text
stringlengths
5
22M
id
stringlengths
12
177
metadata
dict
__index_level_0__
int64
0
1.37k
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os import cv2 import torch import numpy as np import math import random from PIL import Image from data.pix2pix_dataset import Pix2pixDataset from data.base_dataset import get_params, get_transform class DeepFashionHDDataset(Pix2pixDataset): @staticmethod def modify_commandline_options(parser, is_train): parser = Pix2pixDataset.modify_commandline_options(parser, is_train) parser.set_defaults(preprocess_mode='resize_and_crop') parser.set_defaults(no_pairing_check=True) parser.set_defaults(load_size=550) parser.set_defaults(crop_size=512) parser.set_defaults(label_nc=20) parser.set_defaults(contain_dontcare_label=False) parser.set_defaults(cache_filelist_read=False) parser.set_defaults(cache_filelist_write=False) return parser def get_paths(self, opt): root = opt.dataroot if opt.phase == 'train': fd = open(os.path.join('./data/train.txt')) lines = fd.readlines() fd.close() elif opt.phase == 'test': fd = open(os.path.join('./data/val.txt')) lines = fd.readlines() fd.close() image_paths = [] label_paths = [] for i in range(len(lines)): name = lines[i].strip() image_paths.append(name) label_path = name.replace('img', 'pose').replace('.jpg', '_{}.txt') label_paths.append(os.path.join(label_path)) return label_paths, image_paths def get_ref_video_like(self, opt): pair_path = './data/deepfashion_self_pair.txt' with open(pair_path) as fd: self_pair = fd.readlines() self_pair = [it.strip() for it in self_pair] self_pair_dict = {} for it in self_pair: items = it.split(',') self_pair_dict[items[0]] = items[1:] ref_path = './data/deepfashion_ref_test.txt' if opt.phase == 'test' else './data/deepfashion_ref.txt' with open(ref_path) as fd: ref = fd.readlines() ref = [it.strip() for it in ref] ref_dict = {} for i in range(len(ref)): items = ref[i].strip().split(',') key = items[0] if key in self_pair_dict.keys(): val = [it for it in self_pair_dict[items[0]]] else: val = [items[-1]] ref_dict[key.replace('\\',"/")] = [v.replace('\\',"/") for v in val] train_test_folder = ('', '') return ref_dict, train_test_folder def get_ref_vgg(self, opt): extra = '' if opt.phase == 'test': extra = '_test' with open('./data/deepfashion_ref{}.txt'.format(extra)) as fd: lines = fd.readlines() ref_dict = {} for i in range(len(lines)): items = lines[i].strip().split(',') key = items[0] if opt.phase == 'test': val = [it for it in items[1:]] else: val = [items[-1]] ref_dict[key.replace('\\',"/")] = [v.replace('\\',"/") for v in val] train_test_folder = ('', '') return ref_dict, train_test_folder def get_ref(self, opt): if opt.video_like: return self.get_ref_video_like(opt) else: return self.get_ref_vgg(opt) def get_label_tensor(self, path): candidate = np.loadtxt(path.format('candidate')) subset = np.loadtxt(path.format('subset')) stickwidth = 20 limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ [1, 16], [16, 18], [3, 17], [6, 18]] colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] canvas = np.zeros((1024, 1024, 3), dtype=np.uint8) cycle_radius = 20 for i in range(18): index = int(subset[i]) if index == -1: continue x, y = candidate[index][0:2] cv2.circle(canvas, (int(x), int(y)), cycle_radius, colors[i], thickness=-1) joints = [] for i in range(17): index = subset[np.array(limbSeq[i]) - 1] cur_canvas = canvas.copy() if -1 in index: joints.append(np.zeros_like(cur_canvas[:, :, 0])) continue Y = candidate[index.astype(int), 0] X = candidate[index.astype(int), 1] mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) cv2.fillConvexPoly(cur_canvas, polygon, colors[i]) canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) joint = np.zeros_like(cur_canvas[:, :, 0]) cv2.fillConvexPoly(joint, polygon, 255) joint = cv2.addWeighted(joint, 0.4, joint, 0.6, 0) joints.append(joint) pose = Image.fromarray(cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB)).resize((self.opt.load_size, self.opt.load_size), resample=Image.NEAREST) params = get_params(self.opt, pose.size) transform_label = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) transform_img = get_transform(self.opt, params, method=Image.BILINEAR, normalize=False) tensors_dist = 0 e = 1 for i in range(len(joints)): im_dist = cv2.distanceTransform(255-joints[i], cv2.DIST_L1, 3) im_dist = np.clip((im_dist/3), 0, 255).astype(np.uint8) tensor_dist = transform_img(Image.fromarray(im_dist)) tensors_dist = tensor_dist if e == 1 else torch.cat([tensors_dist, tensor_dist]) e += 1 tensor_pose = transform_label(pose) label_tensor = torch.cat((tensor_pose, tensors_dist), dim=0) return label_tensor, params def imgpath_to_labelpath(self, path): label_path = path.replace('/img/', '/pose/').replace('.jpg', '_{}.txt') return label_path def labelpath_to_imgpath(self, path): img_path = path.replace('/pose/', '/img/').replace('_{}.txt', '.jpg') return img_path
CoCosNet-v2/data/deepfashionHD_dataset.py/0
{ "file_path": "CoCosNet-v2/data/deepfashionHD_dataset.py", "repo_id": "CoCosNet-v2", "token_count": 3401 }
233
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import re import torch.nn as nn import torch.nn.functional as F import torch.nn.utils.spectral_norm as spectral_norm def get_nonspade_norm_layer(opt, norm_type='instance'): def get_out_channel(layer): if hasattr(layer, 'out_channels'): return getattr(layer, 'out_channels') return layer.weight.size(0) def add_norm_layer(layer): nonlocal norm_type if norm_type.startswith('spectral'): layer = spectral_norm(layer) subnorm_type = norm_type[len('spectral'):] else: subnorm_type =norm_type if subnorm_type == 'none' or len(subnorm_type) == 0: return layer if getattr(layer, 'bias', None) is not None: delattr(layer, 'bias') layer.register_parameter('bias', None) if subnorm_type == 'batch': norm_layer = nn.BatchNorm2d(get_out_channel(layer), affine=True) elif subnorm_type == 'sync_batch': norm_layer = nn.BatchNorm2d(get_out_channel(layer), affine=True) elif subnorm_type == 'instance': norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False) else: raise ValueError('normalization layer %s is not recognized' % subnorm_type) return nn.Sequential(layer, norm_layer) return add_norm_layer def PositionalNorm2d(x, epsilon=1e-8): # x: B*C*W*H normalize in C dim mean = x.mean(dim=1, keepdim=True) std = x.var(dim=1, keepdim=True).add(epsilon).sqrt() output = (x - mean) / std return output class SPADE(nn.Module): def __init__(self, config_text, norm_nc, label_nc, PONO=False): super().__init__() assert config_text.startswith('spade') parsed = re.search('spade(\D+)(\d)x\d', config_text) param_free_norm_type = str(parsed.group(1)) ks = int(parsed.group(2)) self.pad_type = 'nozero' if PONO: self.param_free_norm = PositionalNorm2d elif param_free_norm_type == 'instance': self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) elif param_free_norm_type == 'syncbatch': self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=True) elif param_free_norm_type == 'batch': self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=True) else: raise ValueError('%s is not a recognized param-free norm type in SPADE' % param_free_norm_type) nhidden = 128 pw = ks // 2 if self.pad_type != 'zero': self.mlp_shared = nn.Sequential( nn.ReflectionPad2d(pw), nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=0), nn.ReLU() ) self.pad = nn.ReflectionPad2d(pw) self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=0) self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=0) else: self.mlp_shared = nn.Sequential( nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), nn.ReLU() ) self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) def forward(self, x, segmap): normalized = self.param_free_norm(x) segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') actv = self.mlp_shared(segmap) if self.pad_type != 'zero': gamma = self.mlp_gamma(self.pad(actv)) beta = self.mlp_beta(self.pad(actv)) else: gamma = self.mlp_gamma(actv) beta = self.mlp_beta(actv) out = normalized * (1 + gamma) + beta return out
CoCosNet-v2/models/networks/normalization.py/0
{ "file_path": "CoCosNet-v2/models/networks/normalization.py", "repo_id": "CoCosNet-v2", "token_count": 1931 }
234
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os from data.pix2pix_dataset import Pix2pixDataset from data.image_folder import make_dataset class ADE20KDataset(Pix2pixDataset): @staticmethod def modify_commandline_options(parser, is_train): parser = Pix2pixDataset.modify_commandline_options(parser, is_train) parser.set_defaults(preprocess_mode='resize_and_crop') if is_train: parser.set_defaults(load_size=286) else: parser.set_defaults(load_size=256) parser.set_defaults(crop_size=256) parser.set_defaults(display_winsize=256) parser.set_defaults(label_nc=150) parser.set_defaults(contain_dontcare_label=True) parser.set_defaults(cache_filelist_read=False) parser.set_defaults(cache_filelist_write=False) return parser def get_paths(self, opt): root = opt.dataroot phase = 'val' if opt.phase == 'test' else 'train' subfolder = 'validation' if opt.phase == 'test' else 'training' cache = False if opt.phase == 'test' else True all_images = sorted(make_dataset(root + '/' + subfolder, recursive=True, read_cache=cache, write_cache=False)) image_paths = [] label_paths = [] for p in all_images: if '_%s_' % phase not in p: continue if p.endswith('.jpg'): image_paths.append(p) elif p.endswith('.png'): label_paths.append(p) return label_paths, image_paths def get_ref(self, opt): extra = '_test' if opt.phase == 'test' else '' with open('./data/ade20k_ref{}.txt'.format(extra)) as fd: lines = fd.readlines() ref_dict = {} for i in range(len(lines)): items = lines[i].strip().split(',') key = items[0] if opt.phase == 'test': val = items[1:] else: val = [items[1], items[-1]] ref_dict[key] = val train_test_folder = ('training', 'validation') return ref_dict, train_test_folder
CoCosNet/data/ade20k_dataset.py/0
{ "file_path": "CoCosNet/data/ade20k_dataset.py", "repo_id": "CoCosNet", "token_count": 1032 }
235
""" Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). """ import torch from models.networks.base_network import BaseNetwork from models.networks.loss import * from models.networks.discriminator import * from models.networks.generator import * #from models.networks.encoder import * from models.networks.ContextualLoss import * from models.networks.correspondence import * #from models.networks.progressive_sub_net import * import util.util as util def find_network_using_name(target_network_name, filename, add=True): target_class_name = target_network_name + filename if add else target_network_name module_name = 'models.networks.' + filename network = util.find_class_in_module(target_class_name, module_name) assert issubclass(network, BaseNetwork), \ "Class %s should be a subclass of BaseNetwork" % network return network def modify_commandline_options(parser, is_train): opt, _ = parser.parse_known_args() netG_cls = find_network_using_name(opt.netG, 'generator') parser = netG_cls.modify_commandline_options(parser, is_train) if is_train: netD_cls = find_network_using_name(opt.netD, 'discriminator') parser = netD_cls.modify_commandline_options(parser, is_train) # netE_cls = find_network_using_name('conv', 'encoder') # parser = netE_cls.modify_commandline_options(parser, is_train) return parser def create_network(cls, opt, stage1=False): if stage1: net = cls(opt, stage1=True) else: net = cls(opt) net.print_network() if len(opt.gpu_ids) > 0: assert(torch.cuda.is_available()) net.cuda() net.init_weights(opt.init_type, opt.init_variance) return net def define_G(opt): netG_cls = find_network_using_name(opt.netG, 'generator') return create_network(netG_cls, opt) def define_G_stage1(opt): netG_cls = find_network_using_name(opt.netG, 'generator') return create_network(netG_cls, opt, stage1=True) def define_D(opt): netD_cls = find_network_using_name(opt.netD, 'discriminator') return create_network(netD_cls, opt) def define_D_stage1(opt): netD_cls = find_network_using_name(opt.netD, 'discriminator') return create_network(netD_cls, opt, stage1=True) def define_DomainClassifier(opt): netDomainclassifier = find_network_using_name('DomainClassifier', 'generator', add=False) return create_network(netDomainclassifier, opt) def define_Corr(opt): netCoor_cls = find_network_using_name('novgg', 'correspondence') return create_network(netCoor_cls, opt)
CoCosNet/models/networks/__init__.py/0
{ "file_path": "CoCosNet/models/networks/__init__.py", "repo_id": "CoCosNet", "token_count": 1010 }
236
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet).""" import argparse import glob import logging import os import random import numpy as np import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from tensorboardX import SummaryWriter from tqdm import tqdm, trange from transformers import (WEIGHTS_NAME, get_linear_schedule_with_warmup, AdamW, RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer) from utils import (compute_metrics, convert_examples_to_features, output_modes, processors) logger = logging.getLogger(__name__) MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer)} def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer, optimizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs scheduler = get_linear_schedule_with_warmup(optimizer, args.warmup_steps, t_total) checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt') if os.path.exists(scheduler_last): scheduler.load_state_dict(torch.load(scheduler_last)) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = args.start_step tr_loss, logging_loss = 0.0, 0.0 best_acc = 0.0 model.zero_grad() train_iterator = trange(args.start_epoch, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility (even between python 2 and 3) model.train() for idx, _ in enumerate(train_iterator): tr_loss = 0.0 for step, batch in enumerate(train_dataloader): batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids 'labels': batch[3]} ouputs = model(**inputs) loss = ouputs[0] # model outputs are always tuple in pytorch-transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer, checkpoint=str(global_step)) for key, value in results.items(): tb_writer.add_scalar('eval_{}'.format(key), value, global_step) logger.info('loss %s', str(tr_loss - logging_loss)) tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step) tb_writer.add_scalar('loss', (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.max_steps > 0 and global_step > args.max_steps: # epoch_iterator.close() break if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): results = evaluate(args, model, tokenizer, checkpoint=str(args.start_epoch + idx)) last_output_dir = os.path.join(args.output_dir, 'checkpoint-last') if not os.path.exists(last_output_dir): os.makedirs(last_output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(last_output_dir) logger.info("Saving model checkpoint to %s", last_output_dir) idx_file = os.path.join(last_output_dir, 'idx_file.txt') with open(idx_file, 'w', encoding='utf-8') as idxf: idxf.write(str(args.start_epoch + idx) + '\n') torch.save(optimizer.state_dict(), os.path.join(last_output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(last_output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", last_output_dir) step_file = os.path.join(last_output_dir, 'step_file.txt') with open(step_file, 'w', encoding='utf-8') as stepf: stepf.write(str(global_step) + '\n') if (results['acc'] > best_acc): best_acc = results['acc'] output_dir = os.path.join(args.output_dir, 'checkpoint-best') if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, 'training_{}.bin'.format(idx))) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) def evaluate(args, model, tokenizer, checkpoint=None, prefix="", mode='dev'): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = (args.task_name,) eval_outputs_dirs = (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): if (mode == 'dev'): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, ttype='dev') elif (mode == 'test'): eval_dataset, instances = load_and_cache_examples(args, eval_task, tokenizer, ttype='test') if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids 'labels': batch[3]} outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs['labels'].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0) # eval_accuracy = accuracy(preds,out_label_ids) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds_label = np.argmax(preds, axis=1) result = compute_metrics(eval_task, preds_label, out_label_ids) results.update(result) if (mode == 'dev'): output_eval_file = os.path.join(eval_output_dir, "eval_results.txt") with open(output_eval_file, "a+") as writer: logger.info("***** Eval results {} *****".format(prefix)) writer.write('evaluate %s\n' % checkpoint) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) elif (mode == 'test'): output_test_file = args.test_result_dir output_dir = os.path.dirname(output_test_file) if not os.path.exists(output_dir): os.makedirs(output_dir) with open(output_test_file, "w") as writer: logger.info("***** Output test results *****") all_logits = preds.tolist() for i, logit in tqdm(enumerate(all_logits), desc='Testing'): instance_rep = '<CODESPLIT>'.join( [item.encode('ascii', 'ignore').decode('ascii') for item in instances[i]]) writer.write(instance_rep + '<CODESPLIT>' + '<CODESPLIT>'.join([str(l) for l in logit]) + '\n') for key in sorted(result.keys()): print("%s = %s" % (key, str(result[key]))) return results def load_and_cache_examples(args, task, tokenizer, ttype='train'): processor = processors[task]() output_mode = output_modes[task] # Load data features from cache or dataset file if ttype == 'train': file_name = args.train_file.split('.')[0] elif ttype == 'dev': file_name = args.dev_file.split('.')[0] elif ttype == 'test': file_name = args.test_file.split('.')[0] cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}_{}'.format( ttype, file_name, list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.max_seq_length), str(task))) # if os.path.exists(cached_features_file): try: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) if ttype == 'test': examples, instances = processor.get_test_examples(args.data_dir, args.test_file) except: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if ttype == 'train': examples = processor.get_train_examples(args.data_dir, args.train_file) elif ttype == 'dev': examples = processor.get_dev_examples(args.data_dir, args.dev_file) elif ttype == 'test': examples, instances = processor.get_test_examples(args.data_dir, args.test_file) features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode, cls_token_at_end=bool(args.model_type in ['xlnet']), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, sep_token=tokenizer.sep_token, cls_token_segment_id=2 if args.model_type in ['xlnet'] else 1, pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) if output_mode == "classification": all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) if (ttype == 'test'): return dataset, instances else: return dataset def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name") parser.add_argument("--task_name", default='codesearch', type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action='store_true', help="Whether to run predict on the test set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Rul evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") parser.add_argument("--train_file", default="train_top10_concat.tsv", type=str, help="train file") parser.add_argument("--dev_file", default="shared_task_dev_top10_concat.tsv", type=str, help="dev file") parser.add_argument("--test_file", default="shared_task_dev_top10_concat.tsv", type=str, help="test file") parser.add_argument("--pred_model_dir", default=None, type=str, help='model for prediction') parser.add_argument("--test_result_dir", default='test_results.tsv', type=str, help='path to store test result') args = parser.parse_args() # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.start_epoch = 0 args.start_step = 0 checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last): args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin') args.config_name = os.path.join(checkpoint_last, 'config.json') idx_file = os.path.join(checkpoint_last, 'idx_file.txt') with open(idx_file, encoding='utf-8') as idxf: args.start_epoch = int(idxf.readlines()[0].strip()) + 1 step_file = os.path.join(checkpoint_last, 'step_file.txt') if os.path.exists(step_file): with open(step_file, encoding='utf-8') as stepf: args.start_step = int(stepf.readlines()[0].strip()) logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch)) args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name) if args.tokenizer_name: tokenizer_name = args.tokenizer_name elif args.model_name_or_path: tokenizer_name = 'roberta-base' tokenizer = tokenizer_class.from_pretrained(tokenizer_name, do_lower_case=args.do_lower_case) model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab # Distributed and parallel training model.to(args.device) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt') if os.path.exists(optimizer_last): optimizer.load_state_dict(torch.load(optimizer_last)) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) if args.n_gpu > 1: model = torch.nn.DataParallel(model) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, ttype='train') global_step, tr_loss = train(args, train_dataset, model, tokenizer, optimizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: print(checkpoint) global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, checkpoint=checkpoint, prefix=global_step) result = dict((k + '_{}'.format(global_step), v) for k, v in result.items()) results.update(result) if args.do_predict: print('testing') model = model_class.from_pretrained(args.pred_model_dir) model.to(args.device) evaluate(args, model, tokenizer, checkpoint=None, prefix='', mode='test') return results if __name__ == "__main__": main()
CodeBERT/CodeBERT/codesearch/run_classifier.py/0
{ "file_path": "CodeBERT/CodeBERT/codesearch/run_classifier.py", "repo_id": "CodeBERT", "token_count": 13700 }
237
import os import argparse from evaluator.smooth_bleu import bleu_fromstr import nltk import re def main(): parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, required=True) args = parser.parse_args() ref = os.path.join(args.path, 'golds.txt') hyp = os.path.join(args.path, 'preds.txt') with open(ref, 'r') as f: refs = f.readlines() with open(hyp, 'r') as f: hyps = f.readlines() # refs = [ref.strip().lower() for ref in refs] # hyps = [hyp.strip().lower() for hyp in hyps] # bleu = bleu_fromstr(hyps, refs) # print(bleu) pred_nls, golds = hyps, refs for i in range(len(pred_nls)): chars = "(_)`." for c in chars: pred_nls[i] = pred_nls[i].replace(c, " " + c + " ") pred_nls[i] = " ".join(pred_nls[i].split()) golds[i] = golds[i].replace(c, " " + c + " ") golds[i] = " ".join(golds[i].split()) bleu = bleu_fromstr(pred_nls, golds, rmstop=False) print(bleu) # stopwords = open("stopwords.txt").readlines() # stopwords = [stopword.strip() for stopword in stopwords] # refs = [" ".join([word for word in ref.lower().split() if word not in stopwords]) for ref in refs] # hyps = [" ".join([word for word in hyp.lower().split() if word not in stopwords]) for hyp in hyps] # bleu = bleu_fromstr(hyps, refs) # print(bleu) if __name__ == '__main__': main() # s = "Can we use `mset.mirrorInfo()` directly?" # chars = "(_)`." # for c in chars: # s = s.replace(c, " " + c + " ") # print(nltk.wordpunct_tokenize(s))
CodeBERT/CodeReviewer/code/bleu.py/0
{ "file_path": "CodeBERT/CodeReviewer/code/bleu.py", "repo_id": "CodeBERT", "token_count": 740 }
238
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python implementation of BLEU and smooth-BLEU. This module provides a Python implementation of BLEU and smooth-BLEU. Smooth BLEU is computed following the method outlined in the paper: Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic evaluation metrics for machine translation. COLING 2004. """ import collections import math def _get_ngrams(segment, max_order): """Extracts all n-grams upto a given maximum order from an input segment. Args: segment: text segment from which n-grams will be extracted. max_order: maximum length in tokens of the n-grams returned by this methods. Returns: The Counter containing all n-grams upto max_order in segment with a count of how many times each n-gram occurred. """ ngram_counts = collections.Counter() for order in range(1, max_order + 1): for i in range(0, len(segment) - order + 1): ngram = tuple(segment[i:i+order]) ngram_counts[ngram] += 1 return ngram_counts def compute_bleu(reference_corpus, translation_corpus, max_order=4, smooth=False): """Computes BLEU score of translated segments against one or more references. Args: reference_corpus: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation_corpus: list of translations to score. Each translation should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram precisions and brevity penalty. """ matches_by_order = [0] * max_order possible_matches_by_order = [0] * max_order reference_length = 0 translation_length = 0 for (references, translation) in zip(reference_corpus, translation_corpus): reference_length += min(len(r) for r in references) translation_length += len(translation) merged_ref_ngram_counts = collections.Counter() for reference in references: merged_ref_ngram_counts |= _get_ngrams(reference, max_order) translation_ngram_counts = _get_ngrams(translation, max_order) overlap = translation_ngram_counts & merged_ref_ngram_counts for ngram in overlap: matches_by_order[len(ngram)-1] += overlap[ngram] for order in range(1, max_order+1): possible_matches = len(translation) - order + 1 if possible_matches > 0: possible_matches_by_order[order-1] += possible_matches precisions = [0] * max_order for i in range(0, max_order): if smooth: precisions[i] = ((matches_by_order[i] + 1.) / (possible_matches_by_order[i] + 1.)) else: if possible_matches_by_order[i] > 0: precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) else: precisions[i] = 0.0 if min(precisions) > 0: p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions) geo_mean = math.exp(p_log_sum) else: geo_mean = 0 ratio = float(translation_length) / reference_length if ratio > 1.0: bp = 1. else: bp = math.exp(1 - 1. / ratio) bleu = geo_mean * bp return (bleu, precisions, bp, ratio, translation_length, reference_length) def _bleu(ref_file, trans_file, subword_option=None): max_order = 4 smooth = True ref_files = [ref_file] reference_text = [] for reference_filename in ref_files: with open(reference_filename) as fh: reference_text.append(fh.readlines()) per_segment_references = [] for references in zip(*reference_text): reference_list = [] for reference in references: reference_list.append(reference.strip().split()) per_segment_references.append(reference_list) translations = [] with open(trans_file) as fh: for line in fh: translations.append(line.strip().split()) bleu_score, _, _, _, _, _ = compute_bleu(per_segment_references, translations, max_order, smooth) return round(100 * bleu_score,2)
CodeBERT/CodeReviewer/code/evaluator/bleu.py/0
{ "file_path": "CodeBERT/CodeReviewer/code/evaluator/bleu.py", "repo_id": "CodeBERT", "token_count": 1767 }
239
# batch size 6 for 16 GB GPU mnt_dir="/home/codereview" # You may change the following block for multiple gpu training MASTER_HOST=localhost && echo MASTER_HOST: ${MASTER_HOST} MASTER_PORT=23333 && echo MASTER_PORT: ${MASTER_PORT} RANK=0 && echo RANK: ${RANK} PER_NODE_GPU=1 && echo PER_NODE_GPU: ${PER_NODE_GPU} WORLD_SIZE=1 && echo WORLD_SIZE: ${WORLD_SIZE} NODES=1 && echo NODES: ${NODES} NCCL_DEBUG=INFO bash test_nltk.sh python -m torch.distributed.launch --nproc_per_node ${PER_NODE_GPU} --node_rank=${RANK} --nnodes=${NODES} --master_addr=${MASTER_HOST} --master_port=${MASTER_PORT} ../run_test_msg.py \ --model_name_or_path microsoft/codereviewer \ --output_dir ../../save/gen \ --load_model_path ../../save/gen/checkpoint \ --output_dir empty \ --eval_file ref-test.jsonl \ --max_source_length 512 \ --max_target_length 128 \ --eval_batch_size 12 \ --mask_rate 0.15 \ --save_steps 1800 \ --beam_size 10 \ --log_steps 100 \ --train_steps 120000 \ --gpu_per_node=${PER_NODE_GPU} \ --node_index=${RANK} \ --seed 2233 \ --raw_input
CodeBERT/CodeReviewer/code/sh/test-msg.sh/0
{ "file_path": "CodeBERT/CodeReviewer/code/sh/test-msg.sh", "repo_id": "CodeBERT", "token_count": 438 }
240
import re from io import StringIO import tokenize def remove_comments_and_docstrings(source,lang): if lang in ['python']: """ Returns 'source' minus comments and docstrings. """ io_obj = StringIO(source) out = "" prev_toktype = tokenize.INDENT last_lineno = -1 last_col = 0 for tok in tokenize.generate_tokens(io_obj.readline): token_type = tok[0] token_string = tok[1] start_line, start_col = tok[2] end_line, end_col = tok[3] ltext = tok[4] if start_line > last_lineno: last_col = 0 if start_col > last_col: out += (" " * (start_col - last_col)) # Remove comments: if token_type == tokenize.COMMENT: pass # This series of conditionals removes docstrings: elif token_type == tokenize.STRING: if prev_toktype != tokenize.INDENT: # This is likely a docstring; double-check we're not inside an operator: if prev_toktype != tokenize.NEWLINE: if start_col > 0: out += token_string else: out += token_string prev_toktype = token_type last_col = end_col last_lineno = end_line temp=[] for x in out.split('\n'): if x.strip()!="": temp.append(x) return '\n'.join(temp) elif lang in ['ruby']: return source else: def replacer(match): s = match.group(0) if s.startswith('/'): return " " # note: a space and not an empty string else: return s pattern = re.compile( r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"', re.DOTALL | re.MULTILINE ) temp=[] for x in re.sub(pattern, replacer, source).split('\n'): if x.strip()!="": temp.append(x) return '\n'.join(temp) def tree_to_token_index(root_node): if (len(root_node.children)==0 or root_node.type=='string') and root_node.type!='comment': return [(root_node.start_point,root_node.end_point)] else: code_tokens=[] for child in root_node.children: code_tokens+=tree_to_token_index(child) return code_tokens def tree_to_variable_index(root_node,index_to_code): if (len(root_node.children)==0 or root_node.type=='string') and root_node.type!='comment': index=(root_node.start_point,root_node.end_point) _,code=index_to_code[index] if root_node.type!=code: return [(root_node.start_point,root_node.end_point)] else: return [] else: code_tokens=[] for child in root_node.children: code_tokens+=tree_to_variable_index(child,index_to_code) return code_tokens def index_to_code_token(index,code): start_point=index[0] end_point=index[1] if start_point[0]==end_point[0]: s=code[start_point[0]][start_point[1]:end_point[1]] else: s="" s+=code[start_point[0]][start_point[1]:] for i in range(start_point[0]+1,end_point[0]): s+=code[i] s+=code[end_point[0]][:end_point[1]] return s
CodeBERT/GraphCodeBERT/clonedetection/parser/utils.py/0
{ "file_path": "CodeBERT/GraphCodeBERT/clonedetection/parser/utils.py", "repo_id": "CodeBERT", "token_count": 1812 }
241
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from tree_sitter import Language, Parser from .utils import (remove_comments_and_docstrings, tree_to_token_index, index_to_code_token, tree_to_variable_index) def DFG_python(root_node,index_to_code,states): assignment=['assignment','augmented_assignment','for_in_clause'] if_statement=['if_statement'] for_statement=['for_statement'] while_statement=['while_statement'] do_first_statement=['for_in_clause'] def_statement=['default_parameter'] states=states.copy() if (len(root_node.children)==0 or root_node.type=='string') and root_node.type!='comment': idx,code=index_to_code[(root_node.start_point,root_node.end_point)] if root_node.type==code: return [],states elif code in states: return [(code,idx,'comesFrom',[code],states[code].copy())],states else: if root_node.type=='identifier': states[code]=[idx] return [(code,idx,'comesFrom',[],[])],states elif root_node.type in def_statement: name=root_node.child_by_field_name('name') value=root_node.child_by_field_name('value') DFG=[] if value is None: indexs=tree_to_variable_index(name,index_to_code) for index in indexs: idx,code=index_to_code[index] DFG.append((code,idx,'comesFrom',[],[])) states[code]=[idx] return sorted(DFG,key=lambda x:x[1]),states else: name_indexs=tree_to_variable_index(name,index_to_code) value_indexs=tree_to_variable_index(value,index_to_code) temp,states=DFG_python(value,index_to_code,states) DFG+=temp for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'comesFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in assignment: if root_node.type=='for_in_clause': right_nodes=[root_node.children[-1]] left_nodes=[root_node.child_by_field_name('left')] else: if root_node.child_by_field_name('right') is None: return [],states left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=','] right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=','] if len(right_nodes)!=len(left_nodes): left_nodes=[root_node.child_by_field_name('left')] right_nodes=[root_node.child_by_field_name('right')] if len(left_nodes)==0: left_nodes=[root_node.child_by_field_name('left')] if len(right_nodes)==0: right_nodes=[root_node.child_by_field_name('right')] DFG=[] for node in right_nodes: temp,states=DFG_python(node,index_to_code,states) DFG+=temp for left_node,right_node in zip(left_nodes,right_nodes): left_tokens_index=tree_to_variable_index(left_node,index_to_code) right_tokens_index=tree_to_variable_index(right_node,index_to_code) temp=[] for token1_index in left_tokens_index: idx1,code1=index_to_code[token1_index] temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index], [index_to_code[x][0] for x in right_tokens_index])) states[code1]=[idx1] DFG+=temp return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in if_statement: DFG=[] current_states=states.copy() others_states=[] tag=False if 'else' in root_node.type: tag=True for child in root_node.children: if 'else' in child.type: tag=True if child.type not in ['elif_clause','else_clause']: temp,current_states=DFG_python(child,index_to_code,current_states) DFG+=temp else: temp,new_states=DFG_python(child,index_to_code,states) DFG+=temp others_states.append(new_states) others_states.append(current_states) if tag is False: others_states.append(states) new_states={} for dic in others_states: for key in dic: if key not in new_states: new_states[key]=dic[key].copy() else: new_states[key]+=dic[key] for key in new_states: new_states[key]=sorted(list(set(new_states[key]))) return sorted(DFG,key=lambda x:x[1]),new_states elif root_node.type in for_statement: DFG=[] for i in range(2): right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=','] left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=','] if len(right_nodes)!=len(left_nodes): left_nodes=[root_node.child_by_field_name('left')] right_nodes=[root_node.child_by_field_name('right')] if len(left_nodes)==0: left_nodes=[root_node.child_by_field_name('left')] if len(right_nodes)==0: right_nodes=[root_node.child_by_field_name('right')] for node in right_nodes: temp,states=DFG_python(node,index_to_code,states) DFG+=temp for left_node,right_node in zip(left_nodes,right_nodes): left_tokens_index=tree_to_variable_index(left_node,index_to_code) right_tokens_index=tree_to_variable_index(right_node,index_to_code) temp=[] for token1_index in left_tokens_index: idx1,code1=index_to_code[token1_index] temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index], [index_to_code[x][0] for x in right_tokens_index])) states[code1]=[idx1] DFG+=temp if root_node.children[-1].type=="block": temp,states=DFG_python(root_node.children[-1],index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in while_statement: DFG=[] for i in range(2): for child in root_node.children: temp,states=DFG_python(child,index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states else: DFG=[] for child in root_node.children: if child.type in do_first_statement: temp,states=DFG_python(child,index_to_code,states) DFG+=temp for child in root_node.children: if child.type not in do_first_statement: temp,states=DFG_python(child,index_to_code,states) DFG+=temp return sorted(DFG,key=lambda x:x[1]),states def DFG_java(root_node,index_to_code,states): assignment=['assignment_expression'] def_statement=['variable_declarator'] increment_statement=['update_expression'] if_statement=['if_statement','else'] for_statement=['for_statement'] enhanced_for_statement=['enhanced_for_statement'] while_statement=['while_statement'] do_first_statement=[] states=states.copy() if (len(root_node.children)==0 or root_node.type=='string') and root_node.type!='comment': idx,code=index_to_code[(root_node.start_point,root_node.end_point)] if root_node.type==code: return [],states elif code in states: return [(code,idx,'comesFrom',[code],states[code].copy())],states else: if root_node.type=='identifier': states[code]=[idx] return [(code,idx,'comesFrom',[],[])],states elif root_node.type in def_statement: name=root_node.child_by_field_name('name') value=root_node.child_by_field_name('value') DFG=[] if value is None: indexs=tree_to_variable_index(name,index_to_code) for index in indexs: idx,code=index_to_code[index] DFG.append((code,idx,'comesFrom',[],[])) states[code]=[idx] return sorted(DFG,key=lambda x:x[1]),states else: name_indexs=tree_to_variable_index(name,index_to_code) value_indexs=tree_to_variable_index(value,index_to_code) temp,states=DFG_java(value,index_to_code,states) DFG+=temp for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'comesFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in assignment: left_nodes=root_node.child_by_field_name('left') right_nodes=root_node.child_by_field_name('right') DFG=[] temp,states=DFG_java(right_nodes,index_to_code,states) DFG+=temp name_indexs=tree_to_variable_index(left_nodes,index_to_code) value_indexs=tree_to_variable_index(right_nodes,index_to_code) for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in increment_statement: DFG=[] indexs=tree_to_variable_index(root_node,index_to_code) for index1 in indexs: idx1,code1=index_to_code[index1] for index2 in indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in if_statement: DFG=[] current_states=states.copy() others_states=[] flag=False tag=False if 'else' in root_node.type: tag=True for child in root_node.children: if 'else' in child.type: tag=True if child.type not in if_statement and flag is False: temp,current_states=DFG_java(child,index_to_code,current_states) DFG+=temp else: flag=True temp,new_states=DFG_java(child,index_to_code,states) DFG+=temp others_states.append(new_states) others_states.append(current_states) if tag is False: others_states.append(states) new_states={} for dic in others_states: for key in dic: if key not in new_states: new_states[key]=dic[key].copy() else: new_states[key]+=dic[key] for key in new_states: new_states[key]=sorted(list(set(new_states[key]))) return sorted(DFG,key=lambda x:x[1]),new_states elif root_node.type in for_statement: DFG=[] for child in root_node.children: temp,states=DFG_java(child,index_to_code,states) DFG+=temp flag=False for child in root_node.children: if flag: temp,states=DFG_java(child,index_to_code,states) DFG+=temp elif child.type=="local_variable_declaration": flag=True dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in enhanced_for_statement: name=root_node.child_by_field_name('name') value=root_node.child_by_field_name('value') body=root_node.child_by_field_name('body') DFG=[] for i in range(2): temp,states=DFG_java(value,index_to_code,states) DFG+=temp name_indexs=tree_to_variable_index(name,index_to_code) value_indexs=tree_to_variable_index(value,index_to_code) for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] temp,states=DFG_java(body,index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in while_statement: DFG=[] for i in range(2): for child in root_node.children: temp,states=DFG_java(child,index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states else: DFG=[] for child in root_node.children: if child.type in do_first_statement: temp,states=DFG_java(child,index_to_code,states) DFG+=temp for child in root_node.children: if child.type not in do_first_statement: temp,states=DFG_java(child,index_to_code,states) DFG+=temp return sorted(DFG,key=lambda x:x[1]),states def DFG_csharp(root_node,index_to_code,states): assignment=['assignment_expression'] def_statement=['variable_declarator'] increment_statement=['postfix_unary_expression'] if_statement=['if_statement','else'] for_statement=['for_statement'] enhanced_for_statement=['for_each_statement'] while_statement=['while_statement'] do_first_statement=[] states=states.copy() if (len(root_node.children)==0 or root_node.type=='string') and root_node.type!='comment': idx,code=index_to_code[(root_node.start_point,root_node.end_point)] if root_node.type==code: return [],states elif code in states: return [(code,idx,'comesFrom',[code],states[code].copy())],states else: if root_node.type=='identifier': states[code]=[idx] return [(code,idx,'comesFrom',[],[])],states elif root_node.type in def_statement: if len(root_node.children)==2: name=root_node.children[0] value=root_node.children[1] else: name=root_node.children[0] value=None DFG=[] if value is None: indexs=tree_to_variable_index(name,index_to_code) for index in indexs: idx,code=index_to_code[index] DFG.append((code,idx,'comesFrom',[],[])) states[code]=[idx] return sorted(DFG,key=lambda x:x[1]),states else: name_indexs=tree_to_variable_index(name,index_to_code) value_indexs=tree_to_variable_index(value,index_to_code) temp,states=DFG_csharp(value,index_to_code,states) DFG+=temp for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'comesFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in assignment: left_nodes=root_node.child_by_field_name('left') right_nodes=root_node.child_by_field_name('right') DFG=[] temp,states=DFG_csharp(right_nodes,index_to_code,states) DFG+=temp name_indexs=tree_to_variable_index(left_nodes,index_to_code) value_indexs=tree_to_variable_index(right_nodes,index_to_code) for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in increment_statement: DFG=[] indexs=tree_to_variable_index(root_node,index_to_code) for index1 in indexs: idx1,code1=index_to_code[index1] for index2 in indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in if_statement: DFG=[] current_states=states.copy() others_states=[] flag=False tag=False if 'else' in root_node.type: tag=True for child in root_node.children: if 'else' in child.type: tag=True if child.type not in if_statement and flag is False: temp,current_states=DFG_csharp(child,index_to_code,current_states) DFG+=temp else: flag=True temp,new_states=DFG_csharp(child,index_to_code,states) DFG+=temp others_states.append(new_states) others_states.append(current_states) if tag is False: others_states.append(states) new_states={} for dic in others_states: for key in dic: if key not in new_states: new_states[key]=dic[key].copy() else: new_states[key]+=dic[key] for key in new_states: new_states[key]=sorted(list(set(new_states[key]))) return sorted(DFG,key=lambda x:x[1]),new_states elif root_node.type in for_statement: DFG=[] for child in root_node.children: temp,states=DFG_csharp(child,index_to_code,states) DFG+=temp flag=False for child in root_node.children: if flag: temp,states=DFG_csharp(child,index_to_code,states) DFG+=temp elif child.type=="local_variable_declaration": flag=True dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in enhanced_for_statement: name=root_node.child_by_field_name('left') value=root_node.child_by_field_name('right') body=root_node.child_by_field_name('body') DFG=[] for i in range(2): temp,states=DFG_csharp(value,index_to_code,states) DFG+=temp name_indexs=tree_to_variable_index(name,index_to_code) value_indexs=tree_to_variable_index(value,index_to_code) for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] temp,states=DFG_csharp(body,index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in while_statement: DFG=[] for i in range(2): for child in root_node.children: temp,states=DFG_csharp(child,index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states else: DFG=[] for child in root_node.children: if child.type in do_first_statement: temp,states=DFG_csharp(child,index_to_code,states) DFG+=temp for child in root_node.children: if child.type not in do_first_statement: temp,states=DFG_csharp(child,index_to_code,states) DFG+=temp return sorted(DFG,key=lambda x:x[1]),states def DFG_ruby(root_node,index_to_code,states): assignment=['assignment','operator_assignment'] if_statement=['if','elsif','else','unless','when'] for_statement=['for'] while_statement=['while_modifier','until'] do_first_statement=[] def_statement=['keyword_parameter'] if (len(root_node.children)==0 or root_node.type=='string') and root_node.type!='comment': states=states.copy() idx,code=index_to_code[(root_node.start_point,root_node.end_point)] if root_node.type==code: return [],states elif code in states: return [(code,idx,'comesFrom',[code],states[code].copy())],states else: if root_node.type=='identifier': states[code]=[idx] return [(code,idx,'comesFrom',[],[])],states elif root_node.type in def_statement: name=root_node.child_by_field_name('name') value=root_node.child_by_field_name('value') DFG=[] if value is None: indexs=tree_to_variable_index(name,index_to_code) for index in indexs: idx,code=index_to_code[index] DFG.append((code,idx,'comesFrom',[],[])) states[code]=[idx] return sorted(DFG,key=lambda x:x[1]),states else: name_indexs=tree_to_variable_index(name,index_to_code) value_indexs=tree_to_variable_index(value,index_to_code) temp,states=DFG_ruby(value,index_to_code,states) DFG+=temp for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'comesFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in assignment: left_nodes=[x for x in root_node.child_by_field_name('left').children if x.type!=','] right_nodes=[x for x in root_node.child_by_field_name('right').children if x.type!=','] if len(right_nodes)!=len(left_nodes): left_nodes=[root_node.child_by_field_name('left')] right_nodes=[root_node.child_by_field_name('right')] if len(left_nodes)==0: left_nodes=[root_node.child_by_field_name('left')] if len(right_nodes)==0: right_nodes=[root_node.child_by_field_name('right')] if root_node.type=="operator_assignment": left_nodes=[root_node.children[0]] right_nodes=[root_node.children[-1]] DFG=[] for node in right_nodes: temp,states=DFG_ruby(node,index_to_code,states) DFG+=temp for left_node,right_node in zip(left_nodes,right_nodes): left_tokens_index=tree_to_variable_index(left_node,index_to_code) right_tokens_index=tree_to_variable_index(right_node,index_to_code) temp=[] for token1_index in left_tokens_index: idx1,code1=index_to_code[token1_index] temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index], [index_to_code[x][0] for x in right_tokens_index])) states[code1]=[idx1] DFG+=temp return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in if_statement: DFG=[] current_states=states.copy() others_states=[] tag=False if 'else' in root_node.type: tag=True for child in root_node.children: if 'else' in child.type: tag=True if child.type not in if_statement: temp,current_states=DFG_ruby(child,index_to_code,current_states) DFG+=temp else: temp,new_states=DFG_ruby(child,index_to_code,states) DFG+=temp others_states.append(new_states) others_states.append(current_states) if tag is False: others_states.append(states) new_states={} for dic in others_states: for key in dic: if key not in new_states: new_states[key]=dic[key].copy() else: new_states[key]+=dic[key] for key in new_states: new_states[key]=sorted(list(set(new_states[key]))) return sorted(DFG,key=lambda x:x[1]),new_states elif root_node.type in for_statement: DFG=[] for i in range(2): left_nodes=[root_node.child_by_field_name('pattern')] right_nodes=[root_node.child_by_field_name('value')] assert len(right_nodes)==len(left_nodes) for node in right_nodes: temp,states=DFG_ruby(node,index_to_code,states) DFG+=temp for left_node,right_node in zip(left_nodes,right_nodes): left_tokens_index=tree_to_variable_index(left_node,index_to_code) right_tokens_index=tree_to_variable_index(right_node,index_to_code) temp=[] for token1_index in left_tokens_index: idx1,code1=index_to_code[token1_index] temp.append((code1,idx1,'computedFrom',[index_to_code[x][1] for x in right_tokens_index], [index_to_code[x][0] for x in right_tokens_index])) states[code1]=[idx1] DFG+=temp temp,states=DFG_ruby(root_node.child_by_field_name('body'),index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in while_statement: DFG=[] for i in range(2): for child in root_node.children: temp,states=DFG_ruby(child,index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states else: DFG=[] for child in root_node.children: if child.type in do_first_statement: temp,states=DFG_ruby(child,index_to_code,states) DFG+=temp for child in root_node.children: if child.type not in do_first_statement: temp,states=DFG_ruby(child,index_to_code,states) DFG+=temp return sorted(DFG,key=lambda x:x[1]),states def DFG_go(root_node,index_to_code,states): assignment=['assignment_statement',] def_statement=['var_spec'] increment_statement=['inc_statement'] if_statement=['if_statement','else'] for_statement=['for_statement'] enhanced_for_statement=[] while_statement=[] do_first_statement=[] states=states.copy() if (len(root_node.children)==0 or root_node.type=='string') and root_node.type!='comment': idx,code=index_to_code[(root_node.start_point,root_node.end_point)] if root_node.type==code: return [],states elif code in states: return [(code,idx,'comesFrom',[code],states[code].copy())],states else: if root_node.type=='identifier': states[code]=[idx] return [(code,idx,'comesFrom',[],[])],states elif root_node.type in def_statement: name=root_node.child_by_field_name('name') value=root_node.child_by_field_name('value') DFG=[] if value is None: indexs=tree_to_variable_index(name,index_to_code) for index in indexs: idx,code=index_to_code[index] DFG.append((code,idx,'comesFrom',[],[])) states[code]=[idx] return sorted(DFG,key=lambda x:x[1]),states else: name_indexs=tree_to_variable_index(name,index_to_code) value_indexs=tree_to_variable_index(value,index_to_code) temp,states=DFG_go(value,index_to_code,states) DFG+=temp for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'comesFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in assignment: left_nodes=root_node.child_by_field_name('left') right_nodes=root_node.child_by_field_name('right') DFG=[] temp,states=DFG_go(right_nodes,index_to_code,states) DFG+=temp name_indexs=tree_to_variable_index(left_nodes,index_to_code) value_indexs=tree_to_variable_index(right_nodes,index_to_code) for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in increment_statement: DFG=[] indexs=tree_to_variable_index(root_node,index_to_code) for index1 in indexs: idx1,code1=index_to_code[index1] for index2 in indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in if_statement: DFG=[] current_states=states.copy() others_states=[] flag=False tag=False if 'else' in root_node.type: tag=True for child in root_node.children: if 'else' in child.type: tag=True if child.type not in if_statement and flag is False: temp,current_states=DFG_go(child,index_to_code,current_states) DFG+=temp else: flag=True temp,new_states=DFG_go(child,index_to_code,states) DFG+=temp others_states.append(new_states) others_states.append(current_states) if tag is False: others_states.append(states) new_states={} for dic in others_states: for key in dic: if key not in new_states: new_states[key]=dic[key].copy() else: new_states[key]+=dic[key] for key in states: if key not in new_states: new_states[key]=states[key] else: new_states[key]+=states[key] for key in new_states: new_states[key]=sorted(list(set(new_states[key]))) return sorted(DFG,key=lambda x:x[1]),new_states elif root_node.type in for_statement: DFG=[] for child in root_node.children: temp,states=DFG_go(child,index_to_code,states) DFG+=temp flag=False for child in root_node.children: if flag: temp,states=DFG_go(child,index_to_code,states) DFG+=temp elif child.type=="for_clause": if child.child_by_field_name('update') is not None: temp,states=DFG_go(child.child_by_field_name('update'),index_to_code,states) DFG+=temp flag=True dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states else: DFG=[] for child in root_node.children: if child.type in do_first_statement: temp,states=DFG_go(child,index_to_code,states) DFG+=temp for child in root_node.children: if child.type not in do_first_statement: temp,states=DFG_go(child,index_to_code,states) DFG+=temp return sorted(DFG,key=lambda x:x[1]),states def DFG_php(root_node,index_to_code,states): assignment=['assignment_expression','augmented_assignment_expression'] def_statement=['simple_parameter'] increment_statement=['update_expression'] if_statement=['if_statement','else_clause'] for_statement=['for_statement'] enhanced_for_statement=['foreach_statement'] while_statement=['while_statement'] do_first_statement=[] states=states.copy() if (len(root_node.children)==0 or root_node.type=='string') and root_node.type!='comment': idx,code=index_to_code[(root_node.start_point,root_node.end_point)] if root_node.type==code: return [],states elif code in states: return [(code,idx,'comesFrom',[code],states[code].copy())],states else: if root_node.type=='identifier': states[code]=[idx] return [(code,idx,'comesFrom',[],[])],states elif root_node.type in def_statement: name=root_node.child_by_field_name('name') value=root_node.child_by_field_name('default_value') DFG=[] if value is None: indexs=tree_to_variable_index(name,index_to_code) for index in indexs: idx,code=index_to_code[index] DFG.append((code,idx,'comesFrom',[],[])) states[code]=[idx] return sorted(DFG,key=lambda x:x[1]),states else: name_indexs=tree_to_variable_index(name,index_to_code) value_indexs=tree_to_variable_index(value,index_to_code) temp,states=DFG_php(value,index_to_code,states) DFG+=temp for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'comesFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in assignment: left_nodes=root_node.child_by_field_name('left') right_nodes=root_node.child_by_field_name('right') DFG=[] temp,states=DFG_php(right_nodes,index_to_code,states) DFG+=temp name_indexs=tree_to_variable_index(left_nodes,index_to_code) value_indexs=tree_to_variable_index(right_nodes,index_to_code) for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in increment_statement: DFG=[] indexs=tree_to_variable_index(root_node,index_to_code) for index1 in indexs: idx1,code1=index_to_code[index1] for index2 in indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in if_statement: DFG=[] current_states=states.copy() others_states=[] flag=False tag=False if 'else' in root_node.type: tag=True for child in root_node.children: if 'else' in child.type: tag=True if child.type not in if_statement and flag is False: temp,current_states=DFG_php(child,index_to_code,current_states) DFG+=temp else: flag=True temp,new_states=DFG_php(child,index_to_code,states) DFG+=temp others_states.append(new_states) others_states.append(current_states) new_states={} for dic in others_states: for key in dic: if key not in new_states: new_states[key]=dic[key].copy() else: new_states[key]+=dic[key] for key in states: if key not in new_states: new_states[key]=states[key] else: new_states[key]+=states[key] for key in new_states: new_states[key]=sorted(list(set(new_states[key]))) return sorted(DFG,key=lambda x:x[1]),new_states elif root_node.type in for_statement: DFG=[] for child in root_node.children: temp,states=DFG_php(child,index_to_code,states) DFG+=temp flag=False for child in root_node.children: if flag: temp,states=DFG_php(child,index_to_code,states) DFG+=temp elif child.type=="assignment_expression": flag=True dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in enhanced_for_statement: name=None value=None for child in root_node.children: if child.type=='variable_name' and value is None: value=child elif child.type=='variable_name' and name is None: name=child break body=root_node.child_by_field_name('body') DFG=[] for i in range(2): temp,states=DFG_php(value,index_to_code,states) DFG+=temp name_indexs=tree_to_variable_index(name,index_to_code) value_indexs=tree_to_variable_index(value,index_to_code) for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] temp,states=DFG_php(body,index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in while_statement: DFG=[] for i in range(2): for child in root_node.children: temp,states=DFG_php(child,index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states else: DFG=[] for child in root_node.children: if child.type in do_first_statement: temp,states=DFG_php(child,index_to_code,states) DFG+=temp for child in root_node.children: if child.type not in do_first_statement: temp,states=DFG_php(child,index_to_code,states) DFG+=temp return sorted(DFG,key=lambda x:x[1]),states def DFG_javascript(root_node,index_to_code,states): assignment=['assignment_pattern','augmented_assignment_expression'] def_statement=['variable_declarator'] increment_statement=['update_expression'] if_statement=['if_statement','else'] for_statement=['for_statement'] enhanced_for_statement=[] while_statement=['while_statement'] do_first_statement=[] states=states.copy() if (len(root_node.children)==0 or root_node.type=='string') and root_node.type!='comment': idx,code=index_to_code[(root_node.start_point,root_node.end_point)] if root_node.type==code: return [],states elif code in states: return [(code,idx,'comesFrom',[code],states[code].copy())],states else: if root_node.type=='identifier': states[code]=[idx] return [(code,idx,'comesFrom',[],[])],states elif root_node.type in def_statement: name=root_node.child_by_field_name('name') value=root_node.child_by_field_name('value') DFG=[] if value is None: indexs=tree_to_variable_index(name,index_to_code) for index in indexs: idx,code=index_to_code[index] DFG.append((code,idx,'comesFrom',[],[])) states[code]=[idx] return sorted(DFG,key=lambda x:x[1]),states else: name_indexs=tree_to_variable_index(name,index_to_code) value_indexs=tree_to_variable_index(value,index_to_code) temp,states=DFG_javascript(value,index_to_code,states) DFG+=temp for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'comesFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in assignment: left_nodes=root_node.child_by_field_name('left') right_nodes=root_node.child_by_field_name('right') DFG=[] temp,states=DFG_javascript(right_nodes,index_to_code,states) DFG+=temp name_indexs=tree_to_variable_index(left_nodes,index_to_code) value_indexs=tree_to_variable_index(right_nodes,index_to_code) for index1 in name_indexs: idx1,code1=index_to_code[index1] for index2 in value_indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in increment_statement: DFG=[] indexs=tree_to_variable_index(root_node,index_to_code) for index1 in indexs: idx1,code1=index_to_code[index1] for index2 in indexs: idx2,code2=index_to_code[index2] DFG.append((code1,idx1,'computedFrom',[code2],[idx2])) states[code1]=[idx1] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in if_statement: DFG=[] current_states=states.copy() others_states=[] flag=False tag=False if 'else' in root_node.type: tag=True for child in root_node.children: if 'else' in child.type: tag=True if child.type not in if_statement and flag is False: temp,current_states=DFG_javascript(child,index_to_code,current_states) DFG+=temp else: flag=True temp,new_states=DFG_javascript(child,index_to_code,states) DFG+=temp others_states.append(new_states) others_states.append(current_states) if tag is False: others_states.append(states) new_states={} for dic in others_states: for key in dic: if key not in new_states: new_states[key]=dic[key].copy() else: new_states[key]+=dic[key] for key in states: if key not in new_states: new_states[key]=states[key] else: new_states[key]+=states[key] for key in new_states: new_states[key]=sorted(list(set(new_states[key]))) return sorted(DFG,key=lambda x:x[1]),new_states elif root_node.type in for_statement: DFG=[] for child in root_node.children: temp,states=DFG_javascript(child,index_to_code,states) DFG+=temp flag=False for child in root_node.children: if flag: temp,states=DFG_javascript(child,index_to_code,states) DFG+=temp elif child.type=="variable_declaration": flag=True dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states elif root_node.type in while_statement: DFG=[] for i in range(2): for child in root_node.children: temp,states=DFG_javascript(child,index_to_code,states) DFG+=temp dic={} for x in DFG: if (x[0],x[1],x[2]) not in dic: dic[(x[0],x[1],x[2])]=[x[3],x[4]] else: dic[(x[0],x[1],x[2])][0]=list(set(dic[(x[0],x[1],x[2])][0]+x[3])) dic[(x[0],x[1],x[2])][1]=sorted(list(set(dic[(x[0],x[1],x[2])][1]+x[4]))) DFG=[(x[0],x[1],x[2],y[0],y[1]) for x,y in sorted(dic.items(),key=lambda t:t[0][1])] return sorted(DFG,key=lambda x:x[1]),states else: DFG=[] for child in root_node.children: if child.type in do_first_statement: temp,states=DFG_javascript(child,index_to_code,states) DFG+=temp for child in root_node.children: if child.type not in do_first_statement: temp,states=DFG_javascript(child,index_to_code,states) DFG+=temp return sorted(DFG,key=lambda x:x[1]),states
CodeBERT/GraphCodeBERT/refinement/parser/DFG.py/0
{ "file_path": "CodeBERT/GraphCodeBERT/refinement/parser/DFG.py", "repo_id": "CodeBERT", "token_count": 28921 }
242
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.3 BLOCK --> ## Security Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/). If you believe you have found a security vulnerability in any Microsoft-owned repository that meets Microsoft's [Microsoft's definition of a security vulnerability](https://docs.microsoft.com/en-us/previous-versions/tn-archive/cc751383(v=technet.10)), please report it to us as described below. ## Reporting Security Issues **Please do not report security vulnerabilities through public GitHub issues.** Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report). If you prefer to submit without logging in, send email to [[email protected]](mailto:[email protected]). If possible, encrypt your message with our PGP key; please download it from the the [Microsoft Security Response Center PGP Key page](https://www.microsoft.com/en-us/msrc/pgp-key-msrc). You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc). Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue: * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.) * Full paths of source file(s) related to the manifestation of the issue * The location of the affected source code (tag/branch/commit or direct URL) * Any special configuration required to reproduce the issue * Step-by-step instructions to reproduce the issue * Proof-of-concept or exploit code (if possible) * Impact of the issue, including how an attacker might exploit the issue This information will help us triage your report more quickly. If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://microsoft.com/msrc/bounty) page for more details about our active programs. ## Preferred Languages We prefer all communications to be in English. ## Policy Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://www.microsoft.com/en-us/msrc/cvd). <!-- END MICROSOFT SECURITY.MD BLOCK -->
CodeBERT/SECURITY.md/0
{ "file_path": "CodeBERT/SECURITY.md", "repo_id": "CodeBERT", "token_count": 701 }
243
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch import torch.nn as nn import torch from torch.autograd import Variable import copy class Seq2Seq(nn.Module): """ Build Seqence-to-Sequence. Parameters: * `encoder`- encoder of seq2seq model. e.g. roberta * `decoder`- decoder of seq2seq model. e.g. transformer * `config`- configuration of encoder model. * `beam_size`- beam size for beam search. * `max_length`- max length of target for beam search. * `sos_id`- start of symbol ids in target for beam search. * `eos_id`- end of symbol ids in target for beam search. """ def __init__(self, encoder,decoder, config, beam_size=None, max_length=None, sos_id=None, eos_id=None): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder=decoder self.config=config self.register_buffer( "bias", torch.tril(torch.ones((1024, 1024), dtype=torch.uint8)).view(1,1024, 1024) ) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head.weight = self.encoder.embeddings.word_embeddings.weight self.lsm = nn.LogSoftmax(dim=-1) self.beam_size = beam_size self.max_length = max_length self.sos_id = sos_id self.eos_id = eos_id def forward(self, source_ids, target_ids=None): if target_ids is None: return self.generate(source_ids) mask = source_ids.ne(1)[:,None,:]*source_ids.ne(1)[:,:,None] encoder_output = self.encoder(source_ids,attention_mask=mask,use_cache=True) ids = torch.cat((source_ids,target_ids),-1) mask = self.bias[:,source_ids.size(-1):ids.size(-1),:ids.size(-1)].bool() mask = mask & ids[:,None,:].ne(1) out = self.decoder(target_ids,attention_mask=mask,past_key_values=encoder_output.past_key_values).last_hidden_state lm_logits = self.lm_head(out) # Shift so that tokens < n predict n active_loss = target_ids[..., 1:].ne(1).view(-1) shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = target_ids[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss], shift_labels.view(-1)[active_loss]) outputs = loss,loss*active_loss.sum(),active_loss.sum() return outputs def generate(self, source_ids): mask = source_ids.ne(1)[:,None,:]*source_ids.ne(1)[:,:,None] encoder_output = self.encoder(source_ids,attention_mask=mask,use_cache=True) preds = [] zero = torch.cuda.LongTensor(1).fill_(0) source_len = list(source_ids.ne(1).sum(-1).cpu().numpy()) for i in range(source_ids.shape[0]): context = [[x[i:i+1,:,:source_len[i]].repeat(self.beam_size,1,1,1) for x in y] for y in encoder_output.past_key_values] beam = Beam(self.beam_size,self.sos_id,self.eos_id) input_ids = beam.getCurrentState() context_ids = source_ids[i:i+1,:source_len[i]].repeat(self.beam_size,1) for _ in range(self.max_length): if beam.done(): break ids = torch.cat((context_ids,input_ids),-1) mask = self.bias[:,context_ids.size(-1):ids.size(-1),:ids.size(-1)].bool() mask = mask & ids[:,None,:].ne(1) out = self.decoder(input_ids,attention_mask=mask,past_key_values=context).last_hidden_state hidden_states = out[:,-1,:] out = self.lsm(self.lm_head(hidden_states)).data beam.advance(out) input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin())) input_ids = torch.cat((input_ids,beam.getCurrentState()),-1) hyp = beam.getHyp(beam.getFinal()) pred = beam.buildTargetTokens(hyp)[:self.beam_size] pred = [torch.cat([x.view(-1) for x in p]+[zero]*(self.max_length-len(p))).view(1,-1) for p in pred] preds.append(torch.cat(pred,0).unsqueeze(0)) preds = torch.cat(preds,0) return preds class Beam(object): def __init__(self, size,sos,eos): self.size = size self.tt = torch.cuda # The score for each translation on the beam. self.scores = self.tt.FloatTensor(size).zero_() # The backpointers at each time-step. self.prevKs = [] # The outputs at each time-step. self.nextYs = [self.tt.LongTensor(size) .fill_(0)] self.nextYs[0][0] = sos # Has EOS topped the beam yet. self._eos = eos self.eosTop = False # Time and k pair for finished. self.finished = [] def getCurrentState(self): "Get the outputs for the current timestep." batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1) return batch def getCurrentOrigin(self): "Get the backpointers for the current timestep." return self.prevKs[-1] def advance(self, wordLk): """ Given prob over words for every last beam `wordLk` and attention `attnOut`: Compute and update the beam search. Parameters: * `wordLk`- probs of advancing from the last step (K x words) * `attnOut`- attention at the last step Returns: True if beam search is complete. """ numWords = wordLk.size(1) # Sum the previous scores. if len(self.prevKs) > 0: beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk) # Don't let EOS have children. for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: beamLk[i] = -1e20 else: beamLk = wordLk[0] flatBeamLk = beamLk.view(-1) bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True) self.scores = bestScores # bestScoresId is flattened beam x word array, so calculate which # word and beam each score came from prevK = bestScoresId // numWords self.prevKs.append(prevK) self.nextYs.append((bestScoresId - prevK * numWords)) for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: s = self.scores[i] self.finished.append((s, len(self.nextYs) - 1, i)) # End condition is when top-of-beam is EOS and no global score. if self.nextYs[-1][0] == self._eos: self.eosTop = True def done(self): return self.eosTop and len(self.finished) >=self.size def getFinal(self): if len(self.finished) == 0: self.finished.append((self.scores[0], len(self.nextYs) - 1, 0)) self.finished.sort(key=lambda a: -a[0]) if len(self.finished) != self.size: unfinished=[] for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] != self._eos: s = self.scores[i] unfinished.append((s, len(self.nextYs) - 1, i)) unfinished.sort(key=lambda a: -a[0]) self.finished+=unfinished[:self.size-len(self.finished)] return self.finished[:self.size] def getHyp(self, beam_res): """ Walk back to construct the full hypothesis. """ hyps=[] for _,timestep, k in beam_res: hyp = [] for j in range(len(self.prevKs[:timestep]) - 1, -1, -1): hyp.append(self.nextYs[j+1][k]) k = self.prevKs[j][k] hyps.append(hyp[::-1]) return hyps def buildTargetTokens(self, preds): sentence=[] for pred in preds: tokens = [] for tok in pred: if tok==self._eos: break tokens.append(tok) sentence.append(tokens) return sentence
CodeBERT/UniXcoder/downstream-tasks/code-generation/model.py/0
{ "file_path": "CodeBERT/UniXcoder/downstream-tasks/code-generation/model.py", "repo_id": "CodeBERT", "token_count": 4178 }
244
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned using a masked language modeling (MLM) loss. """ import sys import argparse import logging import os import pickle import random import torch import json import numpy as np from tqdm import tqdm from model import Model from torch.nn import CrossEntropyLoss, MSELoss from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, RobertaConfig, RobertaModel, RobertaTokenizer) import re from io import StringIO import tokenize logger = logging.getLogger(__name__) def remove_comments_and_docstrings(source,lang): if lang in ['python']: io_obj = StringIO(source) out = "" prev_toktype = tokenize.INDENT last_lineno = -1 last_col = 0 for tok in tokenize.generate_tokens(io_obj.readline): token_type = tok[0] token_string = tok[1] start_line, start_col = tok[2] end_line, end_col = tok[3] ltext = tok[4] if start_line > last_lineno: last_col = 0 if start_col > last_col: out += (" " * (start_col - last_col)) # Remove comments: if token_type == tokenize.COMMENT: pass # This series of conditionals removes docstrings: elif token_type == tokenize.STRING: if prev_toktype != tokenize.INDENT: # This is likely a docstring; double-check we're not inside an operator: if prev_toktype != tokenize.NEWLINE: if start_col > 0: out += token_string else: out += token_string prev_toktype = token_type last_col = end_col last_lineno = end_line temp=[] for x in out.split('\n'): if x.strip()!="": temp.append(x) return '\n'.join(temp) elif lang in ['ruby']: return source else: def replacer(match): s = match.group(0) if s.startswith('/'): return " " # note: a space and not an empty string else: return s pattern = re.compile( r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"', re.DOTALL | re.MULTILINE ) temp=[] for x in re.sub(pattern, replacer, source).split('\n'): if x.strip()!="": temp.append(x) return '\n'.join(temp) class InputFeatures(object): """A single training/test features for a example.""" def __init__(self, code_tokens, code_ids, index, label ): self.code_tokens = code_tokens self.code_ids = code_ids self.index = index self.label = label def convert_examples_to_features(js,tokenizer,args,lang): """convert examples to token ids""" if "func" in js: code = " ".join(remove_comments_and_docstrings(js['func'],lang).split()) else: code = " ".join(remove_comments_and_docstrings(js['code'],lang).split()) code_tokens = tokenizer.tokenize(code)[:args.code_length-4] code_tokens =[tokenizer.cls_token,"<encoder-only>",tokenizer.sep_token]+code_tokens+[tokenizer.sep_token] code_ids = tokenizer.convert_tokens_to_ids(code_tokens) padding_length = args.code_length - len(code_ids) code_ids += [tokenizer.pad_token_id]*padding_length return InputFeatures(code_tokens,code_ids,js["index"],int(js['label'])) class TextDataset(Dataset): def __init__(self, tokenizer, args, file_path, lang): self.examples = [] data = [] with open(file_path) as f: for i, line in enumerate(f): line = line.strip() js = json.loads(line) data.append(js) for js in data: self.examples.append(convert_examples_to_features(js,tokenizer,args,lang)) for idx, example in enumerate(self.examples[:1]): logger.info("*** Example ***") logger.info("label: {}".format(example.label)) logger.info("code_tokens: {}".format([x.replace('\u0120','_') for x in example.code_tokens])) logger.info("code_ids: {}".format(' '.join(map(str, example.code_ids)))) self.label_examples={} for e in self.examples: if e.label not in self.label_examples: self.label_examples[e.label]=[] self.label_examples[e.label].append(e) def __len__(self): return len(self.examples) def __getitem__(self, i): return (torch.tensor(self.examples[i].code_ids),torch.tensor(self.examples[i].label)) def evaluate(args, model, tokenizer, file_name, candidate_file_name): query_dataset = TextDataset(tokenizer, args, file_name, args.query_lang) query_sampler = SequentialSampler(query_dataset) query_dataloader = DataLoader(query_dataset, sampler=query_sampler, batch_size=args.eval_batch_size,num_workers=4) candidate_dataset = TextDataset(tokenizer, args, candidate_file_name, args.candidate_lang) candidate_sampler = SequentialSampler(candidate_dataset) candidate_dataloader = DataLoader(candidate_dataset, sampler=candidate_sampler, batch_size=args.eval_batch_size, num_workers=4) # Eval! logger.info("***** Running evaluation *****") logger.info(" Num Query = %d", len(query_dataset)) logger.info(" Num Candidate = %d", len(candidate_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) model.eval() query_vecs = [] query_labels = [] candidate_vecs = [] candidate_labels = [] # Obtain query vectors for batch in query_dataloader: code_inputs = batch[0].to(args.device) label = batch[1].to(args.device) with torch.no_grad(): code_vec = model(code_inputs=code_inputs) query_vecs.append(code_vec.cpu().numpy()) query_labels.append(label.cpu().numpy()) # Obtain candidate vectors for batch in candidate_dataloader: code_inputs = batch[0].to(args.device) label = batch[1].to(args.device) with torch.no_grad(): code_vec = model(code_inputs=code_inputs) candidate_vecs.append(code_vec.cpu().numpy()) candidate_labels.append(label.cpu().numpy()) model.train() # Calculate cosine score query_vecs = np.concatenate(query_vecs,0) candidate_vecs = np.concatenate(candidate_vecs,0) query_labels = list(np.concatenate(query_labels,0)) candidate_labels = list(np.concatenate(candidate_labels,0)) candidate_indexs =[candidate_dataset.examples[i].index for i in range(len(candidate_dataset))] query_indexs = [query_dataset.examples[i].index for i in range(len(query_dataset))] scores = np.matmul(query_vecs,candidate_vecs.T) # Calculate MAP score sort_ids = np.argsort(scores, axis=-1, kind='quicksort', order=None)[:,::-1] MAP=[] results = {} for i in range(scores.shape[0]): cont=0 label=int(query_labels[i]) query_index = query_indexs[i] results[query_index] = [label,candidate_labels[sort_ids[i][0]],candidate_indexs[sort_ids[i][0]]] Avep = [] for j,index in enumerate(list(sort_ids[i])): if query_index==candidate_indexs[index]: cont+=1 continue if int(candidate_labels[index])==label: Avep.append((len(Avep)+1)/(j+1-cont)) if len(Avep)!=0: MAP.append(sum(Avep)/len(Avep)) result = { "eval_map":float(np.mean(MAP)) } return result def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--query_data_file", default=None, type=str, required=False, help="The input training data file (a json file).") parser.add_argument("--candidate_data_file", default=None, type=str, required=False, help="The input training data file (a json file).") parser.add_argument("--model_name_or_path", default=None, type=str, help="The model checkpoint for weights initialization.") parser.add_argument("--query_lang", default=None, type=str, required=False, help="Programming language of query.") parser.add_argument("--candidate_lang", default=None, type=str, help="Programming language of candidate.") parser.add_argument("--code_length", default=256, type=int, help="Optional Code input sequence length after tokenization.") parser.add_argument("--eval_batch_size", default=4, type=int, help="Batch size for evaluation.") #print arguments args = parser.parse_args() #set log logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S',level=logging.INFO ) #set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") args.n_gpu = torch.cuda.device_count() args.device = device logger.info("device: %s, n_gpu: %s",device, args.n_gpu) #build model tokenizer = RobertaTokenizer.from_pretrained(args.model_name_or_path) config = RobertaConfig.from_pretrained(args.model_name_or_path) model = RobertaModel.from_pretrained(args.model_name_or_path) model=Model(model) logger.info("Training/evaluation parameters %s", args) model.to(args.device) if args.n_gpu > 1: model = torch.nn.DataParallel(model) result=evaluate(args, model, tokenizer,args.query_data_file,args.candidate_data_file) logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(round(result[key]*100,2))) if __name__ == "__main__": main()
CodeBERT/UniXcoder/downstream-tasks/zero-shot-search/run.py/0
{ "file_path": "CodeBERT/UniXcoder/downstream-tasks/zero-shot-search/run.py", "repo_id": "CodeBERT", "token_count": 5116 }
245
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import json import pickle class Tools: @staticmethod def load_jsonl(file_path): json_objects = [] with open(file_path, 'r', encoding='utf8') as f: for line in f: json_objects.append(json.loads(line.strip())) return json_objects @staticmethod def load_tasks(task_path): result = dict() lines = Tools.load_jsonl(task_path) for line in lines: result[line['task_id']] = line return result @staticmethod def dump_pickle(path, content): with open(path, 'wb') as f: pickle.dump(content, f) @staticmethod def load_pickle(path): with open(path, 'rb') as f: return pickle.load(f) @staticmethod def write_file(path, content): with open(path, 'w', encoding='utf8') as f: f.write(content)
CodeT/CodeT/src/io_utils.py/0
{ "file_path": "CodeT/CodeT/src/io_utils.py", "repo_id": "CodeT", "token_count": 454 }
246
$schema: http://azureml/sdk-2-0/CommandComponent.json name: microsoft.msra.dki.verifier_data_preparing display_name: Verifier Data Preparing version: 0.1.8-dev2 type: CommandComponent is_deterministic: true description: Verifier Data Preparing tags: {category: Verifier Data Preparing, contact: [email protected]} inputs: generator_result_file: type: path optional: false description: The generation result file generated by GPT-3 onebox or other modules random_seed: type: integer description: Random seed default: 233 split: type: enum description: train / dev. randomly shuffle train dataset. default: train enum: - train - dev dataset_name: type: enum description: Name of the dataset to be run. GSM8K/CLUTRR/strategyQA default: GSM8K enum: - GSM8K - CLUTRR - strategyQA text_entailment_model_name: type: string description: The text entailment model that is used in step labeling, such as roberta-large-mnli, facebook/bart-large-mnli, etc. default: roberta-large-mnli text_entailment_batch_size: type: number description: text entailment batch size default: 256 outputs: output_dir: type: path optional: false description: The output dir that you want to save the output data, which is the verifier training module's input. environment: docker: image: mcr.microsoft.com/azureml/pytorch-1.9-ubuntu18.04-py37-cuda11.0.3-gpu-inference:20220516.v3 os: Linux conda: conda_dependencies: name: project_environment channels: - defaults - pytorch dependencies: - python=3.7 - pip=20.0 - pip: - torch==1.7.0+cu110 - -f https://download.pytorch.org/whl/torch_stable.html - multiset - tqdm - nltk - transformers==4.6.0 - datasets==1.11.0 - huggingface-hub==0.0.8 successful_return_code: Zero meta: requireGpu: False command: >- cd src && python verifier_data_prepare.py --generator_result_file {inputs.generator_result_file} --output_dir {outputs.output_dir} --split {inputs.split} --random_seed {inputs.random_seed} --dataset_name {inputs.dataset_name} --text_entailment_model_name {inputs.text_entailment_model_name} --text_entailment_batch_size {inputs.text_entailment_batch_size}
CodeT/DIVERSE/code/verifier_data_prepare.yaml/0
{ "file_path": "CodeT/DIVERSE/code/verifier_data_prepare.yaml", "repo_id": "CodeT", "token_count": 955 }
247
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import editdistance from collections import defaultdict from utils import Tools def compute_EM(target, predictions, passk): target_lines = [line.strip() for line in target.splitlines() if line.strip()] EM_scores = [] for prediction in predictions[:passk]: prediction_lines = [line.strip() for line in prediction.splitlines() if line.strip()][:len(target_lines)] if len(target_lines) != len(prediction_lines): EM_scores.append(0) continue if target_lines == prediction_lines: EM_scores.append(1) continue EM_scores.append(0) return any(EM_scores) def compute_ES(target, predictions, passk): target_lines = [line.strip() for line in target.splitlines() if line.strip()] target_str = '\n'.join(target_lines) ES_scores = [] for prediction in predictions[:passk]: prediction_lines = [line.strip() for line in prediction.splitlines() if line.strip()][:len(target_lines)] prediction_str = '\n'.join(prediction_lines) ES_scores.append( 1 - (editdistance.eval(target_str, prediction_str) / max(len(target_str), len(prediction_str))) ) return max(ES_scores) def compute_score_by_repo_with_metadata(repos, lines, stype, passk=1): scores = defaultdict(list) for line in lines: repo = line['metadata']['task_id'].split('/')[0] if repo not in repos: continue samples = [line['choices'][i]['text'] for i in range(len(line['choices']))] if stype == 'EM': score = compute_EM(line['metadata']['ground_truth'], samples, passk) elif stype == 'ES': score = compute_ES(line['metadata']['ground_truth'], samples, passk) scores[repo].append(score) avg_scores = {repo: round(sum(scores[repo]) / len(scores[repo]), 4) for repo in scores} repo_count = {repo: len(scores[repo]) for repo in scores} print(stype) for repo in avg_scores.keys(): print(f'{avg_scores[repo]}\t{repo_count[repo]}\t{repo}') if __name__ == '__main__': repos = [ 'huggingface_diffusers', 'nerfstudio-project_nerfstudio', 'awslabs_fortuna', 'huggingface_evaluate', 'google_vizier', 'alibaba_FederatedScope', 'pytorch_rl', 'opendilab_ACE', ] '''compute single prediction''' file_path = 'output/line-rgrg-ada-ws-20-ss-2_samples.0.jsonl' compute_score_by_repo_with_metadata(repos, Tools.load_jsonl(file_path), 'EM', passk=1) compute_score_by_repo_with_metadata(repos, Tools.load_jsonl(file_path), 'ES', passk=1)
CodeT/RepoCoder/compute_score.py/0
{ "file_path": "CodeT/RepoCoder/compute_score.py", "repo_id": "CodeT", "token_count": 1165 }
248
#!/bin/zsh # # A shell script to setup Codex CLI for zsh # # You can pass the following arguments to the script: # -o: Your OpenAI organization id. # -k: Your OpenAI API key. # -e: The OpenAI engine id that provides access to a model. # # For example: # ./zsh_setup.sh -o <YOUR_ORG_ID> -k <YOUR_API_KEY> -e <ENGINE_ID> # set -e # Call OpenAI API with the given settings to verify everythin is in order validateSettings() { echo -n "*** Testing Open AI access... " local TEST=$(curl -s 'https://api.openai.com/v1/engines' -H "Authorization: Bearer $secret" -H "OpenAI-Organization: $orgId" -w '%{http_code}') local STATUS_CODE=$(echo "$TEST"|tail -n 1) if [ $STATUS_CODE -ne 200 ]; then echo "ERROR [$STATUS_CODE]" echo "Failed to access OpenAI API, result: $STATUS_CODE" echo "Please check your OpenAI API key (https://beta.openai.com/account/api-keys)" echo "and Organization ID (https://beta.openai.com/account/org-settings)." echo "*************" exit 1 fi local ENGINE_FOUND=$(echo "$TEST"|grep '"id"'|grep "\"$engineId\"") if [ -z "$ENGINE_FOUND" ]; then echo "ERROR" echo "Cannot find OpenAI engine: $engineId" echo "Please check the OpenAI engine id (https://beta.openai.com/docs/engines/codex-series-private-beta)." echo "*************" exit 1 fi echo "OK ***" } # Append settings and 'Ctrl + G' binding in .zshrc configureZsh() { # Remove previous settings sed -i '' '/### Codex CLI setup - start/,/### Codex CLI setup - end/d' $zshrcPath echo "Removed previous settings in $zshrcPath if present" # Update the latest settings echo "### Codex CLI setup - start" >> $zshrcPath echo "export CODEX_CLI_PATH=$CODEX_CLI_PATH" >> $zshrcPath echo "source \"\$CODEX_CLI_PATH/scripts/zsh_plugin.zsh\"" >> $zshrcPath echo "bindkey '^G' create_completion" >> $zshrcPath echo "### Codex CLI setup - end" >> $zshrcPath echo "Added settings in $zshrcPath" } # Store API key and other settings in `openaiapirc` configureApp() { echo "[openai]" > $openAIConfigPath echo "organization_id=$orgId" >> $openAIConfigPath echo "secret_key=$secret" >> $openAIConfigPath echo "engine=$engineId" >> $openAIConfigPath echo "Updated OpenAI configuration file ($openAIConfigPath) with secrets" # Change file mode of codex_query.py to allow execution chmod +x "$CODEX_CLI_PATH/src/codex_query.py" echo "Allow execution of $CODEX_CLI_PATH/src/codex_query.py" } # Start installation # Use zparseopts to parse parameters zmodload zsh/zutil zparseopts -E -D -- \ o:=o_orgId \ e:=o_engineId \ k:=o_key if (( ${+o_orgId[2]} )); then orgId=${o_orgId[2]} else echo -n 'OpenAI Organization Id: '; read orgId fi if (( ${+o_engineId[2]} )); then engineId=${o_engineId[2]} else echo -n 'OpenAI Engine Id: '; read engineId fi if (( ${+o_key[2]} )); then secret=${o_key[2]} else # Prompt user for OpenAI access key read -rs 'secret?OpenAI access key:' echo -e "\n" fi # Detect Codex CLI folder path CODEX_CLI_PATH="$( cd "$( dirname "$0" )" && cd .. && pwd )" echo "CODEX_CLI_PATH is $CODEX_CLI_PATH" validateSettings openAIConfigPath="$CODEX_CLI_PATH/src/openaiapirc" zshrcPath="$HOME/.zshrc" configureZsh configureApp echo -e "*** Setup complete! ***\n"; echo "***********************************************" echo "Open a new zsh terminal, type '#' followed by" echo "your natural language command and hit Ctrl + G!" echo "***********************************************"
Codex-CLI/scripts/zsh_setup.sh/0
{ "file_path": "Codex-CLI/scripts/zsh_setup.sh", "repo_id": "Codex-CLI", "token_count": 1449 }
249
#!/usr/bin/env python # -*- coding: utf-8 -*- """ File: large_person_group_person_face.py Description: Large Person Group Person Face section of the Cognitive Face API. """ from . import util def add(image, large_person_group_id, person_id, user_data=None, target_face=None): """Add a representative face to a person for identification. The input face is specified as an image with a `target_face` rectangle. It returns a `persisted_face_id` representing the added face and this `persisted_face_id` will not expire. Args: image: A URL or a file path or a file-like object represents an image. large_person_group_id: `large_person_group_id` of the target large person group. person_id: `person_id` of the target person. user_data: Optional parameter. User-specified data about the face list for any purpose. The maximum length is 1KB. target_face: Optional parameter. A face rectangle to specify the target face to be added into the face list, in the format of "left,top,width,height". E.g. "10,10,100,100". If there are more than one faces in the image, `target_face` is required to specify which face to add. No `target_face` means there is only one face detected in the entire image. Returns: A new `persisted_face_id`. """ url = 'largepersongroups/{}/persons/{}/persistedFaces'.format( large_person_group_id, person_id) headers, data, json = util.parse_image(image) params = { 'userData': user_data, 'targetFace': target_face, } return util.request( 'POST', url, headers=headers, params=params, json=json, data=data) def delete(large_person_group_id, person_id, persisted_face_id): """Delete a face from a person. Relative image for the persisted face will also be deleted. Args: large_person_group_id: `large_person_group_id` of the target large person group. person_id: `person_id` of the target person. persisted_face_id: The persisted face to remove. Returns: An empty response body. """ url = 'largepersongroups/{}/persons/{}/persistedFaces/{}'.format( large_person_group_id, person_id, persisted_face_id) return util.request('DELETE', url) def get(large_person_group_id, person_id, persisted_face_id): """Retrieve information about a persisted face (specified by `persisted_face_ids`, `person_id` and its belonging `large_person_group_id`). Args: large_person_group_id: `large_person_group_id` of the target large person group. person_id: `person_id` of the target person. persisted_face_id: The `persisted_face_id` of the target persisted face of the person. Returns: The target persisted face's information (`persisted_face_id` and `user_data`). """ url = 'largepersongroups/{}/persons/{}/persistedFaces/{}'.format( large_person_group_id, person_id, persisted_face_id) return util.request('GET', url) def update(large_person_group_id, person_id, persisted_face_id, user_data): """Update a person persisted face's `user_data` field. Args: large_person_group_id: `large_person_group_id` of the target large person group. person_id: `person_id` of the target person. persisted_face_id: The `persisted_face_id` of the target persisted face of the person. user_data: Attach `user_data` to person's persisted face. The size limit is 1KB. Returns: An empty response body. """ url = 'largepersongroups/{}/persons/{}/persistedFaces/{}'.format( large_person_group_id, person_id, persisted_face_id) json = { 'userData': user_data, } return util.request('PATCH', url, json=json)
Cognitive-Face-Python/cognitive_face/large_person_group_person_face.py/0
{ "file_path": "Cognitive-Face-Python/cognitive_face/large_person_group_person_face.py", "repo_id": "Cognitive-Face-Python", "token_count": 1559 }
250
export CUDA_VISIBLE_DEVICES=3 python t5_run_train.py \ --model_name_or_path t5-base \ --subtask Com \ --method ContrastExp \ --train_file pretrain_contrast \ --max_steps 100000 \ --save_steps 100000 \ --batch_size 8 \ --ebatch_size 16 \ --gas 1 \ --seed 1 \ --set set1
ContextualSP/abstraction_probing/code/t5_code/Com_ContrastExp_pretrain.sh/0
{ "file_path": "ContextualSP/abstraction_probing/code/t5_code/Com_ContrastExp_pretrain.sh", "repo_id": "ContextualSP", "token_count": 106 }
251
import absl import nltk import numpy import six import datasets import pdb _CITATION = "" _DESCRIPTION = "" _KWARGS_DESCRIPTION = "" def simple_accuracy(preds, labels): correct_list = [1. if pred == label else 0. for (pred, label) in zip(preds, labels)] return sum(correct_list) / len(correct_list) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class seq_acc(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=[], reference_urls=[], ) def _compute(self, predictions, references): accuracy = simple_accuracy(predictions, references) result = {'accuracy': accuracy} return result
ContextualSP/abstraction_probing/code/t5_code/seq_acc/seq_acc.py/0
{ "file_path": "ContextualSP/abstraction_probing/code/t5_code/seq_acc/seq_acc.py", "repo_id": "ContextualSP", "token_count": 487 }
252
# Copyright (c) Microsoft. All rights reserved. from enum import IntEnum class TaskType(IntEnum): Classification = 1 Regression = 2 Ranking = 3 Span = 4 # squad v1 SpanYN = 5 # squad v2 SeqenceLabeling = 6 MaskLM = 7 SpanSeqenceLabeling = 8 SeqenceGeneration = 9 ClozeChoice = 10 class DataFormat(IntEnum): PremiseOnly = 1 PremiseAndOneHypothesis = 2 PremiseAndMultiHypothesis = 3 Seqence = 4 MLM = 5 CLUE_CLASSIFICATION = 6 CLUE_SPAN = 7 CLUE_SEQ = 8 CLUE_GEN = 9 # generation ClozeChoice = 10 # class EncoderModelType(IntEnum): BERT = 1 ROBERTA = 2 XLNET = 3 SAN = 4 XLM = 5 DEBERTA = 6 ELECTRA = 7 T5 = 8 T5G = 9
ContextualSP/adaptershare/data_utils/task_def.py/0
{ "file_path": "ContextualSP/adaptershare/data_utils/task_def.py", "repo_id": "ContextualSP", "token_count": 333 }
253
import os import argparse import random from sys import path path.append(os.getcwd()) from experiments.common_utils import dump_rows from data_utils.task_def import DataFormat from data_utils.log_wrapper import create_logger from experiments.glue.glue_utils import * logger = create_logger(__name__, to_disk=True, log_file="glue_prepro.log") def parse_args(): parser = argparse.ArgumentParser( description="Preprocessing GLUE/SNLI/SciTail dataset." ) parser.add_argument("--seed", type=int, default=13) parser.add_argument("--root_dir", type=str, default="data") parser.add_argument( "--old_glue", action="store_true", help="whether it is old GLUE, refer official GLUE webpage for details", ) args = parser.parse_args() return args def main(args): is_old_glue = args.old_glue root = args.root_dir assert os.path.exists(root) ###################################### # GLUE tasks ###################################### multi_train_path = os.path.join(root, "MNLI/train.tsv") multi_dev_matched_path = os.path.join(root, "MNLI/dev_matched.tsv") multi_dev_mismatched_path = os.path.join(root, "MNLI/dev_mismatched.tsv") multi_test_matched_path = os.path.join(root, "MNLI/test_matched.tsv") multi_test_mismatched_path = os.path.join(root, "MNLI/test_mismatched.tsv") mrpc_train_path = os.path.join(root, "MRPC/train.tsv") mrpc_dev_path = os.path.join(root, "MRPC/dev.tsv") mrpc_test_path = os.path.join(root, "MRPC/test.tsv") qnli_train_path = os.path.join(root, "QNLI/train.tsv") qnli_dev_path = os.path.join(root, "QNLI/dev.tsv") qnli_test_path = os.path.join(root, "QNLI/test.tsv") qqp_train_path = os.path.join(root, "QQP/train.tsv") qqp_dev_path = os.path.join(root, "QQP/dev.tsv") qqp_test_path = os.path.join(root, "QQP/test.tsv") rte_train_path = os.path.join(root, "RTE/train.tsv") rte_dev_path = os.path.join(root, "RTE/dev.tsv") rte_test_path = os.path.join(root, "RTE/test.tsv") wnli_train_path = os.path.join(root, "WNLI/train.tsv") wnli_dev_path = os.path.join(root, "WNLI/dev.tsv") wnli_test_path = os.path.join(root, "WNLI/test.tsv") stsb_train_path = os.path.join(root, "STS-B/train.tsv") stsb_dev_path = os.path.join(root, "STS-B/dev.tsv") stsb_test_path = os.path.join(root, "STS-B/test.tsv") sst_train_path = os.path.join(root, "SST-2/train.tsv") sst_dev_path = os.path.join(root, "SST-2/dev.tsv") sst_test_path = os.path.join(root, "SST-2/test.tsv") cola_train_path = os.path.join(root, "CoLA/train.tsv") cola_dev_path = os.path.join(root, "CoLA/dev.tsv") cola_test_path = os.path.join(root, "CoLA/test.tsv") ###################################### # Loading DATA ###################################### multinli_train_data = load_mnli(multi_train_path) multinli_matched_dev_data = load_mnli(multi_dev_matched_path) multinli_mismatched_dev_data = load_mnli(multi_dev_mismatched_path) multinli_matched_test_data = load_mnli(multi_test_matched_path, is_train=False) multinli_mismatched_test_data = load_mnli( multi_test_mismatched_path, is_train=False ) logger.info("Loaded {} MNLI train samples".format(len(multinli_train_data))) logger.info( "Loaded {} MNLI matched dev samples".format(len(multinli_matched_dev_data)) ) logger.info( "Loaded {} MNLI mismatched dev samples".format( len(multinli_mismatched_dev_data) ) ) logger.info( "Loaded {} MNLI matched test samples".format(len(multinli_matched_test_data)) ) logger.info( "Loaded {} MNLI mismatched test samples".format( len(multinli_mismatched_test_data) ) ) mrpc_train_data = load_mrpc(mrpc_train_path) mrpc_dev_data = load_mrpc(mrpc_dev_path) mrpc_test_data = load_mrpc(mrpc_test_path, is_train=False) logger.info("Loaded {} MRPC train samples".format(len(mrpc_train_data))) logger.info("Loaded {} MRPC dev samples".format(len(mrpc_dev_data))) logger.info("Loaded {} MRPC test samples".format(len(mrpc_test_data))) qnli_train_data = load_qnli(qnli_train_path) qnli_dev_data = load_qnli(qnli_dev_path) qnli_test_data = load_qnli(qnli_test_path, is_train=False) logger.info("Loaded {} QNLI train samples".format(len(qnli_train_data))) logger.info("Loaded {} QNLI dev samples".format(len(qnli_dev_data))) logger.info("Loaded {} QNLI test samples".format(len(qnli_test_data))) if is_old_glue: random.seed(args.seed) qnnli_train_data = load_qnnli(qnli_train_path) qnnli_dev_data = load_qnnli(qnli_dev_path) qnnli_test_data = load_qnnli(qnli_test_path, is_train=False) logger.info("Loaded {} QNLI train samples".format(len(qnnli_train_data))) logger.info("Loaded {} QNLI dev samples".format(len(qnnli_dev_data))) logger.info("Loaded {} QNLI test samples".format(len(qnnli_test_data))) qqp_train_data = load_qqp(qqp_train_path) qqp_dev_data = load_qqp(qqp_dev_path) qqp_test_data = load_qqp(qqp_test_path, is_train=False) logger.info("Loaded {} QQP train samples".format(len(qqp_train_data))) logger.info("Loaded {} QQP dev samples".format(len(qqp_dev_data))) logger.info("Loaded {} QQP test samples".format(len(qqp_test_data))) rte_train_data = load_rte(rte_train_path) rte_dev_data = load_rte(rte_dev_path) rte_test_data = load_rte(rte_test_path, is_train=False) logger.info("Loaded {} RTE train samples".format(len(rte_train_data))) logger.info("Loaded {} RTE dev samples".format(len(rte_dev_data))) logger.info("Loaded {} RTE test samples".format(len(rte_test_data))) wnli_train_data = load_wnli(wnli_train_path) wnli_dev_data = load_wnli(wnli_dev_path) wnli_test_data = load_wnli(wnli_test_path, is_train=False) logger.info("Loaded {} WNLI train samples".format(len(wnli_train_data))) logger.info("Loaded {} WNLI dev samples".format(len(wnli_dev_data))) logger.info("Loaded {} WNLI test samples".format(len(wnli_test_data))) sst_train_data = load_sst(sst_train_path) sst_dev_data = load_sst(sst_dev_path) sst_test_data = load_sst(sst_test_path, is_train=False) logger.info("Loaded {} SST train samples".format(len(sst_train_data))) logger.info("Loaded {} SST dev samples".format(len(sst_dev_data))) logger.info("Loaded {} SST test samples".format(len(sst_test_data))) cola_train_data = load_cola(cola_train_path, header=False) cola_dev_data = load_cola(cola_dev_path, header=False) cola_test_data = load_cola(cola_test_path, is_train=False) logger.info("Loaded {} COLA train samples".format(len(cola_train_data))) logger.info("Loaded {} COLA dev samples".format(len(cola_dev_data))) logger.info("Loaded {} COLA test samples".format(len(cola_test_data))) stsb_train_data = load_stsb(stsb_train_path) stsb_dev_data = load_stsb(stsb_dev_path) stsb_test_data = load_stsb(stsb_test_path, is_train=False) logger.info("Loaded {} STS-B train samples".format(len(stsb_train_data))) logger.info("Loaded {} STS-B dev samples".format(len(stsb_dev_data))) logger.info("Loaded {} STS-B test samples".format(len(stsb_test_data))) canonical_data_suffix = "canonical_data" canonical_data_root = os.path.join(root, canonical_data_suffix) if not os.path.isdir(canonical_data_root): os.mkdir(canonical_data_root) # BUILD MNLI multinli_train_fout = os.path.join(canonical_data_root, "mnli_train.tsv") multinli_matched_dev_fout = os.path.join( canonical_data_root, "mnli_matched_dev.tsv" ) multinli_mismatched_dev_fout = os.path.join( canonical_data_root, "mnli_mismatched_dev.tsv" ) multinli_matched_test_fout = os.path.join( canonical_data_root, "mnli_matched_test.tsv" ) multinli_mismatched_test_fout = os.path.join( canonical_data_root, "mnli_mismatched_test.tsv" ) dump_rows( multinli_train_data, multinli_train_fout, DataFormat.PremiseAndOneHypothesis ) dump_rows( multinli_matched_dev_data, multinli_matched_dev_fout, DataFormat.PremiseAndOneHypothesis, ) dump_rows( multinli_mismatched_dev_data, multinli_mismatched_dev_fout, DataFormat.PremiseAndOneHypothesis, ) dump_rows( multinli_matched_test_data, multinli_matched_test_fout, DataFormat.PremiseAndOneHypothesis, ) dump_rows( multinli_mismatched_test_data, multinli_mismatched_test_fout, DataFormat.PremiseAndOneHypothesis, ) logger.info("done with mnli") mrpc_train_fout = os.path.join(canonical_data_root, "mrpc_train.tsv") mrpc_dev_fout = os.path.join(canonical_data_root, "mrpc_dev.tsv") mrpc_test_fout = os.path.join(canonical_data_root, "mrpc_test.tsv") dump_rows(mrpc_train_data, mrpc_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(mrpc_dev_data, mrpc_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(mrpc_test_data, mrpc_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with mrpc") qnli_train_fout = os.path.join(canonical_data_root, "qnli_train.tsv") qnli_dev_fout = os.path.join(canonical_data_root, "qnli_dev.tsv") qnli_test_fout = os.path.join(canonical_data_root, "qnli_test.tsv") dump_rows(qnli_train_data, qnli_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(qnli_dev_data, qnli_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(qnli_test_data, qnli_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with qnli") if is_old_glue: qnli_train_fout = os.path.join(canonical_data_root, "qnnli_train.tsv") qnli_dev_fout = os.path.join(canonical_data_root, "qnnli_dev.tsv") qnli_test_fout = os.path.join(canonical_data_root, "qnnli_test.tsv") dump_rows( qnnli_train_data, qnli_train_fout, DataFormat.PremiseAndMultiHypothesis ) dump_rows(qnnli_dev_data, qnli_dev_fout, DataFormat.PremiseAndMultiHypothesis) dump_rows( qnnli_train_data, qnli_test_fout, DataFormat.PremiseAndMultiHypothesis ) logger.info("done with qnli") qqp_train_fout = os.path.join(canonical_data_root, "qqp_train.tsv") qqp_dev_fout = os.path.join(canonical_data_root, "qqp_dev.tsv") qqp_test_fout = os.path.join(canonical_data_root, "qqp_test.tsv") dump_rows(qqp_train_data, qqp_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(qqp_dev_data, qqp_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(qqp_test_data, qqp_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with qqp") rte_train_fout = os.path.join(canonical_data_root, "rte_train.tsv") rte_dev_fout = os.path.join(canonical_data_root, "rte_dev.tsv") rte_test_fout = os.path.join(canonical_data_root, "rte_test.tsv") dump_rows(rte_train_data, rte_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(rte_dev_data, rte_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(rte_test_data, rte_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with rte") wnli_train_fout = os.path.join(canonical_data_root, "wnli_train.tsv") wnli_dev_fout = os.path.join(canonical_data_root, "wnli_dev.tsv") wnli_test_fout = os.path.join(canonical_data_root, "wnli_test.tsv") dump_rows(wnli_train_data, wnli_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(wnli_dev_data, wnli_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(wnli_test_data, wnli_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with wnli") sst_train_fout = os.path.join(canonical_data_root, "sst_train.tsv") sst_dev_fout = os.path.join(canonical_data_root, "sst_dev.tsv") sst_test_fout = os.path.join(canonical_data_root, "sst_test.tsv") dump_rows(sst_train_data, sst_train_fout, DataFormat.PremiseOnly) dump_rows(sst_dev_data, sst_dev_fout, DataFormat.PremiseOnly) dump_rows(sst_test_data, sst_test_fout, DataFormat.PremiseOnly) logger.info("done with sst") cola_train_fout = os.path.join(canonical_data_root, "cola_train.tsv") cola_dev_fout = os.path.join(canonical_data_root, "cola_dev.tsv") cola_test_fout = os.path.join(canonical_data_root, "cola_test.tsv") dump_rows(cola_train_data, cola_train_fout, DataFormat.PremiseOnly) dump_rows(cola_dev_data, cola_dev_fout, DataFormat.PremiseOnly) dump_rows(cola_test_data, cola_test_fout, DataFormat.PremiseOnly) logger.info("done with cola") stsb_train_fout = os.path.join(canonical_data_root, "stsb_train.tsv") stsb_dev_fout = os.path.join(canonical_data_root, "stsb_dev.tsv") stsb_test_fout = os.path.join(canonical_data_root, "stsb_test.tsv") dump_rows(stsb_train_data, stsb_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(stsb_dev_data, stsb_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(stsb_test_data, stsb_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with stsb") if __name__ == "__main__": args = parse_args() main(args)
ContextualSP/adaptershare/experiments/glue/glue_prepro.py/0
{ "file_path": "ContextualSP/adaptershare/experiments/glue/glue_prepro.py", "repo_id": "ContextualSP", "token_count": 5950 }
254
boolq: data_format: PremiseAndOneHypothesis dropout_p: 0.1 enable_san: false metric_meta: - ACC loss: CeCriterion kd_loss: MseCriterion adv_loss: SymKlCriterion n_class: 2 task_type: Classification copa: data_format: PremiseAndMultiHypothesis enable_san: false metric_meta: - ACC loss: RankCeCriterion kd_loss: MseCriterion adv_loss: SymKlCriterion n_class: 1 task_type: Ranking cb: data_format: PremiseAndOneHypothesis dropout_p: 0.1 enable_san: false labels: - contradiction - neutral - entailment metric_meta: - ACC loss: CeCriterion kd_loss: MseCriterion adv_loss: SymKlCriterion n_class: 3 task_type: Classification record: data_format: ClozeChoice enable_san: false metric_meta: - EmF1 loss: RankCeCriterion kd_loss: MseCriterion adv_loss: SymKlCriterion n_class: 1 task_type: ClozeChoice wic: data_format: PremiseAndOneHypothesis enable_san: false metric_meta: - ACC loss: CeCriterion kd_loss: MseCriterion adv_loss: SymKlCriterion n_class: 2 task_type: Classification multirc: data_format: PremiseAndOneHypothesis enable_san: false metric_meta: - ACC loss: CeCriterion kd_loss: MseCriterion adv_loss: SymKlCriterion n_class: 2 task_type: Classification
ContextualSP/adaptershare/experiments/superglue/superglue_task_def.yml/0
{ "file_path": "ContextualSP/adaptershare/experiments/superglue/superglue_task_def.yml", "repo_id": "ContextualSP", "token_count": 504 }
255
# coding=utf-8 # Copyright (c) Microsoft. All rights reserved. from copy import deepcopy import sys import json import torch import random import numpy as np from shutil import copyfile from data_utils.task_def import TaskType, DataFormat from data_utils.task_def import EncoderModelType import tasks from torch.utils.data import Dataset, DataLoader, BatchSampler, Sampler from experiments.exp_def import TaskDef from experiments.mlm.mlm_utils import truncate_seq_pair, load_loose_json from experiments.mlm.mlm_utils import ( create_instances_from_document, create_masked_lm_predictions, ) UNK_ID = 100 BOS_ID = 101 def search_bin(bins, size): idx = len(bins) - 1 for i, bin in enumerate(bins): if size <= bin: idx = i break return idx def create_bins(bin_size, maxlen): return [min(i + bin_size, maxlen) for i in range(0, maxlen, bin_size)] class DistMultiTaskBatchSampler(Sampler): def __init__( self, datasets, batch_size, mix_opt, extra_task_ratio, rank=0, world_size=1, drop_last=False, ): self.rank = rank self.world_size = world_size self._datasets = datasets self._mix_opt = mix_opt self._extra_task_ratio = extra_task_ratio self.drop_last = drop_last train_data_list = [] for dataset in datasets: train_data_list.append( self._get_shuffled_index_batches(len(dataset), batch_size) ) self._train_data_list = train_data_list @staticmethod def _get_shuffled_index_batches(dataset_len, batch_size): index_batches = [ list(range(i, min(i + batch_size, dataset_len))) for i in range(0, dataset_len, batch_size) ] random.shuffle(index_batches) return index_batches def __len__(self): return sum(len(train_data) for train_data in self._train_data_list) def __iter__(self): all_iters = [iter(item) for item in self._train_data_list] all_indices = self._gen_task_indices( self._train_data_list, self._mix_opt, self._extra_task_ratio ) for local_task_idx in all_indices: task_id = self._datasets[local_task_idx].get_task_id() batch = next(all_iters[local_task_idx]) batch = [(task_id, sample_id) for sample_id in batch] if len(batch) % self.world_size != 0: if self.drop_last: break else: batch.extend( [ batch[0] for _ in range( self.world_size - len(batch) % self.world_size ) ] ) chunk_size = len(batch) // self.world_size yield batch[self.rank * chunk_size : (self.rank + 1) * chunk_size] @staticmethod def _gen_task_indices(train_data_list, mix_opt, extra_task_ratio): all_indices = [] if len(train_data_list) > 1 and extra_task_ratio > 0: main_indices = [0] * len(train_data_list[0]) extra_indices = [] for i in range(1, len(train_data_list)): extra_indices += [i] * len(train_data_list[i]) random_picks = int( min(len(train_data_list[0]) * extra_task_ratio, len(extra_indices)) ) extra_indices = np.random.choice(extra_indices, random_picks, replace=False) if mix_opt > 0: extra_indices = extra_indices.tolist() random.shuffle(extra_indices) all_indices = extra_indices + main_indices else: all_indices = main_indices + extra_indices.tolist() else: for i in range(1, len(train_data_list)): all_indices += [i] * len(train_data_list[i]) if mix_opt > 0: random.shuffle(all_indices) all_indices += [0] * len(train_data_list[0]) if mix_opt < 1: random.shuffle(all_indices) return all_indices class DistSingleTaskBatchSampler(Sampler): def __init__(self, dataset, batch_size, rank=0, world_size=1, drop_last=False): self.rank = rank self.world_size = world_size self._dataset = dataset self.drop_last = drop_last self._data = self._get_index_batches(len(dataset), batch_size) @staticmethod def _get_index_batches(dataset_len, batch_size): index_batches = [ list(range(i, min(i + batch_size, dataset_len))) for i in range(0, dataset_len, batch_size) ] return index_batches def __len__(self): return len(self._data) def __iter__(self): indices = iter(self._data) for batch in indices: task_id = self._dataset.get_task_id() batch = [(task_id, sample_id) for sample_id in batch] yield batch class MultiTaskBatchSampler(BatchSampler): def __init__( self, datasets, batch_size, mix_opt, extra_task_ratio, bin_size=64, bin_on=False, bin_grow_ratio=0.5, heldout=False ): self._datasets = datasets self._batch_size = batch_size self._mix_opt = mix_opt self._extra_task_ratio = extra_task_ratio self.bin_size = bin_size self.bin_on = bin_on self.bin_grow_ratio = bin_grow_ratio self.heldout = heldout train_data_list = [] for dataset in datasets: if bin_on and not heldout: train_data_list.append( self._get_shuffled_index_batches_bin( dataset, batch_size, bin_size=bin_size, bin_grow_ratio=bin_grow_ratio, ) ) else: train_data_list.append( self._get_shuffled_index_batches(len(dataset), batch_size) ) self._train_data_list = train_data_list @staticmethod def _get_shuffled_index_batches(dataset_len, batch_size): index_batches = [ list(range(i, min(i + batch_size, dataset_len))) for i in range(0, dataset_len, batch_size) ] random.shuffle(index_batches) return index_batches @staticmethod def _get_shuffled_index_batches_bin(dataset, batch_size, bin_size, bin_grow_ratio): maxlen = dataset.maxlen bins = create_bins(bin_size, maxlen) data = [[] for i in range(0, len(bins))] for idx, sample in enumerate(dataset): bin_idx = search_bin(bins, len(sample["sample"]["token_id"])) data[bin_idx].append(idx) index_batches = [] for idx, sub_data in enumerate(data): if len(sub_data) < 1: continue batch_size = 1 if batch_size < 1 else batch_size sub_dataset_len = len(sub_data) sub_batches = [ list(range(i, min(i + batch_size, sub_dataset_len))) for i in range(0, sub_dataset_len, batch_size) ] index_batches.extend(sub_batches) batch_size = int(batch_size * bin_grow_ratio) random.shuffle(index_batches) return index_batches def __len__(self): return sum(len(train_data) for train_data in self._train_data_list) def __iter__(self): all_iters = [iter(item) for item in self._train_data_list] all_indices = self._gen_task_indices( self._train_data_list, self._mix_opt, self._extra_task_ratio, self.heldout ) for local_task_idx in all_indices: task_id = self._datasets[local_task_idx].get_task_id() batch = next(all_iters[local_task_idx]) yield [(task_id, sample_id) for sample_id in batch] @staticmethod def _gen_task_indices(train_data_list, mix_opt, extra_task_ratio, heldout): all_indices = [] if len(train_data_list) > 1 and extra_task_ratio > 0 and not heldout: main_indices = [0] * len(train_data_list[0]) extra_indices = [] for i in range(1, len(train_data_list)): extra_indices += [i] * len(train_data_list[i]) random_picks = int( min(len(train_data_list[0]) * extra_task_ratio, len(extra_indices)) ) extra_indices = np.random.choice(extra_indices, random_picks, replace=False) if mix_opt > 0: extra_indices = extra_indices.tolist() random.shuffle(extra_indices) all_indices = extra_indices + main_indices else: all_indices = main_indices + extra_indices.tolist() else: for i in range(1, len(train_data_list)): all_indices += [i] * len(train_data_list[i]) if mix_opt > 0 and not heldout: random.shuffle(all_indices) all_indices += [0] * len(train_data_list[0]) if mix_opt < 1 and not heldout: random.shuffle(all_indices) return all_indices class TaskIterBatchSampler(BatchSampler): def __init__( self, datasets, batch_size, mix_opt, extra_task_ratio, bin_size=64, bin_on=False, bin_grow_ratio=0.5, ite_batch_num=500 ): self._datasets = datasets self.task_num = len(datasets) self._batch_size = batch_size self._mix_opt = mix_opt self._extra_task_ratio = extra_task_ratio self.bin_size = bin_size self.bin_on = bin_on self.bin_grow_ratio = bin_grow_ratio self.ite_batch_num = ite_batch_num train_data_list = [] for dataset in datasets: if bin_on: train_data_list.append( self._get_shuffled_index_batches_bin( dataset, batch_size, bin_size=bin_size, bin_grow_ratio=bin_grow_ratio, ) ) else: train_data_list.append( self._get_shuffled_index_batches(len(dataset), batch_size) ) max_batch_len = max([len(train_data) for train_data in train_data_list]) flatten_train_data_list = [] for train_data in train_data_list: tmp_train_data = [] tmp_train_data.extend(train_data) tmp_len = len(train_data) if tmp_len < max_batch_len: external_batch_num = max_batch_len - tmp_len while external_batch_num > 0: tmp_train_data.append(train_data[external_batch_num%tmp_len]) external_batch_num -= 1 flatten_train_data_list.append(train_data) self._train_data_list = flatten_train_data_list self.task_batch_num = max_batch_len @staticmethod def _get_shuffled_index_batches(dataset_len, batch_size): index_batches = [ list(range(i, min(i + batch_size, dataset_len))) for i in range(0, dataset_len, batch_size) ] random.shuffle(index_batches) return index_batches @staticmethod def _get_shuffled_index_batches_bin(dataset, batch_size, bin_size, bin_grow_ratio): maxlen = dataset.maxlen bins = create_bins(bin_size, maxlen) data = [[] for i in range(0, len(bins))] for idx, sample in enumerate(dataset): bin_idx = search_bin(bins, len(sample["sample"]["token_id"])) data[bin_idx].append(idx) index_batches = [] for idx, sub_data in enumerate(data): if len(sub_data) < 1: continue batch_size = 1 if batch_size < 1 else batch_size sub_dataset_len = len(sub_data) sub_batches = [ list(range(i, min(i + batch_size, sub_dataset_len))) for i in range(0, sub_dataset_len, batch_size) ] index_batches.extend(sub_batches) batch_size = int(batch_size * bin_grow_ratio) random.shuffle(index_batches) return index_batches def __len__(self): return sum(len(train_data) for train_data in self._train_data_list) def __iter__(self): all_iters = [iter(item) for item in self._train_data_list] all_indices = self._gen_task_indices( self._train_data_list, self.task_batch_num, self.ite_batch_num ) for local_task_idx in all_indices: task_id = self._datasets[local_task_idx].get_task_id() batch = next(all_iters[local_task_idx]) yield [(task_id, sample_id) for sample_id in batch] @staticmethod def _gen_task_indices(train_data_list, task_batch_num, ite_batch_num): all_indices = [] iter_num = task_batch_num % ite_batch_num for _ in range(iter_num): for i in range(len(train_data_list)): all_indices += [i] * ite_batch_num return all_indices class MultiTaskDataset(Dataset): def __init__(self, datasets): self._datasets = datasets task_id_2_data_set_dic = {} for dataset in datasets: task_id = dataset.get_task_id() assert task_id not in task_id_2_data_set_dic, ( "Duplicate task_id %s" % task_id ) task_id_2_data_set_dic[task_id] = dataset self._task_id_2_data_set_dic = task_id_2_data_set_dic def __len__(self): return sum(len(dataset) for dataset in self._datasets) def __getitem__(self, idx): task_id, sample_id = idx return self._task_id_2_data_set_dic[task_id][sample_id] class DistTaskDataset(Dataset): def __init__(self, dataset, task_id): self._dataset = dataset def __len__(self): return len(self._dataset) def __getitem__(self, idx): _, sample_id = idx return self._dataset[sample_id] def get_task_id(self): return self._dataset.get_task_id() class SingleTaskDataset(Dataset): def __init__( self, path, is_train=True, maxlen=512, factor=1.0, task_id=0, task_def: TaskDef = None, bert_model="bert-base-uncased", do_lower_case=True, masked_lm_prob=0.15, seed=13, short_seq_prob=0.1, max_seq_length=512, max_predictions_per_seq=80, printable=True, heldout_scale=10, heldout_start=-1 ): data, tokenizer = self.load( path, is_train, maxlen, factor, task_def, bert_model, do_lower_case, printable=printable, ) if heldout_start >= 0: data = data[heldout_start:heldout_start+heldout_scale] self._data = data self._tokenizer = tokenizer self._task_id = task_id self._task_def = task_def # below is for MLM if self._task_def.task_type is TaskType.MaskLM: assert tokenizer is not None # init vocab words self._vocab_words = ( None if tokenizer is None else list(self._tokenizer.vocab.keys()) ) self._masked_lm_prob = masked_lm_prob self._seed = seed self._short_seq_prob = short_seq_prob self._max_seq_length = max_seq_length self._max_predictions_per_seq = max_predictions_per_seq self._rng = random.Random(seed) self.maxlen = maxlen def get_task_id(self): return self._task_id @staticmethod def load( path, is_train=True, maxlen=512, factor=1.0, task_def=None, bert_model="bert-base-uncased", do_lower_case=True, printable=True, ): task_type = task_def.task_type assert task_type is not None if task_type == TaskType.MaskLM: def load_mlm_data(path): from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(bert_model, cache_dir=".cache") vocab_words = list(tokenizer.vocab.keys()) data = load_loose_json(path) docs = [] for doc in data: paras = doc["text"].split("\n\n") paras = [para.strip() for para in paras if len(para.strip()) > 0] tokens = [tokenizer.tokenize(para) for para in paras] docs.append(tokens) return docs, tokenizer return load_mlm_data(path) with open(path, "r", encoding="utf-8") as reader: data = [] cnt = 0 for line in reader: sample = json.loads(line) sample["factor"] = factor cnt += 1 if is_train: task_obj = tasks.get_task_obj(task_def) if task_obj is not None and not task_obj.input_is_valid_sample( sample, maxlen ): continue if (task_type == TaskType.Ranking) and ( len(sample["token_id"][0]) > maxlen or len(sample["token_id"][1]) > maxlen ): continue if (task_type != TaskType.Ranking) and ( len(sample["token_id"]) > maxlen ): continue data.append(sample) if printable: print("Loaded {} samples out of {}".format(len(data), cnt)) return data, None def __len__(self): return len(self._data) def __getitem__(self, idx): if self._task_def.task_type == TaskType.MaskLM: # create a MLM instance instances = create_instances_from_document( self._data, idx, self._max_seq_length, self._short_seq_prob, self._masked_lm_prob, self._max_predictions_per_seq, self._vocab_words, self._rng, ) instance_ids = list(range(0, len(instances))) choice = np.random.choice(instance_ids, 1)[0] instance = instances[choice] labels = self._tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) position = instance.masked_lm_positions labels = [lab if idx in position else -1 for idx, lab in enumerate(labels)] sample = { "token_id": self._tokenizer.convert_tokens_to_ids(instance.tokens), "type_id": instance.segment_ids, "nsp_lab": 1 if instance.is_random_next else 0, "position": instance.masked_lm_positions, "label": labels, "uid": idx, } return { "task": {"task_id": self._task_id, "task_def": self._task_def}, "sample": sample, } else: return { "task": {"task_id": self._task_id, "task_def": self._task_def}, "sample": self._data[idx], } class Collater: def __init__( self, is_train=True, dropout_w=0.005, soft_label=False, encoder_type=EncoderModelType.BERT, max_seq_len=512, do_padding=False, ): self.is_train = is_train self.dropout_w = dropout_w self.soft_label_on = soft_label self.encoder_type = encoder_type self.pairwise_size = 1 self.max_seq_len = max_seq_len self.do_padding = do_padding def __random_select__(self, arr): if self.dropout_w > 0: return [UNK_ID if random.uniform(0, 1) < self.dropout_w else e for e in arr] else: return arr @staticmethod def patch_data(device, batch_info, batch_data): if str(device) != "cpu": for i, part in enumerate(batch_data): if part is None: continue if isinstance(part, torch.Tensor): batch_data[i] = part.pin_memory().to(device) elif isinstance(part, tuple): batch_data[i] = tuple( sub_part.pin_memory().to(device) for sub_part in part ) elif isinstance(part, list): batch_data[i] = [ sub_part.pin_memory().to(device) for sub_part in part ] else: raise TypeError("unknown batch data type at %s: %s" % (i, part)) if "soft_label" in batch_info: batch_info["soft_label"] = ( batch_info["soft_label"].pin_memory().to(device) ) return batch_info, batch_data def rebatch(self, batch): newbatch = [] sizes = [] for sample in batch: size = len(sample["token_id"]) sizes.append(size) self.pairwise_size = size assert size == len(sample["type_id"]) for idx in range(0, size): token_id = sample["token_id"][idx] type_id = sample["type_id"][idx] attention_mask = sample["attention_mask"][idx] uid = sample["ruid"][idx] if "ruid" in sample else sample["uid"] olab = sample["olabel"][idx] new_sample = deepcopy(sample) new_sample["uid"] = uid new_sample["token_id"] = token_id new_sample["type_id"] = type_id new_sample["attention_mask"] = attention_mask new_sample["true_label"] = olab newbatch.append(new_sample) return newbatch, sizes def __if_pair__(self, data_type): return data_type in [ DataFormat.PremiseAndOneHypothesis, DataFormat.PremiseAndMultiHypothesis, ] def collate_fn(self, batch): task_id = batch[0]["task"]["task_id"] task_def = batch[0]["task"]["task_def"] new_batch = [] for sample in batch: assert sample["task"]["task_id"] == task_id assert sample["task"]["task_def"] == task_def new_batch.append(sample["sample"]) task_type = task_def.task_type data_type = task_def.data_type batch = new_batch if task_type == TaskType.Ranking or task_type == TaskType.ClozeChoice: batch, chunk_sizes = self.rebatch(batch) # prepare model input batch_info, batch_data = self._prepare_model_input(batch, data_type) batch_info["task_id"] = task_id # used for select correct decoding head batch_info["input_len"] = len(batch_data) # used to select model inputs # select different loss function and other difference in training and testing # DataLoader will convert any unknown type objects to dict, # the conversion logic also convert Enum to repr(Enum), which is a string and undesirable # If we convert object to dict in advance, DataLoader will do nothing batch_info["task_def"] = task_def.__dict__ batch_info["pairwise_size"] = self.pairwise_size # need for ranking task # add label labels = [sample["label"] if "label" in sample else None for sample in batch] task_obj = tasks.get_task_obj(task_def) if self.is_train: # in training model, label is used by Pytorch, so would be tensor if task_obj is not None: batch_data.append(task_obj.train_prepare_label(labels)) batch_info["label"] = len(batch_data) - 1 elif task_type == TaskType.Ranking or task_type == TaskType.ClozeChoice: batch_data.append(torch.LongTensor(labels)) batch_info["label"] = len(batch_data) - 1 elif task_type == TaskType.Span: # support multi positions start, end = [], [] for sample in batch: if type(sample["start_position"]) is list and type( sample["end_position"] ): idx = random.choice(range(0, len(sample["start_position"]))) start.append(sample["start_position"][idx]) end.append(sample["end_position"][idx]) else: start.append(sample["start_position"]) end.append(sample["end_position"]) batch_data.append((torch.LongTensor(start), torch.LongTensor(end))) # unify to one type of label batch_info["label"] = len(batch_data) - 1 elif task_type == TaskType.SpanYN: # start = [sample['start_position'] for sample in batch] # end = [sample['end_position'] for sample in batch] start, end = [], [] for sample in batch: if type(sample["start_position"]) is list and type( sample["end_position"] ): idx = random.choice(range(0, len(sample["start_position"]))) start.append(sample["start_position"][idx]) end.append(sample["end_position"][idx]) else: start.append(sample["start_position"]) end.append(sample["end_position"]) # start, end, yes/no batch_data.append( ( torch.LongTensor(start), torch.LongTensor(end), torch.LongTensor(labels), ) ) # unify to one type of label batch_info["label"] = len(batch_data) - 1 elif task_type == TaskType.SeqenceLabeling: batch_size = self._get_batch_size(batch) tok_len = self._get_max_len(batch, key="token_id") tlab = torch.LongTensor(batch_size, tok_len).fill_(-1) for i, label in enumerate(labels): ll = len(label) tlab[i, :ll] = torch.LongTensor(label) batch_data.append(tlab) batch_info["label"] = len(batch_data) - 1 elif task_type == TaskType.MaskLM: batch_size = self._get_batch_size(batch) tok_len = self._get_max_len(batch, key="token_id") tlab = torch.LongTensor(batch_size, tok_len).fill_(-1) for i, label in enumerate(labels): ll = len(label) tlab[i, :ll] = torch.LongTensor(label) labels = torch.LongTensor([sample["nsp_lab"] for sample in batch]) batch_data.append((tlab, labels)) batch_info["label"] = len(batch_data) - 1 elif task_type == TaskType.SeqenceGeneration: batch_size = self._get_batch_size(batch) y_idxs = torch.LongTensor([sample["label"][:-1] for sample in batch]) label = torch.LongTensor([sample["label"][1:] for sample in batch]) label.masked_fill_(label == 0, -1) batch_data.append(y_idxs) batch_info["y_token_id"] = len(batch_data) - 1 batch_data.append(label) batch_info["label"] = len(batch_data) - 1 # soft label generated by ensemble models for knowledge distillation if self.soft_label_on and "softlabel" in batch[0]: sortlabels = [sample["softlabel"] for sample in batch] sortlabels = task_obj.train_prepare_soft_labels(sortlabels) batch_info["soft_label"] = sortlabels else: # in test model, label would be used for evaluation if task_obj is not None: task_obj.test_prepare_label(batch_info, labels) else: batch_info["label"] = labels if task_type == TaskType.Ranking: batch_info["true_label"] = [ sample["true_label"] for sample in batch ] if task_type == TaskType.ClozeChoice: batch_info["answer"] = [ sample["answer"] for sample in batch ] batch_info["choice"] = [ sample["choice"] for sample in batch ] batch_info["pairwise_size"] = chunk_sizes if task_type == TaskType.Span or task_type == TaskType.SpanYN: batch_info["offset_mapping"] = [ sample["offset_mapping"] for sample in batch ] batch_info["token_is_max_context"] = [ sample.get("token_is_max_context", None) for sample in batch ] batch_info["context"] = [sample["context"] for sample in batch] batch_info["answer"] = [sample["answer"] for sample in batch] batch_info["label"] = [ sample["label"] if "label" in sample else None for sample in batch ] if task_type == TaskType.SeqenceGeneration: batch_info["answer"] = [sample["answer"] for sample in batch] batch_info["uids"] = [sample["uid"] for sample in batch] # used in scoring return batch_info, batch_data def _get_max_len(self, batch, key="token_id"): tok_len = max(len(x[key]) for x in batch) tok_len = self.max_seq_len if self.do_padding else tok_len return tok_len def _get_batch_size(self, batch): return len(batch) def _prepare_model_input(self, batch, data_type): batch_size = self._get_batch_size(batch) tok_len = self._get_max_len(batch, key="token_id") if self.encoder_type == EncoderModelType.ROBERTA: token_ids = torch.LongTensor(batch_size, tok_len).fill_(1) type_ids = torch.LongTensor(batch_size, tok_len).fill_(0) masks = torch.LongTensor(batch_size, tok_len).fill_(0) else: token_ids = torch.LongTensor(batch_size, tok_len).fill_(0) type_ids = torch.LongTensor(batch_size, tok_len).fill_(0) masks = torch.LongTensor(batch_size, tok_len).fill_(0) if self.__if_pair__(data_type): hypothesis_masks = torch.BoolTensor(batch_size, tok_len).fill_(1) premise_masks = torch.BoolTensor(batch_size, tok_len).fill_(1) for i, sample in enumerate(batch): select_len = min(len(sample["token_id"]), tok_len) tok = sample["token_id"] if self.is_train: tok = self.__random_select__(tok) token_ids[i, :select_len] = torch.LongTensor(tok[:select_len]) type_ids[i, :select_len] = torch.LongTensor(sample["type_id"][:select_len]) masks[i, :select_len] = torch.LongTensor([1] * select_len) if self.__if_pair__(data_type): plen = len(sample["type_id"]) - sum(sample["type_id"]) premise_masks[i, :plen] = torch.LongTensor([0] * plen) for j in range(plen, select_len): hypothesis_masks[i, j] = 0 if self.__if_pair__(data_type): batch_info = { "token_id": 0, "segment_id": 1, "mask": 2, "premise_mask": 3, "hypothesis_mask": 4, } batch_data = [token_ids, type_ids, masks, premise_masks, hypothesis_masks] else: batch_info = {"token_id": 0, "segment_id": 1, "mask": 2} batch_data = [token_ids, type_ids, masks] return batch_info, batch_data
ContextualSP/adaptershare/mt_dnn/batcher.py/0
{ "file_path": "ContextualSP/adaptershare/mt_dnn/batcher.py", "repo_id": "ContextualSP", "token_count": 17154 }
256
# because we don't specify exact software version in Dockerfile, # the train loss could be different when you rebuild the Dockerfile # so we hide this test. But it still useful for developer when you constantly working on exact same environment # (Docker, hardware) import os import shutil import subprocess import re TRAIN_LOSS_RE = re.compile("train loss\[[\d\.]+\]") def assert_file_equal(output_file, expected_file): output = open(output_file).read() expected = open(expected_file).read() assert output == expected, "file diff: %s != %s" % (output_file, expected_file) def compare_output(output_dir, expected_dir): config = open(os.path.join(output_dir, "config.json")).read() expected_config = open(os.path.join(expected_dir, "config.json")).read() assert config == expected_config, "Config diff" train_loss = TRAIN_LOSS_RE.findall(open(os.path.join(output_dir, "log.txt")).read()) expected_train_loss = TRAIN_LOSS_RE.findall(open(os.path.join(expected_dir, "log.txt")).read()) assert train_loss == expected_train_loss, "Train loss diff:\n\ttrain_loss is %s\n\texpected_train_loss is %s\n" % ( train_loss, expected_train_loss ) for file_name in ("mnli_matched_dev_scores_0.json", "mnli_matched_test_scores_0.json", "mnli_mismatched_dev_scores_0.json", "mnli_mismatched_test_scores_0.json"): assert_file_equal(os.path.join(output_dir, file_name), os.path.join(expected_dir, file_name)) def test_train(): OUTPUT_DIR = r"run_test/checkpoint" EXPECTED_DIR = r"tests/sample_data/checkpoint" if os.access("./run_test", os.F_OK): shutil.rmtree("./run_test") os.mkdir("./run_test") shutil.copytree("./sample_data", "./run_test/sample_data") os.mkdir("./run_test/checkpoint") subprocess.check_output("python train.py --epoch 1 --log_per_updates 1 --data_dir run_test/sample_data/output --output_dir %(OUTPUT_DIR)s 2>&1 > %(OUTPUT_DIR)s/log.txt" % {"OUTPUT_DIR": OUTPUT_DIR}, stderr=subprocess.STDOUT, shell=True) compare_output(OUTPUT_DIR, EXPECTED_DIR)
ContextualSP/adaptershare/tests/_test_train.py/0
{ "file_path": "ContextualSP/adaptershare/tests/_test_train.py", "repo_id": "ContextualSP", "token_count": 846 }
257
# README The official code of paper [Awakening Latent Grounding from Pretrained Language Models for Semantic Parsing](https://aclanthology.org/2021.findings-acl.100.pdf). # Install Dependencies Please first install [PyTorch](https://pytorch.org/), and then install all the dependencies by running: ```bash pip install -r requirements.txt ``` Please remember to unzip the `json.zip` in the `data/wtq_grounding` folder. And the file structure should be like: ```bash data/wtq_grounding ├── json │ ├── 202.json │ ├── 203.json │ ├── ... ├── dev.json ├── test.json └── ... ``` # Train Grounding Model ## Train Grounding Model on Spider Please run the script `train_spider_ground.sh` to train the grounding model on Spider dataset. ## Train Grounding Model on WTQ Please run the script `train_wtq_ground.sh` to train the grounding model on WTQ dataset. # Evaluate Grounding Model ## Evaluate Grounding Model on Spider Please run the script `eval_spider_ground.sh` to evaluate the grounding model on Spider dataset. Note that you should replace the model checkpoint `checkpoints/spider_grounding_model/model.pt` with yours. You should get the following results after following the training script: ```bash avg loss = 0.2189 table accuracy = 0.8453 column accuracy = 0.7602 value accuracy = 0.9449 overall accuracy = 0.7050 table P = 0.847, R = 0.857, F1 = 0.852 column P = 0.842, R = 0.838, F1 = 0.840 value P = 0.948, R = 0.932, F1 = 0.940 average F1 = 0.8773 ``` ## Evaluate Grounding Model on WTQ Please run the script `eval_wtq_ground.sh` to evaluate the grounding model on WTQ dataset. Note that you should replace the model checkpoint `checkpoints/wtq_grounding_model/model.pt` with yours.
ContextualSP/awakening_latent_grounding/README.md/0
{ "file_path": "ContextualSP/awakening_latent_grounding/README.md", "repo_id": "ContextualSP", "token_count": 1332 }
258
import math import torch import torch.nn as nn import torch.nn.functional as F # Adapted from The Annotated Transformer class MultiHeadedAttentionWithRelations(nn.Module): def __init__(self, num_heads, hidden_size, dropout): super(MultiHeadedAttentionWithRelations, self).__init__() self.hidden_size = hidden_size self.num_heads = num_heads assert hidden_size % num_heads == 0 self.head_dim = hidden_size // num_heads self.linears = nn.ModuleList([nn.Linear(hidden_size, hidden_size) for _ in range(4)]) self.dropout = nn.Dropout(dropout) def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, relation_k, relation_v, mask=None): # query shape: [batch_size, query_length, hidden_size] # key shape: [batch_size, kv_length, hidden_size] # value shape: [batch_size, kv_length, hidden_size] # relation_k shape: [batch_size, query_length, kv_length, hidden_size // num_heads] # relation_v shape: [batch_size, query_length, kv_length, hidden_size // num_heads] batch_size = query.size(0) # [batch_size, num_heads, query_length, head_dim] query = self.linears[0](query).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) key = self.linears[1](key).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) value = self.linears[2](value).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) attn_outputs, attn_weights = self.attention_with_relations(query, key, value, relation_k, relation_v, mask=mask) attn_outputs = attn_outputs.transpose(1, 2).contiguous().view(batch_size, -1, self.hidden_size) attn_outputs = self.linears[-1](attn_outputs) return attn_outputs #, attn_weights def attention_with_relations(self, query, key, value, relation_k, relation_v, mask=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = self.relative_attention_logits(query, key, relation_k) if mask is not None: scores.masked_fill_(mask == 0, -1000) p_attn_orig = F.softmax(scores, dim=-1) # print(p_attn_orig.shape, value.shape, relation_v.shape) #if self.dropout is not None: p_attn = self.dropout(p_attn_orig) return self.relative_attention_values(p_attn, value, relation_v), p_attn_orig def relative_attention_logits(self, query, key, relation): # We can't reuse the same logic as tensor2tensor because we don't share relation vectors across the batch. # In this version, relation vectors are shared across heads. # query: [batch, heads, num queries, depth]. # key: [batch, heads, num kvs, depth]. # relation: [batch, num queries, num kvs, depth]. # qk_matmul is [batch, heads, num queries, num kvs] qk_matmul = torch.matmul(query, key.transpose(-2, -1)) # q_t is [batch, num queries, heads, depth] q_t = query.permute(0, 2, 1, 3) # r_t is [batch, num queries, depth, num kvs] r_t = relation.transpose(-2, -1) # [batch, num queries, heads, depth] # * [batch, num queries, depth, num kvs] # = [batch, num queries, heads, num kvs] # For each batch and query, we have a query vector per head. # We take its dot product with the relation vector for each kv. q_tr_t_matmul = torch.matmul(q_t, r_t) # qtr_t_matmul_t is [batch, heads, num queries, num kvs] q_tr_tmatmul_t = q_tr_t_matmul.permute(0, 2, 1, 3) # [batch, heads, num queries, num kvs] return (qk_matmul + q_tr_tmatmul_t) / math.sqrt(query.shape[-1]) def relative_attention_values(self, weight, value, relation): # In this version, relation vectors are shared across heads. # weight: [batch, heads, num queries, num kvs]. # value: [batch, heads, num kvs, depth]. # relation: [batch, num queries, num kvs, depth]. # wv_matmul is [batch, heads, num queries, depth] wv_matmul = torch.matmul(weight, value) # w_t is [batch, num queries, heads, num kvs] w_t = weight.permute(0, 2, 1, 3) # [batch, num queries, heads, num kvs] # * [batch, num queries, num kvs, depth] # = [batch, num queries, heads, depth] w_tr_matmul = torch.matmul(w_t, relation) # w_tr_matmul_t is [batch, heads, num queries, depth] w_tr_matmul_t = w_tr_matmul.permute(0, 2, 1, 3) return wv_matmul + w_tr_matmul_t # Adapted from The Annotated Transformer class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = nn.LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) # Adapted from The Annotated Transformer class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class RelationalEncoderLayer(nn.Module): def __init__(self, num_heads, hidden_size, num_relations, dropout): super(RelationalEncoderLayer, self).__init__() assert hidden_size % num_heads == 0 self.self_attn = MultiHeadedAttentionWithRelations(num_heads, hidden_size, dropout) self.feed_forward = PositionwiseFeedForward(hidden_size, hidden_size * 4, dropout) self.sub_layers = nn.ModuleList([SublayerConnection(hidden_size, dropout) for _ in range(2)]) self.relation_k_embeddings = nn.Embedding(num_relations, hidden_size // num_heads) self.relation_v_embeddings = nn.Embedding(num_relations, hidden_size // num_heads) self.dropout = nn.Dropout(dropout) def forward(self, inputs, relation_ids, mask=None): # Map relation id to embedding relation_k = self.dropout(self.relation_k_embeddings(relation_ids)) relation_v = self.dropout(self.relation_v_embeddings(relation_ids)) inputs = self.sub_layers[0](inputs, lambda x: self.self_attn(x, x, x, relation_k, relation_v, mask)) return self.sub_layers[1](inputs, self.feed_forward) class RelationalEncoder(nn.Module): def __init__(self, num_layers, hidden_size, num_heads, num_relations, dropout_prob): super(RelationalEncoder, self).__init__() self.encode_layers = nn.ModuleList([RelationalEncoderLayer(num_heads, hidden_size, num_relations, dropout_prob) for _ in range(num_layers)]) self.layer_norm = nn.LayerNorm(hidden_size) self.dropout = nn.Dropout(dropout_prob) def forward(self, inputs, relations, mask=None) -> torch.Tensor: for layer in self.encode_layers: inputs = layer(inputs, relations, mask) return self.layer_norm(inputs)
ContextualSP/awakening_latent_grounding/models/nn_layers.py/0
{ "file_path": "ContextualSP/awakening_latent_grounding/models/nn_layers.py", "repo_id": "ContextualSP", "token_count": 3118 }
259
from .data_types import * from .data_iter import * from .evaluator import * from .nlp_utils import * from .sql_parser import * from .schema_linker import *
ContextualSP/awakening_latent_grounding/utils/__init__.py/0
{ "file_path": "ContextualSP/awakening_latent_grounding/utils/__init__.py", "repo_id": "ContextualSP", "token_count": 50 }
260
import argparse import os import random import time import unicodedata from functools import partial import torch from torch import nn from tqdm import tqdm from model import HRLModel, PAD_token, EOS_token from utils import AverageMeter from utils import VisualizeLogger from utils import get_logger import numpy as np USE_CUDA = torch.cuda.is_available() global_step = 0 class Lang: def __init__(self, name): self.name = name self.trimmed = False self.word2index = {"x1": 3, "x2": 4, "x3": 5, "x4": 6} self.word2count = {} self.index2word = {0: "PAD", 1: "SOS", 2: "EOS", 3: "x1", 4: "x2", 5: "x3", 6: "x4"} self.n_words = 7 # Count default tokens def vocab_size(self): return len(self.word2index.keys()) def index_words(self, sentence): for word in sentence.split(' '): self.index_word(word) def index_word(self, word): if word not in self.word2index: self.word2index[word] = self.n_words self.word2count[word] = 1 self.index2word[self.n_words] = word self.n_words += 1 else: self.word2count[word] += 1 # Remove words below a certain count threshold def trim(self, min_count): if self.trimmed: return self.trimmed = True keep_words = [] for k, v in self.word2count.items(): if v >= min_count: keep_words.append(k) print('keep_words %s / %s = %.4f' % ( len(keep_words), len(self.word2index), len(keep_words) / len(self.word2index) )) # Reinitialize dictionaries self.word2index = {} self.word2count = {} self.index2word = {0: "PAD", 1: "SOS", 2: "EOS"} self.n_words = 3 # Count default tokens for word in keep_words: self.index_word(word) def unicode_to_ascii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) def normalize_string(s): s = unicode_to_ascii(s.lower().strip()) return s def read_data(lang1, lang2, task_name): print("Reading dataset from task {}...".format(task_name)) lines_train = open('./data/tasks_train_{}.txt'.format(task_name), encoding='utf-8'). \ read().strip().split('\n') lines_test = open('./data/tasks_test_{}.txt'.format(task_name), encoding='utf-8'). \ read().strip().split('\n') pairs_train = [[normalize_string(s) for s in l.lstrip('IN: ').split(' OUT: ')] for l in lines_train] pairs_test = [[normalize_string(s) for s in l.lstrip('IN: ').split(' OUT: ')] for l in lines_test] _input_lang = Lang(lang1) _output_lang = Lang(lang2) return _input_lang, _output_lang, pairs_train, pairs_test def prepare_dataset(lang1, lang2, task_name): global input_lang global output_lang input_lang, output_lang, pairs_train, pairs_test = read_data(lang1, lang2, task_name) for pair in pairs_train: input_lang.index_words(pair[0]) output_lang.index_words(pair[1]) if task_name == "addjump": # remove duplicated JUMP command pairs_train = list(set([tuple(item) for item in pairs_train])) pairs_train = [list(item) for item in pairs_train] return input_lang, output_lang, pairs_train, pairs_test def get_bound_idx(pairs, length): index = 0 for i, pair in enumerate(pairs): if len(pair[0].split()) <= length: index = i else: return index + 1 def random_batch(pair): input_seqs = [] target_seqs = [] input_seqs.append(indexes_from_sentence(input_lang, pair[0], 'input')) target_seqs.append(indexes_from_sentence(output_lang, pair[1], 'output')) # Zip into pairs, sort by length (descending), unzip seq_pairs = sorted(zip(input_seqs, target_seqs), key=lambda p: len(p[0]), reverse=True) input_seqs, target_seqs = zip(*seq_pairs) # For input and target sequences, get array of lengths and pad with 0s to max length input_lengths = [len(s) for s in input_seqs] input_padded = [pad_seq(s, max(input_lengths)) for s in input_seqs] target_lengths = [len(s) for s in target_seqs] target_padded = [pad_seq(s, max(target_lengths)) for s in target_seqs] input_mask = torch.zeros((len(input_lengths), max(input_lengths)), dtype=torch.float32) for idx, length in enumerate(input_lengths): input_mask[idx, :length] = 1 target_mask = torch.zeros((len(target_lengths), max(target_lengths)), dtype=torch.float32) for idx, length in enumerate(target_lengths): target_mask[idx, :length] = 1 input_var = torch.LongTensor(input_padded) target_var = torch.LongTensor(target_padded) if USE_CUDA: input_var = input_var.cuda() target_var = target_var.cuda() return input_var, input_lengths, input_mask, target_var, target_lengths def indexes_from_sentence(lang, sentence, type): if type == 'input': return [lang.word2index[word] for word in sentence.split(' ')] if type == 'output': return [lang.word2index[word] for word in sentence.split(' ')] + [EOS_token] def pad_seq(seq, max_length): seq += [PAD_token for i in range(max_length - len(seq))] return seq def make_path_preparations(args, run_mode): seed = args.random_seed torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) if run_mode == 'train': log_dir = os.path.split(args.logs_path)[0] if not os.path.exists(log_dir): os.makedirs(log_dir) _logger = get_logger(f"{args.logs_path}.log") print(f"{args.logs_path}.log") _logger.info(f"random seed: {seed}") if not os.path.exists(args.model_dir): os.makedirs(args.model_dir) _logger.info(f"checkpoint's dir is: {args.model_dir}") _visualizer = VisualizeLogger(summary_dir=args.model_dir) else: _logger = None _visualizer = None return _logger, _visualizer def prepare_optimisers(args, logger, policy_parameters, environment_parameters): if args.env_optimizer == "adam": env_opt_class = torch.optim.Adam elif args.env_optimizer == "amsgrad": env_opt_class = partial(torch.optim.Adam, amsgrad=True) elif args.env_optimizer == "adadelta": env_opt_class = torch.optim.Adadelta else: env_opt_class = torch.optim.SGD if args.pol_optimizer == "adam": pol_opt_class = torch.optim.Adam elif args.pol_optimizer == "amsgrad": pol_opt_class = partial(torch.optim.Adam, amsgrad=True) elif args.pol_optimizer == "adadelta": pol_opt_class = torch.optim.Adadelta else: pol_opt_class = torch.optim.SGD optimizer = {"policy": pol_opt_class(params=policy_parameters, lr=args.pol_lr, weight_decay=args.l2_weight), "env": env_opt_class(params=environment_parameters, lr=args.env_lr, weight_decay=args.l2_weight)} return optimizer def perform_env_optimizer_step(optimizer, model, args): if args.clip_grad_norm > 0: nn.utils.clip_grad_norm_(parameters=model.get_environment_parameters(), max_norm=args.clip_grad_norm, norm_type=float("inf")) optimizer["env"].step() optimizer["env"].zero_grad() def perform_policy_optimizer_step(optimizer, model, args): if args.clip_grad_norm > 0: nn.utils.clip_grad_norm_(parameters=model.get_policy_parameters(), max_norm=args.clip_grad_norm, norm_type=float("inf")) optimizer["policy"].step() optimizer["policy"].zero_grad() def visualize_tree(seq, tree_actions_batch, sr_actions_batch, swr_actions_batch): seq_list = seq.split() assert len(seq_list) == len(swr_actions_batch) for idx, swr_action in enumerate(swr_actions_batch): if swr_action[0, 0] == 1: seq_list[idx] = "[" + seq_list[idx] + "]" for tree_action_batch, sr_action_batch in zip(tree_actions_batch, sr_actions_batch): if tree_action_batch is None: break tree_action = tree_action_batch[0] sr_action = sr_action_batch[0] merge_idx = tree_action.tolist().index(1) sr_idx = sr_action.tolist().index(1) if sr_idx == 1: seq_list = seq_list[:merge_idx] + ['(' + ' '.join(seq_list[merge_idx:merge_idx + 2]) + ')'] + seq_list[ merge_idx + 2:] else: seq_list = seq_list[:merge_idx] + ['[' + ' '.join(seq_list[merge_idx:merge_idx + 2]) + ']'] + seq_list[ merge_idx + 2:] return seq_list[0] def evaluate(test_data, model, device): loading_time_meter = AverageMeter() ce_loss_meter = AverageMeter() accuracy_meter = AverageMeter() n_entropy_meter = AverageMeter() model.eval() start = time.time() debug_info = {} with torch.no_grad(): progress_bar = tqdm(range(len(test_data))) for idx in progress_bar: test_data_example = test_data[idx] tokens, tokens_length, mask, labels, labels_length = random_batch(test_data_example) tokens = tokens.to(device=device) mask = mask.to(device=device) loading_time_meter.update(time.time() - start) pred_labels, tree_sr_log_prob, tree_sr_rewards, decoder_log_probs, decode_rewards, tree_actions, sr_actions, swr_actions, normalized_entropy = \ model(test_data_example, tokens, mask, debug_info=debug_info) normalized_entropy = normalized_entropy.mean() accuracy = [1. if (pred_labels == test_data_example[1]) else 0.] accuracy = torch.tensor(accuracy).mean() ce_loss = accuracy n = mask.shape[0] accuracy_meter.update(accuracy.item(), n) ce_loss_meter.update(ce_loss.item(), n) n_entropy_meter.update(normalized_entropy.item(), n) progress_bar.set_description("Test Acc {:.1f}%".format(accuracy_meter.avg * 100)) return accuracy_meter.avg def validate(valid_data, model, epoch, device, logger): loading_time_meter = AverageMeter() batch_time_meter = AverageMeter() ce_loss_meter = AverageMeter() accuracy_meter = AverageMeter() n_entropy_meter = AverageMeter() if len(valid_data) > 1000: # to accelerate valid_data = [random.choice(valid_data) for _ in range(1000)] visualizer.update_validate_size(len(valid_data)) model.eval() start = time.time() debug_info = {} with torch.no_grad(): for idx, valid_data_example in enumerate(valid_data): tokens, tokens_length, mask, labels, labels_length = random_batch(valid_data_example) tokens = tokens.to(device=device) mask = mask.to(device=device) loading_time_meter.update(time.time() - start) pred_labels, tree_sr_log_prob, tree_sr_rewards, decoder_log_probs, decode_rewards, tree_actions, sr_actions, swr_actions, normalized_entropy = \ model(valid_data_example, tokens, mask, debug_info=debug_info) """ logging into visualizer """ debug_info['tree_sr_rewards'] = tree_sr_rewards debug_info['decode_rewards'] = decode_rewards seq = " ".join([input_lang.index2word[token.data.item()] for token in tokens[0]]) tree = visualize_tree(seq, tree_actions, sr_actions, swr_actions) visualizer.log_text(valid_data_example[1], tree, pred_labels, seq, debug_info) visualizer.update_step() normalized_entropy = normalized_entropy.mean() accuracy = [1. if (pred_labels == valid_data_example[1]) else 0.] accuracy = torch.tensor(accuracy).mean() ce_loss = accuracy n = mask.shape[0] accuracy_meter.update(accuracy.item(), n) ce_loss_meter.update(ce_loss.item(), n) n_entropy_meter.update(normalized_entropy.item(), n) batch_time_meter.update(time.time() - start) start = time.time() visualizer.log_performance(accuracy_meter.avg) visualizer.update_epoch() logger.info(f"Valid: epoch: {epoch} ce_loss: {ce_loss_meter.avg:.4f} accuracy: {accuracy_meter.avg:.4f} " f"n_entropy: {n_entropy_meter.avg:.4f} " f"loading_time: {loading_time_meter.avg:.4f} batch_time: {batch_time_meter.avg:.4f}") model.train() return accuracy_meter.avg def train(train_data, valid_data, model, optimizer, epoch, args, logger, total_batch_num, data_len, regular_weight): loading_time_meter = AverageMeter() batch_time_meter = AverageMeter() ce_loss_meter = AverageMeter() accuracy_meter = AverageMeter() n_entropy_meter = AverageMeter() prob_ratio_meter = AverageMeter() reward_std_meter = AverageMeter() device = args.gpu_id model.train() start = time.time() # simple data augmentation for lasting longer epochs for MiniSCAN if len(train_data) < 100: train_data = [pair for pair in train_data for _ in range(8)] elif len(train_data) < 500: train_data = [pair for pair in train_data for _ in range(2)] random.shuffle(train_data) batch_size = args.accumulate_batch_size if len(train_data) % batch_size == 0: batch_num = len(train_data) // batch_size else: batch_num = len(train_data) // batch_size + 1 val_accuracy = 0. for batch_idx in range(batch_num): if (batch_idx + 1) * batch_size < len(train_data): train_pairs = train_data[batch_idx * batch_size:(batch_idx + 1) * batch_size] else: train_pairs = train_data[batch_idx * batch_size:] batch_size = len(train_pairs) total_batch_num += batch_size loading_time_meter.update(time.time() - start) normalized_entropy_samples = [] ts_log_prob_samples = [] decode_log_prob_samples = [] ts_rewards_samples = [] decode_rewards_samples = [] rewards_all = [] root_rewards_all = [] accuracy_samples = [] sample_num = 10 for example_idx in range(batch_size): for sample_idx in range(sample_num): train_pair = train_pairs[example_idx] tokens, tokens_length, mask, labels, labels_length = random_batch(train_pair) tokens = tokens.to(device=device) mask = mask.to(device=device) pred_labels, tree_sr_log_prob, tree_sr_rewards, decoder_log_probs, decode_rewards, tree_actions, sr_actions, swr_actions, normalized_entropy = \ model(train_pair, tokens, mask, is_test=False, epoch=epoch) accuracy = 1. if (pred_labels == train_pair[1]) else 0. normalized_entropy_samples.append(normalized_entropy) ts_log_prob_samples.append(tree_sr_log_prob) ts_rewards_samples.append(tree_sr_rewards) decode_log_prob_samples.append(decoder_log_probs) decode_rewards_samples.append(decode_rewards) rewards_all = rewards_all + decode_rewards accuracy_samples.append(accuracy) root_rewards_all.append(decode_rewards[-1]) normalized_entropy_samples = torch.cat(normalized_entropy_samples, dim=0) accuracy_samples = torch.tensor(accuracy_samples).cuda() rewards_all = torch.tensor(rewards_all).cuda() baseline = rewards_all.mean() accuracy = accuracy_samples.mean() loss_all = [] for idy, ts_rewards in enumerate(ts_rewards_samples): ts_actions_log_prob = torch.cat(ts_log_prob_samples[idy], dim=0) ts_rewards = torch.tensor(ts_rewards).cuda() if baseline: ts_rewards = ts_rewards - baseline ts_prob_ratio = (ts_actions_log_prob - ts_actions_log_prob.detach()).exp() ts_loss = (ts_prob_ratio * ts_rewards).mean().unsqueeze(0) decode_rewards = decode_rewards_samples[idy] decode_actions_log_prob = torch.cat(decode_log_prob_samples[idy], dim=0) decode_rewards = torch.tensor(decode_rewards).cuda() if baseline: decode_rewards = decode_rewards - baseline decode_prob_ratio = (decode_actions_log_prob - decode_actions_log_prob.detach()).exp() decode_loss = (decode_prob_ratio * decode_rewards).mean().unsqueeze(0) loss_all.append(ts_loss + decode_loss) loss_avg = torch.cat(loss_all, dim=0).mean() loss = loss_avg - regular_weight * normalized_entropy_samples.mean() loss.backward() perform_policy_optimizer_step(optimizer, model, args) perform_env_optimizer_step(optimizer, model, args) normalized_entropy = normalized_entropy.mean() n = mask.shape[0] ce_loss = rewards_all.mean() accuracy_meter.update(accuracy.item(), n) ce_loss_meter.update(ce_loss.item(), n) reward_std_meter.update(rewards_all.std().item(), n) n_entropy_meter.update(normalized_entropy.item(), n) prob_ratio_meter.update((1.0 - loss_avg.detach()).abs().mean().item(), n) batch_time_meter.update(time.time() - start) global global_step global_step += 1 if batch_num <= 500: val_num = batch_num else: val_num = 250 if (batch_idx + 1) % (val_num) == 0: logger.info(f"Train: epoch: {epoch} batch_idx: {batch_idx + 1} ce_loss: {ce_loss_meter.avg:.4f} " f"reward_std: {reward_std_meter.avg:.4f} " f"n_entropy: {n_entropy_meter.avg:.4f} loading_time: {loading_time_meter.avg:.4f} " f"batch_time: {batch_time_meter.avg:.4f}") logger.info(f"total_batch_num: {total_batch_num} cir: {data_len}") val_accuracy = validate(valid_data, model, epoch, device, logger) global best_model_path logger.info("saving model...") best_model_path = f"{args.model_dir}/{epoch}-{batch_idx}.mdl" torch.save({"epoch": epoch, "batch_idx": batch_idx, "state_dict": model.state_dict()}, best_model_path) model.train() start = time.time() if val_accuracy >= 0.99: break return val_accuracy, total_batch_num def train_model(args, task_name, logger): global input_lang global output_lang input_lang, output_lang, pairs_train, _ = prepare_dataset('nl', 'action', task_name) index = [i for i in range(len(pairs_train))] random.shuffle(index) train_size = int(0.8 * len(pairs_train)) dev_size = len(pairs_train) - train_size train_idxs, dev_idxs = torch.utils.data.random_split(index, [train_size, dev_size]) train_pairs_all = [pairs_train[idx] for idx in train_idxs] dev_pairs_all = [pairs_train[idx] for idx in dev_idxs] for pair in dev_pairs_all: if len(pair[0].split()) <= 4: train_pairs_all.append(pair) train_data, dev_data = train_pairs_all, dev_pairs_all train_data.sort(key=lambda p: len(p[0].split())) maximum_lesson = len(train_data[-1][0].split()) dev_data = list(set([tuple(item) for item in dev_data])) dev_data.sort(key=lambda p: len(p[0].split())) dev_data = [list(item) for item in dev_data] print(random.choice(train_pairs_all)) print(random.choice(dev_pairs_all)) args.vocab_size = input_lang.n_words args.label_size = output_lang.n_words model = HRLModel(x_ratio_rate=args.simplicity_ratio, encode_mode=args.encode_mode, decay_r=args.decay_r, vocab_size=args.vocab_size, word_dim=args.word_dim, hidden_dim=args.hidden_dim, label_dim=args.label_size, composer_leaf=args.composer_leaf, composer_trans_hidden=args.composer_trans_hidden, input_lang=input_lang, output_lang=output_lang).cuda(args.gpu_id) optimizer = prepare_optimisers(args, logger, policy_parameters=model.get_policy_parameters(), environment_parameters=model.get_environment_parameters()) data_len = 3 epoch_count = 0 # default is 1 lesson cir_epoch_dict = { 3: 30, 4: 30, 5: 20, 6: 10, 7: 5 } regular_weight = args.init_regular_weight print('Start lesson ', data_len) total_batch_num = 0 for epoch in range(args.max_epoch): if data_len in cir_epoch_dict: # training epochs cir_epoch_num = cir_epoch_dict[data_len] else: cir_epoch_num = 1 train_lesson_idx = get_bound_idx(train_data, data_len) dev_lesson_idx = get_bound_idx(dev_data, data_len) val_accuracy, total_batch_num = train(train_data[:train_lesson_idx], dev_data[:dev_lesson_idx], model, optimizer, epoch, args, logger, total_batch_num, data_len, regular_weight) if data_len == maximum_lesson and val_accuracy >= 0.99: print("Finish Training. Training Succeed :)") break epoch_count += 1 if epoch_count == cir_epoch_num or val_accuracy >= 0.99: # validate on all dev data if val_accuracy >= 0.99: val_accuracy_all = validate(dev_data, model, epoch, args.gpu_id, logger) if val_accuracy_all >= 0.99: print("Early Stopped. Training Succeed :)") break if data_len < maximum_lesson: print('Lesson ', data_len, 'completed at', epoch) data_len += 1 regular_weight = max(args.regular_decay_rate * regular_weight, args.regular_weight) epoch_count = 0 print('Start lesson:', data_len) def evaluate_model(args, task_name, logger): global input_lang global output_lang input_lang, output_lang, _, pairs_test = prepare_dataset('nl', 'action', task_name) test_data = pairs_test test_data.sort(key=lambda p: len(p[0].split())) args.vocab_size = input_lang.n_words args.label_size = output_lang.n_words model = HRLModel(x_ratio_rate=args.simplicity_ratio, encode_mode=args.encode_mode, decay_r=args.decay_r, vocab_size=args.vocab_size, word_dim=args.word_dim, hidden_dim=args.hidden_dim, label_dim=args.label_size, composer_leaf=args.composer_leaf, composer_trans_hidden=args.composer_trans_hidden, input_lang=input_lang, output_lang=output_lang).cuda(args.gpu_id) checkpoint_file = args.checkpoint print("loading", checkpoint_file) checkpoint = torch.load(checkpoint_file) model.load_state_dict(checkpoint["state_dict"]) print("loading finished...") print("Start testing ..") test_acc = evaluate(test_data, model, args.gpu_id) print("Test Acc: {} %".format(test_acc * 100)) def prepare_arguments(checkpoint_folder, parser): composer_lr = 1.0 solver_lr = 0.1 accumulate_batch_size = 4 regular_weight = 1e-4 regular_decay_rate = 0.5 hidden_size = 128 encode_mode = 'seq' args = {"word-dim": hidden_size, "hidden-dim": hidden_size, "composer_leaf": "no_transformation", "composer-trans-hidden": hidden_size, "regular-weight": regular_weight, # 0.0001 "clip-grad-norm": 0.5, "env-optimizer": "adadelta", # adadelta "pol-optimizer": "adadelta", # adadelta "env-lr": composer_lr, # 1. "pol-lr": solver_lr, # 0.1 "l2-weight": 0.0001, # TODO: currently the batch size must be set as 1 # since our implementation requires it as to be. # if you want to accumulate gradients, please use accumulate_batch_size "batch-size": 1, "accumulate-batch-size": accumulate_batch_size, "max-epoch": 300, "gpu-id": 0, "model-dir": "checkpoint/models/" + checkpoint_folder, "logs-path": "checkpoint/logs/" + checkpoint_folder, "encode-mode": encode_mode, "regular-decay-rate": regular_decay_rate} parser.add_argument("--word-dim", required=False, default=args["word-dim"], type=int) parser.add_argument("--hidden-dim", required=False, default=args["hidden-dim"], type=int) parser.add_argument("--composer_leaf", required=False, default=args["composer_leaf"], choices=["no_transformation", "lstm_transformation", "bi_lstm_transformation", "conv_transformation"]) parser.add_argument("--composer-trans-hidden", required=False, default=args["composer-trans-hidden"], type=int) parser.add_argument("--clip-grad-norm", default=args["clip-grad-norm"], type=float, help="If the value is less or equal to zero clipping is not performed.") parser.add_argument("--env-optimizer", required=False, default=args["env-optimizer"], choices=["adam", "amsgrad", "sgd", "adadelta"]) parser.add_argument("--pol-optimizer", required=False, default=args["pol-optimizer"], choices=["adam", "amsgrad", "sgd", "adadelta"]) parser.add_argument("--env-lr", required=False, default=args["env-lr"], type=float) parser.add_argument("--pol-lr", required=False, default=args["pol-lr"], type=float) parser.add_argument("--l2-weight", required=False, default=args["l2-weight"], type=float) parser.add_argument("--batch-size", required=False, default=args["batch-size"], type=int) parser.add_argument("--accumulate-batch-size", required=False, default=args["accumulate-batch-size"], type=int) parser.add_argument("--max-epoch", required=False, default=args["max-epoch"], type=int) parser.add_argument("--gpu-id", required=False, default=args["gpu-id"], type=int) parser.add_argument("--model-dir", required=False, default=args["model-dir"], type=str) parser.add_argument("--logs-path", required=False, default=args["logs-path"], type=str) parser.add_argument("--encode-mode", required=False, default=args["encode-mode"], type=str) parser.add_argument("--regular-weight", default=args["regular-weight"], type=float) parser.add_argument("--regular-decay-rate", required=False, default=args["regular-decay-rate"], type=float) parser.add_argument("--init-regular-weight", required=False, default=1e-1, type=float) # default no reward decay parser.add_argument("--decay-r", required=False, default=1.0, type=str) return parser.parse_args() if __name__ == "__main__": arg_parser = argparse.ArgumentParser() arg_parser.add_argument("--mode", required=True, default='train', choices=['train', 'test'], type=str, help="Determine whether to train a model or test using a trained weight file") arg_parser.add_argument("--checkpoint", required=True, type=str, help="When training, it is the folder to store model weights; " "Otherwise it is the weight path to be loaded.") arg_parser.add_argument("--task", required=True, type=str, choices=["addjump", "around_right", "simple", "length", "extend", "mcd1", "mcd2", "mcd3"], help="All tasks on SCAN, the task name is used to load train or test file") arg_parser.add_argument("--random-seed", required=False, default=1, type=int) arg_parser.add_argument("--simplicity-ratio", required=False, default=0.0, type=float) parsed_args = arg_parser.parse_args() if parsed_args.mode == 'train': args = prepare_arguments(parsed_args.checkpoint, arg_parser) logger, visualizer = make_path_preparations(args, parsed_args.mode) train_model(args, parsed_args.task, logger) else: args = prepare_arguments(parsed_args.checkpoint, arg_parser) logger, visualizer = make_path_preparations(args, parsed_args.mode) evaluate_model(args, parsed_args.task, logger)
ContextualSP/compositional_generalization/main.py/0
{ "file_path": "ContextualSP/compositional_generalization/main.py", "repo_id": "ContextualSP", "token_count": 13402 }
261
# Incomplete Utterance Rewriting <img src="https://pytorch.org/assets/images/logo-dark.svg" height = "25" align=center /> [中文版](README_zh.md) The official pytorch implementation of our paper [Incomplete Utterance Rewriting as Semantic Segmentation](https://arxiv.org/pdf/2009.13166.pdf). If you find our code useful for you, please consider citing our paper: ```bib @inproceedings{qian2020incomplete, title={Incomplete Utterance Rewriting as Semantic Segmentation}, author={Liu, Qian and Chen, Bei and Lou, Jian-Guang and Zhou, Bin and Zhang, Dongmei}, booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing}, year={2020} } ``` ## Content - [Install Dependencies](#requirement) - [Download and Preprocess Dataset](#data) - [Train Model](#train) - [Evaluate Model](#evaluate) - [Predict Model](#predict) - [Pre-trained Models](#pre-trained-models) ## Requirement ### Python Environment First of all, you should setup a python environment. This code base has been tested under python 3.x, and we officially support python 3.7. After installing python 3.7, we strongly recommend you to use `virtualenv` (a tool to create isolated Python environments) to manage the python environment. You could use following commands to create a environment. ```bash python -m pip install virtualenv virtualenv venv ``` ### Activate Virtual Environment Then you should activate the environment to install the dependencies. You could achieve it via using the command as below. (Please change $ENV_FOLDER to your own virtualenv folder path, e.g. venv) ```bash $ENV_FOLDER\Scripts\activate.bat (Windows) source $ENV_FOLDER/bin/activate (Linux) ``` ### Install Libraries The most important requirements of our code base are as following: - pytorch >= 1.2.0 (not tested on other versions, but 1.0.0 may work though) - allennlp == 0.9.0 Other dependencies can be installed by ```console pip install -r requirement.txt ``` ## Data ### Prepare Dataset Although we cannot provide dataset resources (copyright issue) in our repo, we provide `download.sh` for automatically downloading and preprocessing datasets used in our paper. > Here the preprocessing does not include exporting the distant supervision, a.k.a. the word-level edit matrix, used in our paper. Anyone interested in the distant supervision can focus on the dataset reader file `src/data_reader.py (line 178-200)`. ### Prepare Glove If you want to train models on English datasets (i.e. `Task` and `CANARD`), please download [Glove 6B](http://nlp.stanford.edu/data/glove.6B.zip). Unzip and move the `glove.6B.100d.txt` file into the folder `glove`. ## Train You could train models on different datasets using `*.sh` files under the `src` folder. For example, you could train `RUN + BERT` on `Multi` by running the following command under the `src` folder as: ```console ./train_multi_bert.sh ``` ### Configs Table | Config | Model in Paper | | :--- | :---: | | canard.jsonnet | RUN on CANARD (Elgohary et al. 2019) | | multi.jsonnet | RUN on Multi (Pan et al. 2019) | | multi_bert.jsonnet | RUN + BERT on Multi (Pan et al. 2019) | | rewrite.jsonnet | RUN on Rewrite (Su et al. 2019) | | rewrite_bert.jsonnet | RUN + BERT on Rewrite (Su et al. 2019) | | task.jsonnet | RUN on Task (Quan et al. 2019) | ### Tips for training 1. If you does not rely on `BLEU` metrics to pick up your best weight file on the dev set, you could disable it to achieve a faster evaluation speed. 2. By default we do not calculate any metric on the train set to save training time, but you could enable it by setting `enable_training_log` as `True` in `*.jsonnet` (Refer readers to see `task.jsonnet`). 3. All configs are tested successfully under `Tesla M40 (24GB)`, and if there is any error such as `CUDA Out Of Memory`, you could solve it by reducing the hyper-parameter `batch_size` in `*.jsonnet`. In our experience, it will not hurt the performance by a large margin. ## Evaluate Once a model is well trained, `allennlp` will save a compressed model zip file which is usually named after `model.tar.gz` under the checkpoint folder. Our evaluation is based on it. We provide a evaluate file under `src` folder, and you could evaluate a model file by running the following command: ```concolse python evaluate.py --model_file model.tar.gz --test_file ../dataset/Multi/test.txt ``` The above script will generate a file `model.tar.gz.json` which records the detailed performance. For example, the performance of `RUN + BERT` on `Rewrite` is: ```json { "ROUGE": 0.9394040084189113, "_ROUGE1": 0.961865057419486, "_ROUGE2": 0.9113051224617216, "EM": 0.688, "_P1": 0.9451903332806824, "_R1": 0.8668694770389685, "F1": 0.9043373129817137, "_P2": 0.8648273949812838, "_R2": 0.7989241803278688, "F2": 0.8305705345849144, "_P3": 0.8075098814229249, "_R3": 0.7449860216360763, "F3": 0.774988935954985, "_BLEU1": 0.9405510823944796, "_BLEU2": 0.9172718486250105, "_BLEU3": 0.8932687251641028, "BLEU4": 0.8691863201601382, "loss": 0.2084200546145439 } ``` Next, we will provide all pre-trained models to reproduce results reported in our paper. We recommend you to download them and put them into the folder `pretrained_weights` and run commands like below: ```concolse python evaluate.py --model_file ../pretrianed_weights/rewrite.tar.gz --test_file ../dataset/Multi/test.txt ``` ## Predict We provide an easy function call to predict a rewriting sentence given a specific dialogue context in `src/predict.py`. You could follow it to customize your self. ## Pre-trained Models | Dataset | BERT | Config | EM | Rewriting F1 | BLEU4 | Pretrained_Weights | | :---: | :---: |:--- | :---: | :---: | :---: | :---: | | Rewrite | No | rewrite.jsonnet | 53.6 | 81.3 | 79.6 | [rewrite.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/rewrite/rewrite.tar.gz)| | Rewrite | Yes | rewrite_bert.jsonnet | 68.8 | 90.4 | 86.9 | [rewrite_bert.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/rewrite.bert/rewrite_bert.tar.gz)| | CANARD | No | canard.jsonnet | 18.3 | 44.2 | 49.8 | [canard.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/canard/canard.tar.gz) | | Multi | No | multi.jsonnet | 43.3 | 60.7 | 81.1 | [multi.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/multi/multi.tar.gz) | | Multi | Yes | multi_bert.jsonnet | 49.3 | 69.5 | 83.7 | [multi_bert.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/multi.bert/multi_bert.tar.gz) |
ContextualSP/incomplete_utterance_rewriting/README.md/0
{ "file_path": "ContextualSP/incomplete_utterance_rewriting/README.md", "repo_id": "ContextualSP", "token_count": 2173 }
262
{ "ROUGE": 0.8954699040374693, "_ROUGE1": 0.9248370079585566, "_ROUGE2": 0.8548729804396925, "EM": 0.4933385579937304, "_P1": 0.7443478260869565, "_R1": 0.6512335615693946, "F1": 0.694684366123703, "_P2": 0.6040515653775322, "_R2": 0.5369713506139154, "F2": 0.5685396504405605, "_P3": 0.515867089789061, "_R3": 0.4619306310071041, "F3": 0.48741126151946734, "_BLEU1": 0.9203424772022362, "_BLEU2": 0.8919446800461631, "_BLEU3": 0.8644065076063657, "BLEU4": 0.836555297206264, "loss": 0.012869063752786444 }
ContextualSP/incomplete_utterance_rewriting/log/multi_bert.tar.gz.json/0
{ "file_path": "ContextualSP/incomplete_utterance_rewriting/log/multi_bert.tar.gz.json", "repo_id": "ContextualSP", "token_count": 335 }
263
#!/usr/bin/env bash export model_file=../checkpoints/run_multi export config_file=../configs/multi.jsonnet export train_data_path=../dataset/Multi/train.txt export validation_data_path=../dataset/Multi/valid.txt export seed=1 allennlp train -s ${model_file} ${config_file} \ --include-package data_reader \ --include-package model \ -o "{\"random_seed\":\"${seed}\",\"numpy_seed\":\"${seed}\",\"pytorch_seed\":\"${seed}\", \"train_data_path\":\"${train_data_path}\",\"validation_data_path\":\"${validation_data_path}\"}"
ContextualSP/incomplete_utterance_rewriting/src/train_multi.sh/0
{ "file_path": "ContextualSP/incomplete_utterance_rewriting/src/train_multi.sh", "repo_id": "ContextualSP", "token_count": 182 }
264
# coding: utf-8 from enum import Enum import json from allennlp.data.tokenizers import WordTokenizer from allennlp.data.tokenizers.word_splitter import SpacyWordSplitter from spacy.symbols import ORTH, LEMMA from src.context.converter import SQLConverter from src.context.db_context import SparcDBContext from src.utils.spider_evaluate.convert_sql_to_detail import convert_sql_to_detail from src.utils.wikisql_lib.query import Query as WikiSQLQuery from src.utils.semql_tree_util import parse_sql_tree class SpecialSymbol(Enum): history_start = '@@BEG@@' history_end = '@@END@@' class SemQLConverter(object): def __init__(self): spacy_tokenizer = SpacyWordSplitter(pos_tags=True) spacy_tokenizer.spacy.tokenizer.add_special_case(u'id', [{ORTH: u'id', LEMMA: u'id'}]) for token in SpecialSymbol.__members__.values(): token_uni = u'{}'.format(token.value) spacy_tokenizer.spacy.tokenizer.add_special_case(token_uni, [{ORTH: token_uni, LEMMA: token_uni}]) self._tokenizer = WordTokenizer(spacy_tokenizer) self.log = {} def convert_example(self, example): raise NotImplementedError class SpiderSemQLConverter(SemQLConverter): def __init__(self): super().__init__() def convert_example(self, example): db_id = example['db_id'] utterance = example['question'] sql_converter = self._get_converter(db_id, utterance) semql_statements = sql_converter.translate_to_intermediate(example['sql']) return semql_statements def convert_sql_to_semql(self, db_info, utterance, sql): db_id = db_info['db_id'] sql_converter = self._get_converter(db_id, utterance) db_info['column_index'] = {name.lower(): idx for idx, (_, name) in enumerate(db_info['column_names_original'])} db_info['table_index'] = {name.lower(): idx for idx, name in enumerate(db_info['table_names_original'])} sql_detail = convert_sql_to_detail(sql, db_id, db_info, db_dir='data/spider/database') sql_detail['select'] = list(sql_detail['select']) semql_statements = sql_converter.translate_to_intermediate(sql_detail) return semql_statements def _get_converter(self, db_id, utterance, table_file='data/spider/tables.json', database_path='data/spider/database'): db_context = SparcDBContext(db_id=db_id, utterance=utterance, tokenizer=self._tokenizer, tables_file=table_file, database_path=database_path) sql_converter = SQLConverter(db_context=db_context) return sql_converter class WikiSQLConverter(SemQLConverter): def __init__(self, table_file): super().__init__() table_infos = [json.loads(line) for line in open(table_file, 'r', encoding='utf-8')] self.table_infos = {table_info['id']: table_info for table_info in table_infos} def convert_example(self, example): table_id = example['table_id'] table_info = self.table_infos[table_id] table_col_names = table_info['header'] table_name = 'table' utterance = example['question'] sql_detail = example['sql'] cond_statements_raw = [] conds = sql_detail['conds'] for (col_idx, operator_idx, condition_value) in conds: col_name = '_'.join(table_col_names[col_idx].split()).lower() operator = WikiSQLQuery.cond_ops[operator_idx] cond_statements_raw.append([f'Filter -> {operator} A', f'A -> none C T', f'C -> {col_name}', f'T -> {table_name}']) self.log['n_conditions'] = self.log.get('n_conditions', {}) self.log['n_conditions'][len(cond_statements_raw)] = self.log['n_conditions'].get(len(cond_statements_raw), 0) + 1 cond_statements = [] if len(cond_statements_raw) == 1: cond_statements = cond_statements_raw[0] elif len(cond_statements_raw) >= 2: # add subfilter statement for i in range(len(cond_statements_raw) - 1): cond_statements.append(f'Filter -> Filter and Filter') cond_statements += cond_statements_raw[i] cond_statements += cond_statements_raw[-1] assert isinstance(sql_detail['sel'], int), f'Selected column index is not int, which actually is {sql_detail["sel"]}' sel_col_name = '_'.join(table_col_names[sql_detail['sel']].split()).lower() agg_op = WikiSQLQuery.agg_ops[sql_detail['agg']].lower() # ['', 'MAX', 'MIN', 'COUNT', 'SUM', 'AVG'] if not agg_op: agg_op = 'none' sel_statements = ['Select -> A', f'A -> {agg_op} C T', f'C -> {sel_col_name}', f'T -> {table_name}'] semql_statements = ['Statement -> Root', 'Root -> Select Filter' if cond_statements else 'Root -> Select'] \ + sel_statements + cond_statements return semql_statements if __name__ == '__main__': # wikisql_converter = WikiSQLConverter('data/wikisql/data/test.tables.jsonl') # examples = [json.loads(line) for line in open('data/wikisql/data/test.jsonl', 'r', encoding='utf-8')] # semql_statements = wikisql_converter.convert_example(examples[0]) # print(semql_statements) # sql_tree, depth = parse_sql_tree(semql_statements) # print(sql_tree.restatement(with_table=False)) spider_converter = SpiderSemQLConverter() examples = json.load(open('data/spider/dev.json', 'r')) semql_states = spider_converter.convert_example(examples[0]) print(semql_states)
ContextualSP/interactive_text_to_sql/src/utils/semql_converter.py/0
{ "file_path": "ContextualSP/interactive_text_to_sql/src/utils/semql_converter.py", "repo_id": "ContextualSP", "token_count": 2357 }
265
import inspect import os import signal import sys import time from collections import Mapping from contextlib import contextmanager import faulthandler import line_profiler from tqdm import tqdm, tqdm_notebook from gtd.log import in_ipython class Profiling(object): @staticmethod def start(): """Enable the default profiler and reset its logging.""" Profiler.default().enable().reset() @staticmethod def report(*args, **kwargs): Profiler.default().report(*args, **kwargs) class Profiler(object): """Just a wrapper around line_profiler. Supports some extra functionality like resetting. """ @classmethod def default(cls): if not hasattr(cls, '_default'): profiler = Profiler() profiler.enable_by_count() profiler.disable() cls._default = profiler return cls._default def __init__(self): self._line_prof = line_profiler.LineProfiler() def report(self, *args, **kwargs): self.stats.report(*args, **kwargs) def enable(self): self._line_prof.enable() self._enable = True return self def disable(self): self._line_prof.disable() self._enable = False return self def enable_by_count(self): self._line_prof.enable_by_count() self._enable_by_count = True return self def disable_by_count(self): self._line_prof.disable_by_count() self._enable_by_count = False return self def add_function(self, fxn): self._line_prof.add_function(fxn) return self def add_module(self, mod): """Profile all functions and class methods inside this module. NOTE: This includes functions that are imported into the module. """ from inspect import isclass, isfunction for item in list(mod.__dict__.values()): if isclass(item): for k, v in list(item.__dict__.items()): if isinstance(v, staticmethod) or isinstance(v, classmethod): underlying_fxn = v.__get__(item) self.add_function(underlying_fxn) if isfunction(v): self.add_function(v) elif isfunction(item): self.add_function(item) return self def add_this_module(self): try: frame = inspect.currentframe() mod_name = frame.f_back.f_globals['__name__'] finally: del frame # failing to delete the frame can cause garbage collection problems, due to reference counting mod = sys.modules[mod_name] return self.add_module(mod) @property def stats(self): return ProfilerStats(self._line_prof.get_stats(), self.functions) def reset(self): functions = self.functions line_prof = line_profiler.LineProfiler() # copy settings if self._enable: line_prof.enable() else: line_prof.disable() if self._enable_by_count: line_prof.enable_by_count() else: line_prof.disable_by_count() # add previously registered functions for fxn in functions: line_prof.add_function(fxn) self._line_prof = line_prof return self @property def functions(self): return self._line_prof.functions def function_label(fxn): """Return a (filename, first_lineno, func_name) tuple for a given code object. This is the same labelling as used by the cProfile module in Python 2.5. """ code = fxn.__code__ if isinstance(code, str): return ('~', 0, code) # built-in functions ('~' sorts at the end) else: return (code.co_filename, code.co_firstlineno, code.co_name) class ProfilerStats(Mapping): """Wrapper around line_profiler.LineStats""" def __init__(self, line_stats, functions): """Create a ProfilerStats object. Args: line_stats (LineStats): a LineStats object returned by LineProfiler """ self._line_stats = line_stats self._functions = functions def __getitem__(self, fxn): """Get stats for a particular fxn. Args: fxn: a Python function Returns: FunctionStats """ label = function_label(fxn) return FunctionStats(fxn, self._line_stats.timings[label], self._line_stats.unit) def __iter__(self): return iter(self._functions) def __len__(self): return len(self._functions) def report(self, fxns=None): if fxns is None: fxns = list(self.keys()) fxn_stats = [self[f] for f in fxns] fxn_stats = sorted(fxn_stats, key=lambda stats: stats.total_time, reverse=True) for stats in fxn_stats: if stats.empty: continue print(stats) class FunctionStats(object): def __init__(self, function, timing, unit): """Create a FunctionStats object. Args: function: a Python function timing (list[(int, int, int)]): a list of (lineno, nhits, total_time) tuples, one per line unit: unit of time (e.g. seconds) """ self._function = function self._timing = timing self._unit = unit @property def function(self): return self._function @property def _line_stats_in_seconds(self): """Line stats in seconds. Returns: list[(int, int, float)]: a list of (line_number, number_of_hits, total_time_in_seconds) tuples, one per line """ return [(lineno, nhits, total_time * self._unit) for (lineno, nhits, total_time) in self._timing] def __repr__(self): label = function_label(self.function) timings = {label: self._line_stats_in_seconds} # format needed for show_text unit = 1. class Stream(object): def __init__(self): self.items = [] def write(self, s): self.items.append(s) def get_value(self): return ''.join(self.items) output = Stream() line_profiler.show_text(timings, unit, output) s = output.get_value() return s @property def empty(self): return len(self._timing) == 0 @property def total_time(self): """Total time spent by this function, in seconds.""" return sum([t for _, _, t in self._line_stats_in_seconds], 0) def profile(f): """A decorator for functions you want to profile""" Profiler.default().add_function(f) return f @contextmanager def timer(name='unnamed'): print('Start: {}'.format(name)) sys.stdout.flush() start = time.time() yield stop = time.time() print('Finish: {} ({} s)'.format(name, stop - start)) sys.stdout.flush() def verboserate(iterable, *args, **kwargs): """Iterate verbosely. Args: desc (str): prefix for the progress bar total (int): total length of the iterable See more options for tqdm.tqdm. """ progress = tqdm_notebook if in_ipython() else tqdm for val in progress(iterable, *args, **kwargs): yield val class Pulse(object): def __init__(self, wait): self.wait = wait self.prev = time.time() def __call__(self): """Check if it's time to pulse. If enough time has passed since previous pulse, return True and reset timer. Otherwise, return False (don't reset timer). """ now = time.time() long_enough = now - self.prev > self.wait if long_enough: self.prev = now return long_enough def reset(self): """Force reset the timer.""" self.prev = time.time() class TimeoutException(Exception): pass @contextmanager def time_limit(seconds): def signal_handler(signum, frame): raise TimeoutException('Timed out!') signal.signal(signal.SIGALRM, signal_handler) signal.alarm(seconds) try: yield finally: signal.alarm(0) def monitor_call_stack(): if in_ipython(): # see this issue for why: https://github.com/ipython/ipykernel/issues/91 f = sys.__stderr__ else: f = sys.stderr faulthandler.register(signal.SIGUSR1, file=f) print('To monitor call stack, type this at command line: kill -USR1 {}'.format(os.getpid())) print('Call stack will be printed to stderr' \ '(in IPython Notebook, this will show in the terminal where you launched the notebook.)')
ContextualSP/lemon/executor/gtd/chrono.py/0
{ "file_path": "ContextualSP/lemon/executor/gtd/chrono.py", "repo_id": "ContextualSP", "token_count": 3776 }
266
""" Helper functions for plotting """ import os import numpy as np import matplotlib.pyplot as plt from gtd.io import makedirs from gtd.log import in_ipython def hinton(matrix, max_weight=None, ax=None, xtick=None, ytick=None, inverted_color=False): """Draw Hinton diagram for visualizing a weight matrix. Copied from: http://matplotlib.org/examples/specialty_plots/hinton_demo.html """ ax = ax if ax is not None else plt.gca() if not max_weight: max_weight = 2**np.ceil(np.log(np.abs(matrix).max())/np.log(2)) ax.patch.set_facecolor('gray') ax.set_aspect('equal', 'box') ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(matrix): if inverted_color: color = 'black' if w > 0 else 'white' else: color = 'white' if w > 0 else 'black' size = np.sqrt(np.abs(w)) rect = plt.Rectangle([x - size / 2, y - size / 2], size, size, facecolor=color, edgecolor=color) ax.add_patch(rect) ax.autoscale_view() ax.invert_yaxis() if xtick: ax.set_xticks(np.arange(matrix.shape[0])) ax.set_xticklabels(xtick) if ytick: ax.set_yticks(np.arange(matrix.shape[1])) ax.set_yticklabels(ytick) return ax def show(title, directory=''): """If in IPython, show, otherwise, save to file.""" import matplotlib.pyplot as plt if in_ipython(): plt.show() else: # ensure directory exists makedirs(directory) plt.savefig(os.path.join(directory, title) + '.png') # close all figures to conserve memory plt.close('all') def plot_pdf(x, cov_factor=None, *args, **kwargs): import matplotlib.pyplot as plt from scipy.stats import gaussian_kde density = gaussian_kde(x) xgrid = np.linspace(min(x), max(x), 200) if cov_factor is not None: density.covariance_factor = lambda: cov_factor density._compute_covariance() y = density(xgrid) plt.plot(xgrid, y, *args, **kwargs) def rgb_to_hex(rgb): return '#%02x%02x%02x' % rgb
ContextualSP/lemon/executor/gtd/plot.py/0
{ "file_path": "ContextualSP/lemon/executor/gtd/plot.py", "repo_id": "ContextualSP", "token_count": 990 }
267
import re import logging import numpy as np from gtd.utils import memoize @memoize def get_spacy(): """ Loads the spaCy english processor. Tokenizing, Parsing, and NER are enabled. All other features are disabled. Returns: A spaCy Language object for English """ logging.info('Loading spaCy...') import spacy.en nlp = spacy.en.English(tagger=False, parser=True, matcher=False) return nlp class NER(object): def __init__(self): self.processor = get_spacy() def __call__(self, text): """Given a unicode string, return a tuple of the named entities found inside.""" if not isinstance(text, str): text = str(text) doc = self.processor(text) return doc.ents class Trie(object): def __init__(self, token, parent, sink=False): self.token = token self.parent = parent self.sink = sink self.children = {} def __contains__(self, phrase): if phrase[0] == self.token: if len(phrase) == 1: # On our last word. Must be a sink to match. return self.sink else: # doesn't match return False suffix = phrase[1:] for child in list(self.children.values()): if suffix in child: return True def ancestors(self): if self.parent is None: return [] anc = self.parent.ancestors() anc.append(self.token) return anc class PhraseMatcher(object): def __init__(self, phrases): """Construct a phrase matcher. Args: phrases (List[Tuple[str]]): a list of phrases to match, where each phrase is a tuple of strings """ # construct Trie root = Trie('ROOT', None) for phrase in phrases: current = root for token in phrase: if token not in current.children: current.children[token] = Trie(token, current) current = current.children[token] current.sink = True # mark last node as a sink self.root = root self.phrases = phrases def has_phrase(self, phrase): """Check if a particular phrase is matched by the matcher. Args: phrase (tuple[str]) """ return ['ROOT'] + phrase in self.root def match(self, tokens): """A list of matches. Args: tokens (list[str]): a list of tokens Returns: list[tuple[str, int, int]]: A list of (match, start, end) triples. Each `match` is a tuple of tokens. `start` and `end` are word offsets. """ root = self.root candidates = [root] matches = [] for i, token in enumerate(tokens): # extend candidates or prune failed candidates new_candidates = [] for cand in candidates: if token in cand.children: new_candidates.append(cand.children[token]) # move to child candidates = new_candidates candidates.append(root) # always add root for cand in candidates: if cand.sink: match = tuple(cand.ancestors()) end = i + 1 start = end - len(match) matches.append((match, start, end)) return matches # first_cap_re = re.compile('(.)([A-Z][a-z]+)') first_cap_re = re.compile('([^-_])([A-Z][a-z]+)') all_cap_re = re.compile('([a-z0-9])([A-Z])') def camel_to_snake_case(name): """Convert camelCase to snake_case (Python).""" s1 = first_cap_re.sub(r'\1_\2', name) return all_cap_re.sub(r'\1_\2', s1).lower() def longest_common_subsequence(X, Y): # https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Longest_common_subsequence#Computing_the_length_of_the_LCS def LCS(X, Y): m = len(X) n = len(Y) # An (m+1) times (n+1) matrix C = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if X[i - 1] == Y[j - 1]: C[i][j] = C[i - 1][j - 1] + 1 else: C[i][j] = max(C[i][j - 1], C[i - 1][j]) return C def backTrack(C, X, Y, i, j): if i == 0 or j == 0: return [] elif X[i - 1] == Y[j - 1]: return backTrack(C, X, Y, i - 1, j - 1) + [X[i - 1]] else: if C[i][j - 1] > C[i - 1][j]: return backTrack(C, X, Y, i, j - 1) else: return backTrack(C, X, Y, i - 1, j) m = len(X) n = len(Y) C = LCS(X, Y) return backTrack(C, X, Y, m, n) def get_ngrams(s, n): """Get n-grams for s. >>> s = [1, 2, 3, 4] >>> get_ngrams(s, 2) [(1, 2), (2, 3), (3, 4)] >>> get_ngrams(s, 1) [(1,), (2,), (3,), (4,)] >>> get_ngrams(s, 4) [(1, 2, 3, 4)] """ assert n <= len(s) assert n >= 1 return [tuple(s[k:k + n]) for k in range(len(s) + 1 - n)] def ngram_precision_recall(reference, candidate, n=None): if n is None: # Take the average over 1 through 4 grams. prs = [] for m in [1, 2, 3, 4]: prs.append(ngram_precision_recall(reference, candidate, m)) ps, rs = list(zip(*prs)) return np.mean(ps), np.mean(rs) ref_set = set(get_ngrams(reference, n)) can_set = set(get_ngrams(candidate, n)) correct = float(len(ref_set & can_set)) rec = correct / len(ref_set) prec = correct / len(can_set) return prec, rec
ContextualSP/lemon/executor/gtd/text.py/0
{ "file_path": "ContextualSP/lemon/executor/gtd/text.py", "repo_id": "ContextualSP", "token_count": 2801 }
268
from abc import ABCMeta class PathChecker(object, metaclass=ABCMeta): """Check whether a ParsePath should be included in the beam. This is used to control the search space especially when the parameters are not well initialized. """ def __init__(self, config): """Initialize the PathChecker. Args: config (Config): The decoder.prune section of the configuration. """ self.config = config def __call__(self, path): """Check whether the path should be added to the beam. Args: path (ParsePath) Returns: True if the path should be included; False if it should be pruned. """ raise NotImplementedError
ContextualSP/lemon/executor/strongsup/path_checker.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/path_checker.py", "repo_id": "ContextualSP", "token_count": 283 }
269
from strongsup.predicate import Predicate class RLongPredicate(Predicate): """Predicates for the RLong domain. Conventions: - colors are single characters (y, g, ...) - numbers are integers, positive or negative (1, -2, ...) - fractions start with X (X1/2, X2/3, ...) - properties start with P (PColor, PHatColor, ...) - actions start with A (ADrain, AMove, ...) - built-in predicates include: all-objects, index, argmin, argmax - history slots start with H (H0, H1, ...) """ CACHE = {} def __new__(cls, name, original_string=None): if name not in cls.CACHE: types = cls._compute_types(name) # pred = super(RLongPredicate, cls).__new__( # cls, name, original_string=original_string, types=types) pred = super(RLongPredicate, cls).__new__(cls) cls.CACHE[name] = pred return cls.CACHE[name] @classmethod def _compute_types(cls, name): assert isinstance(name, str) types = [] if len(name) == 1 and name[0].isalpha(): types.append(RLongPredicateType.COLOR) elif name[0] == '-' or name[0].isdigit(): types.append(RLongPredicateType.NUMBER) elif name[0] == 'X': types.append(RLongPredicateType.FRACTION) elif name[0] == 'P': types.append(RLongPredicateType.PROPERTY) elif name[0] == 'D': types.append(RLongPredicateType.DOUBLE_PROPERTY) elif name[0] == 'A': types.append(RLongPredicateType.ACTION) elif name in BUILTIN_NAMES: types.append(RLongPredicateType.BUILTIN) elif name[0] == 'H': types.append(RLongPredicateType.HISTORY_SLOT) else: raise ValueError('Unknown predicate: {}'.format(name)) return tuple(types) @property def types_vector(self): """Return the types as a k-hot vector. Returns: list[boolean] """ return [x in self.types for x in RLongPredicateType.ALL_TYPES] BUILTIN_NAMES = ['all-objects', 'index', 'argmin', 'argmax'] class RLongPredicateType(object): COLOR = 'color' NUMBER = 'number' FRACTION = 'fraction' PROPERTY = 'property' DOUBLE_PROPERTY = 'double_property' ACTION = 'action' BUILTIN = 'builtin' HISTORY_SLOT = 'history_slot' ALL_TYPES = (COLOR, NUMBER, FRACTION, PROPERTY, DOUBLE_PROPERTY, ACTION, BUILTIN, HISTORY_SLOT)
ContextualSP/lemon/executor/strongsup/rlong/predicate.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/rlong/predicate.py", "repo_id": "ContextualSP", "token_count": 1160 }
270
# Copied from the official WikiTableQuestions evaluator, version 1.0 from math import isnan, isinf from strongsup.value import Value from strongsup.tables.utils import normalize class StringValue(Value): def __init__(self, content): assert isinstance(content, str) self._normalized = normalize(content) self._hash = hash(self._normalized) def __eq__(self, other): return (isinstance(other, StringValue) and self._normalized == other._normalized) def __hash__(self): return self._hash def __str__(self): return 'S' + str([self._normalized]) __repr__ = __str__ def match(self, other): assert isinstance(other, Value) return self._normalized == other._normalized class NumberValue(Value): def __init__(self, amount, original_string=None): assert isinstance(amount, (int, float)) if abs(amount - round(amount)) < 1e-6: self._amount = int(amount) else: self._amount = float(amount) if not original_string: self._normalized = str(self._amount) else: self._normalized = normalize(original_string) self._hash = hash(self._amount) def __eq__(self, other): return (isinstance(other, NumberValue) and self._amount == other._amount) def __hash__(self): return self._hash def match(self, other): assert isinstance(other, Value) if self._normalized == other._normalized: return True if isinstance(other, NumberValue): return abs(self._amount - other._amount) < 1e-6 return False def __str__(self): return ('N(%f)' % self._amount) + str([self._normalized]) __repr__ = __str__ @staticmethod def parse(text): """Try to parse into a number. Return: the number (int or float) if successful; otherwise None. """ try: return int(text) except: try: amount = float(text) assert not isnan(amount) and not isinf(amount) return amount except: return None class DateValue(Value): def __init__(self, year, month, day, original_string=None): """Create a new DateValue. Placeholders are marked as -1.""" assert isinstance(year, int) assert isinstance(month, int) and (month == -1 or 1 <= month <= 12) assert isinstance(day, int) and (day == -1 or 1 <= day <= 31) assert not (year == month == day == -1) self._year = year self._month = month self._day = day if not original_string: self._normalized = '{}-{}-{}'.format( year if year != -1 else 'xx', month if month != -1 else 'xx', day if day != '-1' else 'xx') else: self._normalized = normalize(original_string) self._hash = hash((self._year, self._month, self._day)) def __eq__(self, other): return (isinstance(other, DateValue) and self._year == other._year and self._month == other._month and self._day == other._day) def __hash__(self): return self._hash def __str__(self): return (('D(%d,%d,%d)' % (self._year, self._month, self._day)) + str([self._normalized])) __repr__ = __str__ def match(self, other): assert isinstance(other, Value) if self._normalized == other._normalized: return True if isinstance(other, DateValue): return (self._year == other._year and self._month == other._month and self._day == other._day) return False @staticmethod def parse(text): """Try to parse into a date. Return: tuple (year, month, date) if successful; otherwise None. """ try: ymd = text.lower().split('-') assert len(ymd) == 3 year = -1 if ymd[0] in ('xx', 'xxxx') else int(ymd[0]) month = -1 if ymd[1] == 'xx' else int(ymd[1]) day = -1 if ymd[2] == 'xx' else int(ymd[2]) assert not (year == month == day == -1) assert month == -1 or 1 <= month <= 12 assert day == -1 or 1 <= day <= 31 return (year, month, day) except: return None ################ Value Instantiation ################ def to_value(original_string, corenlp_value=None): """Convert the string to Value object. Args: original_string (basestring): Original string corenlp_value (basestring): Optional value returned from CoreNLP Returns: Value """ if isinstance(original_string, Value): # Already a Value return original_string if not corenlp_value: corenlp_value = original_string # Number? amount = NumberValue.parse(corenlp_value) if amount is not None: return NumberValue(amount, original_string) # Date? ymd = DateValue.parse(corenlp_value) if ymd is not None: if ymd[1] == ymd[2] == -1: return NumberValue(ymd[0], original_string) else: return DateValue(ymd[0], ymd[1], ymd[2], original_string) # String. return StringValue(original_string) def to_value_list(original_strings, corenlp_values=None): """Convert a list of strings to a list of Values Args: original_strings (list[basestring]) corenlp_values (list[basestring or None]) Returns: list[Value] """ assert isinstance(original_strings, (list, tuple, set)) if corenlp_values is not None: assert isinstance(corenlp_values, (list, tuple, set)) assert len(original_strings) == len(corenlp_values) return list(set(to_value(x, y) for (x, y) in zip(original_strings, corenlp_values))) else: return list(set(to_value(x) for x in original_strings))
ContextualSP/lemon/executor/strongsup/tables/value.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/tables/value.py", "repo_id": "ContextualSP", "token_count": 2727 }
271
import math import operator from numpy.testing import assert_allclose from strongsup.utils import ( epsilon_greedy_sample, softmax, softmax_with_alpha_beta, ) from functools import reduce def test_epsilon_greedy_sample(): num_choices = 8 num_iters = 100000 to_sample = 4 epsilon = 0.9 def expected_count(): expected_count = epsilon * (num_choices - 1)/num_choices expected_count *= reduce( operator.mul, (1 - epsilon * 1/(num_choices - num) for num in range( 1, to_sample)), 1) expected_count = (1 - expected_count) * num_iters return expected_count choices = list(range(num_choices)) counts = [0] * (num_choices + 1) for i in range(num_iters): sample = epsilon_greedy_sample(choices, to_sample, epsilon) for val in sample: counts[val] += 1 expected = expected_count() assert(0.98 * expected <= counts[1] <= 1.02 * expected) #test_epsilon_greedy_sample() def test_softmax(): stuff = [-1, -2, -3, -20, -400] exped = [math.exp(x) for x in stuff] target = [x / sum(exped) for x in exped] assert_allclose(target, softmax(stuff)) assert_allclose(target, softmax_with_alpha_beta(stuff, 1, 1)) def test_softmax_with_alpha_beta(): for alpha in (0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0): for beta in (0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0): for stuff in [ [-1, -2, -3, -20, -400], [-30, -30.4, -30.2, -31], [float('-inf'), -30.4, -30.2, float('-inf'), float('-inf'), -31]]: exped = [math.exp(x) for x in stuff] exped_with_beta = [math.exp(x * beta) if x != float('-inf') else 0. for x in stuff] target = [x / sum(exped_with_beta) * sum(exped)**(1-alpha) for x in exped_with_beta] actual = softmax_with_alpha_beta(stuff, alpha, beta) assert_allclose(target, actual)
ContextualSP/lemon/executor/strongsup/tests/test_utils.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/tests/test_utils.py", "repo_id": "ContextualSP", "token_count": 1005 }
272
python lemon/run_model_pretrain.py train \ --dataset-dir lemon_data/pretraining_corpus/DATASET_PREFIX/bin_large \ --exp-dir OUTPUT_PATH \ --model-path BART_MODEL_PATH \ --model-arch bart_large \ --total-num-update 10000 \ --max-tokens 1800 \ --gradient-accumulation 8 \ --warmup-steps 1500
ContextualSP/lemon/pretrain.sh/0
{ "file_path": "ContextualSP/lemon/pretrain.sh", "repo_id": "ContextualSP", "token_count": 139 }
273
## AI2 Reasoning Challenge (ARC) Evaluator This script evaluates predictions for multiple-choice questions against correct answers and produces an accuracy score. ## Example ```bash % python3 evaluator.py -qa questions.jsonl -p predictions.csv -o metrics.json % cat metrics.json {"accuracy": 0.85} ``` ## Usage The script takes two input files and produces one output file. ### Input question-answers A question-answers file has question ids and answers in JSONL format. For example: ```bash % cat questions.jsonl { "id": "question1", "answerKey": "C" } { "id": "question2", "answerKey": "B" } { "id": "question3", "answerKey": "C" } { "id": "question4", "answerKey": "D" } { "id": "question5", "answerKey": "D" } ``` (Attributes besides `id` and `answerKey` in each object are ignored.) ### Input predictions A predictions file that has predictions in CSV format. For example: ```bash % cat predictions.csv question1,A;B;C;D question2,B question3,C question4,D question5,D ``` ### Output metrics A JSON file that has an accuracy score in the range 0.0 to 1.0. For example: ```bash % cat metrics.json {"accuracy": 0.85} ``` ## Development ### Unit tests Run unit tests with `python3 test_evaluator.py`. ### Docker Ultimately this evaluator is run in a Docker container. To test that it works there, run `test.sh`.
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/arc/evaluator/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/arc/evaluator/README.md", "repo_id": "ContextualSP", "token_count": 431 }
274
import numpy as np import sklearn.metrics from sklearn.metrics import roc_curve class F1MeasureCustomRetrievalEval: def __init__(self, pos_label=1) -> None: self._predictions = [] self._gt = [] self._pos_label = pos_label self._probs = [] def __call__(self, label, score): """ Parameters ---------- predictions : ``torch.Tensor``, required. A tensor of predictions of shape (batch_size, ..., num_classes). gold_labels : ``torch.Tensor``, required. A tensor of integer class label of shape (batch_size, ...). It must be the same shape as the ``predictions`` tensor without the ``num_classes`` dimension. mask: ``torch.Tensor``, optional (default = None). A masking tensor the same size as ``gold_labels``. """ self._gt.append(label) self._probs.append(score) def get_metric(self, reset: bool = False, given_thresh=None): # -> Dict[str,Float]: probs = np.array(self._probs) gt = np.array(self._gt) threshold_max = None f1_score_given_thresh = None if reset and len(probs) > 0: fpr, tpr, thresholds = roc_curve(gt, probs) f1_scores = [] for thresh in thresholds: f1_scores.append( sklearn.metrics.f1_score( gt, [1 if m > thresh else 0 for m in probs] ) ) f1_scores = np.array(f1_scores) f1_scores_max = np.max(f1_scores) threshold_max = thresholds[np.argmax(f1_scores)] auc_roc = sklearn.metrics.roc_auc_score(gt, probs) if given_thresh is not None: f1_score_given_thresh = sklearn.metrics.f1_score( gt, [1 if m > given_thresh else 0 for m in probs] ) else: auc_roc = 0 f1_scores_max = 0 if reset: self.reset() return { "auc_roc": auc_roc, "f1_scores_max": f1_scores_max, "threshold_max": threshold_max, "f1_score_given_thresh": f1_score_given_thresh, } def reset(self): self._gt = [] self._probs = []
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/eqasc/code/allennlp_reasoning_explainqa/training/metrics/confusion_matrix.py/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/eqasc/code/allennlp_reasoning_explainqa/training/metrics/confusion_matrix.py", "repo_id": "ContextualSP", "token_count": 1191 }
275
FROM python:3.7.0-alpine3.8 WORKDIR /app COPY evaluator.py /app/evaluator.py
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/openbookqa/evaluator/Dockerfile/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/openbookqa/evaluator/Dockerfile", "repo_id": "ContextualSP", "token_count": 38 }
276
#!/usr/bin/env python3 import argparse import json from typing import Dict from evaluation import Evaluation from process import sentences_from_sentences_file, ActionFile from scoring import QuestionScores from errors import corrupted_action_file, corrupted_sentences_file def main(answers_file: str, predictions_file: str, output_file: str, diagnostics_file: str, sentences_file: str): # create diagnostics file if needed diagnostics = None sentences = None if diagnostics_file: diagnostics = open(diagnostics_file, mode='w') print(f"Writing diagnostics to file {diagnostics_file}") diagnostics.write( f"Diagnostics of evaluation of predictions in {predictions_file} against answers in {answers_file}\n") diagnostics.write("\n") if sentences_file: sentences = sentences_from_sentences_file(sentences_file) # Step 1 and 2. Read and summarize answers and predictions predictions = ActionFile.from_file(predictions_file) answers = ActionFile.from_file(answers_file) # Abort if there are differences diff_report = answers.diff_participants(predictions) if diff_report: print(f"Participants in predictions file {predictions_file} are not exact matches to participants") print(f"in {answers_file}. Detailed report:") print() print("\n".join(diff_report)) print() corrupted_action_file( filename=predictions_file, details=f"Some participants are missing or unexpected." ) predictions_summary = predictions.summarize() answers_summary = answers.summarize() # Step 3. Calculate per-process scores scores_by_process = dict() # type: Dict[int, QuestionScores] for process_id, answer_summary in answers_summary.items(): if process_id not in predictions_summary: corrupted_action_file( filename=predictions_file, details=f"Prediction for process_id {answer_summary.process_id} is missing." ) prediction_summary = predictions_summary[process_id] score = QuestionScores.from_summaries(answer_summary, prediction_summary) scores_by_process[process_id] = score if diagnostics: diag_struct = { "prediction_summary": prediction_summary.diagnostics(), "answer_summary": answer_summary.diagnostics(), "score": { "process_id": process_id, "inputs": score.inputs.diagnostics(), "outputs": score.outputs.diagnostics(), "conversions": score.conversions.diagnostics(), "moves": score.moves.diagnostics(), } } if sentences: if process_id not in sentences: corrupted_sentences_file( filename=sentences_file, details=f"Sentences for process {process_id} not found." ) sentences_for_diag = [] for i, text in enumerate(sentences[process_id]): sentences_for_diag.append({ "step_number": 1 + i, "text": text, }) diag_struct["sentences"] = sentences_for_diag # type: ignore diagnostics.write(json.dumps(diag_struct, indent=4)) diagnostics.write("\n") # Step 4. Calculate a final evaluation evaluation = Evaluation(scores_by_process) # Step 5. Print a report and generate output file report(evaluation, len(predictions_summary), len(answers_summary)) overall_scores = { "precision": round(evaluation.overall.precision, 3), "recall": round(evaluation.overall.recall, 3), "f1": round(evaluation.overall.F1(), 3) } if output_file: print("Writing results to file: %s" % output_file) with open(output_file, "wt", encoding="UTF-8") as output: output.write(json.dumps(overall_scores)) if diagnostics: diag_struct = {"overall_scores": overall_scores} diagnostics.write(json.dumps(diag_struct, indent=4)) diagnostics.write("\n") # close diagnostics file if diagnostics: diagnostics.close() def report(e: Evaluation, num_predictions: int, num_answers: int): i = e.inputs o = e.outputs c = e.conversions m = e.moves overall = e.overall print("=================================================") print("Question Avg. Precision Avg. Recall Avg. F1") print("-------------------------------------------------") print("Inputs %4.3f %4.3f %4.3f" % (i.precision, i.recall, i.F1())) print("Outputs %4.3f %4.3f %4.3f" % (o.precision, o.recall, o.F1())) print("Conversions %4.3f %4.3f %4.3f" % (c.precision, c.recall, c.F1())) print("Moves %4.3f %4.3f %4.3f" % (m.precision, m.recall, m.F1())) print("-------------------------------------------------") print("Overall Precision %4.3f " % overall.precision) print("Overall Recall %4.3f " % overall.recall) print("Overall F1 %4.3f " % overall.F1()) print("=================================================") print() print(f"Evaluated {num_predictions} predictions against {num_answers} answers.") print() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Evaluator for ProPara Leaderboard') parser.add_argument('--predictions', '-p', action='store', dest='predictions_file', required=True, help='Path to file with predictions') parser.add_argument('--answers', '-a', action='store', dest='answers_file', required=True, help='Path to file with answers') parser.add_argument('--output', '-o', action='store', dest='output_file', help='Output results to this file.') parser.add_argument('--diagnostics', '-d', action='store', dest='diagnostics_file', help='Write diagnostics to this file.') parser.add_argument('--sentences', '-s', action='store', dest='sentences_file', help='Path to file with sentences.') args = parser.parse_args() main(args.answers_file, args.predictions_file, args.output_file, args.diagnostics_file, args.sentences_file)
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/evaluator.py/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/evaluator.py", "repo_id": "ContextualSP", "token_count": 3149 }
277
## Test case: Prediction has an invalid action. * answers.tsv is the answer to process 1167 from the training set. * predictions.tsv is a prediction with an invalid action. An evaluation on this prediction should abort.
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/testfiles-6/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/testfiles-6/README.md", "repo_id": "ContextualSP", "token_count": 54 }
278
import json import argparse from pydoc import doc import collections import os def get_col_states(input_str): col_and_state = input_str.replace('state : ', '').split(' | ') return col_and_state def get_col_states_start(input_str): col_and_state = input_str.split(' states : ') cols = col_and_state[0].replace('col : ', '').split(' | ') states = col_and_state[1].split(' | ') states[-1] = states[-1].split(' SEP ')[0] return cols, states def get_action(location_before, location_after): location_before = location_before.replace("states : ", '') location_after = location_after.replace("states : ", "") if location_before == location_after: return "NONE",location_before, location_after if location_before == '-' and location_after != '-': return "CREATE",location_before, location_after if location_after == '-' and location_before != '-': return "DESTROY",location_before, location_after if location_before != '-' and location_after != '-': return "MOVE",location_before, location_after def process(id_path, generate_valid_path, dummy_path, if_answer=False): target_idx = 2 if if_answer else 1 error_num = 0 id_file = open(id_path, 'r', encoding='utf8') pre = open(generate_valid_path, 'r', encoding='utf8') out = open(dummy_path, 'w', encoding='utf8') linenum_to_colandstate = {} pre_lines = pre.readlines()[1:] for line in pre_lines: elements = line.rstrip().split('\t') line_id = int(elements[-1]) col_and_state = elements linenum_to_colandstate[line_id] = col_and_state current_case = -1 pre_states = {} id_lines = id_file.readlines() step_num = 0 action_matrix = collections.OrderedDict() for line_id, case_id in enumerate(id_lines): case_id, step_id = case_id.rstrip().split('-') # '4-1' -> [4, 1] if case_id != current_case: for key in action_matrix.keys(): for step_idx in range(step_num): try: line_out = str(current_case) + '\t' + str(step_idx + 1) + '\t' + key + '\t' + action_matrix[key][ step_idx][0] + '\t' + action_matrix[key][step_idx][1] + '\t' + action_matrix[key][step_idx][2] + '\t' out.write(line_out + '\n') except: line_out = str(current_case) + '\t' + str(step_idx + 1) + '\t' + key + '\t' + 'NONE' + '\t' + '-' + '\t' + '-' + '\t' out.write(line_out + '\n') action_matrix = {} step_num = 0 current_case = case_id start_col_and_state = linenum_to_colandstate[line_id][-2] pre_cols, pre_states = get_col_states_start(start_col_and_state) # get the init state for key in pre_cols: action_matrix[key] = [] # init the action matrix step_num += 1 col_and_state = linenum_to_colandstate[line_id][target_idx] # get the first state (after the first action) current_states = get_col_states(col_and_state) # current_states : List : ['state1', 'state2', 'state3', 'state4'] if len(current_states) != len(pre_states): error_num += 1 col_list = list(action_matrix.keys()) for col_idx in range(len(col_list)): try: action_matrix[col_list[col_idx]].append((get_action(pre_states[col_idx], current_states[col_idx]))) except: right_col = col_list[col_idx] pre_state = '-' if col_idx >= len(pre_states) else pre_states[col_idx] current_state = '-' if col_idx >= len(current_states) else current_states[col_idx] error_action = (get_action(pre_state, current_state)) action_matrix[right_col].append(error_action) pre_states = current_states for key in action_matrix.keys(): for step_idx in range(step_num): try: line_out = str(current_case) + '\t' + str(step_idx + 1) + '\t' + key + '\t' + action_matrix[key][ step_idx][0] + '\t' + action_matrix[key][step_idx][1] + '\t' + action_matrix[key][step_idx][2] + '\t' out.write(line_out + '\n') except: line_out = str(current_case) + '\t' + str(step_idx + 1) + '\t' + key + '\t' + 'NONE' + '\t' + '-' + '\t' + '-' + '\t' out.write(line_out + '\n') print('error_num', error_num) def eval_recipes_stage2(prediction_file, answer_file, predict_target_file, answer_target_file): predict_list = open(prediction_file, 'r', encoding='utf8').readlines() answer_list = open(answer_file, 'r', encoding='utf8').readlines() predict_dict = dict() answer_dict = dict() for predict, answer in zip(predict_list, answer_list): predict_item = predict.strip().split('\t') answer_item = answer.strip().split('\t') assert predict_item[0] == answer_item[0] assert predict_item[1] == answer_item[1] assert predict_item[2] == answer_item[2] doc_id = predict_item[0] sentence_id = predict_item[1] entity = predict_item[2] predicted_action = predict_item[3] answer_action = answer_item[3] if (doc_id, entity) not in predict_dict: predict_dict[(doc_id, entity)] = [] if predicted_action != 'NONE': if not (predicted_action == 'CREATE' and predict_item[5] == '?'): predict_dict[(doc_id, entity)].append({'step':int(sentence_id)-1, 'location': predict_item[5]}) if (doc_id, entity) not in answer_dict: answer_dict[(doc_id, entity)] = [] if answer_action != 'NONE': if not (answer_action == 'CREATE' and answer_item[5] == '?'): answer_dict[(doc_id, entity)].append({'step':int(sentence_id)-1, 'location': answer_item[5]}) predict_json_lines = [] for item in predict_dict: predict_json_lines.append({'id':int(item[0]), 'entity':item[1], 'loc_change':predict_dict[item]}) json.dump(predict_json_lines, open(predict_target_file, 'w', encoding='utf8'), indent=4, ensure_ascii=False) answer_json_lines = [] for item in answer_dict: answer_json_lines.append({'id':int(item[0]), 'entity':item[1], 'loc_change':answer_dict[item]}) json.dump(answer_json_lines, open(answer_target_file, 'w', encoding='utf8'), indent=4, ensure_ascii=False) def eval_recipes_stage3(prediction_file, answer_file): predict_list = json.load(open(prediction_file, 'r', encoding='utf8')) answer_list = json.load(open(answer_file, 'r', encoding='utf8')) assert len(predict_list) == len(answer_list) num_data = len(answer_list) total_pred, total_ans, total_correct = 0, 0, 0 for idx in range(num_data): prediction = predict_list[idx] answer = answer_list[idx] assert prediction['id'] == answer['id'] and prediction['entity'] == answer['entity'] pred_loc = prediction['loc_change'] ans_loc = answer['loc_change'] num_pred = len(pred_loc) num_ans = len(ans_loc) if num_pred == 0 or num_ans == 0: num_correct = 0 else: num_correct = len([loc for loc in pred_loc if loc in ans_loc]) total_pred += num_pred total_ans += num_ans total_correct += num_correct precision = total_correct / total_pred recall = total_correct / total_ans if (precision + recall) != 0: f1 = 2 * precision * recall / (precision + recall) else: f1 = 0.0 print(f'{num_data} instances evaluated.') print(f'Total predictions: {total_pred}, total answers: {total_ans}, total correct predictions: {total_correct}') print(f'Precision: {precision*100:.2f}, Recall: {recall*100:.2f}, F1: {f1*100:.2f}') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') def eval_all(root_path, stage): id_path = os.path.join('./before_pretraining_tsv/before-pretraining-1/', stage+'.id') generate_prediction_file = os.path.join(root_path, 'generate-'+stage+'.txt.eval') prediction_file = os.path.join(root_path, stage+'-predictions.tsv') answer_file = os.path.join(root_path, stage+'-answers.tsv') predict_target_file = os.path.join(root_path, stage+'_predict_loc.json') answer_target_file = os.path.join(root_path, stage+'_answer_loc.json') process(id_path, generate_prediction_file, prediction_file, False) process(id_path, generate_prediction_file, answer_file, True) eval_recipes_stage2(prediction_file, answer_file, predict_target_file, answer_target_file) eval_recipes_stage3(predict_target_file, answer_target_file) if __name__ == '__main__': # eval_dir = 'CHECKPOINT-DIR' # stage = 'valid' # eval_all(eval_dir, stage) eval_dir = '/mnt/v-qshi/project/amlk8s/LEMON/models/finetune-recipes-after-pretraining-without-destroy-seed-44/checkpoint_115_7500' stage = 'test' eval_all(eval_dir, stage)
ContextualSP/lemon/recipes_eval.py/0
{ "file_path": "ContextualSP/lemon/recipes_eval.py", "repo_id": "ContextualSP", "token_count": 4166 }
279
import json import re from tqdm import tqdm import argparse parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('--start_index', type=int) parser.add_argument('--end_index', type=int) parser.add_argument('--indicator_type') args = parser.parse_args() with open(f"./{args.indicator_type}.jsonl", "r") as f : lines = f.readlines() start_index = max(args.start_index, 0) end_index = None if args.end_index == -1 or args.end_index >= len(lines) else args.end_index indicator_type = args.indicator_type stopwords = [] with open("../data/Indicators/stopwords.txt", "r") as f: for l in f.readlines(): l = l.strip().lower() if f == "": continue stopwords.append(l) rexp = re.compile("|".join([r"(\b{}\b)".format(ind) for ind in stopwords])) with open(f"./filter_{indicator_type}/{indicator_type}_{start_index}_{end_index}.jsonl", "w") as f: for l in tqdm(lines[start_index:end_index]): try: dic = json.loads(l) stripped_output = re.sub(rexp, "", dic["output"]) stripped_output = re.sub(r"\W+", " ", stripped_output).strip().split() if len(stripped_output) <= 3 or len(stripped_output) >= 15: continue dic["output"] = dic["output"].replace("_", "") json.dump(dic, f) f.write("\n") except: continue
ContextualSP/logigan/corpus_construction/mlm_corpus/filter.py/0
{ "file_path": "ContextualSP/logigan/corpus_construction/mlm_corpus/filter.py", "repo_id": "ContextualSP", "token_count": 583 }
280
# MultiSpider: Towards Benchmarking Multilingual Text-to-SQL Semantic Parsing In this work, we present MultiSpider, a multilingual text-to-SQL dataset which covers seven languages (English, German, French, Spanish, Japanese, Chinese, and Vietnamese). Please find more details on [paper](https://arxiv.org/pdf/2212.13492.pdf), [code](https://github.com/longxudou/multispider) and [data](https://huggingface.co/datasets/dreamerdeo/multispider). ## Citation If you use our dataset or codebase, please cite our paper: ``` @inproceedings{Dou2022MultiSpiderTB, title={MultiSpider: Towards Benchmarking Multilingual Text-to-SQL Semantic Parsing}, author={Longxu Dou and Yan Gao and Mingyang Pan and Dingzirui Wang and Wanxiang Che and Dechen Zhan and Jian-Guang Lou}, booktitle={AAAI Conference on Artificial Intelligence}, year={2023}, url={https://ojs.aaai.org/index.php/AAAI/article/view/26499/26271} } ```
ContextualSP/multilingual_text_to_sql/README.md/0
{ "file_path": "ContextualSP/multilingual_text_to_sql/README.md", "repo_id": "ContextualSP", "token_count": 283 }
281
#!/usr/bin/env bash split=mcd1 data_path=./data/$split/ key=$split-sketch model_path=./model/sketch_prediction-$key output_file=./output/$key-output echo $output_file WORK_DIR=$(readlink -f "./")/sketch_prediction/ echo $WORK_DIR CUDA_VISIBLE_DEVICES=5 python3 $WORK_DIR/main.py \ --src_path $data_path/train/train_encode.txt --trg_path $data_path/train/train_sketch.txt \ --src_vocabulary $data_path/vocab.cfq.tokens.src --trg_vocabulary $data_path/vocab.cfq.tokens.sketch \ --embedding_size 300 --batch_size 1 --validate_batch_size 1 \ --save_path $model_path/ --save_interval 500 --log_interval 500 --cuda \ --validation_src_path $data_path/test/test_encode.txt --validation_trg_path $data_path/test/test_sketch.txt \ --inference_output $model_path/test --type inference \ --model_init_path $model_path/parser_model_best.pt \ --inference_output $output_file
ContextualSP/poset_decoding/sketch_prediction/evaluate.sh/0
{ "file_path": "ContextualSP/poset_decoding/sketch_prediction/evaluate.sh", "repo_id": "ContextualSP", "token_count": 340 }
282
Documentation Checking Process(Only for the developers) ========================================================== # Why It is necessary for all the developers to generate the rst files which can help us check the documents. # When 1. You add a new function to one of the scripts in the {MatchZoo/matchzoo} or its subdirs 1. You add a new script to {MatchZoo/matchzoo} or its subdirs 1. You add a new directory to {MatchZoo/matchzoo} or its subdirs # How ## Make sure you have installed sphinx 1. Enter the docs directory ``` cd {MatchZoo/docs} ``` 2. Generate the rst files ``` sphinx-apidoc -f -o source ../matchzoo ``` 3. Commit
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/docs/DOCCHECK.md/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/docs/DOCCHECK.md", "repo_id": "ContextualSP", "token_count": 225 }
283
import typing import numpy as np import matchzoo as mz from matchzoo.engine.base_metric import BaseMetric from .tuner import Tuner def tune( params: 'mz.ParamTable', optimizer: str = 'adam', trainloader: mz.dataloader.DataLoader = None, validloader: mz.dataloader.DataLoader = None, embedding: np.ndarray = None, fit_kwargs: dict = None, metric: typing.Union[str, BaseMetric] = None, mode: str = 'maximize', num_runs: int = 10, verbose=1 ): """ Tune model hyper-parameters. A simple shorthand for using :class:`matchzoo.auto.Tuner`. `model.params.hyper_space` reprensents the model's hyper-parameters search space, which is the cross-product of individual hyper parameter's hyper space. When a `Tuner` builds a model, for each hyper parameter in `model.params`, if the hyper-parameter has a hyper-space, then a sample will be taken in the space. However, if the hyper-parameter does not have a hyper-space, then the default value of the hyper-parameter will be used. See `tutorials/model_tuning.ipynb` for a detailed walkthrough on usage. :param params: A completed parameter table to tune. Usually `model.params` of the desired model to tune. `params.completed()` should be `True`. :param optimizer: Str or `Optimizer` class. Optimizer for optimizing model. :param trainloader: Training data to use. Should be a `DataLoader`. :param validloader: Testing data to use. Should be a `DataLoader`. :param embedding: Embedding used by model. :param fit_kwargs: Extra keyword arguments to pass to `fit`. (default: `dict(epochs=10, verbose=0)`) :param metric: Metric to tune upon. Must be one of the metrics in `model.params['task'].metrics`. (default: the first metric in `params.['task'].metrics`. :param mode: Either `maximize` the metric or `minimize` the metric. (default: 'maximize') :param num_runs: Number of runs. Each run takes a sample in `params.hyper_space` and build a model based on the sample. (default: 10) :param callbacks: A list of callbacks to handle. Handled sequentially at every callback point. :param verbose: Verbosity. (default: 1) Example: >>> import matchzoo as mz >>> import numpy as np >>> train = mz.datasets.toy.load_data('train') >>> valid = mz.datasets.toy.load_data('dev') >>> prpr = mz.models.DenseBaseline.get_default_preprocessor() >>> train = prpr.fit_transform(train, verbose=0) >>> valid = prpr.transform(valid, verbose=0) >>> trainset = mz.dataloader.Dataset(train) >>> validset = mz.dataloader.Dataset(valid) >>> padding = mz.models.DenseBaseline.get_default_padding_callback() >>> trainloader = mz.dataloader.DataLoader(trainset, callback=padding) >>> validloader = mz.dataloader.DataLoader(validset, callback=padding) >>> model = mz.models.DenseBaseline() >>> model.params['task'] = mz.tasks.Ranking() >>> optimizer = 'adam' >>> embedding = np.random.uniform(-0.2, 0.2, ... (prpr.context['vocab_size'], 100)) >>> tuner = mz.auto.Tuner( ... params=model.params, ... optimizer=optimizer, ... trainloader=trainloader, ... validloader=validloader, ... embedding=embedding, ... num_runs=1, ... verbose=0 ... ) >>> results = tuner.tune() >>> sorted(results['best'].keys()) ['#', 'params', 'sample', 'score'] """ tuner = Tuner( params=params, optimizer=optimizer, trainloader=trainloader, validloader=validloader, embedding=embedding, fit_kwargs=fit_kwargs, metric=metric, mode=mode, num_runs=num_runs, verbose=verbose ) return tuner.tune()
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/auto/tuner/tune.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/auto/tuner/tune.py", "repo_id": "ContextualSP", "token_count": 1598 }
284
from .load_data import load_data
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/cfq/__init__.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/cfq/__init__.py", "repo_id": "ContextualSP", "token_count": 9 }
285
from .rank_cross_entropy_loss import RankCrossEntropyLoss from .rank_hinge_loss import RankHingeLoss
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/losses/__init__.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/losses/__init__.py", "repo_id": "ContextualSP", "token_count": 33 }
286
"""An implementation of ArcII Model.""" import typing import torch import torch.nn as nn from matchzoo.engine.param_table import ParamTable from matchzoo.engine.base_callback import BaseCallback from matchzoo.engine.param import Param from matchzoo.engine.base_model import BaseModel from matchzoo.engine import hyper_spaces from matchzoo.modules import Matching from matchzoo.dataloader import callbacks from matchzoo.utils import parse_activation class ArcII(BaseModel): """ ArcII Model. Examples: >>> model = ArcII() >>> model.params['embedding_output_dim'] = 300 >>> model.params['kernel_1d_count'] = 32 >>> model.params['kernel_1d_size'] = 3 >>> model.params['kernel_2d_count'] = [16, 32] >>> model.params['kernel_2d_size'] = [[3, 3], [3, 3]] >>> model.params['pool_2d_size'] = [[2, 2], [2, 2]] >>> model.guess_and_fill_missing_params(verbose=0) >>> model.build() """ @classmethod def get_default_params(cls) -> ParamTable: """:return: model default parameters.""" params = super().get_default_params(with_embedding=True) params.add(Param(name='left_length', value=10, desc='Length of left input.')) params.add(Param(name='right_length', value=100, desc='Length of right input.')) params.add(Param(name='kernel_1d_count', value=32, desc="Kernel count of 1D convolution layer.")) params.add(Param(name='kernel_1d_size', value=3, desc="Kernel size of 1D convolution layer.")) params.add(Param(name='kernel_2d_count', value=[32], desc="Kernel count of 2D convolution layer in" "each block")) params.add(Param(name='kernel_2d_size', value=[(3, 3)], desc="Kernel size of 2D convolution layer in" " each block.")) params.add(Param(name='activation', value='relu', desc="Activation function.")) params.add(Param(name='pool_2d_size', value=[(2, 2)], desc="Size of pooling layer in each block.")) params.add(Param( 'dropout_rate', 0.0, hyper_space=hyper_spaces.quniform( low=0.0, high=0.8, q=0.01), desc="The dropout rate." )) return params @classmethod def get_default_padding_callback( cls, fixed_length_left: int = 10, fixed_length_right: int = 100, pad_word_value: typing.Union[int, str] = 0, pad_word_mode: str = 'pre', with_ngram: bool = False, fixed_ngram_length: int = None, pad_ngram_value: typing.Union[int, str] = 0, pad_ngram_mode: str = 'pre' ) -> BaseCallback: """ Model default padding callback. The padding callback's on_batch_unpacked would pad a batch of data to a fixed length. :return: Default padding callback. """ return callbacks.BasicPadding( fixed_length_left=fixed_length_left, fixed_length_right=fixed_length_right, pad_word_value=pad_word_value, pad_word_mode=pad_word_mode, with_ngram=with_ngram, fixed_ngram_length=fixed_ngram_length, pad_ngram_value=pad_ngram_value, pad_ngram_mode=pad_ngram_mode ) def build(self): """ Build model structure. ArcII has the desirable property of letting two sentences meet before their own high-level representations mature. """ self.embedding = self._make_default_embedding_layer() # Phrase level representations self.conv1d_left = nn.Sequential( nn.ConstantPad1d((0, self._params['kernel_1d_size'] - 1), 0), nn.Conv1d( in_channels=self._params['embedding_output_dim'], out_channels=self._params['kernel_1d_count'], kernel_size=self._params['kernel_1d_size'] ) ) self.conv1d_right = nn.Sequential( nn.ConstantPad1d((0, self._params['kernel_1d_size'] - 1), 0), nn.Conv1d( in_channels=self._params['embedding_output_dim'], out_channels=self._params['kernel_1d_count'], kernel_size=self._params['kernel_1d_size'] ) ) # Interaction self.matching = Matching(matching_type='plus') # Build conv activation = parse_activation(self._params['activation']) in_channel_2d = [ self._params['kernel_1d_count'], *self._params['kernel_2d_count'][:-1] ] conv2d = [ self._make_conv_pool_block(ic, oc, ks, activation, ps) for ic, oc, ks, ps in zip(in_channel_2d, self._params['kernel_2d_count'], self._params['kernel_2d_size'], self._params['pool_2d_size']) ] self.conv2d = nn.Sequential(*conv2d) self.dropout = nn.Dropout(p=self._params['dropout_rate']) left_length = self._params['left_length'] right_length = self._params['right_length'] for ps in self._params['pool_2d_size']: left_length = left_length // ps[0] for ps in self._params['pool_2d_size']: right_length = right_length // ps[1] # Build output self.out = self._make_output_layer( left_length * right_length * self._params['kernel_2d_count'][-1] ) def forward(self, inputs): """Forward.""" # Scalar dimensions referenced here: # B = batch size (number of sequences) # D = embedding size # L = `input_left` sequence length # R = `input_right` sequence length # F = number of filters # P = pool size # Left input and right input. # shape = [B, L] # shape = [B, R] input_left, input_right = inputs['text_left'], inputs['text_right'] # Process left and right input. # shape = [B, D, L] # shape = [B, D, R] embed_left = self.embedding(input_left.long()).transpose(1, 2) embed_right = self.embedding(input_right.long()).transpose(1, 2) # shape = [B, L, F1] # shape = [B, R, F1] conv1d_left = self.conv1d_left(embed_left).transpose(1, 2) conv1d_right = self.conv1d_right(embed_right).transpose(1, 2) # Compute matching signal # shape = [B, L, R, F1] embed_cross = self.matching(conv1d_left, conv1d_right) # Convolution # shape = [B, F2, L // P, R // P] conv = self.conv2d(embed_cross.permute(0, 3, 1, 2)) # shape = [B, F2 * (L // P) * (R // P)] embed_flat = self.dropout(torch.flatten(conv, start_dim=1)) # shape = [B, *] out = self.out(embed_flat) return out @classmethod def _make_conv_pool_block( cls, in_channels: int, out_channels: int, kernel_size: tuple, activation: nn.Module, pool_size: tuple, ) -> nn.Module: """Make conv pool block.""" return nn.Sequential( # Same padding nn.ConstantPad2d( (0, kernel_size[1] - 1, 0, kernel_size[0] - 1), 0 ), nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size ), activation, nn.MaxPool2d(kernel_size=pool_size) )
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/arcii.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/arcii.py", "repo_id": "ContextualSP", "token_count": 3863 }
287
"""An implementation of Match-SRNN Model.""" import typing import torch import torch.nn as nn import torch.nn.functional as F from matchzoo.engine.param_table import ParamTable from matchzoo.engine.param import Param from matchzoo.engine.base_model import BaseModel from matchzoo.engine import hyper_spaces from matchzoo.modules import MatchingTensor from matchzoo.modules import SpatialGRU class MatchSRNN(BaseModel): """ Match-SRNN Model. Examples: >>> model = MatchSRNN() >>> model.params['channels'] = 4 >>> model.params['units'] = 10 >>> model.params['dropout'] = 0.2 >>> model.params['direction'] = 'lt' >>> model.guess_and_fill_missing_params(verbose=0) >>> model.build() """ @classmethod def get_default_params(cls) -> ParamTable: """:return: model default parameters.""" params = super().get_default_params( with_embedding=True, with_multi_layer_perceptron=False ) params.add(Param(name='channels', value=4, desc="Number of word interaction tensor channels")) params.add(Param(name='units', value=10, desc="Number of SpatialGRU units")) params.add(Param(name='direction', value='lt', desc="Direction of SpatialGRU scanning")) params.add(Param( 'dropout', 0.2, hyper_space=hyper_spaces.quniform( low=0.0, high=0.8, q=0.01), desc="The dropout rate." )) return params def build(self): """Build model structure.""" self.embedding = self._make_default_embedding_layer() self.dropout = nn.Dropout(p=self._params['dropout']) self.matching_tensor = MatchingTensor( self._params['embedding_output_dim'], channels=self._params["channels"]) self.spatial_gru = SpatialGRU( units=self._params['units'], direction=self._params['direction']) self.out = self._make_output_layer(self._params['units']) def forward(self, inputs): """Forward.""" # Scalar dimensions referenced here: # B = batch size (number of sequences) # D = embedding size # L = `input_left` sequence length # R = `input_right` sequence length # C = number of channels # Left input and right input # query = [B, L] # doc = [B, R] query, doc = inputs["text_left"].long(), inputs["text_right"].long() # Process left and right input # query = [B, L, D] # doc = [B, R, D] query = self.embedding(query) doc = self.embedding(doc) # query = [B, L, D] # doc = [B, R, D] query = self.dropout(query) doc = self.dropout(doc) # Get matching tensor # matching_tensor = [B, C, L, R] matching_tensor = self.matching_tensor(query, doc) # Apply spatial GRU to the word level interaction tensor # h_ij = [B, U] h_ij = self.spatial_gru(matching_tensor) # h_ij = [B, U] h_ij = self.dropout(h_ij) # Make output layer out = self.out(h_ij) return out
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/match_srnn.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/match_srnn.py", "repo_id": "ContextualSP", "token_count": 1487 }
288
import torch import torch.nn as nn from torch.nn import functional as F class StackedBRNN(nn.Module): """ Stacked Bi-directional RNNs. Differs from standard PyTorch library in that it has the option to save and concat the hidden states between layers. (i.e. the output hidden size for each sequence input is num_layers * hidden_size). Examples: >>> import torch >>> rnn = StackedBRNN( ... input_size=10, ... hidden_size=10, ... num_layers=2, ... dropout_rate=0.2, ... dropout_output=True, ... concat_layers=False ... ) >>> x = torch.randn(2, 5, 10) >>> x.size() torch.Size([2, 5, 10]) >>> x_mask = (torch.ones(2, 5) == 1) >>> rnn(x, x_mask).shape torch.Size([2, 5, 20]) """ def __init__(self, input_size, hidden_size, num_layers, dropout_rate=0, dropout_output=False, rnn_type=nn.LSTM, concat_layers=False): """Stacked Bidirectional LSTM.""" super().__init__() self.dropout_output = dropout_output self.dropout_rate = dropout_rate self.num_layers = num_layers self.concat_layers = concat_layers self.rnns = nn.ModuleList() for i in range(num_layers): input_size = input_size if i == 0 else 2 * hidden_size self.rnns.append(rnn_type(input_size, hidden_size, num_layers=1, bidirectional=True)) def forward(self, x, x_mask): """Encode either padded or non-padded sequences.""" if x_mask.data.sum() == 0: # No padding necessary. output = self._forward_unpadded(x, x_mask) output = self._forward_unpadded(x, x_mask) return output.contiguous() def _forward_unpadded(self, x, x_mask): """Faster encoding that ignores any padding.""" # Transpose batch and sequence dims x = x.transpose(0, 1) # Encode all layers outputs = [x] for i in range(self.num_layers): rnn_input = outputs[-1] # Apply dropout to hidden input if self.dropout_rate > 0: rnn_input = F.dropout(rnn_input, p=self.dropout_rate, training=self.training) # Forward rnn_output = self.rnns[i](rnn_input)[0] outputs.append(rnn_output) # Concat hidden layers if self.concat_layers: output = torch.cat(outputs[1:], 2) else: output = outputs[-1] # Transpose back output = output.transpose(0, 1) # Dropout on output layer if self.dropout_output and self.dropout_rate > 0: output = F.dropout(output, p=self.dropout_rate, training=self.training) return output
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/modules/stacked_brnn.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/modules/stacked_brnn.py", "repo_id": "ContextualSP", "token_count": 1557 }
289
import re from .unit import Unit class PuncRemoval(Unit): """Process unit for remove punctuations.""" _MATCH_PUNC = re.compile(r'[^\w\s]') def transform(self, input_: list) -> list: """ Remove punctuations from list of tokens. :param input_: list of toekns. :return rv: tokens without punctuation. """ # return [token for token in input_ if # not self._MATCH_PUNC.search(token)] return input_
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/punc_removal.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/punc_removal.py", "repo_id": "ContextualSP", "token_count": 209 }
290
"""Average meter.""" class AverageMeter(object): """ Computes and stores the average and current value. Examples: >>> am = AverageMeter() >>> am.update(1) >>> am.avg 1.0 >>> am.update(val=2.5, n=2) >>> am.avg 2.0 """ def __init__(self): """Average meter constructor.""" self.reset() def reset(self): """Reset AverageMeter.""" self._val = 0. self._avg = 0. self._sum = 0. self._count = 0. def update(self, val, n=1): """Update value.""" self._val = val self._sum += val * n self._count += n self._avg = self._sum / self._count @property def avg(self): """Get avg.""" return self._avg
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/utils/average_meter.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/utils/average_meter.py", "repo_id": "ContextualSP", "token_count": 395 }
291
import pytest import shutil import matchzoo as mz from matchzoo.engine.base_preprocessor import BasePreprocessor @pytest.fixture def base_preprocessor(): BasePreprocessor.__abstractmethods__ = set() base_processor = BasePreprocessor() return base_processor def test_save_load(base_preprocessor): dirpath = '.tmpdir' base_preprocessor.save(dirpath) assert mz.load_preprocessor(dirpath) shutil.rmtree(dirpath)
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/engine/test_base_preprocessor.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/engine/test_base_preprocessor.py", "repo_id": "ContextualSP", "token_count": 154 }
292
<jupyter_start><jupyter_code>import torch import numpy as np import pandas as pd import matchzoo as mz print('matchzoo version', mz.__version__) classification_task = mz.tasks.Classification(num_classes=2) classification_task.metrics = ['acc'] print("`classification_task` initialized with metrics", classification_task.metrics) print('data loading ...') train_pack_raw = mz.datasets.quora_qp.load_data('train', task=classification_task) dev_pack_raw = mz.datasets.quora_qp.load_data('dev', task=classification_task) test_pack_raw = mz.datasets.quora_qp.load_data('test', task=classification_task) print('data loaded as `train_pack_raw` `dev_pack_raw` `test_pack_raw`') preprocessor = mz.models.ESIM.get_default_preprocessor() train_pack_processed = preprocessor.fit_transform(train_pack_raw) dev_pack_processed = preprocessor.transform(dev_pack_raw) preprocessor.context glove_embedding = mz.datasets.embeddings.load_glove_embedding(dimension=100) term_index = preprocessor.context['vocab_unit'].state['term_index'] embedding_matrix = glove_embedding.build_matrix(term_index) l2_norm = np.sqrt((embedding_matrix * embedding_matrix).sum(axis=1)) embedding_matrix = embedding_matrix / l2_norm[:, np.newaxis] trainset = mz.dataloader.Dataset( data_pack=train_pack_processed, mode='point' ) devset = mz.dataloader.Dataset( data_pack=dev_pack_processed, mode='point' ) padding_callback = mz.models.ESIM.get_default_padding_callback() trainloader = mz.dataloader.DataLoader( dataset=trainset, batch_size=40, stage='train', sort=False, callback=padding_callback ) devloader = mz.dataloader.DataLoader( dataset=devset, batch_size=40, stage='dev', sort=False, callback=padding_callback ) model = mz.models.ESIM() model.params['task'] = classification_task model.params['embedding'] = embedding_matrix model.params['mask_value'] = 0 model.params['dropout'] = 0.2 model.params['hidden_size'] = 200 model.params['lstm_layer'] = 1 model.build() print(model) print('Trainable params: ', sum(p.numel() for p in model.parameters() if p.requires_grad)) optimizer = torch.optim.Adam(model.parameters(),lr=1e-5) trainer = mz.trainers.Trainer( model=model, optimizer=optimizer, trainloader=trainloader, validloader=devloader, validate_interval=None, epochs=5 ) trainer.run()<jupyter_output><empty_output>
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tutorials/classification/esim.ipynb/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tutorials/classification/esim.ipynb", "repo_id": "ContextualSP", "token_count": 897 }
293
<jupyter_start><jupyter_code>%run init.ipynb preprocessor = mz.models.MatchSRNN.get_default_preprocessor() train_pack_processed = preprocessor.fit_transform(train_pack_raw) dev_pack_processed = preprocessor.transform(dev_pack_raw) test_pack_processed = preprocessor.transform(test_pack_raw) preprocessor.context glove_embedding = mz.datasets.embeddings.load_glove_embedding(dimension=100) term_index = preprocessor.context['vocab_unit'].state['term_index'] embedding_matrix = glove_embedding.build_matrix(term_index) l2_norm = np.sqrt((embedding_matrix * embedding_matrix).sum(axis=1)) embedding_matrix = embedding_matrix / l2_norm[:, np.newaxis] trainset = mz.dataloader.Dataset( data_pack=train_pack_processed, mode='pair', num_dup=2, num_neg=1 ) testset = mz.dataloader.Dataset( data_pack=test_pack_processed ) padding_callback = mz.models.MatchSRNN.get_default_padding_callback() trainloader = mz.dataloader.DataLoader( dataset=trainset, batch_size=20, stage='train', resample=True, sort=False, callback=padding_callback ) testloader = mz.dataloader.DataLoader( dataset=testset, batch_size=20, stage='dev', callback=padding_callback ) model = mz.models.MatchSRNN() model.params['task'] = ranking_task model.params['embedding'] = embedding_matrix model.params['channels'] = 4 model.params['units'] = 10 model.params['dropout'] = 0.2 model.params['direction'] = 'lt' model.build() print(model) print('Trainable params: ', sum(p.numel() for p in model.parameters() if p.requires_grad)) optimizer = torch.optim.Adadelta(model.parameters()) trainer = mz.trainers.Trainer( model=model, optimizer=optimizer, trainloader=trainloader, validloader=testloader, validate_interval=None, epochs=10 ) trainer.run()<jupyter_output><empty_output>
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tutorials/ranking/match_srnn.ipynb/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tutorials/ranking/match_srnn.ipynb", "repo_id": "ContextualSP", "token_count": 703 }
294
#!/usr/bin/env bash export seed=1 export config_file=train_configs_bert/concat.none.jsonnet export model_file=checkpoints_sparc/sparc_bert_concat_none_model export tables_file=dataset_sparc/tables.json export database_path=dataset_sparc/database export dataset_path=dataset_sparc export train_data_path=dataset_sparc/train.json export validation_data_path=dataset_sparc/dev.json allennlp train -s ${model_file} ${config_file} \ --include-package dataset_reader.sparc_reader \ --include-package models.sparc_parser \ -o "{\"model.serialization_dir\":\"${model_file}\",\"random_seed\":\"${seed}\",\"numpy_seed\":\"${seed}\",\"pytorch_seed\":\"${seed}\",\"dataset_reader.tables_file\":\"${tables_file}\",\"dataset_reader.database_path\":\"${database_path}\",\"train_data_path\":\"${train_data_path}\",\"validation_data_path\":\"${validation_data_path}\",\"model.dataset_path\":\"${dataset_path}\"}"
ContextualSP/semantic_parsing_in_context/bash_files/linux/train_sparc_bert.bash/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/bash_files/linux/train_sparc_bert.bash", "repo_id": "ContextualSP", "token_count": 331 }
295
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import glob import logging import os from queue import Empty from typing import List, Iterable, Iterator, Optional import numpy as np from allennlp.data.instance import Instance from torch.multiprocessing import Process, Queue, Value, log_to_stderr class logger: """ multiprocessing.log_to_stderr causes some output in the logs even when we don't use this dataset reader. This is a small hack to instantiate the stderr logger lazily only when it's needed (which is only when using the MultiprocessDatasetReader) """ _logger = None @classmethod def info(cls, message: str) -> None: if cls._logger is None: cls._logger = log_to_stderr() cls._logger.setLevel(logging.INFO) cls._logger.info(message) def _worker( call_back, input_queue: Queue, output_queue: Queue, num_active_workers: Value, num_inflight_items: Value, worker_id: int, ) -> None: """ A worker that pulls filenames off the input queue, uses the dataset reader to read them, and places the generated instances on the output queue. When there are no filenames left on the input queue, it decrements num_active_workers to signal completion. """ logger.info(f"Reader worker: {worker_id} PID: {os.getpid()}") # Keep going until you get a file_path that's None. while True: file_path = input_queue.get() if file_path is None: # It's important that we close and join the queue here before # decrementing num_active_workers. Otherwise our parent may join us # before the queue's feeder thread has passed all buffered items to # the underlying pipe resulting in a deadlock. # # See: # https://docs.python.org/3.6/library/multiprocessing.html?highlight=process#pipes-and-queues # https://docs.python.org/3.6/library/multiprocessing.html?highlight=process#programming-guidelines output_queue.close() output_queue.join_thread() # Decrementing is not atomic. # See https://docs.python.org/2/library/multiprocessing.html#multiprocessing.Value. with num_active_workers.get_lock(): num_active_workers.value -= 1 logger.info(f"Reader worker {worker_id} finished") break logger.info(f"reading instances from {file_path}") instance = call_back(file_path) with num_inflight_items.get_lock(): num_inflight_items.value += 1 output_queue.put(instance) class QIterable(Iterable[Instance]): """ You can't set attributes on Iterators, so this is just a dumb wrapper that exposes the output_queue. """ def __init__(self, output_queue_size, epochs_per_read, num_workers, call_back, file_path) -> None: self.output_queue = Queue(output_queue_size) self.epochs_per_read = epochs_per_read self.num_workers = num_workers self.file_path = file_path self.call_back = call_back # Initialized in start. self.input_queue: Optional[Queue] = None self.processes: List[Process] = [] # The num_active_workers and num_inflight_items counts in conjunction # determine whether there could be any outstanding instances. self.num_active_workers: Optional[Value] = None self.num_inflight_items: Optional[Value] = None def __iter__(self) -> Iterator[Instance]: self.start() # Keep going as long as not all the workers have finished or there are items in flight. while self.num_active_workers.value > 0 or self.num_inflight_items.value > 0: # Inner loop to minimize locking on self.num_active_workers. while True: try: # Non-blocking to handle the empty-queue case. yield self.output_queue.get(block=False, timeout=1.0) with self.num_inflight_items.get_lock(): self.num_inflight_items.value -= 1 except Empty: # The queue could be empty because the workers are # all finished or because they're busy processing. # The outer loop distinguishes between these two # cases. break self.join() def start(self) -> None: shards = glob.glob(self.file_path) # Ensure a consistent order before shuffling for testing. shards.sort() num_shards = len(shards) # If we want multiple epochs per read, put shards in the queue multiple times. self.input_queue = Queue(num_shards * self.epochs_per_read + self.num_workers) for _ in range(self.epochs_per_read): np.random.shuffle(shards) for shard in shards: self.input_queue.put(shard) # Then put a None per worker to signify no more files. for _ in range(self.num_workers): self.input_queue.put(None) assert ( not self.processes ), "Process list non-empty! You must call QIterable.join() before restarting." self.num_active_workers = Value("i", self.num_workers) self.num_inflight_items = Value("i", 0) for worker_id in range(self.num_workers): process = Process( target=_worker, args=( self.call_back, self.input_queue, self.output_queue, self.num_active_workers, self.num_inflight_items, worker_id, ), ) logger.info(f"starting worker {worker_id}") process.start() self.processes.append(process) def join(self) -> None: for process in self.processes: process.join() self.processes.clear() def __del__(self) -> None: """ Terminate processes if the user hasn't joined. This is necessary as leaving stray processes running can corrupt shared state. In brief, we've observed shared memory counters being reused (when the memory was free from the perspective of the parent process) while the stray workers still held a reference to them. For a discussion of using destructors in Python in this manner, see https://eli.thegreenplace.net/2009/06/12/safely-using-destructors-in-python/. """ for process in self.processes: process.terminate()
ContextualSP/semantic_parsing_in_context/dataset_reader/reader_queue.py/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/dataset_reader/reader_queue.py", "repo_id": "ContextualSP", "token_count": 2878 }
296
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. """ Mainly borrowed from allennlp package """ from collections import defaultdict from typing import Any, Dict, List, Set, Tuple from overrides import overrides import torch from torch.nn.modules.rnn import LSTM, LSTMCell from torch.nn.modules.linear import Linear from allennlp.modules import Attention from allennlp.nn import util, Activation from models.states_machine.rnn_statelet import RnnStatelet from models.states_machine.grammar_based_state import GrammarBasedState from allennlp.state_machines.transition_functions.transition_function import TransitionFunction class BasicTransitionFunction(TransitionFunction[GrammarBasedState]): """ This is a typical transition function for a state-based decoder. We use an LSTM to track decoder state, and at every timestep we compute an attention over the input question/utterance to help in selecting the action. All actions have an embedding, and we use a dot product between a predicted action embedding and the allowed actions to compute a distribution over actions at each timestep. We allow the first action to be predicted separately from everything else. This is optional, and is because that's how the original WikiTableQuestions semantic parser was written. The intuition is that maybe you want to predict the type of your output program outside of the typical LSTM decoder (or maybe Jayant just didn't realize this could be treated as another action...). Parameters ---------- encoder_output_dim : ``int`` action_embedding_dim : ``int`` input_attention : ``Attention`` activation : ``Activation``, optional (default=relu) The activation that gets applied to the decoder LSTM input and to the action query. predict_start_type_separately : ``bool``, optional (default=True) If ``True``, we will predict the initial action (which is typically the base type of the logical form) using a different mechanism than our typical action decoder. We basically just do a projection of the hidden state, and don't update the decoder RNN. num_start_types : ``int``, optional (default=None) If ``predict_start_type_separately`` is ``True``, this is the number of start types that are in the grammar. We need this so we can construct parameters with the right shape. This is unused if ``predict_start_type_separately`` is ``False``. add_action_bias : ``bool``, optional (default=True) If ``True``, there has been a bias dimension added to the embedding of each action, which gets used when predicting the next action. We add a dimension of ones to our predicted action vector in this case to account for that. dropout : ``float`` (optional, default=0.0) num_layers: ``int``, (optional, default=1) The number of layers in the decoder LSTM. """ def __init__(self, encoder_output_dim: int, decoder_input_dim: int, action_embedding_dim: int, input_attention: Attention, sql_attention: Attention = None, sql_output_dim: int = 100, activation: Activation = Activation.by_name('relu')(), predict_start_type_separately: bool = True, num_start_types: int = None, add_action_bias: bool = True, dropout: float = 0.0, num_layers: int = 1) -> None: super().__init__() self._input_attention = input_attention if sql_attention: self._sql_attention = sql_attention self._hidden_to_sql = Linear(encoder_output_dim, sql_output_dim) self._add_action_bias = add_action_bias self._activation = activation self._num_layers = num_layers self._predict_start_type_separately = predict_start_type_separately if predict_start_type_separately: self._start_type_predictor = Linear(encoder_output_dim, num_start_types) self._num_start_types = num_start_types else: self._start_type_predictor = None self._num_start_types = None # Decoder output dim needs to be the same as the encoder output dim since we initialize the # hidden state of the decoder with the final hidden state of the encoder. output_dim = encoder_output_dim input_dim = output_dim # Our decoder input will be the concatenation of the decoder hidden state and the previous # action embedding, and we'll project that down to the decoder's `input_dim` # [attention-based utterance; attention-based sql query; hidden state] self._input_projection_layer = Linear(decoder_input_dim + action_embedding_dim, input_dim) # Before making a prediction, we'll compute an attention over the input given our updated # hidden state. Then we concatenate those with the decoder state and project to # `action_embedding_dim` to make a prediction. self._output_projection_layer = Linear(output_dim + decoder_input_dim, action_embedding_dim) if self._num_layers > 1: self._decoder_cell = LSTM(input_dim, output_dim, self._num_layers) else: # We use a ``LSTMCell`` if we just have one layer because it is slightly faster since we are # just running the LSTM for one step each time. self._decoder_cell = LSTMCell(input_dim, output_dim) if dropout > 0: self._dropout = torch.nn.Dropout(p=dropout) else: self._dropout = lambda x: x @overrides def take_step(self, state: GrammarBasedState, max_actions: int = None, allowed_actions: List[Set[int]] = None) -> List[GrammarBasedState]: if self._predict_start_type_separately and not state.action_history[0]: # The wikitables parser did something different when predicting the start type, which # is our first action. So in this case we break out into a different function. We'll # ignore max_actions on our first step, assuming there aren't that many start types. return self._take_first_step(state, allowed_actions) # Taking a step in the decoder consists of three main parts. First, we'll construct the # input to the decoder and update the decoder's hidden state. Second, we'll use this new # hidden state (and maybe other information) to predict an action. Finally, we will # construct new states for the next step. Each new state corresponds to one valid action # that can be taken from the current state, and they are ordered by their probability of # being selected. updated_state = self._update_decoder_state(state) batch_results = self._compute_action_probabilities(state, updated_state['hidden_state'], updated_state['attention_weights'], updated_state['predicted_action_embeddings']) new_states = self._construct_next_states(state, updated_state, batch_results, max_actions, allowed_actions) return new_states def _update_decoder_state(self, state: GrammarBasedState) -> Dict[str, torch.Tensor]: # For updating the decoder, we're doing a bunch of tensor operations that can be batched # without much difficulty. So, we take all group elements and batch their tensors together # before doing these decoder operations. group_size = len(state.batch_indices) attended_question = torch.stack([rnn_state.attended_input for rnn_state in state.rnn_state]) use_sql_attention = False # use sql encoding attention if state.rnn_state[0].attended_sql_input is not None: use_sql_attention = True if use_sql_attention: attended_sql_input = torch.stack([rnn_state.attended_sql_input for rnn_state in state.rnn_state]) else: attended_sql_input = [None] * group_size if self._num_layers > 1: hidden_state = torch.stack([rnn_state.hidden_state for rnn_state in state.rnn_state], 1) memory_cell = torch.stack([rnn_state.memory_cell for rnn_state in state.rnn_state], 1) else: hidden_state = torch.stack([rnn_state.hidden_state for rnn_state in state.rnn_state]) memory_cell = torch.stack([rnn_state.memory_cell for rnn_state in state.rnn_state]) previous_action_embedding = torch.stack([rnn_state.previous_action_embedding for rnn_state in state.rnn_state]) if use_sql_attention: decoder_input = torch.cat([attended_question, attended_sql_input, previous_action_embedding], -1) else: decoder_input = torch.cat([attended_question, previous_action_embedding], -1) # (group_size, decoder_input_dim) projected_input = self._input_projection_layer(decoder_input) decoder_input = self._activation(projected_input) if self._num_layers > 1: _, (hidden_state, memory_cell) = self._decoder_cell(decoder_input.unsqueeze(0), (hidden_state, memory_cell)) else: hidden_state, memory_cell = self._decoder_cell(decoder_input, (hidden_state, memory_cell)) hidden_state = self._dropout(hidden_state) # (group_size, encoder_output_dim) encoder_outputs = torch.stack([state.rnn_state[0].encoder_outputs[i] for i in state.batch_indices]) encoder_output_mask = torch.stack([state.rnn_state[0].encoder_output_mask[i] for i in state.batch_indices]) if self._num_layers > 1: decoder_memory = [hidden_state[-1]] else: decoder_memory = [hidden_state] if use_sql_attention: sql_outputs = torch.stack([state.rnn_state[0].sql_outputs[i] for i in state.batch_indices]) sql_output_mask = torch.stack([state.rnn_state[0].sql_output_mask[i] for i in state.batch_indices]) if self._num_layers > 1: query_vec = self._hidden_to_sql(hidden_state[-1]) attended_sql_input = self.attend_on_sql(query_vec, sql_outputs, sql_output_mask) else: query_vec = self._hidden_to_sql(hidden_state) attended_sql_input = self.attend_on_sql(query_vec, sql_outputs, sql_output_mask) decoder_memory.append(attended_sql_input) if self._num_layers > 1: attended_question, attention_weights = self.attend_on_question(hidden_state[-1], encoder_outputs, encoder_output_mask) else: attended_question, attention_weights = self.attend_on_question(hidden_state, encoder_outputs, encoder_output_mask) decoder_memory.append(attended_question) action_query = torch.cat(decoder_memory, dim=-1) # (group_size, action_embedding_dim) projected_query = self._activation(self._output_projection_layer(action_query)) predicted_action_embeddings = self._dropout(projected_query) if self._add_action_bias: # NOTE: It's important that this happens right before the dot product with the action # embeddings. Otherwise this isn't a proper bias. We do it here instead of right next # to the `.mm` below just so we only do it once for the whole group. ones = predicted_action_embeddings.new([[1] for _ in range(group_size)]) predicted_action_embeddings = torch.cat([predicted_action_embeddings, ones], dim=-1) return { 'hidden_state': hidden_state, 'memory_cell': memory_cell, 'attended_question': attended_question, 'attention_weights': attention_weights, 'predicted_action_embeddings': predicted_action_embeddings, 'attended_sql_input': attended_sql_input } def _compute_action_probabilities(self, state: GrammarBasedState, hidden_state: torch.Tensor, attention_weights: torch.Tensor, predicted_action_embeddings: torch.Tensor ) -> Dict[int, List[Tuple[int, Any, Any, Any, List[int]]]]: # We take a couple of extra arguments here because subclasses might use them. # pylint: disable=unused-argument,no-self-use # In this section we take our predicted action embedding and compare it to the available # actions in our current state (which might be different for each group element). For # computing action scores, we'll forget about doing batched / grouped computation, as it # adds too much complexity and doesn't speed things up, anyway, with the operations we're # doing here. This means we don't need any action masks, as we'll only get the right # lengths for what we're computing. group_size = len(state.batch_indices) actions = state.get_valid_actions() batch_results: Dict[int, List[Tuple[int, Any, Any, Any, List[int]]]] = defaultdict(list) for group_index in range(group_size): instance_actions = actions[group_index] predicted_action_embedding = predicted_action_embeddings[group_index] action_embeddings, output_action_embeddings, action_ids = instance_actions['global'] # This is just a matrix product between a (num_actions, embedding_dim) matrix and an # (embedding_dim, 1) matrix. action_logits = action_embeddings.mm(predicted_action_embedding.unsqueeze(-1)).squeeze(-1) current_log_probs = torch.nn.functional.log_softmax(action_logits, dim=-1) # This is now the total score for each state after taking each action. We're going to # sort by this later, so it's important that this is the total score, not just the # score for the current action. log_probs = state.score[group_index] + current_log_probs batch_results[state.batch_indices[group_index]].append((group_index, log_probs, current_log_probs, output_action_embeddings, action_ids)) return batch_results def _construct_next_states(self, state: GrammarBasedState, updated_rnn_state: Dict[str, torch.Tensor], batch_action_probs: Dict[int, List[Tuple[int, Any, Any, Any, List[int]]]], max_actions: int, allowed_actions: List[Set[int]]): # pylint: disable=no-self-use # We'll yield a bunch of states here that all have a `group_size` of 1, so that the # learning algorithm can decide how many of these it wants to keep, and it can just regroup # them later, as that's a really easy operation. # # We first define a `make_state` method, as in the logic that follows we want to create # states in a couple of different branches, and we don't want to duplicate the # state-creation logic. This method creates a closure using variables from the method, so # it doesn't make sense to pull it out of here. # Each group index here might get accessed multiple times, and doing the slicing operation # each time is more expensive than doing it once upfront. These three lines give about a # 10% speedup in training time. group_size = len(state.batch_indices) chunk_index = 1 if self._num_layers > 1 else 0 hidden_state = [x.squeeze(chunk_index) for x in updated_rnn_state['hidden_state'].chunk(group_size, chunk_index)] memory_cell = [x.squeeze(chunk_index) for x in updated_rnn_state['memory_cell'].chunk(group_size, chunk_index)] attended_question = [x.squeeze(0) for x in updated_rnn_state['attended_question'].chunk(group_size, 0)] # TODO: if updated_rnn_state['attended_sql_input'][0] is not None: attended_sql_input = [x.squeeze(0) for x in updated_rnn_state['attended_sql_input'].chunk(group_size, 0)] else: attended_sql_input = updated_rnn_state['attended_sql_input'] def make_state(group_index: int, action: int, new_score: torch.Tensor, action_embedding: torch.Tensor) -> GrammarBasedState: new_rnn_state = RnnStatelet(hidden_state[group_index], memory_cell[group_index], action_embedding, attended_question[group_index], state.rnn_state[group_index].encoder_outputs, state.rnn_state[group_index].encoder_output_mask, attended_sql_input[group_index], state.rnn_state[group_index].sql_outputs, state.rnn_state[group_index].sql_output_mask) batch_index = state.batch_indices[group_index] for i, _, current_log_probs, _, actions in batch_action_probs[batch_index]: if i == group_index: considered_actions = actions probabilities = current_log_probs.exp().cpu() break return state.new_state_from_group_index(group_index, action, new_score, new_rnn_state, considered_actions, probabilities, updated_rnn_state['attention_weights']) new_states = [] for _, results in batch_action_probs.items(): if allowed_actions and not max_actions: # If we're given a set of allowed actions, and we're not just keeping the top k of # them, we don't need to do any sorting, so we can speed things up quite a bit. for group_index, log_probs, _, action_embeddings, actions in results: for log_prob, action_embedding, action in zip(log_probs, action_embeddings, actions): if action in allowed_actions[group_index]: new_states.append(make_state(group_index, action, log_prob, action_embedding)) else: # In this case, we need to sort the actions. We'll do that on CPU, as it's easier, # and our action list is on the CPU, anyway. group_indices = [] group_log_probs: List[torch.Tensor] = [] group_action_embeddings = [] group_actions = [] for group_index, log_probs, _, action_embeddings, actions in results: if not actions: continue group_indices.extend([group_index] * len(actions)) group_log_probs.append(log_probs) group_action_embeddings.append(action_embeddings) group_actions.extend(actions) if len(group_log_probs) == 0: continue log_probs = torch.cat(group_log_probs, dim=0) action_embeddings = torch.cat(group_action_embeddings, dim=0) log_probs_cpu = log_probs.data.cpu().numpy().tolist() batch_states = [(log_probs_cpu[i], group_indices[i], log_probs[i], action_embeddings[i], group_actions[i]) for i in range(len(group_actions)) if (not allowed_actions or group_actions[i] in allowed_actions[group_indices[i]])] # We use a key here to make sure we're not trying to compare anything on the GPU. batch_states.sort(key=lambda x: x[0], reverse=True) if max_actions: batch_states = batch_states[:max_actions] for _, group_index, log_prob, action_embedding, action in batch_states: new_states.append(make_state(group_index, action, log_prob, action_embedding)) return new_states def _take_first_step(self, state: GrammarBasedState, allowed_actions: List[Set[int]] = None) -> List[GrammarBasedState]: # We'll just do a projection from the current hidden state (which was initialized with the # final encoder output) to the number of start actions that we have, normalize those # logits, and use that as our score. We end up duplicating some of the logic from # `_compute_new_states` here, but we do things slightly differently, and it's easier to # just copy the parts we need than to try to re-use that code. # (group_size, hidden_dim) hidden_state = torch.stack([rnn_state.hidden_state for rnn_state in state.rnn_state]) # (group_size, num_start_type) start_action_logits = self._start_type_predictor(hidden_state) log_probs = torch.nn.functional.log_softmax(start_action_logits, dim=-1) sorted_log_probs, sorted_actions = log_probs.sort(dim=-1, descending=True) sorted_actions = sorted_actions.detach().cpu().numpy().tolist() if state.debug_info is not None: probs_cpu = log_probs.exp().detach().cpu().numpy().tolist() else: probs_cpu = [None] * len(state.batch_indices) # state.get_valid_actions() will return a list that is consistently sorted, so as along as # the set of valid start actions never changes, we can just match up the log prob indices # above with the position of each considered action, and we're good. valid_actions = state.get_valid_actions() considered_actions = [actions['global'][2] for actions in valid_actions] if len(considered_actions[0]) != self._num_start_types: raise RuntimeError("Calculated wrong number of initial actions. Expected " f"{self._num_start_types}, found {len(considered_actions[0])}.") best_next_states: Dict[int, List[Tuple[int, int, int]]] = defaultdict(list) for group_index, (batch_index, group_actions) in enumerate(zip(state.batch_indices, sorted_actions)): for action_index, action in enumerate(group_actions): # `action` is currently the index in `log_probs`, not the actual action ID. To get # the action ID, we need to go through `considered_actions`. action = considered_actions[group_index][action] if allowed_actions is not None and action not in allowed_actions[group_index]: # This happens when our _decoder trainer_ wants us to only evaluate certain # actions, likely because they are the gold actions in this state. We just skip # emitting any state that isn't allowed by the trainer, because constructing the # new state can be expensive. continue best_next_states[batch_index].append((group_index, action_index, action)) new_states = [] for batch_index, best_states in sorted(best_next_states.items()): for group_index, action_index, action in best_states: # We'll yield a bunch of states here that all have a `group_size` of 1, so that the # learning algorithm can decide how many of these it wants to keep, and it can just # regroup them later, as that's a really easy operation. new_score = state.score[group_index] + sorted_log_probs[group_index, action_index] # This part is different from `_compute_new_states` - we're just passing through # the previous RNN state, as predicting the start type wasn't included in the # decoder RNN in the original model. new_rnn_state = state.rnn_state[group_index] new_state = state.new_state_from_group_index(group_index, action, new_score, new_rnn_state, considered_actions[group_index], probs_cpu[group_index], None) new_states.append(new_state) return new_states def attend_on_question(self, query: torch.Tensor, encoder_outputs: torch.Tensor, encoder_output_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Given a query (which is typically the decoder hidden state), compute an attention over the output of the question encoder, and return a weighted sum of the question representations given this attention. We also return the attention weights themselves. This is a simple computation, but we have it as a separate method so that the ``forward`` method on the main parser module can call it on the initial hidden state, to simplify the logic in ``take_step``. """ # (group_size, question_length) question_attention_weights = self._input_attention(query, encoder_outputs, encoder_output_mask) # (group_size, encoder_output_dim) attended_question = util.weighted_sum(encoder_outputs, question_attention_weights) return attended_question, question_attention_weights def attend_on_sql(self, query: torch.Tensor, sql_outputs: torch.Tensor, sql_output_mask: torch.Tensor) -> torch.Tensor: # (group_size, question_length) assert self._sql_attention is not None question_attention_weights = self._sql_attention(query, sql_outputs, sql_output_mask) # (group_size, encoder_output_dim) attended_question = util.weighted_sum(sql_outputs, question_attention_weights) return attended_question
ContextualSP/semantic_parsing_in_context/models/transition_functions/basic_transition_function.py/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/models/transition_functions/basic_transition_function.py", "repo_id": "ContextualSP", "token_count": 13252 }
297
{ "random_seed": 42, "numpy_seed": 42, "pytorch_seed": 42, "dataset_reader": { "type": "sparc", "lazy": false, "loading_limit": -1, "context_mode": "none" }, "model": { "type": "sparc", "loss_mask": 8, "serialization_dir": "", "text_embedder": { "tokens": { "type": "embedding", "embedding_dim": 100, "trainable": true, "padding_index": 0 } }, "action_embedding_dim": 100, "entity_embedding_dim": 100, "text_encoder": { "type": "lstm", "input_size": 200, "hidden_size": 200, "bidirectional": true, "num_layers": 1 }, "decoder_beam_search": { "beam_size": 10 }, "training_beam_size": 1, "max_decoding_steps": 100, "input_attention": { "type": "dot_product" }, "use_feature_score": true, "use_schema_encoder": true, "use_linking_embedding": true, "use_attend_over_history": true, "use_context_gate": true, "gate_attn_size": 100, "attn_on_self": true, "use_sigmoid_gate": false, "use_unk_candidate": true, "dropout_rate": 0.5 }, "iterator": { "type": "basic", "batch_size": 8 }, "validation_iterator": { "type": "basic", "batch_size": 1 }, "trainer": { "num_epochs": 100, "cuda_device": 0, "patience": 10, "validation_metric": "+sql_exact_match", "optimizer": { "type": "adam", "lr": 1e-3 }, "num_serialized_models_to_keep": 10, "should_log_learning_rate": true } }
ContextualSP/semantic_parsing_in_context/train_configs/none.gate.jsonnet/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/train_configs/none.gate.jsonnet", "repo_id": "ContextualSP", "token_count": 691 }
298
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and Microsoft Corporation. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import contextlib import sys from collections import Counter from multiprocessing import Pool # from .bpe_utils import get_encoder from fairseq.data.encoders.gpt2_bpe import get_encoder def main(): """ Helper script to encode raw text with the GPT-2 BPE using multiple processes. The encoder.json and vocab.bpe files can be obtained here: - https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json - https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe """ parser = argparse.ArgumentParser() parser.add_argument( "--encoder-json", help="path to encoder.json", ) parser.add_argument( "--vocab-bpe", type=str, help="path to vocab.bpe", ) # parser.add_argument( # "--special-token", # type=str, # help="path to special tokens split by \n" # ) parser.add_argument( "--inputs", nargs="+", default=["-"], help="input files to filter/encode", ) parser.add_argument( "--outputs", nargs="+", default=["-"], help="path to save encoded outputs", ) parser.add_argument( "--keep-empty", action="store_true", help="keep empty lines", ) parser.add_argument("--workers", type=int, default=20) args = parser.parse_args() assert len(args.inputs) == len( args.outputs ), "number of input and output paths should match" with contextlib.ExitStack() as stack: inputs = [ stack.enter_context(open(input, "r", encoding="utf-8")) if input != "-" else sys.stdin for input in args.inputs ] outputs = [ stack.enter_context(open(output, "w", encoding="utf-8")) if output != "-" else sys.stdout for output in args.outputs ] encoder = MultiprocessingEncoder(args) pool = Pool(args.workers, initializer=encoder.initializer) encoded_lines = pool.imap(encoder.encode_lines, zip(*inputs), 100) stats = Counter() for i, (filt, enc_lines) in enumerate(encoded_lines, start=1): if filt == "PASS": for enc_line, output_h in zip(enc_lines, outputs): print(enc_line, file=output_h) else: stats["num_filtered_" + filt] += 1 if i % 10000 == 0: print("processed {} lines".format(i), file=sys.stderr) for k, v in stats.most_common(): print("[{}] filtered {} lines".format(k, v), file=sys.stderr) class MultiprocessingEncoder(object): def __init__(self, args): self.args = args def initializer(self): global bpe bpe = get_encoder(self.args.encoder_json, self.args.vocab_bpe) # bpe = get_encoder(self.args.encoder_json, self.args.vocab_bpe, self.args.special_token) def encode(self, line): global bpe ids = bpe.encode(line) return list(map(str, ids)) def decode(self, tokens): global bpe return bpe.decode(tokens) def encode_lines(self, lines): """ Encode a set of lines. All lines will be encoded together. """ enc_lines = [] for line in lines: line = line.strip() if len(line) == 0 and not self.args.keep_empty: return ["EMPTY", None] tokens = self.encode(line) enc_lines.append(" ".join(tokens)) return ["PASS", enc_lines] def decode_lines(self, lines): dec_lines = [] for line in lines: tokens = map(int, line.strip().split()) dec_lines.append(self.decode(tokens)) return ["PASS", dec_lines] if __name__ == "__main__": main()
ContextualSP/unified_parser_text_to_sql/multiprocessing_bpe_encoder.py/0
{ "file_path": "ContextualSP/unified_parser_text_to_sql/multiprocessing_bpe_encoder.py", "repo_id": "ContextualSP", "token_count": 1855 }
299
# Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task Spider is a large human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task (natural language interfaces for relational databases). It is released along with our EMNLP 2018 paper: [Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task](https://arxiv.org/abs/1809.08887). This repo contains all code for evaluation, preprocessing, and all baselines used in our paper. Please refer to [the task site](https://yale-lily.github.io/spider) for more general introduction and the leaderboard. ### Changelog - `06/07/2020` We corrected some annotation errors and label mismatches (not errors) in Spider dev and test sets (~4% of dev examples updated, click [here](https://github.com/taoyds/spider/commit/25fcd85d9b6e94acaeb5e9172deadeefeed83f5e#diff-18b0a730a7b0d29b0a78a5070d971d49) for more details). Please download the Spider dataset from [the page](https://yale-lily.github.io/spider) again. - `01/16/2020` For value prediction (in order to compute the execution accuracy), your model should be able to 1) copy from the question inputs, 2) retrieve from the database content (database content is available), or 3) generate numbers (e.g. 3 in "LIMIT 3"). - `1/14/2019` The submission toturial is ready! Please follow it to get your results on the unreleased test data. - `12/17/2018` We updated 7 sqlite database files. Please download the Spider data from the official website again. Please refer to [the issue 14](https://github.com/taoyds/spider/issues/14) for more details. - `10/25/2018`: evaluation script is updated so that the table in `count(*)`cases will be evaluated as well. Please check out [the issue 5](https://github.com/taoyds/spider/issues/5) for more info. Results of all baselines and [syntaxSQL](https://github.com/taoyds/syntaxSQL) on the papers are updated as well. - `10/25/2018`: to get the latest SQL parsing results (a few small bugs fixed), please use `preprocess/parse_raw_json.py` to update. Please refer to [the issue 3](https://github.com/taoyds/spider/issues/3) for more details. ### Citation The dataset is annotated by 11 college students. When you use the Spider dataset, we would appreciate it if you cite the following: ``` @inproceedings{Yu&al.18c, title = {Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task}, author = {Tao Yu and Rui Zhang and Kai Yang and Michihiro Yasunaga and Dongxu Wang and Zifan Li and James Ma and Irene Li and Qingning Yao and Shanelle Roman and Zilin Zhang and Dragomir Radev} booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", address = "Brussels, Belgium", publisher = "Association for Computational Linguistics", year = 2018 } ``` ### Installation `evaluation.py` and `process_sql.py` are written in Python 3. Enviroment setup for each baseline is in README under each baseline directory. ### Data Content and Format #### Question, SQL, and Parsed SQL Each file in`train.json` and `dev.json` contains the following fields: - `question`: the natural language question - `question_toks`: the natural language question tokens - `db_id`: the database id to which this question is addressed. - `query`: the SQL query corresponding to the question. - `query_toks`: the SQL query tokens corresponding to the question. - `sql`: parsed results of this SQL query using `process_sql.py`. Please refer to `parsed_sql_examples.sql` in the`preprocess` directory for the detailed documentation. ``` { "db_id": "world_1", "query": "SELECT avg(LifeExpectancy) FROM country WHERE Name NOT IN (SELECT T1.Name FROM country AS T1 JOIN countrylanguage AS T2 ON T1.Code = T2.CountryCode WHERE T2.Language = \"English\" AND T2.IsOfficial = \"T\")", "query_toks": ["SELECT", "avg", "(", "LifeExpectancy", ")", "FROM", ...], "question": "What is average life expectancy in the countries where English is not the official language?", "question_toks": ["What", "is", "average", "life", ...], "sql": { "except": null, "from": { "conds": [], "table_units": [ ... }, "groupBy": [], "having": [], "intersect": null, "limit": null, "orderBy": [], "select": [ ... ], "union": null, "where": [ [ true, ... { "except": null, "from": { "conds": [ [ false, 2, [ ... }, "groupBy": [], "having": [], "intersect": null, "limit": null, "orderBy": [], "select": [ false, ... "union": null, "where": [ [ false, 2, [ 0, ... } }, ``` #### Tables `tables.json` contains the following information for each database: - `db_id`: database id - `table_names_original`: original table names stored in the database. - `table_names`: cleaned and normalized table names. We make sure the table names are meaningful. [to be changed] - `column_names_original`: original column names stored in the database. Each column looks like: `[0, "id"]`. `0` is the index of table names in `table_names`, which is `city` in this case. `"id"` is the column name. - `column_names`: cleaned and normalized column names. We make sure the column names are meaningful. [to be changed] - `column_types`: data type of each column - `foreign_keys`: foreign keys in the database. `[3, 8]` means column indices in the `column_names`. These two columns are foreign keys of two different tables. - `primary_keys`: primary keys in the database. Each number is the index of `column_names`. ``` { "column_names": [ [ 0, "id" ], [ 0, "name" ], [ 0, "country code" ], [ 0, "district" ], . . . ], "column_names_original": [ [ 0, "ID" ], [ 0, "Name" ], [ 0, "CountryCode" ], [ 0, "District" ], . . . ], "column_types": [ "number", "text", "text", "text", . . . ], "db_id": "world_1", "foreign_keys": [ [ 3, 8 ], [ 23, 8 ] ], "primary_keys": [ 1, 8, 23 ], "table_names": [ "city", "sqlite sequence", "country", "country language" ], "table_names_original": [ "city", "sqlite_sequence", "country", "countrylanguage" ] } ``` #### Databases All table contents are contained in corresponding SQLite3 database files. ### Evaluation Our evaluation metrics include Component Matching, Exact Matching, and Execution Accuracy. For component and exact matching evaluation, instead of simply conducting string comparison between the predicted and gold SQL queries, we decompose each SQL into several clauses, and conduct set comparison in each SQL clause. For Execution Accuracy, our current models do not predict any value in SQL conditions so that we do not provide execution accuracies. However, we encourage you to provide it in the future submissions. For value prediction, you can assume that a list of gold values for each question is given. Your model has to fill them into the right slots in the SQL. Please refer to [our paper]() and [this page](https://github.com/taoyds/spider/tree/master/evaluation) for more details and examples. ``` python evaluation.py --gold [gold file] --pred [predicted file] --etype [evaluation type] --db [database dir] --table [table file] arguments: [gold file] gold.sql file where each line is `a gold SQL \t db_id` [predicted file] predicted sql file where each line is a predicted SQL [evaluation type] "match" for exact set matching score, "exec" for execution score, and "all" for both [database dir] directory which contains sub-directories where each SQLite3 database is stored [table file] table.json file which includes foreign key info of each database ``` ### FAQ
ContextualSP/unified_parser_text_to_sql/third_party/spider/README.md/0
{ "file_path": "ContextualSP/unified_parser_text_to_sql/third_party/spider/README.md", "repo_id": "ContextualSP", "token_count": 3773 }
300
SUPERNET: MLP_RATIO: 4.0 NUM_HEADS: 10 EMBED_DIM: 640 DEPTH: 16 SEARCH_SPACE: MLP_RATIO: - 3.0 - 3.5 - 4.0 NUM_HEADS: - 9 - 10 DEPTH: - 14 - 15 - 16 EMBED_DIM: - 528 - 576 - 624
Cream/AutoFormer/experiments/supernet/supernet-B.yaml/0
{ "file_path": "Cream/AutoFormer/experiments/supernet/supernet-B.yaml", "repo_id": "Cream", "token_count": 155 }
301
import torch import math import warnings from itertools import repeat from torch._six import container_abcs import torch.nn as nn def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def _ntuple(n): def parse(x): if isinstance(x, container_abcs.Iterable): return x return tuple(repeat(x, n)) return parse def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) to_1tuple = _ntuple(1) to_2tuple = _ntuple(2) to_3tuple = _ntuple(3) to_4tuple = _ntuple(4) to_ntuple = _ntuple
Cream/AutoFormer/model/utils.py/0
{ "file_path": "Cream/AutoFormer/model/utils.py", "repo_id": "Cream", "token_count": 1585 }
302
import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = 32 self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, num_heads * 32 * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, out_dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, out_dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, out_dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads[i], window_size=window_size[i], shift_size=0 if (i % 2 == 0) else window_size[i] // 2, mlp_ratio=mlp_ratio[i], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, out_dim=out_dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SSSTransformer(nn.Module): r""" Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=[7, 7, 7, 7], mlp_ratio=[4., 4., 4., 4.], qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim[-1]) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim[0], norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim[i_layer]), out_dim=int(embed_dim[i_layer+1]) if (i_layer < self.num_layers - 1) else None, input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size[i_layer], mlp_ratio=self.mlp_ratio[i_layer], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops
Cream/AutoFormerV2/model/SSS.py/0
{ "file_path": "Cream/AutoFormerV2/model/SSS.py", "repo_id": "Cream", "token_count": 11447 }
303
from .io import imread, imwrite, imfrombytes from .transforms import (bgr2gray, gray2bgr, bgr2rgb, rgb2bgr, bgr2hsv, hsv2bgr, bgr2hls, hls2bgr, iminvert, imflip, imrotate, imcrop, impad, impad_to_multiple, imnormalize, imdenormalize, imresize, imresize_like, imrescale) __all__ = [ 'imread', 'imwrite', 'imfrombytes', 'bgr2gray', 'gray2bgr', 'bgr2rgb', 'rgb2bgr', 'bgr2hsv', 'hsv2bgr', 'bgr2hls', 'hls2bgr', 'iminvert', 'imflip', 'imrotate', 'imcrop', 'impad', 'impad_to_multiple', 'imnormalize', 'imdenormalize', 'imresize', 'imresize_like', 'imrescale' ]
Cream/CDARTS/CDARTS_detection/mmcv/image/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/image/__init__.py", "repo_id": "Cream", "token_count": 340 }
304
import os import os.path as osp import pkgutil import time import warnings from collections import OrderedDict from importlib import import_module import torch import torchvision from terminaltables import AsciiTable from torch.utils import model_zoo import mmcv from .utils import get_dist_info open_mmlab_model_urls = { } # yapf: disable def load_state_dict(module, state_dict, strict=False, logger=None): """Load state_dict to a module. This method is modified from :meth:`torch.nn.Module.load_state_dict`. Default value for ``strict`` is set to ``False`` and the message for param mismatch will be shown even if strict is False. Args: module (Module): Module that receives the state_dict. state_dict (OrderedDict): Weights. strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. logger (:obj:`logging.Logger`, optional): Logger to log the error message. If not specified, print function will be used. """ unexpected_keys = [] shape_mismatch_pairs = [] own_state = module.state_dict() for name, param in state_dict.items(): if name not in own_state: unexpected_keys.append(name) continue if isinstance(param, torch.nn.Parameter): # backwards compatibility for serialized parameters param = param.data if param.size() != own_state[name].size(): shape_mismatch_pairs.append( [name, own_state[name].size(), param.size()]) continue own_state[name].copy_(param) all_missing_keys = set(own_state.keys()) - set(state_dict.keys()) # ignore "num_batches_tracked" of BN layers missing_keys = [ key for key in all_missing_keys if 'num_batches_tracked' not in key ] err_msg = [] if unexpected_keys: err_msg.append('unexpected key in source state_dict: {}\n'.format( ', '.join(unexpected_keys))) if missing_keys: err_msg.append('missing keys in source state_dict: {}\n'.format( ', '.join(missing_keys))) if shape_mismatch_pairs: mismatch_info = 'these keys have mismatched shape:\n' header = ['key', 'expected shape', 'loaded shape'] table_data = [header] + shape_mismatch_pairs table = AsciiTable(table_data) err_msg.append(mismatch_info + table.table) rank, _ = get_dist_info() if len(err_msg) > 0 and rank == 0: err_msg.insert( 0, 'The model and loaded state dict do not match exactly\n') err_msg = '\n'.join(err_msg) if strict: raise RuntimeError(err_msg) elif logger is not None: logger.warning(err_msg) else: print(err_msg) def load_url_dist(url): """ In distributed setting, this function only download checkpoint at local rank 0 """ rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: checkpoint = model_zoo.load_url(url) if world_size > 1: torch.distributed.barrier() if rank > 0: checkpoint = model_zoo.load_url(url) return checkpoint def get_torchvision_models(): model_urls = dict() for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): if ispkg: continue _zoo = import_module('torchvision.models.{}'.format(name)) if hasattr(_zoo, 'model_urls'): _urls = getattr(_zoo, 'model_urls') model_urls.update(_urls) return model_urls def load_checkpoint(model, filename, map_location=None, strict=False, logger=None): """Load checkpoint from a file or URI. Args: model (Module): Module to load checkpoint. filename (str): Either a filepath or URL or modelzoo://xxxxxxx. map_location (str): Same as :func:`torch.load`. strict (bool): Whether to allow different params for the model and checkpoint. logger (:mod:`logging.Logger` or None): The logger for error message. Returns: dict or OrderedDict: The loaded checkpoint. """ # load checkpoint from modelzoo or file or url if filename.startswith('modelzoo://'): warnings.warn('The URL scheme of "modelzoo://" is deprecated, please ' 'use "torchvision://" instead') model_urls = get_torchvision_models() model_name = filename[11:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('torchvision://'): model_urls = get_torchvision_models() model_name = filename[14:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('open-mmlab://'): model_name = filename[13:] checkpoint = load_url_dist(open_mmlab_model_urls[model_name]) elif filename.startswith(('http://', 'https://')): checkpoint = load_url_dist(filename) else: if not osp.isfile(filename): raise IOError('{} is not a checkpoint file'.format(filename)) checkpoint = torch.load(filename, map_location=map_location) # get state_dict from checkpoint if isinstance(checkpoint, OrderedDict): state_dict = checkpoint elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] else: raise RuntimeError( 'No state_dict found in checkpoint file {}'.format(filename)) # strip prefix of state_dict """2019/11/15 for resume one-stage module""" if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in checkpoint['state_dict'].items()} # load state_dict if hasattr(model, 'module'): load_state_dict(model.module, state_dict, strict, logger) else: load_state_dict(model, state_dict, strict, logger) return checkpoint def weights_to_cpu(state_dict): """Copy a model state_dict to cpu. Args: state_dict (OrderedDict): Model weights on GPU. Returns: OrderedDict: Model weights on GPU. """ state_dict_cpu = OrderedDict() for key, val in state_dict.items(): state_dict_cpu[key] = val.cpu() return state_dict_cpu def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 3 fields: ``meta``, ``state_dict`` and ``optimizer``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError('meta must be a dict or None, but got {}'.format( type(meta))) meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) mmcv.mkdir_or_exist(osp.dirname(filename)) if hasattr(model, 'module'): model = model.module checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(model.state_dict()) } if optimizer is not None: checkpoint['optimizer'] = optimizer.state_dict() torch.save(checkpoint, filename)
Cream/CDARTS/CDARTS_detection/mmcv/runner/checkpoint.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/runner/checkpoint.py", "repo_id": "Cream", "token_count": 3123 }
305
from collections import OrderedDict import numpy as np class LogBuffer(object): def __init__(self): self.val_history = OrderedDict() self.n_history = OrderedDict() self.output = OrderedDict() self.ready = False def clear(self): self.val_history.clear() self.n_history.clear() self.clear_output() def clear_output(self): self.output.clear() self.ready = False def update(self, vars, count=1): assert isinstance(vars, dict) for key, var in vars.items(): if key not in self.val_history: self.val_history[key] = [] self.n_history[key] = [] self.val_history[key].append(var) self.n_history[key].append(count) def average(self, n=0): """Average latest n values or all values""" assert n >= 0 for key in self.val_history: values = np.array(self.val_history[key][-n:]) nums = np.array(self.n_history[key][-n:]) avg = np.sum(values * nums) / np.sum(nums) self.output[key] = avg self.ready = True
Cream/CDARTS/CDARTS_detection/mmcv/runner/log_buffer.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/runner/log_buffer.py", "repo_id": "Cream", "token_count": 552 }
306
#include "flow_warp.hpp" void FlowWarp(double* img, double* flow, double* out, const int height, const int width, const int channels, const int filling_value = 0, const int interpolateMode = 0) { for (int h = 0; h < height; h++) { for (int w = 0; w < width; w++) { int offset_cur = h * width + w; int offset_img = offset_cur * channels; int offset_flow = offset_cur * 2; double x, y; x = h + flow[offset_flow + 1]; y = w + flow[offset_flow]; if (x < 0 || x >= height - 1 || y < 0 || y >= width - 1) { for (int k = 0; k < channels; k++) { out[offset_img + k] = filling_value; } continue; } if (interpolateMode == 0) BilinearInterpolate(img, width, height, channels, x, y, out + offset_img); else if (interpolateMode == 1) NNInterpolate(img, width, height, channels, x, y, out + offset_img); else throw "Not Implemented Interpolation Method"; } } } void BilinearInterpolate(const double* img, int width, int height, int channels, double x, double y, double* out) { int xx, yy, m, n, u, v, offset, offset_img, l; xx = x; yy = y; double dx, dy, s; dx = __max__(__min__(x - xx, double(1)), double(0)); dy = __max__(__min__(y - yy, double(1)), double(0)); for (m = 0; m <= 1; m++) for (n = 0; n <= 1; n++) { u = EnforceRange(yy + n, width); v = EnforceRange(xx + m, height); offset = v * width + u; offset_img = offset * channels; s = fabs(1 - m - dx) * fabs(1 - n - dy); for (l = 0; l < channels; l++) out[l] += img[offset_img + l] * s; } } void NNInterpolate(const double* img, int width, int height, int channels, double x, double y, double* out) { int xx, yy, m, n, u, v, offset, offset_img, l; xx = x; yy = y; double dx, dy; dx = __max__(__min__(x - xx, double(1)), double(0)); dy = __max__(__min__(y - yy, double(1)), double(0)); m = (dx < 0.5) ? 0 : 1; n = (dy < 0.5) ? 0 : 1; u = EnforceRange(yy + n, width); v = EnforceRange(xx + m, height); offset = v * width + u; offset_img = offset * channels; for (l = 0; l < channels; l++) out[l] = img[offset_img + l]; }
Cream/CDARTS/CDARTS_detection/mmcv/video/optflow_warp/flow_warp.cpp/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/video/optflow_warp/flow_warp.cpp", "repo_id": "Cream", "token_count": 1051 }
307
from .env import get_root_logger, init_dist, set_random_seed from .inference import (inference_detector, init_detector, show_result, show_result_pyplot) from .train import train_detector __all__ = [ 'init_dist', 'get_root_logger', 'set_random_seed', 'train_detector', 'init_detector', 'inference_detector', 'show_result', 'show_result_pyplot' ]
Cream/CDARTS/CDARTS_detection/mmdet/apis/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/apis/__init__.py", "repo_id": "Cream", "token_count": 152 }
308
import torch from .transforms import bbox2delta from ..utils import multi_apply def bbox_target(pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, cfg, reg_classes=1, target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], concat=True): labels, label_weights, bbox_targets, bbox_weights = multi_apply( bbox_target_single, pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, cfg=cfg, reg_classes=reg_classes, target_means=target_means, target_stds=target_stds) if concat: labels = torch.cat(labels, 0) label_weights = torch.cat(label_weights, 0) bbox_targets = torch.cat(bbox_targets, 0) bbox_weights = torch.cat(bbox_weights, 0) return labels, label_weights, bbox_targets, bbox_weights def bbox_target_single(pos_bboxes, neg_bboxes, pos_gt_bboxes, pos_gt_labels, cfg, reg_classes=1, target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]): num_pos = pos_bboxes.size(0) num_neg = neg_bboxes.size(0) num_samples = num_pos + num_neg labels = pos_bboxes.new_zeros(num_samples, dtype=torch.long) label_weights = pos_bboxes.new_zeros(num_samples) bbox_targets = pos_bboxes.new_zeros(num_samples, 4) bbox_weights = pos_bboxes.new_zeros(num_samples, 4) if num_pos > 0: labels[:num_pos] = pos_gt_labels pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight label_weights[:num_pos] = pos_weight pos_bbox_targets = bbox2delta(pos_bboxes, pos_gt_bboxes, target_means, target_stds) bbox_targets[:num_pos, :] = pos_bbox_targets bbox_weights[:num_pos, :] = 1 if num_neg > 0: label_weights[-num_neg:] = 1.0 return labels, label_weights, bbox_targets, bbox_weights def expand_target(bbox_targets, bbox_weights, labels, num_classes): bbox_targets_expand = bbox_targets.new_zeros((bbox_targets.size(0), 4 * num_classes)) bbox_weights_expand = bbox_weights.new_zeros((bbox_weights.size(0), 4 * num_classes)) for i in torch.nonzero(labels > 0).squeeze(-1): start, end = labels[i] * 4, (labels[i] + 1) * 4 bbox_targets_expand[i, start:end] = bbox_targets[i, :] bbox_weights_expand[i, start:end] = bbox_weights[i, :] return bbox_targets_expand, bbox_weights_expand
Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/bbox_target.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/bbox_target.py", "repo_id": "Cream", "token_count": 1558 }
309
import os import os.path as osp import mmcv import torch import torch.distributed as dist from mmcv.parallel import collate, scatter from mmcv.runner import Hook from torch.utils.data import Dataset class DistEvalHook(Hook): def __init__(self, dataset, interval=1, **eval_kwargs): from mmdet import datasets if isinstance(dataset, Dataset): self.dataset = dataset elif isinstance(dataset, dict): self.dataset = datasets.build_dataset(dataset, {'test_mode': True}) else: raise TypeError( 'dataset must be a Dataset object or a dict, not {}'.format( type(dataset))) self.interval = interval self.eval_kwargs = eval_kwargs def after_train_epoch(self, runner): if not self.every_n_epochs(runner, self.interval): return runner.model.eval() results = [None for _ in range(len(self.dataset))] if runner.rank == 0: prog_bar = mmcv.ProgressBar(len(self.dataset)) for idx in range(runner.rank, len(self.dataset), runner.world_size): data = self.dataset[idx] data_gpu = scatter( collate([data], samples_per_gpu=1), [torch.cuda.current_device()])[0] # compute output with torch.no_grad(): result = runner.model( return_loss=False, rescale=True, **data_gpu) results[idx] = result batch_size = runner.world_size if idx % 200 == 0: if runner.rank == 0: for _ in range(0, batch_size, 10): prog_bar.update() if runner.rank == 0: print('\n') dist.barrier() for i in range(1, runner.world_size): tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i)) tmp_results = mmcv.load(tmp_file) for idx in range(i, len(results), runner.world_size): results[idx] = tmp_results[idx] os.remove(tmp_file) self.evaluate(runner, results) else: tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(runner.rank)) mmcv.dump(results, tmp_file) dist.barrier() dist.barrier() def evaluate(self, runner, results): eval_res = self.dataset.evaluate( results, logger=runner.logger, **self.eval_kwargs) for name, val in eval_res.items(): runner.log_buffer.output[name] = val runner.log_buffer.ready = True
Cream/CDARTS/CDARTS_detection/mmdet/core/evaluation/eval_hooks.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/evaluation/eval_hooks.py", "repo_id": "Cream", "token_count": 1347 }
310
from .custom import CustomDataset from .cityscapes import CityscapesDataset from .xml_style import XMLDataset from .coco import CocoDataset from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .loader import GroupSampler, DistributedGroupSampler, build_dataloader, build_dataloader_arch from .dataset_wrappers import ConcatDataset, RepeatDataset from .registry import DATASETS from .builder import build_dataset __all__ = [ 'CustomDataset', 'XMLDataset', 'CocoDataset', 'VOCDataset', 'CityscapesDataset', 'GroupSampler', 'DistributedGroupSampler', 'build_dataloader', 'ConcatDataset', 'RepeatDataset', 'WIDERFaceDataset', 'DATASETS', 'build_dataset', 'build_dataloader_arch' ]
Cream/CDARTS/CDARTS_detection/mmdet/datasets/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/datasets/__init__.py", "repo_id": "Cream", "token_count": 260 }
311
import mmcv import numpy as np import torch __all__ = [ 'ImageTransform', 'BboxTransform', 'MaskTransform', 'SegMapTransform', 'Numpy2Tensor' ] class ImageTransform(object): """Preprocess an image. 1. rescale the image to expected size 2. normalize the image 3. flip the image (if needed) 4. pad the image (if needed) 5. transpose to (c, h, w) """ def __init__(self, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True, size_divisor=None): self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) self.to_rgb = to_rgb self.size_divisor = size_divisor def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor def bbox_flip(bboxes, img_shape): """Flip bboxes horizontally. Args: bboxes(ndarray): shape (..., 4*k) img_shape(tuple): (height, width) """ assert bboxes.shape[-1] % 4 == 0 w = img_shape[1] flipped = bboxes.copy() flipped[..., 0::4] = w - bboxes[..., 2::4] - 1 flipped[..., 2::4] = w - bboxes[..., 0::4] - 1 return flipped class BboxTransform(object): """Preprocess gt bboxes. 1. rescale bboxes according to image size 2. flip bboxes (if needed) 3. pad the first dimension to `max_num_gts` """ def __init__(self, max_num_gts=None): self.max_num_gts = max_num_gts def __call__(self, bboxes, img_shape, scale_factor, flip=False): gt_bboxes = bboxes * scale_factor if flip: gt_bboxes = bbox_flip(gt_bboxes, img_shape) gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1) gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1) if self.max_num_gts is None: return gt_bboxes else: num_gts = gt_bboxes.shape[0] padded_bboxes = np.zeros((self.max_num_gts, 4), dtype=np.float32) padded_bboxes[:num_gts, :] = gt_bboxes return padded_bboxes class MaskTransform(object): """Preprocess masks. 1. resize masks to expected size and stack to a single array 2. flip the masks (if needed) 3. pad the masks (if needed) """ def __call__(self, masks, pad_shape, scale_factor, flip=False): masks = [ mmcv.imrescale(mask, scale_factor, interpolation='nearest') for mask in masks ] if flip: masks = [mask[:, ::-1] for mask in masks] padded_masks = [ mmcv.impad(mask, pad_shape[:2], pad_val=0) for mask in masks ] padded_masks = np.stack(padded_masks, axis=0) return padded_masks class SegMapTransform(object): """Preprocess semantic segmentation maps. 1. rescale the segmentation map to expected size 3. flip the image (if needed) 4. pad the image (if needed) """ def __init__(self, size_divisor=None): self.size_divisor = size_divisor def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img = mmcv.imrescale(img, scale, interpolation='nearest') else: img = mmcv.imresize(img, scale, interpolation='nearest') if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) return img class Numpy2Tensor(object): def __init__(self): pass def __call__(self, *args): if len(args) == 1: return torch.from_numpy(args[0]) else: return tuple([torch.from_numpy(np.array(array)) for array in args])
Cream/CDARTS/CDARTS_detection/mmdet/datasets/transforms.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/datasets/transforms.py", "repo_id": "Cream", "token_count": 2153 }
312
import torch import logging import math import re from collections.__init__ import OrderedDict from copy import deepcopy from typing import Tuple, Optional, List import torch.nn as nn import numpy as np from functools import partial from itertools import repeat from torch._six import container_abcs # from timm.models.efficientnet_blocks import * def swish(x, inplace: bool = False): """Swish - Described in: https://arxiv.org/abs/1710.05941 """ return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) class Swish(nn.Module): def __init__(self, inplace: bool = False): super(Swish, self).__init__() self.inplace = inplace def forward(self, x): return swish(x, self.inplace) class HardSwish(nn.Module): def __init__(self, inplace: bool = False): super(HardSwish, self).__init__() self.inplace = inplace def forward(self, x): return hard_swish(x, self.inplace) def _ntuple(n): def parse(x): if isinstance(x, container_abcs.Iterable): return x return tuple(repeat(x, n)) return parse def get_same_padding(x: int, k: int, s: int, d: int): return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0) def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0): ih, iw = x.size()[-2:] pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(iw, k[1], s[1], d[1]) if pad_h > 0 or pad_w > 0: x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2], value=value) return x def conv2d_same( x, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, stride: Tuple[int, int] = (1, 1), padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1): x = pad_same(x, weight.shape[-2:], stride, dilation) return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups) tup_pair = _ntuple(2) def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1, **_) -> int: padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 return padding def is_static_pad(kernel_size: int, stride: int = 1, dilation: int = 1, **_): return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0 def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]: dynamic = False if isinstance(padding, str): # for any string padding, the padding will be calculated for you, one of three ways padding = padding.lower() if padding == 'same': # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact if is_static_pad(kernel_size, **kwargs): # static case, no extra overhead padding = get_padding(kernel_size, **kwargs) else: # dynamic 'SAME' padding, has runtime/GPU memory overhead padding = 0 dynamic = True elif padding == 'valid': # 'VALID' padding, same as padding=0 padding = 0 else: # Default to PyTorch style 'same'-ish symmetric padding padding = get_padding(kernel_size, **kwargs) return padding, dynamic class CondConv2d(nn.Module): """ Conditionally Parameterized Convolution Inspired by: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/condconv/condconv_layers.py Grouped convolution hackery for parallel execution of the per-sample kernel filters inspired by this discussion: https://github.com/pytorch/pytorch/issues/17983 """ __constants__ = ['bias', 'in_channels', 'out_channels', 'dynamic_padding'] def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4): super(CondConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = tup_pair(kernel_size) self.stride = tup_pair(stride) padding_val, is_padding_dynamic = get_padding_value( padding, kernel_size, stride=stride, dilation=dilation) self.dynamic_padding = is_padding_dynamic # if in forward to work with torchscript self.padding = tup_pair(padding_val) self.dilation = tup_pair(dilation) self.groups = groups self.num_experts = num_experts self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size weight_num_param = 1 for wd in self.weight_shape: weight_num_param *= wd self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param)) if bias: self.bias_shape = (self.out_channels,) self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): init_weight = get_condconv_initializer( partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape) init_weight(self.weight) if self.bias is not None: fan_in = np.prod(self.weight_shape[1:]) bound = 1 / math.sqrt(fan_in) init_bias = get_condconv_initializer( partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape) init_bias(self.bias) def forward(self, x, routing_weights): B, C, H, W = x.shape weight = torch.matmul(routing_weights, self.weight) new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size weight = weight.view(new_weight_shape) bias = None if self.bias is not None: bias = torch.matmul(routing_weights, self.bias) bias = bias.view(B * self.out_channels) # move batch elements with channels so each batch element can be efficiently convolved with separate kernel x = x.view(1, B * C, H, W) if self.dynamic_padding: out = conv2d_same( x, weight, bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * B) else: out = F.conv2d( x, weight, bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * B) out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1]) # Literal port (from TF definition) # x = torch.split(x, 1, 0) # weight = torch.split(weight, 1, 0) # if self.bias is not None: # bias = torch.matmul(routing_weights, self.bias) # bias = torch.split(bias, 1, 0) # else: # bias = [None] * B # out = [] # for xi, wi, bi in zip(x, weight, bias): # wi = wi.view(*self.weight_shape) # if bi is not None: # bi = bi.view(*self.bias_shape) # out.append(self.conv_fn( # xi, wi, bi, stride=self.stride, padding=self.padding, # dilation=self.dilation, groups=self.groups)) # out = torch.cat(out, 0) return out def get_condconv_initializer(initializer, num_experts, expert_shape): def condconv_initializer(weight): """CondConv initializer function.""" num_params = np.prod(expert_shape) if (len(weight.shape) != 2 or weight.shape[0] != num_experts or weight.shape[1] != num_params): raise (ValueError( 'CondConv variables must have shape [num_experts, num_params]')) for i in range(num_experts): initializer(weight[i].view(expert_shape)) return condconv_initializer def resolve_bn_args(kwargs): bn_args = get_bn_args_tf() if kwargs.pop('bn_tf', False) else {} bn_momentum = kwargs.pop('bn_momentum', None) if bn_momentum is not None: bn_args['momentum'] = bn_momentum bn_eps = kwargs.pop('bn_eps', None) if bn_eps is not None: bn_args['eps'] = bn_eps return bn_args def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None): """Round number of filters based on depth multiplier.""" if not multiplier: return channels channels *= multiplier return make_divisible(channels, divisor, channel_min) def _parse_ksize(ss): if ss.isdigit(): return int(ss) else: return [int(k) for k in ss.split('.')] def make_divisible(v, divisor=8, min_value=None): min_value = min_value or divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class DepthwiseSeparableConv(nn.Module): """ DepthwiseSeparable block Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion (factor of 1.0). This is an alternative to having a IR with an optional first pw conv. """ def __init__(self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, pw_kernel_size=1, pw_act=False, se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_path_rate=0.): super(DepthwiseSeparableConv, self).__init__() norm_kwargs = norm_kwargs or {} has_se = se_ratio is not None and se_ratio > 0. self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip self.has_pw_act = pw_act # activation after point-wise conv self.drop_path_rate = drop_path_rate self.conv_dw = create_conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True) self.bn1 = norm_layer(in_chs, **norm_kwargs) self.act1 = act_layer(inplace=True) # Squeeze-and-excitation if has_se: se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) self.se = SqueezeExcite(in_chs, se_ratio=se_ratio, **se_kwargs) else: self.se = None self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_layer(out_chs, **norm_kwargs) self.act2 = act_layer(inplace=True) if self.has_pw_act else nn.Identity() def feature_info(self, location): if location == 'expansion': # no expansion in this block, use depthwise, before SE info = dict(module='act1', hook_type='forward', num_chs=self.conv_pw.in_channels) elif location == 'depthwise': # after SE info = dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) else: # location == 'bottleneck' info = dict(module='', hook_type='', num_chs=self.conv_pw.out_channels) return info def forward(self, x): residual = x x = self.conv_dw(x) x = self.bn1(x) x = self.act1(x) if self.se is not None: x = self.se(x) x = self.conv_pw(x) x = self.bn2(x) x = self.act2(x) if self.has_residual: x += residual return x class InvertedResidual(nn.Module): """ Inverted residual block w/ optional SE and CondConv routing""" def __init__(self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, conv_kwargs=None, drop_path_rate=0.): super(InvertedResidual, self).__init__() norm_kwargs = norm_kwargs or {} conv_kwargs = conv_kwargs or {} mid_chs = make_divisible(in_chs * exp_ratio) has_se = se_ratio is not None and se_ratio > 0. self.has_residual = (in_chs == out_chs and stride == 1) and not noskip self.drop_path_rate = drop_path_rate # Point-wise expansion self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) self.bn1 = norm_layer(mid_chs, **norm_kwargs) self.act1 = act_layer(inplace=True) # Depth-wise convolution self.conv_dw = create_conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True, **conv_kwargs) self.bn2 = norm_layer(mid_chs, **norm_kwargs) self.act2 = act_layer(inplace=True) # Squeeze-and-excitation if has_se: se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs) else: self.se = None # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) self.bn3 = norm_layer(out_chs, **norm_kwargs) def feature_info(self, location): if location == 'expansion': info = dict(module='act1', hook_type='forward', num_chs=self.conv_pw.in_channels) elif location == 'depthwise': # after SE info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck' info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels) return info def forward(self, x): residual = x # Point-wise expansion x = self.conv_pw(x) x = self.bn1(x) x = self.act1(x) # Depth-wise convolution x = self.conv_dw(x) x = self.bn2(x) x = self.act2(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # Point-wise linear projection x = self.conv_pwl(x) x = self.bn3(x) if self.has_residual: x += residual return x def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs): padding = kwargs.pop('padding', '') kwargs.setdefault('bias', False) padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs) if is_dynamic: return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs) else: return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs) def create_conv2d(in_chs, out_chs, kernel_size, **kwargs): """ Select a 2d convolution implementation based on arguments Creates and returns one of torch.nn.Conv2d, Conv2dSame, MixedConv2d, or CondConv2d. Used extensively by EfficientNet, MobileNetv3 and related networks. """ assert 'groups' not in kwargs # only use 'depthwise' bool arg if isinstance(kernel_size, list): assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently # We're going to use only lists for defining the MixedConv2d kernel groups, # ints, tuples, other iterables will continue to pass to normal conv and specify h, w. m = MixedConv2d(in_chs, out_chs, kernel_size, **kwargs) else: depthwise = kwargs.pop('depthwise', False) groups = out_chs if depthwise else 1 if 'num_experts' in kwargs and kwargs['num_experts'] > 0: m = CondConv2d(in_chs, out_chs, kernel_size, groups=groups, **kwargs) else: m = create_conv2d_pad(in_chs, out_chs, kernel_size, groups=groups, **kwargs) return m def resolve_se_args(kwargs, in_chs, act_layer=None): se_kwargs = kwargs.copy() if kwargs is not None else {} # fill in args that aren't specified with the defaults for k, v in _SE_ARGS_DEFAULT.items(): se_kwargs.setdefault(k, v) # some models, like MobilNetV3, calculate SE reduction chs from the containing block's mid_ch instead of in_ch if not se_kwargs.pop('reduce_mid'): se_kwargs['reduced_base_chs'] = in_chs # act_layer override, if it remains None, the containing block's act_layer will be used if se_kwargs['act_layer'] is None: assert act_layer is not None se_kwargs['act_layer'] = act_layer return se_kwargs def sigmoid(x, inplace: bool = False): return x.sigmoid_() if inplace else x.sigmoid() _SE_ARGS_DEFAULT = dict( gate_fn=sigmoid, act_layer=None, reduce_mid=False, divisor=1) def _decode_block_str(block_str): """ Decode block definition string Gets a list of block arg (dicts) through a string notation of arguments. E.g. ir_r2_k3_s2_e1_i32_o16_se0.25_noskip All args can exist in any order with the exception of the leading string which is assumed to indicate the block type. leading string - block type ( ir = InvertedResidual, ds = DepthwiseSep, dsa = DeptwhiseSep with pw act, cn = ConvBnAct) r - number of repeat blocks, k - kernel size, s - strides (1-9), e - expansion ratio, c - output channels, se - squeeze/excitation ratio n - activation fn ('re', 'r6', 'hs', or 'sw') Args: block_str: a string representation of block arguments. Returns: A list of block args (dicts) Raises: ValueError: if the string def not properly specified (TODO) """ assert isinstance(block_str, str) ops = block_str.split('_') block_type = ops[0] # take the block type off the front ops = ops[1:] options = {} noskip = False for op in ops: # string options being checked on individual basis, combine if they grow if op == 'noskip': noskip = True elif op.startswith('n'): # activation fn key = op[0] v = op[1:] if v == 're': value = nn.ReLU elif v == 'r6': value = nn.ReLU6 elif v == 'hs': value = HardSwish elif v == 'sw': value = Swish else: continue options[key] = value else: # all numeric options splits = re.split(r'(\d.*)', op) if len(splits) >= 2: key, value = splits[:2] options[key] = value # if act_layer is None, the model default (passed to model init) will be used act_layer = options['n'] if 'n' in options else None exp_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1 pw_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1 fake_in_chs = int(options['fc']) if 'fc' in options else 0 # FIXME hack to deal with in_chs issue in TPU def num_repeat = int(options['r']) # each type of block has different valid arguments, fill accordingly if block_type == 'ir': block_args = dict( block_type=block_type, dw_kernel_size=_parse_ksize(options['k']), exp_kernel_size=exp_kernel_size, pw_kernel_size=pw_kernel_size, out_chs=int(options['c']), exp_ratio=float(options['e']), se_ratio=float(options['se']) if 'se' in options else None, stride=int(options['s']), act_layer=act_layer, noskip=noskip, ) if 'cc' in options: block_args['num_experts'] = int(options['cc']) elif block_type == 'ds' or block_type == 'dsa': block_args = dict( block_type=block_type, dw_kernel_size=_parse_ksize(options['k']), pw_kernel_size=pw_kernel_size, out_chs=int(options['c']), se_ratio=float(options['se']) if 'se' in options else None, stride=int(options['s']), act_layer=act_layer, pw_act=block_type == 'dsa', noskip=block_type == 'dsa' or noskip, ) elif block_type == 'er': block_args = dict( block_type=block_type, exp_kernel_size=_parse_ksize(options['k']), pw_kernel_size=pw_kernel_size, out_chs=int(options['c']), exp_ratio=float(options['e']), fake_in_chs=fake_in_chs, se_ratio=float(options['se']) if 'se' in options else None, stride=int(options['s']), act_layer=act_layer, noskip=noskip, ) elif block_type == 'cn': block_args = dict( block_type=block_type, kernel_size=int(options['k']), out_chs=int(options['c']), stride=int(options['s']), act_layer=act_layer, ) else: assert False, 'Unknown block type (%s)' % block_type return block_args, num_repeat class SqueezeExcite(nn.Module): def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None, act_layer=nn.ReLU, gate_fn=sigmoid, divisor=1, **_): super(SqueezeExcite, self).__init__() self.gate_fn = gate_fn reduced_chs = make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor) self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True) self.act1 = act_layer(inplace=True) self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True) def forward(self, x): x_se = self.avg_pool(x) x_se = self.conv_reduce(x_se) x_se = self.act1(x_se) x_se = self.conv_expand(x_se) x = x * self.gate_fn(x_se) return x class Sigmoid(nn.Module): def __init__(self, inplace: bool = False): super(Sigmoid, self).__init__() self.inplace = inplace def forward(self, x): return x.sigmoid_() if self.inplace else x.sigmoid() class ConvBnAct(nn.Module): def __init__(self, in_chs, out_chs, kernel_size, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(ConvBnAct, self).__init__() norm_kwargs = norm_kwargs or {} self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, padding=pad_type) self.bn1 = norm_layer(out_chs, **norm_kwargs) self.act1 = act_layer(inplace=True) def feature_info(self, location): if location == 'expansion' or location == 'depthwise': # no expansion or depthwise this block, use act after conv info = dict(module='act1', hook_type='forward', num_chs=self.conv.out_channels) else: # location == 'bottleneck' info = dict(module='', hook_type='', num_chs=self.conv.out_channels) return info def forward(self, x): x = self.conv(x) x = self.bn1(x) x = self.act1(x) return x def adaptive_pool_feat_mult(pool_type='avg'): if pool_type == 'catavgmax': return 2 else: return 1 def modify_block_args(block_args, kernel_size, exp_ratio): # kernel_size: 3,5,7 # exp_ratio: 4,6 block_type = block_args['block_type'] # each type of block has different valid arguments, fill accordingly if block_type == 'cn': block_args['kernel_size'] = kernel_size elif block_type == 'er': block_args['exp_kernel_size'] = kernel_size else: block_args['dw_kernel_size'] = kernel_size if block_type == 'ir' or block_type == 'er': block_args['exp_ratio'] = exp_ratio return block_args def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'): """ Per-stage depth scaling Scales the block repeats in each stage. This depth scaling impl maintains compatibility with the EfficientNet scaling method, while allowing sensible scaling for other models that may have multiple block arg definitions in each stage. """ # We scale the total repeat count for each stage, there may be multiple # block arg defs per stage so we need to sum. num_repeat = sum(repeats) if depth_trunc == 'round': # Truncating to int by rounding allows stages with few repeats to remain # proportionally smaller for longer. This is a good choice when stage definitions # include single repeat stages that we'd prefer to keep that way as long as possible num_repeat_scaled = max(1, round(num_repeat * depth_multiplier)) else: # The default for EfficientNet truncates repeats to int via 'ceil'. # Any multiplier > 1.0 will result in an increased depth for every stage. num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier)) # Proportionally distribute repeat count scaling to each block definition in the stage. # Allocation is done in reverse as it results in the first block being less likely to be scaled. # The first block makes less sense to repeat in most of the arch definitions. repeats_scaled = [] for r in repeats[::-1]: rs = max(1, round((r / num_repeat * num_repeat_scaled))) repeats_scaled.append(rs) num_repeat -= r num_repeat_scaled -= rs repeats_scaled = repeats_scaled[::-1] # Apply the calculated scaling to each block arg in the stage sa_scaled = [] for ba, rep in zip(stack_args, repeats_scaled): sa_scaled.extend([deepcopy(ba) for _ in range(rep)]) return sa_scaled def decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil', experts_multiplier=1): arch_args = [] for stack_idx, block_strings in enumerate(arch_def): assert isinstance(block_strings, list) stack_args = [] repeats = [] for block_str in block_strings: assert isinstance(block_str, str) ba, rep = _decode_block_str(block_str) if ba.get('num_experts', 0) > 0 and experts_multiplier > 1: ba['num_experts'] *= experts_multiplier stack_args.append(ba) repeats.append(rep) arch_args.append(_scale_stage_depth(stack_args, repeats, depth_multiplier, depth_trunc)) return arch_args class ChildNetBuilder: """ Build Trunk Blocks """ def __init__(self, channel_multiplier=1.0, channel_divisor=8, channel_min=None, output_stride=32, pad_type='', act_layer=None, se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_path_rate=0., feature_location='', verbose=False): self.channel_multiplier = channel_multiplier self.channel_divisor = channel_divisor self.channel_min = channel_min self.output_stride = output_stride self.pad_type = pad_type self.act_layer = act_layer self.se_kwargs = se_kwargs self.norm_layer = norm_layer self.norm_kwargs = norm_kwargs self.drop_path_rate = drop_path_rate self.feature_location = feature_location assert feature_location in ('pre_pwl', 'post_exp', '') self.verbose = verbose # state updated during build, consumed by model self.in_chs = None self.features = OrderedDict() def _round_channels(self, chs): return round_channels(chs, self.channel_multiplier, self.channel_divisor, self.channel_min) def _make_block(self, ba, block_idx, block_count): drop_path_rate = self.drop_path_rate * block_idx / block_count bt = ba.pop('block_type') ba['in_chs'] = self.in_chs ba['out_chs'] = self._round_channels(ba['out_chs']) if 'fake_in_chs' in ba and ba['fake_in_chs']: # FIXME this is a hack to work around mismatch in origin impl input filters ba['fake_in_chs'] = self._round_channels(ba['fake_in_chs']) ba['norm_layer'] = self.norm_layer ba['norm_kwargs'] = self.norm_kwargs ba['pad_type'] = self.pad_type # block act fn overrides the model default ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer assert ba['act_layer'] is not None if bt == 'ir': ba['drop_path_rate'] = drop_path_rate ba['se_kwargs'] = self.se_kwargs if self.verbose: logging.info(' InvertedResidual {}, Args: {}'.format(block_idx, str(ba))) if ba.get('num_experts', 0) > 0: block = CondConvResidual(**ba) else: block = InvertedResidual(**ba) elif bt == 'ds' or bt == 'dsa': ba['drop_path_rate'] = drop_path_rate ba['se_kwargs'] = self.se_kwargs if self.verbose: logging.info(' DepthwiseSeparable {}, Args: {}'.format(block_idx, str(ba))) block = DepthwiseSeparableConv(**ba) elif bt == 'er': ba['drop_path_rate'] = drop_path_rate ba['se_kwargs'] = self.se_kwargs if self.verbose: logging.info(' EdgeResidual {}, Args: {}'.format(block_idx, str(ba))) block = EdgeResidual(**ba) elif bt == 'cn': if self.verbose: logging.info(' ConvBnAct {}, Args: {}'.format(block_idx, str(ba))) block = ConvBnAct(**ba) else: assert False, 'Uknkown block type (%s) while building model.' % bt self.in_chs = ba['out_chs'] # update in_chs for arg of next block return block def __call__(self, in_chs, model_block_args): """ Build the blocks Args: in_chs: Number of input-channels passed to first block model_block_args: A list of lists, outer list defines stages, inner list contains strings defining block configuration(s) Return: List of block stacks (each stack wrapped in nn.Sequential) """ if self.verbose: logging.info('Building model trunk with %d stages...' % len(model_block_args)) self.in_chs = in_chs total_block_count = sum([len(x) for x in model_block_args]) total_block_idx = 0 current_stride = 2 current_dilation = 1 feature_idx = 0 stages = [] # outer list of block_args defines the stacks ('stages' by some conventions) for stage_idx, stage_block_args in enumerate(model_block_args): last_stack = stage_idx == (len(model_block_args) - 1) if self.verbose: logging.info('Stack: {}'.format(stage_idx)) assert isinstance(stage_block_args, list) blocks = [] # each stack (stage) contains a list of block arguments for block_idx, block_args in enumerate(stage_block_args): last_block = block_idx == (len(stage_block_args) - 1) extract_features = '' # No features extracted if self.verbose: logging.info(' Block: {}'.format(block_idx)) # Sort out stride, dilation, and feature extraction details assert block_args['stride'] in (1, 2) if block_idx >= 1: # only the first block in any stack can have a stride > 1 block_args['stride'] = 1 do_extract = False if self.feature_location == 'pre_pwl': if last_block: next_stage_idx = stage_idx + 1 if next_stage_idx >= len(model_block_args): do_extract = True else: do_extract = model_block_args[next_stage_idx][0]['stride'] > 1 elif self.feature_location == 'post_exp': if block_args['stride'] > 1 or (last_stack and last_block) : do_extract = True if do_extract: extract_features = self.feature_location next_dilation = current_dilation if block_args['stride'] > 1: next_output_stride = current_stride * block_args['stride'] if next_output_stride > self.output_stride: next_dilation = current_dilation * block_args['stride'] block_args['stride'] = 1 if self.verbose: logging.info(' Converting stride to dilation to maintain output_stride=={}'.format( self.output_stride)) else: current_stride = next_output_stride block_args['dilation'] = current_dilation if next_dilation != current_dilation: current_dilation = next_dilation # create the block block = self._make_block(block_args, total_block_idx, total_block_count) blocks.append(block) # stash feature module name and channel info for model feature extraction if extract_features: feature_module = block.feature_module(extract_features) if feature_module: feature_module = 'blocks.{}.{}.'.format(stage_idx, block_idx) + feature_module feature_channels = block.feature_channels(extract_features) self.features[feature_idx] = dict( name=feature_module, num_chs=feature_channels ) feature_idx += 1 total_block_idx += 1 # incr global block idx (across all stacks) stages.append(nn.Sequential(*blocks)) return stages def _init_weight_goog(m, n='', fix_group_fanout=True, last_bn=None): """ Weight initialization as per Tensorflow official implementations. Args: m (nn.Module): module to init n (str): module name fix_group_fanout (bool): enable correct (matching Tensorflow TPU impl) fanout calculation w/ group convs Handles layers in EfficientNet, EfficientNet-CondConv, MixNet, MnasNet, MobileNetV3, etc: * https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_model.py * https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py """ if isinstance(m, CondConv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels if fix_group_fanout: fan_out //= m.groups init_weight_fn = get_condconv_initializer( lambda w: w.data.normal_(0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape) init_weight_fn(m.weight) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels if fix_group_fanout: fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): if n in last_bn: m.weight.data.zero_() m.bias.data.zero_() else: m.weight.data.fill_(1.0) m.bias.data.zero_() m.weight.data.fill_(1.0) m.bias.data.zero_() elif isinstance(m, nn.Linear): fan_out = m.weight.size(0) # fan-out fan_in = 0 if 'routing_fn' in n: fan_in = m.weight.size(1) init_range = 1.0 / math.sqrt(fan_in + fan_out) m.weight.data.uniform_(-init_range, init_range) m.bias.data.zero_() def efficientnet_init_weights(model: nn.Module, init_fn=None, zero_gamma=False): last_bn = [] if zero_gamma: prev_n = '' for n, m in model.named_modules(): if isinstance(m, nn.BatchNorm2d): if ''.join(prev_n.split('.')[:-1]) != ''.join(n.split('.')[:-1]): last_bn.append(prev_n) prev_n = n last_bn.append(prev_n) init_fn = init_fn or _init_weight_goog for n, m in model.named_modules(): init_fn(m, n, last_bn=last_bn)
Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/builder.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/builder.py", "repo_id": "Cream", "token_count": 16979 }
313
import logging import torch from collections import OrderedDict def load_checkpoint(model, filename, strict=False, logger=None): checkpoint = torch.load(filename) # get state_dict from checkpoint if isinstance(checkpoint, OrderedDict): state_dict = checkpoint elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] else: raise RuntimeError( 'No state_dict found in checkpoint file {}'.format(filename)) # strip prefix of state_dict if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in state_dict.items()} # load state_dict if hasattr(model, 'module'): load_state_dict(model.module, state_dict, strict, logger) else: load_state_dict(model, state_dict, strict, logger) return checkpoint def load_state_dict(module, state_dict, strict=False, logger=None): """Load state_dict to a module. Args: logger (:obj:`logging.Logger`, optional): Logger to log the error message. If not specified, print function will be used. """ unexpected_keys = [] own_state = module.state_dict() state_dict_modify = state_dict.copy() for name, param in state_dict.items(): ''' for mobilenet v2 if 'features' in name: name = name.replace('features.','features') ''' if isinstance(param, torch.nn.Parameter): # backwards compatibility for serialized parameters param = param.data if 'conv2' in name and 'layer4.0.conv2_d2.weight' in own_state.keys(): d1 = name.replace('conv2', 'conv2_d1') d1_c = own_state[d1].size(0) own_state[d1].copy_(param[:d1_c,:,:,:]) state_dict_modify[d1] = param[:d1_c,:,:,:] d2 = name.replace('conv2', 'conv2_d2') d2_c = own_state[d2].size(0) own_state[d2].copy_(param[d1_c:d1_c+d2_c,:,:,:]) state_dict_modify[d2] = param[d1_c:d1_c+d2_c,:,:,:] d3 = name.replace('conv2', 'conv2_d3') own_state[d3].copy_(param[d1_c+d2_c:,:,:,:]) state_dict_modify[d3] = param[d1_c+d2_c:,:,:,:] else: if name not in own_state: unexpected_keys.append(name) continue try: own_state[name].copy_(param) except Exception: raise RuntimeError( 'While copying the parameter named {}, ' 'whose dimensions in the model are {} and ' 'whose dimensions in the checkpoint are {}.'.format( name, own_state[name].size(), param.size())) missing_keys = set(own_state.keys()) - set(state_dict_modify.keys()) ''' if 'layer4.0.conv2_d2.weight' in own_state.keys(): missing_keys = set(own_state.keys()) - set(state_dict_modify.keys()) else: # for mobilenetv2 own_state_set = [] for name in set(own_state.keys()): own_state_set.append(name.replace('features','features.')) missing_keys = set(own_state_set) - set(state_dict.keys()) ''' err_msg = [] if unexpected_keys: err_msg.append('unexpected key in source state_dict: {}\n'.format( ', '.join(unexpected_keys))) if missing_keys: err_msg.append('missing keys in source state_dict: {}\n'.format( ', '.join(missing_keys))) err_msg = '\n'.join(err_msg) if err_msg: if strict: raise RuntimeError(err_msg) elif logger is not None: logger.warn(err_msg) else: print(err_msg)
Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/utils.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/utils.py", "repo_id": "Cream", "token_count": 1798 }
314
from .single_stage import SingleStageDetector from ..registry import DETECTORS @DETECTORS.register_module class FCOS(SingleStageDetector): def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None): super(FCOS, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained)
Cream/CDARTS/CDARTS_detection/mmdet/models/detectors/fcos.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/detectors/fcos.py", "repo_id": "Cream", "token_count": 255 }
315
import torch import torch.nn as nn from mmdet.core import bbox_overlaps from .utils import weighted_loss from ..registry import LOSSES @weighted_loss def iou_loss(pred, target, eps=1e-6): """IoU loss. Computing the IoU loss between a set of predicted bboxes and target bboxes. The loss is calculated as negative log of IoU. Args: pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4). target (Tensor): Corresponding gt bboxes, shape (n, 4). eps (float): Eps to avoid log(0). Return: Tensor: Loss tensor. """ ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps) loss = -ious.log() return loss @weighted_loss def bounded_iou_loss(pred, target, beta=0.2, eps=1e-3): """Improving Object Localization with Fitness NMS and Bounded IoU Loss, https://arxiv.org/abs/1711.00164. Args: pred (tensor): Predicted bboxes. target (tensor): Target bboxes. beta (float): beta parameter in smoothl1. eps (float): eps to avoid NaN. """ pred_ctrx = (pred[:, 0] + pred[:, 2]) * 0.5 pred_ctry = (pred[:, 1] + pred[:, 3]) * 0.5 pred_w = pred[:, 2] - pred[:, 0] + 1 pred_h = pred[:, 3] - pred[:, 1] + 1 with torch.no_grad(): target_ctrx = (target[:, 0] + target[:, 2]) * 0.5 target_ctry = (target[:, 1] + target[:, 3]) * 0.5 target_w = target[:, 2] - target[:, 0] + 1 target_h = target[:, 3] - target[:, 1] + 1 dx = target_ctrx - pred_ctrx dy = target_ctry - pred_ctry loss_dx = 1 - torch.max( (target_w - 2 * dx.abs()) / (target_w + 2 * dx.abs() + eps), torch.zeros_like(dx)) loss_dy = 1 - torch.max( (target_h - 2 * dy.abs()) / (target_h + 2 * dy.abs() + eps), torch.zeros_like(dy)) loss_dw = 1 - torch.min(target_w / (pred_w + eps), pred_w / (target_w + eps)) loss_dh = 1 - torch.min(target_h / (pred_h + eps), pred_h / (target_h + eps)) loss_comb = torch.stack([loss_dx, loss_dy, loss_dw, loss_dh], dim=-1).view(loss_dx.size(0), -1) loss = torch.where(loss_comb < beta, 0.5 * loss_comb * loss_comb / beta, loss_comb - 0.5 * beta) return loss @LOSSES.register_module class IoULoss(nn.Module): def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0): super(IoULoss, self).__init__() self.eps = eps self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): if weight is not None and not torch.any(weight > 0): return (pred * weight).sum() # 0 assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss = self.loss_weight * iou_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss @LOSSES.register_module class BoundedIoULoss(nn.Module): def __init__(self, beta=0.2, eps=1e-3, reduction='mean', loss_weight=1.0): super(BoundedIoULoss, self).__init__() self.beta = beta self.eps = eps self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): if weight is not None and not torch.any(weight > 0): return (pred * weight).sum() # 0 assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss = self.loss_weight * bounded_iou_loss( pred, target, weight, beta=self.beta, eps=self.eps, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss
Cream/CDARTS/CDARTS_detection/mmdet/models/losses/iou_loss.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/losses/iou_loss.py", "repo_id": "Cream", "token_count": 2151 }
316
import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import xavier_init from mmdet.core import auto_fp16 from ..registry import NECKS from ..utils import ConvModule # For toy experiments class MBBlock(nn.Module): def __init__(self, in_channels, out_channels, expansion, stride, kernel_size, dilation=1, groups=1): super(MBBlock, self).__init__() self.in_channels = in_channels self.out_channels =out_channels self.stride = stride self.groups = groups mid_channels = in_channels * expansion padding = (kernel_size - 1) * dilation // 2 self.conv1 = nn.Sequential( nn.Conv2d(in_channels, mid_channels, 1, stride=1, padding=0, dilation=1, bias=False, groups=groups), nn.SyncBatchNorm(mid_channels), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential( nn.Conv2d(mid_channels, mid_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False, groups=mid_channels), nn.SyncBatchNorm(mid_channels), nn.ReLU(inplace=True) ) self.conv3 = nn.Sequential( nn.Conv2d(mid_channels, out_channels, 1, stride=1, padding=0, dilation=1, bias=False, groups=groups), nn.SyncBatchNorm(out_channels) ) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1]) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0.0001) nn.init.constant_(m.running_mean, 0) if isinstance(m, nn.SyncBatchNorm): m._specify_ddp_gpu_num(1) def forward(self, x): out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) if self.in_channels == self.out_channels and self.stride == 1: out = out + x return out @NECKS.register_module class FPN(nn.Module): def __init__(self, in_channels, out_channels, num_outs, start_level=0, end_level=-1, add_extra_convs=False, extra_convs_on_inputs=True, relu_before_extra_convs=False, conv_cfg=None, norm_cfg=None, activation=None, fpn_kernel=3, lateral_kernel=1, depthwise=None, toy_replace=None, dense_add=None): super(FPN, self).__init__() assert isinstance(in_channels, list) self.in_channels = in_channels self.out_channels = out_channels self.num_ins = len(in_channels) self.num_outs = num_outs self.activation = activation self.relu_before_extra_convs = relu_before_extra_convs self.fp16_enabled = False self.fpn_kernel = fpn_kernel self.lateral_kernel = lateral_kernel self.dense_add = dense_add if end_level == -1: self.backbone_end_level = self.num_ins assert num_outs >= self.num_ins - start_level else: # if end_level < inputs, no extra level is allowed self.backbone_end_level = end_level assert end_level <= len(in_channels) assert num_outs == end_level - start_level self.start_level = start_level self.end_level = end_level self.add_extra_convs = add_extra_convs self.extra_convs_on_inputs = extra_convs_on_inputs self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for i in range(self.start_level, self.backbone_end_level): l_conv = ConvModule( in_channels[i], out_channels, lateral_kernel, padding=(lateral_kernel-1)//2, conv_cfg=conv_cfg, norm_cfg=norm_cfg, activation=self.activation, inplace=False) if depthwise is not None: if depthwise == 'sep': fpn_conv = nn.Conv2d(out_channels, out_channels, self.fpn_kernel, padding=int((self.fpn_kernel-1)/2), groups=out_channels) elif depthwise == 'sep-depth': fpn_conv = nn.Sequential( nn.Conv2d(out_channels, out_channels, self.fpn_kernel, padding=int((self.fpn_kernel-1)/2), groups=out_channels), nn.Conv2d(out_channels, out_channels, 1, padding=0)) else: if toy_replace is not None and i == toy_replace.get('stage', 30): if toy_replace.get('block', 'res') == 'ir': fpn_conv = MBBlock( out_channels, out_channels, 1, 1, toy_replace.get('conv_kernel'), dilation=toy_replace.get('dilation'), groups=1) else: fpn_conv = ConvModule( out_channels, out_channels, toy_replace.get('conv_kernel'), padding=(toy_replace.get('conv_kernel')-1) * toy_replace.get('dilation') // 2, dilation=toy_replace.get('dilation'), conv_cfg=conv_cfg, norm_cfg=norm_cfg, activation=self.activation, inplace=False) else: fpn_conv = ConvModule( out_channels, out_channels, self.fpn_kernel, padding=int((self.fpn_kernel-1)/2), conv_cfg=conv_cfg, norm_cfg=norm_cfg, activation=self.activation, inplace=False) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) # add extra conv layers (e.g., RetinaNet) extra_levels = num_outs - self.backbone_end_level + self.start_level if add_extra_convs and extra_levels >= 1: for i in range(extra_levels): if i == 0 and self.extra_convs_on_inputs: in_channels = self.in_channels[self.backbone_end_level - 1] else: in_channels = out_channels extra_fpn_conv = ConvModule( in_channels, out_channels, 3, stride=2, padding=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, activation=self.activation, inplace=False) self.fpn_convs.append(extra_fpn_conv) # default init_weights for conv(msra) and norm in ConvModule def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): xavier_init(m, distribution='uniform') @auto_fp16() def forward(self, inputs): assert len(inputs) == len(self.in_channels) # build laterals laterals = [ lateral_conv(inputs[i + self.start_level]) for i, lateral_conv in enumerate(self.lateral_convs) ] # build top-down path used_backbone_levels = len(laterals) if self.dense_add is not None: if self.dense_add == 'no': laterals = laterals elif self.dense_add == 'all': laterals_ = [0 for i in range(len(laterals))] for i in range(used_backbone_levels - 1, -1, -1): h, w = laterals[i].size(2), laterals[i].size(3) for j in range(len(laterals)): for k in range(i-j): if k == 0: tmp_lateral = F.max_pool2d(laterals[j], 2, stride=2) else: tmp_lateral = F.max_pool2d(tmp_lateral, 2, stride=2) if i > j: laterals_[i] += F.interpolate(tmp_lateral, size=(h,w), mode='bilinear', align_corners=True) else: laterals_[i] += F.interpolate(laterals[j], size=(h,w), mode='bilinear', align_corners=True) laterals = laterals_ elif self.dense_add == 'top-down': laterals_ = [0 for i in range(len(laterals))] for i in range(used_backbone_levels - 1, -1, -1): h, w = laterals[i].size(2), laterals[i].size(3) for j in range(used_backbone_levels - 1, i-1, -1): laterals_[i] += F.interpolate(laterals[j], size=(h,w), mode='nearest') laterals = laterals_ elif self.dense_add == 'bottom-up-nearest': for i in range(0, used_backbone_levels-1, 1): laterals[i+1] += F.max_pool2d(laterals[i], 1, stride=2) elif self.dense_add == 'bottom-up': laterals_ = [0 for i in range(len(laterals))] for i in range(used_backbone_levels - 1, -1, -1): h, w = laterals[i].size(2), laterals[i].size(3) for j in range(i+1): for k in range(i-j): if k == 0: tmp_lateral = F.max_pool2d(laterals[j], 2, stride=2) else: tmp_lateral = F.max_pool2d(tmp_lateral, 2, stride=2) if i > j: laterals_[i] += F.interpolate(tmp_lateral, size=(h,w), mode='bilinear', align_corners=True) else: laterals_[i] += F.interpolate(laterals[j], size=(h,w), mode='bilinear', align_corners=True) laterals = laterals_ else: for i in range(used_backbone_levels - 1, 0, -1): laterals[i - 1] += F.interpolate( laterals[i], scale_factor=2, mode='nearest') # build outputs # part 1: from original levels if self.fpn_kernel == 1 or self.fpn_kernel == 3: outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels)] else: outs = [laterals[i] for i in range(used_backbone_levels)] # part 2: add extra levels if self.num_outs > len(outs): # use max pool to get more levels on top of outputs # (e.g., Faster R-CNN, Mask R-CNN) if not self.add_extra_convs: for i in range(self.num_outs - used_backbone_levels): outs.append(F.max_pool2d(outs[-1], 1, stride=2)) # add conv layers on top of original feature maps (RetinaNet) else: if self.extra_convs_on_inputs: orig = inputs[self.backbone_end_level - 1] outs.append(self.fpn_convs[used_backbone_levels](orig)) else: outs.append(self.fpn_convs[used_backbone_levels](outs[-1])) for i in range(used_backbone_levels + 1, self.num_outs): if self.relu_before_extra_convs: outs.append(self.fpn_convs[i](F.relu(outs[-1]))) else: outs.append(self.fpn_convs[i](outs[-1])) return tuple(outs)
Cream/CDARTS/CDARTS_detection/mmdet/models/necks/fpn.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/necks/fpn.py", "repo_id": "Cream", "token_count": 6732 }
317
import torch.nn as nn norm_cfg = { # format: layer_type: (abbreviation, module) 'BN': ('bn', nn.BatchNorm2d), 'SyncBN': ('bn', nn.SyncBatchNorm), 'GN': ('gn', nn.GroupNorm), # and potentially 'SN' } def build_norm_layer(cfg, num_features, postfix=''): """ Build normalization layer Args: cfg (dict): cfg should contain: type (str): identify norm layer type. layer args: args needed to instantiate a norm layer. requires_grad (bool): [optional] whether stop gradient updates num_features (int): number of channels from input. postfix (int, str): appended into norm abbreviation to create named layer. Returns: name (str): abbreviation + postfix layer (nn.Module): created norm layer """ assert isinstance(cfg, dict) and 'type' in cfg cfg_ = cfg.copy() layer_type = cfg_.pop('type') if layer_type not in norm_cfg: raise KeyError('Unrecognized norm type {}'.format(layer_type)) else: abbr, norm_layer = norm_cfg[layer_type] if norm_layer is None: raise NotImplementedError assert isinstance(postfix, (int, str)) name = abbr + str(postfix) requires_grad = cfg_.pop('requires_grad', True) cfg_.setdefault('eps', 1e-5) if layer_type != 'GN': layer = norm_layer(num_features, **cfg_) if layer_type == 'SyncBN': layer._specify_ddp_gpu_num(1) else: assert 'num_groups' in cfg_ layer = norm_layer(num_channels=num_features, **cfg_) for param in layer.parameters(): param.requires_grad = requires_grad return name, layer
Cream/CDARTS/CDARTS_detection/mmdet/models/utils/norm.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/utils/norm.py", "repo_id": "Cream", "token_count": 705 }
318
/*! * Copyright (c) 2017 Microsoft * Licensed under The MIT License [see LICENSE for details] * \file deformable_psroi_pooling.cu * \brief * \author Yi Li, Guodong Zhang, Jifeng Dai */ /***************** Adapted by Charles Shang *********************/ // modify from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/cuda/deform_psroi_pooling_cuda.cu #include <ATen/ATen.h> #include <THC/THCAtomics.cuh> #include <stdio.h> #include <math.h> #include <algorithm> using namespace at; #define CUDA_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ i < (n); \ i += blockDim.x * gridDim.x) const int CUDA_NUM_THREADS = 1024; inline int GET_BLOCKS(const int N) { return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS; } template <typename scalar_t> __device__ scalar_t bilinear_interp( const scalar_t *data, const scalar_t x, const scalar_t y, const int width, const int height) { int x1 = floor(x); int x2 = ceil(x); int y1 = floor(y); int y2 = ceil(y); scalar_t dist_x = (scalar_t)(x - x1); scalar_t dist_y = (scalar_t)(y - y1); scalar_t value11 = data[y1 * width + x1]; scalar_t value12 = data[y2 * width + x1]; scalar_t value21 = data[y1 * width + x2]; scalar_t value22 = data[y2 * width + x2]; scalar_t value = (1 - dist_x) * (1 - dist_y) * value11 + (1 - dist_x) * dist_y * value12 + dist_x * (1 - dist_y) * value21 + dist_x * dist_y * value22; return value; } template <typename scalar_t> __global__ void DeformablePSROIPoolForwardKernel( const int count, const scalar_t *bottom_data, const scalar_t spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const scalar_t *bottom_rois, const scalar_t *bottom_trans, const int no_trans, const scalar_t trans_std, const int sample_per_part, const int output_dim, const int group_size, const int part_size, const int num_classes, const int channels_each_class, scalar_t *top_data, scalar_t *top_count) { CUDA_KERNEL_LOOP(index, count) { // The output is in order (n, ctop, ph, pw) int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int ctop = (index / pooled_width / pooled_height) % output_dim; int n = index / pooled_width / pooled_height / output_dim; // [start, end) interval for spatial sampling const scalar_t *offset_bottom_rois = bottom_rois + n * 5; int roi_batch_ind = offset_bottom_rois[0]; scalar_t roi_start_w = (scalar_t)(round(offset_bottom_rois[1])) * spatial_scale - 0.5; scalar_t roi_start_h = (scalar_t)(round(offset_bottom_rois[2])) * spatial_scale - 0.5; scalar_t roi_end_w = (scalar_t)(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5; scalar_t roi_end_h = (scalar_t)(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5; // Force too small ROIs to be 1x1 scalar_t roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0 scalar_t roi_height = max(roi_end_h - roi_start_h, 0.1); // Compute w and h at bottom scalar_t bin_size_h = roi_height / (scalar_t)(pooled_height); scalar_t bin_size_w = roi_width / (scalar_t)(pooled_width); scalar_t sub_bin_size_h = bin_size_h / (scalar_t)(sample_per_part); scalar_t sub_bin_size_w = bin_size_w / (scalar_t)(sample_per_part); int part_h = floor((scalar_t)(ph) / pooled_height * part_size); int part_w = floor((scalar_t)(pw) / pooled_width * part_size); int class_id = ctop / channels_each_class; scalar_t trans_x = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; scalar_t trans_y = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; scalar_t wstart = (scalar_t)(pw)*bin_size_w + roi_start_w; wstart += trans_x * roi_width; scalar_t hstart = (scalar_t)(ph)*bin_size_h + roi_start_h; hstart += trans_y * roi_height; scalar_t sum = 0; int count = 0; int gw = floor((scalar_t)(pw)*group_size / pooled_width); int gh = floor((scalar_t)(ph)*group_size / pooled_height); gw = min(max(gw, 0), group_size - 1); gh = min(max(gh, 0), group_size - 1); const scalar_t *offset_bottom_data = bottom_data + (roi_batch_ind * channels) * height * width; for (int ih = 0; ih < sample_per_part; ih++) { for (int iw = 0; iw < sample_per_part; iw++) { scalar_t w = wstart + iw * sub_bin_size_w; scalar_t h = hstart + ih * sub_bin_size_h; // bilinear interpolation if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) { continue; } w = min(max(w, 0.), width - 1.); h = min(max(h, 0.), height - 1.); int c = (ctop * group_size + gh) * group_size + gw; scalar_t val = bilinear_interp(offset_bottom_data + c * height * width, w, h, width, height); sum += val; count++; } } top_data[index] = count == 0 ? (scalar_t)(0) : sum / count; top_count[index] = count; } } template <typename scalar_t> __global__ void DeformablePSROIPoolBackwardAccKernel( const int count, const scalar_t *top_diff, const scalar_t *top_count, const int num_rois, const scalar_t spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int output_dim, scalar_t *bottom_data_diff, scalar_t *bottom_trans_diff, const scalar_t *bottom_data, const scalar_t *bottom_rois, const scalar_t *bottom_trans, const int no_trans, const scalar_t trans_std, const int sample_per_part, const int group_size, const int part_size, const int num_classes, const int channels_each_class) { CUDA_KERNEL_LOOP(index, count) { // The output is in order (n, ctop, ph, pw) int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int ctop = (index / pooled_width / pooled_height) % output_dim; int n = index / pooled_width / pooled_height / output_dim; // [start, end) interval for spatial sampling const scalar_t *offset_bottom_rois = bottom_rois + n * 5; int roi_batch_ind = offset_bottom_rois[0]; scalar_t roi_start_w = (scalar_t)(round(offset_bottom_rois[1])) * spatial_scale - 0.5; scalar_t roi_start_h = (scalar_t)(round(offset_bottom_rois[2])) * spatial_scale - 0.5; scalar_t roi_end_w = (scalar_t)(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5; scalar_t roi_end_h = (scalar_t)(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5; // Force too small ROIs to be 1x1 scalar_t roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0 scalar_t roi_height = max(roi_end_h - roi_start_h, 0.1); // Compute w and h at bottom scalar_t bin_size_h = roi_height / (scalar_t)(pooled_height); scalar_t bin_size_w = roi_width / (scalar_t)(pooled_width); scalar_t sub_bin_size_h = bin_size_h / (scalar_t)(sample_per_part); scalar_t sub_bin_size_w = bin_size_w / (scalar_t)(sample_per_part); int part_h = floor((scalar_t)(ph) / pooled_height * part_size); int part_w = floor((scalar_t)(pw) / pooled_width * part_size); int class_id = ctop / channels_each_class; scalar_t trans_x = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; scalar_t trans_y = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; scalar_t wstart = (scalar_t)(pw)*bin_size_w + roi_start_w; wstart += trans_x * roi_width; scalar_t hstart = (scalar_t)(ph)*bin_size_h + roi_start_h; hstart += trans_y * roi_height; if (top_count[index] <= 0) { continue; } scalar_t diff_val = top_diff[index] / top_count[index]; const scalar_t *offset_bottom_data = bottom_data + roi_batch_ind * channels * height * width; scalar_t *offset_bottom_data_diff = bottom_data_diff + roi_batch_ind * channels * height * width; int gw = floor((scalar_t)(pw)*group_size / pooled_width); int gh = floor((scalar_t)(ph)*group_size / pooled_height); gw = min(max(gw, 0), group_size - 1); gh = min(max(gh, 0), group_size - 1); for (int ih = 0; ih < sample_per_part; ih++) { for (int iw = 0; iw < sample_per_part; iw++) { scalar_t w = wstart + iw * sub_bin_size_w; scalar_t h = hstart + ih * sub_bin_size_h; // bilinear interpolation if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) { continue; } w = min(max(w, 0.), width - 1.); h = min(max(h, 0.), height - 1.); int c = (ctop * group_size + gh) * group_size + gw; // backward on feature int x0 = floor(w); int x1 = ceil(w); int y0 = floor(h); int y1 = ceil(h); scalar_t dist_x = w - x0, dist_y = h - y0; scalar_t q00 = (1 - dist_x) * (1 - dist_y); scalar_t q01 = (1 - dist_x) * dist_y; scalar_t q10 = dist_x * (1 - dist_y); scalar_t q11 = dist_x * dist_y; int bottom_index_base = c * height * width; atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x0, q00 * diff_val); atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x0, q01 * diff_val); atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x1, q10 * diff_val); atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x1, q11 * diff_val); if (no_trans) { continue; } scalar_t U00 = offset_bottom_data[bottom_index_base + y0 * width + x0]; scalar_t U01 = offset_bottom_data[bottom_index_base + y1 * width + x0]; scalar_t U10 = offset_bottom_data[bottom_index_base + y0 * width + x1]; scalar_t U11 = offset_bottom_data[bottom_index_base + y1 * width + x1]; scalar_t diff_x = (U11 * dist_y + U10 * (1 - dist_y) - U01 * dist_y - U00 * (1 - dist_y)) * trans_std * diff_val; diff_x *= roi_width; scalar_t diff_y = (U11 * dist_x + U01 * (1 - dist_x) - U10 * dist_x - U00 * (1 - dist_x)) * trans_std * diff_val; diff_y *= roi_height; atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w, diff_x); atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w, diff_y); } } } } void DeformablePSROIPoolForward(const at::Tensor data, const at::Tensor bbox, const at::Tensor trans, at::Tensor out, at::Tensor top_count, const int batch, const int channels, const int height, const int width, const int num_bbox, const int channels_trans, const int no_trans, const float spatial_scale, const int output_dim, const int group_size, const int pooled_size, const int part_size, const int sample_per_part, const float trans_std) { const int pooled_height = pooled_size; const int pooled_width = pooled_size; const int count = num_bbox * output_dim * pooled_height * pooled_width; const int num_classes = no_trans ? 1 : channels_trans / 2; const int channels_each_class = no_trans ? output_dim : output_dim / num_classes; AT_DISPATCH_FLOATING_TYPES_AND_HALF( data.type(), "deformable_psroi_pool_forward", ([&] { const scalar_t *bottom_data = data.data<scalar_t>(); const scalar_t *bottom_rois = bbox.data<scalar_t>(); const scalar_t *bottom_trans = no_trans ? NULL : trans.data<scalar_t>(); scalar_t *top_data = out.data<scalar_t>(); scalar_t *top_count_data = top_count.data<scalar_t>(); DeformablePSROIPoolForwardKernel<<<GET_BLOCKS(count), CUDA_NUM_THREADS>>>( count, bottom_data, (scalar_t)spatial_scale, channels, height, width, pooled_height, pooled_width, bottom_rois, bottom_trans, no_trans, (scalar_t)trans_std, sample_per_part, output_dim, group_size, part_size, num_classes, channels_each_class, top_data, top_count_data); })); cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("error in DeformablePSROIPoolForward: %s\n", cudaGetErrorString(err)); } } void DeformablePSROIPoolBackwardAcc(const at::Tensor out_grad, const at::Tensor data, const at::Tensor bbox, const at::Tensor trans, const at::Tensor top_count, at::Tensor in_grad, at::Tensor trans_grad, const int batch, const int channels, const int height, const int width, const int num_bbox, const int channels_trans, const int no_trans, const float spatial_scale, const int output_dim, const int group_size, const int pooled_size, const int part_size, const int sample_per_part, const float trans_std) { // LOG(INFO) << "DeformablePSROIPoolBackward"; const int num_rois = num_bbox; const int pooled_height = pooled_size; const int pooled_width = pooled_size; const int count = num_bbox * output_dim * pooled_height * pooled_width; const int num_classes = no_trans ? 1 : channels_trans / 2; const int channels_each_class = no_trans ? output_dim : output_dim / num_classes; AT_DISPATCH_FLOATING_TYPES_AND_HALF( out_grad.type(), "deformable_psroi_pool_backward_acc", ([&] { const scalar_t *top_diff = out_grad.data<scalar_t>(); const scalar_t *bottom_data = data.data<scalar_t>(); const scalar_t *bottom_rois = bbox.data<scalar_t>(); const scalar_t *bottom_trans = no_trans ? NULL : trans.data<scalar_t>(); scalar_t *bottom_data_diff = in_grad.data<scalar_t>(); scalar_t *bottom_trans_diff = no_trans ? NULL : trans_grad.data<scalar_t>(); const scalar_t *top_count_data = top_count.data<scalar_t>(); DeformablePSROIPoolBackwardAccKernel<<<GET_BLOCKS(count), CUDA_NUM_THREADS>>>( count, top_diff, top_count_data, num_rois, (scalar_t)spatial_scale, channels, height, width, pooled_height, pooled_width, output_dim, bottom_data_diff, bottom_trans_diff, bottom_data, bottom_rois, bottom_trans, no_trans, (scalar_t)trans_std, sample_per_part, group_size, part_size, num_classes, channels_each_class); })); cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("error in DeformablePSROIPoolForward: %s\n", cudaGetErrorString(err)); } }
Cream/CDARTS/CDARTS_detection/mmdet/ops/dcn/src/deform_pool_cuda_kernel.cu/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/dcn/src/deform_pool_cuda_kernel.cu", "repo_id": "Cream", "token_count": 7753 }
319
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <THC/THC.h> #include <THC/THCDeviceUtils.cuh> #include <vector> #include <iostream> int const threadsPerBlock = sizeof(unsigned long long) * 8; __device__ inline float devIoU(float const * const a, float const * const b) { float left = max(a[0], b[0]), right = min(a[2], b[2]); float top = max(a[1], b[1]), bottom = min(a[3], b[3]); float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f); float interS = width * height; float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1); float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1); return interS / (Sa + Sb - interS); } __global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh, const float *dev_boxes, unsigned long long *dev_mask) { const int row_start = blockIdx.y; const int col_start = blockIdx.x; // if (row_start > col_start) return; const int row_size = min(n_boxes - row_start * threadsPerBlock, threadsPerBlock); const int col_size = min(n_boxes - col_start * threadsPerBlock, threadsPerBlock); __shared__ float block_boxes[threadsPerBlock * 5]; if (threadIdx.x < col_size) { block_boxes[threadIdx.x * 5 + 0] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0]; block_boxes[threadIdx.x * 5 + 1] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1]; block_boxes[threadIdx.x * 5 + 2] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2]; block_boxes[threadIdx.x * 5 + 3] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3]; block_boxes[threadIdx.x * 5 + 4] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4]; } __syncthreads(); if (threadIdx.x < row_size) { const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x; const float *cur_box = dev_boxes + cur_box_idx * 5; int i = 0; unsigned long long t = 0; int start = 0; if (row_start == col_start) { start = threadIdx.x + 1; } for (i = start; i < col_size; i++) { if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) { t |= 1ULL << i; } } const int col_blocks = THCCeilDiv(n_boxes, threadsPerBlock); dev_mask[cur_box_idx * col_blocks + col_start] = t; } } // boxes is a N x 5 tensor at::Tensor nms_cuda(const at::Tensor boxes, float nms_overlap_thresh) { using scalar_t = float; AT_ASSERTM(boxes.type().is_cuda(), "boxes must be a CUDA tensor"); auto scores = boxes.select(1, 4); auto order_t = std::get<1>(scores.sort(0, /* descending=*/true)); auto boxes_sorted = boxes.index_select(0, order_t); int boxes_num = boxes.size(0); const int col_blocks = THCCeilDiv(boxes_num, threadsPerBlock); scalar_t* boxes_dev = boxes_sorted.data<scalar_t>(); THCState *state = at::globalContext().lazyInitCUDA(); // TODO replace with getTHCState unsigned long long* mask_dev = NULL; //THCudaCheck(THCudaMalloc(state, (void**) &mask_dev, // boxes_num * col_blocks * sizeof(unsigned long long))); mask_dev = (unsigned long long*) THCudaMalloc(state, boxes_num * col_blocks * sizeof(unsigned long long)); dim3 blocks(THCCeilDiv(boxes_num, threadsPerBlock), THCCeilDiv(boxes_num, threadsPerBlock)); dim3 threads(threadsPerBlock); nms_kernel<<<blocks, threads>>>(boxes_num, nms_overlap_thresh, boxes_dev, mask_dev); std::vector<unsigned long long> mask_host(boxes_num * col_blocks); THCudaCheck(cudaMemcpy(&mask_host[0], mask_dev, sizeof(unsigned long long) * boxes_num * col_blocks, cudaMemcpyDeviceToHost)); std::vector<unsigned long long> remv(col_blocks); memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks); at::Tensor keep = at::empty({boxes_num}, boxes.options().dtype(at::kLong).device(at::kCPU)); int64_t* keep_out = keep.data<int64_t>(); int num_to_keep = 0; for (int i = 0; i < boxes_num; i++) { int nblock = i / threadsPerBlock; int inblock = i % threadsPerBlock; if (!(remv[nblock] & (1ULL << inblock))) { keep_out[num_to_keep++] = i; unsigned long long *p = &mask_host[0] + i * col_blocks; for (int j = nblock; j < col_blocks; j++) { remv[j] |= p[j]; } } } THCudaFree(state, mask_dev); // TODO improve this part return std::get<0>(order_t.index({ keep.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep).to( order_t.device(), keep.scalar_type()) }).sort(0, false)); }
Cream/CDARTS/CDARTS_detection/mmdet/ops/nms/src/nms_kernel.cu/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/nms/src/nms_kernel.cu", "repo_id": "Cream", "token_count": 2166 }
320
import torch from torch.autograd import gradcheck import os.path as osp import sys sys.path.append(osp.abspath(osp.join(__file__, '../../'))) from roi_pool import RoIPool # noqa: E402 feat = torch.randn(4, 16, 15, 15, requires_grad=True).cuda() rois = torch.Tensor([[0, 0, 0, 50, 50], [0, 10, 30, 43, 55], [1, 67, 40, 110, 120]]).cuda() inputs = (feat, rois) print('Gradcheck for roi pooling...') test = gradcheck(RoIPool(4, 1.0 / 8), inputs, eps=1e-5, atol=1e-3) print(test)
Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_pool/gradcheck.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_pool/gradcheck.py", "repo_id": "Cream", "token_count": 224 }
321
# coding: utf-8 import asyncio import contextlib import logging import os import time from typing import List import torch logger = logging.getLogger(__name__) DEBUG_COMPLETED_TIME = bool(os.environ.get('DEBUG_COMPLETED_TIME', False)) @contextlib.asynccontextmanager async def completed(trace_name='', name='', sleep_interval=0.05, streams: List[torch.cuda.Stream] = None): """ Async context manager that waits for work to complete on given CUDA streams. """ if not torch.cuda.is_available(): yield return stream_before_context_switch = torch.cuda.current_stream() if not streams: streams = [stream_before_context_switch] else: streams = [s if s else stream_before_context_switch for s in streams] end_events = [ torch.cuda.Event(enable_timing=DEBUG_COMPLETED_TIME) for _ in streams ] if DEBUG_COMPLETED_TIME: start = torch.cuda.Event(enable_timing=True) stream_before_context_switch.record_event(start) cpu_start = time.monotonic() logger.debug('%s %s starting, streams: %s', trace_name, name, streams) grad_enabled_before = torch.is_grad_enabled() try: yield finally: current_stream = torch.cuda.current_stream() assert current_stream == stream_before_context_switch if DEBUG_COMPLETED_TIME: cpu_end = time.monotonic() for i, stream in enumerate(streams): event = end_events[i] stream.record_event(event) grad_enabled_after = torch.is_grad_enabled() # observed change of torch.is_grad_enabled() during concurrent run of # async_test_bboxes code assert (grad_enabled_before == grad_enabled_after ), 'Unexpected is_grad_enabled() value change' are_done = [e.query() for e in end_events] logger.debug('%s %s completed: %s streams: %s', trace_name, name, are_done, streams) with torch.cuda.stream(stream_before_context_switch): while not all(are_done): await asyncio.sleep(sleep_interval) are_done = [e.query() for e in end_events] logger.debug( '%s %s completed: %s streams: %s', trace_name, name, are_done, streams, ) current_stream = torch.cuda.current_stream() assert current_stream == stream_before_context_switch if DEBUG_COMPLETED_TIME: cpu_time = (cpu_end - cpu_start) * 1000 stream_times_ms = '' for i, stream in enumerate(streams): elapsed_time = start.elapsed_time(end_events[i]) stream_times_ms += ' {} {:.2f} ms'.format(stream, elapsed_time) logger.info('%s %s %.2f ms %s', trace_name, name, cpu_time, stream_times_ms) @contextlib.asynccontextmanager async def concurrent(streamqueue: asyncio.Queue, trace_name='concurrent', name='stream'): """Run code concurrently in different streams. :param streamqueue: asyncio.Queue instance. Queue tasks define the pool of streams used for concurrent execution. """ if not torch.cuda.is_available(): yield return initial_stream = torch.cuda.current_stream() with torch.cuda.stream(initial_stream): stream = await streamqueue.get() assert isinstance(stream, torch.cuda.Stream) try: with torch.cuda.stream(stream): logger.debug('%s %s is starting, stream: %s', trace_name, name, stream) yield current = torch.cuda.current_stream() assert current == stream logger.debug('%s %s has finished, stream: %s', trace_name, name, stream) finally: streamqueue.task_done() streamqueue.put_nowait(stream)
Cream/CDARTS/CDARTS_detection/mmdet/utils/contextmanagers.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/utils/contextmanagers.py", "repo_id": "Cream", "token_count": 1902 }
322
import argparse import re from collections import OrderedDict import torch def convert(in_file, out_file): """Convert keys in checkpoints. There can be some breaking changes during the development of mmdetection, and this tool is used for upgrading checkpoints trained with old versions to the latest one. """ checkpoint = torch.load(in_file) in_state_dict = checkpoint.pop('state_dict') out_state_dict = OrderedDict() for key, val in in_state_dict.items(): # Use ConvModule instead of nn.Conv2d in RetinaNet # cls_convs.0.weight -> cls_convs.0.conv.weight m = re.search(r'(cls_convs|reg_convs).\d.(weight|bias)', key) if m is not None: param = m.groups()[1] new_key = key.replace(param, 'conv.{}'.format(param)) out_state_dict[new_key] = val continue out_state_dict[key] = val checkpoint['state_dict'] = out_state_dict torch.save(checkpoint, out_file) def main(): parser = argparse.ArgumentParser(description='Upgrade model version') parser.add_argument('in_file', help='input checkpoint file') parser.add_argument('out_file', help='output checkpoint file') args = parser.parse_args() convert(args.in_file, args.out_file) if __name__ == '__main__': main()
Cream/CDARTS/CDARTS_detection/tools/upgrade_model_version.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/tools/upgrade_model_version.py", "repo_id": "Cream", "token_count": 514 }
323
from __future__ import print_function, division import os import numpy as np import scipy.io import torch.utils.data as data from PIL import Image from torchvision import transforms from dataloaders import custom_transforms as tr class SBDSegmentation(data.Dataset): NUM_CLASSES = 21 def __init__(self, args, base_dir, split='train', ): """ :param base_dir: path to VOC dataset directory :param split: train/val :param transform: transform to apply """ super().__init__() self._base_dir = base_dir self._dataset_dir = os.path.join(self._base_dir, 'dataset') self._image_dir = os.path.join(self._dataset_dir, 'img') self._cat_dir = os.path.join(self._dataset_dir, 'cls') if isinstance(split, str): self.split = [split] else: split.sort() self.split = split self.args = args # Get list of all images from the split and check that the files exist self.im_ids = [] self.images = [] self.categories = [] for splt in self.split: with open(os.path.join(self._dataset_dir, splt + '.txt'), "r") as f: lines = f.read().splitlines() for line in lines: _image = os.path.join(self._image_dir, line + ".jpg") _categ= os.path.join(self._cat_dir, line + ".mat") assert os.path.isfile(_image) assert os.path.isfile(_categ) self.im_ids.append(line) self.images.append(_image) self.categories.append(_categ) assert (len(self.images) == len(self.categories)) # Display stats print('Number of images: {:d}'.format(len(self.images))) def __getitem__(self, index): _img, _target = self._make_img_gt_point_pair(index) sample = {'image': _img, 'label': _target} return self.transform(sample) def __len__(self): return len(self.images) def _make_img_gt_point_pair(self, index): _img = Image.open(self.images[index]).convert('RGB') _target = Image.fromarray(scipy.io.loadmat(self.categories[index])["GTcls"][0]['Segmentation'][0]) return _img, _target def transform(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size), tr.RandomGaussianBlur(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample) def __str__(self): return 'SBDSegmentation(split=' + str(self.split) + ')' if __name__ == '__main__': from dataloaders.dataloader_utils import decode_segmap from torch.utils.data import DataLoader import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser() args = parser.parse_args() args.base_size = 513 args.crop_size = 513 sbd_train = SBDSegmentation(args, split='train') dataloader = DataLoader(sbd_train, batch_size=2, shuffle=True, num_workers=2) for ii, sample in enumerate(dataloader): for jj in range(sample["image"].size()[0]): img = sample['image'].numpy() gt = sample['label'].numpy() tmp = np.array(gt[jj]).astype(np.uint8) segmap = decode_segmap(tmp, dataset='pascal') img_tmp = np.transpose(img[jj], axes=[1, 2, 0]) img_tmp *= (0.229, 0.224, 0.225) img_tmp += (0.485, 0.456, 0.406) img_tmp *= 255.0 img_tmp = img_tmp.astype(np.uint8) plt.figure() plt.title('display') plt.subplot(211) plt.imshow(img_tmp) plt.subplot(212) plt.imshow(segmap) if ii == 1: break plt.show(block=True)
Cream/CDARTS/CDARTS_segmentation/dataloaders/datasets/sbd.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/dataloaders/datasets/sbd.py", "repo_id": "Cream", "token_count": 1950 }
324
from .build import ( build_dataset_from_cfg, build_train_loader_from_cfg, build_test_loader_from_cfg)
Cream/CDARTS/CDARTS_segmentation/segmentation/data/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/data/__init__.py", "repo_id": "Cream", "token_count": 40 }
325
# ------------------------------------------------------------------------------ # Reference: https://github.com/facebookresearch/detectron2/blob/master/detectron2/evaluation/coco_evaluation.py # Modified by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import logging from collections import OrderedDict import os import glob import copy import json import numpy as np from fvcore.common.file_io import PathManager import pycocotools.mask as mask_util class COCOInstanceEvaluator: """ Evaluate COCO instance segmentation """ def __init__(self, output_dir=None, train_id_to_eval_id=None, gt_dir='./datasets/coco/annotations/instances_val2017.json'): """ Args: output_dir (str): an output directory to dump results. train_id_to_eval_id (list): maps training id to evaluation id. gt_dir (str): path to ground truth annotations. """ if output_dir is None: raise ValueError('Must provide a output directory.') self._output_dir = output_dir if self._output_dir: PathManager.mkdirs(self._output_dir) self._train_id_to_eval_id = train_id_to_eval_id self._predictions = [] self._predictions_json = os.path.join(output_dir, 'predictions.json') self._logger = logging.getLogger(__name__) self._gt_dir = gt_dir def update(self, instances, image_filename=None): if image_filename is None: raise ValueError('Need to provide image_filename.') num_instances = len(instances) for i in range(num_instances): pred_class = instances[i]['pred_class'] if self._train_id_to_eval_id is not None: pred_class = self._train_id_to_eval_id[pred_class] image_id = int(os.path.basename(image_filename).split('.')[0]) score = instances[i]['score'] mask = instances[i]['pred_mask'].astype("uint8") # use RLE to encode the masks, because they are too large and takes memory # since this evaluator stores outputs of the entire dataset mask_rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] # "counts" is an array encoded by mask_util as a byte-stream. Python3's # json writer which always produces strings cannot serialize a bytestream # unless you decode it. Thankfully, utf-8 works out (which is also what # the pycocotools/_mask.pyx does). mask_rle["counts"] = mask_rle["counts"].decode("utf-8") self._predictions.append( { 'image_id': image_id, 'category_id': pred_class, 'segmentation': mask_rle, 'score': float(score) } ) def evaluate(self): """ Returns: dict: has a key "segm", whose value is a dict of "AP" and "AP50". """ from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval if self._gt_dir is None: raise ValueError('Must provide coco gt path for evaluation.') self._logger.info("Evaluating results under {} ...".format(self._output_dir)) coco_gt = COCO(self._gt_dir) coco_results = copy.deepcopy(self._predictions) # When evaluating mask AP, if the results contain bbox, cocoapi will # use the box area as the area of the instance, instead of the mask area. # This leads to a different definition of small/medium/large. # We remove the bbox field to let mask AP use mask area. for c in coco_results: c.pop("bbox", None) with PathManager.open(self._predictions_json, "w") as f: f.write(json.dumps(coco_results)) coco_dt = coco_gt.loadRes(coco_results) coco_eval = COCOeval(coco_gt, coco_dt, 'segm') coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval.stats
Cream/CDARTS/CDARTS_segmentation/segmentation/evaluation/coco_instance.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/evaluation/coco_instance.py", "repo_id": "Cream", "token_count": 1796 }
326
# ------------------------------------------------------------------------------ # DeepLabV3 decoder. # Written by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ from collections import OrderedDict from torch import nn from .aspp import ASPP __all__ = ["DeepLabV3Decoder"] class DeepLabV3Decoder(nn.Module): def __init__(self, in_channels, feature_key, decoder_channels, atrous_rates, num_classes): super(DeepLabV3Decoder, self).__init__() self.aspp = ASPP(in_channels, out_channels=decoder_channels, atrous_rates=atrous_rates) self.feature_key = feature_key self.classifier = nn.Sequential( nn.Conv2d(decoder_channels, decoder_channels, 3, padding=1, bias=False), nn.BatchNorm2d(decoder_channels), nn.ReLU(), nn.Conv2d(decoder_channels, num_classes, 1) ) def set_image_pooling(self, pool_size): self.aspp.set_image_pooling(pool_size) def forward(self, features): pred = OrderedDict() res5 = features[self.feature_key] x = self.aspp(res5) x = self.classifier(x) pred['semantic'] = x return pred
Cream/CDARTS/CDARTS_segmentation/segmentation/model/decoder/deeplabv3.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/model/decoder/deeplabv3.py", "repo_id": "Cream", "token_count": 498 }
327
# ------------------------------------------------------------------------------ # Reference: https://github.com/facebookresearch/detectron2/blob/master/detectron2/solver/lr_scheduler.py # Modified by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import math from bisect import bisect_right from typing import List import torch # NOTE: PyTorch's LR scheduler interface uses names that assume the LR changes # only on epoch boundaries. We typically use iteration based schedules instead. # As a result, "epoch" (e.g., as in self.last_epoch) should be understood to mean # "iteration" instead. # FIXME: ideally this would be achieved with a CombinedLRScheduler, separating # MultiStepLR with WarmupLR but the current LRScheduler design doesn't allow it. class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler): def __init__( self, optimizer: torch.optim.Optimizer, milestones: List[int], gamma: float = 0.1, warmup_factor: float = 0.001, warmup_iters: int = 1000, warmup_method: str = "linear", last_epoch: int = -1, ): if not list(milestones) == sorted(milestones): raise ValueError( "Milestones should be a list of" " increasing integers. Got {}", milestones ) self.milestones = milestones self.gamma = gamma self.warmup_factor = warmup_factor self.warmup_iters = warmup_iters self.warmup_method = warmup_method super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: warmup_factor = _get_warmup_factor_at_iter( self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor ) return [ base_lr * warmup_factor * self.gamma ** bisect_right(self.milestones, self.last_epoch) for base_lr in self.base_lrs ] def _compute_values(self) -> List[float]: # The new interface return self.get_lr() class WarmupCosineLR(torch.optim.lr_scheduler._LRScheduler): def __init__( self, optimizer: torch.optim.Optimizer, max_iters: int, warmup_factor: float = 0.001, warmup_iters: int = 1000, warmup_method: str = "linear", last_epoch: int = -1, ): self.max_iters = max_iters self.warmup_factor = warmup_factor self.warmup_iters = warmup_iters self.warmup_method = warmup_method super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: warmup_factor = _get_warmup_factor_at_iter( self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor ) # Different definitions of half-cosine with warmup are possible. For # simplicity we multiply the standard half-cosine schedule by the warmup # factor. An alternative is to start the period of the cosine at warmup_iters # instead of at 0. In the case that warmup_iters << max_iters the two are # very close to each other. return [ base_lr * warmup_factor * 0.5 * (1.0 + math.cos(math.pi * self.last_epoch / self.max_iters)) for base_lr in self.base_lrs ] def _compute_values(self) -> List[float]: # The new interface return self.get_lr() class WarmupPolyLR(torch.optim.lr_scheduler._LRScheduler): def __init__( self, optimizer: torch.optim.Optimizer, max_iters: int, warmup_factor: float = 0.001, warmup_iters: int = 1000, warmup_method: str = "linear", last_epoch: int = -1, power: float = 0.9, constant_ending: float = 0. ): self.max_iters = max_iters self.warmup_factor = warmup_factor self.warmup_iters = warmup_iters self.warmup_method = warmup_method self.power = power self.constant_ending = constant_ending super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: warmup_factor = _get_warmup_factor_at_iter( self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor ) if self.constant_ending > 0 and warmup_factor == 1.: # Constant ending lr. if math.pow((1.0 - self.last_epoch / self.max_iters), self.power) < self.constant_ending: return [ base_lr * self.constant_ending for base_lr in self.base_lrs ] return [ base_lr * warmup_factor * math.pow((1.0 - self.last_epoch / self.max_iters), self.power) for base_lr in self.base_lrs ] def _compute_values(self) -> List[float]: # The new interface return self.get_lr() def _get_warmup_factor_at_iter( method: str, iter: int, warmup_iters: int, warmup_factor: float ) -> float: """ Return the learning rate warmup factor at a specific iteration. See https://arxiv.org/abs/1706.02677 for more details. Args: method (str): warmup method; either "constant" or "linear". iter (int): iteration at which to calculate the warmup factor. warmup_iters (int): the number of warmup iterations. warmup_factor (float): the base warmup factor (the meaning changes according to the method used). Returns: float: the effective warmup factor at the given iteration. """ if iter >= warmup_iters: return 1.0 if method == "constant": return warmup_factor elif method == "linear": alpha = iter / warmup_iters return warmup_factor * (1 - alpha) + alpha else: raise ValueError("Unknown warmup method: {}".format(method))
Cream/CDARTS/CDARTS_segmentation/segmentation/solver/lr_scheduler.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/solver/lr_scheduler.py", "repo_id": "Cream", "token_count": 2563 }
328
from .camvid import CamVid __all__ = ['CamVid']
Cream/CDARTS/CDARTS_segmentation/tools/datasets/camvid/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/tools/datasets/camvid/__init__.py", "repo_id": "Cream", "token_count": 19 }
329
import torch import torch.distributed as dist from torch import nn from torch.autograd.function import Function from torch.nn import functional as F class _NewEmptyTensorOp(torch.autograd.Function): @staticmethod def forward(ctx, x, new_shape): ctx.shape = x.shape return x.new_empty(new_shape) @staticmethod def backward(ctx, grad): shape = ctx.shape return _NewEmptyTensorOp.apply(grad, shape), None class BatchNorm2d(torch.nn.BatchNorm2d): """ For torch < 1.4 A wrapper around :class:`torch.nn.BatchNorm2d` to support zero-size tensor. """ def forward(self, x): if x.numel() > 0: return super(BatchNorm2d, self).forward(x) # get output shape output_shape = x.shape return _NewEmptyTensorOp.apply(x, output_shape) class AllReduce(Function): @staticmethod def forward(ctx, input): input_list = [torch.zeros_like(input) for k in range(dist.get_world_size())] # Use allgather instead of allreduce since I don't trust in-place operations .. dist.all_gather(input_list, input, async_op=False) inputs = torch.stack(input_list, dim=0) return torch.sum(inputs, dim=0) @staticmethod def backward(ctx, grad_output): dist.all_reduce(grad_output, async_op=False) return grad_output class NaiveSyncBatchNorm(BatchNorm2d): """ In PyTorch<=1.5, ``nn.SyncBatchNorm`` has incorrect gradient when the batch size on each worker is different. (e.g., when scale augmentation is used, or when it is applied to mask head). This is a slower but correct alternative to `nn.SyncBatchNorm`. Note: There isn't a single definition of Sync BatchNorm. When ``stats_mode==""``, this module computes overall statistics by using statistics of each worker with equal weight. The result is true statistics of all samples (as if they are all on one worker) only when all workers have the same (N, H, W). This mode does not support inputs with zero batch size. When ``stats_mode=="N"``, this module computes overall statistics by weighting the statistics of each worker by their ``N``. The result is true statistics of all samples (as if they are all on one worker) only when all workers have the same (H, W). It is slower than ``stats_mode==""``. Even though the result of this module may not be the true statistics of all samples, it may still be reasonable because it might be preferrable to assign equal weights to all workers, regardless of their (H, W) dimension, instead of putting larger weight on larger images. From preliminary experiments, little difference is found between such a simplified implementation and an accurate computation of overall mean & variance. """ def __init__(self, *args, stats_mode="", **kwargs): super().__init__(*args, **kwargs) assert stats_mode in ["", "N"] self._stats_mode = stats_mode def forward(self, input): if not self.training: return super().forward(input) if dist.get_world_size() == 1: return super().forward(input) B, C = input.shape[0], input.shape[1] mean = torch.mean(input, dim=[0, 2, 3]) meansqr = torch.mean(input * input, dim=[0, 2, 3]) if self._stats_mode == "": assert B > 0, 'SyncBatchNorm(stats_mode="") does not support zero batch size.' vec = torch.cat([mean, meansqr], dim=0) vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size()) mean, meansqr = torch.split(vec, C) momentum = self.momentum else: if B == 0: vec = torch.zeros([2 * C + 1], device=mean.device, dtype=mean.dtype) vec = vec + input.sum() # make sure there is gradient w.r.t input else: vec = torch.cat( [mean, meansqr, torch.ones([1], device=mean.device, dtype=mean.dtype)], dim=0 ) vec = AllReduce.apply(vec * B) total_batch = vec[-1].detach() momentum = total_batch.clamp(max=1) * self.momentum # no update if total_batch is 0 total_batch = torch.max(total_batch, torch.ones_like(total_batch)) # avoid div-by-zero mean, meansqr, _ = torch.split(vec / total_batch, C) var = meansqr - mean * mean invstd = torch.rsqrt(var + self.eps) scale = self.weight * invstd bias = self.bias - mean * scale scale = scale.reshape(1, -1, 1, 1) bias = bias.reshape(1, -1, 1, 1) self.running_mean += momentum * (mean.detach() - self.running_mean) self.running_var += momentum * (var.detach() - self.running_var) return input * scale + bias
Cream/CDARTS/CDARTS_segmentation/train/layers.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/train/layers.py", "repo_id": "Cream", "token_count": 1988 }
330
import torch import torch.nn as nn from utils import utils from datasets import data_utils from models.loss import CrossEntropyLabelSmooth def train(train_loader, model, optimizer, epoch, writer, logger, config): device = torch.device("cuda") if config.label_smooth > 0: criterion = CrossEntropyLabelSmooth(config.n_classes, config.label_smooth).to(device) else: criterion = nn.CrossEntropyLoss().to(device) top1 = utils.AverageMeter() top5 = utils.AverageMeter() losses = utils.AverageMeter() step_num = len(train_loader) cur_step = epoch*step_num cur_lr = optimizer.param_groups[0]['lr'] if config.local_rank == 0: logger.info("Train Epoch {} LR {}".format(epoch, cur_lr)) writer.add_scalar('train/lr', cur_lr, cur_step) model.train() for step, (X, y) in enumerate(train_loader): X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True) N = X.size(0) X, target_a, target_b, lam = data_utils.mixup_data(X, y, config.mixup_alpha, use_cuda=True) optimizer.zero_grad() logits, logits_aux = model(X) # loss = criterion(logits, y) loss = data_utils.mixup_criterion(criterion, logits, target_a, target_b, lam) if config.aux_weight > 0: # loss_aux = criterion(logits_aux, y) loss_aux = data_utils.mixup_criterion(criterion, logits_aux, target_a, target_b, lam) loss = loss + config.aux_weight * loss_aux if config.use_amp: from apex import amp with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # gradient clipping nn.utils.clip_grad_norm_(model.module.parameters(), config.grad_clip) optimizer.step() prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5)) if config.distributed: reduced_loss = utils.reduce_tensor(loss.data, config.world_size) prec1 = utils.reduce_tensor(prec1, config.world_size) prec5 = utils.reduce_tensor(prec5, config.world_size) else: reduced_loss = loss.data losses.update(reduced_loss.item(), N) top1.update(prec1.item(), N) top5.update(prec5.item(), N) torch.cuda.synchronize() if config.local_rank == 0 and (step % config.print_freq == 0 or step == step_num): logger.info( "Train: Epoch {:2d}/{} Step {:03d}/{:03d} Loss {losses.avg:.3f} " "Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format( epoch+1, config.epochs, step, step_num, losses=losses, top1=top1, top5=top5)) if config.local_rank == 0: writer.add_scalar('train/loss', reduced_loss.item(), cur_step) writer.add_scalar('train/top1', prec1.item(), cur_step) writer.add_scalar('train/top5', prec5.item(), cur_step) cur_step += 1 if config.local_rank == 0: logger.info("Train: Epoch {:2d}/{} Final Prec@1 {:.4%}".format( epoch+1, config.epochs, top1.avg)) def validate(valid_loader, model, epoch, cur_step, writer, logger, config): top1 = utils.AverageMeter() top5 = utils.AverageMeter() losses = utils.AverageMeter() model.eval() device = torch.device("cuda") criterion = nn.CrossEntropyLoss().to(device) with torch.no_grad(): for step, (X, y) in enumerate(valid_loader): X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True) N = X.size(0) logits, _ = model(X) loss = criterion(logits, y) prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5)) if config.distributed: reduced_loss = utils.reduce_tensor(loss.data, config.world_size) prec1 = utils.reduce_tensor(prec1, config.world_size) prec5 = utils.reduce_tensor(prec5, config.world_size) else: reduced_loss = loss.data losses.update(reduced_loss.item(), N) top1.update(prec1.item(), N) top5.update(prec5.item(), N) torch.cuda.synchronize() step_num = len(valid_loader) if (step % config.print_freq == 0 or step == step_num-1) and config.local_rank == 0: logger.info( "Valid: Epoch {:2d}/{} Step {:03d}/{:03d} Loss {losses.avg:.3f} " "Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format( epoch+1, config.epochs, step, step_num, losses=losses, top1=top1, top5=top5)) if config.local_rank == 0: writer.add_scalar('val/loss', losses.avg, cur_step) writer.add_scalar('val/top1', top1.avg, cur_step) writer.add_scalar('val/top5', top5.avg, cur_step) logger.info("Valid: Epoch {:2d}/{} Final Prec@1 {:.4%}".format( epoch+1, config.epochs, top1.avg)) return top1.avg, top5.avg
Cream/CDARTS/benchmark201/core/augment_function.py/0
{ "file_path": "Cream/CDARTS/benchmark201/core/augment_function.py", "repo_id": "Cream", "token_count": 2516 }
331
import torch import numpy as np import torchvision.datasets as dset import torchvision.transforms as transforms from lib.datasets.data_utils import SubsetDistributedSampler from lib.datasets.data_utils import ImageNetPolicy def get_search_datasets(config): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_data = dset.ImageFolder( config.train_dir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2), transforms.ToTensor(), normalize, ])) test_data = dset.ImageFolder( config.test_dir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) num_train = len(train_data) indices = list(range(num_train)) split_mid = int(np.floor(0.5 * num_train)) train_sampler = SubsetDistributedSampler(train_data, indices[:split_mid]) valid_sampler = SubsetDistributedSampler(train_data, indices[split_mid:num_train]) train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=train_sampler, pin_memory=True, num_workers=config.workers) valid_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=valid_sampler, pin_memory=True, num_workers=config.workers) return [train_loader, valid_loader], [train_sampler, valid_sampler] def get_augment_datasets(config): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if config.use_aa: train_data = dset.ImageFolder( config.train_dir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), ImageNetPolicy(), transforms.ToTensor(), normalize, ])) else: train_data = dset.ImageFolder( config.train_dir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2), transforms.ToTensor(), normalize, ])) test_data = dset.ImageFolder( config.test_dir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) train_sampler = torch.utils.data.distributed.DistributedSampler(train_data) test_sampler = torch.utils.data.distributed.DistributedSampler(test_data) train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=train_sampler, pin_memory=True, num_workers=config.workers) test_loader = torch.utils.data.DataLoader( test_data, batch_size=config.batch_size, sampler=test_sampler, pin_memory=True, num_workers=config.workers) return [train_loader, test_loader], [train_sampler, test_sampler]
Cream/CDARTS/lib/datasets/imagenet.py/0
{ "file_path": "Cream/CDARTS/lib/datasets/imagenet.py", "repo_id": "Cream", "token_count": 1655 }
332