count": 287 }
146
--- schemaVersion: 1.0.0 name: tre-workspace-base version: 1.5.3 description: "A base Azure TRE workspace" dockerfile: Dockerfile.tmpl registry: azuretre credentials: # Credentials for interacting with the AAD Auth tenant - name: auth_client_id env: AUTH_CLIENT_ID - name: auth_client_secret env: AUTH_CLIENT_SECRET - name: auth_tenant_id env: AUTH_TENANT_ID # Credentials for interacting with Azure - name: azure_tenant_id env: ARM_TENANT_ID - name: azure_subscription_id env: ARM_SUBSCRIPTION_ID - name: azure_client_id env: ARM_CLIENT_ID - name: azure_client_secret env: ARM_CLIENT_SECRET parameters: - name: tre_id type: string description: "The ID of the parent TRE instance e.g., mytre-dev-3142" - name: id type: string description: "the resource ID for this installation" - name: azure_environment type: string default: "AzureCloud" description: "Used by Azure CLI to set the Azure environment" - name: azure_location type: string description: "Azure location (region) to deploy to" - name: address_spaces type: string description: "VNet address spaces" - name: tfstate_resource_group_name type: string description: "Resource group containing the Terraform state storage account" - name: tfstate_storage_account_name type: string description: "The name of the Terraform state storage account" - name: tfstate_container_name type: string default: "tfstate" description: "The name of the Terraform state storage container" - name: arm_use_msi type: boolean default: false - name: shared_storage_quota type: integer default: 50 - name: enable_local_debugging type: boolean default: false - name: register_aad_application type: boolean default: false description: "Whether this bundle should register the workspace in AAD" - name: create_aad_groups type: boolean default: false description: "Whether this bundle should create AAD groups for the workspace app roles" - name: workspace_owner_object_id type: string description: "The object id of the user that will be granted WorkspaceOwner after it is created." - name: client_id type: string default: "" description: "The client id of the workspace in the identity provider. This value is typically provided to you when you create the ws application" - name: client_secret type: string description: "The client secret of the workspace in the identity provider. This value is typically provided to you when you create the ws application" default: "" - name: scope_id type: string default: "" description: "The Service Principal Name or identifierUri (e.g. api://GUID" - name: sp_id type: string default: "" description: "The Service Principal in the Identity provider to be able to get claims" - name: app_role_id_workspace_owner type: string default: "" description: "The id of the application role WorkspaceOwner in the identity provider" - name: app_role_id_workspace_researcher type: string default: "" description: "The id of the application role WorkspaceResearcher in the identity provider" - name: app_role_id_workspace_airlock_manager type: string default: "" description: "The id of the application role AirlockManager in the identity provider" - name: aad_redirect_uris type: string description: "List of redirect URIs in {name:value} format" default: "W10=" # b64 for [] - name: app_service_plan_sku type: string description: "The SKU used when deploying an Azure App Service Plan" default: "P1v3" - name: enable_airlock type: boolean default: true - name: arm_environment type: string outputs: - name: app_role_id_workspace_owner type: string applyTo: - install - upgrade - name: app_role_id_workspace_researcher type: string applyTo: - install - upgrade - name: app_role_id_workspace_airlock_manager type: string applyTo: - install - upgrade - name: client_id type: string applyTo: - install - upgrade - name: scope_id type: string applyTo: - install - upgrade - name: sp_id type: string applyTo: - install - upgrade mixins: - exec - terraform: clientVersion: 1.4.6 - az: clientVersion: 2.49.0 install: - terraform: description: "Deploy workspace" vars: tre_id: ${ bundle.parameters.tre_id } tre_resource_id: ${ bundle.parameters.id } location: ${ bundle.parameters.azure_location } address_spaces: ${ bundle.parameters.address_spaces } shared_storage_quota: ${ bundle.parameters.shared_storage_quota } enable_local_debugging: ${ bundle.parameters.enable_local_debugging } register_aad_application: ${ bundle.parameters.register_aad_application } create_aad_groups: ${ bundle.parameters.create_aad_groups } auth_client_id: ${ bundle.credentials.auth_client_id } auth_client_secret: ${ bundle.credentials.auth_client_secret } auth_tenant_id: ${ bundle.credentials.auth_tenant_id } workspace_owner_object_id: ${ bundle.parameters.workspace_owner_object_id } client_id: ${ bundle.parameters.client_id } client_secret: ${ bundle.parameters.client_secret } scope_id: ${ bundle.parameters.scope_id } sp_id: ${ bundle.parameters.sp_id } app_role_id_workspace_owner: ${ bundle.parameters.app_role_id_workspace_owner } app_role_id_workspace_researcher: ${ bundle.parameters.app_role_id_workspace_researcher } app_role_id_workspace_airlock_manager: ${ bundle.parameters.app_role_id_workspace_airlock_manager } aad_redirect_uris_b64: ${ bundle.parameters.aad_redirect_uris } app_service_plan_sku: ${ bundle.parameters.app_service_plan_sku } enable_airlock: ${ bundle.parameters.enable_airlock } arm_environment: ${ bundle.parameters.arm_environment } backendConfig: resource_group_name: ${ bundle.parameters.tfstate_resource_group_name } storage_account_name: ${ bundle.parameters.tfstate_storage_account_name } container_name: ${ bundle.parameters.tfstate_container_name } key: ${ bundle.parameters.tre_id }-ws-${ bundle.parameters.id } outputs: - name: app_role_id_workspace_owner - name: app_role_id_workspace_researcher - name: app_role_id_workspace_airlock_manager - name: client_id - name: scope_id - name: sp_id upgrade: - terraform: description: "Upgrade workspace" vars: tre_id: ${ bundle.parameters.tre_id } tre_resource_id: ${ bundle.parameters.id } location: ${ bundle.parameters.azure_location } address_spaces: ${ bundle.parameters.address_spaces } shared_storage_quota: ${ bundle.parameters.shared_storage_quota } enable_local_debugging: ${ bundle.parameters.enable_local_debugging } register_aad_application: ${ bundle.parameters.register_aad_application } create_aad_groups: ${ bundle.parameters.create_aad_groups } auth_client_id: ${ bundle.credentials.auth_client_id } auth_client_secret: ${ bundle.credentials.auth_client_secret } auth_tenant_id: ${ bundle.credentials.auth_tenant_id } workspace_owner_object_id: ${ bundle.parameters.workspace_owner_object_id } client_id: ${ bundle.parameters.client_id } client_secret: ${ bundle.parameters.client_secret } scope_id: ${ bundle.parameters.scope_id } sp_id: ${ bundle.parameters.sp_id } app_role_id_workspace_owner: ${ bundle.parameters.app_role_id_workspace_owner } app_role_id_workspace_researcher: ${ bundle.parameters.app_role_id_workspace_researcher } app_role_id_workspace_airlock_manager: ${ bundle.parameters.app_role_id_workspace_airlock_manager } aad_redirect_uris_b64: ${ bundle.parameters.aad_redirect_uris } app_service_plan_sku: ${ bundle.parameters.app_service_plan_sku } enable_airlock: ${ bundle.parameters.enable_airlock } arm_environment: ${ bundle.parameters.arm_environment } backendConfig: resource_group_name: ${ bundle.parameters.tfstate_resource_group_name } storage_account_name: ${ bundle.parameters.tfstate_storage_account_name } container_name: ${ bundle.parameters.tfstate_container_name } key: ${ bundle.parameters.tre_id }-ws-${ bundle.parameters.id } outputs: - name: app_role_id_workspace_owner - name: app_role_id_workspace_researcher - name: app_role_id_workspace_airlock_manager - name: client_id - name: scope_id - name: sp_id - az: description: "Set Azure Cloud Environment" arguments: - cloud - set flags: name: ${ bundle.parameters.azure_environment } - az: description: "AAD Application Admin Login" arguments: - login flags: service-principal: "" username: '${ bundle.credentials.auth_client_id }' password: '${ bundle.credentials.auth_client_secret }' tenant: '${ bundle.credentials.auth_tenant_id }' allow-no-subscriptions: "" - exec: description: "Update workspace app redirect urls" command: ./update_redirect_urls.sh flags: workspace-api-client-id: '${ bundle.parameters.client_id }' aad-redirect-uris-b64: '${ bundle.parameters.aad_redirect_uris }' register-aad-application: '${ bundle.parameters.register_aad_application }' uninstall: - terraform: description: "Tear down workspace" vars: tre_id: ${ bundle.parameters.tre_id } tre_resource_id: ${ bundle.parameters.id } location: ${ bundle.parameters.azure_location } address_spaces: ${ bundle.parameters.address_spaces } shared_storage_quota: ${ bundle.parameters.shared_storage_quota } enable_local_debugging: ${ bundle.parameters.enable_local_debugging } register_aad_application: ${ bundle.parameters.register_aad_application } create_aad_groups: ${ bundle.parameters.create_aad_groups } auth_client_id: ${ bundle.credentials.auth_client_id } auth_client_secret: ${ bundle.credentials.auth_client_secret } auth_tenant_id: ${ bundle.credentials.auth_tenant_id } workspace_owner_object_id: ${ bundle.parameters.workspace_owner_object_id } client_id: ${ bundle.parameters.client_id } scope_id: ${ bundle.parameters.scope_id } sp_id: ${ bundle.parameters.sp_id } app_role_id_workspace_owner: ${ bundle.parameters.app_role_id_workspace_owner } app_role_id_workspace_researcher: ${ bundle.parameters.app_role_id_workspace_researcher } app_role_id_workspace_airlock_manager: ${ bundle.parameters.app_role_id_workspace_airlock_manager } aad_redirect_uris_b64: ${ bundle.parameters.aad_redirect_uris } app_service_plan_sku: ${ bundle.parameters.app_service_plan_sku } enable_airlock: ${ bundle.parameters.enable_airlock } arm_environment: ${ bundle.parameters.arm_environment } backendConfig: resource_group_name: ${ bundle.parameters.tfstate_resource_group_name } storage_account_name: ${ bundle.parameters.tfstate_storage_account_name } container_name: ${ bundle.parameters.tfstate_container_name } key: ${ bundle.parameters.tre_id }-ws-${ bundle.parameters.id }
AzureTRE/templates/workspaces/base/porter.yaml/0
{ "file_path": "AzureTRE/templates/workspaces/base/porter.yaml", "repo_id": "AzureTRE", "token_count": 4555 }
147
locals { short_workspace_id = substr(var.tre_resource_id, -4, -1) app_insights_name = "appi-${var.tre_id}-ws-${local.short_workspace_id}" }
AzureTRE/templates/workspaces/base/terraform/azure-monitor/locals.tf/0
{ "file_path": "AzureTRE/templates/workspaces/base/terraform/azure-monitor/locals.tf", "repo_id": "AzureTRE", "token_count": 65 }
148
resource "azurerm_private_dns_zone_virtual_network_link" "azurewebsites" { name = "azurewebsites-link-${azurerm_virtual_network.ws.name}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.azurewebsites.name virtual_network_id = azurerm_virtual_network.ws.id registration_enabled = false tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "filecorelink" { name = "filecorelink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.filecore.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "blobcorelink" { name = "blobcorelink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.blobcore.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "dfscorelink" { name = "dfscorelink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.dfscore.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "vaultcorelink" { name = "vaultcorelink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.vaultcore.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "azurecrlink" { name = "azurecrlink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.azurecr.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "azuremllink" { name = "azuremllink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.azureml.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "azuremlcertlink" { name = "azuremlcertlink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.azuremlcert.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "healthlink" { name = "healthlink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.health.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "dicomlink" { name = "dicomlink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.dicom.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "notebookslink" { name = "notebookslink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.notebooks.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "mysqllink" { name = "mysqllink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.mysql.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "postgreslink" { name = "postgreslink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.postgres.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "nexuslink" { name = "nexuslink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.nexus.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } } resource "azurerm_private_dns_zone_virtual_network_link" "databrickslink" { name = "databrickslink-${local.workspace_resource_name_suffix}" resource_group_name = local.core_resource_group_name private_dns_zone_name = data.azurerm_private_dns_zone.databricks.name virtual_network_id = azurerm_virtual_network.ws.id tags = var.tre_workspace_tags lifecycle { ignore_changes = [tags] } }
AzureTRE/templates/workspaces/base/terraform/network/zone_links.tf/0
{ "file_path": "AzureTRE/templates/workspaces/base/terraform/network/zone_links.tf", "repo_id": "AzureTRE", "token_count": 2725 }
149
import { FontWeights, getTheme, IButtonStyles, IconButton, IIconProps, Link, mergeStyleSets, Modal } from "@fluentui/react"; import React, { useState } from "react"; interface ComplexPropertyModalProps { val: any, title: string }; export const ComplexPropertyModal: React.FunctionComponent<ComplexPropertyModalProps> = (props: ComplexPropertyModalProps) => { const [isOpen, setIsOpen] = useState(false); return ( <> <Link onClick={() => setIsOpen(true)}>[details]</Link> { isOpen && <Modal titleAriaId={"modal"} isOpen={true} onDismiss={() => setIsOpen(false)} isBlocking={false} containerClassName={contentStyles.container} > <div className={contentStyles.header}> <span id={"modal"}>{props.title}</span> <IconButton styles={iconButtonStyles} iconProps={cancelIcon} ariaLabel="Close popup modal" onClick={() => setIsOpen(false)} /> </div> <div className={contentStyles.body}> <NestedDisplayItem val={props.val} isExpanded={true} topLayer={true}/> </div> </Modal> } </> ) }; interface NestedDisplayItemProps { val: any, isExpanded?: boolean, topLayer?: boolean }; const NestedDisplayItem: React.FunctionComponent<NestedDisplayItemProps> = (props: NestedDisplayItemProps) => { const [isExpanded, setIsExpanded] = useState(props.isExpanded === true) return ( <> { !props.topLayer && <IconButton onClick={() => setIsExpanded(!isExpanded)} iconProps={{iconName: isExpanded ? 'ChevronUp' : 'ChevronDown'}} /> } { isExpanded && <ul className="tre-complex-list"> { Object.keys(props.val).map((key: string, i) => { if (typeof (props.val[key]) === 'object') { return ( <li key={i} className={props.topLayer ? "tre-complex-list-border" : ""}> <span style={{fontSize:'16px'}}>{key}:</span> <NestedDisplayItem val={props.val[key]} isExpanded={false}/> </li> ); } return ( <li key={i}>{isNaN(parseInt(key)) && key + ':'} {props.val[key]}</li>); }) } </ul> } </> ); }; const cancelIcon: IIconProps = { iconName: 'Cancel' }; const theme = getTheme(); const contentStyles = mergeStyleSets({ container: { display: 'flex', flexFlow: 'column nowrap', alignItems: 'stretch', }, header: [ theme.fonts.xxLarge, { flex: '1 1 auto', borderTop: `4px solid ${theme.palette.themePrimary}`, color: theme.palette.neutralPrimary, display: 'flex', alignItems: 'center', fontWeight: FontWeights.semibold, padding: '12px 12px 14px 24px', }, ], body: { flex: '4 4 auto', padding: '0 24px 24px 24px', overflowY: 'hidden', selectors: { p: { margin: '14px 0' }, 'p:first-child': { marginTop: 0 }, 'p:last-child': { marginBottom: 0 }, }, }, }); const iconButtonStyles: Partial<IButtonStyles> = { root: { color: theme.palette.neutralPrimary, marginLeft: 'auto', marginTop: '4px', marginRight: '2px', }, rootHovered: { color: theme.palette.neutralDark, }, };
AzureTRE/ui/app/src/components/shared/ComplexItemDisplay.tsx/0
{ "file_path": "AzureTRE/ui/app/src/components/shared/ComplexItemDisplay.tsx", "repo_id": "AzureTRE", "token_count": 1620 }
150
import { IStackStyles, Spinner, SpinnerSize, Stack } from "@fluentui/react"; import React, { useEffect, useContext, useState } from 'react'; import { useParams } from 'react-router-dom'; import { HttpMethod, useAuthApiCall } from '../../hooks/useAuthApiCall'; import { HistoryItem, Resource } from '../../models/resource'; import { ApiEndpoint } from '../../models/apiEndpoints'; import { ResourceHistoryListItem } from './ResourceHistoryListItem'; import { WorkspaceContext } from '../../contexts/WorkspaceContext'; import config from '../../config.json'; import moment from "moment"; import { APIError } from "../../models/exceptions"; import { LoadingState } from "../../models/loadingState"; import { ExceptionLayout } from "./ExceptionLayout"; interface ResourceHistoryListProps { resource: Resource } export const ResourceHistoryList: React.FunctionComponent<ResourceHistoryListProps> = (props: ResourceHistoryListProps) => { const apiCall = useAuthApiCall(); const [apiError, setApiError] = useState({} as APIError); const workspaceCtx = useContext(WorkspaceContext); const { resourceId } = useParams(); const [resourceHistory, setResourceHistory] = useState([] as Array<HistoryItem>) const [loadingState, setLoadingState] = useState('loading'); useEffect(() => { const getResourceHistory = async () => { try { // get resource operations const scopeId = workspaceCtx.roles.length > 0 ? workspaceCtx.workspaceApplicationIdURI : ""; const history = await apiCall(`${props.resource.resourcePath}/${ApiEndpoint.History}`, HttpMethod.Get, scopeId); config.debug && console.log(`Got resource history, for resource:${props.resource.id}: ${history.resource_history}`); setResourceHistory(history.resource_history.reverse()); setLoadingState(history ? LoadingState.Ok : LoadingState.Error); } catch (err: any) { err.userMessage = "Error retrieving resource history" setApiError(err); setLoadingState(LoadingState.Error); } }; getResourceHistory(); }, [apiCall, props.resource, resourceId, workspaceCtx.workspaceApplicationIdURI, workspaceCtx.roles]); const stackStyles: IStackStyles = { root: { padding: 0, minWidth: 300 } }; switch (loadingState) { case LoadingState.Ok: return ( <> { resourceHistory && resourceHistory.map((history: HistoryItem, i: number) => { return ( <Stack wrap horizontal style={{borderBottom: '1px #999 solid', padding: '10px 0'}} key={i}> <Stack grow styles={stackStyles}> <ResourceHistoryListItem header={'Resource Id'} val={history.resourceId} /> <ResourceHistoryListItem header={'Resource Version'} val={history.resourceVersion.toString()} /> <ResourceHistoryListItem header={'Enabled'} val={history.isEnabled.toString()} /> <ResourceHistoryListItem header={'Template Version'} val={history.templateVersion} /> <ResourceHistoryListItem header={'Updated'} val={`${moment.unix(history.updatedWhen).toLocaleString()} (${moment.unix(history.updatedWhen).fromNow()})`} /> <ResourceHistoryListItem header={'User'} val={history.user.name} /> </Stack> </Stack> ) }) } </> ); case LoadingState.Error: return ( <ExceptionLayout e={apiError} /> ) default: return ( <div style={{ marginTop: '20px' }}> <Spinner label="Loading history" ariaLive="assertive" labelPosition="top" size={SpinnerSize.large} /> </div> ) } };
AzureTRE/ui/app/src/components/shared/ResourceHistoryList.tsx/0
{ "file_path": "AzureTRE/ui/app/src/components/shared/ResourceHistoryList.tsx", "repo_id": "AzureTRE", "token_count": 1413 }
151
import { DefaultButton, Dialog, DialogFooter, DocumentCard, DocumentCardActivity, DocumentCardDetails, DocumentCardTitle, DocumentCardType, FontIcon, getTheme, IStackItemStyles, IStackStyles, IStackTokens, mergeStyles, MessageBar, MessageBarType, Modal, Panel, PanelType, Persona, PersonaSize, PrimaryButton, Spinner, SpinnerSize, Stack} from "@fluentui/react"; import moment from "moment"; import React, { useCallback, useContext, useEffect, useState } from "react"; import { useNavigate, useParams } from "react-router-dom"; import { WorkspaceContext } from "../../../contexts/WorkspaceContext"; import { HttpMethod, useAuthApiCall } from "../../../hooks/useAuthApiCall"; import { AirlockFilesLinkValidStatus, AirlockRequest, AirlockRequestAction, AirlockRequestStatus, AirlockReviewDecision } from "../../../models/airlock"; import { ApiEndpoint } from "../../../models/apiEndpoints"; import { APIError } from "../../../models/exceptions"; import { destructiveButtonStyles } from "../../../styles"; import { ExceptionLayout } from "../ExceptionLayout"; import { AirlockRequestFilesSection } from "./AirlockRequestFilesSection"; import { AirlockReviewRequest } from "./AirlockReviewRequest"; interface AirlockViewRequestProps { requests: AirlockRequest[]; onUpdateRequest: (requests: AirlockRequest) => void; } export const AirlockViewRequest: React.FunctionComponent<AirlockViewRequestProps> = (props: AirlockViewRequestProps) => { const {requestId} = useParams(); const [request, setRequest] = useState<AirlockRequest>(); const [hideSubmitDialog, setHideSubmitDialog] = useState(true); const [reviewIsOpen, setReviewIsOpen] = useState(false); const [submitting, setSubmitting] = useState(false); const [submitError, setSubmitError] = useState(false); const [hideCancelDialog, setHideCancelDialog] = useState(true); const [apiError, setApiError] = useState({} as APIError); const workspaceCtx = useContext(WorkspaceContext); const apiCall = useAuthApiCall(); const navigate = useNavigate(); useEffect(() => { // Get the selected request from the router param and find in the requests prop let req = props.requests.find(r => r.id === requestId) as AirlockRequest; // If not found, fetch it from the API if (!req) { apiCall( `${ApiEndpoint.Workspaces}/${workspaceCtx.workspace.id}/${ApiEndpoint.AirlockRequests}/${requestId}`, HttpMethod.Get, workspaceCtx.workspaceApplicationIdURI ).then((result) => { const request = result.airlockRequest as AirlockRequest; request.allowedUserActions = result.allowedUserActions; setRequest(request); }); } else { setRequest(req); } console.log(req); }, [apiCall, requestId, props.requests, workspaceCtx.workspace.id, workspaceCtx.workspaceApplicationIdURI]); const dismissPanel = useCallback(() => navigate('../'), [navigate]); // Submit an airlock request const submitRequest = useCallback(async () => { if (request && request.workspaceId) { setSubmitting(true); setSubmitError(false); try { const response = await apiCall( `${ApiEndpoint.Workspaces}/${request.workspaceId}/${ApiEndpoint.AirlockRequests}/${request.id}/${ApiEndpoint.AirlockSubmit}`, HttpMethod.Post, workspaceCtx.workspaceApplicationIdURI ); props.onUpdateRequest(response.airlockRequest); setHideSubmitDialog(true); } catch (err: any) { err.userMessage = 'Error submitting airlock request'; setApiError(err); setSubmitError(true); } setSubmitting(false); } }, [apiCall, request, props, workspaceCtx.workspaceApplicationIdURI]); // Cancel an airlock request const cancelRequest = useCallback(async () => { if (request && request.workspaceId) { setSubmitting(true); setSubmitError(false); try { const response = await apiCall( `${ApiEndpoint.Workspaces}/${request.workspaceId}/${ApiEndpoint.AirlockRequests}/${request.id}/${ApiEndpoint.AirlockCancel}`, HttpMethod.Post, workspaceCtx.workspaceApplicationIdURI ); props.onUpdateRequest(response.airlockRequest); setHideCancelDialog(true); } catch (err: any) { err.userMessage = 'Error cancelling airlock request'; setApiError(err); setSubmitError(true); } setSubmitting(false); } }, [apiCall, request, props, workspaceCtx.workspaceApplicationIdURI]); // Render the panel footer along with buttons that the signed-in user is allowed to see according to the API const renderFooter = useCallback(() => { let footer = <></> if (request) { footer = <> { request.status === AirlockRequestStatus.Draft && <div style={{marginTop: '10px', marginBottom: '10px'}}> <MessageBar> This request is currently in draft. Add a file to the request's storage container and submit when ready. </MessageBar> </div> } { request.statusMessage && <div style={{marginTop: '10px', marginBottom: '10px'}}> <MessageBar messageBarType={MessageBarType.error}>{request.statusMessage}</MessageBar> </div> } <div style={{textAlign: 'end'}}> { request.allowedUserActions?.includes(AirlockRequestAction.Cancel) && <DefaultButton onClick={() => {setSubmitError(false); setHideCancelDialog(false)}} styles={destructiveButtonStyles}>Cancel request</DefaultButton> } { request.allowedUserActions?.includes(AirlockRequestAction.Submit) && <PrimaryButton onClick={() => {setSubmitError(false); setHideSubmitDialog(false)}}>Submit</PrimaryButton> } { request.allowedUserActions?.includes(AirlockRequestAction.Review) && <PrimaryButton onClick={() => setReviewIsOpen(true)}>Review</PrimaryButton> } </div> </> } return footer; }, [request]); return ( <> <Panel headerText={request && request.title ? request.title : "View airlock request"} isOpen={true} isLightDismiss={true} onDismiss={dismissPanel} onRenderFooterContent={renderFooter} isFooterAtBottom={true} closeButtonAriaLabel="Close" type={PanelType.custom} customWidth="450px" > { request ? <> <Stack horizontal horizontalAlign="space-between" style={{marginTop: '40px'}} styles={underlineStackStyles}> <Stack.Item styles={stackItemStyles}> <b>Id</b> </Stack.Item> <Stack.Item styles={stackItemStyles}> <p>{request.id}</p> </Stack.Item> </Stack> <Stack horizontal horizontalAlign="space-between" styles={underlineStackStyles}> <Stack.Item styles={stackItemStyles}> <b>Creator</b> </Stack.Item> <Stack.Item styles={stackItemStyles}> <Persona size={PersonaSize.size32} text={request.createdBy?.name} /> </Stack.Item> </Stack> <Stack horizontal horizontalAlign="space-between" styles={underlineStackStyles}> <Stack.Item styles={stackItemStyles}> <b>Type</b> </Stack.Item> <Stack.Item styles={stackItemStyles}> <p>{request.type}</p> </Stack.Item> </Stack> <Stack horizontal horizontalAlign="space-between" styles={underlineStackStyles}> <Stack.Item styles={stackItemStyles}> <b>Status</b> </Stack.Item> <Stack.Item styles={stackItemStyles}> <p>{request.status.replace("_", " ")}</p> </Stack.Item> </Stack> <Stack horizontal horizontalAlign="space-between" styles={underlineStackStyles}> <Stack.Item styles={stackItemStyles}> <b>Workspace</b> </Stack.Item> <Stack.Item styles={stackItemStyles}> <p>{workspaceCtx.workspace?.properties?.display_name}</p> </Stack.Item> </Stack> <Stack horizontal horizontalAlign="space-between" styles={underlineStackStyles}> <Stack.Item styles={stackItemStyles}> <b>Created</b> </Stack.Item> <Stack.Item styles={stackItemStyles}> <p>{moment.unix(request.createdWhen).format('DD/MM/YYYY')}</p> </Stack.Item> </Stack> <Stack horizontal horizontalAlign="space-between" styles={underlineStackStyles}> <Stack.Item styles={stackItemStyles}> <b>Updated</b> </Stack.Item> <Stack.Item styles={stackItemStyles}> <p>{moment.unix(request.updatedWhen).fromNow()}</p> </Stack.Item> </Stack> <Stack style={{marginTop: '20px'}} styles={underlineStackStyles}> <Stack.Item styles={stackItemStyles}> <b>Business Justification</b> </Stack.Item> </Stack> <Stack> <Stack.Item styles={stackItemStyles}> <p>{request.businessJustification}</p> </Stack.Item> </Stack> { AirlockFilesLinkValidStatus.includes(request.status) && <> <Stack style={{marginTop: '20px'}} styles={underlineStackStyles}> <Stack.Item styles={stackItemStyles}> <b>Files</b> </Stack.Item> </Stack> <AirlockRequestFilesSection request={request} workspaceApplicationIdURI={workspaceCtx.workspaceApplicationIdURI}/> </> } { request.reviews && request.reviews.length > 0 && <> <Stack style={{marginTop: '20px', marginBottom: '20px'}} styles={underlineStackStyles}> <Stack.Item styles={stackItemStyles}> <b>Reviews</b> </Stack.Item> </Stack> <Stack tokens={stackTokens}> { request.reviews.map((review, i) => { return <DocumentCard key={i} aria-label="Review" type={DocumentCardType.compact}> <DocumentCardDetails> <DocumentCardActivity activity={moment.unix(review.dateCreated).fromNow()} people={[{name: review.reviewer.name, profileImageSrc: ''}]} /> <DocumentCardTitle title={review.decisionExplanation} shouldTruncate showAsSecondaryTitle /> </DocumentCardDetails> <div style={{margin:10}}> { review.reviewDecision === AirlockReviewDecision.Approved && <> <FontIcon aria-label="Approved" iconName="Completed" className={approvedIcon} /> Approved </> } { review.reviewDecision === AirlockReviewDecision.Rejected && <> <FontIcon aria-label="Rejected" iconName="ErrorBadge" className={rejectedIcon} /> Rejected </> } </div> </DocumentCard> }) } </Stack> </> } </> : <div style={{ marginTop: '70px' }}> <Spinner label="Loading..." ariaLive="assertive" labelPosition="top" size={SpinnerSize.large} /> </div> } <Dialog hidden={hideSubmitDialog} onDismiss={() => {setHideSubmitDialog(true); setSubmitError(false)}} dialogContentProps={{ title: 'Submit request?', subText: 'Make sure you have uploaded your file to the request\'s storage account before submitting.', }} > { submitError && <ExceptionLayout e={apiError} /> } { submitting ? <Spinner label="Submitting..." ariaLive="assertive" labelPosition="top" size={SpinnerSize.large} /> : <DialogFooter> <DefaultButton onClick={() => {setHideSubmitDialog(true); setSubmitError(false)}} text="Cancel" /> <PrimaryButton onClick={submitRequest} text="Submit" /> </DialogFooter> } </Dialog> <Dialog hidden={hideCancelDialog} onDismiss={() => {setHideCancelDialog(true); setSubmitError(false)}} dialogContentProps={{ title: 'Cancel Airlock Request?', subText: 'Are you sure you want to cancel this airlock request?', }} > { submitError && <ExceptionLayout e={apiError} /> } { submitting ? <Spinner label="Cancelling..." ariaLive="assertive" labelPosition="top" size={SpinnerSize.large} /> : <DialogFooter> <DefaultButton onClick={cancelRequest} text="Cancel Request" styles={destructiveButtonStyles} /> <DefaultButton onClick={() => {setHideCancelDialog(true); setSubmitError(false)}} text="Back" /> </DialogFooter> } </Dialog> <Modal titleAriaId={`title-${request?.id}`} isOpen={reviewIsOpen} onDismiss={() => setReviewIsOpen(false)} containerClassName={modalStyles} > <AirlockReviewRequest request={request} onUpdateRequest={props.onUpdateRequest} onReviewRequest={(request) => {props.onUpdateRequest(request); setReviewIsOpen(false)}} onClose={() => setReviewIsOpen(false)} /> </Modal> </Panel> </> ) } const { palette } = getTheme(); const stackTokens: IStackTokens = { childrenGap: 20 }; const underlineStackStyles: IStackStyles = { root: { borderBottom: '#f2f2f2 solid 1px' }, }; const stackItemStyles: IStackItemStyles = { root: { alignItems: 'center', display: 'flex', height: 50, margin: '0px 5px' }, }; const approvedIcon = mergeStyles({ color: palette.green, marginRight: 5, fontSize: 12 }); const rejectedIcon = mergeStyles({ color: palette.red, marginRight: 5, fontSize: 12 }); const modalStyles = mergeStyles({ display: 'flex', flexFlow: 'column nowrap', alignItems: 'stretch', });
AzureTRE/ui/app/src/components/shared/airlock/AirlockViewRequest.tsx/0
{ "file_path": "AzureTRE/ui/app/src/components/shared/airlock/AirlockViewRequest.tsx", "repo_id": "AzureTRE", "token_count": 6788 }
152
import React, { useContext, useEffect, useState } from 'react'; import { Route, Routes, useNavigate, useParams } from 'react-router-dom'; import { ApiEndpoint } from '../../models/apiEndpoints'; import { useAuthApiCall, HttpMethod } from '../../hooks/useAuthApiCall'; import { UserResource } from '../../models/userResource'; import { WorkspaceService } from '../../models/workspaceService'; import { PrimaryButton, Spinner, SpinnerSize, Stack } from '@fluentui/react'; import { ComponentAction, Resource } from '../../models/resource'; import { ResourceCardList } from '../shared/ResourceCardList'; import { LoadingState } from '../../models/loadingState'; import { WorkspaceContext } from '../../contexts/WorkspaceContext'; import { ResourceType } from '../../models/resourceType'; import { ResourceHeader } from '../shared/ResourceHeader'; import { useComponentManager } from '../../hooks/useComponentManager'; import { CreateUpdateResourceContext } from '../../contexts/CreateUpdateResourceContext'; import { successStates } from '../../models/operation'; import { UserResourceItem } from './UserResourceItem'; import { ResourceBody } from '../shared/ResourceBody'; import { SecuredByRole } from '../shared/SecuredByRole'; import { WorkspaceRoleName } from '../../models/roleNames'; import { APIError } from '../../models/exceptions'; import { ExceptionLayout } from '../shared/ExceptionLayout'; interface WorkspaceServiceItemProps { workspaceService?: WorkspaceService, updateWorkspaceService: (ws: WorkspaceService) => void, removeWorkspaceService: (ws: WorkspaceService) => void } export const WorkspaceServiceItem: React.FunctionComponent<WorkspaceServiceItemProps> = (props: WorkspaceServiceItemProps) => { const { workspaceServiceId } = useParams(); const [userResources, setUserResources] = useState([] as Array<UserResource>) const [workspaceService, setWorkspaceService] = useState({} as WorkspaceService) const [loadingState, setLoadingState] = useState(LoadingState.Loading); const [selectedUserResource, setSelectedUserResource] = useState({} as UserResource); const [hasUserResourceTemplates, setHasUserResourceTemplates] = useState(false); const workspaceCtx = useContext(WorkspaceContext); const createFormCtx = useContext(CreateUpdateResourceContext); const navigate = useNavigate(); const apiCall = useAuthApiCall(); const [apiError, setApiError] = useState({} as APIError); const latestUpdate = useComponentManager( workspaceService, (r: Resource) => { props.updateWorkspaceService(r as WorkspaceService); setWorkspaceService(r as WorkspaceService) }, (r: Resource) => { props.removeWorkspaceService(r as WorkspaceService); navigate(`/${ApiEndpoint.Workspaces}/${workspaceCtx.workspace.id}/${ApiEndpoint.WorkspaceServices}`) } ); useEffect(() => { const getData = async () => { if(!workspaceCtx.workspace.id) return; setHasUserResourceTemplates(false); try { let svc = props.workspaceService || {} as WorkspaceService; // did we get passed the workspace service, or shall we get it from the api? if (props.workspaceService && props.workspaceService.id && props.workspaceService.id === workspaceServiceId) { setWorkspaceService(props.workspaceService); } else { let ws = await apiCall(`${ApiEndpoint.Workspaces}/${workspaceCtx.workspace.id}/${ApiEndpoint.WorkspaceServices}/${workspaceServiceId}`, HttpMethod.Get, workspaceCtx.workspaceApplicationIdURI); setWorkspaceService(ws.workspaceService); svc = ws.workspaceService; } // get the user resources const u = await apiCall(`${ApiEndpoint.Workspaces}/${workspaceCtx.workspace.id}/${ApiEndpoint.WorkspaceServices}/${workspaceServiceId}/${ApiEndpoint.UserResources}`, HttpMethod.Get, workspaceCtx.workspaceApplicationIdURI) // get user resource templates - to check const ut = await apiCall(`${ApiEndpoint.Workspaces}/${workspaceCtx.workspace.id}/${ApiEndpoint.WorkspaceServiceTemplates}/${svc.templateName}/${ApiEndpoint.UserResourceTemplates}`, HttpMethod.Get, workspaceCtx.workspaceApplicationIdURI); setHasUserResourceTemplates(ut && ut.templates && ut.templates.length > 0); setUserResources(u.userResources); setLoadingState(LoadingState.Ok); } catch (err: any) { err.userMessage = "Error retrieving resources"; setApiError(err); setLoadingState(LoadingState.Error); } }; getData(); }, [apiCall, props.workspaceService, workspaceCtx.workspace.id, workspaceCtx.workspaceApplicationIdURI, workspaceServiceId]); const addUserResource = (u: UserResource) => { let ur = [...userResources]; ur.push(u); setUserResources(ur); } const updateUserResource = (u: UserResource) => { let ur = [...userResources]; let i = ur.findIndex((f: UserResource) => f.id === u.id); ur.splice(i, 1, u); setUserResources(ur); } const removeUserResource = (u: UserResource) => { let ur = [...userResources]; let i = ur.findIndex((f: UserResource) => f.id === u.id); ur.splice(i, 1); setUserResources(ur); } switch (loadingState) { case LoadingState.Ok: return ( <> <Routes> <Route path="*" element={ <> <ResourceHeader resource={workspaceService} latestUpdate={latestUpdate} /> <ResourceBody resource={workspaceService} /> { hasUserResourceTemplates && <Stack className="tre-panel"> <Stack.Item> <Stack horizontal horizontalAlign="space-between"> <h1>Resources</h1> <SecuredByRole allowedWorkspaceRoles={[WorkspaceRoleName.WorkspaceOwner, WorkspaceRoleName.WorkspaceResearcher, WorkspaceRoleName.AirlockManager]} element={ <PrimaryButton iconProps={{ iconName: 'Add' }} text="Create new" disabled={!workspaceService.isEnabled || latestUpdate.componentAction === ComponentAction.Lock || successStates.indexOf(workspaceService.deploymentStatus) === -1} title={(!workspaceService.isEnabled || latestUpdate.componentAction === ComponentAction.Lock || successStates.indexOf(workspaceService.deploymentStatus) === -1) ? 'Service must be enabled, successfully deployed, and not locked' : 'Create a User Resource'} onClick={() => { createFormCtx.openCreateForm({ resourceType: ResourceType.UserResource, resourceParent: workspaceService, onAdd: (r: Resource) => addUserResource(r as UserResource), workspaceApplicationIdURI: workspaceCtx.workspaceApplicationIdURI }) }} /> } /> </Stack> </Stack.Item> <Stack.Item> { userResources && <ResourceCardList resources={userResources} selectResource={(r: Resource) => setSelectedUserResource(r as UserResource)} updateResource={(r: Resource) => updateUserResource(r as UserResource)} removeResource={(r: Resource) => removeUserResource(r as UserResource)} emptyText="This workspace service contains no user resources." isExposedExternally={workspaceService.properties.is_exposed_externally} /> } </Stack.Item> </Stack> } </> } /> <Route path="user-resources/:userResourceId/*" element={ <UserResourceItem userResource={selectedUserResource} updateUserResource={(u: UserResource) => updateUserResource(u)} removeUserResource={(u: UserResource) => removeUserResource(u)} /> } /> </Routes> </> ); case LoadingState.Error: return ( <ExceptionLayout e={apiError} /> ); default: return ( <div style={{ marginTop: '20px' }}> <Spinner label="Loading Workspace Service" ariaLive="assertive" labelPosition="top" size={SpinnerSize.large} /> </div> ) } };
AzureTRE/ui/app/src/components/workspaces/WorkspaceServiceItem.tsx/0
{ "file_path": "AzureTRE/ui/app/src/components/workspaces/WorkspaceServiceItem.tsx", "repo_id": "AzureTRE", "token_count": 3454 }
153
import { ResourceType } from "./resourceType"; import { User } from "./user"; export interface Operation { id: string, resourceId: string, resourcePath: string, resourceVersion: number, status: string, action: string, message: string, createdWhen: number, updatedWhen: number, user: User, steps?: Array<OperationStep>, dismiss?: Boolean // UI-only prop, not fed from the API } export interface OperationStep { templateStepId: string, stepTitle: string, resourceId: string, resourceTemplateName: string, resourceType: ResourceType, resourceAction: string, status: string, message: string, updatedWhen: number } export const awaitingStates = [ "awaiting_deployment", "awaiting_update", "awaiting_deletion", "awaiting_action" ] export const successStates = [ "deployed", "updated", "deleted", "action_succeeded" ] export const failedStates = [ "deployment_failed", "deleting_failed", "updating_failed", "action_failed", ] export const completedStates = [ ...failedStates, ...successStates ] export const inProgressStates = [ ...awaitingStates, "deploying", "updating", "deleting", "invoking_action", "pipeline_running" ] export const actionsDisabledStates = [ ...inProgressStates, "deployment_failed", "failed" ]
AzureTRE/ui/app/src/models/operation.ts/0
{ "file_path": "AzureTRE/ui/app/src/models/operation.ts", "repo_id": "AzureTRE", "token_count": 470 }
154
{ "compilerOptions": { "target": "es5", "lib": [ "dom", "dom.iterable", "esnext" ], "allowJs": true, "skipLibCheck": true, "esModuleInterop": true, "allowSyntheticDefaultImports": true, "strict": true, "forceConsistentCasingInFileNames": true, "noFallthroughCasesInSwitch": true, "module": "esnext", "moduleResolution": "node", "resolveJsonModule": true, "isolatedModules": true, "noEmit": true, "jsx": "react-jsx", "paths": { "react": [ "./node_modules/@types/react" ] } }, "include": [ "src" ] }
AzureTRE/ui/app/tsconfig.json/0
{ "file_path": "AzureTRE/ui/app/tsconfig.json", "repo_id": "AzureTRE", "token_count": 284 }
155
# BioGPT This repository contains the implementation of [BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9), by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. # Requirements and Installation * [PyTorch](http://pytorch.org/) version == 1.12.0 * Python version == 3.10 * fairseq version == 0.12.0: ``` bash git clone https://github.com/pytorch/fairseq cd fairseq git checkout v0.12.0 pip install . python setup.py build_ext --inplace cd .. ``` * Moses ``` bash git clone https://github.com/moses-smt/mosesdecoder.git export MOSES=${PWD}/mosesdecoder ``` * fastBPE ``` bash git clone https://github.com/glample/fastBPE.git export FASTBPE=${PWD}/fastBPE cd fastBPE g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast ``` * sacremoses ``` bash pip install sacremoses ``` * sklearn ``` bash pip install scikit-learn ``` Remember to set the environment variables `MOSES` and `FASTBPE` to the path of Moses and fastBPE respetively, as they will be required later. # Getting Started ## Pre-trained models We provide our pre-trained BioGPT model checkpoints along with fine-tuned checkpoints for downstream tasks, available both through URL download as well as through the Hugging Face 🤗 Hub. |Model|Description|URL|🤗 Hub| |----|----|---|---| |BioGPT|Pre-trained BioGPT model checkpoint|[link](https://msralaphilly2.blob.core.windows.net/release/BioGPT/checkpoints/Pre-trained-BioGPT.tgz?sp=r&st=2023-11-13T15:37:35Z&se=2099-12-30T23:37:35Z&spr=https&sv=2022-11-02&sr=b&sig=3CcG1TOhqJPBhkVutvVn3PtUq0vPyLBgwggUfojypfY%3D)|[link](https://huggingface.co/microsoft/biogpt)| |BioGPT-Large|Pre-trained BioGPT-Large model checkpoint|[link](https://msralaphilly2.blob.core.windows.net/release/BioGPT/checkpoints/Pre-trained-BioGPT-Large.tgz?sp=r&st=2023-11-13T15:38:13Z&se=2099-12-30T23:38:13Z&spr=https&sv=2022-11-02&sr=b&sig=ib1SZut9wAwrsxGWtFtIZDhrnRg92dwPJmoY2lr3MTg%3D)|[link](https://huggingface.co/microsoft/biogpt-large)| |BioGPT-QA-PubMedQA-BioGPT|Fine-tuned BioGPT for question answering task on PubMedQA|[link](https://msralaphilly2.blob.core.windows.net/release/BioGPT/checkpoints/QA-PubMedQA-BioGPT.tgz?sp=r&st=2023-11-13T15:38:43Z&se=2099-12-30T23:38:43Z&spr=https&sv=2022-11-02&sr=b&sig=A5SQae6ifsXmrsgpj4E2flhyXm4iHc%2FqO5b8HGOMyjc%3D)| | |BioGPT-QA-PubMedQA-BioGPT-Large|Fine-tuned BioGPT-Large for question answering task on PubMedQA|[link](https://msralaphilly2.blob.core.windows.net/release/BioGPT/checkpoints/QA-PubMedQA-BioGPT-Large.tgz?sp=r&st=2023-11-13T15:39:40Z&se=2099-12-30T23:39:40Z&spr=https&sv=2022-11-02&sr=b&sig=t%2B%2FD%2BxVoIxiuyDsD0VXv%2FjSGoS0VcrdVXycYhWZoxUc%3D)|| |BioGPT-RE-BC5CDR|Fine-tuned BioGPT for relation extraction task on BC5CDR|[link](https://msralaphilly2.blob.core.windows.net/release/BioGPT/checkpoints/RE-BC5CDR-BioGPT.tgz?sp=r&st=2023-11-13T15:35:14Z&se=2099-12-30T23:35:14Z&spr=https&sv=2022-11-02&sr=b&sig=uXlLIHlVeKIbS%2BVmdzAmlNCeKdoKO2lxsSmwSi%2FH8nE%3D)| | |BioGPT-RE-DDI|Fine-tuned BioGPT for relation extraction task on DDI|[link](https://msralaphilly2.blob.core.windows.net/release/BioGPT/checkpoints/RE-DDI-BioGPT.tgz?sp=r&st=2023-11-13T15:35:58Z&se=2099-12-30T23:35:58Z&spr=https&sv=2022-11-02&sr=b&sig=DkaQMuM%2FXAsM2p8%2BUs45ecuqhlSRF1DUYRBJNcxD6Pk%3D)| | |BioGPT-RE-DTI|Fine-tuned BioGPT for relation extraction task on KD-DTI|[link](https://msralaphilly2.blob.core.windows.net/release/BioGPT/checkpoints/RE-DTI-BioGPT.tgz?sp=r&st=2023-11-13T15:36:23Z&se=2099-12-30T23:36:23Z&spr=https&sv=2022-11-02&sr=b&sig=bRgUZyqGuwYdM%2FVFzIv6Xa0GThkXq6bVzszmTe9c%2BKM%3D)| | |BioGPT-DC-HoC|Fine-tuned BioGPT for document classification task on HoC|[link](https://msralaphilly2.blob.core.windows.net/release/BioGPT/checkpoints/DC-HoC-BioGPT.tgz?sp=r&st=2023-11-13T15:37:17Z&se=2099-12-30T23:37:17Z&spr=https&sv=2022-11-02&sr=b&sig=1DxroWPt%2FBppCTy7QHs842lLy8SQRcUeUwSfMzDFvl0%3D)| | Download them and extract them to the `checkpoints` folder of this project. For example: ``` bash mkdir checkpoints cd checkpoints wget https://msralaphilly2.blob.core.windows.net/release/BioGPT/checkpoints/Pre-trained-BioGPT.tgz?sp=r&st=2023-11-13T15:37:35Z&se=2099-12-30T23:37:35Z&spr=https&sv=2022-11-02&sr=b&sig=3CcG1TOhqJPBhkVutvVn3PtUq0vPyLBgwggUfojypfY%3D tar -zxvf Pre-trained-BioGPT.tgz ``` ## Example Usage Use pre-trained BioGPT model in your code: ```python import torch from fairseq.models.transformer_lm import TransformerLanguageModel m = TransformerLanguageModel.from_pretrained( "checkpoints/Pre-trained-BioGPT", "checkpoint.pt", "data", tokenizer='moses', bpe='fastbpe', bpe_codes="data/bpecodes", min_len=100, max_len_b=1024) m.cuda() src_tokens = m.encode("COVID-19 is") generate = m.generate([src_tokens], beam=5)[0] output = m.decode(generate[0]["tokens"]) print(output) ``` Use fine-tuned BioGPT model on KD-DTI for drug-target-interaction in your code: ```python import torch from src.transformer_lm_prompt import TransformerLanguageModelPrompt m = TransformerLanguageModelPrompt.from_pretrained( "checkpoints/RE-DTI-BioGPT", "checkpoint_avg.pt", "data/KD-DTI/relis-bin", tokenizer='moses', bpe='fastbpe', bpe_codes="data/bpecodes", max_len_b=1024, beam=1) m.cuda() src_text="" # input text, e.g., a PubMed abstract src_tokens = m.encode(src_text) generate = m.generate([src_tokens], beam=args.beam)[0] output = m.decode(generate[0]["tokens"]) print(output) ``` For more downstream tasks, please see below. ## Downstream tasks See corresponding folder in [examples](examples): ### [Relation Extraction on BC5CDR](examples/RE-BC5CDR) ### [Relation Extraction on KD-DTI](examples/RE-DTI/) ### [Relation Extraction on DDI](examples/RE-DDI) ### [Document Classification on HoC](examples/DC-HoC/) ### [Question Answering on PubMedQA](examples/QA-PubMedQA/) ### [Text Generation](examples/text-generation/) ## Hugging Face 🤗 Usage BioGPT has also been integrated into the Hugging Face `transformers` library, and model checkpoints are available on the Hugging Face Hub. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python from transformers import pipeline, set_seed from transformers import BioGptTokenizer, BioGptForCausalLM model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") generator = pipeline('text-generation', model=model, tokenizer=tokenizer) set_seed(42) generator("COVID-19 is", max_length=20, num_return_sequences=5, do_sample=True) ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BioGptTokenizer, BioGptForCausalLM tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` Beam-search decoding: ```python import torch from transformers import BioGptTokenizer, BioGptForCausalLM, set_seed tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") sentence = "COVID-19 is" inputs = tokenizer(sentence, return_tensors="pt") set_seed(42) with torch.no_grad(): beam_output = model.generate(**inputs, min_length=100, max_length=1024, num_beams=5, early_stopping=True ) tokenizer.decode(beam_output[0], skip_special_tokens=True) ``` For more information, please see the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/biogpt) on the Hugging Face website. ## Demos Check out these demos on Hugging Face Spaces: * [Text Generation with BioGPT-Large](https://huggingface.co/spaces/katielink/biogpt-large-demo) * [Question Answering with BioGPT-Large-PubMedQA](https://huggingface.co/spaces/katielink/biogpt-qa-demo) # License BioGPT is MIT-licensed. The license applies to the pre-trained models as well. # Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [[email protected]](mailto:[email protected]) with any additional questions or comments. # Trademarks This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.
BioGPT/README.md/0
{ "file_path": "BioGPT/README.md", "repo_id": "BioGPT", "token_count": 3995 }
156
FORMAT=$1 GOLD_FILE=$2 PREDICTION_FILE=$3 java -cp bc5cdr_eval.jar ncbi.bc5cdr_eval.Evaluate id Disease $FORMAT $GOLD_FILE $PREDICTION_FILE | grep -v INFO # java -cp bc5cdr_eval.jar ncbi.bc5cdr_eval.Evaluate id Disease $FORMAT $GOLD_FILE $PREDICTION_FILE
BioGPT/data/BC5CDR/raw/BC5CDR_Evaluation-0.0.3/eval_id.sh/0
{ "file_path": "BioGPT/data/BC5CDR/raw/BC5CDR_Evaluation-0.0.3/eval_id.sh", "repo_id": "BioGPT", "token_count": 113 }
157
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. SAVE_DIR=../../checkpoints/DC-HoC-BioGPT mkdir -p ${SAVE_DIR} fairseq-train \ ../../data/HoC/ansis-bin --save-dir ${SAVE_DIR} \ --user-dir ../../src \ --finetune-from-model ../../checkpoints/Pre-trained-BioGPT/checkpoint.pt \ --task language_modeling_prompt \ --arch transformer_lm_prompt_biogpt \ --share-decoder-input-output-embed --decoder-learned-pos \ --optimizer adam --adam-betas '(0.9, 0.98)' \ --weight-decay 0.01 --clip-norm 0.0 \ --lr 1e-5 --lr-scheduler inverse_sqrt --warmup-updates 1000 --warmup-init-lr 1e-07 \ --tokens-per-sample 1024 --max-source-positions 900 --max-target-positions 1024 \ --max-tokens 1024 --update-freq 32 \ --skip-invalid-size-inputs-valid-test \ --max-update 20000 --save-interval-updates 1000 --no-epoch-checkpoints \ --learned-prompt 1
BioGPT/examples/DC-HoC/train.sh/0
{ "file_path": "BioGPT/examples/DC-HoC/train.sh", "repo_id": "BioGPT", "token_count": 370 }
158
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import re import json import sys import os pred_file = sys.argv[1] gold_file = sys.argv[2] pmids_file = sys.argv[3] def normalize_name(s: str): s = s.strip() # normalize roman type id at end of string num2roman = {"0": "0", "1": "I", "2": "II", "3": "III", "4": "IV", "5": "V", "6": "VI", "7": "VII", "8": "VIII", "9": "IX"} if len(s) > 2 and s[-1].isnumeric() and not s[-2].isnumeric() and s[-1] in num2roman: tmps = list(s) s = ''.join(tmps[:-1]) + num2roman[tmps[-1]] # remove useless end string s = s.replace("-type", '') return re.sub('[^a-zA-Z0-9]+', '', s) def rm_abbr(tgt_set): """ remove abbreviation in the brackets of entity, eg: aaa (bb) -> aaa """ def rm(s): s = s.strip() if "(" in s and s[-1] == ')': # entity end with a bracketed short cut return normalize_name(s[:s.rfind("(")].strip()) else: return normalize_name(s) tgt_set = list(tgt_set) if tgt_set and type(tgt_set[0]) in [tuple, list]: # process triples return set([(rm(tp[0]), rm(tp[1]), rm(tp[2])) for tp in tgt_set]) else: # process entities return set([rm(e) for e in tgt_set]) def get_abbr(tgt_set): """ extract abbreviation in the brackets of entity, eg: aaa (bb) -> bb """ def rm(s): s = s.strip() if "(" in s and s[-1] == ')': return normalize_name(s[s.rfind("(")+1:-1].strip()) else: return normalize_name(s) tgt_set = list(tgt_set) if tgt_set and type(tgt_set[0]) in [tuple, list]: # process triples return set([(rm(tp[0]), rm(tp[1]), rm(tp[2])) for tp in tgt_set]) else: # process entities return set([rm(e) for e in tgt_set]) def acc(pred_set, gold_set): """ Multi-label style acc """ tp_num = len(pred_set & gold_set) return int(pred_set == gold_set) if len(gold_set) == 0 else 1.0 * tp_num / len(pred_set | gold_set) def precision(pred_set, gold_set): """ Multi-label style precision """ tp_num = len(pred_set & gold_set) return int(pred_set == gold_set) if len(pred_set) == 0 else 1.0 * tp_num / len(pred_set) def recall(pred_set, gold_set): """ Multi-label style recall """ tp_num = len(pred_set & gold_set) return int(pred_set == gold_set) if len(gold_set) == 0 else 1.0 * tp_num / len(gold_set) def normed_eval(pred_set, gold_set, metric): """ Both body and abbreviation match are considered correct """ abbr_pred_set, abbr_gold_set = get_abbr(pred_set), get_abbr(gold_set) rm_pred_set, rm_gold_set = rm_abbr(pred_set), rm_abbr(gold_set) return max(metric(abbr_pred_set, abbr_gold_set), metric(rm_pred_set, rm_gold_set)) def get_f1(p, r): return 0 if (p + r) == 0 else (2.0 * p * r / (p + r)) def ave(scores): return 1.0 * sum(scores) / len(scores) def do_eval(preds, pmids, golden): ret = [] num_pred, num_gold, num_missing = 0, 0, 0 all_f1, p, r, d_acc, t_acc, i_acc = [], [], [], [], [], [] all_pred_triple, all_pred_d, all_pred_t, all_pred_i, all_gold_triple, all_gold_d, all_gold_t, all_gold_i = [], [], [], [], [], [], [], [], for pred, idx in zip(preds, pmids): gold_d_set, gold_t_set, gold_i_set, gold_set = set(), set(), set(), set() pred_d_set, pred_t_set, pred_i_set, pred_set = set(), set(), set(), set() if pred["triple_list_pred"] and pred["triple_list_pred"][0]["subject"] != 'failed': for tp in pred["triple_list_pred"]: d = tp["subject"].strip().lower().replace(' ', '') t = tp["object"].strip().lower().replace(' ', '') i = tp["relation"].strip().lower().replace(' ', '') pred_d_set.add(d) pred_t_set.add(t) pred_i_set.add(i) pred_set.add((d, t, i)) if idx not in golden: num_missing += 1 # print("----Missing:", idx) continue if golden[idx]["triples"]: for tp in golden[idx]["triples"]: d = tp["drug"].strip().lower().replace(' ', '') t = tp["target"].strip().lower().replace(' ', '') i = tp["interaction"].strip().lower().replace(' ', '') gold_d_set.add(d) gold_t_set.add(t) gold_i_set.add(i) gold_set.add((d, t, i)) # sample level eval p.append(normed_eval(pred_set, gold_set, metric=precision)) r.append(normed_eval(pred_set, gold_set, metric=recall)) all_f1.append(get_f1(p[-1], r[-1])) d_acc.append(normed_eval(pred_d_set, gold_d_set, metric=acc)) t_acc.append(normed_eval(pred_t_set, gold_t_set, metric=acc)) i_acc.append(normed_eval(pred_i_set, gold_i_set, metric=acc)) # onto level eval all_pred_d.extend(pred_d_set) all_pred_t.extend(pred_t_set) all_pred_i.extend(pred_i_set) all_pred_triple.extend(pred_set) all_gold_d.extend(gold_d_set) all_gold_t.extend(gold_t_set) all_gold_i.extend(gold_i_set) all_gold_triple.extend(gold_set) # if len(gold_set) < len(golden[idx]["triples"]): # print("Duplicate extists, ori", golden[idx]["triples"], gold_set) num_pred += len(pred_set) num_gold += len(gold_set) ret.append({ "pmid": idx, "title": golden[idx]["title"] if "title" in golden[idx] else None, "abstract": golden[idx]["abstract"], "d_pred_gold": [d_acc[-1], list(pred_d_set), list(gold_d_set)], "t_pred_gold": [t_acc[-1], list(pred_t_set), list(gold_t_set)], "i_pred_gold": [i_acc[-1], list(pred_i_set), list(gold_i_set)], "all_pred_gold": [all_f1[-1], list(pred_set), list(gold_set)], }) print("num sample", len(all_f1), "missing", len(preds) - len(all_f1), "num_gold tp", num_gold, "num_pred", num_pred) # Note: we adopt multi-label metrics following: http://129.211.169.156/publication/tkde13rev.pdf print("Sample: acc d: {:.4f}\tt:{:.4f}\ti: {:.4f}\ntp p: {:.4f}\ttp r: {:.4f}\ttp micro f1: {:.4f}\ttp macro f1: {:.4f} ".format( ave(d_acc), ave(t_acc), ave(i_acc), ave(p), ave(r), ave(all_f1), get_f1(ave(p), ave(r)))) # Ontology evaluation_scripts all_p, all_r = normed_eval(set(all_pred_triple), set(all_gold_triple), metric=precision), normed_eval(set(all_pred_triple), set(all_gold_triple), metric=recall) d_p, d_r = normed_eval(set(all_pred_d), set(all_gold_d), metric=precision), normed_eval(set(all_pred_d), set(all_gold_d), metric=recall) t_p, t_r = normed_eval(set(all_pred_t), set(all_gold_t), metric=precision), normed_eval(set(all_pred_t), set(all_gold_t), metric=recall) i_p, i_r = normed_eval(set(all_pred_i), set(all_gold_i), metric=precision), normed_eval(set(all_pred_i), set(all_gold_i), metric=recall) print("Ontology: f1 d: {:.4f}\tt:{:.4f}\ti: {:.4f}\t \nall p: {:.4f}\tall r: {:.4f}\tonto f1: {:.4f}".format( get_f1(d_p, d_r), get_f1(t_p, t_r), get_f1(i_p, i_r), all_p, all_r, get_f1(all_p, all_r) )) return ret def main(): preds = [] with open(pred_file) as reader: for line in reader: preds.append(json.loads(line)) with open(gold_file) as reader: golden = json.load(reader) with open(pmids_file) as reader: if '.json' in pmids_file: pmids = json.load(reader) else: pmids = [] for line in reader: pmids.append(line.strip()) print("\n====File: ", os.path.basename(pred_file)) result = do_eval(preds, pmids, golden) last_pos = pred_file.rfind('.json') res_file_name = pred_file[:last_pos] + '.eval_res.json' with open(res_file_name, 'w') as writer: json.dump(result, writer, indent=2) if __name__ == "__main__": main()
BioGPT/examples/RE-DDI/hard_match_evaluation.py/0
{ "file_path": "BioGPT/examples/RE-DDI/hard_match_evaluation.py", "repo_id": "BioGPT", "token_count": 3936 }
159
# Speedup Benchmark vs Vendor Libraries This part presents a benchmark comparison between our custom library, BitBLAS, and various vendor libraries (cuBLAS, CUTLASS, bitsandbytes, faster-transformer, tensorrt-llm, vLLM, and Marlin) across different matrix operation types (GEMM, GEMV) and data formats (float16xfloat16, int8xint8, float16xint4/nf4). The benchmarks are conducted on NVIDIA GPUs - 24GB RTX 3090 and 80GB A100, with CUDA 12.1 installed. ## Benchmark Overview ### Tested Operations and Formats - GEMM (General Matrix Multiply) and GEMV (General Matrix-Vector Multiply) - Data formats: float16, int8, float16xint4/nf4 ### Hardware - NVIDIA RTX 3090 (24GB) - NVIDIA A100 (80GB) ### Software - CUDA 12.1 - Compared libraries: cuBLAS, CUTLASS, bitsandbytes, faster-transformer, tensorrt-llm, vLLM, Marlin - Commit ID: - bitsandbytes == 0.43.0 - vLLM: 865732342b4e3b8a4ef38f28a2a5bdb87cf3f970 - FasterTransformer: 1afbf20129647a35d108152fc6789bc1d029cda5 - TensorRT-LLM: 2bf3a0a4287069ac55ee3304c285b08592d3d1bc - CUTLASS: 629f4653c3ea3db3264030382956fabe715f3436 - Marlin: 512f1b1ba39ff708bcc95419f11cfd1285cd31b3 ## Results Summary ### RTX 3090 Benchmarks - **Float16 and Int8 GEMM with Tensorcore**: BitBLAS matches the performance of cuBLAS and CUTLASS. - **Float16xnf4 GEMV and GEMM**: BitBLAS achieves 2x the speed of bitsandbytes and 4x the base float16 performance. - **Optimal performance** in float16xint4 GEMM. ### A100 Benchmarks - **Int4 Dequantize Performance**: BitBLAS outperforms bitsandbytes, faster-transformer, tensorrt-llm, vLLM, and Marlin. ## Benchmark Configuration The benchmark configurations for each test scenario are detailed below: <!-- center --> <div align="center"> <table class="tableizer-table"> <thead><tr class="tableizer-firstrow"><th>config</th><th>Provider</th><th>M</th><th>N</th><th>K</th></tr></thead><tbody> <tr><td>V0</td><td>None</td><td>1</td><td>16384</td><td>16384</td></tr> <tr><td>V1</td><td>BLOOM</td><td>1</td><td>43008</td><td>14336</td></tr> <tr><td>V2</td><td>BLOOM</td><td>1</td><td>14336</td><td>14336</td></tr> <tr><td>V3</td><td>BLOOM</td><td>1</td><td>57344</td><td>14336</td></tr> <tr><td>V4</td><td>BLOOM</td><td>1</td><td>14336</td><td>57344</td></tr> <tr><td>V5</td><td>OPT</td><td>1</td><td>9216</td><td>9216</td></tr> <tr><td>V6</td><td>OPT</td><td>1</td><td>36864</td><td>9216</td></tr> <tr><td>V7</td><td>OPT</td><td>1</td><td>9216</td><td>36864</td></tr> <tr><td>V8</td><td>LLAMA</td><td>1</td><td>22016</td><td>8192</td></tr> <tr><td>V9</td><td>LLAMA</td><td>1</td><td>8192</td><td>22016</td></tr> <tr><td>V10</td><td>LLAMA-2</td><td>1</td><td>8192</td><td>8192</td></tr> <tr><td>V11</td><td>LLAMA-2</td><td>1</td><td>28672</td><td>8192</td></tr> <tr><td>V12</td><td>LLAMA-2</td><td>1</td><td>8192</td><td>28672</td></tr> <tr><td>M0</td><td>None</td><td>16384</td><td>16384</td><td>16384</td></tr> <tr><td>M1</td><td>BLOOM</td><td>8192</td><td>43008</td><td>14336</td></tr> <tr><td>M2</td><td>BLOOM</td><td>8192</td><td>14336</td><td>14336</td></tr> <tr><td>M3</td><td>BLOOM</td><td>8192</td><td>57344</td><td>14336</td></tr> <tr><td>M4</td><td>BLOOM</td><td>8192</td><td>14336</td><td>57344</td></tr> <tr><td>M5</td><td>OPT</td><td>8192</td><td>9216</td><td>9216</td></tr> <tr><td>M6</td><td>OPT</td><td>8192</td><td>36864</td><td>9216</td></tr> <tr><td>M7</td><td>OPT</td><td>8192</td><td>9216</td><td>36864</td></tr> <tr><td>M8</td><td>LLAMA</td><td>8192</td><td>22016</td><td>8192</td></tr> <tr><td>M9</td><td>LLAMA</td><td>8192</td><td>8192</td><td>22016</td></tr> <tr><td>M10</td><td>LLAMA-2</td><td>8192</td><td>8192</td><td>8192</td></tr> <tr><td>M11</td><td>LLAMA-2</td><td>8192</td><td>28672</td><td>8192</td></tr> <tr><td>M12</td><td>LLAMA-2</td><td>8192</td><td>8192</td><td>28672</td></tr> </tbody></table> </div> **Note:** To reproduce the 3rdparty frameworks' benchmark results, please refer to [mlc-benchmark](https://github.com/LeiWang1999/mlc-benchmark). ## Benchmark Images BitNET 1.58B INT8xINT2 Matmul BS Scaling on A100. ![int8xiint2_scaling](../images/figures/op_benchmark_a100_int2_scaling.png) 3090 Related benchmark numbers ![3090-gemm-fp16](../images/figures/op_benchmark_3090_fp16_gemm.png) ![3090-gemm-s8](../images/figures/op_benchmark_3090_s8_gemm.png) ![3090-nf4-gemv](../images/figures/op_benchmark_3090_nf4_gemv.png) ![3090-nf4-gemm](../images/figures/op_benchmark_3090_nf4_gemm.png) A100 Related Benchmark Result ![a100-wq-gemv](../images/figures/op_benchmark_a100_wq_gemv_e8.png) ![a100-wq-gemm](../images/figures/op_benchmark_a100_wq_gemm_e8.png) INT8xUINT1 Matmul BS Scaling on A100. ![int8xiint1_scaling](../images/figures/op_benchmark_a100_uint1_scaling.png)
BitBLAS/benchmark/README.md/0
{ "file_path": "BitBLAS/benchmark/README.md", "repo_id": "BitBLAS", "token_count": 2163 }
160
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from logging import getLogger import numpy as np import torch import torch.nn as nn from typing import List, Union, Literal, Optional logger = getLogger(__name__) try: import bitblas # noqa: F401 except ImportError as e: bitblas_import_exception = e def error_raiser_bitblas(*args, **kwargs): raise ValueError( f"Trying to use the bitblas backend, but could not import dependencies with the following error: {bitblas_import_exception}" ) autogptq_bitblas_cuda = bitblas_import_exception from bitblas.utils import auto_detect_nvidia_target # noqa: E402 from bitblas.ops.matmul import MatmulConfig, Matmul # noqa: E402 class Linear(nn.Module): def __init__( self, in_features: int, out_features: int, opt_M: Union[int, List[int]] = 1, bias: bool = False, dtype: torch.dtype = torch.float16, propagate_a: bool = False, propagate_b: bool = False, enable_tuning: bool = False, trainable: bool = False, layout: Literal["nn", "nt"] = "nt", target: Optional[str] = None, ): """ @opt_M: optimize range of the input shape for dynamic symbolic if the input shape is a range, we will optimize the matmul with dynamic symbolic. if the input shape is int, we will optimize the matmul with static symbolic. """ super().__init__() if trainable: raise NotImplementedError("Bitblas does not support train.") self.in_features = in_features self.out_features = out_features self.opt_M = opt_M self.dtype = dtype self.propagate_a = propagate_a self.propagate_b = propagate_b self.enable_tuning = enable_tuning self.weight = nn.Parameter(torch.empty((out_features, in_features), dtype=dtype)) if bias: self.bias = nn.Parameter(torch.empty(out_features, dtype=dtype)) else: self.register_parameter("bias", None) BITBLAS_DTYPES = { torch.float32: "float32", torch.float16: "float16", torch.int8: "int8", } assert dtype in BITBLAS_DTYPES, f"Unsupported dtype: {dtype}" bitblas_dtype = BITBLAS_DTYPES[dtype] self.target = target or auto_detect_nvidia_target() matmul_config = MatmulConfig( M=self.opt_M, N=self.out_features, K=self.in_features, in_dtype=bitblas_dtype, out_dtype=bitblas_dtype, accum_dtype="int32" if bitblas_dtype == "int8" else bitblas_dtype, with_bias=bias, propagate_a=propagate_a, propagate_b=propagate_b, layout=layout, ) self.bitblas_matmul = Matmul( config=matmul_config, target=self.target, ) if enable_tuning: self.bitblas_matmul.hardware_aware_finetune(topk=20) self.reset_parameters() def reset_parameters(self): with torch.no_grad(): stdv = 1.0 / np.sqrt(self.weight.shape[1]) self.weight.uniform_(-stdv, stdv) if self.bias is not None: self.bias.uniform_(-stdv, stdv) def forward(self, A, output=None): args = [ A, self.weight, ] if self.bias is not None: args.append(self.bias) if output is None: output = torch.empty( A.shape[:-1] + (self.out_features,), dtype=A.dtype, device=A.device) args.append(output) self.bitblas_matmul(*args) return output __all__ = ["Linear"]
BitBLAS/integration/pytorch/bitblas_linear.py/0
{ "file_path": "BitBLAS/integration/pytorch/bitblas_linear.py", "repo_id": "BitBLAS", "token_count": 1809 }
161
# Copyright 2018 The apache/tvm Authors. All Rights Reserved. # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # Modifications Copyright (c) Microsoft. # The code below is mostly copied from apache/tvm common_schedules.py in dlight. """Common schedule strategies for TIR.""" from typing import Callable, List from tvm import tir from .analysis import BlockInfo def get_block( sch: tir.Schedule, blocks: List[BlockInfo], name: str, ): """Get the target block from a schedule. Parameters ---------- sch : tir.Schedule The TIR schedule used to get target block. name : str The name of the target block. Returns ------- target_block : BlockRV The target block. """ target_block: tir.BlockRV = None for block_info in blocks: block = block_info.block_rv if sch.get(block).name_hint == name: target_block = block return target_block def get_output_blocks( sch: tir.Schedule, blocks: List[BlockInfo], ): """Get the output blocks of a schedule. Parameters ---------- sch : tir.Schedule The TIR schedule used to get output blocks. blocks : List[BlockInfo] The blocks to be analyzed. Returns ------- output_blocks : List[BlockInfo] The output blocks. """ # collect arguments buffer func = sch.mod["main"] args = list(func.buffer_map.values()) output_blocks = [] for block_info in blocks: block = block_info.block_rv for write in sch.get(block).writes: if write.buffer in args: output_blocks.append(block) return output_blocks def try_inline( sch: tir.Schedule, blocks: List[BlockInfo], ) -> List[BlockInfo]: """Try to inline as many blocks as possible, and return the remaining blocks. Parameters ---------- sch : tir.Schedule The TIR schedule used to inline blocks. blocks : List[BlockInfo] The blocks to be inlined. Returns ------- remaining : List[BlockInfo] The remaining blocks that cannot be inlined. """ def _trial(func: Callable): for i, block in enumerate(blocks): try: func(block.block_rv) except Exception: # pylint: disable=bare-except continue return i return None while True: i = _trial(sch.compute_inline) if i is None: i = _trial(sch.reverse_compute_inline) if i is None: break blocks.pop(i) return blocks def try_inline_contiguous_spatial( sch: tir.Schedule, block_infos: List[BlockInfo], ) -> List[BlockInfo]: """Try to inline contiguous spatial blocks in a schedule Parameters ---------- sch : tir.Schedule The TIR schedule used to inline blocks. block_infos : List[BlockInfo] The blocks to be try. Returns ------- remaining : List[BlockInfo] The remaining blocks that cannot be inlined. """ if block_infos is None: return None results = [] spatial_blocks = [] block: BlockInfo for block in block_infos: if block.is_injective(): spatial_blocks.append(block) elif spatial_blocks: results.extend(try_inline(sch, spatial_blocks)) results.append(block) spatial_blocks = [] else: results.append(block) if spatial_blocks: results.extend(try_inline(sch, spatial_blocks)) return results
BitBLAS/python/bitblas/base/common_schedules.py/0
{ "file_path": "BitBLAS/python/bitblas/base/common_schedules.py", "repo_id": "BitBLAS", "token_count": 1634 }
162
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from typing import Dict, List, Tuple, Set, Mapping from tvm.tir.schedule.schedule import BlockRV from tvm.ir import structural_equal from tvm import arith, tir class Statement: def __init__(self, block_analyzer, block: BlockRV): self.block_analyzer = block_analyzer self.block = block # assume one tir block only has one output buffer self.dep_name = block_analyzer.get_output_buffers(block)[0].name self.dependent_region = _extract_dependent_region(block_analyzer, block) self.reverse_bound_inference = {} def make_reverse(self, input_name: str, input_iter: List[tir.PrimExpr]): if len(self.block_analyzer.get_reduce_axis(self.block)) > 0: return None if len(self.dependent_region[input_name]) != 1: return None indices = self.dependent_region[input_name][0] iter_map_range = { _iter.var: _iter.dom for _iter in self.block_analyzer.get_spatial_axis(self.block) } iter_map_result = arith.detect_iter_map( indices, iter_map_range, check_level=arith.iter_affine_map.IterMapLevel.Surjective, simplify_trivial_iterators=False, ) if len(iter_map_result.errors) > 0: return None results = arith.iter_affine_map.inverse_affine_iter_map(iter_map_result.indices, input_iter) output_indices = [] for _iter in self.block_analyzer.get_spatial_axis(self.block): if _iter.var in results: output_indices.append(results[_iter.var]) else: # not Bijective mapping case output_indices.append(tir.Var("undefined", dtype="int32") % int(_iter.dom.extent)) return output_indices def _merge_two_bounds(x: arith.ConstIntBound, y: arith.ConstIntBound): return arith.ConstIntBound(min(x.min_value, y.min_value), max(x.max_value, y.max_value)) class TensorDepNode(object): """ For tensor dependency analysis. """ def __init__(self, name): self.name = name self._next = [] self._prev = [] def add_next(self, node): self._next.append(node) self.deduplicate(self._next) def add_prev(self, node): self._prev.append(node) self.deduplicate(self._prev) def deduplicate(self, lst): seen = set() lst[:] = [n for n in lst if not (n in seen or seen.add(n))] def __str__(self): return self.name def __repr__(self): return self.name class DependencyAnalysis(object): def __init__(self, deps): self.deps = deps # issue: duplicate name when we have two same ops. self.name2dep = self._construct_unique_name2dep(deps) self.mapping = {} # name -> TensorDepNode def _construct_unique_name2dep(self, deps): """ This is a workaround for the issue that we have two same ops' fuse case. See https://github.com/apache/tvm/issues/16433 """ _names:Set = set() name2dep:Mapping = {} for dep in deps: output_buffer = dep.block_analyzer.get_output_buffers(dep.block)[0] base_name = output_buffer.name if base_name not in _names: _names.add(base_name) else: i = 1 while f"{base_name}_{i}" in _names: i += 1 base_name = f"{base_name}_{i}" _names.add(base_name) name2dep[base_name] = dep return name2dep def get_or_create_node(self, name): if name not in self.mapping: self.mapping[name] = TensorDepNode(name) return self.mapping[name] def traverse_dependencies(self, compute): if isinstance(compute, Statement): node = self.get_or_create_node( compute.block_analyzer.get_output_buffers(compute.block)[0].name ) # Loop through input tensors for input_buffer in compute.block_analyzer.get_input_buffers(compute.block): # Get the input node input_node = self.traverse_dependencies(input_buffer) input_node.add_next(node) node.add_prev(input_node) elif isinstance(compute, tir.Buffer): node = self.get_or_create_node(compute.name) return node def analyze(self): # Starting point for traversal for _, compute in self.name2dep.items(): self.traverse_dependencies(compute) def print_dependencies(self): for name, node in self.mapping.items(): print(f"{name} depends on {', '.join([prev.name for prev in node._prev])}") def find_path_from_source(self, start_name, target_name): """ Finds the path (if it exists) from a starting node (source) to a target node. Returns the path as a list of nodes. """ visited = set() path = [] if self._find_path_recursive(self.mapping[start_name], target_name, visited, path): return path return [] def _find_path_recursive(self, current_node, target_name, visited, path): """ Recursive helper function for find_path_from_source. """ if current_node.name == target_name: path.append(current_node) return True if current_node.name in visited: return False visited.add(current_node.name) path.append(current_node) for next_node in current_node._next: if self._find_path_recursive(next_node, target_name, visited, path): return True path.pop() return False class InputShapeInference: def __init__(self, deps: List[Statement]): self.deps = deps self.target_mapping = {} self.buffer_mapping = {} self.reduce_axes = [] for dep in self.deps: for ax in dep.block_analyzer.get_reduce_axis(dep.block): self.reduce_axes.append(ax) self.dep_analysis = DependencyAnalysis(self.deps) self.dep_analysis.analyze() def construct_dependency_target(self, targets: Tuple[str]): if targets in self.target_mapping: return self.target_mapping[targets] # should be buffer name instead of block name name2dep = { dep.block_analyzer.get_output_buffers(dep.block)[0].name: dep for dep in self.deps } mapping = {} input_vars = [] for target in targets: vars = [ iter.var for iter in name2dep[target].block_analyzer.get_spatial_axis(name2dep[target].block) ] input_vars.append(vars) mapping[target] = [vars] ana = arith.Analyzer() for dep in self.deps: for name in dep.dependent_region: if name not in mapping: continue dep_name = dep.dep_name indices = mapping[name][0] output_indices = dep.make_reverse(name, indices) if dep_name in targets: continue if dep_name not in mapping: mapping[dep_name] = [output_indices] elif not region_exist_in_list(output_indices, mapping[dep_name]): mapping[dep_name].append(output_indices) for dep in reversed(self.deps): indices_list = mapping[dep.dep_name] ax_vars = [iter.var for iter in dep.block_analyzer.get_spatial_axis(dep.block)] for input_name, regions in dep.dependent_region.items(): if input_name in targets: continue if input_name not in mapping: mapping[input_name] = [] for indices in indices_list: for region in regions: vmap = { k: (tir.Cast(k.dtype, v) if v.dtype != k.dtype else v) for k, v in zip(ax_vars, indices) } region = [ ana.simplify(tir.stmt_functor.substitute(ax, vmap)) for ax in region ] if not region_exist_in_list(region, mapping[input_name]): mapping[input_name].append(region) buffers = [] for dep in self.deps: for buffer in dep.block_analyzer.get_buffers(dep.block): buffers.append(buffer) for buffer in buffers: self.buffer_mapping[buffer.name] = buffer self.target_mapping[targets] = input_vars, mapping return input_vars, mapping def infer( self, shape: Dict[str, List[arith.ConstIntBound]], rstep: Dict[str, int] = {}, targets=None ): compute_targets = tuple(shape.keys()) input_vars, mapping = self.construct_dependency_target(compute_targets) ana = arith.Analyzer() results = {} intermediate_bind = {} for vars, bounds in zip(input_vars, shape.values()): for var, bound in zip(vars, bounds): ana.update(var, bound, True) for ax in self.reduce_axes: # assume the dom.min is always 0, maybe we can extend the IterInfo to include the min value. if ax.var.name in rstep: bound = arith.ConstIntBound( int(ax.dom.min), int(ax.dom.min + min(ax.dom.extent, rstep[ax.var.name]) - 1) ) else: bound = arith.ConstIntBound(int(ax.dom.min), int(ax.dom.min + ax.dom.extent - 1)) ana.update(ax.var, bound, True) for name, regions in mapping.items(): if targets is not None and name not in targets: continue if compute_targets[0:1] == compute_targets: (compute_target,) = compute_targets path = self.dep_analysis.find_path_from_source(name, compute_target) if len(path) > 2: intermediate_nodes = path[1:-1] for node in intermediate_nodes: iters = mapping[node.name] if len(iters) != len(regions) or len(iters) != 1: continue if len(*iters) != len(*regions): break regions = iters intermediate_bind[name] = compute_target for region in regions: bound = [ana.const_int_bound(indice) for indice in region] if name in results: # simply merge two bounds bound = [_merge_two_bounds(x, y) for x, y in zip(results[name], bound)] results[name] = bound else: for region in regions: bound = [ana.const_int_bound(indice) for indice in region] if name in results: # simply merge two bounds bound = [_merge_two_bounds(x, y) for x, y in zip(results[name], bound)] results[name] = bound for name, bounds in results.items(): results[name] = [c.max_value - c.min_value + 1 for c in bounds] return results, intermediate_bind def get_input_exprs(self, output_exprs): input_vars, mapping = self.construct_dependency_target(tuple(output_exprs.keys())) ana = arith.Analyzer() for ax in self.reduce_axes: ana.bind(ax.var, 0) vmap = {} for vars, exprs in zip(input_vars, output_exprs.values()): for var, expr in zip(vars, exprs): if expr.dtype != var.dtype: expr = tir.Cast(var.dtype, expr) vmap[var] = expr result = {} for name, regions in mapping.items(): region = regions[0] result[name] = [ ana.simplify(tir.stmt_functor.substitute(index, vmap)) for index in region ] return result def region_exist_in_list(a, list) -> bool: def expr_is_same(a, b) -> bool: if isinstance(a, tir.IntImm) and isinstance(b, tir.IntImm): return a.value == b.value return structural_equal(a, b) def region_is_same(a, b) -> bool: for indice_a, indice_b in zip(a, b): if not expr_is_same(indice_a, indice_b): return False return True return any([region_is_same(a, x) for x in list]) def walk_indice(expr): if isinstance(expr, tir.expr.BinaryOpExpr): a = walk_indice(expr.a) b = walk_indice(expr.b) if a is not None and b is not None: return expr else: return None elif isinstance(expr, tir.expr.ConstExpr): return expr elif isinstance(expr, tir.Var): return expr elif isinstance(expr, tir.ProducerLoad): return None elif isinstance(expr, tir.Cast): a = walk_indice(expr.value) if a is not None: return expr return None elif isinstance(expr, tir.Call): return None else: raise Exception("Unhandled node type in walk_indice(): %s" % expr) def _extract_dependent_region(block_analyzer, block: BlockRV) -> Dict[str, List[tir.PrimExpr]]: input_buffers = block_analyzer.get_input_buffers(block) dependent_region = {buffer.name: [] for buffer in input_buffers} def fvisit(x): if not isinstance(x, tir.BufferLoad): return if x.buffer.name not in dependent_region: return index = [] for indice, shape_limit in zip(x.indices, x.buffer.shape): expr = walk_indice(indice) if expr is None: expr = tir.Var("undefined", dtype="int8") % shape_limit if isinstance(expr, tir.IntImm) and expr.value == 0: """for tensor ir zero dim smplification case. for ax0, ax1, ax2 in T.grid(T.int64(1024), T.int64(1024), T.int64(1024)): with T.block("T_dense"): v0, v1, v2 = T.axis.remap("SSR", [ax0, ax1, ax2]) T.reads(A_reindex[T.int64(0), v0, v2], B_reindex[T.int64(0), v1, v2]) T.writes(T_dense_reindex[T.int64(0), v0, v1]) with T.init(): T_dense_reindex[T.int64(0), v0, v1] = T.float16(0) T_dense_reindex[T.int64(0), v0, v1] = T_dense_reindex[T.int64(0), v0, v1] + A_reindex[T.int64(0), v0, v2] * B_reindex[T.int64(0), v1, v2] For exmaple, the T_dense_reindex has three dims, however there're only two spatial loops. """ continue index.append(expr) if not region_exist_in_list(index, dependent_region[x.buffer.name]): dependent_region[x.buffer.name].append(index) stmt = block_analyzer.sch.get(block) tir.stmt_functor.post_order_visit(stmt, fvisit=fvisit) return dependent_region def get_analyzer_by_tir(block_analyzer, args) -> InputShapeInference: deps = [Statement(block_analyzer, block) for block in args] return InputShapeInference(deps)
BitBLAS/python/bitblas/base/roller/shape_inference/tir.py/0
{ "file_path": "BitBLAS/python/bitblas/base/roller/shape_inference/tir.py", "repo_id": "BitBLAS", "token_count": 7689 }
163
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # pylint: disable=missing-docstring, invalid-name """A GEMM schedule rule for GPU operators.""" from dataclasses import dataclass from typing import Optional from tvm import tir from tvm.target import Target from tvm.tir.stmt import ForKind from ..base import analysis from .base import GPUScheduleRule from . import utils from .matmul_analysis import ( auto_inline_consumer_chain, auto_inline_producers, get_in_out_dtypes, get_index_map, normalize_to_matmul, get_reduction_blocks, ) from .matmul_mma import MatmulTensorizationMMA from .matmul_wmma import ( MatmulInt8Tensorization, MatmulTensorizationWMMA, ) from functools import reduce import logging logger = logging.getLogger(__name__) class Matmul(GPUScheduleRule): """The schedule rule for matmul-like computation""" @dataclass class Config: block_size_x: int = 8 block_size_y: int = 8 vthread_x: int = 1 vthread_y: int = 1 micro_size_x: int = 4 micro_size_y: int = 4 micro_size_k: int = 8 vector_size: int = 1 unroll: int = 256 # 0 means no unroll use_shared: bool = True storage_align: bool = False inner_x: bool = False def get_configs(self, target: Target) -> Config: """Get the schedule config for the target""" if target.kind.name == "cuda" or target.kind.name == "rocm": return Matmul.Config( block_size_x=8, block_size_y=16, vthread_x=1, vthread_y=1, micro_size_x=4, micro_size_y=4, micro_size_k=16, vector_size=2, unroll=256, use_shared=True, storage_align=True, inner_x=False, ) elif target.kind.name == "opencl" and "android" in str(target.host): return Matmul.Config( block_size_x=8, block_size_y=8, vthread_x=1, vthread_y=1, micro_size_x=8, micro_size_y=2, micro_size_k=16, vector_size=8, unroll=64, use_shared=False, storage_align=False, inner_x=True, ) else: return Matmul.Config() def apply( # pylint: disable=too-many-locals,missing-docstring self, func: tir.PrimFunc, target: Target, _: bool, ) -> Optional[tir.Schedule]: if not isinstance(func, tir.PrimFunc) or not self.is_target_available(target): return None sch = tir.Schedule(func) root_block = analysis.get_root_block(sch) blocks = sch.get_child_blocks(root_block) reduction_blocks = get_reduction_blocks(sch, blocks) if reduction_blocks is None: return None main_block = reduction_blocks[0] block_stmt = sch.get(main_block) sch = normalize_to_matmul(sch, main_block) if sch is None: return None # Step 1. Check Tensor Core support # Tensorization config: # If any value of I, J, K is fixed and less than this threshold, # tensorization rule will not be applied. minimal_tensorize_threshold = 64 block_stmt = sch.get(main_block) if target.kind.name == "cuda" and utils.get_sm_version(target) >= 70: apply_tensorization: bool = True # the batch dimension is not taken into consideration. # Analyze read/write buffers and choose correct tensorizer: int8 or fp16. in_dtype, out_dtype = get_in_out_dtypes(block_stmt) if in_dtype not in ["int8", "float16"]: apply_tensorization = False for item_var in block_stmt.iter_vars[1:]: extent = item_var.dom.extent if isinstance(extent, tir.expr.IntImm) and extent.value <= minimal_tensorize_threshold: apply_tensorization = False if apply_tensorization: if in_dtype == "int8" and out_dtype == "int32": tensorize_sch = MatmulInt8Tensorization().apply(func, target, _) elif utils.get_sm_version(target) >= 80: # For A100(sm_80) or more advanced gpu, use MMA tensorization. tensorize_sch = MatmulTensorizationMMA().apply(func, target, _) else: # For other GPUs, use WMMA tensorization. tensorize_sch = MatmulTensorizationWMMA().apply(func, target, _) if tensorize_sch is not None: return tensorize_sch # Step 2. Get schedule config. config = self.get_configs(target) # Step 3. Schedule matmul y_kernel_size = config.vthread_y * config.block_size_y * config.micro_size_y x_kernel_size = config.vthread_x * config.block_size_x * config.micro_size_x if config.inner_x: sch.pad_einsum( main_block, [1, y_kernel_size, x_kernel_size, config.micro_size_k], ) batch, y, x, k = sch.get_loops(main_block) else: sch.pad_einsum( main_block, [1, x_kernel_size, y_kernel_size, config.micro_size_k], ) batch, x, y, k = sch.get_loops(main_block) by, vy, ty, yi = sch.split( y, [None, config.vthread_y, config.block_size_y, config.micro_size_y]) bx, vx, tx, xi = sch.split( x, [None, config.vthread_x, config.block_size_x, config.micro_size_x]) ko, ki = sch.split(k, factors=[None, config.micro_size_k]) sch.reorder(by, bx, vy, vx, ty, tx, ko, ki, yi, xi) by = sch.fuse(batch, by) sch.bind(bx, "blockIdx.x") sch.bind(by, "blockIdx.y") sch.bind(vy, "vthread.y") sch.bind(vx, "vthread.x") sch.bind(ty, "threadIdx.y") sch.bind(tx, "threadIdx.x") inner_loop = config.micro_size_x if config.inner_x else config.micro_size_y if inner_loop % config.vector_size == 0: _, v = sch.split(xi, [None, config.vector_size]) sch.vectorize(v) if config.unroll > 0: sch.annotate(tx, ann_key="pragma_auto_unroll_max_step", ann_val=config.unroll) sch.annotate(tx, ann_key="pragma_unroll_explicit", ann_val=1) l2g = sch.cache_write(main_block, 0, "local") sch.reverse_compute_at(l2g, tx, preserve_unit_loops=True) if config.micro_size_x % config.vector_size == 0: _, v = sch.split(sch.get_loops(l2g)[-1], [None, config.vector_size]) sch.vectorize(v) if config.use_shared: def _cooperative_fetch(index, vec_len): block = sch.cache_read(main_block, index, "shared") num_loops = len(sch.get_loops(block)) sch.compute_at(block, ko, preserve_unit_loops=True) loops = sch.get_loops(block)[-num_loops:] ty, tx, _, vec = sch.split( sch.fuse(*loops), factors=[config.block_size_y, config.block_size_x, None, vec_len], ) sch.vectorize(vec) sch.bind(ty, "threadIdx.y") sch.bind(tx, "threadIdx.x") if config.storage_align: sch.storage_align(block, 0, axis=1, factor=8, offset=vec_len) return block a_g2s = _cooperative_fetch(0, vec_len=config.vector_size) b_g2s = _cooperative_fetch(1, vec_len=config.vector_size) auto_inline_producers(sch, a_g2s) auto_inline_producers(sch, b_g2s) else: auto_inline_producers(sch, main_block) auto_inline_consumer_chain(sch, l2g) sch.decompose_reduction(main_block, ko) # Step 4. Check if there are unbound blocks. Execute fallback scheduling to them. def is_scheduled(block: tir.schedule.BlockRV) -> bool: loops = sch.get_loops(block) loop_kinds = {sch.get(loop).kind for loop in loops} return loop_kinds != {ForKind.SERIAL} blocks = sch.get_child_blocks(root_block) max_threads_per_block = utils.max_threads_per_block(target) # noqa: F841 for block in blocks: if is_scheduled(block): continue # no axis of the block is bound to thread or block s_loops = sch.get_loops(block) bx, tx = sch.split( sch.fuse(*s_loops), factors=[ None, 256, ], ) sch.bind(bx, "blockIdx.x") sch.bind(tx, "threadIdx.x") return sch def apply_config( # pylint: disable=too-many-locals,missing-docstring self, func: tir.PrimFunc, config, ) -> tir.Schedule: sch = tir.Schedule(func) root_block = analysis.get_root_block(sch) blocks = sch.get_child_blocks(root_block) reduction_blocks = get_reduction_blocks(sch, blocks) if reduction_blocks is None: return None # in some case conv template will use this rule, but the tile config is not # analyzed by matmul expr. if len(config.block) != 2: logger.debug(f"Warning: block config {config.block} is not valid for matmul, skip.") return None main_block = reduction_blocks[0] block_stmt = sch.get(main_block) # cuda core prefer b is [k, j] layout without swizzling. index_maps = get_index_map(block_stmt, ["n", "n", "n"]) if index_maps is None: return None matmul_index_map, a_index_map, b_index_map, c_index_map = index_maps # Step 0. Normalize generic matmul to C[S, I, J] += A[S, I, K] * B[S, J, K] block = sch.reindex(main_block, ("read", 0)) sch.transform_layout(block, ("write", 0), a_index_map) block = sch.reindex(main_block, ("read", 1)) sch.transform_layout(block, ("write", 0), b_index_map) block = sch.reindex(main_block, ("write", 0)) sch.transform_layout(block, ("read", 0), c_index_map) sch.transform_block_layout(main_block, matmul_index_map) # Step 2. Get schedule config. block_row_warps = config.block[0] // (config.thread[0] * config.step[0]) block_col_warps = config.block[1] // (config.thread[1] * config.step[1]) thread_row_tiles = config.thread[1] // (config.step[0] * 2) thread_col_tiles = config.thread[1] // (config.step[1] * 2) vthread_row_tiles = (config.step[0] * 2) # expand vtrhead to avoid load band conflict vthread_col_tiles = (config.step[1] * 2) # expand vtrhead to avoid load band conflict chunk = config.rstep[0] # Step 3. Schedule matmul BM = block_row_warps * vthread_row_tiles * thread_row_tiles BN = block_col_warps * vthread_col_tiles * thread_col_tiles BK = chunk sch.pad_einsum( main_block, [1, BM, BN, BK], ) batch, y, x, k = sch.get_loops(main_block) by, vy, ty, yi = sch.split(y, [None, vthread_row_tiles, block_row_warps, thread_row_tiles]) bx, vx, tx, xi = sch.split(x, [None, vthread_col_tiles, block_col_warps, thread_col_tiles]) ko, ki = sch.split(k, factors=[None, BK]) sch.reorder(by, bx, vy, vx, ty, tx, ko, ki, yi, xi) by = sch.fuse(batch, by) sch.bind(bx, "blockIdx.x") sch.bind(by, "blockIdx.y") sch.bind(vy, "vthread.y") sch.bind(vx, "vthread.x") sch.bind(ty, "threadIdx.y") sch.bind(tx, "threadIdx.x") def prod(iterable): return reduce(lambda x, y: x * y, iterable, 1) l2g = sch.cache_write(main_block, 0, "local") sch.reverse_compute_at(l2g, tx, preserve_unit_loops=True) def _cooperative_fetch(index, vec_len): block = sch.cache_read(main_block, index, "shared") num_loops = len(sch.get_loops(block)) block_local = sch.cache_read(main_block, index, "local") sch.compute_at(block_local, ki, preserve_unit_loops=True) sch.compute_at(block, ko, preserve_unit_loops=True) loops = sch.get_loops(block)[-num_loops:] _, ty, tx, vec = sch.split( sch.fuse(*loops), factors=[None, block_row_warps, block_col_warps, vec_len], ) auto_inline_producers(sch, block) def is_trivial_load(block): # avoid vectorize under global[v2, v1]] shared[v1, v2] case reads = sch.get(block).reads writes = sch.get(block).writes if len(reads) != 1 or len(writes) != 1: return False return all( read.region[-1] == write.region[-1] for read, write in zip(reads, writes)) if is_trivial_load(block): sch.vectorize(vec) sch.bind(ty, "threadIdx.y") sch.bind(tx, "threadIdx.x") _, vec = sch.split( sch.fuse(*sch.get_loops(block_local)[-2:]), [None, vec_len // prod(config.step)], ) sch.vectorize(vec) return block for i, input_region in enumerate(sch.get(main_block).reads): _buffer_name = input_region.buffer.name.replace("_reindex", "").replace("_pad", "") if _buffer_name not in config.cached_tensors: logger.warning( f"Warning: {_buffer_name} is not in cached_tensors {config.cached_tensors}, skip." ) continue # otherwise cooperative fetch in shared memory. vectorize = config.vectorize.get(_buffer_name, 1) _cooperative_fetch(i, vec_len=vectorize) auto_inline_consumer_chain(sch, l2g) _, vec = sch.split( sch.fuse(*sch.get_loops(l2g)[-2:]), [None, vectorize // prod(config.step)]) sch.vectorize(vec) sch.decompose_reduction(main_block, ko) return sch
BitBLAS/python/bitblas/gpu/matmul.py/0
{ "file_path": "BitBLAS/python/bitblas/gpu/matmul.py", "repo_id": "BitBLAS", "token_count": 7385 }
164
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # pre-transformed tir expression of matmul import tvm from tvm import te, DataType from tvm.tir import IndexMap from bitblas.ops.operator import TransformKind from bitblas.gpu.matmul_analysis import get_propagate_map from bitblas.quantization import ( _tir_packed_int_to_int_convert, _tir_packed_to_signed_convert, _tir_packed_to_unsigned_convert, _tir_u32_to_f4_to_f16, _tir_packed_to_unsigned_convert_with_zeros, ) def matmul_nt_dequantize_b( M, N, K, in_dtype="float16", out_dtype="float16", accum_dtype="float16", bit=4, storage_dtype="int8", source_format="uint", with_scaling=False, with_zeros=False, group_size=-1, fast_decoding=False, with_bias=False, zeros_mode="original", ): if not isinstance(M, int): M = tvm.te.var("m") storage_nbit = int("".join(c for c in storage_dtype if c.isdigit())) storage_type = str("".join(c for c in storage_dtype if not c.isdigit())) n_float_per_elem = storage_nbit // bit if group_size == -1: group_size = K A = te.placeholder((M, K), name="A", dtype=in_dtype) B = te.placeholder((N, K // storage_nbit * bit), name="B", dtype=storage_dtype) LUT = te.placeholder((1 << bit,), name="LUT", dtype=in_dtype) Scale = te.placeholder((N, K // group_size), name="Scale", dtype=in_dtype) Zeros = te.placeholder((N, K // group_size), name="Zeros", dtype=in_dtype) QZeros = te.placeholder(((K // group_size), N // storage_nbit * bit), name="QZeros", dtype=storage_dtype) Bias = te.placeholder((N,), name="Bias", dtype=in_dtype) def qzeros_dequantize(k, n): return _tir_packed_to_unsigned_convert(storage_type, storage_nbit)( bit, QZeros[k, n // n_float_per_elem], n % n_float_per_elem, dtype=storage_dtype, ) Dequantize_qzeros = te.compute( (K // group_size, N), qzeros_dequantize, name="Dequantize_zeros", ) def decode_func(n, k): if with_zeros and zeros_mode == "quantized": w = _tir_packed_to_unsigned_convert_with_zeros(storage_type, storage_nbit)( bit, B[n, k // n_float_per_elem], k % n_float_per_elem, Dequantize_qzeros[k // group_size, n], dtype=in_dtype, ) elif source_format == "uint": w = _tir_packed_to_unsigned_convert(storage_type, storage_nbit)( bit, B[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype) elif source_format == "int": if bit == 1: # Dequantize int1 to -1 and 1. Without this step, the values would be 0 and 1, identical to uint1. w = _tir_packed_int_to_int_convert(storage_type, storage_nbit)( bit, B[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype) else: w = _tir_packed_to_signed_convert(storage_type, storage_nbit)( bit, B[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype) elif source_format == "fp": w = _tir_u32_to_f4_to_f16( bit, B[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype) elif source_format == "nf": w = LUT[_tir_packed_to_unsigned_convert(storage_type, storage_nbit)( bit, B[n, k // n_float_per_elem], k % n_float_per_elem, dtype="int32", # assume the index data type is int32 )] else: raise ValueError("Unsupported source_format: {}".format(source_format)) if not with_scaling: return w if not with_zeros: return w * Scale[n, k // group_size] if zeros_mode == "original": w = (w - Zeros[n, k // group_size]) * Scale[n, k // group_size] elif zeros_mode == "rescale": w = w * Scale[n, k // group_size] - Zeros[n, k // group_size] elif zeros_mode == "quantized": w = w * Scale[n, k // group_size] else: raise ValueError("Unsupported zeros_mode: {}".format(zeros_mode)) return w B_decode = te.compute((N, K), decode_func, name="B_decode") # Describe the matrix multiplication in TE k = te.reduce_axis((0, K), name="k") C = te.compute( (M, N), lambda i, j: te.sum( A[i, k].astype(accum_dtype) * B_decode[j, k].astype(accum_dtype), axis=k), name="C", ) D = te.compute((M, N), lambda i, j: C[i, j].astype(out_dtype), name="D") args = [A, B] last_output = D if source_format == "nf": args.append(LUT) if with_scaling: args.append(Scale) if with_zeros: if zeros_mode == "quantized": args.append(QZeros) else: args.append(Zeros) if with_bias: E = te.compute((M, N), lambda i, j: D[i, j] + Bias[j], name="E") last_output = E args.append(Bias) args.append(last_output) func = te.create_prim_func(args).with_attr( "dequantize_info", { "B_decode": { "decode_block": "B_decode", "fast_decoding": fast_decoding, "source_format": { "bits": bit, "format": source_format, }, "storage_dtype": storage_dtype, "target_format": in_dtype, "with_scaling": with_scaling, "with_zeros": with_zeros, "zeros_mode": zeros_mode, "group_size": group_size, } }, ) return tvm.IRModule.from_expr(func) def matmul_nt_dequantize_b_propagate_b( M, N, K, in_dtype="float16", out_dtype="float16", accum_dtype="float16", bit=4, storage_dtype="int8", source_format="uint", with_scaling=False, with_zeros=False, group_size=-1, fast_decoding=False, with_bias=False, zeros_mode="original", transform_kind: TransformKind = TransformKind.IntraWarpTransform, ): if not isinstance(M, int): M = tvm.te.var("m") l = r = 16 # noqa: E741 if in_dtype in ["int8", "e4m3_float8", "e5m2_float8"]: l, r = 16, 32 # noqa: E741 _, inverse_indexmap = get_propagate_map(trans=True, dtype=in_dtype, matrix_name="B") target_dtype = DataType(in_dtype) scaling_factor = 1 if bit > 0 and bit < target_dtype.bits: scaling_factor = ((target_dtype.bits // bit) * DataType(storage_dtype).bits // target_dtype.bits) initial_indices = inverse_indexmap.initial_indices scaling_final_indices = inverse_indexmap.map_indices(initial_indices[:-1] + [initial_indices[-1] * scaling_factor]) scaling_final_indices = scaling_final_indices[:-1] + [ scaling_final_indices[-1] // scaling_factor ] inverse_indexmap = IndexMap( initial_indices, scaling_final_indices, None, ) storage_nbit = int("".join(c for c in storage_dtype if c.isdigit())) storage_type = str("".join(c for c in storage_dtype if not c.isdigit())) n_float_per_elem = storage_nbit // bit if group_size == -1: group_size = K qr = r * bit // storage_nbit A = te.placeholder((M, K), name="A", dtype=in_dtype) B = te.placeholder((N // l, (K // scaling_factor) // qr, l, qr), name="B", dtype=storage_dtype) LUT = te.placeholder((1 << bit,), name="LUT", dtype=in_dtype) Scale = te.placeholder((N, K // group_size), name="Scale", dtype=in_dtype) Zeros = te.placeholder((N, K // group_size), name="Zeros", dtype=in_dtype) Bias = te.placeholder((N,), name="Bias", dtype=in_dtype) def fcompute(i, j): warp_i, warp_j = i % l, j % qr spatial_args = i // l, j // qr if transform_kind >= TransformKind.IntraWarpTransform: warp_i, warp_j = inverse_indexmap.map_indices([warp_i, warp_j]) new_index = (*spatial_args, warp_i, warp_j) return B[new_index] B_reindex = te.compute( (N, K // storage_nbit * bit), fcompute, name="B_reindex", ) def decode_func(n, k): if source_format == "uint": w = _tir_packed_to_unsigned_convert(storage_type, storage_nbit)( bit, B_reindex[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype, ) elif source_format == "int": if bit == 1: # Dequantize int1 to -1 and 1. Without this step, the values would be 0 and 1, identical to uint1. w = _tir_packed_int_to_int_convert(storage_type, storage_nbit)( bit, B_reindex[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype) else: w = _tir_packed_to_signed_convert(storage_type, storage_nbit)( bit, B_reindex[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype, ) elif source_format == "fp": w = _tir_u32_to_f4_to_f16( bit, B_reindex[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype, ) elif source_format == "nf": w = LUT[_tir_packed_to_unsigned_convert(storage_type, storage_nbit)( bit, B_reindex[n, k // n_float_per_elem], k % n_float_per_elem, dtype="int32", # assume the index data type is int32 )] else: raise ValueError("Unsupported source_format: {}".format(source_format)) if not with_scaling: return w if not with_zeros: return w * Scale[n, k // group_size] if zeros_mode == "original": w = (w - Zeros[n, k // group_size]) * Scale[n, k // group_size] elif zeros_mode == "rescale": w = w * Scale[n, k // group_size] - Zeros[n, k // group_size] else: raise ValueError("Unsupported zeros_mode: {}".format(zeros_mode)) return w B_decode = te.compute((N, K), decode_func, name="B_decode") # Describe the matrix multiplication in TE k = te.reduce_axis((0, K), name="k") C = te.compute( (M, N), lambda i, j: te.sum( A[i, k].astype(accum_dtype) * B_decode[j, k].astype(accum_dtype), axis=k), name="C", ) D = te.compute((M, N), lambda i, j: C[i, j].astype(out_dtype), name="D") args = [A, B] last_output = D if source_format == "nf": args.append(LUT) if with_scaling: args.append(Scale) if with_zeros: args.append(Zeros) if with_bias: E = te.compute((M, N), lambda i, j: D[i, j] + Bias[j], name="E") last_output = E args.append(Bias) args.append(last_output) func = te.create_prim_func(args).with_attr( "dequantize_info", { "B_decode": { "decode_block": "B_decode", "fast_decoding": fast_decoding, "source_format": { "bits": bit, "format": source_format, }, "storage_dtype": storage_dtype, "target_format": in_dtype, "with_zeros": with_zeros, "zeros_mode": zeros_mode, "with_scaling": with_scaling, "group_size": group_size, } }, ) func = func.with_attr("weight_transform_kind", transform_kind.value) return tvm.IRModule.from_expr(func) def matmul_nt_dequantize_b_propagate_a_propagate_b( M, N, K, in_dtype="float16", out_dtype="float16", accum_dtype="float16", bit=4, storage_dtype="int8", source_format="uint", with_scaling=False, with_zeros=False, group_size=-1, fast_decoding=False, with_bias=False, zeros_mode="original", transform_kind_input: TransformKind = TransformKind.IntraWarpTransform, transform_kind_weight: TransformKind = TransformKind.IntraWarpTransform, ): if not isinstance(M, int): M = tvm.te.var("m") l = r = 16 # noqa: E741 if in_dtype in ["int8", "e4m3_float8", "e5m2_float8"]: l, r = 16, 32 # noqa: E741 _, inversed_index_map = get_propagate_map(trans=False, dtype=in_dtype, matrix_name="A") A = te.placeholder((M // l, K // r, l, r), name="A", dtype=in_dtype) def fcompute(i, j): warp_i, warp_j = i % l, j % r spatial_args = i // l, j // r if transform_kind_input >= TransformKind.IntraWarpTransform: warp_i, warp_j = inversed_index_map.map_indices([warp_i, warp_j]) new_index = (*spatial_args, warp_i, warp_j) return A[new_index] A_reindex = te.compute( (M, K), fcompute, name="A_reindex", ) _, inversed_index_map = get_propagate_map(trans=True, dtype=in_dtype, matrix_name="B") target_dtype = DataType(in_dtype) scaling_factor = 1 if bit > 0 and bit < target_dtype.bits: scaling_factor = ((target_dtype.bits // bit) * DataType(storage_dtype).bits // target_dtype.bits) initial_indices = inversed_index_map.initial_indices scaling_final_indices = inversed_index_map.map_indices( initial_indices[:-1] + [initial_indices[-1] * scaling_factor]) scaling_final_indices = scaling_final_indices[:-1] + [ scaling_final_indices[-1] // scaling_factor ] inversed_index_map = IndexMap( initial_indices, scaling_final_indices, None, ) storage_nbit = int("".join(c for c in storage_dtype if c.isdigit())) storage_type = str("".join(c for c in storage_dtype if not c.isdigit())) n_float_per_elem = storage_nbit // bit if group_size == -1: group_size = K qr = r * bit // storage_nbit B = te.placeholder((N // l, (K // scaling_factor) // qr, l, qr), name="B", dtype=storage_dtype) LUT = te.placeholder((1 << bit,), name="LUT", dtype=in_dtype) Scale = te.placeholder((N, K // group_size), name="Scale", dtype=in_dtype) Zeros = te.placeholder((N, K // group_size), name="Zeros", dtype=in_dtype) Bias = te.placeholder((N,), name="Bias", dtype=in_dtype) def fcompute(i, j): warp_i, warp_j = i % l, j % qr spatial_args = i // l, j // qr if transform_kind_weight >= TransformKind.IntraWarpTransform: warp_i, warp_j = inversed_index_map.map_indices([warp_i, warp_j]) new_index = (*spatial_args, warp_i, warp_j) return B[new_index] B_reindex = te.compute( (N, K // storage_nbit * bit), fcompute, name="B_reindex", ) def decode_func(n, k): if source_format == "uint": w = _tir_packed_to_unsigned_convert(storage_type, storage_nbit)( bit, B_reindex[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype, ) elif source_format == "int": # Dequantize int1 to -1 and 1. Without this step, the values would be 0 and 1, identical to uint1. if bit == 1: w = _tir_packed_int_to_int_convert(storage_type, storage_nbit)( bit, B_reindex[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype) else: w = _tir_packed_to_signed_convert(storage_type, storage_nbit)( bit, B_reindex[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype, ) elif source_format == "fp": w = _tir_u32_to_f4_to_f16( bit, B_reindex[n, k // n_float_per_elem], k % n_float_per_elem, dtype=in_dtype, ) elif source_format == "nf": w = LUT[_tir_packed_to_unsigned_convert(storage_type, storage_nbit)( bit, B_reindex[n, k // n_float_per_elem], k % n_float_per_elem, dtype="int32", # assume the index data type is int32 )] else: raise ValueError("Unsupported source_format: {}".format(source_format)) if not with_scaling: return w if not with_zeros: return w * Scale[n, k // group_size] if zeros_mode == "original": w = (w - Zeros[n, k // group_size]) * Scale[n, k // group_size] elif zeros_mode == "rescale": w = w * Scale[n, k // group_size] - Zeros[n, k // group_size] else: raise ValueError("Unsupported zeros_mode: {}".format(zeros_mode)) return w B_decode = te.compute((N, K), decode_func, name="B_decode") # Describe the matrix multiplication in TE k = te.reduce_axis((0, K), name="k") C = te.compute( (M, N), lambda i, j: te.sum( A_reindex[i, k].astype(accum_dtype) * B_decode[j, k].astype(accum_dtype), axis=k, ), name="C", ) D = te.compute((M, N), lambda i, j: C[i, j].astype(out_dtype), name="D") args = [A, B] last_output = D if source_format == "nf": args.append(LUT) if with_scaling: args.append(Scale) if with_zeros: args.append(Zeros) if with_bias: E = te.compute((M, N), lambda i, j: D[i, j] + Bias[j], name="E") last_output = E args.append(Bias) args.append(last_output) func = te.create_prim_func(args).with_attr( "dequantize_info", { "B_decode": { "decode_block": "B_decode", "fast_decoding": fast_decoding, "source_format": { "bits": bit, "format": source_format, }, "storage_dtype": storage_dtype, "target_format": in_dtype, "with_zeros": with_zeros, "zeros_mode": zeros_mode, "with_scaling": with_scaling, "group_size": group_size, } }, ) func = func.with_attr("input_transform_kind", transform_kind_input.value) func = func.with_attr("weight_transform_kind", transform_kind_weight.value) return tvm.IRModule.from_expr(func) def select_implementation( M=None, N=1024, K=1024, in_dtype="float16", out_dtype="float16", accum_dtype="float16", bit=4, storage_dtype="int8", source_format="uint", with_scaling=False, with_zeros=False, group_size=-1, fast_decoding=False, with_bias=False, layout="nt", zeros_mode="original", propagate_a=False, propagate_b=False, ): if layout == "nn": raise ValueError( "Currently only support propagate_a=False and propagate_b=False for layout=nn in Dequantize Implementation" ) elif layout == "nt": if propagate_a and propagate_b: return matmul_nt_dequantize_b_propagate_a_propagate_b( M, N, K, in_dtype, out_dtype, accum_dtype, bit, storage_dtype, source_format, with_scaling, with_zeros, group_size, fast_decoding, with_bias, zeros_mode, transform_kind_input=propagate_a, transform_kind_weight=propagate_b, ) elif propagate_a: raise NotImplementedError elif propagate_b: return matmul_nt_dequantize_b_propagate_b( M, N, K, in_dtype, out_dtype, accum_dtype, bit, storage_dtype, source_format, with_scaling, with_zeros, group_size, fast_decoding, with_bias, zeros_mode, transform_kind=propagate_b, ) else: return matmul_nt_dequantize_b( M, N, K, in_dtype, out_dtype, accum_dtype, bit, storage_dtype, source_format, with_scaling, with_zeros, group_size, fast_decoding, with_bias, zeros_mode, ) else: raise ValueError(f"Unsupported layout: {layout}")
BitBLAS/python/bitblas/ops/impl/matmul_dequantize_impl.py/0
{ "file_path": "BitBLAS/python/bitblas/ops/impl/matmul_dequantize_impl.py", "repo_id": "BitBLAS", "token_count": 11350 }
165
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import sys import inspect import pytest from bitblas.base import DefaultPolicy, TensorCorePolicy from bitblas.gpu.matmul_analysis import get_tensorized_func_and_tags # pytest.main() wrapper to allow running single test file def main(): test_file = inspect.getsourcefile(sys._getframe(1)) sys.exit(pytest.main([test_file] + sys.argv[1:])) def debug_with_schedule(func, arch, sch_rule): policy = DefaultPolicy(func=func, arch=arch) try: tensorized_func, tags = get_tensorized_func_and_tags(func, arch.target) except Exception: tags = None if tags: policy = TensorCorePolicy(func=tensorized_func, arch=arch, tags=tags) configs = policy.emit_config(1) return sch_rule.apply_config(func, configs[0])
BitBLAS/python/bitblas/testing/__init__.py/0
{ "file_path": "BitBLAS/python/bitblas/testing/__init__.py", "repo_id": "BitBLAS", "token_count": 300 }
166
// Copyright (c) Microsoft Corporation. // Licensed under the MIT License. #include <gtest/gtest.h> #include <stdio.h> #include <cuda_runtime.h> #include <cuda_fp16.h> #include "fast_decoding.hpp" #define cudaCheckLastError(ans) \ { \ gpuAssert((ans), __FILE__, __LINE__); \ } inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true) { if (code != cudaSuccess) { fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line); if (abort) exit(code); } } #define REGISTER_GLOBAL_DEVICE_INVOKER(kernel, function) \ template <typename... Args> \ __global__ void kernel(Args... args) \ { \ function(args...); \ } REGISTER_GLOBAL_DEVICE_INVOKER(kernelWrapper_i4s_to_i8s, decode_i4s_to_i8s) REGISTER_GLOBAL_DEVICE_INVOKER(kernelWrapper_i4u_to_i8s, decode_i4u_to_i8s) REGISTER_GLOBAL_DEVICE_INVOKER(kernelWrapper_i2s_to_i8s, decode_i2s_to_i8s) REGISTER_GLOBAL_DEVICE_INVOKER(kernelWrapper_i2u_to_i8s, decode_i2u_to_i8s) REGISTER_GLOBAL_DEVICE_INVOKER(kernelWrapper_i1s_to_i8s, decode_i1s_to_i8s) REGISTER_GLOBAL_DEVICE_INVOKER(kernelWrapper_i1u_to_i8s, decode_i1u_to_i8s) TEST(DecodeTest, DecodeInt4ToINT8) { using target_dtype = int8_t; constexpr int nbits = 4; constexpr int N = 32 / nbits; constexpr int QN = N / 8 * nbits; constexpr bool isSigned = true; constexpr int zero_point = isSigned ? ((1 << (nbits - 1)) - 1) : 0; // create four int8_t values int8_t in_data[N] = { 0, }; // breed seed srand(0); // random initializations with nbits range for (int i = 0; i < N; i++) { in_data[i] = (rand() % (1 << nbits)) - zero_point; } int8_t *ins = new int8_t[QN]; general_compress(in_data, ins, nbits, N, isSigned); int8_t *interleaved = new int8_t[QN]; general_interleave_int8(ins, interleaved, nbits, QN * sizeof(int8_t), false); target_dtype *decoded = new target_dtype[N]; int8_t *ins_gpu; target_dtype *decoded_gpu; cudaCheckLastError(cudaMalloc((void **)&ins_gpu, QN * sizeof(int8_t))); cudaCheckLastError(cudaMalloc((void **)&decoded_gpu, N * sizeof(target_dtype))); cudaCheckLastError(cudaMemcpy(ins_gpu, interleaved, QN * sizeof(int8_t), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaMemcpy(decoded_gpu, decoded, N * sizeof(target_dtype), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaDeviceSynchronize()); kernelWrapper_i4s_to_i8s<<<dim3(1, 1, 1), dim3(1, 1, 1)>>>(ins_gpu, decoded_gpu); cudaCheckLastError(cudaDeviceSynchronize()); cudaCheckLastError(cudaMemcpy(decoded, decoded_gpu, N * sizeof(target_dtype), cudaMemcpyDeviceToHost)); cudaCheckLastError(cudaFree(ins_gpu)); cudaCheckLastError(cudaFree(decoded_gpu)); for (int i = 0; i < N; i++) { EXPECT_EQ(in_data[i], int(decoded[i])); } free(ins); free(interleaved); free(decoded); } TEST(DecodeTest, DecodeUInt4ToINT8) { using target_dtype = int8_t; constexpr int nbits = 4; constexpr int N = 32 / nbits; constexpr int QN = N / 8 * nbits; constexpr bool isSigned = false; constexpr int zero_point = isSigned ? ((1 << (nbits - 1)) - 1) : 0; // create four int8_t values int8_t in_data[N] = { 0, }; // breed seed srand(0); // random initializations with nbits range for (int i = 0; i < N; i++) { in_data[i] = (rand() % (1 << nbits)) - zero_point; } int8_t *ins = new int8_t[QN]; general_compress(in_data, ins, nbits, N, isSigned); int8_t *interleaved = new int8_t[QN]; general_interleave_int8(ins, interleaved, nbits, QN * sizeof(int8_t), false); target_dtype *decoded = new target_dtype[N]; int8_t *ins_gpu; target_dtype *decoded_gpu; cudaCheckLastError(cudaMalloc((void **)&ins_gpu, QN * sizeof(int8_t))); cudaCheckLastError(cudaMalloc((void **)&decoded_gpu, N * sizeof(target_dtype))); cudaCheckLastError(cudaMemcpy(ins_gpu, interleaved, QN * sizeof(int8_t), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaMemcpy(decoded_gpu, decoded, N * sizeof(target_dtype), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaDeviceSynchronize()); kernelWrapper_i4u_to_i8s<<<dim3(1, 1, 1), dim3(1, 1, 1)>>>(ins_gpu, decoded_gpu); cudaCheckLastError(cudaDeviceSynchronize()); cudaCheckLastError(cudaMemcpy(decoded, decoded_gpu, N * sizeof(target_dtype), cudaMemcpyDeviceToHost)); cudaCheckLastError(cudaFree(ins_gpu)); cudaCheckLastError(cudaFree(decoded_gpu)); for (int i = 0; i < N; i++) { EXPECT_EQ(in_data[i], int(decoded[i])); } free(ins); free(interleaved); free(decoded); } TEST(DecodeTest, DecodeInt2ToINT8) { using target_dtype = int8_t; constexpr int nbits = 2; constexpr int N = 32 / nbits; constexpr int QN = N / 8 * nbits; constexpr bool isSigned = true; constexpr int zero_point = isSigned ? ((1 << (nbits - 1)) - 1) : 0; // create four int8_t values int8_t in_data[N] = { 0, }; // breed seed srand(0); // random initializations with nbits range for (int i = 0; i < N; i++) { in_data[i] = (rand() % (1 << nbits)) - zero_point; } int8_t *ins = new int8_t[QN]; general_compress(in_data, ins, nbits, N, isSigned); int8_t *interleaved = new int8_t[QN]; general_interleave_int8(ins, interleaved, nbits, QN * sizeof(int8_t), false); target_dtype *decoded = new target_dtype[N]; int8_t *ins_gpu; target_dtype *decoded_gpu; cudaCheckLastError(cudaMalloc((void **)&ins_gpu, QN * sizeof(int8_t))); cudaCheckLastError(cudaMalloc((void **)&decoded_gpu, N * sizeof(target_dtype))); cudaCheckLastError(cudaMemcpy(ins_gpu, interleaved, QN * sizeof(int8_t), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaMemcpy(decoded_gpu, decoded, N * sizeof(target_dtype), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaDeviceSynchronize()); kernelWrapper_i2s_to_i8s<<<dim3(1, 1, 1), dim3(1, 1, 1)>>>(ins_gpu, decoded_gpu); cudaCheckLastError(cudaDeviceSynchronize()); cudaCheckLastError(cudaMemcpy(decoded, decoded_gpu, N * sizeof(target_dtype), cudaMemcpyDeviceToHost)); cudaCheckLastError(cudaFree(ins_gpu)); cudaCheckLastError(cudaFree(decoded_gpu)); for (int i = 0; i < N; i++) { EXPECT_EQ(in_data[i], int(decoded[i])); } free(ins); free(interleaved); free(decoded); } TEST(DecodeTest, DecodeUInt2ToINT8) { using target_dtype = int8_t; constexpr int nbits = 2; constexpr int N = 32 / nbits; constexpr int QN = N / 8 * nbits; constexpr bool isSigned = false; constexpr int zero_point = isSigned ? ((1 << (nbits - 1)) - 1) : 0; // create four int8_t values int8_t in_data[N] = { 0, }; // breed seed srand(0); // random initializations with nbits range for (int i = 0; i < N; i++) { in_data[i] = (rand() % (1 << nbits)) - zero_point; } int8_t *ins = new int8_t[QN]; general_compress(in_data, ins, nbits, N, isSigned); int8_t *interleaved = new int8_t[QN]; general_interleave_int8(ins, interleaved, nbits, QN * sizeof(int8_t), false); target_dtype *decoded = new target_dtype[N]; int8_t *ins_gpu; target_dtype *decoded_gpu; cudaCheckLastError(cudaMalloc((void **)&ins_gpu, QN * sizeof(int8_t))); cudaCheckLastError(cudaMalloc((void **)&decoded_gpu, N * sizeof(target_dtype))); cudaCheckLastError(cudaMemcpy(ins_gpu, interleaved, QN * sizeof(int8_t), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaMemcpy(decoded_gpu, decoded, N * sizeof(target_dtype), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaDeviceSynchronize()); kernelWrapper_i2u_to_i8s<<<dim3(1, 1, 1), dim3(1, 1, 1)>>>(ins_gpu, decoded_gpu); cudaCheckLastError(cudaDeviceSynchronize()); cudaCheckLastError(cudaMemcpy(decoded, decoded_gpu, N * sizeof(target_dtype), cudaMemcpyDeviceToHost)); cudaCheckLastError(cudaFree(ins_gpu)); cudaCheckLastError(cudaFree(decoded_gpu)); for (int i = 0; i < N; i++) { EXPECT_EQ(in_data[i], int(decoded[i])); } free(ins); free(interleaved); free(decoded); } TEST(DecodeTest, DecodeInt1ToINT8) { using target_dtype = int8_t; constexpr int nbits = 1; constexpr int N = 32 / nbits; constexpr int QN = N / 8 * nbits; constexpr bool isSigned = true; constexpr int zero_point = isSigned ? ((1 << (nbits - 1)) - 1) : 0; // create four int8_t values int8_t in_data[N] = { 0, }; // breed seed srand(0); // random initializations with nbits range for (int i = 0; i < N; i++) { in_data[i] = (rand() % (1 << nbits)) - zero_point; } int8_t *ins = new int8_t[QN]; general_compress(in_data, ins, nbits, N, isSigned); int8_t *interleaved = new int8_t[QN]; general_interleave_int8(ins, interleaved, nbits, QN * sizeof(int8_t), false); target_dtype *decoded = new target_dtype[N]; int8_t *ins_gpu; target_dtype *decoded_gpu; cudaCheckLastError(cudaMalloc((void **)&ins_gpu, QN * sizeof(int8_t))); cudaCheckLastError(cudaMalloc((void **)&decoded_gpu, N * sizeof(target_dtype))); cudaCheckLastError(cudaMemcpy(ins_gpu, interleaved, QN * sizeof(int8_t), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaMemcpy(decoded_gpu, decoded, N * sizeof(target_dtype), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaDeviceSynchronize()); kernelWrapper_i1s_to_i8s<<<dim3(1, 1, 1), dim3(1, 1, 1)>>>(ins_gpu, decoded_gpu); kernelWrapper_i1s_to_i8s<<<dim3(1, 1, 1), dim3(1, 1, 1)>>>(ins_gpu + QN / 2, decoded_gpu + N / 2); cudaCheckLastError(cudaDeviceSynchronize()); cudaCheckLastError(cudaMemcpy(decoded, decoded_gpu, N * sizeof(target_dtype), cudaMemcpyDeviceToHost)); cudaCheckLastError(cudaFree(ins_gpu)); cudaCheckLastError(cudaFree(decoded_gpu)); for (int i = 0; i < N; i++) { EXPECT_EQ(2 * in_data[i] - 1, int(decoded[i])); } free(ins); free(interleaved); free(decoded); } TEST(DecodeTest, DecodeUInt1ToINT8) { using target_dtype = int8_t; constexpr int nbits = 1; constexpr int N = 32 / nbits; constexpr int QN = N / 8 * nbits; constexpr bool isSigned = false; constexpr int zero_point = isSigned ? ((1 << (nbits - 1)) - 1) : 0; // create four int8_t values int8_t in_data[N] = { 0, }; // breed seed srand(0); // random initializations with nbits range for (int i = 0; i < N; i++) { in_data[i] = (rand() % (1 << nbits)) - zero_point; } int8_t *ins = new int8_t[QN]; general_compress(in_data, ins, nbits, N, isSigned); int8_t *interleaved = new int8_t[QN]; general_interleave_int8(ins, interleaved, nbits, QN * sizeof(int8_t), false); target_dtype *decoded = new target_dtype[N]; int8_t *ins_gpu; target_dtype *decoded_gpu; cudaCheckLastError(cudaMalloc((void **)&ins_gpu, QN * sizeof(int8_t))); cudaCheckLastError(cudaMalloc((void **)&decoded_gpu, N * sizeof(target_dtype))); cudaCheckLastError(cudaMemcpy(ins_gpu, interleaved, QN * sizeof(int8_t), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaMemcpy(decoded_gpu, decoded, N * sizeof(target_dtype), cudaMemcpyHostToDevice)); cudaCheckLastError(cudaDeviceSynchronize()); kernelWrapper_i1u_to_i8s<<<dim3(1, 1, 1), dim3(1, 1, 1)>>>(ins_gpu, decoded_gpu); kernelWrapper_i1u_to_i8s<<<dim3(1, 1, 1), dim3(1, 1, 1)>>>(ins_gpu + QN / 2, decoded_gpu + N / 2); cudaCheckLastError(cudaDeviceSynchronize()); cudaCheckLastError(cudaMemcpy(decoded, decoded_gpu, N * sizeof(target_dtype), cudaMemcpyDeviceToHost)); cudaCheckLastError(cudaFree(ins_gpu)); cudaCheckLastError(cudaFree(decoded_gpu)); for (int i = 0; i < N; i++) { EXPECT_EQ(in_data[i], int(decoded[i])); } free(ins); free(interleaved); free(decoded); }
BitBLAS/testing/cpp/lop3_type_conversion/lowprecision_to_int8.cu/0
{ "file_path": "BitBLAS/testing/cpp/lop3_type_conversion/lowprecision_to_int8.cu", "repo_id": "BitBLAS", "token_count": 5625 }
167
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import numpy as np import pytest import tvm import tvm.testing from tvm.ir import assert_structural_equal from tvm.runtime import const from tvm.tir import IndexMap, IntImm, floordiv, floormod from tvm import tir index_map = IndexMap.from_func(lambda i: [i // 4, i % 4], index_dtype="int32") initial_i = index_map.initial_indices[0] # but what we have is i <=> i // 4 # should do inverse block_iter_map = IndexMap.from_func(lambda i: [i // 4], index_dtype="int32") inverse_block_iter_map = index_map.inverse([32,]) new_final_indices = index_map.map_indices([initial_i * 4]) # # tir.IndexMap([initial_i // 4], final_indices, None) # print(new_final_indices)
BitBLAS/testing/python/weight_only/index_map_deduce.py/0
{ "file_path": "BitBLAS/testing/python/weight_only/index_map_deduce.py", "repo_id": "BitBLAS", "token_count": 261 }
168
date ; hostname ; pwd EXP_NODES=1 EXP_IS=384 EXP_PGB=8 EXP_PGEB=64 EXP_LR=3e-6 EXP_BS=64 EXP_ME=5 EXP_WS=0.06 EXP_WD=0.01 EXP_LMH=10 EXP_LMC=5 EXP_THL=2 EXP_HHS=2 EXP_LP=BridgeTower_pt_base.ckpt EXP_RGM=blip_randaug_wc export MASTER_ADDR=$HOSTNAME export MASTER_PORT=19800 export NODE_RANK=0 PREFIX_NAME="ftfpt" echo $MASTER_ADDR, $MASTER_PORT, $NODE_RANK, $EXP_NODES, $EXP_IS, $EXP_PGB, $EXP_PGEB, $EXP_LR, $EXP_BS, $EXP_ME, $EXP_WS, $EXP_WD, $EXP_LMH, $EXP_LMC, $EXP_THL, $EXP_HHS, $EXP_RGM TIME=$(date "+%Y%m%d%H%M") RUN_NAME=""$PREFIX_NAME"_"$EXP_IS"_"$EXP_PGB"_"$EXP_PGEB"_"$EXP_LR"_"$EXP_BS"_"$EXP_ME"_"$EXP_WS"_"$EXP_WD"_"$EXP_LMH"_"$EXP_LMC"_"$EXP_THL"_"$EXP_HHS"_"$EXP_RGM"_"$TIME"" echo $RUN_NAME python run.py with run_name=$RUN_NAME task_finetune_snli_clip_bert bt clip16 text_roberta $EXP_RGM num_gpus=8 num_nodes=$EXP_NODES load_path=~/BT/best_checkpoints/$EXP_LP image_size=$EXP_IS per_gpu_batchsize=$EXP_PGB per_gpu_eval_batchsize=$EXP_PGEB learning_rate=$EXP_LR batch_size=$EXP_BS max_epoch=$EXP_ME warmup_steps=$EXP_WS weight_decay=$EXP_WD lr_mult_head=$EXP_LMH lr_mult_cross_modal=$EXP_LMC task_head_layers=$EXP_THL head_hidden_scale=$EXP_HHS date
BridgeTower/scripts/ftfpt_base_snlive.sh/0
{ "file_path": "BridgeTower/scripts/ftfpt_base_snlive.sh", "repo_id": "BridgeTower", "token_count": 603 }
169
from ..datasets import ConceptualCaptionDataset from .datamodule_base import BaseDataModule class ConceptualCaptionDataModule(BaseDataModule): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @property def dataset_cls(self): return ConceptualCaptionDataset @property def dataset_name(self): return "gcc"
BridgeTower/src/datamodules/conceptual_caption_datamodule.py/0
{ "file_path": "BridgeTower/src/datamodules/conceptual_caption_datamodule.py", "repo_id": "BridgeTower", "token_count": 143 }
170
from .base_dataset import BaseDataset class SNLIDataset(BaseDataset): def __init__(self, *args, split="", **kwargs): assert split in ["train", "val", "test"] self.split = split if split == "train": names = ["snli_train"] elif split == "val": names = ["snli_dev", "snli_test"] # ViLT, METER elif split == "test": names = ["snli_dev", "snli_test"] # ViLT, METER super().__init__( *args, **kwargs, names=names, text_column_name="sentences", remove_duplicate=False, ) def __getitem__(self, index): image_tensor = self.get_image(index)["image"] text = self.get_text(index)["text"] index, question_index = self.index_mapper[index] labels = self.table["labels"][index][question_index].as_py() return { "image": image_tensor, "text": text, "labels": labels, "table_name": self.table_names[index], }
BridgeTower/src/datasets/snli_dataset.py/0
{ "file_path": "BridgeTower/src/datasets/snli_dataset.py", "repo_id": "BridgeTower", "token_count": 532 }
171
# Modify from the above code repository # https://github.com/salesforce/ALBEF/blob/HEAD/models/vit.py # https://github.com/dandelin/ViLT/blob/HEAD/vilt/modules/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py import torch import torch.nn as nn import torch.nn.functional as F from functools import partial import math from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.vision_transformer import PatchEmbed from timm.models.helpers import load_pretrained from timm.models.layers import StdConv2dSame, DropPath, to_2tuple, trunc_normal_ from timm.models.resnet import resnet26d, resnet50d from timm.models.resnetv2 import ResNetV2 from timm.models.registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = { # patch models (my experiments) "vit_small_patch16_224": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth", ), # patch models (weights ported from official Google JAX impl) "vit_base_patch16_224": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth", mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), "vit_base_patch32_224": _cfg( url="", # no official model weights for this combo, only for in21k mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), "vit_base_patch16_384": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth", input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, ), "vit_base_patch32_384": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth", input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, ), "vit_large_patch16_224": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth", mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), "vit_large_patch32_224": _cfg( url="", # no official model weights for this combo, only for in21k mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), "vit_large_patch16_384": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth", input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, ), "vit_large_patch32_384": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth", input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, ), # patch models, imagenet21k (weights ported from official Google JAX impl) "vit_base_patch16_224_in21k": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth", num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), "vit_base_patch32_224_in21k": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth", num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), "vit_large_patch16_224_in21k": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth", num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), "vit_large_patch32_224_in21k": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth", num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), "vit_huge_patch14_224_in21k": _cfg( url="", # FIXME I have weights for this but > 2GB limit for github release binaries num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), # hybrid models (weights ported from official Google JAX impl) "vit_base_resnet50_224_in21k": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth", num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9, first_conv="patch_embed.backbone.stem.conv", ), "vit_base_resnet50_384": _cfg( url="https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth", input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv="patch_embed.backbone.stem.conv", ), # hybrid models (my experiments) "vit_small_resnet26d_224": _cfg(), "vit_small_resnet50d_s3_224": _cfg(), "vit_base_resnet26d_224": _cfg(), "vit_base_resnet50d_224": _cfg(), # deit models (FB weights) "vit_deit_tiny_patch16_224": _cfg( url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth" ), "vit_deit_small_patch16_224": _cfg( url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth" ), "vit_deit_base_patch16_224": _cfg( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", ), "vit_deit_base_patch16_384": _cfg( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth", input_size=(3, 384, 384), crop_pct=1.0, ), "vit_deit_tiny_distilled_patch16_224": _cfg( url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth" ), "vit_deit_small_distilled_patch16_224": _cfg( url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth" ), "vit_deit_base_distilled_patch16_224": _cfg( url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth", ), "vit_deit_base_distilled_patch16_384": _cfg( url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth", input_size=(3, 384, 384), crop_pct=1.0, ), } class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.attn_gradients = None self.attention_map = None def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def forward(self, x, register_hook=False): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) if register_hook: self.save_attention_map(attn) attn.register_hook(self.save_attn_gradients) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, register_hook=False): x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class VisionTransformer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, **kwargs): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer: (nn.Module): normalization layer """ super().__init__() self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.model_type = kwargs['model_type'] def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward(self, x, register_blk=-1): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed[:,:x.size(1),:] x = self.pos_drop(x) xs = [] for i,blk in enumerate(self.blocks): x = blk(x, register_blk==i) if self.model_type == 'BT': xs.append(x) x = self.norm(x) # print(x.shape) if self.model_type == 'BT': return self.norm(torch.stack(xs, dim=0)) else: return x def forward_pre(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed[:,:x.size(1),:] x = self.pos_drop(x) return x def forward_post(self, x, register_blk=-1): x = self.norm(x) return x def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()): # Rescale the grid of position embeddings when loading from state_dict. Adapted from # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 print('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) ntok_new = posemb_new.shape[1] if num_tokens: posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:] ntok_new -= num_tokens else: posemb_tok, posemb_grid = posemb[:, :0], posemb[0] gs_old = int(math.sqrt(len(posemb_grid))) if not len(gs_new): # backwards compatibility gs_new = [int(math.sqrt(ntok_new))] * 2 assert len(gs_new) >= 2 print('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False) posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def checkpoint_filter_fn(state_dict, model): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} if 'model' in state_dict: # For deit models state_dict = state_dict['model'] for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k and len(v.shape) < 4: # For old models that I trained prior to conv based patchification O, I, H, W = model.patch_embed.proj.weight.shape v = v.reshape(O, -1, H, W) elif k == 'pos_embed' and v.shape != model.pos_embed.shape: # To resize pos embedding when using model at different size from pretrained weights v = resize_pos_embed( v, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) out_dict[k] = v return out_dict def _create_vision_transformer(variant, pretrained=False, **kwargs): default_cfg = default_cfgs[variant] default_num_classes = default_cfg["num_classes"] default_img_size = default_cfg["input_size"][-1] num_classes = kwargs.pop("num_classes", default_num_classes) img_size = kwargs.pop("img_size", default_img_size) repr_size = kwargs.pop("representation_size", None) if repr_size is not None and num_classes != default_num_classes: # Remove representation layer if fine-tuning. This may not always be the desired action, # but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface? print("Removing representation layer for fine-tuning.") repr_size = None model_cls = VisionTransformer model = model_cls( img_size=img_size, num_classes=num_classes, representation_size=repr_size, **kwargs, ) model.default_cfg = default_cfg if pretrained: load_pretrained( model, num_classes=num_classes, in_chans=kwargs.get("in_chans", 3), filter_fn=partial(checkpoint_filter_fn, model=model), strict=False, ) return model @register_model def vit_small_patch16_224(pretrained=False, **kwargs): """ My custom 'small' ViT model. Depth=8, heads=8= mlp_ratio=3.""" model_kwargs = dict( patch_size=16, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3.0, qkv_bias=False, norm_layer=nn.LayerNorm, **kwargs, ) if pretrained: # NOTE my scale was wrong for original weights, leaving this here until I have better ones for this model model_kwargs.setdefault("qk_scale", 768 ** -0.5) model = _create_vision_transformer( "vit_small_patch16_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_base_patch16_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer( "vit_base_patch16_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_base_patch32_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights. """ model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer( "vit_base_patch32_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_base_patch16_384(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer( "vit_base_patch16_384", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_base_patch32_384(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer( "vit_base_patch32_384", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_large_patch16_224(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = _create_vision_transformer( "vit_large_patch16_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_large_patch32_224(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights. """ model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = _create_vision_transformer( "vit_large_patch32_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_large_patch16_384(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = _create_vision_transformer( "vit_large_patch16_384", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_large_patch32_384(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = _create_vision_transformer( "vit_large_patch32_384", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_base_patch16_224_in21k(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, representation_size=768, **kwargs, ) model = _create_vision_transformer( "vit_base_patch16_224_in21k", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_base_patch32_224_in21k(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict( patch_size=32, embed_dim=768, depth=12, num_heads=12, representation_size=768, **kwargs, ) model = _create_vision_transformer( "vit_base_patch32_224_in21k", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_large_patch16_224_in21k(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, representation_size=1024, **kwargs, ) model = _create_vision_transformer( "vit_large_patch16_224_in21k", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_large_patch32_224_in21k(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict( patch_size=32, embed_dim=1024, depth=24, num_heads=16, representation_size=1024, **kwargs, ) model = _create_vision_transformer( "vit_large_patch32_224_in21k", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_huge_patch14_224_in21k(pretrained=False, **kwargs): """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. NOTE: converted weights not currently available, too large for github release hosting. """ model_kwargs = dict( patch_size=14, embed_dim=1280, depth=32, num_heads=16, representation_size=1280, **kwargs, ) model = _create_vision_transformer( "vit_huge_patch14_224_in21k", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_base_resnet50_224_in21k(pretrained=False, **kwargs): """ R50+ViT-B/16 hybrid model from original paper (https://arxiv.org/abs/2010.11929). ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. """ # create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head backbone = ResNetV2( layers=(3, 4, 9), num_classes=0, global_pool="", in_chans=kwargs.get("in_chans", 3), preact=False, stem_type="same", conv_layer=StdConv2dSame, ) model_kwargs = dict( embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, representation_size=768, **kwargs, ) model = _create_vision_transformer( "vit_base_resnet50_224_in21k", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_base_resnet50_384(pretrained=False, **kwargs): """ R50+ViT-B/16 hybrid from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer. """ # create a ResNetV2 w/o pre-activation, that uses StdConv and GroupNorm and has 3 stages, no head backbone = ResNetV2( layers=(3, 4, 9), num_classes=0, global_pool="", in_chans=kwargs.get("in_chans", 3), preact=False, stem_type="same", conv_layer=StdConv2dSame, ) model_kwargs = dict( embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs ) model = _create_vision_transformer( "vit_base_resnet50_384", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_small_resnet26d_224(pretrained=False, **kwargs): """ Custom ViT small hybrid w/ ResNet26D stride 32. No pretrained weights. """ backbone = resnet26d( pretrained=pretrained, in_chans=kwargs.get("in_chans", 3), features_only=True, out_indices=[4], ) model_kwargs = dict( embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs, ) model = _create_vision_transformer( "vit_small_resnet26d_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_small_resnet50d_s3_224(pretrained=False, **kwargs): """ Custom ViT small hybrid w/ ResNet50D 3-stages, stride 16. No pretrained weights. """ backbone = resnet50d( pretrained=pretrained, in_chans=kwargs.get("in_chans", 3), features_only=True, out_indices=[3], ) model_kwargs = dict( embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, hybrid_backbone=backbone, **kwargs, ) model = _create_vision_transformer( "vit_small_resnet50d_s3_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_base_resnet26d_224(pretrained=False, **kwargs): """ Custom ViT base hybrid w/ ResNet26D stride 32. No pretrained weights. """ backbone = resnet26d( pretrained=pretrained, in_chans=kwargs.get("in_chans", 3), features_only=True, out_indices=[4], ) model_kwargs = dict( embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs ) model = _create_vision_transformer( "vit_base_resnet26d_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_base_resnet50d_224(pretrained=False, **kwargs): """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights. """ backbone = resnet50d( pretrained=pretrained, in_chans=kwargs.get("in_chans", 3), features_only=True, out_indices=[4], ) model_kwargs = dict( embed_dim=768, depth=12, num_heads=12, hybrid_backbone=backbone, **kwargs ) model = _create_vision_transformer( "vit_base_resnet50d_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_deit_tiny_patch16_224(pretrained=False, **kwargs): """ DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) model = _create_vision_transformer( "vit_deit_tiny_patch16_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_deit_small_patch16_224(pretrained=False, **kwargs): """ DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) model = _create_vision_transformer( "vit_deit_small_patch16_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_deit_base_patch16_224(pretrained=False, **kwargs): """ DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer( "vit_deit_base_patch16_224", pretrained=pretrained, **model_kwargs ) return model @register_model def vit_deit_base_patch16_384(pretrained=False, **kwargs): """ DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer( "vit_deit_base_patch16_384", pretrained=pretrained, **model_kwargs ) return model
BridgeTower/src/modules/vit_model.py/0
{ "file_path": "BridgeTower/src/modules/vit_model.py", "repo_id": "BridgeTower", "token_count": 14567 }
172
import json import pandas as pd import pyarrow as pa import random import os from tqdm import tqdm from glob import glob from collections import defaultdict, Counter from glossary import normalize_word def path2rest(path, split, annotations, label2ans): iid = int(path.split("/")[-1][:-4]) with open(path, "rb") as fp: binary = fp.read() _annot = annotations[split][iid] _annot = list(_annot.items()) qids, qas = [a[0] for a in _annot], [a[1] for a in _annot] questions = [qa[0] for qa in qas] answers = [qa[1] for qa in qas] if "test" not in split else list(list()) answer_labels = ( [a["labels"] for a in answers] if "test" not in split else list(list()) ) answer_scores = ( [a["scores"] for a in answers] if "test" not in split else list(list()) ) answers = ( [[label2ans[l] for l in al] for al in answer_labels] if "test" not in split else list(list()) ) return [binary, questions, answers, answer_labels, answer_scores, iid, qids, split] def make_arrow(root, vg_root, dataset_root, use_coco_images_only=False): with open(f"{root}/vqav2/v2_mscoco_train2014_annotations.json", "r") as fp: annotations_train2014 = json.load(fp)["annotations"] with open(f"{root}/vqav2/v2_mscoco_val2014_annotations.json", "r") as fp: annotations_val2014 = json.load(fp)["annotations"] all_major_answers = list() for split, annots in zip( ["train", "val"], [annotations_train2014, annotations_val2014], ): for q in tqdm(annots): all_major_answers.append(q["multiple_choice_answer"]) all_major_answers = [normalize_word(word) for word in tqdm(all_major_answers)] counter = {k: v for k, v in Counter(all_major_answers).items() if v >= 9} ans2label = {k: i for i, k in enumerate(counter.keys())} label2ans = list(counter.keys()) if use_coco_images_only: id_file_name = 'vgqa/coco_ids.json' output_file_name = 'vgqa_coco' else: id_file_name = 'vgqa/ids.json' output_file_name = 'vgqa' with open(os.path.join(vg_root, id_file_name)) as f: ids = json.load(f) train_image_ids = ids['train'] val_image_ids = ids['val'] + ids['test'] with open(f"{vg_root}/annotations/question_answers.json", "r") as fp: qa_annotations = json.load(fp) annotations = dict() annotations['train'] = defaultdict(dict) annotations['val'] = defaultdict(dict) qa_images, qa_valid_images, qa_pairs, qa_valid_pairs = 0, 0, 0, 0 scores_counter = [] for annots in tqdm(qa_annotations): qas = annots['qas'] split = None if len(qas) == 0: continue if qas[0]['image_id'] in train_image_ids: split = 'train' elif qas[0]['image_id'] in val_image_ids: split = 'val' if split is not None: qa_images += 1 qa_pairs += len(qas) qa_valid_image_flag = 0 question_answer = defaultdict(dict) for qa in qas: answer = normalize_word(qa['answer']) question = qa['question'] if answer in ans2label.keys(): question_answer[question][answer] = question_answer[question].get(answer, 0) + 1 # calculate distribution of question_answers for q in question_answer: # if any(count != 1 for count in question_answer[q].values()): scores = sorted(list(question_answer[q].values())) scores_counter.append(str(scores)) # only choose the question with only the same answer (99% of the samples) for qa in qas: answer = normalize_word(qa['answer']) question = qa['question'] if answer in ans2label.keys() and len(question_answer[question]) == 1: annotations[split][qa['image_id']][qa['qa_id']] = [question, {"labels": [ans2label[answer]], "scores": [1.0],}] question_answer[question] = [] qa_valid_image_flag = 1 qa_valid_pairs += 1 qa_valid_images += qa_valid_image_flag print(f"qa_images: {qa_images}, qa_valid_images: {qa_valid_images}, qa_pairs: {qa_pairs}, qa_valid_pairs: {qa_valid_pairs}, (train: {sum([len(image) for image in annotations['train'].values()])}, val: {sum([len(image) for image in annotations['val'].values()])})") # coco_ids 49663 48645 727063 491809 (450987, 40822) (the same with mcan-vqa, BUTD use 485000 qa pairs) # coco_ids_rq 49663 48640 727063 467916 (429061, 38855) (remove question with multiple answers) # ids 99280 97217 1445322 978121 (887964, 90157) # ids_rq 99280 97207 1445322 931866 (846015, 85851) (remove question with multiple answers) distribution = {k: v for k, v in Counter(scores_counter).items()} distribution = sorted(distribution.items(), key = lambda kv:(kv[1], kv[0]), reverse=True) print(distribution) print(sum([a[1] for a in distribution if len(eval(a[0])) != 1])) # 4463 in 472379 / 8576 in 940442 id2filepath = {} with open(os.path.join(vg_root, 'image_data.json')) as f: metadata = json.load(f) for item in metadata: directory = item['url'].split("/")[-2] name = item['url'].split("/")[-1] filepath = f"{directory}/{name}" id2filepath[item['image_id']] = filepath for split in [ "train", "val", ]: annot = annotations[split] paths = list(glob(f"{vg_root}/images/VG_100K/*.jpg")) + list( glob(f"{vg_root}/images/VG_100K_2/*.jpg") ) random.shuffle(paths) annot_paths = [ path for path in paths if int(path.split("/")[-1][:-4]) in annot ] if len(paths) == len(annot_paths): print("all images have caption annotations") else: print("not all images have caption annotations") print( len(paths), len(annot_paths), len(annot), ) bs = [ path2rest(path, split, annotations, label2ans) for path in tqdm(annot_paths) ] dataframe = pd.DataFrame( bs, columns=[ "image", "questions", "answers", "answer_labels", "answer_scores", "image_id", "question_id", "split", ], ) table = pa.Table.from_pandas(dataframe) os.makedirs(dataset_root, exist_ok=True) with pa.OSFile(f"{dataset_root}/{output_file_name}_{split}.arrow", "wb") as sink: with pa.RecordBatchFileWriter(sink, table.schema) as writer: writer.write_table(table) make_arrow('~/BT/dataset/mscoco_flickr30k_vqav2_snli_ve', '~/BT/dataset/vg', '~/BT/dataset/fine-tune', True) make_arrow('~/BT/dataset/mscoco_flickr30k_vqav2_snli_ve', '~/BT/dataset/vg', '~/BT/dataset/fine-tune', False)
BridgeTower/src/utils/write_vgqa.py/0
{ "file_path": "BridgeTower/src/utils/write_vgqa.py", "repo_id": "BridgeTower", "token_count": 3444 }
173
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import numpy as np import skimage.io as io # from face_sdk import FaceDetection import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from skimage.transform import SimilarityTransform from skimage.transform import warp from PIL import Image, ImageFilter import torch.nn.functional as F import torchvision as tv import torchvision.utils as vutils import time import cv2 import os from skimage import img_as_ubyte import json import argparse import dlib def calculate_cdf(histogram): """ This method calculates the cumulative distribution function :param array histogram: The values of the histogram :return: normalized_cdf: The normalized cumulative distribution function :rtype: array """ # Get the cumulative sum of the elements cdf = histogram.cumsum() # Normalize the cdf normalized_cdf = cdf / float(cdf.max()) return normalized_cdf def calculate_lookup(src_cdf, ref_cdf): """ This method creates the lookup table :param array src_cdf: The cdf for the source image :param array ref_cdf: The cdf for the reference image :return: lookup_table: The lookup table :rtype: array """ lookup_table = np.zeros(256) lookup_val = 0 for src_pixel_val in range(len(src_cdf)): lookup_val for ref_pixel_val in range(len(ref_cdf)): if ref_cdf[ref_pixel_val] >= src_cdf[src_pixel_val]: lookup_val = ref_pixel_val break lookup_table[src_pixel_val] = lookup_val return lookup_table def match_histograms(src_image, ref_image): """ This method matches the source image histogram to the reference signal :param image src_image: The original source image :param image ref_image: The reference image :return: image_after_matching :rtype: image (array) """ # Split the images into the different color channels # b means blue, g means green and r means red src_b, src_g, src_r = cv2.split(src_image) ref_b, ref_g, ref_r = cv2.split(ref_image) # Compute the b, g, and r histograms separately # The flatten() Numpy method returns a copy of the array c # collapsed into one dimension. src_hist_blue, bin_0 = np.histogram(src_b.flatten(), 256, [0, 256]) src_hist_green, bin_1 = np.histogram(src_g.flatten(), 256, [0, 256]) src_hist_red, bin_2 = np.histogram(src_r.flatten(), 256, [0, 256]) ref_hist_blue, bin_3 = np.histogram(ref_b.flatten(), 256, [0, 256]) ref_hist_green, bin_4 = np.histogram(ref_g.flatten(), 256, [0, 256]) ref_hist_red, bin_5 = np.histogram(ref_r.flatten(), 256, [0, 256]) # Compute the normalized cdf for the source and reference image src_cdf_blue = calculate_cdf(src_hist_blue) src_cdf_green = calculate_cdf(src_hist_green) src_cdf_red = calculate_cdf(src_hist_red) ref_cdf_blue = calculate_cdf(ref_hist_blue) ref_cdf_green = calculate_cdf(ref_hist_green) ref_cdf_red = calculate_cdf(ref_hist_red) # Make a separate lookup table for each color blue_lookup_table = calculate_lookup(src_cdf_blue, ref_cdf_blue) green_lookup_table = calculate_lookup(src_cdf_green, ref_cdf_green) red_lookup_table = calculate_lookup(src_cdf_red, ref_cdf_red) # Use the lookup function to transform the colors of the original # source image blue_after_transform = cv2.LUT(src_b, blue_lookup_table) green_after_transform = cv2.LUT(src_g, green_lookup_table) red_after_transform = cv2.LUT(src_r, red_lookup_table) # Put the image back together image_after_matching = cv2.merge([blue_after_transform, green_after_transform, red_after_transform]) image_after_matching = cv2.convertScaleAbs(image_after_matching) return image_after_matching def _standard_face_pts(): pts = ( np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) / 256.0 - 1.0 ) return np.reshape(pts, (5, 2)) def _origin_face_pts(): pts = np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) return np.reshape(pts, (5, 2)) def compute_transformation_matrix(img, landmark, normalize, target_face_scale=1.0): std_pts = _standard_face_pts() # [-1,1] target_pts = (std_pts * target_face_scale + 1) / 2 * 512.0 # print(target_pts) h, w, c = img.shape if normalize == True: landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0 landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0 # print(landmark) affine = SimilarityTransform() affine.estimate(target_pts, landmark) return affine def compute_inverse_transformation_matrix(img, landmark, normalize, target_face_scale=1.0): std_pts = _standard_face_pts() # [-1,1] target_pts = (std_pts * target_face_scale + 1) / 2 * 512.0 # print(target_pts) h, w, c = img.shape if normalize == True: landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0 landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0 # print(landmark) affine = SimilarityTransform() affine.estimate(landmark, target_pts) return affine def show_detection(image, box, landmark): plt.imshow(image) print(box[2] - box[0]) plt.gca().add_patch( Rectangle( (box[1], box[0]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor="r", facecolor="none" ) ) plt.scatter(landmark[0][0], landmark[0][1]) plt.scatter(landmark[1][0], landmark[1][1]) plt.scatter(landmark[2][0], landmark[2][1]) plt.scatter(landmark[3][0], landmark[3][1]) plt.scatter(landmark[4][0], landmark[4][1]) plt.show() def affine2theta(affine, input_w, input_h, target_w, target_h): # param = np.linalg.inv(affine) param = affine theta = np.zeros([2, 3]) theta[0, 0] = param[0, 0] * input_h / target_h theta[0, 1] = param[0, 1] * input_w / target_h theta[0, 2] = (2 * param[0, 2] + param[0, 0] * input_h + param[0, 1] * input_w) / target_h - 1 theta[1, 0] = param[1, 0] * input_h / target_w theta[1, 1] = param[1, 1] * input_w / target_w theta[1, 2] = (2 * param[1, 2] + param[1, 0] * input_h + param[1, 1] * input_w) / target_w - 1 return theta def blur_blending(im1, im2, mask): mask *= 255.0 kernel = np.ones((10, 10), np.uint8) mask = cv2.erode(mask, kernel, iterations=1) mask = Image.fromarray(mask.astype("uint8")).convert("L") im1 = Image.fromarray(im1.astype("uint8")) im2 = Image.fromarray(im2.astype("uint8")) mask_blur = mask.filter(ImageFilter.GaussianBlur(20)) im = Image.composite(im1, im2, mask) im = Image.composite(im, im2, mask_blur) return np.array(im) / 255.0 def blur_blending_cv2(im1, im2, mask): mask *= 255.0 kernel = np.ones((9, 9), np.uint8) mask = cv2.erode(mask, kernel, iterations=3) mask_blur = cv2.GaussianBlur(mask, (25, 25), 0) mask_blur /= 255.0 im = im1 * mask_blur + (1 - mask_blur) * im2 im /= 255.0 im = np.clip(im, 0.0, 1.0) return im # def Poisson_blending(im1,im2,mask): # Image.composite( def Poisson_blending(im1, im2, mask): # mask=1-mask mask *= 255 kernel = np.ones((10, 10), np.uint8) mask = cv2.erode(mask, kernel, iterations=1) mask /= 255 mask = 1 - mask mask *= 255 mask = mask[:, :, 0] width, height, channels = im1.shape center = (int(height / 2), int(width / 2)) result = cv2.seamlessClone( im2.astype("uint8"), im1.astype("uint8"), mask.astype("uint8"), center, cv2.MIXED_CLONE ) return result / 255.0 def Poisson_B(im1, im2, mask, center): mask *= 255 result = cv2.seamlessClone( im2.astype("uint8"), im1.astype("uint8"), mask.astype("uint8"), center, cv2.NORMAL_CLONE ) return result / 255 def seamless_clone(old_face, new_face, raw_mask): height, width, _ = old_face.shape height = height // 2 width = width // 2 y_indices, x_indices, _ = np.nonzero(raw_mask) y_crop = slice(np.min(y_indices), np.max(y_indices)) x_crop = slice(np.min(x_indices), np.max(x_indices)) y_center = int(np.rint((np.max(y_indices) + np.min(y_indices)) / 2 + height)) x_center = int(np.rint((np.max(x_indices) + np.min(x_indices)) / 2 + width)) insertion = np.rint(new_face[y_crop, x_crop] * 255.0).astype("uint8") insertion_mask = np.rint(raw_mask[y_crop, x_crop] * 255.0).astype("uint8") insertion_mask[insertion_mask != 0] = 255 prior = np.rint(np.pad(old_face * 255.0, ((height, height), (width, width), (0, 0)), "constant")).astype( "uint8" ) # if np.sum(insertion_mask) == 0: n_mask = insertion_mask[1:-1, 1:-1, :] n_mask = cv2.copyMakeBorder(n_mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, 0) print(n_mask.shape) x, y, w, h = cv2.boundingRect(n_mask[:, :, 0]) if w < 4 or h < 4: blended = prior else: blended = cv2.seamlessClone( insertion, # pylint: disable=no-member prior, insertion_mask, (x_center, y_center), cv2.NORMAL_CLONE, ) # pylint: disable=no-member blended = blended[height:-height, width:-width] return blended.astype("float32") / 255.0 def get_landmark(face_landmarks, id): part = face_landmarks.part(id) x = part.x y = part.y return (x, y) def search(face_landmarks): x1, y1 = get_landmark(face_landmarks, 36) x2, y2 = get_landmark(face_landmarks, 39) x3, y3 = get_landmark(face_landmarks, 42) x4, y4 = get_landmark(face_landmarks, 45) x_nose, y_nose = get_landmark(face_landmarks, 30) x_left_mouth, y_left_mouth = get_landmark(face_landmarks, 48) x_right_mouth, y_right_mouth = get_landmark(face_landmarks, 54) x_left_eye = int((x1 + x2) / 2) y_left_eye = int((y1 + y2) / 2) x_right_eye = int((x3 + x4) / 2) y_right_eye = int((y3 + y4) / 2) results = np.array( [ [x_left_eye, y_left_eye], [x_right_eye, y_right_eye], [x_nose, y_nose], [x_left_mouth, y_left_mouth], [x_right_mouth, y_right_mouth], ] ) return results if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--origin_url", type=str, default="./", help="origin images") parser.add_argument("--replace_url", type=str, default="./", help="restored faces") parser.add_argument("--save_url", type=str, default="./save") opts = parser.parse_args() origin_url = opts.origin_url replace_url = opts.replace_url save_url = opts.save_url if not os.path.exists(save_url): os.makedirs(save_url) face_detector = dlib.get_frontal_face_detector() landmark_locator = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") count = 0 for x in os.listdir(origin_url): img_url = os.path.join(origin_url, x) pil_img = Image.open(img_url).convert("RGB") origin_width, origin_height = pil_img.size image = np.array(pil_img) start = time.time() faces = face_detector(image) done = time.time() if len(faces) == 0: print("Warning: There is no face in %s" % (x)) continue blended = image for face_id in range(len(faces)): current_face = faces[face_id] face_landmarks = landmark_locator(image, current_face) current_fl = search(face_landmarks) forward_mask = np.ones_like(image).astype("uint8") affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3) aligned_face = warp(image, affine, output_shape=(512, 512, 3), preserve_range=True) forward_mask = warp( forward_mask, affine, output_shape=(512, 512, 3), order=0, preserve_range=True ) affine_inverse = affine.inverse cur_face = aligned_face if replace_url != "": face_name = x[:-4] + "_" + str(face_id + 1) + ".png" cur_url = os.path.join(replace_url, face_name) restored_face = Image.open(cur_url).convert("RGB") restored_face = np.array(restored_face) cur_face = restored_face ## Histogram Color matching A = cv2.cvtColor(aligned_face.astype("uint8"), cv2.COLOR_RGB2BGR) B = cv2.cvtColor(cur_face.astype("uint8"), cv2.COLOR_RGB2BGR) B = match_histograms(B, A) cur_face = cv2.cvtColor(B.astype("uint8"), cv2.COLOR_BGR2RGB) warped_back = warp( cur_face, affine_inverse, output_shape=(origin_height, origin_width, 3), order=3, preserve_range=True, ) backward_mask = warp( forward_mask, affine_inverse, output_shape=(origin_height, origin_width, 3), order=0, preserve_range=True, ) ## Nearest neighbour blended = blur_blending_cv2(warped_back, blended, backward_mask) blended *= 255.0 io.imsave(os.path.join(save_url, x), img_as_ubyte(blended / 255.0)) count += 1 if count % 1000 == 0: print("%d have finished ..." % (count))
Bringing-Old-Photos-Back-to-Life/Face_Detection/align_warp_back_multiple_dlib_HR.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Face_Detection/align_warp_back_multiple_dlib_HR.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 6102 }
174
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import models.networks as networks import util.util as util class Pix2PixModel(torch.nn.Module): @staticmethod def modify_commandline_options(parser, is_train): networks.modify_commandline_options(parser, is_train) return parser def __init__(self, opt): super().__init__() self.opt = opt self.FloatTensor = torch.cuda.FloatTensor if self.use_gpu() else torch.FloatTensor self.ByteTensor = torch.cuda.ByteTensor if self.use_gpu() else torch.ByteTensor self.netG, self.netD, self.netE = self.initialize_networks(opt) # set loss functions if opt.isTrain: self.criterionGAN = networks.GANLoss(opt.gan_mode, tensor=self.FloatTensor, opt=self.opt) self.criterionFeat = torch.nn.L1Loss() if not opt.no_vgg_loss: self.criterionVGG = networks.VGGLoss(self.opt.gpu_ids) if opt.use_vae: self.KLDLoss = networks.KLDLoss() # Entry point for all calls involving forward pass # of deep networks. We used this approach since DataParallel module # can't parallelize custom functions, we branch to different # routines based on |mode|. def forward(self, data, mode): input_semantics, real_image, degraded_image = self.preprocess_input(data) if mode == "generator": g_loss, generated = self.compute_generator_loss(input_semantics, degraded_image, real_image) return g_loss, generated elif mode == "discriminator": d_loss = self.compute_discriminator_loss(input_semantics, degraded_image, real_image) return d_loss elif mode == "encode_only": z, mu, logvar = self.encode_z(real_image) return mu, logvar elif mode == "inference": with torch.no_grad(): fake_image, _ = self.generate_fake(input_semantics, degraded_image, real_image) return fake_image else: raise ValueError("|mode| is invalid") def create_optimizers(self, opt): G_params = list(self.netG.parameters()) if opt.use_vae: G_params += list(self.netE.parameters()) if opt.isTrain: D_params = list(self.netD.parameters()) beta1, beta2 = opt.beta1, opt.beta2 if opt.no_TTUR: G_lr, D_lr = opt.lr, opt.lr else: G_lr, D_lr = opt.lr / 2, opt.lr * 2 optimizer_G = torch.optim.Adam(G_params, lr=G_lr, betas=(beta1, beta2)) optimizer_D = torch.optim.Adam(D_params, lr=D_lr, betas=(beta1, beta2)) return optimizer_G, optimizer_D def save(self, epoch): util.save_network(self.netG, "G", epoch, self.opt) util.save_network(self.netD, "D", epoch, self.opt) if self.opt.use_vae: util.save_network(self.netE, "E", epoch, self.opt) ############################################################################ # Private helper methods ############################################################################ def initialize_networks(self, opt): netG = networks.define_G(opt) netD = networks.define_D(opt) if opt.isTrain else None netE = networks.define_E(opt) if opt.use_vae else None if not opt.isTrain or opt.continue_train: netG = util.load_network(netG, "G", opt.which_epoch, opt) if opt.isTrain: netD = util.load_network(netD, "D", opt.which_epoch, opt) if opt.use_vae: netE = util.load_network(netE, "E", opt.which_epoch, opt) return netG, netD, netE # preprocess the input, such as moving the tensors to GPUs and # transforming the label map to one-hot encoding # |data|: dictionary of the input data def preprocess_input(self, data): # move to GPU and change data types # data['label'] = data['label'].long() if not self.opt.isTrain: if self.use_gpu(): data["label"] = data["label"].cuda() data["image"] = data["image"].cuda() return data["label"], data["image"], data["image"] ## While testing, the input image is the degraded face if self.use_gpu(): data["label"] = data["label"].cuda() data["degraded_image"] = data["degraded_image"].cuda() data["image"] = data["image"].cuda() # # create one-hot label map # label_map = data['label'] # bs, _, h, w = label_map.size() # nc = self.opt.label_nc + 1 if self.opt.contain_dontcare_label \ # else self.opt.label_nc # input_label = self.FloatTensor(bs, nc, h, w).zero_() # input_semantics = input_label.scatter_(1, label_map, 1.0) return data["label"], data["image"], data["degraded_image"] def compute_generator_loss(self, input_semantics, degraded_image, real_image): G_losses = {} fake_image, KLD_loss = self.generate_fake( input_semantics, degraded_image, real_image, compute_kld_loss=self.opt.use_vae ) if self.opt.use_vae: G_losses["KLD"] = KLD_loss pred_fake, pred_real = self.discriminate(input_semantics, fake_image, real_image) G_losses["GAN"] = self.criterionGAN(pred_fake, True, for_discriminator=False) if not self.opt.no_ganFeat_loss: num_D = len(pred_fake) GAN_Feat_loss = self.FloatTensor(1).fill_(0) for i in range(num_D): # for each discriminator # last output is the final prediction, so we exclude it num_intermediate_outputs = len(pred_fake[i]) - 1 for j in range(num_intermediate_outputs): # for each layer output unweighted_loss = self.criterionFeat(pred_fake[i][j], pred_real[i][j].detach()) GAN_Feat_loss += unweighted_loss * self.opt.lambda_feat / num_D G_losses["GAN_Feat"] = GAN_Feat_loss if not self.opt.no_vgg_loss: G_losses["VGG"] = self.criterionVGG(fake_image, real_image) * self.opt.lambda_vgg return G_losses, fake_image def compute_discriminator_loss(self, input_semantics, degraded_image, real_image): D_losses = {} with torch.no_grad(): fake_image, _ = self.generate_fake(input_semantics, degraded_image, real_image) fake_image = fake_image.detach() fake_image.requires_grad_() pred_fake, pred_real = self.discriminate(input_semantics, fake_image, real_image) D_losses["D_Fake"] = self.criterionGAN(pred_fake, False, for_discriminator=True) D_losses["D_real"] = self.criterionGAN(pred_real, True, for_discriminator=True) return D_losses def encode_z(self, real_image): mu, logvar = self.netE(real_image) z = self.reparameterize(mu, logvar) return z, mu, logvar def generate_fake(self, input_semantics, degraded_image, real_image, compute_kld_loss=False): z = None KLD_loss = None if self.opt.use_vae: z, mu, logvar = self.encode_z(real_image) if compute_kld_loss: KLD_loss = self.KLDLoss(mu, logvar) * self.opt.lambda_kld fake_image = self.netG(input_semantics, degraded_image, z=z) assert ( not compute_kld_loss ) or self.opt.use_vae, "You cannot compute KLD loss if opt.use_vae == False" return fake_image, KLD_loss # Given fake and real image, return the prediction of discriminator # for each fake and real image. def discriminate(self, input_semantics, fake_image, real_image): if self.opt.no_parsing_map: fake_concat = fake_image real_concat = real_image else: fake_concat = torch.cat([input_semantics, fake_image], dim=1) real_concat = torch.cat([input_semantics, real_image], dim=1) # In Batch Normalization, the fake and real images are # recommended to be in the same batch to avoid disparate # statistics in fake and real images. # So both fake and real images are fed to D all at once. fake_and_real = torch.cat([fake_concat, real_concat], dim=0) discriminator_out = self.netD(fake_and_real) pred_fake, pred_real = self.divide_pred(discriminator_out) return pred_fake, pred_real # Take the prediction of fake and real images from the combined batch def divide_pred(self, pred): # the prediction contains the intermediate outputs of multiscale GAN, # so it's usually a list if type(pred) == list: fake = [] real = [] for p in pred: fake.append([tensor[: tensor.size(0) // 2] for tensor in p]) real.append([tensor[tensor.size(0) // 2 :] for tensor in p]) else: fake = pred[: pred.size(0) // 2] real = pred[pred.size(0) // 2 :] return fake, real def get_edges(self, t): edge = self.ByteTensor(t.size()).zero_() edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1]) edge[:, :, :, :-1] = edge[:, :, :, :-1] | (t[:, :, :, 1:] != t[:, :, :, :-1]) edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) edge[:, :, :-1, :] = edge[:, :, :-1, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) return edge.float() def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std) + mu def use_gpu(self): return len(self.opt.gpu_ids) > 0
Bringing-Old-Photos-Back-to-Life/Face_Enhancement/models/pix2pix_model.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Face_Enhancement/models/pix2pix_model.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 4446 }
175
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch.utils.data import random from data.base_data_loader import BaseDataLoader from data import online_dataset_for_old_photos as dts_ray_bigfile def CreateDataset(opt): dataset = None if opt.training_dataset=='domain_A' or opt.training_dataset=='domain_B': dataset = dts_ray_bigfile.UnPairOldPhotos_SR() if opt.training_dataset=='mapping': if opt.random_hole: dataset = dts_ray_bigfile.PairOldPhotos_with_hole() else: dataset = dts_ray_bigfile.PairOldPhotos() print("dataset [%s] was created" % (dataset.name())) dataset.initialize(opt) return dataset class CustomDatasetDataLoader(BaseDataLoader): def name(self): return 'CustomDatasetDataLoader' def initialize(self, opt): BaseDataLoader.initialize(self, opt) self.dataset = CreateDataset(opt) self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=opt.batchSize, shuffle=not opt.serial_batches, num_workers=int(opt.nThreads), drop_last=True) def load_data(self): return self.dataloader def __len__(self): return min(len(self.dataset), self.opt.max_dataset_size)
Bringing-Old-Photos-Back-to-Life/Global/data/custom_dataset_data_loader.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Global/data/custom_dataset_data_loader.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 567 }
176
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import numpy as np import torch import os from torch.autograd import Variable from util.image_pool import ImagePool from .base_model import BaseModel from . import networks class Pix2PixHDModel(BaseModel): def name(self): return 'Pix2PixHDModel' def init_loss_filter(self, use_gan_feat_loss, use_vgg_loss): flags = (True, use_gan_feat_loss, use_vgg_loss, True, True, True, True, True, True) def loss_filter(g_gan, g_gan_feat, g_vgg, g_kl, d_real, d_fake, g_featd, featd_real, featd_fake): return [l for (l, f) in zip((g_gan, g_gan_feat, g_vgg, g_kl, d_real, d_fake, g_featd, featd_real, featd_fake), flags) if f] return loss_filter def initialize(self, opt): BaseModel.initialize(self, opt) if opt.resize_or_crop != 'none' or not opt.isTrain: # when training at full res this causes OOM torch.backends.cudnn.benchmark = True self.isTrain = opt.isTrain self.use_features = opt.instance_feat or opt.label_feat ## Clearly it is false self.gen_features = self.use_features and not self.opt.load_features ## it is also false input_nc = opt.label_nc if opt.label_nc != 0 else opt.input_nc ## Just is the origin input channel # ##### define networks # Generator network netG_input_nc = input_nc if not opt.no_instance: netG_input_nc += 1 if self.use_features: netG_input_nc += opt.feat_num self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG, opt.k_size, opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids, opt=opt) # Discriminator network if self.isTrain: use_sigmoid = opt.no_lsgan netD_input_nc = opt.output_nc if opt.no_cgan else input_nc + opt.output_nc if not opt.no_instance: netD_input_nc += 1 self.netD = networks.define_D(netD_input_nc, opt.ndf, opt.n_layers_D, opt,opt.norm, use_sigmoid, opt.num_D, not opt.no_ganFeat_loss, gpu_ids=self.gpu_ids) self.feat_D=networks.define_D(64, opt.ndf, opt.n_layers_D, opt, opt.norm, use_sigmoid, 1, not opt.no_ganFeat_loss, gpu_ids=self.gpu_ids) if self.opt.verbose: print('---------- Networks initialized -------------') # load networks if not self.isTrain or opt.continue_train or opt.load_pretrain: pretrained_path = '' if not self.isTrain else opt.load_pretrain self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path) print("---------- G Networks reloaded -------------") if self.isTrain: self.load_network(self.netD, 'D', opt.which_epoch, pretrained_path) self.load_network(self.feat_D, 'feat_D', opt.which_epoch, pretrained_path) print("---------- D Networks reloaded -------------") # set loss functions and optimizers if self.isTrain: if opt.pool_size > 0 and (len(self.gpu_ids)) > 1: ## The pool_size is 0! raise NotImplementedError("Fake Pool Not Implemented for MultiGPU") self.fake_pool = ImagePool(opt.pool_size) self.old_lr = opt.lr # define loss functions self.loss_filter = self.init_loss_filter(not opt.no_ganFeat_loss, not opt.no_vgg_loss) self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor) self.criterionFeat = torch.nn.L1Loss() if not opt.no_vgg_loss: self.criterionVGG = networks.VGGLoss_torch(self.gpu_ids) # Names so we can breakout loss self.loss_names = self.loss_filter('G_GAN', 'G_GAN_Feat', 'G_VGG', 'G_KL', 'D_real', 'D_fake', 'G_featD', 'featD_real','featD_fake') # initialize optimizers # optimizer G params = list(self.netG.parameters()) if self.gen_features: params += list(self.netE.parameters()) self.optimizer_G = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999)) # optimizer D params = list(self.netD.parameters()) self.optimizer_D = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999)) params = list(self.feat_D.parameters()) self.optimizer_featD = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999)) print("---------- Optimizers initialized -------------") if opt.continue_train: self.load_optimizer(self.optimizer_D, 'D', opt.which_epoch) self.load_optimizer(self.optimizer_G, "G", opt.which_epoch) self.load_optimizer(self.optimizer_featD,'featD',opt.which_epoch) for param_groups in self.optimizer_D.param_groups: self.old_lr = param_groups['lr'] print("---------- Optimizers reloaded -------------") print("---------- Current LR is %.8f -------------" % (self.old_lr)) ## We also want to re-load the parameters of optimizer. def encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False): if self.opt.label_nc == 0: input_label = label_map.data.cuda() else: # create one-hot vector for label map size = label_map.size() oneHot_size = (size[0], self.opt.label_nc, size[2], size[3]) input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_() input_label = input_label.scatter_(1, label_map.data.long().cuda(), 1.0) if self.opt.data_type == 16: input_label = input_label.half() # get edges from instance map if not self.opt.no_instance: inst_map = inst_map.data.cuda() edge_map = self.get_edges(inst_map) input_label = torch.cat((input_label, edge_map), dim=1) input_label = Variable(input_label, volatile=infer) # real images for training if real_image is not None: real_image = Variable(real_image.data.cuda()) # instance map for feature encoding if self.use_features: # get precomputed feature maps if self.opt.load_features: feat_map = Variable(feat_map.data.cuda()) if self.opt.label_feat: inst_map = label_map.cuda() return input_label, inst_map, real_image, feat_map def discriminate(self, input_label, test_image, use_pool=False): if input_label is None: input_concat = test_image.detach() else: input_concat = torch.cat((input_label, test_image.detach()), dim=1) if use_pool: fake_query = self.fake_pool.query(input_concat) return self.netD.forward(fake_query) else: return self.netD.forward(input_concat) def feat_discriminate(self,input): return self.feat_D.forward(input.detach()) def forward(self, label, inst, image, feat, infer=False): # Encode Inputs input_label, inst_map, real_image, feat_map = self.encode_input(label, inst, image, feat) # Fake Generation if self.use_features: if not self.opt.load_features: feat_map = self.netE.forward(real_image, inst_map) input_concat = torch.cat((input_label, feat_map), dim=1) else: input_concat = input_label hiddens = self.netG.forward(input_concat, 'enc') noise = Variable(torch.randn(hiddens.size()).cuda(hiddens.data.get_device())) # This is a reduced VAE implementation where we assume the outputs are multivariate Gaussian distribution with mean = hiddens and std_dev = all ones. # We follow the the VAE of MUNIT (https://github.com/NVlabs/MUNIT/blob/master/networks.py) fake_image = self.netG.forward(hiddens + noise, 'dec') #################### ##### GAN for the intermediate feature real_old_feat =[] syn_feat = [] for index,x in enumerate(inst): if x==1: real_old_feat.append(hiddens[index].unsqueeze(0)) else: syn_feat.append(hiddens[index].unsqueeze(0)) L=min(len(real_old_feat),len(syn_feat)) real_old_feat=real_old_feat[:L] syn_feat=syn_feat[:L] real_old_feat=torch.cat(real_old_feat,0) syn_feat=torch.cat(syn_feat,0) pred_fake_feat=self.feat_discriminate(real_old_feat) loss_featD_fake = self.criterionGAN(pred_fake_feat, False) pred_real_feat=self.feat_discriminate(syn_feat) loss_featD_real = self.criterionGAN(pred_real_feat, True) pred_fake_feat_G=self.feat_D.forward(real_old_feat) loss_G_featD=self.criterionGAN(pred_fake_feat_G,True) ##################################### if self.opt.no_cgan: # Fake Detection and Loss pred_fake_pool = self.discriminate(None, fake_image, use_pool=True) loss_D_fake = self.criterionGAN(pred_fake_pool, False) # Real Detection and Loss pred_real = self.discriminate(None, real_image) loss_D_real = self.criterionGAN(pred_real, True) # GAN loss (Fake Passability Loss) pred_fake = self.netD.forward(fake_image) loss_G_GAN = self.criterionGAN(pred_fake, True) else: # Fake Detection and Loss pred_fake_pool = self.discriminate(input_label, fake_image, use_pool=True) loss_D_fake = self.criterionGAN(pred_fake_pool, False) # Real Detection and Loss pred_real = self.discriminate(input_label, real_image) loss_D_real = self.criterionGAN(pred_real, True) # GAN loss (Fake Passability Loss) pred_fake = self.netD.forward(torch.cat((input_label, fake_image), dim=1)) loss_G_GAN = self.criterionGAN(pred_fake, True) loss_G_kl = torch.mean(torch.pow(hiddens, 2)) * self.opt.kl # GAN feature matching loss loss_G_GAN_Feat = 0 if not self.opt.no_ganFeat_loss: feat_weights = 4.0 / (self.opt.n_layers_D + 1) D_weights = 1.0 / self.opt.num_D for i in range(self.opt.num_D): for j in range(len(pred_fake[i]) - 1): loss_G_GAN_Feat += D_weights * feat_weights * \ self.criterionFeat(pred_fake[i][j], pred_real[i][j].detach()) * self.opt.lambda_feat # VGG feature matching loss loss_G_VGG = 0 if not self.opt.no_vgg_loss: loss_G_VGG = self.criterionVGG(fake_image, real_image) * self.opt.lambda_feat # Only return the fake_B image if necessary to save BW return [self.loss_filter(loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_G_kl, loss_D_real, loss_D_fake,loss_G_featD, loss_featD_real, loss_featD_fake), None if not infer else fake_image] def inference(self, label, inst, image=None, feat=None): # Encode Inputs image = Variable(image) if image is not None else None input_label, inst_map, real_image, _ = self.encode_input(Variable(label), Variable(inst), image, infer=True) # Fake Generation if self.use_features: if self.opt.use_encoded_image: # encode the real image to get feature map feat_map = self.netE.forward(real_image, inst_map) else: # sample clusters from precomputed features feat_map = self.sample_features(inst_map) input_concat = torch.cat((input_label, feat_map), dim=1) else: input_concat = input_label if torch.__version__.startswith('0.4'): with torch.no_grad(): fake_image = self.netG.forward(input_concat) else: fake_image = self.netG.forward(input_concat) return fake_image def sample_features(self, inst): # read precomputed feature clusters cluster_path = os.path.join(self.opt.checkpoints_dir, self.opt.name, self.opt.cluster_path) features_clustered = np.load(cluster_path, encoding='latin1').item() # randomly sample from the feature clusters inst_np = inst.cpu().numpy().astype(int) feat_map = self.Tensor(inst.size()[0], self.opt.feat_num, inst.size()[2], inst.size()[3]) for i in np.unique(inst_np): label = i if i < 1000 else i // 1000 if label in features_clustered: feat = features_clustered[label] cluster_idx = np.random.randint(0, feat.shape[0]) idx = (inst == int(i)).nonzero() for k in range(self.opt.feat_num): feat_map[idx[:, 0], idx[:, 1] + k, idx[:, 2], idx[:, 3]] = feat[cluster_idx, k] if self.opt.data_type == 16: feat_map = feat_map.half() return feat_map def encode_features(self, image, inst): image = Variable(image.cuda(), volatile=True) feat_num = self.opt.feat_num h, w = inst.size()[2], inst.size()[3] block_num = 32 feat_map = self.netE.forward(image, inst.cuda()) inst_np = inst.cpu().numpy().astype(int) feature = {} for i in range(self.opt.label_nc): feature[i] = np.zeros((0, feat_num + 1)) for i in np.unique(inst_np): label = i if i < 1000 else i // 1000 idx = (inst == int(i)).nonzero() num = idx.size()[0] idx = idx[num // 2, :] val = np.zeros((1, feat_num + 1)) for k in range(feat_num): val[0, k] = feat_map[idx[0], idx[1] + k, idx[2], idx[3]].data[0] val[0, feat_num] = float(num) / (h * w // block_num) feature[label] = np.append(feature[label], val, axis=0) return feature def get_edges(self, t): edge = torch.cuda.ByteTensor(t.size()).zero_() edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1]) edge[:, :, :, :-1] = edge[:, :, :, :-1] | (t[:, :, :, 1:] != t[:, :, :, :-1]) edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) edge[:, :, :-1, :] = edge[:, :, :-1, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) if self.opt.data_type == 16: return edge.half() else: return edge.float() def save(self, which_epoch): self.save_network(self.netG, 'G', which_epoch, self.gpu_ids) self.save_network(self.netD, 'D', which_epoch, self.gpu_ids) self.save_network(self.feat_D,'featD',which_epoch,self.gpu_ids) self.save_optimizer(self.optimizer_G, "G", which_epoch) self.save_optimizer(self.optimizer_D, "D", which_epoch) self.save_optimizer(self.optimizer_featD,'featD',which_epoch) if self.gen_features: self.save_network(self.netE, 'E', which_epoch, self.gpu_ids) def update_fixed_params(self): params = list(self.netG.parameters()) if self.gen_features: params += list(self.netE.parameters()) self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999)) if self.opt.verbose: print('------------ Now also finetuning global generator -----------') def update_learning_rate(self): lrd = self.opt.lr / self.opt.niter_decay lr = self.old_lr - lrd for param_group in self.optimizer_D.param_groups: param_group['lr'] = lr for param_group in self.optimizer_G.param_groups: param_group['lr'] = lr for param_group in self.optimizer_featD.param_groups: param_group['lr'] = lr if self.opt.verbose: print('update learning rate: %f -> %f' % (self.old_lr, lr)) self.old_lr = lr class InferenceModel(Pix2PixHDModel): def forward(self, inp): label, inst = inp return self.inference(label, inst)
Bringing-Old-Photos-Back-to-Life/Global/models/pix2pixHD_model_DA.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Global/models/pix2pixHD_model_DA.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 7965 }
177
--- - name: Bringing-Old-Photos-Back-to-Life hosts: all gather_facts: no # Succesfully tested on Ubuntu 18.04\20.04 and Debian 10 pre_tasks: - name: install packages package: name: - python3 - python3-pip - python3-venv - git - unzip - tar - lbzip2 - build-essential - cmake - ffmpeg - libsm6 - libxext6 - libgl1-mesa-glx state: latest become: yes tasks: - name: git clone repo git: repo: 'https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life.git' dest: Bringing-Old-Photos-Back-to-Life clone: yes - name: requirements setup pip: requirements: "~/Bringing-Old-Photos-Back-to-Life/requirements.txt" virtualenv: "~/Bringing-Old-Photos-Back-to-Life/.venv" virtualenv_command: /usr/bin/python3 -m venv .venv - name: additional pip packages #requirements lack some packs pip: name: - setuptools - wheel - scikit-build virtualenv: "~/Bringing-Old-Photos-Back-to-Life/.venv" virtualenv_command: /usr/bin/python3 -m venv .venv - name: git clone batchnorm-pytorch git: repo: 'https://github.com/vacancy/Synchronized-BatchNorm-PyTorch' dest: Synchronized-BatchNorm-PyTorch clone: yes - name: copy sync_batchnorm to face_enhancement copy: src: Synchronized-BatchNorm-PyTorch/sync_batchnorm dest: Bringing-Old-Photos-Back-to-Life/Face_Enhancement/models/networks/ remote_src: yes - name: copy sync_batchnorm to global copy: src: Synchronized-BatchNorm-PyTorch/sync_batchnorm dest: Bringing-Old-Photos-Back-to-Life/Global/detection_models remote_src: yes - name: check if shape_predictor_68_face_landmarks.dat stat: path: Bringing-Old-Photos-Back-to-Life/Face_Detection/shape_predictor_68_face_landmarks.dat register: p - name: get shape_predictor_68_face_landmarks.dat.bz2 get_url: url: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 dest: Bringing-Old-Photos-Back-to-Life/Face_Detection/ when: p.stat.exists == False - name: unarchive shape_predictor_68_face_landmarks.dat.bz2 shell: 'bzip2 -d Bringing-Old-Photos-Back-to-Life/Face_Detection/shape_predictor_68_face_landmarks.dat.bz2' when: p.stat.exists == False - name: check if face_enhancement stat: path: Bringing-Old-Photos-Back-to-Life/Face_Enhancement/checkpoints/Setting_9_epoch_100/latest_net_G.pth register: fc - name: unarchive Face_Enhancement/checkpoints.zip unarchive: src: https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Face_Enhancement/checkpoints.zip dest: Bringing-Old-Photos-Back-to-Life/Face_Enhancement/ remote_src: yes when: fc.stat.exists == False - name: check if global stat: path: Bringing-Old-Photos-Back-to-Life/Global/checkpoints/detection/FT_Epoch_latest.pt register: gc - name: unarchive Global/checkpoints.zip unarchive: src: https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Global/checkpoints.zip dest: Bringing-Old-Photos-Back-to-Life/Global/ remote_src: yes when: gc.stat.exists == False # Do not forget to execute 'source .venv/bin/activate' inside Bringing-Old-Photos-Back-to-Life before starting run.py
Bringing-Old-Photos-Back-to-Life/ansible.yaml/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/ansible.yaml", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 1453 }
178
""" This is an example using CLAPCAP for audio captioning. """ from msclap import CLAP # Load and initialize CLAP clap_model = CLAP(version = 'clapcap', use_cuda=False) #Load audio files audio_files = ['audio_file'] # Generate captions for the recording captions = clap_model.generate_caption(audio_files, resample=True, beam_size=5, entry_length=67, temperature=0.01) # Print the result for i in range(len(audio_files)): print(f"Audio file: {audio_files[i]} \n") print(f"Generated caption: {captions[i]} \n") """ The output (the exact caption may vary): The birds are singing in the trees. """
CLAP/examples/audio_captioning.py/0
{ "file_path": "CLAP/examples/audio_captioning.py", "repo_id": "CLAP", "token_count": 211 }
179
import argparse import yaml import sys def read_config_as_args(config_path,args=None,is_config_str=False): return_dict = {} if config_path is not None: if is_config_str: yml_config = yaml.load(config_path, Loader=yaml.FullLoader) else: with open(config_path, "r") as f: yml_config = yaml.load(f, Loader=yaml.FullLoader) if args != None: for k, v in yml_config.items(): if k in args.__dict__: args.__dict__[k] = v else: sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k)) else: for k, v in yml_config.items(): return_dict[k] = v args = args if args != None else return_dict return argparse.Namespace(**args)
CLAP/msclap/models/utils.py/0
{ "file_path": "CLAP/msclap/models/utils.py", "repo_id": "CLAP", "token_count": 422 }
180
# COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: [COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining](https://arxiv.org/abs/2102.08473) <img src="./coco-lm.png" width="1000px"></img> ## Overview We provide the scripts in two versions, based on two widely-used open-source codebases, the [Fairseq Library](https://github.com/pytorch/fairseq) and the [Huggingface Transformers Library](https://github.com/huggingface/transformers). The two code versions are mostly equivalent in functionality, and you are free to use either of them. However, we note that the [fairseq](fairseq) version is what we used in our experiments, and it will best reproduce the results in the paper; the [huggingface](huggingface) version is implemented later to provide compatibility with the Huggingface Transformers Library, and may yield slightly different results. Please follow the README files under the two directories for running the code. ## GLUE Fine-Tuning Results The [General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com/) benchmark is a collection of sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems. GLUE dev set results of COCO-LM base++ and large++ models are as follows (median of 5 different random seeds): | Model | MNLI-m/mm | QQP | QNLI | SST-2 | CoLA | RTE | MRPC | STS-B | AVG | | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | | COCO-LM base++ | 90.2/90.0 | 92.2 | 94.2 | 94.6 | 67.3 | 87.4 | 91.2 | 91.8 | 88.6 | | COCO-LM large++ | 91.4/91.6 | 92.8 | 95.7 | 96.9 | 73.9 | 91.0 | 92.2 | 92.7 | 90.8 | GLUE test set results of COCO-LM base++ and large++ models are as follows (no ensemble, task-specific tricks, etc.): | Model | MNLI-m/mm | QQP | QNLI | SST-2 | CoLA | RTE | MRPC | STS-B | AVG | | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | | COCO-LM base++ | 89.8/89.3 | 89.8 | 94.2 | 95.6 | 68.6 | 82.3 | 88.5 | 90.3 | 87.4 | | COCO-LM large++ | 91.6/91.1 | 90.5 | 95.8 | 96.7 | 70.5 | 89.2 | 88.4 | 91.8 | 89.3 | ## SQuAD 2.0 Fine-Tuning Results [Stanford Question Answering Dataset (SQuAD)](https://rajpurkar.github.io/SQuAD-explorer/) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD 2.0 dev set results of COCO-LM base++ and large++ models are as follows (median of 5 different random seeds): | Model | EM | F1 | | ------ | ------ | ------ | | COCO-LM base++ | 85.4 | 88.1 | | COCO-LM large++ | 88.2 | 91.0 | ## Citation If you find the code and models useful for your research, please cite the following paper: ``` @inproceedings{meng2021cocolm, title={{COCO-LM}: Correcting and contrasting text sequences for language model pretraining}, author={Meng, Yu and Xiong, Chenyan and Bajaj, Payal and Tiwary, Saurabh and Bennett, Paul and Han, Jiawei and Song, Xia}, booktitle={Conference on Neural Information Processing Systems}, year={2021} } ``` ## Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [[email protected]](mailto:[email protected]) with any additional questions or comments.
COCO-LM/README.md/0
{ "file_path": "COCO-LM/README.md", "repo_id": "COCO-LM", "token_count": 1265 }
181
.. role:: hidden :class: hidden-section .. _Learning Rate Schedulers: Learning Rate Schedulers ======================== Learning Rate Schedulers update the learning rate over the course of training. Learning rates can be updated after each update via :func:`step_update` or at epoch boundaries via :func:`step`. .. automodule:: fairseq.optim.lr_scheduler :members: .. autoclass:: fairseq.optim.lr_scheduler.FairseqLRScheduler :members: :undoc-members: .. autoclass:: fairseq.optim.lr_scheduler.cosine_lr_scheduler.CosineSchedule :members: :undoc-members: .. autoclass:: fairseq.optim.lr_scheduler.fixed_schedule.FixedSchedule :members: :undoc-members: .. autoclass:: fairseq.optim.lr_scheduler.inverse_square_root_schedule.InverseSquareRootSchedule :members: :undoc-members: .. autoclass:: fairseq.optim.lr_scheduler.reduce_lr_on_plateau.ReduceLROnPlateau :members: :undoc-members: .. autoclass:: fairseq.optim.lr_scheduler.triangular_lr_scheduler.TriangularSchedule :members: :undoc-members:
COCO-LM/fairseq/docs/lr_scheduler.rst/0
{ "file_path": "COCO-LM/fairseq/docs/lr_scheduler.rst", "repo_id": "COCO-LM", "token_count": 386 }
182
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import register_criterion from fairseq.criterions.cross_entropy import CrossEntropyCriterion from fairseq.dataclass import FairseqDataclass from omegaconf import II @dataclass class AdaptiveSpanCriterionConfig(FairseqDataclass): sentence_avg: bool = II("optimization.sentence_avg") @register_criterion("adaptive_span_loss", dataclass=AdaptiveSpanCriterionConfig) class AdaptiveSpanCriterion(CrossEntropyCriterion): def __init__(self, task, sentence_avg): super().__init__(task, sentence_avg) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss here is summed, different from the adaptive span code 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) loss, aux_loss, avg_span, max_span = self.compute_loss( model, net_output, sample, reduce=reduce ) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) loss /= sample_size total_loss = loss + aux_loss sample_size = 1 logging_output = { "loss": loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, "total_loss": total_loss.data, "avg_span": avg_span * sample_size, "max_span": max_span * sample_size, } return total_loss, sample_size, logging_output def compute_loss(self, model, net_output, sample, reduce=True): loss, _ = super().compute_loss(model, net_output, sample, reduce) aux_loss = model.get_aux_loss() avg_span = model.get_current_avg_span() max_span = model.get_current_max_span() return loss, aux_loss, avg_span, max_span @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) total_loss_sum = sum(log.get("total_loss", 0) for log in logging_outputs) avg_span_sum = sum(log.get("avg_span", 0) for log in logging_outputs) max_span_sum = sum(log.get("max_span", 0) for log in logging_outputs) # we divide by log(2) to convert the loss from base e to base 2 metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar("avg_span", avg_span_sum / sample_size, sample_size, round=3) metrics.log_scalar("max_span", max_span_sum / sample_size, sample_size, round=3) # total loss contains the L1 norm on adaptive-span metrics.log_scalar( "total_loss", total_loss_sum / sample_size / math.log(2), sample_size, round=3, ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
COCO-LM/fairseq/examples/adaptive_span/adaptive_span_loss.py/0
{ "file_path": "COCO-LM/fairseq/examples/adaptive_span/adaptive_span_loss.py", "repo_id": "COCO-LM", "token_count": 1801 }
183
#!/bin/bash # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. PY_BIN_ROOT= # PyPI dependency ${PY_BIN_ROOT}pip install sentencepiece sacremoses # Get data if [ ! -d "data" ]; then mkdir data fi if [ ! -f "data/fr-en.tgz" ]; then wget https://wit3.fbk.eu/archive/2017-01-trnted/texts/fr/en/fr-en.tgz -P data tar xvf data/fr-en.tgz -C data fi ${PY_BIN_ROOT}python get_bitext.py --bpe-vocab 16384 --byte-vocab --char-vocab for VOCAB_SIZE in 2048 4096; do ${PY_BIN_ROOT}python get_bitext.py --bpe-vocab ${VOCAB_SIZE} --bbpe-vocab ${VOCAB_SIZE} done rm -r data/fr-en data/fr-en.tgz # Generate binary dataset ${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir data/bin_bpe16384 --joined-dictionary \ --workers "$(nproc)" --trainpref data/train.moses.bpe16384 --validpref data/valid.moses.bpe16384 \ --testpref data/test.moses.bpe16384 ${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir data/bin_bytes --joined-dictionary \ --workers "$(nproc)" --trainpref data/train.moses.bytes --validpref data/valid.moses.bytes \ --testpref data/test.moses.bytes ${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir data/bin_chars --joined-dictionary \ --workers "$(nproc)" --trainpref data/train.moses.chars --validpref data/valid.moses.chars \ --testpref data/test.moses.chars for VOCAB_SIZE in 2048 4096; do for TYPE in bbpe bpe; do ${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir "data/bin_${TYPE}${VOCAB_SIZE}" \ --joined-dictionary --workers "$(nproc)" --trainpref "data/train.moses.${TYPE}${VOCAB_SIZE}" \ --validpref "data/valid.moses.${TYPE}${VOCAB_SIZE}" --testpref "data/test.moses.${TYPE}${VOCAB_SIZE}" done done
COCO-LM/fairseq/examples/byte_level_bpe/get_data.sh/0
{ "file_path": "COCO-LM/fairseq/examples/byte_level_bpe/get_data.sh", "repo_id": "COCO-LM", "token_count": 762 }
184
# Cross-Lingual Language Model Pre-training Below are some details for training Cross-Lingual Language Models (XLM) - similar to the ones presented in [Lample & Conneau, 2019](https://arxiv.org/pdf/1901.07291.pdf) - in Fairseq. The current implementation only supports the Masked Language Model (MLM) from the paper above. ## Downloading and Tokenizing Monolingual Data Pointers to the monolingual data from wikipedia, used for training the XLM-style MLM model as well as details on processing (tokenization and BPE) it can be found in the [XLM Github Repository](https://github.com/facebookresearch/XLM#download--preprocess-monolingual-data). Let's assume the following for the code snippets in later sections to work - Processed data is in the folder: monolingual_data/processed - Each language has 3 files for train, test and validation. For example we have the following files for English: train.en, valid.en - We are training a model for 5 languages: Arabic (ar), German (de), English (en), Hindi (hi) and French (fr) - The vocabulary file is monolingual_data/processed/vocab_mlm ## Fairseq Pre-processing and Binarization Pre-process and binarize the data with the MaskedLMDictionary and cross_lingual_lm task ```bash # Ensure the output directory exists DATA_DIR=monolingual_data/fairseq_processed mkdir -p "$DATA_DIR" for lg in ar de en hi fr do fairseq-preprocess \ --task cross_lingual_lm \ --srcdict monolingual_data/processed/vocab_mlm \ --only-source \ --trainpref monolingual_data/processed/train \ --validpref monolingual_data/processed/valid \ --testpref monolingual_data/processed/test \ --destdir monolingual_data/fairseq_processed \ --workers 20 \ --source-lang $lg # Since we only have a source language, the output file has a None for the # target language. Remove this for stage in train test valid sudo mv "$DATA_DIR/$stage.$lg-None.$lg.bin" "$stage.$lg.bin" sudo mv "$DATA_DIR/$stage.$lg-None.$lg.idx" "$stage.$lg.idx" done done ``` ## Train a Cross-lingual Language Model similar to the XLM MLM model Use the following command to train the model on 5 languages. ``` fairseq-train \ --task cross_lingual_lm monolingual_data/fairseq_processed \ --save-dir checkpoints/mlm \ --max-update 2400000 --save-interval 1 --no-epoch-checkpoints \ --arch xlm_base \ --optimizer adam --lr-scheduler reduce_lr_on_plateau \ --lr-shrink 0.5 --lr 0.0001 --stop-min-lr 1e-09 \ --dropout 0.1 \ --criterion legacy_masked_lm_loss \ --max-tokens 2048 --tokens-per-sample 256 --attention-dropout 0.1 \ --dataset-impl lazy --seed 0 \ --masked-lm-only \ --monolingual-langs 'ar,de,en,hi,fr' --num-segment 5 \ --ddp-backend=legacy_ddp ``` Some Notes: - Using tokens_per_sample greater than 256 can cause OOM (out-of-memory) issues. Usually since MLM packs in streams of text, this parameter doesn't need much tuning. - The Evaluation workflow for computing MLM Perplexity on test data is in progress. - Finetuning this model on a downstream task is something which is not currently available.
COCO-LM/fairseq/examples/cross_lingual_language_model/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/cross_lingual_language_model/README.md", "repo_id": "COCO-LM", "token_count": 975 }
185
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from fairseq import options, utils from fairseq.models import ( FairseqEncoder, FairseqIncrementalDecoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) @register_model("laser_lstm") class LSTMModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) def forward( self, src_tokens, src_lengths, prev_output_tokens=None, tgt_tokens=None, tgt_lengths=None, target_language_id=None, dataset_name="", ): assert target_language_id is not None src_encoder_out = self.encoder(src_tokens, src_lengths, dataset_name) return self.decoder( prev_output_tokens, src_encoder_out, lang_id=target_language_id ) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--dropout", default=0.1, type=float, metavar="D", help="dropout probability", ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="N", help="encoder embedding dimension", ) parser.add_argument( "--encoder-embed-path", default=None, type=str, metavar="STR", help="path to pre-trained encoder embedding", ) parser.add_argument( "--encoder-hidden-size", type=int, metavar="N", help="encoder hidden size" ) parser.add_argument( "--encoder-layers", type=int, metavar="N", help="number of encoder layers" ) parser.add_argument( "--encoder-bidirectional", action="store_true", help="make all layers of encoder bidirectional", ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-embed-path", default=None, type=str, metavar="STR", help="path to pre-trained decoder embedding", ) parser.add_argument( "--decoder-hidden-size", type=int, metavar="N", help="decoder hidden size" ) parser.add_argument( "--decoder-layers", type=int, metavar="N", help="number of decoder layers" ) parser.add_argument( "--decoder-out-embed-dim", type=int, metavar="N", help="decoder output embedding dimension", ) parser.add_argument( "--decoder-zero-init", type=str, metavar="BOOL", help="initialize the decoder hidden/cell state to zero", ) parser.add_argument( "--decoder-lang-embed-dim", type=int, metavar="N", help="decoder language embedding dimension", ) parser.add_argument( "--fixed-embeddings", action="store_true", help="keep embeddings fixed (ENCODER ONLY)", ) # TODO Also apply to decoder embeddings? # Granular dropout settings (if not specified these default to --dropout) parser.add_argument( "--encoder-dropout-in", type=float, metavar="D", help="dropout probability for encoder input embedding", ) parser.add_argument( "--encoder-dropout-out", type=float, metavar="D", help="dropout probability for encoder output", ) parser.add_argument( "--decoder-dropout-in", type=float, metavar="D", help="dropout probability for decoder input embedding", ) parser.add_argument( "--decoder-dropout-out", type=float, metavar="D", help="dropout probability for decoder output", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure that all args are properly defaulted (in case there are any new ones) base_architecture(args) def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) embed_dict = utils.parse_embedding(embed_path) utils.print_embed_overlap(embed_dict, dictionary) return utils.load_embedding(embed_dict, dictionary, embed_tokens) pretrained_encoder_embed = None if args.encoder_embed_path: pretrained_encoder_embed = load_pretrained_embedding_from_file( args.encoder_embed_path, task.source_dictionary, args.encoder_embed_dim ) pretrained_decoder_embed = None if args.decoder_embed_path: pretrained_decoder_embed = load_pretrained_embedding_from_file( args.decoder_embed_path, task.target_dictionary, args.decoder_embed_dim ) num_langs = task.num_tasks if hasattr(task, "num_tasks") else 0 encoder = LSTMEncoder( dictionary=task.source_dictionary, embed_dim=args.encoder_embed_dim, hidden_size=args.encoder_hidden_size, num_layers=args.encoder_layers, dropout_in=args.encoder_dropout_in, dropout_out=args.encoder_dropout_out, bidirectional=args.encoder_bidirectional, pretrained_embed=pretrained_encoder_embed, fixed_embeddings=args.fixed_embeddings, ) decoder = LSTMDecoder( dictionary=task.target_dictionary, embed_dim=args.decoder_embed_dim, hidden_size=args.decoder_hidden_size, out_embed_dim=args.decoder_out_embed_dim, num_layers=args.decoder_layers, dropout_in=args.decoder_dropout_in, dropout_out=args.decoder_dropout_out, zero_init=options.eval_bool(args.decoder_zero_init), encoder_embed_dim=args.encoder_embed_dim, encoder_output_units=encoder.output_units, pretrained_embed=pretrained_decoder_embed, num_langs=num_langs, lang_embed_dim=args.decoder_lang_embed_dim, ) return cls(encoder, decoder) class LSTMEncoder(FairseqEncoder): """LSTM encoder.""" def __init__( self, dictionary, embed_dim=512, hidden_size=512, num_layers=1, dropout_in=0.1, dropout_out=0.1, bidirectional=False, left_pad=True, pretrained_embed=None, padding_value=0.0, fixed_embeddings=False, ): super().__init__(dictionary) self.num_layers = num_layers self.dropout_in = dropout_in self.dropout_out = dropout_out self.bidirectional = bidirectional self.hidden_size = hidden_size num_embeddings = len(dictionary) self.padding_idx = dictionary.pad() if pretrained_embed is None: self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx) else: self.embed_tokens = pretrained_embed if fixed_embeddings: self.embed_tokens.weight.requires_grad = False self.lstm = LSTM( input_size=embed_dim, hidden_size=hidden_size, num_layers=num_layers, dropout=self.dropout_out if num_layers > 1 else 0.0, bidirectional=bidirectional, ) self.left_pad = left_pad self.padding_value = padding_value self.output_units = hidden_size if bidirectional: self.output_units *= 2 def forward(self, src_tokens, src_lengths, dataset_name): if self.left_pad: # convert left-padding to right-padding src_tokens = utils.convert_padding_direction( src_tokens, self.padding_idx, left_to_right=True, ) bsz, seqlen = src_tokens.size() # embed tokens x = self.embed_tokens(src_tokens) x = F.dropout(x, p=self.dropout_in, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) # pack embedded source tokens into a PackedSequence try: packed_x = nn.utils.rnn.pack_padded_sequence(x, src_lengths.data.tolist()) except BaseException: raise Exception(f"Packing failed in dataset {dataset_name}") # apply LSTM if self.bidirectional: state_size = 2 * self.num_layers, bsz, self.hidden_size else: state_size = self.num_layers, bsz, self.hidden_size h0 = x.data.new(*state_size).zero_() c0 = x.data.new(*state_size).zero_() packed_outs, (final_hiddens, final_cells) = self.lstm(packed_x, (h0, c0)) # unpack outputs and apply dropout x, _ = nn.utils.rnn.pad_packed_sequence( packed_outs, padding_value=self.padding_value ) x = F.dropout(x, p=self.dropout_out, training=self.training) assert list(x.size()) == [seqlen, bsz, self.output_units] if self.bidirectional: def combine_bidir(outs): return torch.cat( [ torch.cat([outs[2 * i], outs[2 * i + 1]], dim=0).view( 1, bsz, self.output_units ) for i in range(self.num_layers) ], dim=0, ) final_hiddens = combine_bidir(final_hiddens) final_cells = combine_bidir(final_cells) encoder_padding_mask = src_tokens.eq(self.padding_idx).t() # Set padded outputs to -inf so they are not selected by max-pooling padding_mask = src_tokens.eq(self.padding_idx).t().unsqueeze(-1) if padding_mask.any(): x = x.float().masked_fill_(padding_mask, float("-inf")).type_as(x) # Build the sentence embedding by max-pooling over the encoder outputs sentemb = x.max(dim=0)[0] return { "sentemb": sentemb, "encoder_out": (x, final_hiddens, final_cells), "encoder_padding_mask": encoder_padding_mask if encoder_padding_mask.any() else None, } def reorder_encoder_out(self, encoder_out_dict, new_order): encoder_out_dict["sentemb"] = encoder_out_dict["sentemb"].index_select( 0, new_order ) encoder_out_dict["encoder_out"] = tuple( eo.index_select(1, new_order) for eo in encoder_out_dict["encoder_out"] ) if encoder_out_dict["encoder_padding_mask"] is not None: encoder_out_dict["encoder_padding_mask"] = encoder_out_dict[ "encoder_padding_mask" ].index_select(1, new_order) return encoder_out_dict def max_positions(self): """Maximum input length supported by the encoder.""" return int(1e5) # an arbitrary large number class LSTMDecoder(FairseqIncrementalDecoder): """LSTM decoder.""" def __init__( self, dictionary, embed_dim=512, hidden_size=512, out_embed_dim=512, num_layers=1, dropout_in=0.1, dropout_out=0.1, zero_init=False, encoder_embed_dim=512, encoder_output_units=512, pretrained_embed=None, num_langs=1, lang_embed_dim=0, ): super().__init__(dictionary) self.dropout_in = dropout_in self.dropout_out = dropout_out self.hidden_size = hidden_size num_embeddings = len(dictionary) padding_idx = dictionary.pad() if pretrained_embed is None: self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) else: self.embed_tokens = pretrained_embed self.layers = nn.ModuleList( [ LSTMCell( input_size=encoder_output_units + embed_dim + lang_embed_dim if layer == 0 else hidden_size, hidden_size=hidden_size, ) for layer in range(num_layers) ] ) if hidden_size != out_embed_dim: self.additional_fc = Linear(hidden_size, out_embed_dim) self.fc_out = Linear(out_embed_dim, num_embeddings, dropout=dropout_out) if zero_init: self.sentemb2init = None else: self.sentemb2init = Linear( encoder_output_units, 2 * num_layers * hidden_size ) if lang_embed_dim == 0: self.embed_lang = None else: self.embed_lang = nn.Embedding(num_langs, lang_embed_dim) nn.init.uniform_(self.embed_lang.weight, -0.1, 0.1) def forward( self, prev_output_tokens, encoder_out_dict, incremental_state=None, lang_id=0 ): sentemb = encoder_out_dict["sentemb"] encoder_out = encoder_out_dict["encoder_out"] if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] bsz, seqlen = prev_output_tokens.size() # get outputs from encoder encoder_outs, _, _ = encoder_out[:3] srclen = encoder_outs.size(0) # embed tokens x = self.embed_tokens(prev_output_tokens) x = F.dropout(x, p=self.dropout_in, training=self.training) # embed language identifier if self.embed_lang is not None: lang_ids = prev_output_tokens.data.new_full((bsz,), lang_id) langemb = self.embed_lang(lang_ids) # TODO Should we dropout here??? # B x T x C -> T x B x C x = x.transpose(0, 1) # initialize previous states (or get from cache during incremental generation) cached_state = utils.get_incremental_state( self, incremental_state, "cached_state" ) if cached_state is not None: prev_hiddens, prev_cells, input_feed = cached_state else: num_layers = len(self.layers) if self.sentemb2init is None: prev_hiddens = [ x.data.new(bsz, self.hidden_size).zero_() for i in range(num_layers) ] prev_cells = [ x.data.new(bsz, self.hidden_size).zero_() for i in range(num_layers) ] else: init = self.sentemb2init(sentemb) prev_hiddens = [ init[:, (2 * i) * self.hidden_size : (2 * i + 1) * self.hidden_size] for i in range(num_layers) ] prev_cells = [ init[ :, (2 * i + 1) * self.hidden_size : (2 * i + 2) * self.hidden_size, ] for i in range(num_layers) ] input_feed = x.data.new(bsz, self.hidden_size).zero_() attn_scores = x.data.new(srclen, seqlen, bsz).zero_() outs = [] for j in range(seqlen): if self.embed_lang is None: input = torch.cat((x[j, :, :], sentemb), dim=1) else: input = torch.cat((x[j, :, :], sentemb, langemb), dim=1) for i, rnn in enumerate(self.layers): # recurrent cell hidden, cell = rnn(input, (prev_hiddens[i], prev_cells[i])) # hidden state becomes the input to the next layer input = F.dropout(hidden, p=self.dropout_out, training=self.training) # save state for next time step prev_hiddens[i] = hidden prev_cells[i] = cell out = hidden out = F.dropout(out, p=self.dropout_out, training=self.training) # input feeding input_feed = out # save final output outs.append(out) # cache previous states (no-op except during incremental generation) utils.set_incremental_state( self, incremental_state, "cached_state", (prev_hiddens, prev_cells, input_feed), ) # collect outputs across time steps x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size) # T x B x C -> B x T x C x = x.transpose(1, 0) # srclen x tgtlen x bsz -> bsz x tgtlen x srclen attn_scores = attn_scores.transpose(0, 2) # project back to size of vocabulary if hasattr(self, "additional_fc"): x = self.additional_fc(x) x = F.dropout(x, p=self.dropout_out, training=self.training) x = self.fc_out(x) return x, attn_scores def reorder_incremental_state(self, incremental_state, new_order): super().reorder_incremental_state(incremental_state, new_order) cached_state = utils.get_incremental_state( self, incremental_state, "cached_state" ) if cached_state is None: return def reorder_state(state): if isinstance(state, list): return [reorder_state(state_i) for state_i in state] return state.index_select(0, new_order) new_state = tuple(map(reorder_state, cached_state)) utils.set_incremental_state(self, incremental_state, "cached_state", new_state) def max_positions(self): """Maximum output length supported by the decoder.""" return int(1e5) # an arbitrary large number def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.uniform_(m.weight, -0.1, 0.1) nn.init.constant_(m.weight[padding_idx], 0) return m def LSTM(input_size, hidden_size, **kwargs): m = nn.LSTM(input_size, hidden_size, **kwargs) for name, param in m.named_parameters(): if "weight" in name or "bias" in name: param.data.uniform_(-0.1, 0.1) return m def LSTMCell(input_size, hidden_size, **kwargs): m = nn.LSTMCell(input_size, hidden_size, **kwargs) for name, param in m.named_parameters(): if "weight" in name or "bias" in name: param.data.uniform_(-0.1, 0.1) return m def Linear(in_features, out_features, bias=True, dropout=0): """Weight-normalized Linear layer (input: N x T x C)""" m = nn.Linear(in_features, out_features, bias=bias) m.weight.data.uniform_(-0.1, 0.1) if bias: m.bias.data.uniform_(-0.1, 0.1) return m @register_model_architecture("laser_lstm", "laser_lstm") def base_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_hidden_size = getattr( args, "encoder_hidden_size", args.encoder_embed_dim ) args.encoder_layers = getattr(args, "encoder_layers", 1) args.encoder_bidirectional = getattr(args, "encoder_bidirectional", False) args.encoder_dropout_in = getattr(args, "encoder_dropout_in", args.dropout) args.encoder_dropout_out = getattr(args, "encoder_dropout_out", args.dropout) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_hidden_size = getattr( args, "decoder_hidden_size", args.decoder_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 1) args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512) args.decoder_dropout_in = getattr(args, "decoder_dropout_in", args.dropout) args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout) args.decoder_zero_init = getattr(args, "decoder_zero_init", "0") args.decoder_lang_embed_dim = getattr(args, "decoder_lang_embed_dim", 0) args.fixed_embeddings = getattr(args, "fixed_embeddings", False)
COCO-LM/fairseq/examples/laser/laser_src/laser_lstm.py/0
{ "file_path": "COCO-LM/fairseq/examples/laser/laser_src/laser_lstm.py", "repo_id": "COCO-LM", "token_count": 10327 }
186
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .models import linformer_roberta # noqa
COCO-LM/fairseq/examples/linformer/linformer_src/__init__.py/0
{ "file_path": "COCO-LM/fairseq/examples/linformer/linformer_src/__init__.py", "repo_id": "COCO-LM", "token_count": 60 }
187
#!/bin/bash # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. if [ -z $WORKDIR_ROOT ] ; then echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..." exit fi # first run download_wmt20.sh; it will install a few useful tools for other scripts # TODO: need to print out instructions on downloading a few files which requires manually authentication from the websites bash ./download_wmt20.sh python ./download_wmt19_and_before.py bash ./download_wat19_my.sh python ./download_ted_and_extract.py bash ./download_lotus.sh bash ./download_iitb.sh bash ./download_af_xh.sh # IWSLT downloading URLs have changed in between; TODO: fix them: bash ./download_iwslt_and_extract.sh # TODO: globalvoices URLs changed; need to be fixed bash ./download_flores_data.sh
COCO-LM/fairseq/examples/multilingual/data_scripts/download_ML50_v1.sh/0
{ "file_path": "COCO-LM/fairseq/examples/multilingual/data_scripts/download_ML50_v1.sh", "repo_id": "COCO-LM", "token_count": 296 }
188
#!/bin/bash # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. path_2_data=$1 # <path to data> which contains binarized data for each directions lang_list=$2 # <path to a file which contains a list of languages separted by new lines> lang_pairs=$3 #a list language pairs to train multilingual models, e.g. "en-fr,en-cs,fr-en,cs-en" # pretrained can be an mBART pretrained model as well pretrained_model=$4 #<path to a pretrained model> fairseq-train "$path_2_data" \ --encoder-normalize-before --decoder-normalize-before \ --arch transformer --layernorm-embedding \ --task translation_multi_simple_epoch \ --finetune-from-model "$pretrained_model" \ --sampling-method "temperature" \ --sampling-temperature "1.5" \ --encoder-langtok "src" \ --decoder-langtok \ --lang-dict "$lang_list" \ --lang-pairs "$lang_pairs" \ --criterion label_smoothed_cross_entropy --label-smoothing 0.2 \ --optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \ --lr-scheduler inverse_sqrt --lr 3e-05 --warmup-updates 2500 --max-update 40000 \ --dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \ --max-tokens 1024 --update-freq 2 \ --save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \ --seed 222 --log-format simple --log-interval 2
COCO-LM/fairseq/examples/multilingual/finetune_multilingual_model.sh/0
{ "file_path": "COCO-LM/fairseq/examples/multilingual/finetune_multilingual_model.sh", "repo_id": "COCO-LM", "token_count": 509 }
189
# Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019) This page contains pointers to pre-trained models as well as instructions on how to train new models for [our paper](https://arxiv.org/abs/1901.10430). ## Citation: ```bibtex @inproceedings{wu2018pay, title = {Pay Less Attention with Lightweight and Dynamic Convolutions}, author = {Felix Wu and Angela Fan and Alexei Baevski and Yann Dauphin and Michael Auli}, booktitle = {International Conference on Learning Representations}, year = {2019}, url = {https://arxiv.org/abs/1901.10430}, } ``` ## Translation ### Pre-trained models For some datasets we release models without GLUs which are faster at inference. Model | Description | Dataset | Download ---|---|---|--- `lightconv.no_glu.iwslt14.de-en` | LightConv (without GLUs) | [IWSLT14 German-English](https://wit3.fbk.eu/archive/2014-01/texts/de/en/de-en.tgz) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.lightconv.tar.gz) <br> IWSLT14 test: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/iwslt14.de-en.test.tar.bz2) `dynamicconv.no_glu.iwslt14.de-en` | DynamicConv (without GLUs) | [IWSLT14 German-English](https://wit3.fbk.eu/archive/2014-01/texts/de/en/de-en.tgz) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.dynamicconv.tar.gz) <br> IWSLT14 test: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/iwslt14.de-en.test.tar.bz2) `lightconv.no_glu.wmt16.en-de` | LightConv (without GLUs) | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv.tar.gz) <br> newstest2014 (shared vocab): <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2) `dynamicconv.no_glu.wmt16.en-de` | DynamicConv (without GLUs) | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv.tar.gz) <br> newstest2014 (shared vocab): <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2) `lightconv.glu.wmt16.en-de` | LightConv | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz) <br> newstest2014 (shared vocab): <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2) `dynamicconv.glu.wmt16.en-de` | DynamicConv | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz) <br> newstest2014 (shared vocab): <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2) `lightconv.glu.wmt14.en-fr` | LightConv | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.lightconv-glu.tar.gz) <br> newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.en-fr.joined-dict.newstest2014.tar.bz2) `dynamicconv.glu.wmt14.en-fr` | DynamicConv | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.dynamicconv-glu.tar.gz) <br> newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.en-fr.joined-dict.newstest2014.tar.bz2) `lightconv.glu.wmt17.zh-en` | LightConv | [WMT17 Chinese-English](http://statmt.org/wmt17/translation-task.html#Download) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.lightconv-glu.tar.gz) <br> newstest2017: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt17.zh-en.newstest2017.tar.bz2) `dynamicconv.glu.wmt17.zh-en` | DynamicConv | [WMT17 Chinese-English](http://statmt.org/wmt17/translation-task.html#Download) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.dynamicconv-glu.tar.gz) <br> newstest2017: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt17.zh-en.newstest2017.tar.bz2) ### Memory-Efficient CUDA Kernels Since the PyTorch implementations of Light/Dynamic conv are quite memory intensive, we have developed CUDA kernels that implement the light and dynamic convolution operator in a memory-efficient and performant manner. For large sequence lengths, these kernels save about 50% memory compared to the PyTorch equivalent. To install the kernels, use the commands below. Once installed, they will automatically be used in place of the PyTorch implementations whenever a light or dynamic convolution is used. ```sh # to install lightconv cd fairseq/modules/lightconv_layer python cuda_function_gen.py python setup.py install # to install dynamicconv cd fairseq/modules/dynamicconv_layer python cuda_function_gen.py python setup.py install ``` ### Example usage (torch.hub) We require a few additional Python dependencies for preprocessing: ```bash pip install sacremoses subword_nmt ``` Interactive translation via PyTorch Hub: ```python import torch # List available models torch.hub.list('pytorch/fairseq') # [..., 'lightconv.glu.wmt17.zh-en', ... ] # Load a transformer trained on WMT'16 En-De zh2en = torch.hub.load('pytorch/fairseq', 'lightconv.glu.wmt17.zh-en', tokenizer='moses', bpe='subword_nmt') # The underlying model is available under the *models* attribute assert isinstance(zh2en.models[0], fairseq.models.lightconv.LightConvModel) # Translate a sentence zh2en.translate('你好 世界') # 'Hello World' ``` Loading custom models: ```python from fairseq.models.lightconv import LightConvModel en2fr = LightConvModel.from_pretrained( '/path/to/checkpoints', checkpoint_file='checkpoint_best.pt', data_name_or_path='data-bin/wmt14_en_fr', bpe='subword_nmt', bpe_codes='data-bin/wmt14_en_fr/en.code' ) en2fr.translate('Hello world!') # 'Bonjour le monde' ``` ### Preprocessing the training datasets Please follow the instructions in [`examples/translation/README.md`](../translation/README.md) to preprocess the data. ### Training and evaluation options: To use the model without GLU, please set `--encoder-glu 0 --decoder-glu 0`. For LightConv, please use `--encoder-conv-type lightweight --decoder-conv-type lightweight`, otherwise the default is DynamicConv. For best BLEU results, lenpen may need to be manually tuned. To use the CUDA kernels, first install the PyTorch modules using the commands above. Once the CUDA modules are installed, they will automatically be used instead of the PyTorch modules. ### IWSLT14 De-En Training and evaluating DynamicConv (without GLU) on a GPU: ```sh # Training SAVE="save/dynamic_conv_iwslt" mkdir -p $SAVE CUDA_VISIBLE_DEVICES=0 $(which fairseq-train) data-bin/iwslt14.tokenized.de-en \ --clip-norm 0 --optimizer adam --lr 0.0005 \ --source-lang de --target-lang en --max-tokens 4000 --no-progress-bar \ --log-interval 100 --stop-min-lr '1e-09' --weight-decay 0.0001 \ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ --lr-scheduler inverse_sqrt \ --ddp-backend=legacy_ddp \ --max-update 50000 --warmup-updates 4000 --warmup-init-lr '1e-07' \ --adam-betas '(0.9, 0.98)' --keep-last-epochs 10 \ -a lightconv_iwslt_de_en --save-dir $SAVE \ --dropout 0.3 --attention-dropout 0.1 --weight-dropout 0.1 \ --encoder-glu 0 --decoder-glu 0 python scripts/average_checkpoints.py --inputs $SAVE \ --num-epoch-checkpoints 10 --output "${SAVE}/checkpoint_last10_avg.pt" # Evaluation CUDA_VISIBLE_DEVICES=0 fairseq-generate data-bin/iwslt14.tokenized.de-en --path "${SAVE}/checkpoint_last10_avg.pt" --batch-size 128 --beam 4 --remove-bpe --lenpen 1 --gen-subset test --quiet ``` ### WMT16 En-De Training and evaluating DynamicConv (with GLU) on WMT16 En-De using cosine scheduler on one machine with 8 V100 GPUs: ```sh # Training SAVE="save/dynamic_conv_wmt16en2de" mkdir -p $SAVE python -m torch.distributed.launch --nproc_per_node 8 $(which fairseq-train) \ data-bin/wmt16_en_de_bpe32k --fp16 --log-interval 100 --no-progress-bar \ --max-update 30000 --share-all-embeddings --optimizer adam \ --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --weight-decay 0.0 \ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ --stop-min-lr 1e-09 --update-freq 16 --attention-dropout 0.1 --keep-last-epochs 10 \ --ddp-backend=legacy_ddp --max-tokens 3584 \ --lr-scheduler cosine --warmup-init-lr 1e-7 --warmup-updates 10000 \ --lr-shrink 1 --lr 0.001 --min-lr 1e-7 --warmup-init-lr 1e-07 \ --t-mult 1 --lr-period-updates 20000 \ --arch lightconv_wmt_en_de_big --save-dir $SAVE \ --dropout 0.3 --attention-dropout 0.1 --weight-dropout 0.1 \ --encoder-glu 1 --decoder-glu 1 # Evaluation CUDA_VISIBLE_DEVICES=0 fairseq-generate data-bin/wmt16.en-de.joined-dict.newstest2014 --path "${SAVE}/checkpoint_best.pt" --batch-size 128 --beam 5 --remove-bpe --lenpen 0.5 --gen-subset test > wmt16_gen.txt bash scripts/compound_split_bleu.sh wmt16_gen.txt ``` ### WMT14 En-Fr Training DynamicConv (with GLU) on WMT14 En-Fr using cosine scheduler on one machine with 8 V100 GPUs: ```sh # Training SAVE="save/dynamic_conv_wmt14en2fr" mkdir -p $SAVE python -m torch.distributed.launch --nproc_per_node 8 $(which fairseq-train) \ data-bin/wmt14_en_fr --fp16 --log-interval 100 --no-progress-bar \ --max-update 30000 --share-all-embeddings --optimizer adam \ --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --weight-decay 0.0 \ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ --stop-min-lr 1e-09 --update-freq 16 --attention-dropout 0.1 --keep-last-epochs 10 \ --ddp-backend=legacy_ddp --max-tokens 3584 \ --lr-scheduler cosine --warmup-init-lr 1e-7 --warmup-updates 10000 \ --lr-shrink 1 --lr 0.001 --min-lr 1e-7 --warmup-init-lr 1e-07 \ --t-mult 1 --lr-period-updates 70000 \ --arch lightconv_wmt_en_fr_big --save-dir $SAVE \ --dropout 0.1 --attention-dropout 0.1 --weight-dropout 0.1 \ --encoder-glu 1 --decoder-glu 1 # Evaluation CUDA_VISIBLE_DEVICES=0 fairseq-generate data-bin/wmt14.en-fr.joined-dict.newstest2014 --path "${SAVE}/checkpoint_best.pt" --batch-size 128 --beam 5 --remove-bpe --lenpen 0.9 --gen-subset test ```
COCO-LM/fairseq/examples/pay_less_attention_paper/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/pay_less_attention_paper/README.md", "repo_id": "COCO-LM", "token_count": 4319 }
190
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os import numpy as np import torch from fairseq.data import ( Dictionary, IdDataset, ListDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, RawLabelDataset, RightPadDataset, SortDataset, data_utils, encoders, ) from fairseq.tasks import LegacyFairseqTask, register_task @register_task("commonsense_qa") class CommonsenseQATask(LegacyFairseqTask): """Task to finetune RoBERTa for Commonsense QA.""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", metavar="DIR", help="path to data directory; we load <split>.jsonl" ) parser.add_argument( "--init-token", type=int, default=None, help="add token at the beginning of each batch item", ) parser.add_argument("--num-classes", type=int, default=5) def __init__(self, args, vocab): super().__init__(args) self.vocab = vocab self.mask = vocab.add_symbol("<mask>") self.bpe = encoders.build_bpe(args) @classmethod def load_dictionary(cls, filename): """Load the dictionary from the filename Args: filename (str): the filename """ dictionary = Dictionary.load(filename) dictionary.add_symbol("<mask>") return dictionary @classmethod def setup_task(cls, args, **kwargs): assert ( args.criterion == "sentence_ranking" ), "Must set --criterion=sentence_ranking" # load data and label dictionaries vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt")) print("| dictionary: {} types".format(len(vocab))) return cls(args, vocab) def load_dataset( self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs ): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ def binarize(s, append_bos=False): if self.bpe is not None: s = self.bpe.encode(s) tokens = self.vocab.encode_line( s, append_eos=True, add_if_not_exist=False, ).long() if append_bos and self.args.init_token is not None: tokens = torch.cat([tokens.new([self.args.init_token]), tokens]) return tokens if data_path is None: data_path = os.path.join(self.args.data, split + ".jsonl") if not os.path.exists(data_path): raise FileNotFoundError("Cannot find data: {}".format(data_path)) src_tokens = [[] for i in range(self.args.num_classes)] src_lengths = [[] for i in range(self.args.num_classes)] labels = [] with open(data_path) as h: for line in h: example = json.loads(line.strip()) if "answerKey" in example: label = ord(example["answerKey"]) - ord("A") labels.append(label) question = example["question"]["stem"] assert len(example["question"]["choices"]) == self.args.num_classes # format: `<s> Q: Where would I not want a fox? </s> A: hen house </s>` question = "Q: " + question question_toks = binarize(question, append_bos=True) for i, choice in enumerate(example["question"]["choices"]): src = "A: " + choice["text"] src_bin = torch.cat([question_toks, binarize(src)]) src_tokens[i].append(src_bin) src_lengths[i].append(len(src_bin)) assert all( len(src_tokens[0]) == len(src_tokens[i]) for i in range(self.args.num_classes) ) assert len(src_tokens[0]) == len(src_lengths[0]) assert len(labels) == 0 or len(labels) == len(src_tokens[0]) for i in range(self.args.num_classes): src_lengths[i] = np.array(src_lengths[i]) src_tokens[i] = ListDataset(src_tokens[i], src_lengths[i]) src_lengths[i] = ListDataset(src_lengths[i]) dataset = { "id": IdDataset(), "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_tokens[0], reduce=True), } for i in range(self.args.num_classes): dataset.update( { "net_input{}".format(i + 1): { "src_tokens": RightPadDataset( src_tokens[i], pad_idx=self.source_dictionary.pad(), ), "src_lengths": src_lengths[i], } } ) if len(labels) > 0: dataset.update({"target": RawLabelDataset(labels)}) dataset = NestedDictionaryDataset( dataset, sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])], ) with data_utils.numpy_seed(self.args.seed): dataset = SortDataset( dataset, # shuffle sort_order=[np.random.permutation(len(dataset))], ) print("| Loaded {} with {} samples".format(split, len(dataset))) self.datasets[split] = dataset return self.datasets[split] def build_model(self, args): from fairseq import models model = models.build_model(args, self) model.register_classification_head( "sentence_classification_head", num_classes=1, ) return model @property def source_dictionary(self): return self.vocab @property def target_dictionary(self): return self.vocab
COCO-LM/fairseq/examples/roberta/commonsense_qa/commonsense_qa_task.py/0
{ "file_path": "COCO-LM/fairseq/examples/roberta/commonsense_qa/commonsense_qa_task.py", "repo_id": "COCO-LM", "token_count": 3041 }
191
# Scaling Neural Machine Translation (Ott et al., 2018) This page includes instructions for reproducing results from the paper [Scaling Neural Machine Translation (Ott et al., 2018)](https://arxiv.org/abs/1806.00187). ## Pre-trained models Model | Description | Dataset | Download ---|---|---|--- `transformer.wmt14.en-fr` | Transformer <br> ([Ott et al., 2018](https://arxiv.org/abs/1806.00187)) | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | model: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2) <br> newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.en-fr.joined-dict.newstest2014.tar.bz2) `transformer.wmt16.en-de` | Transformer <br> ([Ott et al., 2018](https://arxiv.org/abs/1806.00187)) | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2) <br> newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2) ## Training a new model on WMT'16 En-De First download the [preprocessed WMT'16 En-De data provided by Google](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8). Then: ##### 1. Extract the WMT'16 En-De data ```bash TEXT=wmt16_en_de_bpe32k mkdir -p $TEXT tar -xzvf wmt16_en_de.tar.gz -C $TEXT ``` ##### 2. Preprocess the dataset with a joined dictionary ```bash fairseq-preprocess \ --source-lang en --target-lang de \ --trainpref $TEXT/train.tok.clean.bpe.32000 \ --validpref $TEXT/newstest2013.tok.bpe.32000 \ --testpref $TEXT/newstest2014.tok.bpe.32000 \ --destdir data-bin/wmt16_en_de_bpe32k \ --nwordssrc 32768 --nwordstgt 32768 \ --joined-dictionary \ --workers 20 ``` ##### 3. Train a model ```bash fairseq-train \ data-bin/wmt16_en_de_bpe32k \ --arch transformer_vaswani_wmt_en_de_big --share-all-embeddings \ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ --lr 0.0005 --lr-scheduler inverse_sqrt --warmup-updates 4000 --warmup-init-lr 1e-07 \ --dropout 0.3 --weight-decay 0.0 \ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ --max-tokens 3584 \ --fp16 ``` Note that the `--fp16` flag requires you have CUDA 9.1 or greater and a Volta GPU or newer. ***IMPORTANT:*** You will get better performance by training with big batches and increasing the learning rate. If you want to train the above model with big batches (assuming your machine has 8 GPUs): - add `--update-freq 16` to simulate training on 8x16=128 GPUs - increase the learning rate; 0.001 works well for big batches ##### 4. Evaluate Now we can evaluate our trained model. Note that the original [Attention Is All You Need](https://arxiv.org/abs/1706.03762) paper used a couple tricks to achieve better BLEU scores. We use these same tricks in the Scaling NMT paper, so it's important to apply them when reproducing our results. First, use the [average_checkpoints.py](/scripts/average_checkpoints.py) script to average the last few checkpoints. Averaging the last 5-10 checkpoints is usually good, but you may need to adjust this depending on how long you've trained: ```bash python scripts/average_checkpoints \ --inputs /path/to/checkpoints \ --num-epoch-checkpoints 10 \ --output checkpoint.avg10.pt ``` Next, generate translations using a beam width of 4 and length penalty of 0.6: ```bash fairseq-generate \ data-bin/wmt16_en_de_bpe32k \ --path checkpoint.avg10.pt \ --beam 4 --lenpen 0.6 --remove-bpe > gen.out ``` Finally, we apply the ["compound splitting" script](/scripts/compound_split_bleu.sh) to add spaces around dashes. For example "Café-Liebhaber" would become three tokens: "Café - Liebhaber". This typically results in larger BLEU scores, but it is not appropriate to compare these inflated scores to work which does not include this trick. This trick was used in the [original AIAYN code](https://github.com/tensorflow/tensor2tensor/blob/fc9335c0203685cbbfe2b30c92db4352d8f60779/tensor2tensor/utils/get_ende_bleu.sh), so we used it in the Scaling NMT paper as well. That said, it's strongly advised to report [sacrebleu](https://github.com/mjpost/sacrebleu) scores instead. To compute "compound split" tokenized BLEU (not recommended!): ```bash bash scripts/compound_split_bleu.sh gen.out # BLEU4 = 29.29, 60.3/35.0/22.8/15.3 (BP=1.000, ratio=1.004, syslen=64763, reflen=64496) ``` To compute detokenized BLEU with sacrebleu (preferred): ```bash bash scripts/sacrebleu.sh wmt14/full en de gen.out # BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt14/full+tok.13a+version.1.4.3 = 28.6 59.3/34.3/22.1/14.9 (BP = 1.000 ratio = 1.016 hyp_len = 63666 ref_len = 62688) ``` ## Citation ```bibtex @inproceedings{ott2018scaling, title = {Scaling Neural Machine Translation}, author = {Ott, Myle and Edunov, Sergey and Grangier, David and Auli, Michael}, booktitle = {Proceedings of the Third Conference on Machine Translation (WMT)}, year = 2018, } ```
COCO-LM/fairseq/examples/scaling_nmt/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/scaling_nmt/README.md", "repo_id": "COCO-LM", "token_count": 1960 }
192
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): model_name = file[: file.find(".py")] importlib.import_module( "examples.simultaneous_translation.models." + model_name )
COCO-LM/fairseq/examples/simultaneous_translation/models/__init__.py/0
{ "file_path": "COCO-LM/fairseq/examples/simultaneous_translation/models/__init__.py", "repo_id": "COCO-LM", "token_count": 174 }
193
import importlib import os for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): task_name = file[: file.find(".py")] importlib.import_module("examples.speech_recognition.tasks." + task_name)
COCO-LM/fairseq/examples/speech_recognition/tasks/__init__.py/0
{ "file_path": "COCO-LM/fairseq/examples/speech_recognition/tasks/__init__.py", "repo_id": "COCO-LM", "token_count": 108 }
194
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os from fairseq import checkpoint_utils, utils, tasks from . import DEFAULT_EOS, GET, SEND from .agent import Agent class SimulTransAgent(Agent): def __init__(self, args): # Load Model self.load_model(args) # build word spliter self.build_word_splitter(args) self.max_len = args.max_len self.eos = DEFAULT_EOS @staticmethod def add_args(parser): parser.add_argument( "--model-path", type=str, required=True, help="path to your pretrained model.", ) parser.add_argument( "--data-bin", type=str, required=True, help="Path of data binary" ) parser.add_argument( "--user-dir", type=str, default="example/simultaneous_translation", help="User directory for simultaneous translation", ) parser.add_argument( "--src-splitter-type", type=str, default=None, help="Subword splitter type for source text", ) parser.add_argument( "--tgt-splitter-type", type=str, default=None, help="Subword splitter type for target text", ) parser.add_argument( "--src-splitter-path", type=str, default=None, help="Subword splitter model path for source text", ) parser.add_argument( "--tgt-splitter-path", type=str, default=None, help="Subword splitter model path for target text", ) parser.add_argument( "--max-len", type=int, default=150, help="Maximum length difference between source and target prediction", ) parser.add_argument( "--model-overrides", default="{}", type=str, metavar="DICT", help="A dictionary used to override model args at generation " "that were used during model training", ) # fmt: on return parser def load_dictionary(self, task): raise NotImplementedError def load_model(self, args): args.user_dir = os.path.join(os.path.dirname(__file__), "..", "..") utils.import_user_module(args) filename = args.model_path if not os.path.exists(filename): raise IOError("Model file not found: {}".format(filename)) state = checkpoint_utils.load_checkpoint_to_cpu( filename, json.loads(args.model_overrides) ) saved_args = state["args"] saved_args.data = args.data_bin task = tasks.setup_task(saved_args) # build model for ensemble self.model = task.build_model(saved_args) self.model.load_state_dict(state["model"], strict=True) # Set dictionary self.load_dictionary(task) def init_states(self): return { "indices": {"src": [], "tgt": []}, "tokens": {"src": [], "tgt": []}, "segments": {"src": [], "tgt": []}, "steps": {"src": 0, "tgt": 0}, "finished": False, "finish_read": False, "model_states": {}, } def update_states(self, states, new_state): raise NotImplementedError def policy(self, states): # Read and Write policy action = None while action is None: if states["finished"]: # Finish the hypo by sending eos to server return self.finish_action() # Model make decision given current states decision = self.model.decision_from_states(states) if decision == 0 and not self.finish_read(states): # READ action = self.read_action(states) else: # WRITE action = self.write_action(states) # None means we make decision again but not sending server anything # This happened when read a buffered token # Or predict a subword return action def finish_read(self, states): raise NotImplementedError def write_action(self, states): token, index = self.model.predict_from_states(states) if ( index == self.dict["tgt"].eos() or len(states["tokens"]["tgt"]) > self.max_len ): # Finish this sentence is predict EOS states["finished"] = True end_idx_last_full_word = self._target_length(states) else: states["tokens"]["tgt"] += [token] end_idx_last_full_word = self.word_splitter["tgt"].end_idx_last_full_word( states["tokens"]["tgt"] ) self._append_indices(states, [index], "tgt") if end_idx_last_full_word > states["steps"]["tgt"]: # Only sent detokenized full words to the server word = self.word_splitter["tgt"].merge( states["tokens"]["tgt"][states["steps"]["tgt"] : end_idx_last_full_word] ) states["steps"]["tgt"] = end_idx_last_full_word states["segments"]["tgt"] += [word] return {"key": SEND, "value": word} else: return None def read_action(self, states): return {"key": GET, "value": None} def finish_action(self): return {"key": SEND, "value": DEFAULT_EOS} def reset(self): pass def finish_eval(self, states, new_state): if len(new_state) == 0 and len(states["indices"]["src"]) == 0: return True return False def _append_indices(self, states, new_indices, key): states["indices"][key] += new_indices def _target_length(self, states): return len(states["tokens"]["tgt"])
COCO-LM/fairseq/examples/speech_to_text/simultaneous_translation/agents/simul_trans_agent.py/0
{ "file_path": "COCO-LM/fairseq/examples/speech_to_text/simultaneous_translation/agents/simul_trans_agent.py", "repo_id": "COCO-LM", "token_count": 2930 }
195
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from dataclasses import dataclass, field from typing import List, Optional, Tuple import torch from fairseq import utils from fairseq.data import ( Dictionary, TokenBlockDataset, data_utils, iterators, ) from fairseq.dataclass import FairseqDataclass from fairseq.distributed import utils as dist_utils from fairseq.tasks import FairseqTask, register_task from omegaconf import II logger = logging.getLogger(__name__) @dataclass class TruncatedBPTTLMConfig(FairseqDataclass): data: str = field(default="???", metadata={"help": "path to data directory"}) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sequence"}, ) batch_size: int = II("dataset.batch_size") # Some models use *max_target_positions* to know how many positional # embeddings to learn. We use II(...) to make it default to # *tokens_per_sample*, but in principle there could be more positional # embeddings than tokens in a single batch. This may also be irrelevant for # custom model implementations. max_target_positions: int = II("task.tokens_per_sample") # these will be populated automatically if not provided data_parallel_rank: Optional[int] = None data_parallel_size: Optional[int] = None @register_task("truncated_bptt_lm", dataclass=TruncatedBPTTLMConfig) class TruncatedBPTTLMTask(FairseqTask): def __init__(self, cfg: TruncatedBPTTLMConfig): super().__init__(cfg) if cfg.data_parallel_rank is None or cfg.data_parallel_size is None: if torch.distributed.is_initialized(): cfg.data_parallel_rank = dist_utils.get_data_parallel_rank() cfg.data_parallel_size = dist_utils.get_data_parallel_world_size() else: cfg.data_parallel_rank = 0 cfg.data_parallel_size = 1 # load the dictionary paths = utils.split_paths(cfg.data) assert len(paths) > 0 self.dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(self.dictionary))) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test)""" # support sharded datasets paths = utils.split_paths(self.cfg.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) # each element of *data* will be a tensorized line from the original # text dataset, similar to ``open(split_path).readlines()`` data = data_utils.load_indexed_dataset( split_path, self.dictionary, combine=combine ) if data is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) # this is similar to ``data.view(-1).split(tokens_per_sample)`` data = TokenBlockDataset( data, data.sizes, block_size=self.cfg.tokens_per_sample, pad=None, # unused eos=None, # unused break_mode="none", ) self.datasets[split] = TruncatedBPTTDataset( data=data, bsz_per_shard=self.cfg.batch_size, shard_id=self.cfg.data_parallel_rank, num_shards=self.cfg.data_parallel_size, ) def dataset(self, split): return self.datasets[split] def get_batch_iterator( self, dataset, num_workers=0, epoch=1, data_buffer_size=0, **kwargs ): return iterators.EpochBatchIterator( dataset=dataset, collate_fn=self._collate_fn, num_workers=num_workers, epoch=epoch, buffer_size=data_buffer_size, # we don't use the batching functionality from EpochBatchIterator; # instead every item in *dataset* is a whole batch batch_sampler=[[i] for i in range(len(dataset))], disable_shuffling=True, ) def _collate_fn(self, items: List[List[torch.Tensor]]): # we don't use fairseq's batching functionality, so we expect a single # Tensor of type List[torch.Tensor] assert len(items) == 1 # item will have shape B x T (the last batch may have length < T) id, item = items[0] item = data_utils.collate_tokens(item, pad_idx=self.source_dictionary.pad()) B, T = item.size() # shift item one position over and append a padding token for the target target = torch.nn.functional.pad( item[:, 1:], (0, 1, 0, 0), value=self.target_dictionary.pad() ) # fairseq expects batches to have the following structure return { "id": torch.tensor([id]*item.size(0)), "net_input": { "src_tokens": item, }, "target": target, "nsentences": item.size(0), "ntokens": item.numel(), } def build_dataset_for_inference( self, src_tokens: List[torch.Tensor], src_lengths: List[int], **kwargs ) -> torch.utils.data.Dataset: eos = self.source_dictionary.eos() dataset = TokenBlockDataset( src_tokens, src_lengths, block_size=None, # ignored for "eos" break mode pad=self.source_dictionary.pad(), eos=eos, break_mode="eos", ) class Dataset(torch.utils.data.Dataset): def __getitem__(self, i): item = dataset[i] if item[-1] == eos: # remove eos to support generating with a prefix item = item[:-1] return (i, [item]) def __len__(self): return len(dataset) return Dataset() def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): if constraints is not None: raise NotImplementedError # SequenceGenerator doesn't use *src_tokens* directly, we need to # pass the *prefix_tokens* argument instead. if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement(): prefix_tokens = sample["net_input"]["src_tokens"] # begin generation with the end-of-sentence token bos_token = self.source_dictionary.eos() return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token ) def eval_lm_dataloader( self, dataset, max_tokens: Optional[int] = 36000, batch_size: Optional[int] = None, max_positions: Optional[int] = None, num_shards: int = 1, shard_id: int = 0, num_workers: int = 1, data_buffer_size: int = 10, context_window: int = 0, ): if context_window > 0: raise NotImplementedError( "Transformer-XL doesn't need --context-window, try " "--model-overrides '{\"mem_len\":42}' instead " ) return self.get_batch_iterator( dataset=dataset, max_tokens=max_tokens, max_sentences=batch_size, max_positions=max_positions, ignore_invalid_inputs=True, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, data_buffer_size=data_buffer_size, ).next_epoch_itr(shuffle=False) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary class TruncatedBPTTDataset(torch.utils.data.Dataset): def __init__( self, data: List[torch.Tensor], # ordered list of items bsz_per_shard, # number of items processed per GPUs per forward shard_id, # current GPU ID num_shards, # number of GPUs ): super().__init__() self.data = data def batchify(data, bsz): # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).contiguous() return data # total number of sequences processed by all GPUs in each forward pass global_batch_size = bsz_per_shard * num_shards """ With a 16 item dataset, bsz_per_shard=2 and num_shards=3, *indices* might look like: indices = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]] The size of the TruncatedBPTTDataset instance will be 2, and shard 1 will see items: [(0, [data[4], data[6]]), (1, [data[5], data[7]])] """ indices = batchify(torch.arange(len(data)), global_batch_size) assert indices.size(0) == global_batch_size self.my_indices = indices[ shard_id * bsz_per_shard : (shard_id + 1) * bsz_per_shard ] assert self.my_indices.size(0) == bsz_per_shard def __len__(self): return self.my_indices.size(1) def __getitem__(self, i) -> Tuple[int, List[torch.Tensor]]: return (i, [self.data[idx] for idx in self.my_indices[:, i]])
COCO-LM/fairseq/examples/truncated_bptt/truncated_bptt_lm_task.py/0
{ "file_path": "COCO-LM/fairseq/examples/truncated_bptt/truncated_bptt_lm_task.py", "repo_id": "COCO-LM", "token_count": 4667 }
196
# @package _group_ common: fp16: true log_format: json log_interval: 200 checkpoint: save_interval_updates: 25000 keep_interval_updates: 1 no_epoch_checkpoints: true task: _name: audio_pretraining data: ??? max_sample_size: 250000 min_sample_size: 32000 normalize: false dataset: num_workers: 6 max_tokens: 1400000 skip_invalid_size_inputs_valid_test: true distributed_training: distributed_world_size: 64 ddp_backend: legacy_ddp criterion: _name: wav2vec infonce: true log_keys: ["prob_perplexity","code_perplexity","temp"] loss_weights: [0.1, 10] optimization: max_update: 400000 lr: [0.0005] optimizer: _name: adam adam_betas: (0.9,0.98) adam_eps: 1e-06 weight_decay: 0.01 lr_scheduler: _name: polynomial_decay warmup_updates: 32000 model: _name: wav2vec2 quantize_targets: true final_dim: 256 encoder_layerdrop: 0.05 dropout_input: 0.1 dropout_features: 0.1 feature_grad_mult: 0.1 encoder_embed_dim: 768
COCO-LM/fairseq/examples/wav2vec/config/pretraining/wav2vec2_base_librispeech.yaml/0
{ "file_path": "COCO-LM/fairseq/examples/wav2vec/config/pretraining/wav2vec2_base_librispeech.yaml", "repo_id": "COCO-LM", "token_count": 422 }
197
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np import torch from fairseq.data import Dictionary, FairseqDataset from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("dummy_mt") class DummyMTTask(LegacyFairseqTask): @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("--dict-size", default=49996, type=int) parser.add_argument("--dataset-size", default=100000, type=int) parser.add_argument("--src-len", default=30, type=int) parser.add_argument("--tgt-len", default=30, type=int) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed dictionary.pad_to_multiple_(8) # often faster if divisible by 8 self.dummy_src = torch.arange(args.src_len + 1) + dictionary.pad() + 1 self.dummy_tgt = torch.arange(args.tgt_len + 1) + dictionary.pad() + 1 @classmethod def setup_task(cls, args, **kwargs): """Setup the task. """ dictionary = Dictionary() for i in range(args.dict_size): dictionary.add_symbol("word{}".format(i)) logger.info("dictionary: {} types".format(len(dictionary))) args.max_source_positions = args.src_len + dictionary.pad() + 2 args.max_target_positions = args.tgt_len + dictionary.pad() + 2 return cls(args, dictionary) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ item_size = max(self.args.src_len, self.args.tgt_len) if self.args.batch_size is not None: bsz = self.args.batch_size else: bsz = max(1, self.args.max_tokens // item_size) tgt = torch.stack([self.dummy_tgt for _ in range(bsz)]) self.datasets[split] = DummyDataset( { "id": 1, "net_input": { "src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), "src_lengths": torch.full( (bsz,), self.args.src_len, dtype=torch.long ), "prev_output_tokens": tgt.clone(), }, "target": tgt, "nsentences": bsz, "ntokens": bsz * self.args.tgt_len, }, num_items=self.args.dataset_size, item_size=item_size, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary class DummyDataset(FairseqDataset): def __init__(self, batch, num_items, item_size): super().__init__() self.batch = batch self.num_items = num_items self.item_size = item_size def __getitem__(self, index): return index def __len__(self): return self.num_items def collater(self, samples): return self.batch @property def sizes(self): return np.array([self.item_size] * self.num_items) def num_tokens(self, index): return self.item_size def size(self, index): return self.item_size def ordered_indices(self): return np.arange(self.num_items) @property def supports_prefetch(self): return False
COCO-LM/fairseq/fairseq/benchmark/dummy_mt.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/benchmark/dummy_mt.py", "repo_id": "COCO-LM", "token_count": 1684 }
198
# @package _group_ activation_fn: "relu" dropout: 0.1 attention_dropout: 0.1 activation_dropout: 0.0 relu_dropout: 0.0 decoder_embed_dim: 512 decoder_output_dim: 512 decoder_input_dim: 512 decoder_ffn_embed_dim: 4096 decoder_layers: 12 decoder_attention_heads: 16 decoder_normalize_before: true no_decoder_final_norm: true adaptive_softmax_cutoff: null adaptive_softmax_dropout: 0 adaptive_softmax_factor: 4 no_token_positional_embeddings: false share_decoder_input_output_embed: false character_embeddings: false character_filters: "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]" character_embedding_dim: 4 char_embedder_highway_layers: 2 adaptive_input: false adaptive_input_factor: 4 adaptive_input_cutoff: null tie_adaptive_weights: false tie_adaptive_proj: false decoder_learned_pos: false decoder_layerdrop: 0 decoder_layers_to_keep: null layernorm_embedding: false no_scale_embedding: false quant_noise_pq: 0 quant_noise_pq_block_size: 8 quant_noise_scalar: 0
COCO-LM/fairseq/fairseq/config/model/transformer_lm/transformer_lm_gbw.yaml/0
{ "file_path": "COCO-LM/fairseq/fairseq/config/model/transformer_lm/transformer_lm_gbw.yaml", "repo_id": "COCO-LM", "token_count": 389 }
199
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from examples.simultaneous_translation.utils.latency import LatencyTraining from fairseq.criterions import register_criterion from fairseq.criterions.label_smoothed_cross_entropy import ( LabelSmoothedCrossEntropyCriterion, ) @register_criterion("latency_augmented_label_smoothed_cross_entropy") class LatencyAugmentedLabelSmoothedCrossEntropyCriterion( LabelSmoothedCrossEntropyCriterion ): def __init__( self, task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy, latency_weight_avg, latency_weight_avg_type, latency_weight_var, latency_weight_var_type, mass_preservation, average_method, ): super().__init__( task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy ) self.eps = label_smoothing self.latency_weight_avg = latency_weight_avg self.latency_weight_avg_type = latency_weight_avg_type self.latency_weight_var = latency_weight_var self.latency_weight_var_type = latency_weight_var_type self.mass_preservation = mass_preservation self.average_method = average_method self.latency_train = LatencyTraining( self.latency_weight_avg, self.latency_weight_var, self.latency_weight_avg_type, self.latency_weight_var_type, self.mass_preservation, self.average_method, ) @staticmethod def add_args(parser): super( LatencyAugmentedLabelSmoothedCrossEntropyCriterion, LatencyAugmentedLabelSmoothedCrossEntropyCriterion, ).add_args(parser) # fmt: off """Add criterion-specific arguments to the parser.""" parser.add_argument( "--label-smoothing", default=0.0, type=float, metavar="D", help="epsilon for label smoothing, 0 means no label smoothing", ) parser.add_argument( "--ignore_prefix_size", default=0, type=int, help="ignore first N tokens", ) parser.add_argument( "--report-accuracy", default=False, type=bool, help="report accuracy metric", ) parser.add_argument("--latency-weight-avg", default=0., type=float, metavar='D', help="Average loss weight") parser.add_argument("--latency-weight-var", default=0., type=float, metavar='D', help="Variance loss weight") parser.add_argument("--latency-weight-avg-type", default="differentiable_average_lagging", help="Statistics for Average loss type") parser.add_argument("--latency-weight-var-type", default="variance_delay", help="Statistics for variance loss type") parser.add_argument("--average-method", default="weighted_average", help="Average loss type") # fmt: on def compute_loss(self, model, net_output, sample, reduce=True): # Compute cross entropy loss first loss, nll_loss = super().compute_loss(model, net_output, sample, reduce) # Obtain the expected alignment attn_list = [item["alpha"] for item in net_output[-1]["attn_list"]] target_padding_mask = model.get_targets(sample, net_output).eq(self.padding_idx) source_padding_mask = net_output[-1].get("encoder_padding_mask", None) # Get latency loss latency_loss = self.latency_train.loss( attn_list, source_padding_mask, target_padding_mask ) loss += latency_loss return loss, nll_loss
COCO-LM/fairseq/fairseq/criterions/label_smoothed_cross_entropy_latency_augmented.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/criterions/label_smoothed_cross_entropy_latency_augmented.py", "repo_id": "COCO-LM", "token_count": 1785 }
200
import numpy as np from fairseq.data.audio.feature_transforms import ( AudioFeatureTransform, register_audio_feature_transform, ) @register_audio_feature_transform("global_cmvn") class GlobalCMVN(AudioFeatureTransform): """Global CMVN (cepstral mean and variance normalization). The global mean and variance need to be pre-computed and stored in NumPy format (.npz).""" @classmethod def from_config_dict(cls, config=None): _config = {} if config is None else config return GlobalCMVN(_config.get("stats_npz_path")) def __init__(self, stats_npz_path): self.stats_npz_path = stats_npz_path stats = np.load(stats_npz_path) self.mean, self.std = stats["mean"], stats["std"] def __repr__(self): return self.__class__.__name__ + f'(stats_npz_path="{self.stats_npz_path}")' def __call__(self, x): x = np.subtract(x, self.mean) x = np.divide(x, self.std) return x
COCO-LM/fairseq/fairseq/data/audio/feature_transforms/global_cmvn.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/audio/feature_transforms/global_cmvn.py", "repo_id": "COCO-LM", "token_count": 391 }
201
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os from fairseq import registry build_tokenizer, register_tokenizer, TOKENIZER_REGISTRY, _ = registry.setup_registry( "--tokenizer", default=None, ) build_bpe, register_bpe, BPE_REGISTRY, _ = registry.setup_registry( "--bpe", default=None, ) # automatically import any Python files in the encoders/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("fairseq.data.encoders." + module)
COCO-LM/fairseq/fairseq/data/encoders/__init__.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/encoders/__init__.py", "repo_id": "COCO-LM", "token_count": 264 }
202
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np import torch.utils.data from fairseq.data import data_utils logger = logging.getLogger(__name__) class EpochListening: """Mixin for receiving updates whenever the epoch increments.""" @property def can_reuse_epoch_itr_across_epochs(self): """ Whether we can reuse the :class:`fairseq.data.EpochBatchIterator` for this dataset across epochs. This needs to return ``False`` if the sample sizes can change across epochs, in which case we may need to regenerate batches at each epoch. If your dataset relies in ``set_epoch`` then you should consider setting this to ``False``. """ return True def set_epoch(self, epoch): """Will receive the updated epoch number at the beginning of the epoch.""" pass class FairseqDataset(torch.utils.data.Dataset, EpochListening): """A dataset that provides helpers for batching.""" def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch suitable for forwarding with a Model """ raise NotImplementedError def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" raise NotImplementedError def num_tokens_vec(self, indices): """Return the number of tokens for a set of positions defined by indices. This value is used to enforce ``--max-tokens`` during batching.""" raise NotImplementedError def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" raise NotImplementedError def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" return np.arange(len(self), dtype=np.int64) @property def supports_prefetch(self): """Whether this dataset supports prefetching.""" return False def attr(self, attr: str, index: int): return getattr(self, attr, None) def prefetch(self, indices): """Prefetch the data required for this epoch.""" raise NotImplementedError def get_batch_shapes(self): """ Return a list of valid batch shapes, for example:: [(8, 512), (16, 256), (32, 128)] The first dimension of each tuple is the batch size and can be ``None`` to automatically infer the max batch size based on ``--max-tokens``. The second dimension of each tuple is the max supported length as given by :func:`fairseq.data.FairseqDataset.num_tokens`. This will be used by :func:`fairseq.data.FairseqDataset.batch_by_size` to restrict batch shapes. This is useful on TPUs to avoid too many dynamic shapes (and recompilations). """ return None def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, ): """ Given an ordered set of indices, return batches according to *max_tokens*, *max_sentences* and *required_batch_size_multiple*. """ from fairseq.data import data_utils fixed_shapes = self.get_batch_shapes() if fixed_shapes is not None: def adjust_bsz(bsz, num_tokens): if bsz is None: assert max_tokens is not None, "Must specify --max-tokens" bsz = max_tokens // num_tokens if max_sentences is not None: bsz = min(bsz, max_sentences) elif ( bsz >= required_batch_size_multiple and bsz % required_batch_size_multiple != 0 ): bsz -= bsz % required_batch_size_multiple return bsz fixed_shapes = np.array( [ [adjust_bsz(bsz, num_tokens), num_tokens] for (bsz, num_tokens) in fixed_shapes ] ) try: num_tokens_vec = self.num_tokens_vec(indices).astype('int64') except NotImplementedError: num_tokens_vec = None return data_utils.batch_by_size( indices, num_tokens_fn=self.num_tokens, num_tokens_vec=num_tokens_vec, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, fixed_shapes=fixed_shapes, ) def filter_indices_by_size(self, indices, max_sizes): """ Filter a list of sample indices. Remove those that are longer than specified in *max_sizes*. WARNING: don't update, override method in child classes Args: indices (np.array): original array of sample indices max_sizes (int or list[int] or tuple[int]): max sample size, can be defined separately for src and tgt (then list or tuple) Returns: np.array: filtered sample array list: list of removed indices """ if isinstance(max_sizes, float) or isinstance(max_sizes, int): if hasattr(self, "sizes") and isinstance(self.sizes, np.ndarray): ignored = indices[self.sizes[indices] > max_sizes].tolist() indices = indices[self.sizes[indices] <= max_sizes] elif ( hasattr(self, "sizes") and isinstance(self.sizes, list) and len(self.sizes) == 1 ): ignored = indices[self.sizes[0][indices] > max_sizes].tolist() indices = indices[self.sizes[0][indices] <= max_sizes] else: indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) else: indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) return indices, ignored @property def supports_fetch_outside_dataloader(self): """Whether this dataset supports fetching outside the workers of the dataloader.""" return True class FairseqIterableDataset(torch.utils.data.IterableDataset, EpochListening): """ For datasets that need to be read sequentially, usually because the data is being streamed or otherwise can't be manipulated on a single machine. """ def __iter__(self): raise NotImplementedError
COCO-LM/fairseq/fairseq/data/fairseq_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/fairseq_dataset.py", "repo_id": "COCO-LM", "token_count": 3132 }
203
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict from typing import Callable, Dict, List import numpy as np from . import FairseqDataset def uniform_sampler(x): # Sample from uniform distribution return np.random.choice(x, 1).item() class MultiCorpusSampledDataset(FairseqDataset): """ Stores multiple instances of FairseqDataset together and in every iteration creates a batch by first sampling a dataset according to a specified probability distribution and then getting instances from that dataset. Args: datasets: an OrderedDict of FairseqDataset instances. sampling_func: A function for sampling over list of dataset keys. The default strategy is to sample uniformly. """ def __init__( self, datasets: Dict[str, FairseqDataset], sampling_func: Callable[[List], int] = None, ): super().__init__() assert isinstance(datasets, OrderedDict) self.datasets = datasets if sampling_func is None: sampling_func = uniform_sampler self.sampling_func = sampling_func self.total_num_instances = 0 for _, dataset in datasets.items(): assert isinstance(dataset, FairseqDataset) self.total_num_instances += len(dataset) self._ordered_indices = None def __len__(self): """ Length of this dataset is the sum of individual datasets """ return self.total_num_instances def ordered_indices(self): """ Ordered indices for batching. Here we call the underlying dataset's ordered_indices() so that we get the same random ordering as we would have from using the underlying dataset directly. """ if self._ordered_indices is None: self._ordered_indices = OrderedDict( [ (key, dataset.ordered_indices()) for key, dataset in self.datasets.items() ] ) return np.arange(len(self)) def _map_index_to_dataset(self, key: int, index: int): """ Different underlying datasets have different lengths. In order to ensure we are not accessing an index outside the range of the current dataset size, we wrap around. This function should be called after we have created an ordering for this and all underlying datasets. """ assert ( self._ordered_indices is not None ), "Must call MultiCorpusSampledDataset.ordered_indices() first" mapped_index = index % len(self.datasets[key]) return self._ordered_indices[key][mapped_index] def __getitem__(self, index: int): """ Get the item associated with index from each underlying dataset. Since index is in the range of [0, TotalNumInstances], we need to map the index to the dataset before retrieving the item. """ return OrderedDict( [ (key, dataset[self._map_index_to_dataset(key, index)]) for key, dataset in self.datasets.items() ] ) def collater(self, samples: List[Dict]): """ Generate a mini-batch for this dataset. To convert this into a regular mini-batch we use the following logic: 1. Select a dataset using the specified probability distribution. 2. Call the collater function of the selected dataset. """ if len(samples) == 0: return None selected_key = self.sampling_func(list(self.datasets.keys())) selected_samples = [sample[selected_key] for sample in samples] return self.datasets[selected_key].collater(selected_samples) def num_tokens(self, index: int): """ Return an example's length (number of tokens), used for batching. Here we return the max across all examples at index across all underlying datasets. """ return max( dataset.num_tokens(self._map_index_to_dataset(key, index)) for key, dataset in self.datasets.items() ) def size(self, index: int): """ Return an example's size as a float or tuple. Here we return the max across all underlying datasets. This value is used when filtering a dataset with max-positions. """ return max( dataset.size(self._map_index_to_dataset(key, index)) for key, dataset in self.datasets.items() ) @property def supports_prefetch(self): return all( getattr(dataset, "supports_prefetch", False) for dataset in self.datasets.values() ) def prefetch(self, indices): for key, dataset in self.datasets.items(): dataset.prefetch( [self._map_index_to_dataset(key, index) for index in indices] ) @property def supports_fetch_outside_dataloader(self): return all( self.datasets[key].supports_fetch_outside_dataloader for key in self.datasets )
COCO-LM/fairseq/fairseq/data/multi_corpus_sampled_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/multi_corpus_sampled_dataset.py", "repo_id": "COCO-LM", "token_count": 2181 }
204
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import numpy as np from . import FairseqDataset class RawLabelDataset(FairseqDataset): def __init__(self, labels): super().__init__() self.labels = labels def __getitem__(self, index): return self.labels[index] def __len__(self): return len(self.labels) def collater(self, samples): return torch.tensor(samples) class RawArrayDataset(FairseqDataset): def __init__(self, dataset): super().__init__() self.dataset = dataset if hasattr(dataset, 'sizes'): self._sizes = dataset.sizes else: try: self._sizes = np.array([len(x) for x in self.dataset]) except: self._sizes = np.array([1 for x in self.dataset]) def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset) def collater(self, samples): if hasattr(self.dataset, 'collater'): return self.dataset.collater(samples) else: return default_collate(samples) @property def sizes(self): return self._sizes def num_tokens(self, index): return self.dataset.num_tokens(index) def size(self, index): return self.dataset.size(index)
COCO-LM/fairseq/fairseq/data/raw_label_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/raw_label_dataset.py", "repo_id": "COCO-LM", "token_count": 662 }
205
# cython: language_level=3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from itertools import chain from libc.math cimport ceil cimport cython cimport numpy as np from libc.stdint cimport int32_t, int64_t DTYPE = np.int64 ctypedef int64_t DTYPE_t @cython.boundscheck(False) @cython.wraparound(False) @cython.nonecheck(False) cdef np.ndarray[DTYPE_t, ndim=2] _get_slice_indices_none_mode(np.ndarray[DTYPE_t, ndim=1] sizes, int block_size): cdef DTYPE_t total_size = sizes.sum() cdef DTYPE_t length = <DTYPE_t> ceil(total_size / <double> block_size) cdef np.ndarray[DTYPE_t, ndim=2] slice_indices = np.zeros([length, 2], dtype=DTYPE) cdef DTYPE_t[:, :] slice_indices_view = slice_indices cdef DTYPE_t i cdef DTYPE_t start cdef DTYPE_t end for i in range(length): start = i * block_size end = min(start + block_size, total_size) slice_indices_view[i][0] = start slice_indices_view[i][1] = end return slice_indices cdef np.ndarray[DTYPE_t, ndim=2] _fast_convert_to_np_array(list list_of_list): """ Faster function to convert DTYPE_t list of list. Only fast when there are huge number of rows and low number of columns. """ cdef np.ndarray[DTYPE_t, ndim=1] flat = np.fromiter(chain.from_iterable(list_of_list), DTYPE, -1) return flat.reshape((len(list_of_list), -1)) @cython.boundscheck(False) @cython.wraparound(False) @cython.nonecheck(False) cpdef np.ndarray[DTYPE_t, ndim=2] _get_slice_indices_fast(np.ndarray[DTYPE_t, ndim=1] sizes, str break_mode, int block_size, int document_sep_len): cdef DTYPE_t tok_idx = 0 cdef DTYPE_t sz_idx = 0 cdef DTYPE_t curr_size = 0 cdef DTYPE_t i = 0 cdef DTYPE_t length cdef DTYPE_t total_size cdef DTYPE_t[:] sizes_view = sizes cdef np.ndarray[DTYPE_t, ndim=2] slice_indices cdef list slice_indices_list = [] if break_mode is None or break_mode == 'none': slice_indices = _get_slice_indices_none_mode(sizes, block_size) elif break_mode == 'complete': while sz_idx < len(sizes_view): if curr_size + sizes_view[sz_idx] <= block_size or curr_size == 0: curr_size += sizes_view[sz_idx] sz_idx += 1 else: slice_indices_list.append((tok_idx, tok_idx + curr_size)) tok_idx += curr_size curr_size = 0 if curr_size > 0: slice_indices_list.append((tok_idx, tok_idx + curr_size)) slice_indices = _fast_convert_to_np_array(slice_indices_list) elif break_mode == 'complete_doc': while sz_idx < len(sizes_view): if ( (curr_size + sizes_view[sz_idx] <= block_size or curr_size == 0) # an empty sentence indicates end-of-document: and sizes_view[sz_idx] != document_sep_len ): curr_size += sizes_view[sz_idx] sz_idx += 1 else: # Only keep non-empty documents. if curr_size > 1: slice_indices_list.append((tok_idx, tok_idx + curr_size)) tok_idx += curr_size curr_size = 0 if sizes_view[sz_idx] == document_sep_len: tok_idx += sizes_view[sz_idx] sz_idx += 1 if curr_size > 1: slice_indices_list.append((tok_idx, tok_idx + curr_size)) slice_indices = _fast_convert_to_np_array(slice_indices_list) elif break_mode == 'eos': slice_indices = np.zeros((len(sizes), 2), dtype=DTYPE) cumsum = sizes.cumsum(axis=0) slice_indices[1:, 0] = cumsum[:cumsum.shape[0] - 1] slice_indices[:, 1] = cumsum else: raise ValueError('Invalid break_mode: ' + break_mode) return slice_indices @cython.boundscheck(False) @cython.wraparound(False) @cython.nonecheck(False) cpdef np.ndarray[DTYPE_t, ndim=2] _get_block_to_dataset_index_fast(np.ndarray[DTYPE_t, ndim=1] sizes, np.ndarray[DTYPE_t, ndim=2] slice_indices): cdef DTYPE_t start_ds_idx cdef DTYPE_t start_offset cdef DTYPE_t end_ds_idx cdef DTYPE_t i cdef DTYPE_t s cdef DTYPE_t e cdef DatasetSearcher ds = DatasetSearcher(sizes) cdef np.ndarray[DTYPE_t, ndim=2] block_to_dataset_index = np.zeros([len(slice_indices), 3], dtype=DTYPE) cdef DTYPE_t[:, :] block_to_dataset_index_view = block_to_dataset_index cdef DTYPE_t[:, :] slice_indices_view = slice_indices cdef Py_ssize_t x_max = slice_indices.shape[0] for i in range(x_max): s = slice_indices_view[i][0] e = slice_indices_view[i][1] ds.seek(s) start_ds_idx = ds.current_index start_offset = ds.current_offset if e <= s: end_ds_idx = start_ds_idx else: ds.seek(e - 1) end_ds_idx = ds.current_index block_to_dataset_index_view[i][0] = start_ds_idx # starting index in dataset block_to_dataset_index_view[i][1] = start_offset # starting offset within starting index block_to_dataset_index_view[i][2] = end_ds_idx # ending index in dataset return block_to_dataset_index cdef class DatasetSearcher(object): """Helper for mapping "flat" indices to indices and offsets in an underlying dataset.""" cdef DTYPE_t current_i cdef DTYPE_t current_offset cdef DTYPE_t current_index cdef DTYPE_t[:] sizes def __init__(self, DTYPE_t[:] sizes): self.sizes = sizes self.reset() cdef reset(self): self.current_offset = 0 # offset within current index in underlying dataset self.current_i = 0 # "flat" index self.current_index = 0 # index in underlying dataset @cython.boundscheck(False) @cython.wraparound(False) @cython.nonecheck(False) cdef int step(self, DTYPE_t i): cdef DTYPE_t to_consume cdef DTYPE_t remaining if i < self.current_i: self.reset() if i > self.current_i: to_consume = i - self.current_i remaining = self.sizes[self.current_index] - self.current_offset if remaining > to_consume: self.current_offset += to_consume self.current_i += to_consume else: assert remaining >= 0 self.current_i += remaining self.current_index += 1 self.current_offset = 0 return 1 return 0 @cython.boundscheck(False) @cython.wraparound(False) @cython.nonecheck(False) cdef seek(self, DTYPE_t i): cdef int not_done = 1 while not_done == 1: not_done = self.step(i) assert self.current_i == i
COCO-LM/fairseq/fairseq/data/token_block_utils_fast.pyx/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/token_block_utils_fast.pyx", "repo_id": "COCO-LM", "token_count": 3387 }
206
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Utilities for working with the local dataset cache. This file is adapted from `AllenNLP <https://github.com/allenai/allennlp>`_. and `huggingface <https://github.com/huggingface>`_. """ import fnmatch import json import logging import os import shutil import tarfile import tempfile from functools import partial, wraps from hashlib import sha256 from io import open try: from torch.hub import _get_torch_home torch_cache_home = _get_torch_home() except ImportError: torch_cache_home = os.path.expanduser( os.getenv( "TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch") ) ) default_cache_path = os.path.join(torch_cache_home, "pytorch_fairseq") try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse try: from pathlib import Path PYTORCH_FAIRSEQ_CACHE = Path(os.getenv("PYTORCH_FAIRSEQ_CACHE", default_cache_path)) except (AttributeError, ImportError): PYTORCH_FAIRSEQ_CACHE = os.getenv("PYTORCH_FAIRSEQ_CACHE", default_cache_path) CONFIG_NAME = "config.json" WEIGHTS_NAME = "pytorch_model.bin" logger = logging.getLogger(__name__) # pylint: disable=invalid-name def load_archive_file(archive_file): # redirect to the cache, if necessary try: resolved_archive_file = cached_path(archive_file, cache_dir=None) except EnvironmentError: logger.info( "Archive name '{}' was not found in archive name list. " "We assumed '{}' was a path or URL but couldn't find any file " "associated to this path or URL.".format( archive_file, archive_file, ) ) return None if resolved_archive_file == archive_file: logger.info("loading archive file {}".format(archive_file)) else: logger.info( "loading archive file {} from cache at {}".format( archive_file, resolved_archive_file ) ) # Extract archive to temp dir and replace .tar.bz2 if necessary tempdir = None if not os.path.isdir(resolved_archive_file): tempdir = tempfile.mkdtemp() logger.info( "extracting archive file {} to temp dir {}".format( resolved_archive_file, tempdir ) ) ext = os.path.splitext(archive_file)[1][1:] with tarfile.open(resolved_archive_file, "r:" + ext) as archive: top_dir = os.path.commonprefix(archive.getnames()) archive.extractall(tempdir) os.remove(resolved_archive_file) shutil.move(os.path.join(tempdir, top_dir), resolved_archive_file) shutil.rmtree(tempdir) return resolved_archive_file def url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the URL's, delimited by a period. """ url_bytes = url.encode("utf-8") url_hash = sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode("utf-8") etag_hash = sha256(etag_bytes) filename += "." + etag_hash.hexdigest() return filename def filename_to_url(filename, cache_dir=None): """ Return the url and etag (which may be ``None``) stored for `filename`. Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist. """ if cache_dir is None: cache_dir = PYTORCH_FAIRSEQ_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): raise EnvironmentError("file {} not found".format(cache_path)) meta_path = cache_path + ".json" if not os.path.exists(meta_path): raise EnvironmentError("file {} not found".format(meta_path)) with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata["url"] etag = metadata["etag"] return url, etag def cached_path(url_or_filename, cache_dir=None): """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. """ if cache_dir is None: cache_dir = PYTORCH_FAIRSEQ_CACHE if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) if isinstance(cache_dir, Path): cache_dir = str(cache_dir) parsed = urlparse(url_or_filename) if parsed.scheme in ("http", "https", "s3"): # URL, so get it from the cache (downloading if necessary) return get_from_cache(url_or_filename, cache_dir) elif os.path.exists(url_or_filename): # File, and it exists. return url_or_filename elif parsed.scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(url_or_filename)) else: # Something unknown raise ValueError( "unable to parse {} as a URL or as a local path".format(url_or_filename) ) def split_s3_path(url): """Split a full s3 path into the bucket name and path.""" parsed = urlparse(url) if not parsed.netloc or not parsed.path: raise ValueError("bad s3 path {}".format(url)) bucket_name = parsed.netloc s3_path = parsed.path # Remove '/' at beginning of path. if s3_path.startswith("/"): s3_path = s3_path[1:] return bucket_name, s3_path def s3_request(func): """ Wrapper function for s3 requests in order to create more helpful error messages. """ @wraps(func) def wrapper(url, *args, **kwargs): from botocore.exceptions import ClientError try: return func(url, *args, **kwargs) except ClientError as exc: if int(exc.response["Error"]["Code"]) == 404: raise EnvironmentError("file {} not found".format(url)) else: raise return wrapper @s3_request def s3_etag(url): """Check ETag on S3 object.""" import boto3 s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_object = s3_resource.Object(bucket_name, s3_path) return s3_object.e_tag @s3_request def s3_get(url, temp_file): """Pull a file directly from S3.""" import boto3 s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file) def request_wrap_timeout(func, url): import requests for attempt, timeout in enumerate([10, 20, 40, 60, 60]): try: return func(timeout=timeout) except requests.exceptions.Timeout as e: logger.warning( "Request for %s timed-out (attempt %d). Retrying with a timeout of %d secs", url, attempt, timeout, exc_info=e, ) continue raise RuntimeError(f"Unable to fetch file {url}") def http_get(url, temp_file): import requests from tqdm import tqdm req = request_wrap_timeout(partial(requests.get, url, stream=True), url) content_length = req.headers.get("Content-Length") total = int(content_length) if content_length is not None else None progress = tqdm(unit="B", total=total) for chunk in req.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) progress.close() def get_from_cache(url, cache_dir=None): """ Given a URL, look for the corresponding dataset in the local cache. If it's not there, download it. Then return the path to the cached file. """ if cache_dir is None: cache_dir = PYTORCH_FAIRSEQ_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if not os.path.exists(cache_dir): os.makedirs(cache_dir) # Get eTag to add to filename, if it exists. if url.startswith("s3://"): etag = s3_etag(url) else: try: import requests response = request_wrap_timeout( partial(requests.head, url, allow_redirects=True), url ) if response.status_code != 200: etag = None else: etag = response.headers.get("ETag") except RuntimeError: etag = None filename = url_to_filename(url, etag) # get cache path to put the file cache_path = os.path.join(cache_dir, filename) # If we don't have a connection (etag is None) and can't identify the file # try to get the last downloaded one if not os.path.exists(cache_path) and etag is None: matching_files = fnmatch.filter(os.listdir(cache_dir), filename + ".*") matching_files = list(filter(lambda s: not s.endswith(".json"), matching_files)) if matching_files: cache_path = os.path.join(cache_dir, matching_files[-1]) if not os.path.exists(cache_path): # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with tempfile.NamedTemporaryFile() as temp_file: logger.info("%s not found in cache, downloading to %s", url, temp_file.name) # GET file object if url.startswith("s3://"): s3_get(url, temp_file) else: http_get(url, temp_file) # we are copying the file before closing it, so flush to avoid truncation temp_file.flush() # shutil.copyfileobj() starts at the current position, so go to the start temp_file.seek(0) logger.info("copying %s to cache at %s", temp_file.name, cache_path) with open(cache_path, "wb") as cache_file: shutil.copyfileobj(temp_file, cache_file) logger.info("creating metadata file for %s", cache_path) meta = {"url": url, "etag": etag} meta_path = cache_path + ".json" with open(meta_path, "w") as meta_file: output_string = json.dumps(meta) meta_file.write(output_string) logger.info("removing temp file %s", temp_file.name) return cache_path def read_set_from_file(filename): """ Extract a de-duped collection (set) of text from a file. Expected file format is one item per line. """ collection = set() with open(filename, "r", encoding="utf-8") as file_: for line in file_: collection.add(line.rstrip()) return collection def get_file_extension(path, dot=True, lower=True): ext = os.path.splitext(path)[1] ext = ext if dot else ext[1:] return ext.lower() if lower else ext
COCO-LM/fairseq/fairseq/file_utils.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/file_utils.py", "repo_id": "COCO-LM", "token_count": 4762 }
207
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, NamedTuple, Optional import torch import torch.nn as nn from torch import Tensor EncoderOut = NamedTuple( "EncoderOut", [ ("encoder_out", Tensor), # T x B x C ("encoder_padding_mask", Optional[Tensor]), # B x T ("encoder_embedding", Optional[Tensor]), # B x T x C ("encoder_states", Optional[List[Tensor]]), # List[T x B x C] ("src_tokens", Optional[Tensor]), # B x T ("src_lengths", Optional[Tensor]), # B x 1 ], ) class FairseqEncoder(nn.Module): """Base class for encoders.""" def __init__(self, dictionary): super().__init__() self.dictionary = dictionary def forward(self, src_tokens, src_lengths=None, **kwargs): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): lengths of each source sentence of shape `(batch)` """ raise NotImplementedError def forward_torchscript(self, net_input: Dict[str, Tensor]): """A TorchScript-compatible version of forward. Encoders which use additional arguments may want to override this method for TorchScript compatibility. """ if torch.jit.is_scripting(): return self.forward( src_tokens=net_input["src_tokens"], src_lengths=net_input["src_lengths"], ) else: return self.forward_non_torchscript(net_input) @torch.jit.unused def forward_non_torchscript(self, net_input: Dict[str, Tensor]): encoder_input = { k: v for k, v in net_input.items() if k != "prev_output_tokens" } return self.forward(**encoder_input) def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to `new_order`. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: `encoder_out` rearranged according to `new_order` """ raise NotImplementedError def max_positions(self): """Maximum input length supported by the encoder.""" return 1e6 # an arbitrary large number def upgrade_state_dict_named(self, state_dict, name): """Upgrade old state dicts to work with newer code.""" return state_dict def set_num_updates(self, num_updates): """State from trainer to pass along to model at every update.""" def _apply(m): if hasattr(m, "set_num_updates") and m != self: m.set_num_updates(num_updates) self.apply(_apply)
COCO-LM/fairseq/fairseq/models/fairseq_encoder.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/fairseq_encoder.py", "repo_id": "COCO-LM", "token_count": 1262 }
208
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This file implements: Ghazvininejad, Marjan, et al. "Constant-time machine translation with conditional masked language models." arXiv preprint arXiv:1904.09324 (2019). """ from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import NATransformerModel from fairseq.utils import new_arange def _skeptical_unmasking(output_scores, output_masks, p): sorted_index = output_scores.sort(-1)[1] boundary_len = ( (output_masks.sum(1, keepdim=True).type_as(output_scores) - 2) * p ).long() skeptical_mask = new_arange(output_masks) < boundary_len return skeptical_mask.scatter(1, sorted_index, skeptical_mask) @register_model("cmlm_transformer") class CMLMNATransformerModel(NATransformerModel): @staticmethod def add_args(parser): NATransformerModel.add_args(parser) def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): assert not self.decoder.src_embedding_copy, "do not support embedding copy." # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_mask = prev_output_tokens.eq(self.unk) return { "word_ins": { "out": word_ins_out, "tgt": tgt_tokens, "mask": word_ins_mask, "ls": self.args.label_smoothing, "nll_loss": True, }, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs): step = decoder_out.step max_step = decoder_out.max_step output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # execute the decoder output_masks = output_tokens.eq(self.unk) _scores, _tokens = self.decoder( normalize=True, prev_output_tokens=output_tokens, encoder_out=encoder_out, ).max(-1) output_tokens.masked_scatter_(output_masks, _tokens[output_masks]) output_scores.masked_scatter_(output_masks, _scores[output_masks]) if history is not None: history.append(output_tokens.clone()) # skeptical decoding (depend on the maximum decoding steps.) if (step + 1) < max_step: skeptical_mask = _skeptical_unmasking( output_scores, output_tokens.ne(self.pad), 1 - (step + 1) / max_step ) output_tokens.masked_fill_(skeptical_mask, self.unk) output_scores.masked_fill_(skeptical_mask, 0.0) if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) @register_model_architecture("cmlm_transformer", "cmlm_transformer") def cmlm_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", True) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # --- special arguments --- args.sg_length_pred = getattr(args, "sg_length_pred", False) args.pred_length_offset = getattr(args, "pred_length_offset", False) args.length_loss_factor = getattr(args, "length_loss_factor", 0.1) args.ngram_predictor = getattr(args, "ngram_predictor", 1) args.src_embedding_copy = getattr(args, "src_embedding_copy", False) @register_model_architecture("cmlm_transformer", "cmlm_transformer_wmt_en_de") def cmlm_wmt_en_de(args): cmlm_base_architecture(args)
COCO-LM/fairseq/fairseq/models/nat/cmlm_transformer.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/nat/cmlm_transformer.py", "repo_id": "COCO-LM", "token_count": 2846 }
209
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .berard import * # noqa from .convtransformer import * # noqa from .s2t_transformer import * # noqa
COCO-LM/fairseq/fairseq/models/speech_to_text/__init__.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/speech_to_text/__init__.py", "repo_id": "COCO-LM", "token_count": 83 }
210
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from argparse import Namespace import contextlib import copy import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass, field from omegaconf import MISSING, II, open_dict from typing import Optional, Any from fairseq import checkpoint_utils, tasks, utils from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.tasks import FairseqTask from fairseq.models import ( BaseFairseqModel, FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, ) from fairseq.models.wav2vec.wav2vec2 import MASKING_DISTRIBUTION_CHOICES from fairseq.modules import LayerNorm, PositionalEmbedding, TransformerDecoderLayer @dataclass class Wav2Vec2AsrConfig(FairseqDataclass): w2v_path: str = field( default=MISSING, metadata={"help": "path to wav2vec 2.0 model"} ) no_pretrained_weights: bool = field( default=False, metadata={"help": "if true, does not load pretrained weights"} ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) final_dropout: float = field( default=0.0, metadata={"help": "dropout after transformer and before final projection"}, ) dropout: float = field( default=0.0, metadata={"help": "dropout probability inside wav2vec 2.0 model"} ) attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside wav2vec 2.0 model" }, ) activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside wav2vec 2.0 model" }, ) # masking apply_mask: bool = field( default=False, metadata={"help": "apply masking during fine-tuning"} ) mask_length: int = field( default=10, metadata={"help": "repeat the mask indices multiple times"} ) mask_prob: float = field( default=0.5, metadata={ "help": "probability of replacing a token with mask (normalized by length)" }, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose masks"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"} ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"} ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"} ) freeze_finetune_updates: int = field( default=0, metadata={"help": "dont finetune wav2vec for this many updates"} ) feature_grad_mult: float = field( default=0.0, metadata={"help": "reset feature grad mult in wav2vec 2.0 to this"} ) layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a layer in wav2vec 2.0"} ) normalize: bool = II("task.normalize") data: str = II("task.data") # this holds the loaded wav2vec args w2v_args: Any = None @dataclass class Wav2Vec2CtcConfig(Wav2Vec2AsrConfig): mask_min_space: Optional[int] = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) mask_channel_min_space: Optional[int] = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) conv_feature_layers: Optional[str] = field( default="[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]", metadata={ "help": ( "string describing convolutional feature extraction " "layers in form of a python list that contains " "[(dim, kernel_size, stride), ...]" ), }, ) encoder_embed_dim: Optional[int] = field( default=768, metadata={"help": "encoder embedding dimension"} ) @register_model("wav2vec_ctc", dataclass=Wav2Vec2CtcConfig) class Wav2VecCtc(BaseFairseqModel): def __init__(self, cfg: Wav2Vec2CtcConfig, w2v_encoder: BaseFairseqModel): super().__init__() self.cfg = cfg self.w2v_encoder = w2v_encoder def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: Wav2Vec2CtcConfig, task: FairseqTask): """Build a new model instance.""" w2v_encoder = Wav2VecEncoder(cfg, task.target_dictionary) return cls(cfg, w2v_encoder) def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output["encoder_out"] if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) def get_logits(self, net_output): logits = net_output["encoder_out"] padding = net_output["padding_mask"] if padding is not None and padding.any(): padding = padding.T logits[padding][...,0] = 0 logits[padding][...,1:] = float('-inf') return logits def forward(self, **kwargs): x = self.w2v_encoder(**kwargs) return x @dataclass class Wav2Vec2Seq2SeqConfig(Wav2Vec2AsrConfig): decoder_embed_dim: int = field( default=768, metadata={"help": "decoder embedding dimension"} ) decoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num of decoder layers"}) decoder_layerdrop: float = field( default=0.0, metadata={"help": "decoder layerdrop chance"} ) decoder_attention_heads: int = field( default=4, metadata={"help": "num decoder attention heads"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) decoder_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the decoder"} ) decoder_attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside the decoder" }, ) decoder_activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside the decoder" }, ) max_target_positions: int = field( default=2048, metadata={"help": "max target positions"} ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) autoregressive: bool = II("task.autoregressive") @register_model("wav2vec_seq2seq", dataclass=Wav2Vec2Seq2SeqConfig) class Wav2Vec2Seq2SeqModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, cfg: Wav2Vec2Seq2SeqConfig, task: FairseqTask): """Build a new model instance.""" assert cfg.autoregressive, "Please set task.autoregressive=true for seq2seq asr models" src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) return emb decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim) encoder = cls.build_encoder(cfg) decoder = cls.build_decoder(cfg, tgt_dict, decoder_embed_tokens) return Wav2Vec2Seq2SeqModel(encoder, decoder) @classmethod def build_encoder(cls, cfg: Wav2Vec2AsrConfig): return Wav2VecEncoder(cfg) @classmethod def build_decoder(cls, cfg: Wav2Vec2Seq2SeqConfig, tgt_dict, embed_tokens): return TransformerDecoder(cfg, tgt_dict, embed_tokens) def forward(self, **kwargs): encoder_out = self.encoder(tbc=False, **kwargs) decoder_out = self.decoder(encoder_out=encoder_out, **kwargs) return decoder_out def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict class Wav2VecEncoder(FairseqEncoder): def __init__(self, cfg: Wav2Vec2AsrConfig, tgt_dict=None): self.apply_mask = cfg.apply_mask arg_overrides = { "dropout": cfg.dropout, "activation_dropout": cfg.activation_dropout, "dropout_input": cfg.dropout_input, "attention_dropout": cfg.attention_dropout, "mask_length": cfg.mask_length, "mask_prob": cfg.mask_prob, "mask_selection": cfg.mask_selection, "mask_other": cfg.mask_other, "no_mask_overlap": cfg.no_mask_overlap, "mask_channel_length": cfg.mask_channel_length, "mask_channel_prob": cfg.mask_channel_prob, "mask_channel_selection": cfg.mask_channel_selection, "mask_channel_other": cfg.mask_channel_other, "no_mask_channel_overlap": cfg.no_mask_channel_overlap, "encoder_layerdrop": cfg.layerdrop, "feature_grad_mult": cfg.feature_grad_mult, } if cfg.w2v_args is None: state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides) w2v_args = state.get("cfg", None) if w2v_args is None: w2v_args = convert_namespace_to_omegaconf(state["args"]) cfg.w2v_args = w2v_args else: state = None w2v_args = cfg.w2v_args if isinstance(w2v_args, Namespace): cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args) assert cfg.normalize == w2v_args.task.normalize, ( "Fine-tuning works best when data normalization is the same. " "Please check that --normalize is set or unset for both pre-training and here" ) w2v_args.task.data = cfg.data task = tasks.setup_task(w2v_args.task) model = task.build_model(w2v_args.model) if state is not None and not cfg.no_pretrained_weights: model.load_state_dict(state["model"], strict=True) model.remove_pretraining_modules() super().__init__(task.source_dictionary) d = w2v_args.model.encoder_embed_dim self.w2v_model = model self.final_dropout = nn.Dropout(cfg.final_dropout) self.freeze_finetune_updates = cfg.freeze_finetune_updates self.num_updates = 0 if tgt_dict is not None: self.proj = Linear(d, len(tgt_dict)) elif getattr(cfg, "decoder_embed_dim", d) != d: self.proj = Linear(d, cfg.decoder_embed_dim) else: self.proj = None def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def forward(self, source, padding_mask, tbc=True, **kwargs): w2v_args = { "source": source, "padding_mask": padding_mask, "mask": self.apply_mask and self.training, } ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): x, padding_mask = self.w2v_model.extract_features(**w2v_args) if tbc: # B x T x C -> T x B x C x = x.transpose(0, 1) x = self.final_dropout(x) if self.proj: x = self.proj(x) return { "encoder_out": x, # T x B x C "encoder_padding_mask": padding_mask.transpose(0, 1), # T x B "padding_mask": padding_mask, } def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return None def upgrade_state_dict_named(self, state_dict, name): return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, cfg: Wav2Vec2Seq2SeqConfig, dictionary, embed_tokens, no_encoder_attn=False, ): super().__init__(dictionary) self.dropout = cfg.decoder_dropout self.share_input_output_embed = cfg.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = cfg.decoder_embed_dim self.output_embed_dim = cfg.decoder_embed_dim self.layerdrop = cfg.decoder_layerdrop padding_idx = embed_tokens.padding_idx self.max_target_positions = cfg.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( cfg.max_target_positions, embed_dim, padding_idx, learned=cfg.decoder_learned_pos, ) if not cfg.no_token_positional_embeddings else None ) # TODO: update this when transformer gets converted to dataclass configs transformer_cfg = copy.deepcopy(cfg) with open_dict(transformer_cfg): transformer_cfg.dropout = transformer_cfg.decoder_dropout transformer_cfg.attention_dropout = ( transformer_cfg.decoder_attention_dropout ) transformer_cfg.activation_dropout = ( transformer_cfg.decoder_activation_dropout ) self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerDecoderLayer(transformer_cfg, no_encoder_attn) for _ in range(transformer_cfg.decoder_layers) ] ) if not self.share_input_output_embed: self.embed_out = nn.Parameter( torch.Tensor(len(dictionary), self.output_embed_dim) ) nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim ** -0.5) if transformer_cfg.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ prev_output_tokens = prev_output_tokens.long() x, extra = self.extract_features( prev_output_tokens, encoder_out, incremental_state ) x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for layer in self.layers: dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, attn, _ = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["padding_mask"] if encoder_out is not None else None, incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) return x, {"attn": attn, "inner_states": inner_states} def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" # project back to size of vocabulary if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
COCO-LM/fairseq/fairseq/models/wav2vec/wav2vec2_asr.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/wav2vec/wav2vec2_asr.py", "repo_id": "COCO-LM", "token_count": 9946 }
211
/** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include <ATen/ATen.h> #include <c10/cuda/CUDAStream.h> #include <cuda.h> #include <cuda_fp16.h> #include <cuda_runtime.h> #include <algorithm> #include <functional> #include <iostream> #include <stdexcept> #include <utility> #include <vector> #include <stdlib.h> #include <assert.h> #include <math.h> #define SHFL_MASK 0xffffffff template<int FS, int SB, int padding_l, typename scalar_t> __global__ void dynamicconv_forward_kernel(const scalar_t* input, const scalar_t* weight, int minibatch, int sequenceLength, int numFeatures, int numFiltersInBlock, int numHeads, scalar_t* output); template<int FS, int SB, int padding_l, typename scalar_t> __global__ void dynamicconv_backward_kernel( const scalar_t* gradOutput, // B * C * T const scalar_t* input, // B * C * T const scalar_t* weight, int minibatch, int sequenceLength, int numFeatures, int numFiltersInBlock, int numHeads, scalar_t* gradWeight, scalar_t* gradInput); // B * H * k * T
COCO-LM/fairseq/fairseq/modules/dynamicconv_layer/dynamicconv_cuda.cuh/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/dynamicconv_layer/dynamicconv_cuda.cuh", "repo_id": "COCO-LM", "token_count": 663 }
212
/** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include <torch/extension.h> #include <vector> std::vector<at::Tensor> lightconv_cuda_forward( at::Tensor input, at::Tensor filters, int padding_l); std::vector<at::Tensor> lightconv_cuda_backward( at::Tensor gradOutput, int padding_l, at::Tensor input, at::Tensor filters); #define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) std::vector<at::Tensor> lightconv_forward( at::Tensor input, at::Tensor filters, int padding_l) { CHECK_INPUT(input); CHECK_INPUT(filters); return lightconv_cuda_forward(input, filters, padding_l); } std::vector<at::Tensor> lightconv_backward( at::Tensor gradOutput, int padding_l, at::Tensor input, at::Tensor filters) { CHECK_INPUT(gradOutput); CHECK_INPUT(input); CHECK_INPUT(filters); return lightconv_cuda_backward(gradOutput, padding_l, input, filters); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("forward", &lightconv_forward, "lighconv forward (CUDA)"); m.def("backward", &lightconv_backward, "lighconv backward (CUDA)"); }
COCO-LM/fairseq/fairseq/modules/lightconv_layer/lightconv_cuda.cpp/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/lightconv_layer/lightconv_cuda.cpp", "repo_id": "COCO-LM", "token_count": 571 }
213
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class PQLinear(nn.Module): """ Quantized counterpart of nn.Linear module. Stores the centroid, the assignments and the non-quantized biases. The full weight is re-instantiated at each forward pass. Args: - centroids: centroids of size n_centroids x block_size - assignments: assignments of the centroids to the subvectors of size self.out_features x n_blocks - bias: the non-quantized bias Remarks: - We refer the reader to the official documentation of the nn.Linear module for the other arguments and the behavior of the module - Performance tests on GPU show that this implementation is 15% slower than the non-quantized nn.Linear module for a standard training loop. """ def __init__(self, centroids, assignments, bias, in_features, out_features): super(PQLinear, self).__init__() self.block_size = centroids.size(1) self.n_centroids = centroids.size(0) self.in_features = in_features self.out_features = out_features # check compatibility if self.in_features % self.block_size != 0: raise ValueError("Wrong PQ sizes") if len(assignments) % self.out_features != 0: raise ValueError("Wrong PQ sizes") # define parameters self.centroids = nn.Parameter(centroids, requires_grad=True) self.register_buffer("assignments", assignments) self.register_buffer("counts", torch.bincount(assignments).type_as(centroids)) if bias is not None: self.bias = nn.Parameter(bias) else: self.register_parameter("bias", None) @property def weight(self): return ( self.centroids[self.assignments] .reshape(-1, self.out_features, self.block_size) .permute(1, 0, 2) .flatten(1, 2) ) def forward(self, x): return F.linear( x, self.weight, self.bias, ) def extra_repr(self): return f"in_features={self.in_features},\ out_features={self.out_features},\ n_centroids={self.n_centroids},\ block_size={self.block_size},\ bias={self.bias is not None}"
COCO-LM/fairseq/fairseq/modules/quantization/pq/modules/qlinear.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/quantization/pq/modules/qlinear.py", "repo_id": "COCO-LM", "token_count": 1091 }
214
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from fairseq.modules import TransformerSentenceEncoder from fairseq.modules.sparse_transformer_sentence_encoder_layer import ( SparseTransformerSentenceEncoderLayer, ) class SparseTransformerSentenceEncoder(TransformerSentenceEncoder): """ Sparse implementation of the TransformerSentenceEncoder - see SparseMultiheadAttention """ def __init__( self, padding_idx: int, vocab_size: int, num_encoder_layers: int = 6, embedding_dim: int = 768, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, max_seq_len: int = 256, num_segments: int = 2, use_position_embeddings: bool = True, offset_positions_by_padding: bool = True, encoder_normalize_before: bool = False, apply_bert_init: bool = False, activation_fn: str = "relu", learned_pos_embedding: bool = True, embed_scale: float = None, freeze_embeddings: bool = False, n_trans_layers_to_freeze: int = 0, export: bool = False, is_bidirectional: bool = True, stride: int = 32, expressivity: int = 8, ) -> None: super().__init__( padding_idx, vocab_size, num_encoder_layers, embedding_dim, ffn_embedding_dim, num_attention_heads, dropout, attention_dropout, activation_dropout, max_seq_len, num_segments, use_position_embeddings, offset_positions_by_padding, encoder_normalize_before, apply_bert_init, activation_fn, learned_pos_embedding, embed_scale, freeze_embeddings, n_trans_layers_to_freeze, export, ) self.layers = nn.ModuleList( [ SparseTransformerSentenceEncoderLayer( embedding_dim=self.embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, export=export, is_bidirectional=is_bidirectional, stride=stride, expressivity=expressivity, ) for _ in range(num_encoder_layers) ] ) def freeze_module_params(m): if m is not None: for p in m.parameters(): p.requires_grad = False for layer in range(n_trans_layers_to_freeze): freeze_module_params(self.layers[layer])
COCO-LM/fairseq/fairseq/modules/sparse_transformer_sentence_encoder.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/sparse_transformer_sentence_encoder.py", "repo_id": "COCO-LM", "token_count": 1608 }
215
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import torch import torch.distributed as dist from fairseq.dataclass.configs import FairseqBMUFConfig from fairseq.dataclass.utils import gen_parser_from_dataclass from fairseq.optim.fairseq_optimizer import FairseqOptimizer class FairseqBMUF(FairseqOptimizer): """ Implements incremental block distributed data parallelism similar to https://ieeexplore.ieee.org/document/7472805 Paper title: Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering """ def __init__(self, cfg: FairseqBMUFConfig, optimizer): super().__init__(cfg) self._optimizer = optimizer self._num_updates = 0 self.sync_iter = cfg.global_sync_iter self.block_momentum = cfg.block_momentum self.block_lr = cfg.block_lr self._reset_local_data() self.warmup_iteration = cfg.warmup_iterations self.use_nbm = cfg.use_nbm self.initial_state = self._optimizer.state_dict() self.average_sync = self.cfg.average_sync self.world_size = self.cfg.distributed_world_size @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" gen_parser_from_dataclass(parser, FairseqBMUFConfig()) @property def optimizer(self): return self._optimizer.optimizer @property def optimizer_config(self): return self._optimizer.optimizer_config def get_lr(self): return self._optimizer.get_lr() def set_lr(self, lr): self._optimizer.set_lr(lr) def state_dict(self): return self._optimizer.state_dict() def load_state_dict(self, state_dict, optimizer_overrides=None): self._optimizer.load_state_dict(state_dict, optimizer_overrides) self.initial_state = self._optimizer.state_dict() def multiply_grads(self, c): """Multiplies grads by a constant *c*.""" self._optimizer.multiply_grads(c) def clip_grad_norm(self, max_norm, aggregate_norm_fn=None): """Clips gradient norm.""" return self._optimizer.clip_grad_norm(max_norm, aggregate_norm_fn) def average_params(self): self._optimizer.average_params() def _block_sync(self): if self.world_size <= 1: return # Update the global model using local models from all GPUs # (Step-1) Calculate grad between previously synced model and # currrent local model if self.block_momentum != 0: self._calc_grad() # (Step-2) Average gradient from all GPUs self._avg_grad_from_all_gpus() # (Step-3) Calculate global momentum and update the global model if self.block_momentum != 0: self._update_global_model() # (Step-4) Average local optimizer params if self.average_sync: self.average_params() def _is_warmup_end(self): # Check whether train iterations is equal to warmup iter if self.get_num_updates() == self.warmup_iteration: return True return False def _is_bmuf_iter(self): # Check whether train iterations is equal to bmuf sync iter if (self.get_num_updates() > self.warmup_iteration) and ( self.get_num_updates() % self.sync_iter == 0 ): return True return False def _warmup_sync(self, root_rank=0): if self.world_size <= 1: return # Broadcast the local model to all gpus for param in self.params: dist.broadcast(param.data, src=root_rank) # Update local optimizer state if self.average_sync: self._optimizer.average_params() else: self._optimizer.load_state_dict(self.initial_state) self._reset_local_data() def step(self, closure=None): """Performs a single optimization step.""" self._optimizer.step(closure) self.set_num_updates(self.get_num_updates() + 1) if self._is_warmup_end(): self._warmup_sync() elif self._is_bmuf_iter(): self._block_sync() def zero_grad(self): """Clears the gradients of all optimized parameters.""" self._optimizer.zero_grad() def get_num_updates(self): """Get the number of parameters updates.""" return self._num_updates def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self._num_updates = num_updates @torch.no_grad() def _reset_local_data(self): # (Step-0) Initialize global momentum parameters and store global copy on each gpu self.global_params = [torch.zeros_like(p.data) for p in self.params] self.smoothed_grads = [p.data.new_zeros(p.data.size()) for p in self.params] self.grads = [p.data.new_zeros(p.data.size()) for p in self.params] # saving the global model locally for calculating gradient during bmuf sync for param, global_param in zip(self.params, self.global_params): global_param.copy_(param.data) @torch.no_grad() def _calc_grad(self): # global_params is basically the global copy from the previously finished # synchronisation. param.data is local parameter after block_sync_freq # for the local gpu. so grad is difference between previously synced # model and currrent local model. for index, (param, global_param) in enumerate( zip(self.params, self.global_params) ): self.grads[index] = global_param - param.data def _avg_grad_from_all_gpus(self): for index, param in enumerate(self.params): sync_para = param.data if self.block_momentum == 0 else self.grads[index] sync_para /= float(dist.get_world_size()) dist.all_reduce(sync_para, op=dist.ReduceOp.SUM) @torch.no_grad() def _update_global_model(self): for index, (param, global_param, smoothed_grad, grad) in enumerate( zip( self.params, self.global_params, self.smoothed_grads, # all gpus would share the same value of smoothed_grad, since it is # always computed on synchronized gradients. self.grads, ) ): # global_param is basically last syncrhornized parameter. though # smoothed_grad is local, all processes will have same value of # smoothed_grad and hence param is globally synchronized copy. # smoothed_grad(t) = BM * smoothed_grad(t-1) + BM_lr * grad(t) smoothed_grad = self.block_momentum * smoothed_grad + self.block_lr * grad param.data.copy_(global_param - smoothed_grad) # A Nesterov momentum here is to do a partial weight update before # calculating the gradient if self.use_nbm: param.data.copy_(param.data - self.block_momentum * smoothed_grad) # backup for the next synchronization. self.smoothed_grads[index] = smoothed_grad global_param.copy_(param.data)
COCO-LM/fairseq/fairseq/optim/bmuf.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/optim/bmuf.py", "repo_id": "COCO-LM", "token_count": 3121 }
216
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import List import torch.optim.lr_scheduler from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class ReduceLROnPlateauLRScheduleConfig(FairseqDataclass): lr_shrink: float = field( default=0.1, metadata={"help": "shrink factor for annealing"} ) lr_threshold: float = field( default=1e-4, metadata={ "help": ( "threshold for measuring the new optimum, to only focus on " "significant changes" ) }, ) lr_patience: int = field( default=0, metadata={ "help": ( "number of epochs with no improvement after which learning rate will " "be reduced" ) }, ) warmup_updates: int = field( default=0, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) warmup_init_lr: float = field( default=-1, metadata={ "help": "initial learning rate during warmup phase; default is cfg.lr" }, ) lr: List[float] = II("optimization.lr") maximize_best_checkpoint_metric: bool = II( "checkpoint.maximize_best_checkpoint_metric" ) @register_lr_scheduler( "reduce_lr_on_plateau", dataclass=ReduceLROnPlateauLRScheduleConfig ) class ReduceLROnPlateauLRSchedule(FairseqLRScheduler): """ Decay the LR by a factor every time the validation loss plateaus. Also comes with optional warmup phase, where we linearly increase the learning rate from some initial learning rate (``--warmup-init-lr``) until the configured learning rate (``--lr``). Thereafter the lr is adjusted according to original reduce_on_plateau scheme. During warmup:: lrs = torch.linspace( cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates ) lr = lrs[update_num] """ def __init__(self, cfg: ReduceLROnPlateauLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) if len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with reduce_lr_on_plateau." " Consider --lr-scheduler=fixed instead." ) self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( self.optimizer.optimizer, patience=cfg.lr_patience, factor=cfg.lr_shrink, mode="max" if cfg.maximize_best_checkpoint_metric else "min", threshold=cfg.lr_threshold, ) warmup_end_lr = cfg.lr[0] # if no warm up, sets initial lr to be cfg.lr[0] if cfg.warmup_init_lr < 0: cfg.warmup_init_lr = 0 if cfg.warmup_updates > 0 else warmup_end_lr # linearly warmup for the first cfg.warmup_updates if cfg.warmup_updates > 0: self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates # this flag is either set from arg when no warm up, or set by # step_update() when warmup finishes self.warmup_end = True if cfg.warmup_updates <= 0 else False # initial learning rate # this self.lr is used only during init and/or warm up period self.lr = cfg.warmup_init_lr self.optimizer.set_lr(self.lr) def state_dict(self): """Return the LR scheduler state dict.""" return { "best": self.lr_scheduler.best, "last_epoch": self.lr_scheduler.last_epoch, } def load_state_dict(self, state_dict): """Load an LR scheduler state dict.""" self.lr_scheduler.best = state_dict["best"] if "last_epoch" in state_dict: self.lr_scheduler.last_epoch = state_dict["last_epoch"] def step(self, epoch, val_loss=None): """ Update the learning rate at the end of the given epoch if warmup finishes otherwise no update of lr on epoch boundaries """ if val_loss is not None and self.warmup_end is True: self.lr_scheduler.step(val_loss) else: self.lr_scheduler.last_epoch = epoch return self.optimizer.get_lr() def step_update(self, num_updates): """ Update the learning rate after each update.""" # if there is warmup if self.cfg.warmup_updates > 0: if num_updates <= self.cfg.warmup_updates: self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step self.optimizer.set_lr(self.lr) else: if self.warmup_end is False: self.warmup_end = True # else do nothing return self.optimizer.get_lr()
COCO-LM/fairseq/fairseq/optim/lr_scheduler/reduce_lr_on_plateau.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/optim/lr_scheduler/reduce_lr_on_plateau.py", "repo_id": "COCO-LM", "token_count": 2249 }
217
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, List, Optional import torch import torch.nn as nn from fairseq import search, utils from fairseq.data import data_utils from fairseq.models import FairseqIncrementalDecoder from torch import Tensor from fairseq.ngram_repeat_block import NGramRepeatBlock class SequenceGenerator(nn.Module): def __init__( self, models, tgt_dict, beam_size=1, max_len_a=0, max_len_b=200, min_len=1, normalize_scores=True, len_penalty=1.0, unk_penalty=0.0, temperature=1.0, match_source_len=False, no_repeat_ngram_size=0, search_strategy=None, eos=None, symbols_to_strip_from_output=None, lm_model=None, lm_weight=1.0, ): """Generates translations of a given source sentence. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models, currently support fairseq.models.TransformerModel for scripting beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) len_penalty (float, optional): length penalty, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) match_source_len (bool, optional): outputs should match the source length (default: False) """ super().__init__() if isinstance(models, EnsembleModel): self.model = models else: self.model = EnsembleModel(models) self.tgt_dict = tgt_dict self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() if eos is None else eos self.symbols_to_strip_from_output = ( symbols_to_strip_from_output.union({self.eos}) if symbols_to_strip_from_output is not None else {self.eos} ) self.vocab_size = len(tgt_dict) self.beam_size = beam_size # the max beam size is the dictionary size - 1, since we never select pad self.beam_size = min(beam_size, self.vocab_size - 1) self.max_len_a = max_len_a self.max_len_b = max_len_b self.min_len = min_len self.normalize_scores = normalize_scores self.len_penalty = len_penalty self.unk_penalty = unk_penalty self.temperature = temperature self.match_source_len = match_source_len if no_repeat_ngram_size > 0: self.repeat_ngram_blocker = NGramRepeatBlock(no_repeat_ngram_size) else: self.repeat_ngram_blocker = None assert temperature > 0, "--temperature must be greater than 0" self.search = ( search.BeamSearch(tgt_dict) if search_strategy is None else search_strategy ) # We only need to set src_lengths in LengthConstrainedBeamSearch. # As a module attribute, setting it would break in multithread # settings when the model is shared. self.should_set_src_lengths = ( hasattr(self.search, "needs_src_lengths") and self.search.needs_src_lengths ) self.model.eval() self.lm_model = lm_model self.lm_weight = lm_weight if self.lm_model is not None: self.lm_model.eval() def cuda(self): self.model.cuda() return self @torch.no_grad() def forward( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, bos_token: Optional[int] = None, ): """Generate a batch of translations. Args: sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, prefix_tokens, bos_token=bos_token) # TODO(myleott): unused, deprecate after pytorch-translate migration def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None): """Iterate over a batched dataset and yield individual translations. Args: cuda (bool, optional): use GPU for generation timer (StopwatchMeter, optional): time generations """ for sample in data_itr: s = utils.move_to_cuda(sample) if cuda else sample if "net_input" not in s: continue input = s["net_input"] # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in input.items() if k != "prev_output_tokens" } if timer is not None: timer.start() with torch.no_grad(): hypos = self.generate(encoder_input) if timer is not None: timer.stop(sum(len(h[0]["tokens"]) for h in hypos)) for i, id in enumerate(s["id"].data): # remove padding src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad) ref = ( utils.strip_pad(s["target"].data[i, :], self.pad) if s["target"] is not None else None ) yield id, src, ref, hypos[i] @torch.no_grad() def generate(self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs): """Generate translations. Match the api of other fairseq generators. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens constraints (torch.LongTensor, optional): force decoder to include the list of constraints bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, **kwargs) def _generate( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, constraints: Optional[Tensor] = None, bos_token: Optional[int] = None, ): incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(self.model.models_size) ], ) net_input = sample["net_input"] if "src_tokens" in net_input: src_tokens = net_input["src_tokens"] # length of the source text being the character length except EndOfSentence and pad src_lengths = ( (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1) ) elif "source" in net_input: src_tokens = net_input["source"] src_lengths = ( net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) if net_input["padding_mask"] is not None else torch.tensor(src_tokens.size(-1)).to(src_tokens) ) else: raise Exception("expected src_tokens or source in net input") # bsz: total number of sentences in beam # Note that src_tokens may have more than 2 dimensions (i.e. audio features) bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size if constraints is not None and not self.search.supports_constraints: raise NotImplementedError( "Target-side constraints were provided, but search method doesn't support them" ) # Initialize constraints, when active self.search.init_constraints(constraints, beam_size) max_len: int = -1 if self.match_source_len: max_len = src_lengths.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), # exclude the EOS marker self.model.max_decoder_positions() - 1, ) assert ( self.min_len <= max_len ), "min_len cannot be larger than max_len, please adjust these!" # compute the encoder output for each beam encoder_outs = self.model.forward_encoder(net_input) # placeholder of indices for bsz * beam_size to hold tokens and accumulative scores new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order) # ensure encoder_outs is a List. assert encoder_outs is not None # initialize buffers scores = ( torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float() ) # +1 for eos; pad is never chosen for scoring tokens = ( torch.zeros(bsz * beam_size, max_len + 2) .to(src_tokens) .long() .fill_(self.pad) ) # +2 for eos and pad tokens[:, 0] = self.eos if bos_token is None else bos_token attn: Optional[Tensor] = None # A list that indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = ( torch.zeros(bsz, beam_size).to(src_tokens).eq(-1) ) # forward and backward-compatible False mask # list of completed sentences finalized = torch.jit.annotate( List[List[Dict[str, Tensor]]], [torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)], ) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step finished = [ False for i in range(bsz) ] # a boolean array indicating if the sentence at the index is finished or not num_remaining_sent = bsz # number of sentences remaining # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = ( (torch.arange(0, bsz) * beam_size) .unsqueeze(1) .type_as(tokens) .to(src_tokens.device) ) cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device) reorder_state: Optional[Tensor] = None batch_idxs: Optional[Tensor] = None original_batch_idxs: Optional[Tensor] = None if "id" in sample and isinstance(sample["id"], Tensor): original_batch_idxs = sample["id"] else: original_batch_idxs = torch.arange(0, bsz).type_as(tokens) for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as( batch_idxs ) reorder_state.view(-1, beam_size).add_( corr.unsqueeze(-1) * beam_size ) original_batch_idxs = original_batch_idxs[batch_idxs] self.model.reorder_incremental_state(incremental_states, reorder_state) encoder_outs = self.model.reorder_encoder_out( encoder_outs, reorder_state ) lprobs, avg_attn_scores = self.model.forward_decoder( tokens[:, : step + 1], encoder_outs, incremental_states, self.temperature, ) if self.lm_model is not None: lm_out = self.lm_model(tokens[:, : step + 1]) probs = self.lm_model.get_normalized_probs( lm_out, log_probs=True, sample=None ) probs = probs[:, -1, :] * self.lm_weight lprobs += probs lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs) lprobs[:, self.pad] = -math.inf # never select pad lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty # handle max length constraint if step >= max_len: lprobs[:, : self.eos] = -math.inf lprobs[:, self.eos + 1 :] = -math.inf # handle prefix tokens (possibly with different lengths) if ( prefix_tokens is not None and step < prefix_tokens.size(1) and step < max_len ): lprobs, tokens, scores = self._prefix_tokens( step, lprobs, scores, tokens, prefix_tokens, beam_size ) elif step < self.min_len: # minimum length constraint (does not apply if using prefix_tokens) lprobs[:, self.eos] = -math.inf # Record attention scores, only support avg_attn_scores is a Tensor if avg_attn_scores is not None: if attn is None: attn = torch.empty( bsz * beam_size, avg_attn_scores.size(1), max_len + 2 ).to(scores) attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(lprobs) eos_bbsz_idx = torch.empty(0).to( tokens ) # indices of hypothesis ending with eos (finished sentences) eos_scores = torch.empty(0).to( scores ) # scores of hypothesis ending with eos (finished sentences) if self.should_set_src_lengths: self.search.set_src_lengths(src_lengths) if self.repeat_ngram_blocker is not None: lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step) # Shape: (batch, cand_size) cand_scores, cand_indices, cand_beams = self.search.step( step, lprobs.view(bsz, -1, self.vocab_size), scores.view(bsz, beam_size, -1)[:, :, :step], tokens[:, : step + 1], original_batch_idxs, ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos # Shape of eos_mask: (batch size, beam size) eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf) eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask) # only consider eos when it's among the top beam_size indices # Now we know what beam item(s) to finish # Shape: 1d list of absolute-numbered eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents: List[int] = [] if eos_bbsz_idx.numel() > 0: eos_scores = torch.masked_select( cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents = self.finalize_hypos( step, eos_bbsz_idx, eos_scores, tokens, scores, finalized, finished, beam_size, attn, src_lengths, max_len, ) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if self.search.stop_on_max_len and step >= max_len: break assert step < max_len, f"{step} < {max_len}" # Remove finalized sentences (ones for which {beam_size} # finished hypotheses have been generated) from the batch. if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = torch.ones( bsz, dtype=torch.bool, device=cand_indices.device ) batch_mask[finalized_sents] = False # TODO replace `nonzero(as_tuple=False)` after TorchScript supports it batch_idxs = torch.arange( bsz, device=cand_indices.device ).masked_select(batch_mask) # Choose the subset of the hypothesized constraints that will continue self.search.prune_sentences(batch_idxs) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) cand_scores = cand_scores[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths = src_lengths[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, attn.size(1), -1 ) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos hypos # and values < cand_size indicate candidate active hypos. # After, the min values per row are the top candidate active hypos # Rewrite the operator since the element wise or is not supported in torchscript. eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size])) active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just # the hypos with the smallest values in active_mask. # {active_hypos} indicates which {beam_size} hypotheses # from the list of {2 * beam_size} candidates were # selected. Shapes: (batch size, beam size) new_cands_to_ignore, active_hypos = torch.topk( active_mask, k=beam_size, dim=1, largest=False ) # update cands_to_ignore to ignore any finalized hypos. cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] # Make sure there is at least one active item for each sentence in the batch. assert (~cands_to_ignore).any(dim=1).all() # update cands_to_ignore to ignore any finalized hypos # {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam # can be selected more than once). active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos) active_scores = torch.gather(cand_scores, dim=1, index=active_hypos) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses # Set the tokens for each beam (can select the same row more than once) tokens[:, : step + 1] = torch.index_select( tokens[:, : step + 1], dim=0, index=active_bbsz_idx ) # Select the next token for each of them tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather( cand_indices, dim=1, index=active_hypos ) if step > 0: scores[:, :step] = torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx ) scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather( cand_scores, dim=1, index=active_hypos ) # Update constraints based on which candidates were selected for the next beam self.search.update_constraints(active_hypos) # copy attention for active hypotheses if attn is not None: attn[:, :, : step + 2] = torch.index_select( attn[:, :, : step + 2], dim=0, index=active_bbsz_idx ) # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): scores = torch.tensor( [float(elem["score"].item()) for elem in finalized[sent]] ) _, sorted_scores_indices = torch.sort(scores, descending=True) finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices] finalized[sent] = torch.jit.annotate( List[Dict[str, Tensor]], finalized[sent] ) return finalized def _prefix_tokens( self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int ): """Handle prefix tokens""" prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1)) prefix_mask = prefix_toks.ne(self.pad) lprobs[prefix_mask] = torch.tensor(-math.inf).to(lprobs) lprobs[prefix_mask] = lprobs[prefix_mask].scatter( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask] ) # if prefix includes eos, then we should make sure tokens and # scores are the same across all beams eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): # validate that the first beam matches the prefix first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[ :, 0, 1 : step + 1 ] eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] assert (first_beam == target_prefix).all() # copy tokens, scores and lprobs from the first beam to all beams tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size) scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size) lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size) return lprobs, tokens, scores def replicate_first_beam(self, tensor, mask, beam_size: int): tensor = tensor.view(-1, beam_size, tensor.size(-1)) tensor[mask] = tensor[mask][:, :1, :] return tensor.view(-1, tensor.size(-1)) def finalize_hypos( self, step: int, bbsz_idx, eos_scores, tokens, scores, finalized: List[List[Dict[str, Tensor]]], finished: List[bool], beam_size: int, attn: Optional[Tensor], src_lengths, max_len: int, ): """Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly. A sentence is finalized when {beam_size} finished items have been collected for it. Returns number of sentences (not beam items) being finalized. These will be removed from the batch and not processed further. Args: bbsz_idx (Tensor): """ assert bbsz_idx.numel() == eos_scores.numel() # clone relevant token and attention tensors. # tokens is (batch * beam, max_len). So the index_select # gets the newly EOS rows, then selects cols 1..{step + 2} tokens_clone = tokens.index_select(0, bbsz_idx)[ :, 1 : step + 2 ] # skip the first index, which is EOS tokens_clone[:, step] = self.eos attn_clone = ( attn.index_select(0, bbsz_idx)[:, :, 1 : step + 2] if attn is not None else None ) # compute scores per token position pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1] pos_scores[:, step] = eos_scores # convert from cumulative to per-position scores pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] # normalize sentence-level scores if self.normalize_scores: eos_scores /= (step + 1) ** self.len_penalty # cum_unfin records which sentences in the batch are finished. # It helps match indexing between (a) the original sentences # in the batch and (b) the current, possibly-reduced set of # sentences. cum_unfin: List[int] = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) # The keys here are of the form "{sent}_{unfin_idx}", where # "unfin_idx" is the index in the current (possibly reduced) # list of sentences, and "sent" is the index in the original, # unreduced batch # set() is not supported in script export sents_seen: Dict[str, Optional[Tensor]] = {} # For every finished beam item for i in range(bbsz_idx.size()[0]): idx = bbsz_idx[i] score = eos_scores[i] # sentence index in the current (possibly reduced) batch unfin_idx = idx // beam_size # sentence index in the original (unreduced) batch sent = unfin_idx + cum_unfin[unfin_idx] # Cannot create dict for key type '(int, int)' in torchscript. # The workaround is to cast int to string seen = str(sent.item()) + "_" + str(unfin_idx.item()) if seen not in sents_seen: sents_seen[seen] = None if self.match_source_len and step > src_lengths[unfin_idx]: score = torch.tensor(-math.inf).to(score) # An input sentence (among those in a batch) is finished when # beam_size hypotheses have been collected for it if len(finalized[sent]) < beam_size: if attn_clone is not None: # remove padding tokens from attn scores hypo_attn = attn_clone[i] else: hypo_attn = torch.empty(0) finalized[sent].append( { "tokens": tokens_clone[i], "score": score, "attention": hypo_attn, # src_len x tgt_len "alignment": torch.empty(0), "positional_scores": pos_scores[i], } ) newly_finished: List[int] = [] for seen in sents_seen.keys(): # check termination conditions for this sentence sent: int = int(float(seen.split("_")[0])) unfin_idx: int = int(float(seen.split("_")[1])) if not finished[sent] and self.is_finished( step, unfin_idx, max_len, len(finalized[sent]), beam_size ): finished[sent] = True newly_finished.append(unfin_idx) return newly_finished def is_finished( self, step: int, unfin_idx: int, max_len: int, finalized_sent_len: int, beam_size: int, ): """ Check whether decoding for a sentence is finished, which occurs when the list of finalized sentences has reached the beam size, or when we reach the maximum length. """ assert finalized_sent_len <= beam_size if finalized_sent_len == beam_size or step == max_len: return True return False class EnsembleModel(nn.Module): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__() self.models_size = len(models) # method '__len__' is not supported in ModuleList for torch script self.single_model = models[0] self.models = nn.ModuleList(models) self.has_incremental: bool = False if all( hasattr(m, "decoder") and isinstance(m.decoder, FairseqIncrementalDecoder) for m in models ): self.has_incremental = True def forward(self): pass def has_encoder(self): return hasattr(self.single_model, "encoder") def has_incremental_states(self): return self.has_incremental def max_decoder_positions(self): return min([m.max_decoder_positions() for m in self.models]) @torch.jit.export def forward_encoder(self, net_input: Dict[str, Tensor]): if not self.has_encoder(): return None return [model.encoder.forward_torchscript(net_input) for model in self.models] @torch.jit.export def forward_decoder( self, tokens, encoder_outs: List[Dict[str, List[Tensor]]], incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], temperature: float = 1.0, ): log_probs = [] avg_attn: Optional[Tensor] = None encoder_out: Optional[Dict[str, List[Tensor]]] = None for i, model in enumerate(self.models): if self.has_encoder(): encoder_out = encoder_outs[i] # decode each model if self.has_incremental_states(): decoder_out = model.decoder.forward( tokens, encoder_out=encoder_out, incremental_state=incremental_states[i], ) else: decoder_out = model.decoder.forward(tokens, encoder_out=encoder_out) attn: Optional[Tensor] = None decoder_len = len(decoder_out) if decoder_len > 1 and decoder_out[1] is not None: if isinstance(decoder_out[1], Tensor): attn = decoder_out[1] else: attn_holder = decoder_out[1]["attn"] if isinstance(attn_holder, Tensor): attn = attn_holder elif attn_holder is not None: attn = attn_holder[0] if attn is not None: attn = attn[:, -1, :] decoder_out_tuple = ( decoder_out[0][:, -1:, :].div_(temperature), None if decoder_len <= 1 else decoder_out[1], ) probs = model.get_normalized_probs( decoder_out_tuple, log_probs=True, sample=None ) probs = probs[:, -1, :] if self.models_size == 1: return probs, attn log_probs.append(probs) if attn is not None: if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log( self.models_size ) if avg_attn is not None: avg_attn.div_(self.models_size) return avg_probs, avg_attn @torch.jit.export def reorder_encoder_out( self, encoder_outs: Optional[List[Dict[str, List[Tensor]]]], new_order ): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ new_outs: List[Dict[str, List[Tensor]]] = [] if not self.has_encoder(): return new_outs for i, model in enumerate(self.models): assert encoder_outs is not None new_outs.append( model.encoder.reorder_encoder_out(encoder_outs[i], new_order) ) return new_outs @torch.jit.export def reorder_incremental_state( self, incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], new_order, ): if not self.has_incremental_states(): return for i, model in enumerate(self.models): model.decoder.reorder_incremental_state_scripting( incremental_states[i], new_order ) class SequenceGeneratorWithAlignment(SequenceGenerator): def __init__( self, models, tgt_dict, left_pad_target=False, print_alignment="hard", **kwargs ): """Generates translations of a given source sentence. Produces alignments following "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: left_pad_target (bool, optional): Whether or not the hypothesis should be left padded or not when they are teacher forced for generating alignments. """ super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs) self.left_pad_target = left_pad_target if print_alignment == "hard": self.extract_alignment = utils.extract_hard_alignment elif print_alignment == "soft": self.extract_alignment = utils.extract_soft_alignment @torch.no_grad() def generate(self, models, sample, **kwargs): finalized = super()._generate(sample, **kwargs) src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.shape[0] beam_size = self.beam_size ( src_tokens, src_lengths, prev_output_tokens, tgt_tokens, ) = self._prepare_batch_for_alignment(sample, finalized) if any(getattr(m, "full_context_alignment", False) for m in self.model.models): attn = self.model.forward_align(src_tokens, src_lengths, prev_output_tokens) else: attn = [ finalized[i // beam_size][i % beam_size]["attention"].transpose(1, 0) for i in range(bsz * beam_size) ] if src_tokens.device != "cpu": src_tokens = src_tokens.to("cpu") tgt_tokens = tgt_tokens.to("cpu") attn = [i.to("cpu") for i in attn] # Process the attn matrix to extract hard alignments. for i in range(bsz * beam_size): alignment = self.extract_alignment( attn[i], src_tokens[i], tgt_tokens[i], self.pad, self.eos ) finalized[i // beam_size][i % beam_size]["alignment"] = alignment return finalized def _prepare_batch_for_alignment(self, sample, hypothesis): src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.shape[0] src_tokens = ( src_tokens[:, None, :] .expand(-1, self.beam_size, -1) .contiguous() .view(bsz * self.beam_size, -1) ) src_lengths = sample["net_input"]["src_lengths"] src_lengths = ( src_lengths[:, None] .expand(-1, self.beam_size) .contiguous() .view(bsz * self.beam_size) ) prev_output_tokens = data_utils.collate_tokens( [beam["tokens"] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=True, ) tgt_tokens = data_utils.collate_tokens( [beam["tokens"] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=False, ) return src_tokens, src_lengths, prev_output_tokens, tgt_tokens class EnsembleModelWithAlignment(EnsembleModel): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__(models) def forward_align(self, src_tokens, src_lengths, prev_output_tokens): avg_attn = None for model in self.models: decoder_out = model(src_tokens, src_lengths, prev_output_tokens) attn = decoder_out[1]["attn"][0] if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) if len(self.models) > 1: avg_attn.div_(len(self.models)) return avg_attn
COCO-LM/fairseq/fairseq/sequence_generator.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/sequence_generator.py", "repo_id": "COCO-LM", "token_count": 19051 }
218
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os.path as op from argparse import Namespace from fairseq.data import Dictionary, encoders from fairseq.data.audio.speech_to_text_dataset import ( S2TDataConfig, SpeechToTextDataset, SpeechToTextDatasetCreator, get_features_or_waveform ) from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("speech_to_text") class SpeechToTextTask(LegacyFairseqTask): @staticmethod def add_args(parser): parser.add_argument("data", help="manifest root path") parser.add_argument( "--config-yaml", type=str, default="config.yaml", help="Configuration YAML filename (under manifest root)", ) parser.add_argument( "--max-source-positions", default=6000, type=int, metavar="N", help="max number of tokens in the source sequence", ) parser.add_argument( "--max-target-positions", default=1024, type=int, metavar="N", help="max number of tokens in the target sequence", ) def __init__(self, args, tgt_dict): super().__init__(args) self.tgt_dict = tgt_dict self.data_cfg = S2TDataConfig(op.join(args.data, args.config_yaml)) @classmethod def setup_task(cls, args, **kwargs): data_cfg = S2TDataConfig(op.join(args.data, args.config_yaml)) dict_path = op.join(args.data, data_cfg.vocab_filename) if not op.isfile(dict_path): raise FileNotFoundError(f"Dict not found: {dict_path}") tgt_dict = Dictionary.load(dict_path) logger.info( f"dictionary size ({data_cfg.vocab_filename}): " f"{len(tgt_dict):,}" ) if getattr(args, "train_subset", None) is not None: if not all(s.startswith("train") for s in args.train_subset.split(",")): raise ValueError('Train splits should be named like "train*".') return cls(args, tgt_dict) def build_criterion(self, args): from fairseq import criterions if self.data_cfg.prepend_tgt_lang_tag and args.ignore_prefix_size != 1: raise ValueError( 'Please set "--ignore-prefix-size 1" since ' "target language ID token is prepended as BOS." ) return criterions.build_criterion(args, self) def load_dataset(self, split, epoch=1, combine=False, **kwargs): is_train_split = split.startswith("train") pre_tokenizer = self.build_tokenizer(self.args) bpe_tokenizer = self.build_bpe(self.args) self.datasets[split] = SpeechToTextDatasetCreator.from_tsv( self.args.data, self.data_cfg, split, self.tgt_dict, pre_tokenizer, bpe_tokenizer, is_train_split=is_train_split, epoch=epoch, seed=self.args.seed, ) @property def target_dictionary(self): return self.tgt_dict @property def source_dictionary(self): return None def max_positions(self): return self.args.max_source_positions, self.args.max_target_positions def build_model(self, args): args.input_feat_per_channel = self.data_cfg.input_feat_per_channel args.input_channels = self.data_cfg.input_channels return super(SpeechToTextTask, self).build_model(args) def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, ): if self.data_cfg.prepend_tgt_lang_tag and args.prefix_size != 1: raise ValueError( 'Please set "--prefix-size 1" since ' "target language ID token is prepended as BOS." ) lang_token_ids = { i for s, i in self.tgt_dict.indices.items() if SpeechToTextDataset.is_lang_tag(s) } extra_gen_cls_kwargs = {"symbols_to_strip_from_output": lang_token_ids} return super().build_generator( models, args, seq_gen_cls=None, extra_gen_cls_kwargs=extra_gen_cls_kwargs ) def build_tokenizer(self, args): logger.info(f"pre-tokenizer: {self.data_cfg.pre_tokenizer}") return encoders.build_tokenizer(Namespace(**self.data_cfg.pre_tokenizer)) def build_bpe(self, args): logger.info(f"tokenizer: {self.data_cfg.bpe_tokenizer}") return encoders.build_bpe(Namespace(**self.data_cfg.bpe_tokenizer)) def get_interactive_tokens_and_lengths(self, lines, encode_fn): n_frames = [get_features_or_waveform(p).shape[0] for p in lines] return lines, n_frames def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): return SpeechToTextDataset( "interactive", False, self.data_cfg, src_tokens, src_lengths )
COCO-LM/fairseq/fairseq/tasks/speech_to_text.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/tasks/speech_to_text.py", "repo_id": "COCO-LM", "token_count": 2396 }
219
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from fairseq.dataclass.initialize import add_defaults, hydra_init from fairseq_cli.train import main as pre_main from fairseq import distributed_utils, metrics from fairseq.dataclass.configs import FairseqConfig import hydra from hydra.core.hydra_config import HydraConfig import torch from omegaconf import OmegaConf, open_dict logger = logging.getLogger("fairseq_cli.hydra_train") @hydra.main(config_path=os.path.join("..", "fairseq", "config"), config_name="config") def hydra_main(cfg: FairseqConfig) -> float: add_defaults(cfg) if cfg.common.reset_logging: reset_logging() # Hydra hijacks logging, fix that else: with open_dict(cfg): # make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126) cfg.job_logging_cfg = OmegaConf.to_container(HydraConfig.get().job_logging, resolve=True) cfg = OmegaConf.create(OmegaConf.to_container(cfg, resolve=True, enum_to_str=True)) OmegaConf.set_struct(cfg, True) try: if cfg.common.profile: with torch.cuda.profiler.profile(): with torch.autograd.profiler.emit_nvtx(): distributed_utils.call_main(cfg, pre_main) else: distributed_utils.call_main(cfg, pre_main) except BaseException as e: if not cfg.common.suppress_crashes: raise else: logger.error("Crashed! " + str(e)) # get best val and return - useful for sweepers try: best_val = metrics.get_smoothed_value( "valid", cfg.checkpoint.best_checkpoint_metric ) except: best_val = None if best_val is None: best_val = float("inf") return best_val def reset_logging(): root = logging.getLogger() for handler in root.handlers: root.removeHandler(handler) root.setLevel(os.environ.get("LOGLEVEL", "INFO").upper()) handler = logging.StreamHandler(sys.stdout) handler.setFormatter( logging.Formatter( fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) ) root.addHandler(handler) def cli_main(): try: from hydra._internal.utils import get_args cfg_name = get_args().config_name or "config" except: logger.warning("Failed to get config name from hydra args") cfg_name = "config" hydra_init(cfg_name) hydra_main() if __name__ == "__main__": cli_main()
COCO-LM/fairseq/fairseq_cli/hydra_train.py/0
{ "file_path": "COCO-LM/fairseq/fairseq_cli/hydra_train.py", "repo_id": "COCO-LM", "token_count": 1142 }
220
/** * From PyTorch: * * Copyright (c) 2016- Facebook, Inc (Adam Paszke) * Copyright (c) 2014- Facebook, Inc (Soumith Chintala) * Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert) * Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) * Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) * Copyright (c) 2011-2013 NYU (Clement Farabet) * Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston) * Copyright (c) 2006 Idiap Research Institute (Samy Bengio) * Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz) * * From Caffe2: * * Copyright (c) 2016-present, Facebook Inc. All rights reserved. * * All contributions by Facebook: * Copyright (c) 2016 Facebook Inc. * * All contributions by Google: * Copyright (c) 2015 Google Inc. * All rights reserved. * * All contributions by Yangqing Jia: * Copyright (c) 2015 Yangqing Jia * All rights reserved. * * All contributions from Caffe: * Copyright(c) 2013, 2014, 2015, the respective contributors * All rights reserved. * * All other contributions: * Copyright(c) 2015, 2016 the respective contributors * All rights reserved. * * Caffe2 uses a copyright model similar to Caffe: each contributor holds * copyright over their contributions to Caffe2. The project versioning records * all such contribution and copyright details. If a contributor wants to further * mark their specific copyright on a particular contribution, they should * indicate their copyright solely in the commit message of the change when it is * committed. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America * and IDIAP Research Institute nor the names of its contributors may be * used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <ATen/AccumulateType.h> #include <ATen/cuda/NumericLimits.cuh> #include <THC/THC.h> #include <THC/THCGeneral.h> #include <THC/THCThrustAllocator.cuh> #include "type_shim.h" #include "compat.h" #define ALIGN_BYTES 16 using Tensor = at::Tensor; using TensorList = at::TensorList; using ScalarType = at::ScalarType; using at::acc_type; template<typename T, typename AccumT, typename OutT> struct LogSoftMaxForwardEpilogue { __device__ __forceinline__ LogSoftMaxForwardEpilogue(AccumT max_input, AccumT sum) : logsum(max_input + std::log(sum)) {} __device__ __forceinline__ LogSoftMaxForwardEpilogue(AccumT max_log_sum_exp) : logsum(max_log_sum_exp) {} __device__ __forceinline__ OutT operator()(T input) const { return static_cast<OutT>(input - logsum); } const AccumT logsum; }; template<typename T, typename AccumT, typename OutT> struct LogSoftMaxBackwardEpilogue { __device__ __forceinline__ LogSoftMaxBackwardEpilogue(AccumT sum) : sum(sum) {} __device__ __forceinline__ T operator()(OutT gradOutput, OutT output) const { return static_cast<T>(gradOutput - std::exp(static_cast<AccumT>(output)) * sum); } const AccumT sum; }; const int max_threads = 1024; inline dim3 SoftMax_getBlockSize(int ILP, uint64_t dim_size) { uint64_t block_size = 1; uint64_t max_block_size = std::min(dim_size / ILP, static_cast<uint64_t>(max_threads)); while (block_size < (max_block_size/2)) block_size *= 2; // Launch at least a single warp - the kernel assumes that. block_size = std::max(block_size, static_cast<uint64_t>(32)); return dim3(block_size); } template<typename T> struct Add { __device__ __forceinline__ T operator()(T a, T b) const { return a + b; } }; template<typename T> struct Max { __device__ __forceinline__ T operator()(T a, T b) const { return a < b ? b : a; } }; //////////////////////////////////////////////////////////////////////////////// // Regular kernel (fast when dim_size is large; requires inner_size == 1) //////////////////////////////////////////////////////////////////////////////// template <typename T, typename AccumT> struct MaxFloat { __device__ __forceinline__ AccumT operator()(AccumT max, T v) const { return ::max(max, (AccumT)v); } }; template<typename T, typename AccumT> struct AddFloat { __device__ __forceinline__ AccumT operator()(AccumT sum, T v) const { return sum + v; } }; template<typename T, typename AccumT> struct SumExpFloat { __device__ __forceinline__ SumExpFloat(AccumT v) : max_k(v) {} __device__ __forceinline__ AccumT operator()(AccumT sum, T v) const { return sum + std::exp(v - max_k); } const AccumT max_k; }; template <template<typename> class Reduction, typename AccumT> __device__ __forceinline__ AccumT blockReduce(AccumT* smem, AccumT val, const Reduction<AccumT>& r, AccumT defaultVal) { // To avoid RaW races from chaining blockReduce calls together, we need a sync here __syncthreads(); smem[threadIdx.x] = val; __syncthreads(); AccumT warpVal = defaultVal; // First warp will perform per-warp reductions for the remaining warps uint32_t mask = (((uint64_t)1) << (blockDim.x / 32)) - 1; if (threadIdx.x < 32) { int lane = threadIdx.x % 32; if (lane < blockDim.x / 32) { #pragma unroll for (int i = 0; i < 32; ++i) { warpVal = r(warpVal, smem[lane * 32 + i]); } __syncwarp(mask); smem[lane] = warpVal; } } __syncthreads(); // First thread will perform a reduction of the above per-warp reductions AccumT blockVal = defaultVal; if (threadIdx.x == 0) { for (int i = 0; i < blockDim.x / 32; ++i) { blockVal = r(blockVal, smem[i]); } smem[0] = blockVal; } // Sync and broadcast __syncthreads(); return smem[0]; } template <template<typename> class Reduction1, template<typename> class Reduction2, typename AccumT> __device__ __forceinline__ void blockReduce(AccumT* smem, AccumT* reducVal1, AccumT val1, const Reduction1<AccumT>& r1, AccumT defaultVal1, AccumT* reducVal2, AccumT val2, const Reduction2<AccumT>& r2, AccumT defaultVal2) { // To avoid RaW races from chaining blockReduce calls together, we need a sync here __syncthreads(); smem[threadIdx.x] = val1; smem[blockDim.x + threadIdx.x] = val2; __syncthreads(); AccumT warpVal1 = defaultVal1; AccumT warpVal2 = defaultVal2; // First warp will perform per-warp reductions for the remaining warps uint32_t mask = (((uint64_t)1) << (blockDim.x / 32)) - 1; if (threadIdx.x < 32) { int lane = threadIdx.x % 32; if (lane < blockDim.x / 32) { #pragma unroll for (int i = 0; i < 32; ++i) { warpVal1 = r1(warpVal1, smem[lane * 32 + i]); warpVal2 = r2(warpVal2, smem[lane * 32 + i + blockDim.x]); } __syncwarp(mask); smem[lane] = warpVal1; smem[lane + blockDim.x] = warpVal2; } } __syncthreads(); // First thread will perform a reduction of the above per-warp reductions AccumT blockVal1 = defaultVal1; AccumT blockVal2 = defaultVal2; if (threadIdx.x == 0) { for (int i = 0; i < blockDim.x / 32; ++i) { blockVal1 = r1(blockVal1, smem[i]); blockVal2 = r2(blockVal2, smem[i + blockDim.x]); } smem[0] = blockVal1; smem[blockDim.x] = blockVal2; } // Sync and broadcast __syncthreads(); *reducVal1 = smem[0]; *reducVal2 = smem[blockDim.x]; __syncthreads(); } template <template<typename, typename> class Reduction, int ILP, typename T, typename AccumT> __device__ __forceinline__ AccumT ilpReduce(int shift, T* data, int size, const Reduction<T, AccumT>& r, AccumT defaultVal) { typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LoadT; AccumT threadVal = defaultVal; int offset = threadIdx.x; // shift and do 1 if(shift > 0){ data -= shift; size += shift; if(threadIdx.x >= shift){ threadVal = r(threadVal, data[offset]); } size -= blockDim.x; data += blockDim.x; } int last = size % (ILP * blockDim.x); T v[ILP]; LoadT* value = reinterpret_cast<LoadT*>(&v); for (; offset * ILP < (size - last); offset += blockDim.x) { *value = reinterpret_cast<LoadT*>(data)[offset]; for (int j = 0; j < ILP; ++j) { threadVal = r(threadVal, v[j]); } } offset = size - last + threadIdx.x; // Epilogue for (; offset < size; offset += blockDim.x) threadVal = r(threadVal, data[offset]); return threadVal; } template <template<typename, typename> class Reduction1, template<typename, typename> class Reduction2, int ILP, typename T, typename AccumT> __device__ __forceinline__ void ilpReduce(int shift, T* data, int size, AccumT* reducVal1, const Reduction1<T, AccumT>& r1, AccumT defaultVal1, AccumT* reducVal2, const Reduction2<T, AccumT>& r2, AccumT defaultVal2) { typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LoadT; AccumT threadVal1 = defaultVal1; AccumT threadVal2 = defaultVal2; int offset = threadIdx.x; // shift and do 1 if(shift > 0){ data -= shift; size += shift; if(threadIdx.x >= shift){ threadVal1 = r1(threadVal1, data[offset]); threadVal2 = r2(threadVal2, data[offset]); } size -= blockDim.x; data += blockDim.x; } int last = size % (ILP * blockDim.x); T v[ILP]; LoadT* value = reinterpret_cast<LoadT*>(&v); for (; offset * ILP < (size - last); offset += blockDim.x) { *value = reinterpret_cast<LoadT*>(data)[offset]; for (int j = 0; j < ILP; ++j) { threadVal1 = r1(threadVal1, v[j]); threadVal2 = r2(threadVal2, v[j]); } } offset = size - last + threadIdx.x; // Epilogue for (; offset < size; offset += blockDim.x) { threadVal1 = r1(threadVal1, data[offset]); threadVal2 = r2(threadVal2, data[offset]); } *reducVal1 = threadVal1; *reducVal2 = threadVal2; } template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t, template <typename, typename, typename> class Epilogue> __global__ void cunn_SoftMaxXEntropyForward( accscalar_t *losses, outscalar_t *max_log_sum_exp, scalar_t *input, int64_t *labels, int64_t classes) { extern __shared__ unsigned char smem[]; auto sdata = reinterpret_cast<accscalar_t*>(smem); // forward pointers to batch[blockIdx.x] // each block handles a sample in the mini-batch input += blockIdx.x * classes; //output += blockIdx.x * classes; const int shift = ((uint64_t)input) % ALIGN_BYTES / sizeof(scalar_t); int64_t label = labels[blockIdx.x]; // find the max and sum accscalar_t threadMax, threadSum, max_k, sum_k; ilpReduce<MaxFloat, AddFloat, ILP, scalar_t, accscalar_t>( shift, input, classes, &threadMax, MaxFloat<scalar_t, accscalar_t>(), -at::numeric_limits<accscalar_t>::max(), &threadSum, AddFloat<scalar_t, accscalar_t>(), static_cast<accscalar_t>(0)); blockReduce<Max, Add, accscalar_t>( sdata, &max_k, threadMax, Max<accscalar_t>(), -at::numeric_limits<accscalar_t>::max(), &sum_k, threadSum, Add<accscalar_t>(), static_cast<accscalar_t>(0)); accscalar_t threadExp = ilpReduce<SumExpFloat, ILP, scalar_t, accscalar_t>(shift, input, classes, SumExpFloat<scalar_t, accscalar_t>(max_k), static_cast<accscalar_t>(0)); accscalar_t sumAll = blockReduce<Add, accscalar_t>( sdata, threadExp, Add<accscalar_t>(), static_cast<accscalar_t>(0)); Epilogue<scalar_t, accscalar_t, outscalar_t> epilogue(max_k, sumAll); // calculate per element loss // reserve max + log_sum_exp for bprop if (threadIdx.x == 0) { accscalar_t log_prob = epilogue(static_cast<accscalar_t>(input[label])); losses[blockIdx.x] = -log_prob; max_log_sum_exp[blockIdx.x] = max_k + std::log(sumAll); } } template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t> __device__ __forceinline__ void apply(scalar_t *gradInput, scalar_t *logits, outscalar_t *max_log_sum_exp, outscalar_t *gradOutput, int64_t *labels, int classes) { accscalar_t tmpGradOutput = gradOutput[blockIdx.x]; int64_t label = labels[blockIdx.x]; accscalar_t coeff = max_log_sum_exp[blockIdx.x]; int offset = threadIdx.x; int last = classes % (ILP * blockDim.x); for (; offset < classes - last; offset += blockDim.x * ILP) { accscalar_t tmpLogits[ILP]; #pragma unroll for (int j = 0; j < ILP; ++j) { tmpLogits[j] = static_cast<accscalar_t>(logits[offset + j * blockDim.x]); } #pragma unroll for (int j = 0; j < ILP; ++j) gradInput[offset + j * blockDim.x] = tmpGradOutput * ( std::exp(tmpLogits[j] - coeff) - static_cast<accscalar_t>( (offset + j * blockDim.x == label) ? 1 : 0)); } for (; offset < classes; offset += blockDim.x) gradInput[offset] = tmpGradOutput * (std::exp( static_cast<accscalar_t>(logits[offset]) - coeff) - static_cast<accscalar_t>((offset == label) ? 1 : 0)); } template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t> __device__ __forceinline__ void aligned_apply(int shift, scalar_t *gradInput, scalar_t *logits, outscalar_t *max_log_sum_exp, outscalar_t *gradOutput, int64_t *labels, int classes) { accscalar_t tmpGradOutput = gradOutput[blockIdx.x]; int64_t label = labels[blockIdx.x]; accscalar_t coeff = max_log_sum_exp[blockIdx.x]; int offset = threadIdx.x; // shift and do 1 if(shift > 0){ logits -= shift; gradInput -= shift; classes += shift; if(threadIdx.x >= shift){ gradInput[offset] = tmpGradOutput * (std::exp( static_cast<accscalar_t>(logits[offset]) - coeff) - static_cast<accscalar_t>(((offset - shift) == label) ? 1 : 0)); } classes -= blockDim.x; gradInput += blockDim.x; logits += blockDim.x; shift -= blockDim.x; } int last = classes % (ILP * blockDim.x); typedef typename std::aligned_storage<ILP*sizeof(scalar_t), ILP*alignof(scalar_t)>::type LoadT; // input scalar_t v[ILP]; LoadT* value = reinterpret_cast<LoadT*>(&v); // output scalar_t r[ILP]; LoadT* result = reinterpret_cast<LoadT*>(&r); for (; offset * ILP < (classes - last); offset += blockDim.x) { *value = reinterpret_cast<LoadT*>(logits)[offset]; #pragma unroll for (int j = 0; j < ILP; ++j) { r[j] = tmpGradOutput * (std::exp( static_cast<accscalar_t>(v[j]) - coeff) - static_cast<accscalar_t>(((ILP * offset + j - shift) == label) ? 1 : 0)); } reinterpret_cast<LoadT*>(gradInput)[offset] = *result; } offset = classes - last + threadIdx.x; for (; offset < classes; offset += blockDim.x) gradInput[offset] = tmpGradOutput * (std::exp( static_cast<accscalar_t>(logits[offset]) - coeff) - static_cast<accscalar_t>(((offset - shift) == label) ? 1 : 0)); } template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t, template<typename, typename, typename> class Epilogue> __global__ void cunn_SoftMaxXEntropyBackward( scalar_t *gradInput, scalar_t *logits, outscalar_t *max_log_sum_exp, outscalar_t *gradOutput, int64_t *labels, int classes) { gradInput += blockIdx.x * classes; logits += blockIdx.x * classes; // Do vectorized load/store when input/output have same alignment const int shift = ((uint64_t)logits) % ALIGN_BYTES / sizeof(scalar_t); const int shift_ = ((uint64_t)gradInput) % ALIGN_BYTES / sizeof(scalar_t); if (shift == shift_){ aligned_apply<ILP, scalar_t, accscalar_t, outscalar_t>(shift, gradInput, logits, max_log_sum_exp, gradOutput, labels, classes); } else { apply<ILP, scalar_t, accscalar_t, outscalar_t>(gradInput, logits, max_log_sum_exp, gradOutput, labels, classes); } } template<template<typename, typename, typename> class Epilogue> std::vector<Tensor> host_bf16_softmax_xentropy( const Tensor & input_, const Tensor & labels_, const bool bf16_to_float){ if (bf16_to_float) AT_ASSERTM(input_.type().scalarType() == ScalarType::BFloat16,"conversion is supported for bf16 type only"); AT_ASSERTM(labels_.type().scalarType() == ScalarType::Long,"Label type should be CUDA Long"); auto input = input_.contiguous(); Tensor max_log_sum_exp = at::empty_like(labels_, bf16_to_float ? input.options().dtype(ScalarType::Float) : input.options()); Tensor losses = at::empty_like(labels_, input_.options().dtype(ScalarType::Float)); static_assert(std::is_same<acc_type<at::BFloat16, true>, float>::value || std::is_same<acc_type<at::BFloat16, true>, double>::value, "accscalar_t for bf16 should be float or double"); AT_ASSERTM(input.dim() == 2, "Currently only 2 dim input supported"); AT_ASSERTM(labels_.dim() == 1, "Labels should be 1 dimensional"); AT_ASSERTM(input.size(0) == labels_.size(0), "Input and label should have same number of examples"); AT_ASSERTM(input.numel() > 0, "Number of classes in input should not be 0"); const int64_t dim = 1; int64_t outer_size = 1; int64_t dim_size = input.size(dim); int64_t inner_size = 1; cudaStream_t stream = at::cuda::getCurrentCUDAStream(); for (int64_t i = 0; i < dim; ++i) outer_size *= input.size(i); for (int64_t i = dim + 1; i < input.dim(); ++i) inner_size *= input.size(i); // This kernel spawns a block per each element in the batch. // XXX: it assumes that inner_size == 1 TORCH_CHECK(inner_size == 1, "Currently only inner size 1 supported"); dim3 grid(outer_size); using namespace at; DISPATCH_FLOAT_AND_BF16(input.scalar_type(), 0, "host_bf16_softmax_xentropy", using accscalar_t = at::acc_type<scalar_t_0, true>; const int ILP = sizeof(float4)/sizeof(scalar_t_0); dim3 block = SoftMax_getBlockSize(ILP, dim_size); if (!bf16_to_float) { cunn_SoftMaxXEntropyForward<ILP, scalar_t_0, accscalar_t, scalar_t_0, Epilogue> <<<grid, block, 2 * block.x * sizeof(accscalar_t), stream>>>( losses.DATA_PTR<accscalar_t>(), max_log_sum_exp.DATA_PTR<scalar_t_0>(), input.DATA_PTR<scalar_t_0>(), labels_.DATA_PTR<int64_t>(), dim_size ); } else { cunn_SoftMaxXEntropyForward<ILP, scalar_t_0, accscalar_t, accscalar_t, Epilogue> <<<grid, block, 2 * block.x * sizeof(accscalar_t), stream>>>( losses.DATA_PTR<accscalar_t>(), max_log_sum_exp.DATA_PTR<accscalar_t>(), input.DATA_PTR<scalar_t_0>(), labels_.DATA_PTR<int64_t>(), dim_size ); } ); THCudaCheck(cudaGetLastError()); std::vector<at::Tensor> ret = {losses, max_log_sum_exp}; return ret; } template<template<typename, typename, typename> class Epilogue> std::vector<Tensor> host_softmax_xentropy( const Tensor & input_, const Tensor & labels_, const bool half_to_float){ if (half_to_float) AT_ASSERTM(input_.type().scalarType() == ScalarType::Half || input_.type().scalarType() == ScalarType::BFloat16,"conversion is supported for half or BFloat16 type only"); AT_ASSERTM(labels_.type().scalarType() == ScalarType::Long,"Label type should be CUDA Long"); auto input = input_.contiguous(); Tensor max_log_sum_exp = at::empty_like(labels_, half_to_float ? input.options().dtype(ScalarType::Float) : input.options()); Tensor losses = at::empty_like(labels_, input_.options().dtype(ScalarType::Float)); static_assert(std::is_same<acc_type<at::Half, true>, float>::value || std::is_same<acc_type<at::Half, true>, double>::value, "accscalar_t for half should be float or double"); static_assert(std::is_same<acc_type<at::BFloat16, true>, float>::value || std::is_same<acc_type<at::BFloat16, true>, double>::value, "accscalar_t for BFloat16 should be float or double"); AT_ASSERTM(input.dim() == 2, "Currently only 2 dim input supported"); AT_ASSERTM(labels_.dim() == 1, "Labels should be 1 dimensional"); AT_ASSERTM(input.size(0) == labels_.size(0), "Input and label should have same number of examples"); AT_ASSERTM(input.numel() > 0, "Number of classes in input should not be 0"); const int64_t dim = 1; int64_t outer_size = 1; int64_t dim_size = input.size(dim); int64_t inner_size = 1; cudaStream_t stream = at::cuda::getCurrentCUDAStream(); for (int64_t i = 0; i < dim; ++i) outer_size *= input.size(i); for (int64_t i = dim + 1; i < input.dim(); ++i) inner_size *= input.size(i); // This kernel spawns a block per each element in the batch. // XXX: it assumes that inner_size == 1 TORCH_CHECK(inner_size == 1, "Currently only inner size 1 supported"); dim3 grid(outer_size); using namespace at; DISPATCH_FLOAT_AND_HALF_AND_BF16(input.scalar_type(), 0, "host_softmax_xentropy", using accscalar_t = at::acc_type<scalar_t_0, true>; const int ILP = sizeof(float4)/sizeof(scalar_t_0); dim3 block = SoftMax_getBlockSize(ILP, dim_size); if (!half_to_float) { cunn_SoftMaxXEntropyForward<ILP, scalar_t_0, accscalar_t, scalar_t_0, Epilogue> <<<grid, block, 2 * block.x * sizeof(accscalar_t), stream>>>( losses.DATA_PTR<accscalar_t>(), max_log_sum_exp.DATA_PTR<scalar_t_0>(), input.DATA_PTR<scalar_t_0>(), labels_.DATA_PTR<int64_t>(), dim_size ); } else { cunn_SoftMaxXEntropyForward<ILP, scalar_t_0, accscalar_t, accscalar_t, Epilogue> <<<grid, block, 2 * block.x * sizeof(accscalar_t), stream>>>( losses.DATA_PTR<accscalar_t>(), max_log_sum_exp.DATA_PTR<accscalar_t>(), input.DATA_PTR<scalar_t_0>(), labels_.DATA_PTR<int64_t>(), dim_size ); } ); THCudaCheck(cudaGetLastError()); std::vector<at::Tensor> ret = {losses, max_log_sum_exp}; return ret; } template<template<typename, typename, typename> class Epilogue> Tensor host_softmax_xentropy_backward( const at::Tensor &grad_loss, const at::Tensor &logits_, const at::Tensor &max_log_sum_exp, const at::Tensor &labels, bool half_to_float) { const int64_t dim = 1; Tensor gI = at::empty_like(logits_); if (grad_loss.numel() == 0) { return gI; } auto grad = grad_loss.contiguous(); auto logits = logits_.contiguous(); static_assert(std::is_same<acc_type<at::Half, true>, float>::value || std::is_same<acc_type<at::Half, true>, double>::value, "accscalar_t for half should be float or double"); static_assert(std::is_same<acc_type<at::BFloat16, true>, float>::value || std::is_same<acc_type<at::BFloat16, true>, double>::value, "accscalar_t for BFloat16 should be float or double"); if (grad.dim() == 0) grad = grad.view(1); AT_ASSERTM(logits_.dim() == 2, "Currently only 2 dim input supported"); AT_ASSERTM(labels.dim() == 1, "Labels should be 1 dimensional"); AT_ASSERTM(logits_.numel() > 0, "Number of classes in input should not be 0"); AT_ASSERTM(logits_.size(0) == labels.size(0), "Input and label should have same number of examples"); AT_ASSERTM(labels.size(0) == grad.size(0), "Label and loss should have same number of examples"); int64_t outer_size = 1; int64_t dim_size = logits.size(dim); int64_t inner_size = 1; for (int64_t i = 0; i < dim; ++i) outer_size *= logits.size(i); for (int64_t i = dim + 1; i < logits.dim(); ++i) inner_size *= logits.size(i); // See descriptions of kernels above. cudaStream_t stream = at::cuda::getCurrentCUDAStream(); TORCH_CHECK(inner_size == 1, "Currently only inner size 1 supported"); dim3 grid(outer_size); DISPATCH_FLOAT_AND_HALF_AND_BF16(gI.scalar_type(), 0, "host_softmax_xentropy_backward", using accscalar_t = acc_type<scalar_t_0, true>; const int ILP = sizeof(float4)/sizeof(scalar_t_0); dim3 block = SoftMax_getBlockSize(ILP, dim_size); if (!half_to_float) { cunn_SoftMaxXEntropyBackward<ILP, scalar_t_0, accscalar_t, scalar_t_0, Epilogue> <<<grid, block, block.x * sizeof(accscalar_t), stream>>>( gI.DATA_PTR<scalar_t_0>(), logits.DATA_PTR<scalar_t_0>(), max_log_sum_exp.DATA_PTR<scalar_t_0>(), grad.DATA_PTR<scalar_t_0>(), labels.DATA_PTR<int64_t>(), dim_size ); } else { cunn_SoftMaxXEntropyBackward<ILP, scalar_t_0, accscalar_t, accscalar_t, Epilogue> <<<grid, block, block.x * sizeof(accscalar_t), stream>>>( gI.DATA_PTR<scalar_t_0>(), logits.DATA_PTR<scalar_t_0>(), max_log_sum_exp.DATA_PTR<accscalar_t>(), grad.DATA_PTR<accscalar_t>(), labels.DATA_PTR<int64_t>(), dim_size ); } ); THCudaCheck(cudaGetLastError()); return gI; } std::vector<Tensor> softmax_xentropy_cuda(const Tensor &input, const Tensor &labels, const bool half_to_float){ return host_softmax_xentropy<LogSoftMaxForwardEpilogue>(input, labels, half_to_float); } at::Tensor softmax_xentropy_backward_cuda( const at::Tensor &grad_loss, const at::Tensor &logits, const at::Tensor &max_log_sum_exp, const at::Tensor &labels) { bool half_to_float = grad_loss.type().scalarType() != logits.type().scalarType(); if (half_to_float) { AT_ASSERTM((grad_loss.type().scalarType() == ScalarType::Float && (logits.type().scalarType() == ScalarType::Half || logits.type().scalarType() == ScalarType::BFloat16)), "expected input and grad types to match, or input to be at::half and grad to be at::Float"); } return host_softmax_xentropy_backward<LogSoftMaxBackwardEpilogue>(grad_loss, logits, max_log_sum_exp, labels, half_to_float); }
COCO-LM/fairseq/fused_ops/csrc/xentropy/xentropy_kernel.cu/0
{ "file_path": "COCO-LM/fairseq/fused_ops/csrc/xentropy/xentropy_kernel.cu", "repo_id": "COCO-LM", "token_count": 11071 }
221
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import argparse import contextlib import sys import sentencepiece as spm def main(): parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="sentencepiece model to use for encoding" ) parser.add_argument( "--inputs", nargs="+", default=["-"], help="input files to filter/encode" ) parser.add_argument( "--outputs", nargs="+", default=["-"], help="path to save encoded outputs" ) parser.add_argument("--output_format", choices=["piece", "id"], default="piece") parser.add_argument( "--min-len", type=int, metavar="N", help="filter sentence pairs with fewer than N tokens", ) parser.add_argument( "--max-len", type=int, metavar="N", help="filter sentence pairs with more than N tokens", ) args = parser.parse_args() assert len(args.inputs) == len( args.outputs ), "number of input and output paths should match" sp = spm.SentencePieceProcessor() sp.Load(args.model) if args.output_format == "piece": def encode(l): return sp.EncodeAsPieces(l) elif args.output_format == "id": def encode(l): return list(map(str, sp.EncodeAsIds(l))) else: raise NotImplementedError if args.min_len is not None or args.max_len is not None: def valid(line): return (args.min_len is None or len(line) >= args.min_len) and ( args.max_len is None or len(line) <= args.max_len ) else: def valid(lines): return True with contextlib.ExitStack() as stack: inputs = [ stack.enter_context(open(input, "r", encoding="utf-8")) if input != "-" else sys.stdin for input in args.inputs ] outputs = [ stack.enter_context(open(output, "w", encoding="utf-8")) if output != "-" else sys.stdout for output in args.outputs ] stats = { "num_empty": 0, "num_filtered": 0, } def encode_line(line): line = line.strip() if len(line) > 0: line = encode(line) if valid(line): return line else: stats["num_filtered"] += 1 else: stats["num_empty"] += 1 return None for i, lines in enumerate(zip(*inputs), start=1): enc_lines = list(map(encode_line, lines)) if not any(enc_line is None for enc_line in enc_lines): for enc_line, output_h in zip(enc_lines, outputs): print(" ".join(enc_line), file=output_h) if i % 10000 == 0: print("processed {} lines".format(i), file=sys.stderr) print("skipped {} empty lines".format(stats["num_empty"]), file=sys.stderr) print("filtered {} lines".format(stats["num_filtered"]), file=sys.stderr) if __name__ == "__main__": main()
COCO-LM/fairseq/scripts/spm_encode.py/0
{ "file_path": "COCO-LM/fairseq/scripts/spm_encode.py", "repo_id": "COCO-LM", "token_count": 1575 }
222
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np import torch from examples.speech_recognition.data.collaters import Seq2SeqCollater class TestSeq2SeqCollator(unittest.TestCase): def test_collate(self): eos_idx = 1 pad_idx = 0 collater = Seq2SeqCollater( feature_index=0, label_index=1, pad_index=pad_idx, eos_index=eos_idx ) # 2 frames in the first sample and 3 frames in the second one frames1 = np.array([[7, 8], [9, 10]]) frames2 = np.array([[1, 2], [3, 4], [5, 6]]) target1 = np.array([4, 2, 3, eos_idx]) target2 = np.array([3, 2, eos_idx]) sample1 = {"id": 0, "data": [frames1, target1]} sample2 = {"id": 1, "data": [frames2, target2]} batch = collater.collate([sample1, sample2]) # collate sort inputs by frame's length before creating the batch self.assertTensorEqual(batch["id"], torch.tensor([1, 0])) self.assertEqual(batch["ntokens"], 7) self.assertTensorEqual( batch["net_input"]["src_tokens"], torch.tensor( [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [pad_idx, pad_idx]]] ), ) self.assertTensorEqual( batch["net_input"]["prev_output_tokens"], torch.tensor([[eos_idx, 3, 2, pad_idx], [eos_idx, 4, 2, 3]]), ) self.assertTensorEqual(batch["net_input"]["src_lengths"], torch.tensor([3, 2])) self.assertTensorEqual( batch["target"], torch.tensor([[3, 2, eos_idx, pad_idx], [4, 2, 3, eos_idx]]), ) self.assertEqual(batch["nsentences"], 2) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/speech_recognition/test_collaters.py/0
{ "file_path": "COCO-LM/fairseq/tests/speech_recognition/test_collaters.py", "repo_id": "COCO-LM", "token_count": 982 }
223
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import tempfile import unittest import torch from fairseq.data.dictionary import Dictionary from fairseq.models.transformer import TransformerModel from fairseq.modules import multihead_attention, sinusoidal_positional_embedding from fairseq.tasks.fairseq_task import LegacyFairseqTask DEFAULT_TEST_VOCAB_SIZE = 100 class DummyTask(LegacyFairseqTask): def __init__(self, args): super().__init__(args) self.dictionary = get_dummy_dictionary() if getattr(self.args, "ctc", False): self.dictionary.add_symbol("<ctc_blank>") self.src_dict = self.dictionary self.tgt_dict = self.dictionary @property def source_dictionary(self): return self.src_dict @property def target_dictionary(self): return self.dictionary def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE): dummy_dict = Dictionary() # add dummy symbol to satisfy vocab size for id, _ in enumerate(range(vocab_size)): dummy_dict.add_symbol("{}".format(id), 1000) return dummy_dict def get_dummy_task_and_parser(): """ Return a dummy task and argument parser, which can be used to create a model/criterion. """ parser = argparse.ArgumentParser( description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS ) DummyTask.add_args(parser) args = parser.parse_args([]) task = DummyTask.setup_task(args) return task, parser def _test_save_and_load(scripted_module): with tempfile.NamedTemporaryFile() as f: scripted_module.save(f.name) torch.jit.load(f.name) class TestExportModels(unittest.TestCase): def test_export_multihead_attention(self): module = multihead_attention.MultiheadAttention(embed_dim=8, num_heads=2) scripted = torch.jit.script(module) _test_save_and_load(scripted) def test_incremental_state_multihead_attention(self): module1 = multihead_attention.MultiheadAttention(embed_dim=8, num_heads=2) module1 = torch.jit.script(module1) module2 = multihead_attention.MultiheadAttention(embed_dim=8, num_heads=2) module2 = torch.jit.script(module2) state = {} state = module1.set_incremental_state(state, "key", {"a": torch.tensor([1])}) state = module2.set_incremental_state(state, "key", {"a": torch.tensor([2])}) v1 = module1.get_incremental_state(state, "key")["a"] v2 = module2.get_incremental_state(state, "key")["a"] self.assertEqual(v1, 1) self.assertEqual(v2, 2) def test_positional_embedding(self): module = sinusoidal_positional_embedding.SinusoidalPositionalEmbedding( embedding_dim=8, padding_idx=1 ) scripted = torch.jit.script(module) _test_save_and_load(scripted) @unittest.skipIf( torch.__version__ < "1.6.0", "Targeting OSS scriptability for the 1.6 release" ) def test_export_transformer(self): task, parser = get_dummy_task_and_parser() TransformerModel.add_args(parser) args = parser.parse_args([]) model = TransformerModel.build_model(args, task) scripted = torch.jit.script(model) _test_save_and_load(scripted) @unittest.skipIf( torch.__version__ < "1.6.0", "Targeting OSS scriptability for the 1.6 release" ) def test_export_transformer_no_token_pos_emb(self): task, parser = get_dummy_task_and_parser() TransformerModel.add_args(parser) args = parser.parse_args([]) args.no_token_positional_embeddings = True model = TransformerModel.build_model(args, task) scripted = torch.jit.script(model) _test_save_and_load(scripted) if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/test_export.py/0
{ "file_path": "COCO-LM/fairseq/tests/test_export.py", "repo_id": "COCO-LM", "token_count": 1637 }
224
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import json import os import tempfile import unittest from io import StringIO import torch from . import test_binaries class TestReproducibility(unittest.TestCase): def _test_reproducibility( self, name, extra_flags=None, delta=0.0001, resume_checkpoint="checkpoint1.pt", max_epoch=3, ): def get_last_log_stats_containing_string(log_records, search_string): for log_record in logs.records[::-1]: if isinstance(log_record.msg, str) and search_string in log_record.msg: return json.loads(log_record.msg) if extra_flags is None: extra_flags = [] with tempfile.TemporaryDirectory(name) as data_dir: with self.assertLogs() as logs: test_binaries.create_dummy_data(data_dir) test_binaries.preprocess_translation_data(data_dir) # train epochs 1 and 2 together with self.assertLogs() as logs: test_binaries.train_translation_model( data_dir, "fconv_iwslt_de_en", [ "--dropout", "0.0", "--log-format", "json", "--log-interval", "1", "--max-epoch", str(max_epoch), ] + extra_flags, ) train_log = get_last_log_stats_containing_string(logs.records, "train_loss") valid_log = get_last_log_stats_containing_string(logs.records, "valid_loss") # train epoch 2, resuming from previous checkpoint 1 os.rename( os.path.join(data_dir, resume_checkpoint), os.path.join(data_dir, "checkpoint_last.pt"), ) with self.assertLogs() as logs: test_binaries.train_translation_model( data_dir, "fconv_iwslt_de_en", [ "--dropout", "0.0", "--log-format", "json", "--log-interval", "1", "--max-epoch", str(max_epoch), ] + extra_flags, ) train_res_log = get_last_log_stats_containing_string( logs.records, "train_loss" ) valid_res_log = get_last_log_stats_containing_string( logs.records, "valid_loss" ) for k in ["train_loss", "train_ppl", "train_num_updates", "train_gnorm"]: self.assertAlmostEqual( float(train_log[k]), float(train_res_log[k]), delta=delta ) for k in [ "valid_loss", "valid_ppl", "valid_num_updates", "valid_best_loss", ]: self.assertAlmostEqual( float(valid_log[k]), float(valid_res_log[k]), delta=delta ) def test_reproducibility(self): self._test_reproducibility("test_reproducibility") @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_reproducibility_fp16(self): self._test_reproducibility( "test_reproducibility_fp16", [ "--fp16", "--fp16-init-scale", "4096", ], delta=0.011, ) @unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU") def test_reproducibility_memory_efficient_fp16(self): self._test_reproducibility( "test_reproducibility_memory_efficient_fp16", [ "--memory-efficient-fp16", "--fp16-init-scale", "4096", ], ) def test_mid_epoch_reproducibility(self): self._test_reproducibility( "test_mid_epoch_reproducibility", ["--save-interval-updates", "3"], resume_checkpoint="checkpoint_1_3.pt", max_epoch=1, ) if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/test_reproducibility.py/0
{ "file_path": "COCO-LM/fairseq/tests/test_reproducibility.py", "repo_id": "COCO-LM", "token_count": 2595 }
225
# ------------------------------------------ # CSWin Transformer # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # written By Xiaoyi Dong # ------------------------------------------ from .cswin import *
CSWin-Transformer/models/__init__.py/0
{ "file_path": "CSWin-Transformer/models/__init__.py", "repo_id": "CSWin-Transformer", "token_count": 48 }
226
seed_everything: 42 # ---------------------------- TRAINER ------------------------------------------- trainer: default_root_dir: ${oc.env:OUTPUT_DIR,/home/t-tungnguyen/ClimaX/exps/pretrain_climax} precision: 16 gpus: null num_nodes: 1 accelerator: gpu strategy: ddp min_epochs: 1 max_epochs: 100 enable_progress_bar: true sync_batchnorm: True enable_checkpointing: True resume_from_checkpoint: null limit_val_batches: 0 num_sanity_val_steps: 0 # debugging fast_dev_run: false logger: class_path: pytorch_lightning.loggers.tensorboard.TensorBoardLogger init_args: save_dir: ${trainer.default_root_dir}/logs name: null version: null log_graph: False default_hp_metric: True prefix: "" callbacks: - class_path: pytorch_lightning.callbacks.LearningRateMonitor init_args: logging_interval: "step" - class_path: pytorch_lightning.callbacks.ModelCheckpoint init_args: dirpath: "${trainer.default_root_dir}/checkpoints" save_last: True # additionaly always save model from last epoch verbose: False filename: "epoch_{epoch:03d}" auto_insert_metric_name: False - class_path: pytorch_lightning.callbacks.RichModelSummary init_args: max_depth: -1 - class_path: pytorch_lightning.callbacks.RichProgressBar # ---------------------------- MODEL ------------------------------------------- model: lr: 5e-4 beta_1: 0.9 beta_2: 0.95 weight_decay: 1e-5 warmup_steps: 10000 max_steps: 200000 warmup_start_lr: 1e-8 eta_min: 1e-8 net: class_path: climax.arch.ClimaX init_args: default_vars: [ "land_sea_mask", "orography", "lattitude", "2m_temperature", "10m_u_component_of_wind", "10m_v_component_of_wind", "geopotential_50", "geopotential_250", "geopotential_500", "geopotential_600", "geopotential_700", "geopotential_850", "geopotential_925", "u_component_of_wind_50", "u_component_of_wind_250", "u_component_of_wind_500", "u_component_of_wind_600", "u_component_of_wind_700", "u_component_of_wind_850", "u_component_of_wind_925", "v_component_of_wind_50", "v_component_of_wind_250", "v_component_of_wind_500", "v_component_of_wind_600", "v_component_of_wind_700", "v_component_of_wind_850", "v_component_of_wind_925", "temperature_50", "temperature_250", "temperature_500", "temperature_600", "temperature_700", "temperature_850", "temperature_925", "relative_humidity_50", "relative_humidity_250", "relative_humidity_500", "relative_humidity_600", "relative_humidity_700", "relative_humidity_850", "relative_humidity_925", "specific_humidity_50", "specific_humidity_250", "specific_humidity_500", "specific_humidity_600", "specific_humidity_700", "specific_humidity_850", "specific_humidity_925", ] img_size: [32, 64] patch_size: 2 embed_dim: 1024 depth: 8 decoder_depth: 2 num_heads: 16 mlp_ratio: 4 drop_path: 0.1 drop_rate: 0.1 # ---------------------------- DATA ------------------------------------------- data: dict_root_dirs: { 'mpi-esm': '/datadrive/datasets/CMIP6/MPI-ESM/5.625deg_equally_np_all_levels', } dict_start_idx: { 'mpi-esm': 0, } dict_end_idx: { 'mpi-esm': 1, } dict_in_variables: { 'mpi-esm': [ "2m_temperature", "10m_u_component_of_wind", "10m_v_component_of_wind", "geopotential_50", "geopotential_250", "geopotential_500", "geopotential_600", "geopotential_700", "geopotential_850", "geopotential_925", "u_component_of_wind_50", "u_component_of_wind_250", "u_component_of_wind_500", "u_component_of_wind_600", "u_component_of_wind_700", "u_component_of_wind_850", "u_component_of_wind_925", "v_component_of_wind_50", "v_component_of_wind_250", "v_component_of_wind_500", "v_component_of_wind_600", "v_component_of_wind_700", "v_component_of_wind_850", "v_component_of_wind_925", "temperature_50", "temperature_250", "temperature_500", "temperature_600", "temperature_700", "temperature_850", "temperature_925", "specific_humidity_50", "specific_humidity_250", "specific_humidity_500", "specific_humidity_600", "specific_humidity_700", "specific_humidity_850", "specific_humidity_925", ], } dict_out_variables: { 'mpi-esm': null, } dict_max_predict_ranges: { 'mpi-esm': 28, } dict_random_lead_time: { 'mpi-esm': True, } dict_hrs_each_step: { 'mpi-esm': 6, } dict_buffer_sizes: { 'mpi-esm': 10000, } batch_size: 128 num_workers: 1 pin_memory: False
ClimaX/configs/pretrain_climax.yaml/0
{ "file_path": "ClimaX/configs/pretrain_climax.yaml", "repo_id": "ClimaX", "token_count": 2267 }
227
# Global Forecasting ::: climax.global_forecast.datamodule ::: climax.global_forecast.module
ClimaX/docs/reference/global_forecast.md/0
{ "file_path": "ClimaX/docs/reference/global_forecast.md", "repo_id": "ClimaX", "token_count": 32 }
228
datadir: /data/CMIP6/CMCC name: geopotential cmip_name: zg era_name: z run: r1i1p1f1 res: - 1.40625 # - 5.625
ClimaX/snakemake_configs/CMCC/config_geopotential.yml/0
{ "file_path": "ClimaX/snakemake_configs/CMCC/config_geopotential.yml", "repo_id": "ClimaX", "token_count": 61 }
229
datadir: /data/CMIP6/MPI-ESM server_prefix: http://esgf-data1.llnl.gov/thredds/fileServer/css03_data/CMIP6/CMIP name: 2m_temperature cmip_name: tas era_name: t2m output_type: 6hrPlevPt run: r1i1p1f1 version: v20190815 res: - 1.40625 # - 5.625
ClimaX/snakemake_configs/MPI-ESM/config_2m_temperature.yml/0
{ "file_path": "ClimaX/snakemake_configs/MPI-ESM/config_2m_temperature.yml", "repo_id": "ClimaX", "token_count": 123 }
230
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import numpy as np # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm # DeiT: https://github.com/facebookresearch/deit # -------------------------------------------------------- import torch import torch.nn as nn from climax.arch import ClimaX from climax.utils.pos_embed import get_1d_sincos_pos_embed_from_grid class ClimaXClimateBench(ClimaX): def __init__( self, default_vars, out_vars, img_size=[32, 64], time_history=1, patch_size=2, embed_dim=1024, depth=8, decoder_depth=2, num_heads=16, mlp_ratio=4.0, drop_path=0.1, drop_rate=0.1, parallel_patch_embed=False, freeze_encoder=False, ): assert out_vars is not None super().__init__( default_vars, img_size, patch_size, embed_dim, depth, decoder_depth, num_heads, mlp_ratio, drop_path, drop_rate, parallel_patch_embed ) self.out_vars = out_vars self.time_history = time_history self.freeze_encoder = freeze_encoder # used to aggregate multiple timesteps in the input self.time_pos_embed = nn.Parameter(torch.zeros(1, time_history, embed_dim), requires_grad=True) self.time_agg = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True) self.time_query = nn.Parameter(torch.zeros(1, 1, embed_dim), requires_grad=True) # initialize time embedding time_pos_embed = get_1d_sincos_pos_embed_from_grid(self.time_pos_embed.shape[-1], np.arange(self.time_history)) self.time_pos_embed.data.copy_(torch.from_numpy(time_pos_embed).float().unsqueeze(0)) # overwrite ClimaX # use a linear prediction head for this task self.head = nn.Linear(embed_dim, img_size[0]*img_size[1]) if freeze_encoder: for name, p in self.blocks.named_parameters(): name = name.lower() # we do not freeze the norm layers, as suggested by https://arxiv.org/abs/2103.05247 if 'norm' in name: continue else: p.requires_grad_(False) def forward_encoder(self, x: torch.Tensor, lead_times: torch.Tensor, variables): # x: `[B, T, V, H, W]` shape. if isinstance(variables, list): variables = tuple(variables) b, t, _, _, _ = x.shape x = x.flatten(0, 1) # BxT, V, H, W # tokenize each variable separately embeds = [] var_ids = self.get_var_ids(variables, x.device) if self.parallel_patch_embed: x = self.token_embeds(x, var_ids) # BxT, V, L, D else: for i in range(len(var_ids)): id = var_ids[i] embeds.append(self.token_embeds[id](x[:, i : i + 1])) x = torch.stack(embeds, dim=1) # BxT, V, L, D # add variable embedding var_embed = self.get_var_emb(self.var_embed, variables) x = x + var_embed.unsqueeze(2) # BxT, V, L, D # variable aggregation x = self.aggregate_variables(x) # BxT, L, D # add pos embedding x = x + self.pos_embed # add time embedding # time emb: 1, T, D x = x.unflatten(0, sizes=(b, t)) # B, T, L, D x = x + self.time_pos_embed.unsqueeze(2) # add lead time embedding lead_time_emb = self.lead_time_embed(lead_times.unsqueeze(-1)) # B, D lead_time_emb = lead_time_emb.unsqueeze(1).unsqueeze(2) x = x + lead_time_emb # B, T, L, D x = x.flatten(0, 1) # BxT, L, D x = self.pos_drop(x) # apply Transformer blocks for blk in self.blocks: x = blk(x) x = self.norm(x) # BxT, L, D x = x.unflatten(0, sizes=(b, t)) # B, T, L, D # global average pooling, also used in CNN-LSTM baseline in ClimateBench x = x.mean(-2) # B, T, D time_query = self.time_query.repeat_interleave(x.shape[0], dim=0) x, _ = self.time_agg(time_query, x, x) # B, 1, D return x def forward(self, x, y, lead_times, variables, out_variables, metric, lat): x = self.forward_encoder(x, lead_times, variables) # B, 1, D preds = self.head(x) preds = preds.reshape(-1, 1, self.img_size[0], self.img_size[1]) # B, 1, H, W if metric is None: loss = None else: loss = [m(preds, y, out_variables, lat) for m in metric] return loss, preds
ClimaX/src/climax/climate_projection/arch.py/0
{ "file_path": "ClimaX/src/climax/climate_projection/arch.py", "repo_id": "ClimaX", "token_count": 2414 }
231
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch from climax.arch import ClimaX class RegionalClimaX(ClimaX): def __init__(self, default_vars, img_size=..., patch_size=2, embed_dim=1024, depth=8, decoder_depth=2, num_heads=16, mlp_ratio=4, drop_path=0.1, drop_rate=0.1): super().__init__(default_vars, img_size, patch_size, embed_dim, depth, decoder_depth, num_heads, mlp_ratio, drop_path, drop_rate) def forward_encoder(self, x: torch.Tensor, lead_times: torch.Tensor, variables, region_info): # x: `[B, V, H, W]` shape. if isinstance(variables, list): variables = tuple(variables) # tokenize each variable separately embeds = [] var_ids = self.get_var_ids(variables, x.device) for i in range(len(var_ids)): id = var_ids[i] embeds.append(self.token_embeds[id](x[:, i : i + 1])) x = torch.stack(embeds, dim=1) # B, V, L, D # add variable embedding var_embed = self.get_var_emb(self.var_embed, variables) x = x + var_embed.unsqueeze(2) # B, V, L, D # get the patch ids corresponding to the region region_patch_ids = region_info['patch_ids'] x = x[:, :, region_patch_ids, :] # variable aggregation x = self.aggregate_variables(x) # B, L, D # add pos embedding x = x + self.pos_embed[:, region_patch_ids, :] # add lead time embedding lead_time_emb = self.lead_time_embed(lead_times.unsqueeze(-1)) # B, D lead_time_emb = lead_time_emb.unsqueeze(1) x = x + lead_time_emb # B, L, D x = self.pos_drop(x) # apply Transformer blocks for blk in self.blocks: x = blk(x) x = self.norm(x) return x def forward(self, x, y, lead_times, variables, out_variables, metric, lat, region_info): """Forward pass through the model. Args: x: `[B, Vi, H, W]` shape. Input weather/climate variables y: `[B, Vo, H, W]` shape. Target weather/climate variables lead_times: `[B]` shape. Forecasting lead times of each element of the batch. region_info: Containing the region's information Returns: loss (list): Different metrics. preds (torch.Tensor): `[B, Vo, H, W]` shape. Predicted weather/climate variables. """ out_transformers = self.forward_encoder(x, lead_times, variables, region_info) # B, L, D preds = self.head(out_transformers) # B, L, V*p*p min_h, max_h = region_info['min_h'], region_info['max_h'] min_w, max_w = region_info['min_w'], region_info['max_w'] preds = self.unpatchify(preds, h = max_h - min_h + 1, w = max_w - min_w + 1) out_var_ids = self.get_var_ids(tuple(out_variables), preds.device) preds = preds[:, out_var_ids] y = y[:, :, min_h:max_h+1, min_w:max_w+1] lat = lat[min_h:max_h+1] if metric is None: loss = None else: loss = [m(preds, y, out_variables, lat) for m in metric] return loss, preds def evaluate(self, x, y, lead_times, variables, out_variables, transform, metrics, lat, clim, log_postfix, region_info): _, preds = self.forward(x, y, lead_times, variables, out_variables, metric=None, lat=lat, region_info=region_info) min_h, max_h = region_info['min_h'], region_info['max_h'] min_w, max_w = region_info['min_w'], region_info['max_w'] y = y[:, :, min_h:max_h+1, min_w:max_w+1] lat = lat[min_h:max_h+1] clim = clim[:, min_h:max_h+1, min_w:max_w+1] return [m(preds, y, transform, out_variables, lat, clim, log_postfix) for m in metrics]
ClimaX/src/climax/regional_forecast/arch.py/0
{ "file_path": "ClimaX/src/climax/regional_forecast/arch.py", "repo_id": "ClimaX", "token_count": 1754 }
232