Dataset Viewer
Auto-converted to Parquet
code
stringlengths
42
43.2k
apis
sequence
extract_api
stringlengths
115
61.9k
import numpy as np import pandas as pd import matplotlib.pyplot as plt from network import NN from evaluate import accuracy def read_data(fpath): iris = pd.read_csv(fpath) iris.loc[iris['species'] == 'virginica', 'species'] = 0 iris.loc[iris['species'] == 'versicolor', 'species'] = 1 iris.loc[iris['species'] == 'setosa', 'species'] = 2 iris = iris[iris['species'] != 2] return iris[['petal_length', 'petal_width']].values, iris[['species']].values.astype('uint8') def plot_data(X, y): plt.scatter(X[:, 0], X[:, 1], c=y[:, 0], s=40, cmap=plt.cm.Spectral) plt.title("IRIS DATA | Blue - Versicolor, Red - Virginica ") plt.xlabel('Petal Length') plt.ylabel('Petal Width') plt.show() def train_test_split(X, y, ratio=0.8): indices = np.arange(X.shape[0]) np.random.shuffle(indices) train_len = int(X.shape[0] * ratio) return X[indices[:train_len]], y[indices[:train_len]], X[indices[train_len:]], y[indices[train_len:]] if __name__ == '__main__': X, y = read_data('iris.csv') # comment the following line if you don't need the plot anymore plot_data(X, y) X_train, y_train, X_test, y_test = train_test_split(X, y, 0.7) nn = NN(len(X[0]), 5, 1) output = nn.feedforward(X_train) print(output) print(f'w1 before backward propagation: \n{nn.w1} \nw2 before backward propagation:\n{nn.w2}') nn.backward(X_train, y_train, output) print(f'w1 after backward propagation: \n{nn.w1} \nw2 after backward propagation:\n{nn.w2}') nn.train(X_train, y_train) print("Accuracy:") print(accuracy(nn, X_test, y_test))
[ "evaluate.accuracy" ]
[((159, 177), 'pandas.read_csv', 'pd.read_csv', (['fpath'], {}), '(fpath)\n', (170, 177), True, 'import pandas as pd\n'), ((519, 587), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X[:, 0]', 'X[:, 1]'], {'c': 'y[:, 0]', 's': '(40)', 'cmap': 'plt.cm.Spectral'}), '(X[:, 0], X[:, 1], c=y[:, 0], s=40, cmap=plt.cm.Spectral)\n', (530, 587), True, 'import matplotlib.pyplot as plt\n'), ((592, 652), 'matplotlib.pyplot.title', 'plt.title', (['"""IRIS DATA | Blue - Versicolor, Red - Virginica """'], {}), "('IRIS DATA | Blue - Versicolor, Red - Virginica ')\n", (601, 652), True, 'import matplotlib.pyplot as plt\n'), ((657, 683), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Petal Length"""'], {}), "('Petal Length')\n", (667, 683), True, 'import matplotlib.pyplot as plt\n'), ((688, 713), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Petal Width"""'], {}), "('Petal Width')\n", (698, 713), True, 'import matplotlib.pyplot as plt\n'), ((718, 728), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (726, 728), True, 'import matplotlib.pyplot as plt\n'), ((784, 805), 'numpy.arange', 'np.arange', (['X.shape[0]'], {}), '(X.shape[0])\n', (793, 805), True, 'import numpy as np\n'), ((810, 836), 'numpy.random.shuffle', 'np.random.shuffle', (['indices'], {}), '(indices)\n', (827, 836), True, 'import numpy as np\n'), ((1586, 1614), 'evaluate.accuracy', 'accuracy', (['nn', 'X_test', 'y_test'], {}), '(nn, X_test, y_test)\n', (1594, 1614), False, 'from evaluate import accuracy\n')]
import datetime import os import copy import json import numpy as np from pytz import timezone from gamified_squad import GamifiedSquad from agent import CustomAgent import generic import evaluate SAVE_CHECKPOINT = 100000 def train(): time_1 = datetime.datetime.now() config = generic.load_config() env = GamifiedSquad(config) env.split_reset("train") agent = CustomAgent(config, env.has_token_set) if config["general"]["visdom"]: # visdom import visdom viz = visdom.Visdom() plt_win = None eval_plt_win = None plt_q_value_win = None plt_steps_win = None eval_plt_steps_win = None viz_avg_ig_acc, viz_avg_qa_acc = [], [] viz_avg_ig_q_value = [] viz_eval_ig_acc, viz_eval_qa_acc, viz_eval_steps = [], [], [] viz_avg_steps = [] step_in_total = 0 batch_no = 0 episode_no = 0 running_avg_qa_acc = generic.HistoryScoreCache(capacity=50) running_avg_ig_acc = generic.HistoryScoreCache(capacity=50) running_avg_qa_loss = generic.HistoryScoreCache(capacity=50) running_avg_ig_loss = generic.HistoryScoreCache(capacity=50) running_avg_ig_q_value = generic.HistoryScoreCache(capacity=50) running_avg_steps = generic.HistoryScoreCache(capacity=50) output_dir = "." data_dir = "." json_file_name = agent.experiment_tag.replace(" ", "_") best_qa_acc_so_far = 0.0 prev_performance = 0.0 i_am_patient = 0 # load model from checkpoint if os.path.exists(output_dir + "/" + agent.experiment_tag + "_model.pt"): print("checkpoint already exist.") exit(0) if os.path.exists(data_dir + "/" + agent.load_graph_generation_model_from_tag + ".pt"): agent.load_pretrained_graph_generation_model(data_dir + "/" + agent.load_graph_generation_model_from_tag + ".pt") if agent.load_pretrained: if os.path.exists(data_dir + "/" + agent.load_from_tag + ".pt"): agent.load_pretrained_model(data_dir + "/" + agent.load_from_tag + ".pt") # load partial graph agent.update_target_net() while(True): if episode_no > agent.max_episode: break np.random.seed(episode_no) env.seed(episode_no) obs, infos = env.reset() batch_size = len(obs) report = agent.report_frequency > 0 and (episode_no % agent.report_frequency <= max(episode_no - batch_size, 0) % agent.report_frequency) __save__ = episode_no % SAVE_CHECKPOINT <= max(episode_no - batch_size, 0) % SAVE_CHECKPOINT if report: print("====================================================================================", episode_no) print("-- Q: %s" % (agent.bert_tokenizer.decode(infos[0]["q"]).encode('utf-8'))) print("-- A: %s" % (infos[0]["a_string"][0].encode('utf-8'))) agent.train() agent.init(obs, infos) quest_list = agent.get_game_quest_info(infos) agent.kg.push_batch_question(quest_list, [item["q_srl"] for item in infos]) previous_dynamics = None previous_belief = None input_quest, input_quest_mask, quest_id_list = agent.get_agent_inputs(quest_list) tmp_replay_buffer = [] print_cmds = [] prev_commands = ["restart" for _ in range(batch_size)] belief_buffer = [] act_randomly = False if agent.noisy_net else episode_no < agent.learn_start_from_this_episode for _ in range(agent.max_nb_steps_per_episode): # generate commands if agent.noisy_net: agent.reset_noise() # Draw a new set of noisy weights commands, replay_info, current_dynamics, current_belief = agent.act(obs, infos, input_quest, input_quest_mask, quest_id_list, prev_commands, previous_dynamics, previous_belief, random=act_randomly) tmp_replay_buffer.append(replay_info) obs, infos = env.step(commands) prev_commands = commands previous_dynamics = current_dynamics previous_belief = current_belief belief_buffer.append(current_belief) if agent.noisy_net and step_in_total % agent.update_per_k_game_steps == 0: agent.reset_noise() # Draw a new set of noisy weights if episode_no >= agent.learn_start_from_this_episode and step_in_total % agent.update_per_k_game_steps == 0: interaction_loss, interaction_q_value = agent.update_interaction() if interaction_loss is not None: running_avg_ig_loss.push(interaction_loss) running_avg_ig_q_value.push(interaction_q_value) qa_loss = agent.update_qa() if qa_loss is not None: running_avg_qa_loss.push(qa_loss) step_in_total += 1 still_running = generic.to_np(replay_info[-1]) print_cmds.append(commands[0] if still_running[0] else "--") if np.sum(still_running) == 0: break if report: print(" / ".join(print_cmds).encode('utf-8')) # The agent has exhausted all steps, now answer question. chosen_head_tails = agent.answer_question_act(agent.naozi.get(), quest_list, current_belief) # batch chosen_head_tails_np = generic.to_np(chosen_head_tails) chosen_answer_strings = generic.get_answer_strings(agent.naozi.get(), chosen_head_tails_np, agent.bert_tokenizer, agent.special_token_ids) answer_strings = [item["a_string"] for item in infos] answer_token_ids = [item["a"] for item in infos] qa_reward_np = generic.get_qa_reward(chosen_answer_strings, answer_strings) obs_strings = [agent.bert_tokenizer.decode(agent.naozi.get(i)) for i in range(batch_size)] ig_reward_np = generic.get_sufficient_info_reward(agent.naozi.get(), answer_token_ids) ig_reward = generic.to_pt(ig_reward_np, enable_cuda=False, type='float') # batch # push qa experience into qa replay buffer replay_node_vocab = agent.kg.get_node_vocabulary() replay_relation_vocab = agent.kg.get_relation_vocabulary() replay_triplets = agent.kg.get_triplets() for b in range(batch_size): # data points in batch is_prior = qa_reward_np[b] > agent.qa_reward_prior_threshold * agent.qa_replay_memory.avg_rewards() # if the agent is not in the correct state, do not push it into replay buffer if np.mean(ig_reward_np[b]) == 0.0: continue agent.qa_replay_memory.push(is_prior, qa_reward_np[b], agent.naozi.get_sentence_lists(b), quest_list[b], replay_node_vocab[b], replay_relation_vocab[b], replay_triplets[b], answer_token_ids[b], belief_buffer[-1][b].cpu() if belief_buffer[-1][b] is not None else None) # small positive reward whenever it answers question correctly masks_np = [generic.to_np(item[-1]) for item in tmp_replay_buffer] command_rewards_np = [] for i in range(len(tmp_replay_buffer)): if i == len(tmp_replay_buffer) - 1: r = ig_reward * tmp_replay_buffer[i][-1] r_np = ig_reward_np * masks_np[i] else: # give reward only at that one game step, not all r = ig_reward * (tmp_replay_buffer[i][-1] - tmp_replay_buffer[i + 1][-1]) r_np = ig_reward_np * (masks_np[i] - masks_np[i + 1]) tmp_replay_buffer[i].append(r) command_rewards_np.append(r_np) command_rewards_np = np.array(command_rewards_np) if report: print(command_rewards_np[:, 0]) # push experience into replay buffer for b in range(len(ig_reward_np)): is_prior = np.sum(command_rewards_np, 0)[b] > 0.0 mem = [] for i in range(len(tmp_replay_buffer)): batch_description_list, batch_chosen_indices, batch_chosen_ctrlf_indices, batch_graph_node_vocabulary, batch_graph_relation_vocabulary, batch_graph_triplets, _, batch_rewards = tmp_replay_buffer[i] mem.append([copy.deepcopy(batch_description_list[b]), copy.deepcopy(quest_list[b]), batch_chosen_indices[b], batch_chosen_ctrlf_indices[b], copy.deepcopy(batch_graph_node_vocabulary[b]), copy.deepcopy(batch_graph_relation_vocabulary[b]), copy.deepcopy(batch_graph_triplets[b]), copy.deepcopy(belief_buffer[i][b].cpu()) if belief_buffer[i][b] is not None else None, batch_rewards[b]]) if masks_np[i][b] == 0.0: break agent.replay_memory.push(is_prior, mem) qa_acc = np.mean(qa_reward_np) ig_acc = np.mean(ig_reward_np) step_masks_np = np.sum(np.array(masks_np), 0) # batch for i in range(len(qa_reward_np)): # if the answer is totally wrong, we assume it used all steps if qa_reward_np[i] == 0.0: step_masks_np[i] = agent.max_nb_steps_per_episode used_steps = np.mean(step_masks_np) running_avg_qa_acc.push(qa_acc) running_avg_ig_acc.push(ig_acc) running_avg_steps.push(used_steps) print_rewards = np.sum(np.mean(command_rewards_np, -1)) if report: print("-- OBS: %s" % (obs_strings[0].encode('utf-8'))) print("-- PRED: %s" % (chosen_answer_strings[0].encode('utf-8'))) # finish game agent.finish_of_episode(episode_no, batch_no, batch_size) time_2 = datetime.datetime.now() eastern_time = datetime.datetime.now(timezone('US/Eastern')).strftime("%b %d %Y %H:%M:%S") if report: print("Episode: {:3d} | {:s} | time spent: {:s} | interaction loss: {:2.3f} | interaction qvalue: {:2.3f} | qa loss: {:2.3f} | rewards: {:2.3f} | qa acc: {:2.3f}/{:2.3f} | sufficient info: {:2.3f}/{:2.3f} | used steps: {:2.3f}".format(episode_no, eastern_time, str(time_2 - time_1).rsplit(".")[0], running_avg_ig_loss.get_avg(), running_avg_ig_q_value.get_avg(), running_avg_qa_loss.get_avg(), print_rewards, qa_acc, running_avg_qa_acc.get_avg(), ig_acc, running_avg_ig_acc.get_avg(), running_avg_steps.get_avg())) if __save__: agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_ep" + str(episode_no) + "_model.pt") if not report or episode_no < agent.learn_start_from_this_episode: episode_no += batch_size batch_no += 1 continue eval_qa_acc, eval_ig_acc, eval_used_steps = 0.0, 0.0, 0.0 # evaluate if agent.run_eval: eval_qa_acc, eval_ig_acc, eval_used_steps = evaluate.evaluate(env, agent, "valid") env.split_reset("train") # if run eval, then save model by eval accucacy if eval_qa_acc >= best_qa_acc_so_far: best_qa_acc_so_far = eval_qa_acc agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_model.pt") curr_performance = eval_qa_acc else: if running_avg_qa_acc.get_avg() >= best_qa_acc_so_far: best_qa_acc_so_far = running_avg_qa_acc.get_avg() agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_model.pt") curr_performance = running_avg_qa_acc.get_avg() if prev_performance <= curr_performance: i_am_patient = 0 else: i_am_patient += 1 prev_performance = curr_performance # if patient >= patience, resume from checkpoint if agent.patience > 0 and i_am_patient >= agent.patience: if os.path.exists(output_dir + "/" + agent.experiment_tag + "_model.pt"): print('reload from a good checkpoint...') agent.load_pretrained_model(output_dir + "/" + agent.experiment_tag + "_model.pt", load_partial_graph=False) agent.update_target_net() i_am_patient = 0 # plot using visdom if config["general"]["visdom"] and not agent.debug_mode: viz_avg_ig_acc.append(running_avg_ig_acc.get_avg()) viz_avg_qa_acc.append(running_avg_qa_acc.get_avg()) viz_avg_ig_q_value.append(running_avg_ig_q_value.get_avg()) viz_eval_ig_acc.append(eval_ig_acc) viz_eval_qa_acc.append(eval_qa_acc) viz_eval_steps.append(eval_used_steps) viz_avg_steps.append(running_avg_steps.get_avg()) viz_x = np.arange(len(viz_avg_ig_acc)).tolist() if plt_win is None: plt_win = viz.line(X=viz_x, Y=viz_avg_ig_acc, opts=dict(title=agent.experiment_tag + "_train"), name="sufficient info") viz.line(X=viz_x, Y=viz_avg_qa_acc, opts=dict(title=agent.experiment_tag + "_train"), win=plt_win, update='append', name="qa") else: viz.line(X=[len(viz_avg_ig_acc) - 1], Y=[viz_avg_ig_acc[-1]], opts=dict(title=agent.experiment_tag + "_train"), win=plt_win, update='append', name="sufficient info") viz.line(X=[len(viz_avg_qa_acc) - 1], Y=[viz_avg_qa_acc[-1]], opts=dict(title=agent.experiment_tag + "_train"), win=plt_win, update='append', name="qa") if plt_q_value_win is None: plt_q_value_win = viz.line(X=viz_x, Y=viz_avg_ig_q_value, opts=dict(title=agent.experiment_tag + "_train_q_value"), name="sufficient info") else: viz.line(X=[len(viz_avg_ig_q_value) - 1], Y=[viz_avg_ig_q_value[-1]], opts=dict(title=agent.experiment_tag + "_train_q_value"), win=plt_q_value_win, update='append', name="sufficient info") if plt_steps_win is None: plt_steps_win = viz.line(X=viz_x, Y=viz_avg_steps, opts=dict(title=agent.experiment_tag + "_train_step"), name="used steps") else: viz.line(X=[len(viz_avg_steps) - 1], Y=[viz_avg_steps[-1]], opts=dict(title=agent.experiment_tag + "_train_step"), win=plt_steps_win, update='append', name="used steps") if agent.run_eval: if eval_plt_win is None: eval_plt_win = viz.line(X=viz_x, Y=viz_eval_ig_acc, opts=dict(title=agent.experiment_tag + "_eval"), name="sufficient info") viz.line(X=viz_x, Y=viz_eval_qa_acc, opts=dict(title=agent.experiment_tag + "_eval"), win=eval_plt_win, update='append', name="qa") else: viz.line(X=[len(viz_eval_ig_acc) - 1], Y=[viz_eval_ig_acc[-1]], opts=dict(title=agent.experiment_tag + "_eval"), win=eval_plt_win, update='append', name="sufficient info") viz.line(X=[len(viz_eval_qa_acc) - 1], Y=[viz_eval_qa_acc[-1]], opts=dict(title=agent.experiment_tag + "_eval"), win=eval_plt_win, update='append', name="qa") if eval_plt_steps_win is None: eval_plt_steps_win = viz.line(X=viz_x, Y=viz_eval_steps, opts=dict(title=agent.experiment_tag + "_eval_step"), name="used steps") else: viz.line(X=[len(viz_avg_steps) - 1], Y=[viz_eval_steps[-1]], opts=dict(title=agent.experiment_tag + "_eval_step"), win=eval_plt_steps_win, update='append', name="used steps") # write accucacies down into file _s = json.dumps({"time spent": str(time_2 - time_1).rsplit(".")[0], "sufficient info": str(running_avg_ig_acc.get_avg()), "qa": str(running_avg_qa_acc.get_avg()), "sufficient qvalue": str(running_avg_ig_q_value.get_avg()), "eval sufficient info": str(eval_ig_acc), "eval qa": str(eval_qa_acc), "eval steps": str(eval_used_steps), "used steps": str(running_avg_steps.get_avg())}) with open(output_dir + "/" + json_file_name + '.json', 'a+') as outfile: outfile.write(_s + '\n') outfile.flush() episode_no += batch_size batch_no += 1 if __name__ == '__main__': train()
[ "evaluate.evaluate" ]
[((252, 275), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (273, 275), False, 'import datetime\n'), ((289, 310), 'generic.load_config', 'generic.load_config', ([], {}), '()\n', (308, 310), False, 'import generic\n'), ((321, 342), 'gamified_squad.GamifiedSquad', 'GamifiedSquad', (['config'], {}), '(config)\n', (334, 342), False, 'from gamified_squad import GamifiedSquad\n'), ((384, 422), 'agent.CustomAgent', 'CustomAgent', (['config', 'env.has_token_set'], {}), '(config, env.has_token_set)\n', (395, 422), False, 'from agent import CustomAgent\n'), ((936, 974), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (961, 974), False, 'import generic\n'), ((1000, 1038), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (1025, 1038), False, 'import generic\n'), ((1065, 1103), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (1090, 1103), False, 'import generic\n'), ((1130, 1168), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (1155, 1168), False, 'import generic\n'), ((1198, 1236), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (1223, 1236), False, 'import generic\n'), ((1261, 1299), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (1286, 1299), False, 'import generic\n'), ((1523, 1592), 'os.path.exists', 'os.path.exists', (["(output_dir + '/' + agent.experiment_tag + '_model.pt')"], {}), "(output_dir + '/' + agent.experiment_tag + '_model.pt')\n", (1537, 1592), False, 'import os\n'), ((1661, 1748), 'os.path.exists', 'os.path.exists', (["(data_dir + '/' + agent.load_graph_generation_model_from_tag + '.pt')"], {}), "(data_dir + '/' + agent.load_graph_generation_model_from_tag +\n '.pt')\n", (1675, 1748), False, 'import os\n'), ((514, 529), 'visdom.Visdom', 'visdom.Visdom', ([], {}), '()\n', (527, 529), False, 'import visdom\n'), ((1909, 1969), 'os.path.exists', 'os.path.exists', (["(data_dir + '/' + agent.load_from_tag + '.pt')"], {}), "(data_dir + '/' + agent.load_from_tag + '.pt')\n", (1923, 1969), False, 'import os\n'), ((2204, 2230), 'numpy.random.seed', 'np.random.seed', (['episode_no'], {}), '(episode_no)\n', (2218, 2230), True, 'import numpy as np\n'), ((5347, 5379), 'generic.to_np', 'generic.to_np', (['chosen_head_tails'], {}), '(chosen_head_tails)\n', (5360, 5379), False, 'import generic\n'), ((5670, 5730), 'generic.get_qa_reward', 'generic.get_qa_reward', (['chosen_answer_strings', 'answer_strings'], {}), '(chosen_answer_strings, answer_strings)\n', (5691, 5730), False, 'import generic\n'), ((5945, 6005), 'generic.to_pt', 'generic.to_pt', (['ig_reward_np'], {'enable_cuda': '(False)', 'type': '"""float"""'}), "(ig_reward_np, enable_cuda=False, type='float')\n", (5958, 6005), False, 'import generic\n'), ((7600, 7628), 'numpy.array', 'np.array', (['command_rewards_np'], {}), '(command_rewards_np)\n', (7608, 7628), True, 'import numpy as np\n'), ((8900, 8921), 'numpy.mean', 'np.mean', (['qa_reward_np'], {}), '(qa_reward_np)\n', (8907, 8921), True, 'import numpy as np\n'), ((8939, 8960), 'numpy.mean', 'np.mean', (['ig_reward_np'], {}), '(ig_reward_np)\n', (8946, 8960), True, 'import numpy as np\n'), ((9267, 9289), 'numpy.mean', 'np.mean', (['step_masks_np'], {}), '(step_masks_np)\n', (9274, 9289), True, 'import numpy as np\n'), ((9750, 9773), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (9771, 9773), False, 'import datetime\n'), ((4892, 4922), 'generic.to_np', 'generic.to_np', (['replay_info[-1]'], {}), '(replay_info[-1])\n', (4905, 4922), False, 'import generic\n'), ((6950, 6973), 'generic.to_np', 'generic.to_np', (['item[-1]'], {}), '(item[-1])\n', (6963, 6973), False, 'import generic\n'), ((8992, 9010), 'numpy.array', 'np.array', (['masks_np'], {}), '(masks_np)\n', (9000, 9010), True, 'import numpy as np\n'), ((9445, 9476), 'numpy.mean', 'np.mean', (['command_rewards_np', '(-1)'], {}), '(command_rewards_np, -1)\n', (9452, 9476), True, 'import numpy as np\n'), ((10888, 10926), 'evaluate.evaluate', 'evaluate.evaluate', (['env', 'agent', '"""valid"""'], {}), "(env, agent, 'valid')\n", (10905, 10926), False, 'import evaluate\n'), ((11871, 11940), 'os.path.exists', 'os.path.exists', (["(output_dir + '/' + agent.experiment_tag + '_model.pt')"], {}), "(output_dir + '/' + agent.experiment_tag + '_model.pt')\n", (11885, 11940), False, 'import os\n'), ((5011, 5032), 'numpy.sum', 'np.sum', (['still_running'], {}), '(still_running)\n', (5017, 5032), True, 'import numpy as np\n'), ((6520, 6544), 'numpy.mean', 'np.mean', (['ig_reward_np[b]'], {}), '(ig_reward_np[b])\n', (6527, 6544), True, 'import numpy as np\n'), ((7805, 7834), 'numpy.sum', 'np.sum', (['command_rewards_np', '(0)'], {}), '(command_rewards_np, 0)\n', (7811, 7834), True, 'import numpy as np\n'), ((9819, 9841), 'pytz.timezone', 'timezone', (['"""US/Eastern"""'], {}), "('US/Eastern')\n", (9827, 9841), False, 'from pytz import timezone\n'), ((8159, 8199), 'copy.deepcopy', 'copy.deepcopy', (['batch_description_list[b]'], {}), '(batch_description_list[b])\n', (8172, 8199), False, 'import copy\n'), ((8230, 8258), 'copy.deepcopy', 'copy.deepcopy', (['quest_list[b]'], {}), '(quest_list[b])\n', (8243, 8258), False, 'import copy\n'), ((8403, 8448), 'copy.deepcopy', 'copy.deepcopy', (['batch_graph_node_vocabulary[b]'], {}), '(batch_graph_node_vocabulary[b])\n', (8416, 8448), False, 'import copy\n'), ((8479, 8528), 'copy.deepcopy', 'copy.deepcopy', (['batch_graph_relation_vocabulary[b]'], {}), '(batch_graph_relation_vocabulary[b])\n', (8492, 8528), False, 'import copy\n'), ((8559, 8597), 'copy.deepcopy', 'copy.deepcopy', (['batch_graph_triplets[b]'], {}), '(batch_graph_triplets[b])\n', (8572, 8597), False, 'import copy\n')]
#!/usr/bin/env python # coding: utf-8 from __future__ import division, print_function, unicode_literals import argparse import json import os import shutil import time import torch from utils import util from evaluate import MultiWozEvaluator from model.model import Model parser = argparse.ArgumentParser(description='S2S') parser.add_argument('--no_cuda', type=util.str2bool, nargs='?', const=True, default=True, help='enables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--no_models', type=int, default=20, help='how many models to evaluate') parser.add_argument('--original', type=str, default='model/model/', help='Original path.') parser.add_argument('--dropout', type=float, default=0.0) parser.add_argument('--use_emb', type=str, default='False') parser.add_argument('--beam_width', type=int, default=10, help='Beam width used in beamsearch') parser.add_argument('--write_n_best', type=util.str2bool, nargs='?', const=True, default=False, help='Write n-best list (n=beam_width)') parser.add_argument('--model_path', type=str, default='model/model/translate.ckpt', help='Path to a specific model checkpoint.') parser.add_argument('--model_dir', type=str, default='model/') parser.add_argument('--model_name', type=str, default='translate.ckpt') parser.add_argument('--valid_output', type=str, default='model/data/val_dials/', help='Validation Decoding output dir path') parser.add_argument('--decode_output', type=str, default='model/data/test_dials/', help='Decoding output dir path') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if args.cuda else "cpu") def load_config(args): config = util.unicode_to_utf8( json.load(open('%s.json' % args.model_path, 'rb'))) for key, value in args.__args.items(): try: config[key] = value.value except: config[key] = value return config def loadModelAndData(num): # Load dictionaries with open('data/input_lang.index2word.json') as f: input_lang_index2word = json.load(f) with open('data/input_lang.word2index.json') as f: input_lang_word2index = json.load(f) with open('data/output_lang.index2word.json') as f: output_lang_index2word = json.load(f) with open('data/output_lang.word2index.json') as f: output_lang_word2index = json.load(f) # Reload existing checkpoint model = Model(args, input_lang_index2word, output_lang_index2word, input_lang_word2index, output_lang_word2index) if args.load_param: model.loadModel(iter=num) # Load data if os.path.exists(args.decode_output): shutil.rmtree(args.decode_output) os.makedirs(args.decode_output) else: os.makedirs(args.decode_output) if os.path.exists(args.valid_output): shutil.rmtree(args.valid_output) os.makedirs(args.valid_output) else: os.makedirs(args.valid_output) # Load validation file list: with open('data/val_dials.json') as outfile: val_dials = json.load(outfile) # Load test file list: with open('data/test_dials.json') as outfile: test_dials = json.load(outfile) return model, val_dials, test_dials def decode(num=1): model, val_dials, test_dials = loadModelAndData(num) evaluator_valid = MultiWozEvaluator("valid") evaluator_test = MultiWozEvaluator("test") start_time = time.time() for ii in range(2): if ii == 0: print(50 * '-' + 'GREEDY') model.beam_search = False else: print(50 * '-' + 'BEAM') model.beam_search = True # VALIDATION val_dials_gen = {} valid_loss = 0 for name, val_file in val_dials.items(): input_tensor = []; target_tensor = [];bs_tensor = [];db_tensor = [] input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(model, val_file, input_tensor, target_tensor, bs_tensor, db_tensor) # create an empty matrix with padding tokens input_tensor, input_lengths = util.padSequence(input_tensor) target_tensor, target_lengths = util.padSequence(target_tensor) bs_tensor = torch.tensor(bs_tensor, dtype=torch.float, device=device) db_tensor = torch.tensor(db_tensor, dtype=torch.float, device=device) output_words, loss_sentence = model.predict(input_tensor, input_lengths, target_tensor, target_lengths, db_tensor, bs_tensor) valid_loss += 0 val_dials_gen[name] = output_words print('Current VALID LOSS:', valid_loss) with open(args.valid_output + 'val_dials_gen.json', 'w') as outfile: json.dump(val_dials_gen, outfile) evaluator_valid.evaluateModel(val_dials_gen, val_dials, mode='valid') # TESTING test_dials_gen = {} test_loss = 0 for name, test_file in test_dials.items(): input_tensor = []; target_tensor = [];bs_tensor = [];db_tensor = [] input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(model, test_file, input_tensor, target_tensor, bs_tensor, db_tensor) # create an empty matrix with padding tokens input_tensor, input_lengths = util.padSequence(input_tensor) target_tensor, target_lengths = util.padSequence(target_tensor) bs_tensor = torch.tensor(bs_tensor, dtype=torch.float, device=device) db_tensor = torch.tensor(db_tensor, dtype=torch.float, device=device) output_words, loss_sentence = model.predict(input_tensor, input_lengths, target_tensor, target_lengths, db_tensor, bs_tensor) test_loss += 0 test_dials_gen[name] = output_words test_loss /= len(test_dials) print('Current TEST LOSS:', test_loss) with open(args.decode_output + 'test_dials_gen.json', 'w') as outfile: json.dump(test_dials_gen, outfile) evaluator_test.evaluateModel(test_dials_gen, test_dials, mode='test') print('TIME:', time.time() - start_time) def decodeWrapper(): # Load config file with open(args.model_path + '.config') as f: add_args = json.load(f) for k, v in add_args.items(): setattr(args, k, v) args.mode = 'test' args.load_param = True args.dropout = 0.0 assert args.dropout == 0.0 # Start going through models args.original = args.model_path for ii in range(1, args.no_models + 1): print(70 * '-' + 'EVALUATING EPOCH %s' % ii) args.model_path = args.model_path + '-' + str(ii) try: decode(ii) except: print('cannot decode') args.model_path = args.original if __name__ == '__main__': decodeWrapper()
[ "evaluate.MultiWozEvaluator" ]
[((286, 328), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""S2S"""'}), "(description='S2S')\n", (309, 328), False, 'import argparse\n'), ((1679, 1707), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (1696, 1707), False, 'import torch\n'), ((1718, 1762), 'torch.device', 'torch.device', (["('cuda' if args.cuda else 'cpu')"], {}), "('cuda' if args.cuda else 'cpu')\n", (1730, 1762), False, 'import torch\n'), ((1652, 1677), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1675, 1677), False, 'import torch\n'), ((2547, 2656), 'model.model.Model', 'Model', (['args', 'input_lang_index2word', 'output_lang_index2word', 'input_lang_word2index', 'output_lang_word2index'], {}), '(args, input_lang_index2word, output_lang_index2word,\n input_lang_word2index, output_lang_word2index)\n', (2552, 2656), False, 'from model.model import Model\n'), ((2735, 2769), 'os.path.exists', 'os.path.exists', (['args.decode_output'], {}), '(args.decode_output)\n', (2749, 2769), False, 'import os\n'), ((2911, 2944), 'os.path.exists', 'os.path.exists', (['args.valid_output'], {}), '(args.valid_output)\n', (2925, 2944), False, 'import os\n'), ((3455, 3481), 'evaluate.MultiWozEvaluator', 'MultiWozEvaluator', (['"""valid"""'], {}), "('valid')\n", (3472, 3481), False, 'from evaluate import MultiWozEvaluator\n'), ((3503, 3528), 'evaluate.MultiWozEvaluator', 'MultiWozEvaluator', (['"""test"""'], {}), "('test')\n", (3520, 3528), False, 'from evaluate import MultiWozEvaluator\n'), ((3547, 3558), 'time.time', 'time.time', ([], {}), '()\n', (3556, 3558), False, 'import time\n'), ((2184, 2196), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2193, 2196), False, 'import json\n'), ((2284, 2296), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2293, 2296), False, 'import json\n'), ((2386, 2398), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2395, 2398), False, 'import json\n'), ((2488, 2500), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2497, 2500), False, 'import json\n'), ((2779, 2812), 'shutil.rmtree', 'shutil.rmtree', (['args.decode_output'], {}), '(args.decode_output)\n', (2792, 2812), False, 'import shutil\n'), ((2821, 2852), 'os.makedirs', 'os.makedirs', (['args.decode_output'], {}), '(args.decode_output)\n', (2832, 2852), False, 'import os\n'), ((2871, 2902), 'os.makedirs', 'os.makedirs', (['args.decode_output'], {}), '(args.decode_output)\n', (2882, 2902), False, 'import os\n'), ((2954, 2986), 'shutil.rmtree', 'shutil.rmtree', (['args.valid_output'], {}), '(args.valid_output)\n', (2967, 2986), False, 'import shutil\n'), ((2995, 3025), 'os.makedirs', 'os.makedirs', (['args.valid_output'], {}), '(args.valid_output)\n', (3006, 3025), False, 'import os\n'), ((3044, 3074), 'os.makedirs', 'os.makedirs', (['args.valid_output'], {}), '(args.valid_output)\n', (3055, 3074), False, 'import os\n'), ((3178, 3196), 'json.load', 'json.load', (['outfile'], {}), '(outfile)\n', (3187, 3196), False, 'import json\n'), ((3296, 3314), 'json.load', 'json.load', (['outfile'], {}), '(outfile)\n', (3305, 3314), False, 'import json\n'), ((6453, 6465), 'json.load', 'json.load', (['f'], {}), '(f)\n', (6462, 6465), False, 'import json\n'), ((4034, 4123), 'utils.util.loadDialogue', 'util.loadDialogue', (['model', 'val_file', 'input_tensor', 'target_tensor', 'bs_tensor', 'db_tensor'], {}), '(model, val_file, input_tensor, target_tensor, bs_tensor,\n db_tensor)\n', (4051, 4123), False, 'from utils import util\n'), ((4219, 4249), 'utils.util.padSequence', 'util.padSequence', (['input_tensor'], {}), '(input_tensor)\n', (4235, 4249), False, 'from utils import util\n'), ((4294, 4325), 'utils.util.padSequence', 'util.padSequence', (['target_tensor'], {}), '(target_tensor)\n', (4310, 4325), False, 'from utils import util\n'), ((4350, 4407), 'torch.tensor', 'torch.tensor', (['bs_tensor'], {'dtype': 'torch.float', 'device': 'device'}), '(bs_tensor, dtype=torch.float, device=device)\n', (4362, 4407), False, 'import torch\n'), ((4432, 4489), 'torch.tensor', 'torch.tensor', (['db_tensor'], {'dtype': 'torch.float', 'device': 'device'}), '(db_tensor, dtype=torch.float, device=device)\n', (4444, 4489), False, 'import torch\n'), ((4900, 4933), 'json.dump', 'json.dump', (['val_dials_gen', 'outfile'], {}), '(val_dials_gen, outfile)\n', (4909, 4933), False, 'import json\n'), ((5277, 5367), 'utils.util.loadDialogue', 'util.loadDialogue', (['model', 'test_file', 'input_tensor', 'target_tensor', 'bs_tensor', 'db_tensor'], {}), '(model, test_file, input_tensor, target_tensor, bs_tensor,\n db_tensor)\n', (5294, 5367), False, 'from utils import util\n'), ((5463, 5493), 'utils.util.padSequence', 'util.padSequence', (['input_tensor'], {}), '(input_tensor)\n', (5479, 5493), False, 'from utils import util\n'), ((5538, 5569), 'utils.util.padSequence', 'util.padSequence', (['target_tensor'], {}), '(target_tensor)\n', (5554, 5569), False, 'from utils import util\n'), ((5594, 5651), 'torch.tensor', 'torch.tensor', (['bs_tensor'], {'dtype': 'torch.float', 'device': 'device'}), '(bs_tensor, dtype=torch.float, device=device)\n', (5606, 5651), False, 'import torch\n'), ((5676, 5733), 'torch.tensor', 'torch.tensor', (['db_tensor'], {'dtype': 'torch.float', 'device': 'device'}), '(db_tensor, dtype=torch.float, device=device)\n', (5688, 5733), False, 'import torch\n'), ((6180, 6214), 'json.dump', 'json.dump', (['test_dials_gen', 'outfile'], {}), '(test_dials_gen, outfile)\n', (6189, 6214), False, 'import json\n'), ((6313, 6324), 'time.time', 'time.time', ([], {}), '()\n', (6322, 6324), False, 'import time\n')]
import argparse import os import torch import yaml import torch.nn as nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from utils.model import get_vocoder, get_param_num from utils.tools import to_device, log, synth_one_sample from model import FastSpeech2Loss, FastSpeech2 from dataset import Dataset from evaluate import evaluate import wandb import pandas as pd from pytorch_lamb import Lamb, log_lamb_rs device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def main(args, configs): print("Prepare training ...") preprocess_config, model_config, train_config = configs # Get dataset dataset = Dataset( "train.txt", preprocess_config, train_config, sort=True, drop_last=True ) batch_size = args.batch_size if args.batch_size else train_config["optimizer"]["batch_size"] group_size = 1 # Set this larger than 1 to enable sorting in Dataset print(f"Number of rows in training dataset: {len(dataset)}") assert batch_size * group_size < len(dataset) loader = DataLoader( dataset, batch_size=batch_size * group_size, shuffle=True, collate_fn=dataset.collate_fn, ) # Prepare model model = FastSpeech2(preprocess_config, model_config).to(device) model.train() # sets the model into training mode step_size = train_config["optimizer"]["step_size"] weight_decay = args.wd if args.wd else train_config["optimizer"]["weight_decay"] betas=train_config["optimizer"]["betas"] eps=train_config["optimizer"]["eps"] # reading the paper you'd think 'lr' (learning rate) is not needed for Lamb but basically lr param is an Adam learning rate # which is then multiplied by Trust Ratio for that layer to get the actual learning rate used at each step/each layer optimizer = Lamb(model.parameters(), lr=step_size, weight_decay=weight_decay, betas=betas, eps=eps) model = nn.DataParallel(model) num_param = get_param_num(model) Loss = FastSpeech2Loss(preprocess_config, model_config).to(device) print("Number of FastSpeech2 Parameters:", num_param) if args.wandb: from flatten_json import flatten log_config = {} for key, val in pd.json_normalize(model_config["transformer"]).iloc[0].items(): log_config[f"transformer.{key}"]=str(val) log_config["multi_speaker"]=model_config["multi_speaker"] log_config["vocoder"]=model_config["vocoder"] log_config["sample_rate"] = preprocess_config["preprocessing"]["audio"]["sampling_rate"] log_config["train.batch_size"] = batch_size log_config["train.optimizer"] = "lamb" log_config["train.step_size"] = step_size log_config["train.weight_decay"] = weight_decay log_config["train.betas"] = str(betas) log_config["train.eps"] = eps log_config["num_params"] = num_param log_config["len(dataset)"] = len(dataset) print(log_config) if args.wandb: wandb.init(project="synthesis-fastspeech2", entity="papa-reo", config=log_config) # Load vocoder vocoder = get_vocoder(model_config, device) # Init logger for p in train_config["path"].values(): os.makedirs(p, exist_ok=True) train_log_path = os.path.join(train_config["path"]["log_path"], "train") val_log_path = os.path.join(train_config["path"]["log_path"], "val") os.makedirs(train_log_path, exist_ok=True) os.makedirs(val_log_path, exist_ok=True) train_logger = SummaryWriter(train_log_path) val_logger = SummaryWriter(val_log_path) # Training step = args.restore_step + 1 epoch = 1 grad_acc_step = train_config["optimizer"]["grad_acc_step"] grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"] total_step = train_config["step"]["total_step"] log_step = train_config["step"]["log_step"] save_step = train_config["step"]["save_step"] synth_step = train_config["step"]["synth_step"] val_step = train_config["step"]["val_step"] outer_bar = tqdm(total=total_step, desc="Training", position=0) outer_bar.n = args.restore_step outer_bar.update() while True: inner_bar = tqdm(total=len(loader), desc="Epoch {}".format(epoch), position=1) for batchs in loader: for batch in batchs: batch = to_device(batch, device) # Forward output = model(*(batch[2:])) # Cal Loss losses = Loss(batch, output) total_loss = losses[0] # Backward total_loss = total_loss / grad_acc_step total_loss.backward() if step % grad_acc_step == 0: # Clipping gradients to avoid gradient explosion nn.utils.clip_grad_norm_(model.parameters(), grad_clip_thresh) # Update weights optimizer.step() optimizer.zero_grad() if step % log_step == 0: losses = [l.item() for l in losses] message1 = "Step {}/{}, ".format(step, total_step) message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}, Pitch Loss: {:.4f}, Energy Loss: {:.4f}, Duration Loss: {:.4f}".format( *losses ) with open(os.path.join(train_log_path, "log.txt"), "a") as f: f.write(message1 + message2 + "\n") outer_bar.write(message1 + message2) log(train_logger, step, losses=losses) log_lamb_rs(optimizer, train_logger, step) if args.wandb: wandb.log({"train_loss": total_loss}) wandb.watch(model) if step % synth_step == 0: fig, wav_reconstruction, wav_prediction, tag = synth_one_sample( batch, output, vocoder, model_config, preprocess_config, ) log( train_logger, fig=fig, tag="Training/step_{}_{}".format(step, tag), ) sampling_rate = preprocess_config["preprocessing"]["audio"][ "sampling_rate" ] log( train_logger, audio=wav_reconstruction, sampling_rate=sampling_rate, tag="Training/step_{}_{}_reconstructed".format(step, tag), ) log( train_logger, audio=wav_prediction, sampling_rate=sampling_rate, tag="Training/step_{}_{}_synthesized".format(step, tag), ) if step % val_step == 0: model.eval() message = evaluate(model, step, configs, val_logger, vocoder, log_to_wandb=args.wandb) with open(os.path.join(val_log_path, "log.txt"), "a") as f: f.write(message + "\n") outer_bar.write(message) model.train() if step % save_step == 0: torch.save( { "model": model.module.state_dict(), "optimizer": optimizer.state_dict(), }, os.path.join( train_config["path"]["ckpt_path"], "{}.pth.tar".format(step), ), ) if step == total_step: quit() step += 1 outer_bar.update(1) inner_bar.update(1) epoch += 1 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--restore_step", type=int, default=0) parser.add_argument( "-p", "--preprocess_config", type=str, required=True, help="path to preprocess.yaml", ) parser.add_argument( "-m", "--model_config", type=str, required=True, help="path to model.yaml" ) parser.add_argument( "-t", "--train_config", type=str, required=True, help="path to train.yaml" ) parser.add_argument( '--batch-size', type=int, default=None, metavar='N', help='input batch size for training (for default val see config/../train.yaml)' ) parser.add_argument( '--wd', type=float, default=None, metavar='WD', help='weight decay (for default val see config/../train.yaml)' ) parser.add_argument( '--wandb', type=bool, default=False, help='log to wandb' ) args = parser.parse_args() # Read Config preprocess_config = yaml.load( open(args.preprocess_config, "r"), Loader=yaml.FullLoader ) model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader) train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader) configs = (preprocess_config, model_config, train_config) main(args, configs)
[ "evaluate.evaluate" ]
[((740, 825), 'dataset.Dataset', 'Dataset', (['"""train.txt"""', 'preprocess_config', 'train_config'], {'sort': '(True)', 'drop_last': '(True)'}), "('train.txt', preprocess_config, train_config, sort=True, drop_last=True\n )\n", (747, 825), False, 'from dataset import Dataset\n'), ((1141, 1245), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': '(batch_size * group_size)', 'shuffle': '(True)', 'collate_fn': 'dataset.collate_fn'}), '(dataset, batch_size=batch_size * group_size, shuffle=True,\n collate_fn=dataset.collate_fn)\n', (1151, 1245), False, 'from torch.utils.data import DataLoader\n'), ((2044, 2066), 'torch.nn.DataParallel', 'nn.DataParallel', (['model'], {}), '(model)\n', (2059, 2066), True, 'import torch.nn as nn\n'), ((2084, 2104), 'utils.model.get_param_num', 'get_param_num', (['model'], {}), '(model)\n', (2097, 2104), False, 'from utils.model import get_vocoder, get_param_num\n'), ((3275, 3308), 'utils.model.get_vocoder', 'get_vocoder', (['model_config', 'device'], {}), '(model_config, device)\n', (3286, 3308), False, 'from utils.model import get_vocoder, get_param_num\n'), ((3436, 3491), 'os.path.join', 'os.path.join', (["train_config['path']['log_path']", '"""train"""'], {}), "(train_config['path']['log_path'], 'train')\n", (3448, 3491), False, 'import os\n'), ((3512, 3565), 'os.path.join', 'os.path.join', (["train_config['path']['log_path']", '"""val"""'], {}), "(train_config['path']['log_path'], 'val')\n", (3524, 3565), False, 'import os\n'), ((3571, 3613), 'os.makedirs', 'os.makedirs', (['train_log_path'], {'exist_ok': '(True)'}), '(train_log_path, exist_ok=True)\n', (3582, 3613), False, 'import os\n'), ((3619, 3659), 'os.makedirs', 'os.makedirs', (['val_log_path'], {'exist_ok': '(True)'}), '(val_log_path, exist_ok=True)\n', (3630, 3659), False, 'import os\n'), ((3680, 3709), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', (['train_log_path'], {}), '(train_log_path)\n', (3693, 3709), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((3728, 3755), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', (['val_log_path'], {}), '(val_log_path)\n', (3741, 3755), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((4231, 4282), 'tqdm.tqdm', 'tqdm', ([], {'total': 'total_step', 'desc': '"""Training"""', 'position': '(0)'}), "(total=total_step, desc='Training', position=0)\n", (4235, 4282), False, 'from tqdm import tqdm\n'), ((8412, 8437), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (8435, 8437), False, 'import argparse\n'), ((534, 559), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (557, 559), False, 'import torch\n'), ((3384, 3413), 'os.makedirs', 'os.makedirs', (['p'], {'exist_ok': '(True)'}), '(p, exist_ok=True)\n', (3395, 3413), False, 'import os\n'), ((1322, 1366), 'model.FastSpeech2', 'FastSpeech2', (['preprocess_config', 'model_config'], {}), '(preprocess_config, model_config)\n', (1333, 1366), False, 'from model import FastSpeech2Loss, FastSpeech2\n'), ((2117, 2165), 'model.FastSpeech2Loss', 'FastSpeech2Loss', (['preprocess_config', 'model_config'], {}), '(preprocess_config, model_config)\n', (2132, 2165), False, 'from model import FastSpeech2Loss, FastSpeech2\n'), ((3156, 3242), 'wandb.init', 'wandb.init', ([], {'project': '"""synthesis-fastspeech2"""', 'entity': '"""papa-reo"""', 'config': 'log_config'}), "(project='synthesis-fastspeech2', entity='papa-reo', config=\n log_config)\n", (3166, 3242), False, 'import wandb\n'), ((4541, 4565), 'utils.tools.to_device', 'to_device', (['batch', 'device'], {}), '(batch, device)\n', (4550, 4565), False, 'from utils.tools import to_device, log, synth_one_sample\n'), ((5832, 5870), 'utils.tools.log', 'log', (['train_logger', 'step'], {'losses': 'losses'}), '(train_logger, step, losses=losses)\n', (5835, 5870), False, 'from utils.tools import to_device, log, synth_one_sample\n'), ((5892, 5934), 'pytorch_lamb.log_lamb_rs', 'log_lamb_rs', (['optimizer', 'train_logger', 'step'], {}), '(optimizer, train_logger, step)\n', (5903, 5934), False, 'from pytorch_lamb import Lamb, log_lamb_rs\n'), ((6194, 6267), 'utils.tools.synth_one_sample', 'synth_one_sample', (['batch', 'output', 'vocoder', 'model_config', 'preprocess_config'], {}), '(batch, output, vocoder, model_config, preprocess_config)\n', (6210, 6267), False, 'from utils.tools import to_device, log, synth_one_sample\n'), ((7412, 7488), 'evaluate.evaluate', 'evaluate', (['model', 'step', 'configs', 'val_logger', 'vocoder'], {'log_to_wandb': 'args.wandb'}), '(model, step, configs, val_logger, vocoder, log_to_wandb=args.wandb)\n', (7420, 7488), False, 'from evaluate import evaluate\n'), ((2350, 2396), 'pandas.json_normalize', 'pd.json_normalize', (["model_config['transformer']"], {}), "(model_config['transformer'])\n", (2367, 2396), True, 'import pandas as pd\n'), ((5998, 6035), 'wandb.log', 'wandb.log', (["{'train_loss': total_loss}"], {}), "({'train_loss': total_loss})\n", (6007, 6035), False, 'import wandb\n'), ((6061, 6079), 'wandb.watch', 'wandb.watch', (['model'], {}), '(model)\n', (6072, 6079), False, 'import wandb\n'), ((5636, 5675), 'os.path.join', 'os.path.join', (['train_log_path', '"""log.txt"""'], {}), "(train_log_path, 'log.txt')\n", (5648, 5675), False, 'import os\n'), ((7520, 7557), 'os.path.join', 'os.path.join', (['val_log_path', '"""log.txt"""'], {}), "(val_log_path, 'log.txt')\n", (7532, 7557), False, 'import os\n')]
from i3Deep import utils import os from evaluate import evaluate import numpy as np from skimage.segmentation.random_walker_segmentation import random_walker from tqdm import tqdm import torchio import torch def compute_predictions(image_path, mask_path, gt_path, save_path, nr_modalities, class_labels, resize=True, beta=10): image_filenames = utils.load_filenames(image_path)[::nr_modalities] mask_filenames = utils.load_filenames(mask_path) target_shape = (256, 256, 200) # (256, 256, 100) is_resized = False for i in tqdm(range(len(image_filenames))): image, affine, spacing, header = utils.load_nifty(image_filenames[i]) mask, _, _, _ = utils.load_nifty(mask_filenames[i]) if resize and image.size > np.prod(target_shape): is_resized = True print("Resized: ", os.path.basename(image_filenames[i])) original_shape = image.shape image = utils.interpolate(image, (target_shape[0], target_shape[1], original_shape[2])) mask = utils.interpolate(mask, (target_shape[0], target_shape[1], original_shape[2]), mask=True) image = utils.normalize(image) labels = np.unique(mask) # labels = labels[labels > 0] for label in np.flip(labels): mask[mask == label] = label + 1 mask = mask.astype(np.uint8) mask = random_walker(data=image, labels=mask, beta=beta, mode='cg_mg') for label in labels: mask[mask == label + 1] = label if is_resized: mask = utils.interpolate(mask, original_shape, mask=True) utils.save_nifty(save_path + os.path.basename(mask_filenames[i][:-12] + ".nii.gz"), mask, affine, spacing, header, is_mask=True) results = evaluate(gt_path, save_path, class_labels) return results # def compute_predictions(image_path, mask_path, gt_path, save_path): # image_filenames = utils.load_filenames(image_path) # mask_filenames = utils.load_filenames(mask_path) # # for i in tqdm(range(len(image_filenames))): # _, affine, spacing, header = utils.load_nifty(mask_filenames[i]) # subject = torchio.Subject(image=torchio.ScalarImage(image_filenames[i]), mask=torchio.LabelMap(mask_filenames[i])) # sampler = torchio.inference.GridSampler(subject, patch_size=(20, 20, 10), padding_mode='edge') # aggregator = torchio.inference.GridAggregator(sampler) # for patch in sampler: # image = patch["image"][torchio.DATA].numpy()[0] # image = utils.normalize(image) # mask = patch["mask"][torchio.DATA].numpy()[0] # location = torch.tensor(patch[torchio.LOCATION]).unsqueeze(0) # if not(image.max() <= 0 or mask.max() == 0): # # image[image < 0] = 0 # mask = mask.astype(np.int32) # mask = random_walker(data=image, labels=mask, mode='cg_j') # mask = torch.tensor(mask).unsqueeze(0).unsqueeze(0) # aggregator.add_batch(mask, location) # mask = aggregator.get_output_tensor() # utils.save_nifty(save_path + os.path.basename(mask_filenames[i]), mask, affine, spacing, header, is_mask=True) # mean_dice_score, median_dice_score = evaluate(gt_path, save_path) # return mean_dice_score, median_dice_score
[ "evaluate.evaluate" ]
[((432, 463), 'i3Deep.utils.load_filenames', 'utils.load_filenames', (['mask_path'], {}), '(mask_path)\n', (452, 463), False, 'from i3Deep import utils\n'), ((1785, 1827), 'evaluate.evaluate', 'evaluate', (['gt_path', 'save_path', 'class_labels'], {}), '(gt_path, save_path, class_labels)\n', (1793, 1827), False, 'from evaluate import evaluate\n'), ((360, 392), 'i3Deep.utils.load_filenames', 'utils.load_filenames', (['image_path'], {}), '(image_path)\n', (380, 392), False, 'from i3Deep import utils\n'), ((636, 672), 'i3Deep.utils.load_nifty', 'utils.load_nifty', (['image_filenames[i]'], {}), '(image_filenames[i])\n', (652, 672), False, 'from i3Deep import utils\n'), ((698, 733), 'i3Deep.utils.load_nifty', 'utils.load_nifty', (['mask_filenames[i]'], {}), '(mask_filenames[i])\n', (714, 733), False, 'from i3Deep import utils\n'), ((1164, 1186), 'i3Deep.utils.normalize', 'utils.normalize', (['image'], {}), '(image)\n', (1179, 1186), False, 'from i3Deep import utils\n'), ((1205, 1220), 'numpy.unique', 'np.unique', (['mask'], {}), '(mask)\n', (1214, 1220), True, 'import numpy as np\n'), ((1282, 1297), 'numpy.flip', 'np.flip', (['labels'], {}), '(labels)\n', (1289, 1297), True, 'import numpy as np\n'), ((1398, 1461), 'skimage.segmentation.random_walker_segmentation.random_walker', 'random_walker', ([], {'data': 'image', 'labels': 'mask', 'beta': 'beta', 'mode': '"""cg_mg"""'}), "(data=image, labels=mask, beta=beta, mode='cg_mg')\n", (1411, 1461), False, 'from skimage.segmentation.random_walker_segmentation import random_walker\n'), ((957, 1036), 'i3Deep.utils.interpolate', 'utils.interpolate', (['image', '(target_shape[0], target_shape[1], original_shape[2])'], {}), '(image, (target_shape[0], target_shape[1], original_shape[2]))\n', (974, 1036), False, 'from i3Deep import utils\n'), ((1057, 1151), 'i3Deep.utils.interpolate', 'utils.interpolate', (['mask', '(target_shape[0], target_shape[1], original_shape[2])'], {'mask': '(True)'}), '(mask, (target_shape[0], target_shape[1], original_shape[2\n ]), mask=True)\n', (1074, 1151), False, 'from i3Deep import utils\n'), ((1581, 1631), 'i3Deep.utils.interpolate', 'utils.interpolate', (['mask', 'original_shape'], {'mask': '(True)'}), '(mask, original_shape, mask=True)\n', (1598, 1631), False, 'from i3Deep import utils\n'), ((770, 791), 'numpy.prod', 'np.prod', (['target_shape'], {}), '(target_shape)\n', (777, 791), True, 'import numpy as np\n'), ((856, 892), 'os.path.basename', 'os.path.basename', (['image_filenames[i]'], {}), '(image_filenames[i])\n', (872, 892), False, 'import os\n'), ((1670, 1723), 'os.path.basename', 'os.path.basename', (["(mask_filenames[i][:-12] + '.nii.gz')"], {}), "(mask_filenames[i][:-12] + '.nii.gz')\n", (1686, 1723), False, 'import os\n')]
import random import os import sys from models.bert import BERT_Model from models.bilstm_crf_ import BiLSTM_CRF_Model from data import build_corpus from config import ModelPathConfig,ResultPathConfig from datetime import datetime from utils import extend_map_bert,save_model,load_model,extend_map,add_label_for_lstmcrf from evaluate import evaluate_entity_label,evaluate_multiclass,evaluate_single_label,unitstopd from tabulate import tabulate import pandas as pd def bert_test(): model_is_exitsed=os.path.exists(ModelPathConfig.bert) print("upload data!") word_lists,tag_lists,word2id,tag2id=build_corpus("train") test_word_lists,test_tag_lists,_,_=build_corpus("test") labels=list(tag2id.keys()) dev_indices=random.sample(range(len(word_lists)),len(word_lists)//5) train_indices=[i for i in range(len(word_lists)) if i not in dev_indices] dev_word_lists=[ word_lists[ind] for ind in dev_indices] dev_tag_lists=[tag_lists[ind] for ind in dev_indices] train_word_lists=[word_lists[ind] for ind in train_indices] train_tag_lists=[tag_lists[ind] for ind in train_indices] bert_tag2id=extend_map_bert(tag2id) if not model_is_exitsed: print('start to training') start=datetime.now() vocab_size=len(word2id) out_size=len(bert_tag2id) bert_model=BERT_Model(vocab_size,out_size) bert_model.train(train_word_lists,train_tag_lists,\ word2id,bert_tag2id,dev_word_lists,dev_tag_lists) deltatime=datetime.now()-start print("Training is finished, {} second".format(deltatime.seconds)) try: print("Save the model") save_model(bert_model,ModelPathConfig.bert) except: print("fail to save model") else: try: print("load model") bert_model=load_model(ModelPathConfig.bert) except: print("fail to load model") sys.exit(0) print("test the model") pred_tag_lists=bert_model.test(test_word_lists,test_tag_lists,word2id,bert_tag2id) label_tag_lists=test_tag_lists units=evaluate_entity_label(pred_tag_lists,label_tag_lists,labels) df=unitstopd(units) df.to_csv(ResultPathConfig.bert_entity) print(tabulate(df,headers='keys',tablefmt='psql')) units=evaluate_single_label(pred_tag_lists,label_tag_lists,labels) df=unitstopd(units) df.to_csv(ResultPathConfig.bert_model) print(tabulate(df,headers='keys',tablefmt='psql')) def _bilstm_crf_test(if_train=True): model_is_existed=os.path.exists(ModelPathConfig._bilstm_crf) print("upload data!") word_lists,tag_lists,word2id,tag2id=build_corpus("train") test_word_lists,test_tag_lists,_,_=build_corpus("test") labels=list(tag2id.keys()) dev_indices=random.sample(range(len(word_lists)),len(word_lists)//5) train_indices=[i for i in range(len(word_lists)) if i not in dev_indices] dev_word_lists=[ word_lists[ind] for ind in dev_indices] dev_tag_lists=[tag_lists[ind] for ind in dev_indices] train_word_lists=[word_lists[ind] for ind in train_indices] train_tag_lists=[tag_lists[ind] for ind in train_indices] # bilstm_crf_word2id,bilstm_crf_tag2id=extend_map(word2id,tag2id,crf=True) bilstm_crf_word2id,bilstm_crf_tag2id=extend_map(word2id,tag2id,crf=False) if if_train or not model_is_existed: print('start to training') # sample_print_test(train_word_lists,train_tag_lists) start=datetime.now() vocab_size=len(bilstm_crf_word2id) out_size=len(tag2id) bilstm_model=BiLSTM_CRF_Model(vocab_size,out_size) bilstm_model.train(train_word_lists,train_tag_lists,\ word2id,bilstm_crf_tag2id,dev_word_lists,dev_tag_lists) deltatime=datetime.now()-start print("Training is finished, {} second".format(deltatime.seconds)) save_model(bilstm_model,ModelPathConfig._bilstm_crf) print("Save the model") else: print("load model") bilstm_model=load_model(ModelPathConfig._bilstm_crf) print("test the model") pred_tag_lists,label_tag_lists,=bilstm_model.test(test_word_lists,test_tag_lists,word2id,tag2id) units=evaluate_entity_label(pred_tag_lists,label_tag_lists,labels) df=unitstopd(units) df.to_csv(ResultPathConfig._bilstm_crf_entity) print(tabulate(df,headers='keys',tablefmt='psql')) units=evaluate_single_label(pred_tag_lists,label_tag_lists,labels) df=unitstopd(units) df.to_csv(ResultPathConfig._bilstm_crf_model) print(tabulate(df,headers='keys',tablefmt='psql')) def mrc_bert_test(if_train=True): pass if __name__=='__main__': pass
[ "evaluate.unitstopd", "evaluate.evaluate_single_label", "evaluate.evaluate_entity_label" ]
[((504, 540), 'os.path.exists', 'os.path.exists', (['ModelPathConfig.bert'], {}), '(ModelPathConfig.bert)\n', (518, 540), False, 'import os\n'), ((609, 630), 'data.build_corpus', 'build_corpus', (['"""train"""'], {}), "('train')\n", (621, 630), False, 'from data import build_corpus\n'), ((670, 690), 'data.build_corpus', 'build_corpus', (['"""test"""'], {}), "('test')\n", (682, 690), False, 'from data import build_corpus\n'), ((1138, 1161), 'utils.extend_map_bert', 'extend_map_bert', (['tag2id'], {}), '(tag2id)\n', (1153, 1161), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((2138, 2200), 'evaluate.evaluate_entity_label', 'evaluate_entity_label', (['pred_tag_lists', 'label_tag_lists', 'labels'], {}), '(pred_tag_lists, label_tag_lists, labels)\n', (2159, 2200), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((2206, 2222), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (2215, 2222), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((2333, 2395), 'evaluate.evaluate_single_label', 'evaluate_single_label', (['pred_tag_lists', 'label_tag_lists', 'labels'], {}), '(pred_tag_lists, label_tag_lists, labels)\n', (2354, 2395), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((2401, 2417), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (2410, 2417), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((2577, 2620), 'os.path.exists', 'os.path.exists', (['ModelPathConfig._bilstm_crf'], {}), '(ModelPathConfig._bilstm_crf)\n', (2591, 2620), False, 'import os\n'), ((2688, 2709), 'data.build_corpus', 'build_corpus', (['"""train"""'], {}), "('train')\n", (2700, 2709), False, 'from data import build_corpus\n'), ((2749, 2769), 'data.build_corpus', 'build_corpus', (['"""test"""'], {}), "('test')\n", (2761, 2769), False, 'from data import build_corpus\n'), ((3318, 3356), 'utils.extend_map', 'extend_map', (['word2id', 'tag2id'], {'crf': '(False)'}), '(word2id, tag2id, crf=False)\n', (3328, 3356), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((4235, 4297), 'evaluate.evaluate_entity_label', 'evaluate_entity_label', (['pred_tag_lists', 'label_tag_lists', 'labels'], {}), '(pred_tag_lists, label_tag_lists, labels)\n', (4256, 4297), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((4303, 4319), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (4312, 4319), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((4437, 4499), 'evaluate.evaluate_single_label', 'evaluate_single_label', (['pred_tag_lists', 'label_tag_lists', 'labels'], {}), '(pred_tag_lists, label_tag_lists, labels)\n', (4458, 4499), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((4505, 4521), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (4514, 4521), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((1245, 1259), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1257, 1259), False, 'from datetime import datetime\n'), ((1345, 1377), 'models.bert.BERT_Model', 'BERT_Model', (['vocab_size', 'out_size'], {}), '(vocab_size, out_size)\n', (1355, 1377), False, 'from models.bert import BERT_Model\n'), ((2277, 2322), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (2285, 2322), False, 'from tabulate import tabulate\n'), ((2471, 2516), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (2479, 2516), False, 'from tabulate import tabulate\n'), ((3508, 3522), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3520, 3522), False, 'from datetime import datetime\n'), ((3617, 3655), 'models.bilstm_crf_.BiLSTM_CRF_Model', 'BiLSTM_CRF_Model', (['vocab_size', 'out_size'], {}), '(vocab_size, out_size)\n', (3633, 3655), False, 'from models.bilstm_crf_ import BiLSTM_CRF_Model\n'), ((3908, 3961), 'utils.save_model', 'save_model', (['bilstm_model', 'ModelPathConfig._bilstm_crf'], {}), '(bilstm_model, ModelPathConfig._bilstm_crf)\n', (3918, 3961), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((4052, 4091), 'utils.load_model', 'load_model', (['ModelPathConfig._bilstm_crf'], {}), '(ModelPathConfig._bilstm_crf)\n', (4062, 4091), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((4381, 4426), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (4389, 4426), False, 'from tabulate import tabulate\n'), ((4582, 4627), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (4590, 4627), False, 'from tabulate import tabulate\n'), ((1518, 1532), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1530, 1532), False, 'from datetime import datetime\n'), ((1675, 1719), 'utils.save_model', 'save_model', (['bert_model', 'ModelPathConfig.bert'], {}), '(bert_model, ModelPathConfig.bert)\n', (1685, 1719), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((1862, 1894), 'utils.load_model', 'load_model', (['ModelPathConfig.bert'], {}), '(ModelPathConfig.bert)\n', (1872, 1894), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((3803, 3817), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3815, 3817), False, 'from datetime import datetime\n'), ((1963, 1974), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (1971, 1974), False, 'import sys\n')]
from __future__ import print_function, division import sys sys.path.append('core') import argparse import os import cv2 import time import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import DataLoader # from raft import RAFT from core.ours import RAFT import evaluate import datasets import flow_vis import random from torch.utils.tensorboard import SummaryWriter from utils.scheduler import CosineAnnealingWarmupRestarts try: from torch.cuda.amp import GradScaler except: # dummy GradScaler for PyTorch < 1.6 class GradScaler: def __init__(self): pass def scale(self, loss): return loss def unscale_(self, optimizer): pass def step(self, optimizer): optimizer.step() def update(self): pass # exclude extremly large displacements MAX_FLOW = 400 SUM_FREQ = 100 VAL_FREQ = 5000 def sequence_loss(flow_preds, flow_gt, valid, sparse_lambda=1.0, gamma=0.8, max_flow=MAX_FLOW): """ Loss function defined over sequence of flow predictions """ n_predictions = len(flow_preds[0]) flow_loss = 0.0 sparse_loss = 0.0 # exlude invalid pixels and extremely large diplacements mag = torch.sum(flow_gt ** 2, dim=1).sqrt() dense_valid = (valid >= 0.5) & (mag < max_flow) bs, _, I_H, I_W = flow_gt.shape for i in range(n_predictions): # i_weight = gamma ** (n_predictions - i - 1) i_weight = 1.0 i_loss = (flow_preds[0][i] - flow_gt).abs() # i_loss = (flow_preds[0][i] - flow_gt).square() flow_loss += i_weight * (dense_valid[:, None] * i_loss).mean() if sparse_lambda > 0.0: ref, sparse_flow, _, _ = flow_preds[1][i] scale = torch.tensor((I_W - 1, I_H - 1), dtype=torch.float32).view(1, 1, 2).to(sparse_flow.device) flatten_gt = flow_gt.flatten(2).permute(0, 2, 1) flatten_valid = valid.flatten(1) coords = torch.round(ref * scale).long() coords = torch.clamp_max(coords[..., 1] * coords[..., 0], I_H * I_W - 1) sparse_gt = torch.gather(flatten_gt, 1, coords.unsqueeze(-1).repeat(1, 1, 2)) sparse_valid = torch.gather(flatten_valid, 1, coords) sparse_valid = (sparse_valid >= 0.5) & (torch.sum(sparse_gt ** 2, dim=-1).sqrt() < max_flow) sparse_i_loss = (sparse_flow * scale - sparse_gt).abs() # sparse_i_loss = (sparse_flow * scale - sparse_gt).square() sparse_loss += i_weight * (sparse_valid[..., None] * sparse_i_loss).mean() loss = flow_loss + sparse_loss * sparse_lambda epe = torch.sum((flow_preds[0][-1] - flow_gt)**2, dim=1).sqrt() epe = epe.view(-1)[dense_valid.view(-1)] metrics = { 'epe': epe.mean().item(), '1px': (epe < 1).float().mean().item(), '3px': (epe < 3).float().mean().item(), '5px': (epe < 5).float().mean().item(), 'loss': loss, 'flow_loss': flow_loss, 'sparse_loss': sparse_loss } return loss, metrics def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def fetch_optimizer(args, model): """ Create the optimizer and learning rate scheduler """ # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.wdecay) optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, round(args.num_steps * 0.8)) # scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100, # pct_start=0.05, cycle_momentum=False, anneal_strategy='linear') # scheduler = torch.optim.lr_scheduler.OneCycleLR( # optimizer, args.lr, # args.num_steps + 10, # pct_start=0.05, # cycle_momentum=False, # anneal_strategy='cos') # scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts( # optimizer, 1000, T_mult=1, eta_min=0, last_epoch=- 1, verbose=False) return optimizer, scheduler class Logger: def __init__(self, model, scheduler): self.model = model self.scheduler = scheduler self.total_steps = 0 self.running_loss = {} self.writer = None def _print_training_status(self): metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())] training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0]) metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data) # print the training status print(training_str + metrics_str) if self.writer is None: self.writer = SummaryWriter() for k in self.running_loss: self.writer.add_scalar(k, self.running_loss[k]/SUM_FREQ, self.total_steps) self.running_loss[k] = 0.0 def push(self, metrics): self.total_steps += 1 for key in metrics: if key not in self.running_loss: self.running_loss[key] = 0.0 self.running_loss[key] += metrics[key] if self.total_steps % SUM_FREQ == SUM_FREQ-1: self._print_training_status() self.running_loss = {} def write_dict(self, results): if self.writer is None: self.writer = SummaryWriter() for key in results: self.writer.add_scalar(key, results[key], self.total_steps) def write_image(self, image1, image2, target, pred, phase="T", idx=0): if self.writer is None: self.writer = SummaryWriter() _, I_H, I_W = image1.shape scale = torch.tensor((I_W, I_H), dtype=torch.float32).view(1, 2).to(image1.device) image1 = image1.detach().cpu().numpy() image1 = np.transpose(image1, (1, 2, 0)) image2 = image2.detach().cpu().numpy() image2 = np.transpose(image2, (1, 2, 0)) target = target.detach().cpu().numpy() target = np.transpose(target, (1, 2, 0)) target_img = flow_vis.flow_to_color(target, convert_to_bgr=False) pred_img = list() for p_i in range(len(pred[0])): ref, sparse_flow, masks, scores = pred[1][p_i] coords = torch.round(ref.squeeze(0) * scale).long() coords = coords.cpu().numpy() confidence = np.squeeze(scores.squeeze(0).cpu().numpy()) ref_img = cv2.cvtColor(np.array(image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) for k_i in range(len(coords)): coord = coords[k_i] ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[k_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) pred_img.append(ref_img) this_pred = pred[0][p_i].squeeze(0).detach().cpu().numpy() this_pred = np.transpose(this_pred, (1, 2, 0)) this_pred = flow_vis.flow_to_color(this_pred, convert_to_bgr=False) pred_img.append(this_pred) mask_img = list() top_k = len(pred[0]) # top_k_indices = np.argsort(-confidence)[:top_k] masks = masks.squeeze(0).cpu() # masks = masks.reshape(self.num_keypoints, 1, H, W) masks = F.interpolate(masks, size=(I_H, I_W), mode="bilinear", align_corners=False).numpy() masks = masks.squeeze(1) top_k_indices = np.argsort(-np.sum(masks, axis=(1, 2)))[:top_k] for m_i in top_k_indices: coord = coords[m_i] # ref_img = cv2.circle(ref_img, coord, 10, (255, 0, 0), 10) ref_img = cv2.cvtColor(np.array(image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[m_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) mask_img.append(ref_img) masked_flow = np.expand_dims(masks[m_i], axis=-1) * this_pred mask_img.append(masked_flow) pred_img = np.concatenate(pred_img, axis=1) mask_img = np.concatenate(mask_img, axis=1) image = np.concatenate((np.concatenate((image1, image2, target_img, pred_img), axis=1), np.concatenate((image1, image2, target_img, mask_img), axis=1)), axis=0) image = image.astype(np.uint8) self.writer.add_image("{}_Image_{:02d}".format(phase, idx + 1), image, self.total_steps, dataformats='HWC') def write_images(self, image1, image2, targets, preds, phase="T"): if self.writer is None: self.writer = SummaryWriter() _, _, I_H, I_W = image1.shape scale = torch.tensor((I_W, I_H), dtype=torch.float32).view(1, 1, 2).to(image1.device) image1 = image1.detach().cpu().numpy() image1 = np.transpose(image1, (0, 2, 3, 1)) image2 = image2.detach().cpu().numpy() image2 = np.transpose(image2, (0, 2, 3, 1)) targets = targets.detach().cpu().numpy() targets = np.transpose(targets, (0, 2, 3, 1)) sampled_indices = random.sample(range(len(targets)), min(10, len(targets))) for i_i, n_i in enumerate(sampled_indices): this_image1 = image1[n_i] this_image2 = image2[n_i] target_img = flow_vis.flow_to_color(targets[n_i], convert_to_bgr=False) pred_img = list() for p_i in range(len(preds[0])): ref, sparse_flow, masks, scores = preds[1][p_i] coords = torch.round(ref * scale).long() coords = coords.cpu().numpy()[n_i] confidence = np.squeeze(scores.cpu().numpy()[n_i]) ref_img = cv2.cvtColor(np.array(this_image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) for k_i in range(len(coords)): coord = coords[k_i] # ref_img = cv2.circle(ref_img, coord, 10, (255, 0, 0), 10) ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[k_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) pred_img.append(ref_img) this_pred = preds[0][p_i].detach().cpu().numpy()[n_i] this_pred = np.transpose(this_pred, (1, 2, 0)) this_pred = flow_vis.flow_to_color(this_pred, convert_to_bgr=False) pred_img.append(this_pred) mask_img = list() top_k = len(preds[0]) # top_k_indices = np.argsort(-confidence)[:top_k] masks = masks[n_i].cpu() masks = F.interpolate(masks, size=(I_H, I_W), mode="bilinear", align_corners=False).numpy() masks = masks.squeeze(1) top_k_indices = np.argsort(-np.sum(masks, axis=(1, 2)))[:top_k] for m_i in top_k_indices: coord = coords[m_i] # ref_img = cv2.circle(ref_img, coord, 10, (255, 0, 0), 10) ref_img = cv2.cvtColor(np.array(this_image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[m_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) mask_img.append(ref_img) masked_flow = np.expand_dims(masks[m_i], axis=-1) * this_pred mask_img.append(masked_flow) pred_img = np.concatenate(pred_img, axis=1) mask_img = np.concatenate(mask_img, axis=1) image = np.concatenate((np.concatenate((this_image1, this_image2, target_img, pred_img), axis=1), np.concatenate((this_image1, this_image2, target_img, mask_img), axis=1)), axis=0) image = image.astype(np.uint8) self.writer.add_image("{}_Image_{:02d}".format(phase, i_i + 1), image, self.total_steps, dataformats='HWC') def write_seg_images(self, image1, image2, targets, preds, phase="T"): if self.writer is None: self.writer = SummaryWriter() _, _, I_H, I_W = image1.shape scale = torch.tensor((I_W, I_H), dtype=torch.float32).view(1, 1, 2).to(image1.device) image1 = image1.detach().cpu().numpy() image1 = np.transpose(image1, (0, 2, 3, 1)) image2 = image2.detach().cpu().numpy() image2 = np.transpose(image2, (0, 2, 3, 1)) targets = targets.detach().cpu().numpy() targets = np.transpose(targets, (0, 2, 3, 1)) for n_i in range(len(targets)): this_image1 = image1[n_i] this_image2 = image2[n_i] target_img = flow_vis.flow_to_color(targets[n_i], convert_to_bgr=False) pred_img = list() for p_i in range(len(preds[0])): ref, sparse_flow, masks, scores = preds[1][p_i] coords = torch.round(ref * scale).long() coords = coords.detach().cpu().numpy()[n_i] confidence = np.squeeze(scores.detach().cpu().numpy()[n_i]) ref_img = cv2.cvtColor(np.array(this_image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) for k_i in range(len(coords)): coord = coords[k_i] # ref_img = cv2.circle(ref_img, coord, 10, (255, 0, 0), 10) ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[k_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) pred_img.append(ref_img) this_pred = preds[0][p_i].detach().cpu().numpy()[n_i] this_pred = np.transpose(this_pred, (1, 2, 0)) pred_img.append(flow_vis.flow_to_color(this_pred, convert_to_bgr=False)) pred_img = np.concatenate(pred_img, axis=1) image = np.concatenate((this_image1, this_image2, target_img, pred_img), axis=1) image = image.astype(np.uint8) self.writer.add_image("{}_Image_{:02d}".format(phase, n_i + 1), image, self.total_steps, dataformats='HWC') def close(self): self.writer.close() def train(args): model = nn.DataParallel(RAFT(args), device_ids=args.gpus) print("Parameter Count: %d" % count_parameters(model)) if args.restore_ckpt is not None: model.load_state_dict(torch.load(args.restore_ckpt), strict=False) model.cuda() model.train() # if args.stage != 'chairs': # model.module.freeze_bn() train_loader = datasets.fetch_dataloader(args) optimizer, scheduler = fetch_optimizer(args, model) total_steps = 0 # scaler = GradScaler(enabled=args.mixed_precision) logger = Logger(model, scheduler) VAL_FREQ = 5000 # VAL_FREQ = 10 IMAGE_FREQ = 5000 add_noise = True should_keep_training = True while should_keep_training: for i_batch, data_blob in enumerate(train_loader): optimizer.zero_grad() image1, image2, flow, valid = [x.cuda() for x in data_blob] if args.add_noise: stdv = np.random.uniform(0.0, 5.0) image1 = (image1 + stdv * torch.randn(*image1.shape).cuda()).clamp(0.0, 255.0) image2 = (image2 + stdv * torch.randn(*image2.shape).cuda()).clamp(0.0, 255.0) flow_predictions = model(image1, image2, iters=args.iters) sparse_lambda = 1.0 if total_steps < 20000 else 0.0 # sparse_lambda = 1.0 loss, metrics = sequence_loss(flow_predictions, flow, valid, sparse_lambda, args.gamma) # scaler.scale(loss).backward() # scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) loss.backward() optimizer.step() # scaler.step(optimizer) scheduler.step() # scaler.update() logger.push(metrics) if total_steps % IMAGE_FREQ == IMAGE_FREQ - 1: logger.write_images(image1, image2, flow, flow_predictions, phase="T") if total_steps % VAL_FREQ == VAL_FREQ - 1: PATH = 'checkpoints/%d_%s.pth' % (total_steps+1, args.name) torch.save(model.state_dict(), PATH) results = {} for val_dataset in args.validation: if val_dataset == 'chairs': results.update(evaluate.validate_chairs(model.module, logger=logger, iters=args.iters)) elif val_dataset == 'sintel': results.update(evaluate.validate_sintel(model.module, iters=args.iters)) elif val_dataset == 'kitti': results.update(evaluate.validate_kitti(model.module, iters=args.iters)) logger.write_dict(results) model.train() if args.stage != 'chairs': model.module.freeze_bn() total_steps += 1 if total_steps > args.num_steps: should_keep_training = False break logger.close() PATH = 'checkpoints/%s.pth' % args.name torch.save(model.state_dict(), PATH) return PATH if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--name', default='raft', help="name your experiment") parser.add_argument('--stage', help="determines which dataset to use for training") parser.add_argument('--restore_ckpt', help="restore checkpoint") parser.add_argument('--small', action='store_true', help='use small model') parser.add_argument('--validation', type=str, nargs='+') parser.add_argument('--lr', type=float, default=0.0002) parser.add_argument('--num_steps', type=int, default=100000) parser.add_argument('--batch_size', type=int, default=6) parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512]) parser.add_argument('--gpus', type=int, nargs='+', default=[0,1]) parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') parser.add_argument('--iters', type=int, default=3) parser.add_argument('--wdecay', type=float, default=.00005) parser.add_argument('--epsilon', type=float, default=1e-8) parser.add_argument('--clip', type=float, default=1.0) parser.add_argument('--dropout', type=float, default=0.0) parser.add_argument('--gamma', type=float, default=0.8, help='exponential weighting') parser.add_argument('--add_noise', action='store_true') args = parser.parse_args() torch.manual_seed(2022) np.random.seed(2022) if not os.path.isdir('checkpoints'): os.mkdir('checkpoints') train(args)
[ "evaluate.validate_chairs", "evaluate.validate_kitti", "evaluate.validate_sintel" ]
[((59, 82), 'sys.path.append', 'sys.path.append', (['"""core"""'], {}), "('core')\n", (74, 82), False, 'import sys\n'), ((14695, 14726), 'datasets.fetch_dataloader', 'datasets.fetch_dataloader', (['args'], {}), '(args)\n', (14720, 14726), False, 'import datasets\n'), ((17465, 17490), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (17488, 17490), False, 'import argparse\n'), ((18792, 18815), 'torch.manual_seed', 'torch.manual_seed', (['(2022)'], {}), '(2022)\n', (18809, 18815), False, 'import torch\n'), ((18820, 18840), 'numpy.random.seed', 'np.random.seed', (['(2022)'], {}), '(2022)\n', (18834, 18840), True, 'import numpy as np\n'), ((5981, 6012), 'numpy.transpose', 'np.transpose', (['image1', '(1, 2, 0)'], {}), '(image1, (1, 2, 0))\n', (5993, 6012), True, 'import numpy as np\n'), ((6077, 6108), 'numpy.transpose', 'np.transpose', (['image2', '(1, 2, 0)'], {}), '(image2, (1, 2, 0))\n', (6089, 6108), True, 'import numpy as np\n'), ((6173, 6204), 'numpy.transpose', 'np.transpose', (['target', '(1, 2, 0)'], {}), '(target, (1, 2, 0))\n', (6185, 6204), True, 'import numpy as np\n'), ((6227, 6279), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['target'], {'convert_to_bgr': '(False)'}), '(target, convert_to_bgr=False)\n', (6249, 6279), False, 'import flow_vis\n'), ((8223, 8255), 'numpy.concatenate', 'np.concatenate', (['pred_img'], {'axis': '(1)'}), '(pred_img, axis=1)\n', (8237, 8255), True, 'import numpy as np\n'), ((8275, 8307), 'numpy.concatenate', 'np.concatenate', (['mask_img'], {'axis': '(1)'}), '(mask_img, axis=1)\n', (8289, 8307), True, 'import numpy as np\n'), ((9010, 9044), 'numpy.transpose', 'np.transpose', (['image1', '(0, 2, 3, 1)'], {}), '(image1, (0, 2, 3, 1))\n', (9022, 9044), True, 'import numpy as np\n'), ((9109, 9143), 'numpy.transpose', 'np.transpose', (['image2', '(0, 2, 3, 1)'], {}), '(image2, (0, 2, 3, 1))\n', (9121, 9143), True, 'import numpy as np\n'), ((9211, 9246), 'numpy.transpose', 'np.transpose', (['targets', '(0, 2, 3, 1)'], {}), '(targets, (0, 2, 3, 1))\n', (9223, 9246), True, 'import numpy as np\n'), ((12457, 12491), 'numpy.transpose', 'np.transpose', (['image1', '(0, 2, 3, 1)'], {}), '(image1, (0, 2, 3, 1))\n', (12469, 12491), True, 'import numpy as np\n'), ((12556, 12590), 'numpy.transpose', 'np.transpose', (['image2', '(0, 2, 3, 1)'], {}), '(image2, (0, 2, 3, 1))\n', (12568, 12590), True, 'import numpy as np\n'), ((12658, 12693), 'numpy.transpose', 'np.transpose', (['targets', '(0, 2, 3, 1)'], {}), '(targets, (0, 2, 3, 1))\n', (12670, 12693), True, 'import numpy as np\n'), ((14363, 14373), 'core.ours.RAFT', 'RAFT', (['args'], {}), '(args)\n', (14367, 14373), False, 'from core.ours import RAFT\n'), ((18853, 18881), 'os.path.isdir', 'os.path.isdir', (['"""checkpoints"""'], {}), "('checkpoints')\n", (18866, 18881), False, 'import os\n'), ((18891, 18914), 'os.mkdir', 'os.mkdir', (['"""checkpoints"""'], {}), "('checkpoints')\n", (18899, 18914), False, 'import os\n'), ((1332, 1362), 'torch.sum', 'torch.sum', (['(flow_gt ** 2)'], {'dim': '(1)'}), '(flow_gt ** 2, dim=1)\n', (1341, 1362), False, 'import torch\n'), ((2130, 2193), 'torch.clamp_max', 'torch.clamp_max', (['(coords[..., 1] * coords[..., 0])', '(I_H * I_W - 1)'], {}), '(coords[..., 1] * coords[..., 0], I_H * I_W - 1)\n', (2145, 2193), False, 'import torch\n'), ((2311, 2349), 'torch.gather', 'torch.gather', (['flatten_valid', '(1)', 'coords'], {}), '(flatten_valid, 1, coords)\n', (2323, 2349), False, 'import torch\n'), ((2746, 2798), 'torch.sum', 'torch.sum', (['((flow_preds[0][-1] - flow_gt) ** 2)'], {'dim': '(1)'}), '((flow_preds[0][-1] - flow_gt) ** 2, dim=1)\n', (2755, 2798), False, 'import torch\n'), ((4886, 4901), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (4899, 4901), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((5522, 5537), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (5535, 5537), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((5773, 5788), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (5786, 5788), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((7068, 7102), 'numpy.transpose', 'np.transpose', (['this_pred', '(1, 2, 0)'], {}), '(this_pred, (1, 2, 0))\n', (7080, 7102), True, 'import numpy as np\n'), ((7127, 7182), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['this_pred'], {'convert_to_bgr': '(False)'}), '(this_pred, convert_to_bgr=False)\n', (7149, 7182), False, 'import flow_vis\n'), ((8796, 8811), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (8809, 8811), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((9484, 9542), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['targets[n_i]'], {'convert_to_bgr': '(False)'}), '(targets[n_i], convert_to_bgr=False)\n', (9506, 9542), False, 'import flow_vis\n'), ((11627, 11659), 'numpy.concatenate', 'np.concatenate', (['pred_img'], {'axis': '(1)'}), '(pred_img, axis=1)\n', (11641, 11659), True, 'import numpy as np\n'), ((11683, 11715), 'numpy.concatenate', 'np.concatenate', (['mask_img'], {'axis': '(1)'}), '(mask_img, axis=1)\n', (11697, 11715), True, 'import numpy as np\n'), ((12243, 12258), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (12256, 12258), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((12835, 12893), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['targets[n_i]'], {'convert_to_bgr': '(False)'}), '(targets[n_i], convert_to_bgr=False)\n', (12857, 12893), False, 'import flow_vis\n'), ((13974, 14006), 'numpy.concatenate', 'np.concatenate', (['pred_img'], {'axis': '(1)'}), '(pred_img, axis=1)\n', (13988, 14006), True, 'import numpy as np\n'), ((14027, 14099), 'numpy.concatenate', 'np.concatenate', (['(this_image1, this_image2, target_img, pred_img)'], {'axis': '(1)'}), '((this_image1, this_image2, target_img, pred_img), axis=1)\n', (14041, 14099), True, 'import numpy as np\n'), ((14525, 14554), 'torch.load', 'torch.load', (['args.restore_ckpt'], {}), '(args.restore_ckpt)\n', (14535, 14554), False, 'import torch\n'), ((6615, 6647), 'numpy.array', 'np.array', (['image1'], {'dtype': 'np.uint8'}), '(image1, dtype=np.uint8)\n', (6623, 6647), True, 'import numpy as np\n'), ((6881, 6914), 'numpy.array', 'np.array', (['ref_img'], {'dtype': 'np.uint8'}), '(ref_img, dtype=np.uint8)\n', (6889, 6914), True, 'import numpy as np\n'), ((7452, 7527), 'torch.nn.functional.interpolate', 'F.interpolate', (['masks'], {'size': '(I_H, I_W)', 'mode': '"""bilinear"""', 'align_corners': '(False)'}), "(masks, size=(I_H, I_W), mode='bilinear', align_corners=False)\n", (7465, 7527), True, 'import torch.nn.functional as F\n'), ((7814, 7846), 'numpy.array', 'np.array', (['image1'], {'dtype': 'np.uint8'}), '(image1, dtype=np.uint8)\n', (7822, 7846), True, 'import numpy as np\n'), ((7997, 8030), 'numpy.array', 'np.array', (['ref_img'], {'dtype': 'np.uint8'}), '(ref_img, dtype=np.uint8)\n', (8005, 8030), True, 'import numpy as np\n'), ((8114, 8149), 'numpy.expand_dims', 'np.expand_dims', (['masks[m_i]'], {'axis': '(-1)'}), '(masks[m_i], axis=-1)\n', (8128, 8149), True, 'import numpy as np\n'), ((8340, 8402), 'numpy.concatenate', 'np.concatenate', (['(image1, image2, target_img, pred_img)'], {'axis': '(1)'}), '((image1, image2, target_img, pred_img), axis=1)\n', (8354, 8402), True, 'import numpy as np\n'), ((8436, 8498), 'numpy.concatenate', 'np.concatenate', (['(image1, image2, target_img, mask_img)'], {'axis': '(1)'}), '((image1, image2, target_img, mask_img), axis=1)\n', (8450, 8498), True, 'import numpy as np\n'), ((10457, 10491), 'numpy.transpose', 'np.transpose', (['this_pred', '(1, 2, 0)'], {}), '(this_pred, (1, 2, 0))\n', (10469, 10491), True, 'import numpy as np\n'), ((10520, 10575), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['this_pred'], {'convert_to_bgr': '(False)'}), '(this_pred, convert_to_bgr=False)\n', (10542, 10575), False, 'import flow_vis\n'), ((13826, 13860), 'numpy.transpose', 'np.transpose', (['this_pred', '(1, 2, 0)'], {}), '(this_pred, (1, 2, 0))\n', (13838, 13860), True, 'import numpy as np\n'), ((15267, 15294), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(5.0)'], {}), '(0.0, 5.0)\n', (15284, 15294), True, 'import numpy as np\n'), ((2077, 2101), 'torch.round', 'torch.round', (['(ref * scale)'], {}), '(ref * scale)\n', (2088, 2101), False, 'import torch\n'), ((7605, 7631), 'numpy.sum', 'np.sum', (['masks'], {'axis': '(1, 2)'}), '(masks, axis=(1, 2))\n', (7611, 7631), True, 'import numpy as np\n'), ((9896, 9933), 'numpy.array', 'np.array', (['this_image1'], {'dtype': 'np.uint8'}), '(this_image1, dtype=np.uint8)\n', (9904, 9933), True, 'import numpy as np\n'), ((10263, 10296), 'numpy.array', 'np.array', (['ref_img'], {'dtype': 'np.uint8'}), '(ref_img, dtype=np.uint8)\n', (10271, 10296), True, 'import numpy as np\n'), ((10803, 10878), 'torch.nn.functional.interpolate', 'F.interpolate', (['masks'], {'size': '(I_H, I_W)', 'mode': '"""bilinear"""', 'align_corners': '(False)'}), "(masks, size=(I_H, I_W), mode='bilinear', align_corners=False)\n", (10816, 10878), True, 'import torch.nn.functional as F\n'), ((11189, 11226), 'numpy.array', 'np.array', (['this_image1'], {'dtype': 'np.uint8'}), '(this_image1, dtype=np.uint8)\n', (11197, 11226), True, 'import numpy as np\n'), ((11385, 11418), 'numpy.array', 'np.array', (['ref_img'], {'dtype': 'np.uint8'}), '(ref_img, dtype=np.uint8)\n', (11393, 11418), True, 'import numpy as np\n'), ((11510, 11545), 'numpy.expand_dims', 'np.expand_dims', (['masks[m_i]'], {'axis': '(-1)'}), '(masks[m_i], axis=-1)\n', (11524, 11545), True, 'import numpy as np\n'), ((11752, 11824), 'numpy.concatenate', 'np.concatenate', (['(this_image1, this_image2, target_img, pred_img)'], {'axis': '(1)'}), '((this_image1, this_image2, target_img, pred_img), axis=1)\n', (11766, 11824), True, 'import numpy as np\n'), ((11862, 11934), 'numpy.concatenate', 'np.concatenate', (['(this_image1, this_image2, target_img, mask_img)'], {'axis': '(1)'}), '((this_image1, this_image2, target_img, mask_img), axis=1)\n', (11876, 11934), True, 'import numpy as np\n'), ((13265, 13302), 'numpy.array', 'np.array', (['this_image1'], {'dtype': 'np.uint8'}), '(this_image1, dtype=np.uint8)\n', (13273, 13302), True, 'import numpy as np\n'), ((13632, 13665), 'numpy.array', 'np.array', (['ref_img'], {'dtype': 'np.uint8'}), '(ref_img, dtype=np.uint8)\n', (13640, 13665), True, 'import numpy as np\n'), ((13893, 13948), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['this_pred'], {'convert_to_bgr': '(False)'}), '(this_pred, convert_to_bgr=False)\n', (13915, 13948), False, 'import flow_vis\n'), ((5841, 5886), 'torch.tensor', 'torch.tensor', (['(I_W, I_H)'], {'dtype': 'torch.float32'}), '((I_W, I_H), dtype=torch.float32)\n', (5853, 5886), False, 'import torch\n'), ((8867, 8912), 'torch.tensor', 'torch.tensor', (['(I_W, I_H)'], {'dtype': 'torch.float32'}), '((I_W, I_H), dtype=torch.float32)\n', (8879, 8912), False, 'import torch\n'), ((9707, 9731), 'torch.round', 'torch.round', (['(ref * scale)'], {}), '(ref * scale)\n', (9718, 9731), False, 'import torch\n'), ((10964, 10990), 'numpy.sum', 'np.sum', (['masks'], {'axis': '(1, 2)'}), '(masks, axis=(1, 2))\n', (10970, 10990), True, 'import numpy as np\n'), ((12314, 12359), 'torch.tensor', 'torch.tensor', (['(I_W, I_H)'], {'dtype': 'torch.float32'}), '((I_W, I_H), dtype=torch.float32)\n', (12326, 12359), False, 'import torch\n'), ((13058, 13082), 'torch.round', 'torch.round', (['(ref * scale)'], {}), '(ref * scale)\n', (13069, 13082), False, 'import torch\n'), ((1859, 1912), 'torch.tensor', 'torch.tensor', (['(I_W - 1, I_H - 1)'], {'dtype': 'torch.float32'}), '((I_W - 1, I_H - 1), dtype=torch.float32)\n', (1871, 1912), False, 'import torch\n'), ((2402, 2435), 'torch.sum', 'torch.sum', (['(sparse_gt ** 2)'], {'dim': '(-1)'}), '(sparse_gt ** 2, dim=-1)\n', (2411, 2435), False, 'import torch\n'), ((16602, 16673), 'evaluate.validate_chairs', 'evaluate.validate_chairs', (['model.module'], {'logger': 'logger', 'iters': 'args.iters'}), '(model.module, logger=logger, iters=args.iters)\n', (16626, 16673), False, 'import evaluate\n'), ((16764, 16820), 'evaluate.validate_sintel', 'evaluate.validate_sintel', (['model.module'], {'iters': 'args.iters'}), '(model.module, iters=args.iters)\n', (16788, 16820), False, 'import evaluate\n'), ((16910, 16965), 'evaluate.validate_kitti', 'evaluate.validate_kitti', (['model.module'], {'iters': 'args.iters'}), '(model.module, iters=args.iters)\n', (16933, 16965), False, 'import evaluate\n'), ((15337, 15363), 'torch.randn', 'torch.randn', (['*image1.shape'], {}), '(*image1.shape)\n', (15348, 15363), False, 'import torch\n'), ((15432, 15458), 'torch.randn', 'torch.randn', (['*image2.shape'], {}), '(*image2.shape)\n', (15443, 15458), False, 'import torch\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import numpy as np import tensorflow as tf from evaluate import evaluate from utils import get_data, tf_melspectogram from shallow_nn import shallow_nn from deep_nn import deep_nn from shallow_nn_improve import shallow_nn as shallow_nn_improve from deep_nn_improve import deep_nn as deep_nn_improve FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer('epochs', 100, 'Number of mini-batches to train on. (default: %(default)d)') tf.app.flags.DEFINE_integer('network', 0, 'Type of network to use, 0 for shallow, 1 for deep. (default: %(default)d)') tf.app.flags.DEFINE_integer('improve', 0, 'Turn improvements on or off, 0 for off, 1 for improvements on. (default: %(default)d)') tf.app.flags.DEFINE_float('decay', 0, 'Amount to decay learning rate. Greater than 0 enables decaying (default: %(default)d') tf.app.flags.DEFINE_integer('log_frequency', 100, 'Number of steps between logging results to the console and saving summaries (default: %(default)d)') tf.app.flags.DEFINE_integer('augment', 0, 'Use augmentation, 0 for off, 1 for on (default: %(default)d)') tf.app.flags.DEFINE_integer('num_parallel_calls', 1, 'Number of cpu cores to use to preprocess data') tf.app.flags.DEFINE_integer('save_model', 1000, 'Number of steps between model saves (default: %(default)d)') tf.app.flags.DEFINE_integer('save_images', 0, 'Whether to save spectrogram images, 0 to not save, 1 to save. (default: %(default)d)') # Optimisation hyperparameters tf.app.flags.DEFINE_integer( 'batch_size', 16, 'Number of examples per mini-batch (default: %(default)d)') tf.app.flags.DEFINE_float( 'learning_rate', 5e-5, 'Learning rate (default: %(default)d)') tf.app.flags.DEFINE_integer( "input_width", 80, "Input width (default: %(default)d)") tf.app.flags.DEFINE_integer( "input_height", 80, "Input height (default: %(default)d)") tf.app.flags.DEFINE_integer( "input_channels", 1, "Input channels (default: %(default)d)" ) tf.app.flags.DEFINE_integer( "num_classes", 10, "Number of classes (default: %(default)d)" ) tf.app.flags.DEFINE_string( "log_dir", "{cwd}/logs/".format(cwd=os.getcwd()), "Directory where to write event logs and checkpoint. (default: %(default)s)", ) run_log_dir = os.path.join(FLAGS.log_dir, 'exp_lr_{learning_rate}_decay_{decay}_bs_{batch_size}_e_{epochs}_{network}_improve_{improve}_augment_{augment}'.format( learning_rate=FLAGS.learning_rate, decay=FLAGS.decay, batch_size=FLAGS.batch_size, epochs=FLAGS.epochs, network='shallow' if (FLAGS.network == 0) else 'deep', improve=FLAGS.improve, augment=FLAGS.augment)) def model(iterator, is_training, nn): next_x, next_y = iterator.get_next() with tf.variable_scope('Model', reuse=tf.AUTO_REUSE): y_out, img_summary = nn(next_x, is_training) # Compute categorical loss with tf.variable_scope("cross_entropy"): cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2( labels=next_y, logits=y_out) ) # L1 regularise regularization_penalty = tf.losses.get_regularization_loss( name="total_regularization_loss" ) regularized_loss = cross_entropy + regularization_penalty accuracy, accuracy_op = tf.metrics.accuracy( tf.argmax(next_y, axis=1), tf.argmax(y_out, axis=1), name="accuracy_train") return regularized_loss, img_summary, accuracy, accuracy_op def calc_accuracy(iterator, is_training, nn): next_x, next_y = iterator.get_next() with tf.variable_scope('Model', reuse=tf.AUTO_REUSE): y_out, _ = nn(next_x, is_training) accuracy, accuracy_op = tf.metrics.accuracy( tf.argmax(next_y, axis=1), tf.argmax(y_out, axis=1), name="accuracy_test") return accuracy, accuracy_op def accumulate_results(iterator, is_training, nn): x, y, i = iterator.get_next() with tf.variable_scope('Model', reuse=tf.AUTO_REUSE): y_out, _ = nn(x, is_training) return (x, y, y_out, i) def _preprocess(features, label): label = tf.one_hot(indices=label, depth=FLAGS.num_classes, dtype=tf.uint8) return features, label def main(_): ( train_set_data, train_set_labels, _, test_set_data, test_set_labels, test_set_track_ids, ) = get_data() print("Making TF graph") start = time.time() is_training_placeholder = tf.placeholder_with_default(False, shape=()) features_placeholder = tf.placeholder( tf.float32, (None, np.shape(train_set_data)[1]) ) labels_placeholder = tf.placeholder(tf.uint8, (None)) track_ids_placeholder = tf.placeholder(tf.uint8, (None)) shuffle_buffer_size = len(train_set_data) dataset = tf.data.Dataset.from_tensor_slices( (features_placeholder, labels_placeholder) ) dataset = dataset.shuffle(buffer_size=shuffle_buffer_size) dataset = dataset.apply( tf.data.experimental.map_and_batch( _preprocess, FLAGS.batch_size, num_parallel_calls=FLAGS.num_parallel_calls) ) dataset = dataset.prefetch(1) train_iterator = dataset.make_initializable_iterator() test_iterator = dataset.make_initializable_iterator() eval_dataset = tf.data.Dataset.from_tensor_slices( (features_placeholder, labels_placeholder, track_ids_placeholder) ) eval_dataset = eval_dataset.map( lambda features, label, track_id: ( features, tf.one_hot(indices=label, depth=FLAGS.num_classes, dtype=tf.uint8), track_id, ) ) eval_dataset = eval_dataset.batch(1) eval_iterator = eval_dataset.make_initializable_iterator() if (FLAGS.network == 0): if (FLAGS.improve == 0): print("Using Shallow network") nn = shallow_nn else: print("Using Shallow Improved network") nn = shallow_nn_improve else: if (FLAGS.improve == 0): print("Using Deep Network") nn = deep_nn else: print("Using Deep Improved Network") nn = deep_nn_improve loss, _, train_acc, train_acc_op = model( train_iterator, is_training_placeholder, nn) global_step = tf.Variable(0, trainable=False) if (FLAGS.decay > 0): learning_rate = tf.train.exponential_decay( FLAGS.learning_rate, global_step, 15000, FLAGS.decay) else: learning_rate = FLAGS.learning_rate # Adam Optimiser # default values match that in paper update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimiser = tf.train.AdamOptimizer( learning_rate, name="AdamOpt").minimize(loss, global_step=global_step) validation_accuracy, acc_op = calc_accuracy( test_iterator, is_training_placeholder, nn) evaluator = accumulate_results( eval_iterator, is_training_placeholder, nn) loss_summary = tf.summary.scalar("Loss", loss) acc_summary = tf.summary.scalar("Accuracy", validation_accuracy) train_acc_summary = tf.summary.scalar("Accuracy", train_acc) training_summary = tf.summary.merge([loss_summary, train_acc_summary]) validation_summary = tf.summary.merge([acc_summary]) # Isolate the variables stored behind the scenes by the metric operation running_vars = tf.get_collection( tf.GraphKeys.LOCAL_VARIABLES, scope="accuracy_test") train_running_vars = tf.get_collection( tf.GraphKeys.LOCAL_VARIABLES, scope="accuracy_train") # Define initializer to initialize/reset running variables running_vars_initializer = tf.variables_initializer( var_list=running_vars) train_running_vars_initializer = tf.variables_initializer( var_list=train_running_vars) end = time.time() print("Time to prep TF ops: {:.2f}s".format(end - start)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.graph.finalize() summary_writer = tf.summary.FileWriter( run_log_dir + "_train", sess.graph) summary_writer_validation = tf.summary.FileWriter( run_log_dir + "_validate", sess.graph ) for epoch in range(FLAGS.epochs): sess.run(running_vars_initializer) sess.run(train_running_vars_initializer) sess.run(train_iterator.initializer, feed_dict={ features_placeholder: train_set_data, labels_placeholder: train_set_labels}) # Run until all samples done while True: try: _, acc_train, summary_str = sess.run([optimiser, train_acc_op, training_summary], feed_dict={ is_training_placeholder: True}) except tf.errors.OutOfRangeError: break summary_writer.add_summary(summary_str, epoch) sess.run(test_iterator.initializer, feed_dict={ features_placeholder: test_set_data, labels_placeholder: test_set_labels}) while True: try: acc, acc_summary_str = sess.run( [acc_op, validation_summary]) except tf.errors.OutOfRangeError: break summary_writer_validation.add_summary(acc_summary_str, epoch) print("Accuracy after epoch {} - Training: {:.2f}% Validation: {:.2f}%".format( str(epoch), acc_train * 100.0, acc * 100.0)) sess.run(eval_iterator.initializer, feed_dict={ features_placeholder: test_set_data, labels_placeholder: test_set_labels, track_ids_placeholder: test_set_track_ids}) results = [None] * np.shape(test_set_data)[0] count = 0 while True: try: evaluated = sess.run(evaluator) results[count] = evaluated count += 1 except tf.errors.OutOfRangeError: break raw_probability, maximum_probability, majority_vote = evaluate(results) print("-----===== Summary =====-----") print("Raw Probability: {:.2f}%".format(raw_probability * 100.0)) print("Maximum Probability: {:.2f}%".format( maximum_probability * 100.0)) print("Majority Vote: {:.2f}%".format(majority_vote * 100)) if __name__ == "__main__": tf.app.run(main=main)
[ "evaluate.evaluate" ]
[((461, 569), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""epochs"""', '(100)', '"""Number of mini-batches to train on. (default: %(default)d)"""'], {}), "('epochs', 100,\n 'Number of mini-batches to train on. (default: %(default)d)')\n", (488, 569), True, 'import tensorflow as tf\n'), ((594, 721), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""network"""', '(0)', '"""Type of network to use, 0 for shallow, 1 for deep. (default: %(default)d)"""'], {}), "('network', 0,\n 'Type of network to use, 0 for shallow, 1 for deep. (default: %(default)d)'\n )\n", (621, 721), True, 'import tensorflow as tf\n'), ((741, 880), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""improve"""', '(0)', '"""Turn improvements on or off, 0 for off, 1 for improvements on. (default: %(default)d)"""'], {}), "('improve', 0,\n 'Turn improvements on or off, 0 for off, 1 for improvements on. (default: %(default)d)'\n )\n", (768, 880), True, 'import tensorflow as tf\n'), ((900, 1034), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""decay"""', '(0)', '"""Amount to decay learning rate. Greater than 0 enables decaying (default: %(default)d"""'], {}), "('decay', 0,\n 'Amount to decay learning rate. Greater than 0 enables decaying (default: %(default)d'\n )\n", (925, 1034), True, 'import tensorflow as tf\n'), ((1052, 1212), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""log_frequency"""', '(100)', '"""Number of steps between logging results to the console and saving summaries (default: %(default)d)"""'], {}), "('log_frequency', 100,\n 'Number of steps between logging results to the console and saving summaries (default: %(default)d)'\n )\n", (1079, 1212), True, 'import tensorflow as tf\n'), ((1232, 1341), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""augment"""', '(0)', '"""Use augmentation, 0 for off, 1 for on (default: %(default)d)"""'], {}), "('augment', 0,\n 'Use augmentation, 0 for off, 1 for on (default: %(default)d)')\n", (1259, 1341), True, 'import tensorflow as tf\n'), ((1366, 1471), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_parallel_calls"""', '(1)', '"""Number of cpu cores to use to preprocess data"""'], {}), "('num_parallel_calls', 1,\n 'Number of cpu cores to use to preprocess data')\n", (1393, 1471), True, 'import tensorflow as tf\n'), ((1496, 1609), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""save_model"""', '(1000)', '"""Number of steps between model saves (default: %(default)d)"""'], {}), "('save_model', 1000,\n 'Number of steps between model saves (default: %(default)d)')\n", (1523, 1609), True, 'import tensorflow as tf\n'), ((1634, 1776), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""save_images"""', '(0)', '"""Whether to save spectrogram images, 0 to not save, 1 to save. (default: %(default)d)"""'], {}), "('save_images', 0,\n 'Whether to save spectrogram images, 0 to not save, 1 to save. (default: %(default)d)'\n )\n", (1661, 1776), True, 'import tensorflow as tf\n'), ((1828, 1937), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""batch_size"""', '(16)', '"""Number of examples per mini-batch (default: %(default)d)"""'], {}), "('batch_size', 16,\n 'Number of examples per mini-batch (default: %(default)d)')\n", (1855, 1937), True, 'import tensorflow as tf\n'), ((1939, 2032), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""learning_rate"""', '(5e-05)', '"""Learning rate (default: %(default)d)"""'], {}), "('learning_rate', 5e-05,\n 'Learning rate (default: %(default)d)')\n", (1964, 2032), True, 'import tensorflow as tf\n'), ((2033, 2121), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""input_width"""', '(80)', '"""Input width (default: %(default)d)"""'], {}), "('input_width', 80,\n 'Input width (default: %(default)d)')\n", (2060, 2121), True, 'import tensorflow as tf\n'), ((2123, 2213), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""input_height"""', '(80)', '"""Input height (default: %(default)d)"""'], {}), "('input_height', 80,\n 'Input height (default: %(default)d)')\n", (2150, 2213), True, 'import tensorflow as tf\n'), ((2215, 2308), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""input_channels"""', '(1)', '"""Input channels (default: %(default)d)"""'], {}), "('input_channels', 1,\n 'Input channels (default: %(default)d)')\n", (2242, 2308), True, 'import tensorflow as tf\n'), ((2311, 2405), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_classes"""', '(10)', '"""Number of classes (default: %(default)d)"""'], {}), "('num_classes', 10,\n 'Number of classes (default: %(default)d)')\n", (2338, 2405), True, 'import tensorflow as tf\n'), ((3423, 3490), 'tensorflow.losses.get_regularization_loss', 'tf.losses.get_regularization_loss', ([], {'name': '"""total_regularization_loss"""'}), "(name='total_regularization_loss')\n", (3456, 3490), True, 'import tensorflow as tf\n'), ((4385, 4451), 'tensorflow.one_hot', 'tf.one_hot', ([], {'indices': 'label', 'depth': 'FLAGS.num_classes', 'dtype': 'tf.uint8'}), '(indices=label, depth=FLAGS.num_classes, dtype=tf.uint8)\n', (4395, 4451), True, 'import tensorflow as tf\n'), ((4646, 4656), 'utils.get_data', 'get_data', ([], {}), '()\n', (4654, 4656), False, 'from utils import get_data, tf_melspectogram\n'), ((4699, 4710), 'time.time', 'time.time', ([], {}), '()\n', (4708, 4710), False, 'import time\n'), ((4742, 4786), 'tensorflow.placeholder_with_default', 'tf.placeholder_with_default', (['(False)'], {'shape': '()'}), '(False, shape=())\n', (4769, 4786), True, 'import tensorflow as tf\n'), ((4918, 4948), 'tensorflow.placeholder', 'tf.placeholder', (['tf.uint8', 'None'], {}), '(tf.uint8, None)\n', (4932, 4948), True, 'import tensorflow as tf\n'), ((4979, 5009), 'tensorflow.placeholder', 'tf.placeholder', (['tf.uint8', 'None'], {}), '(tf.uint8, None)\n', (4993, 5009), True, 'import tensorflow as tf\n'), ((5073, 5151), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(features_placeholder, labels_placeholder)'], {}), '((features_placeholder, labels_placeholder))\n', (5107, 5151), True, 'import tensorflow as tf\n'), ((5568, 5673), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(features_placeholder, labels_placeholder, track_ids_placeholder)'], {}), '((features_placeholder,\n labels_placeholder, track_ids_placeholder))\n', (5602, 5673), True, 'import tensorflow as tf\n'), ((6568, 6599), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'trainable': '(False)'}), '(0, trainable=False)\n', (6579, 6599), True, 'import tensorflow as tf\n'), ((6877, 6919), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.UPDATE_OPS'], {}), '(tf.GraphKeys.UPDATE_OPS)\n', (6894, 6919), True, 'import tensorflow as tf\n'), ((7304, 7335), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""Loss"""', 'loss'], {}), "('Loss', loss)\n", (7321, 7335), True, 'import tensorflow as tf\n'), ((7354, 7404), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""Accuracy"""', 'validation_accuracy'], {}), "('Accuracy', validation_accuracy)\n", (7371, 7404), True, 'import tensorflow as tf\n'), ((7429, 7469), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""Accuracy"""', 'train_acc'], {}), "('Accuracy', train_acc)\n", (7446, 7469), True, 'import tensorflow as tf\n'), ((7494, 7545), 'tensorflow.summary.merge', 'tf.summary.merge', (['[loss_summary, train_acc_summary]'], {}), '([loss_summary, train_acc_summary])\n', (7510, 7545), True, 'import tensorflow as tf\n'), ((7571, 7602), 'tensorflow.summary.merge', 'tf.summary.merge', (['[acc_summary]'], {}), '([acc_summary])\n', (7587, 7602), True, 'import tensorflow as tf\n'), ((7700, 7770), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.LOCAL_VARIABLES'], {'scope': '"""accuracy_test"""'}), "(tf.GraphKeys.LOCAL_VARIABLES, scope='accuracy_test')\n", (7717, 7770), True, 'import tensorflow as tf\n'), ((7805, 7876), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.LOCAL_VARIABLES'], {'scope': '"""accuracy_train"""'}), "(tf.GraphKeys.LOCAL_VARIABLES, scope='accuracy_train')\n", (7822, 7876), True, 'import tensorflow as tf\n'), ((7981, 8028), 'tensorflow.variables_initializer', 'tf.variables_initializer', ([], {'var_list': 'running_vars'}), '(var_list=running_vars)\n', (8005, 8028), True, 'import tensorflow as tf\n'), ((8075, 8128), 'tensorflow.variables_initializer', 'tf.variables_initializer', ([], {'var_list': 'train_running_vars'}), '(var_list=train_running_vars)\n', (8099, 8128), True, 'import tensorflow as tf\n'), ((8149, 8160), 'time.time', 'time.time', ([], {}), '()\n', (8158, 8160), False, 'import time\n'), ((10739, 10760), 'tensorflow.app.run', 'tf.app.run', ([], {'main': 'main'}), '(main=main)\n', (10749, 10760), True, 'import tensorflow as tf\n'), ((3043, 3090), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""Model"""'], {'reuse': 'tf.AUTO_REUSE'}), "('Model', reuse=tf.AUTO_REUSE)\n", (3060, 3090), True, 'import tensorflow as tf\n'), ((3186, 3220), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""cross_entropy"""'], {}), "('cross_entropy')\n", (3203, 3220), True, 'import tensorflow as tf\n'), ((3625, 3650), 'tensorflow.argmax', 'tf.argmax', (['next_y'], {'axis': '(1)'}), '(next_y, axis=1)\n', (3634, 3650), True, 'import tensorflow as tf\n'), ((3652, 3676), 'tensorflow.argmax', 'tf.argmax', (['y_out'], {'axis': '(1)'}), '(y_out, axis=1)\n', (3661, 3676), True, 'import tensorflow as tf\n'), ((3865, 3912), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""Model"""'], {'reuse': 'tf.AUTO_REUSE'}), "('Model', reuse=tf.AUTO_REUSE)\n", (3882, 3912), True, 'import tensorflow as tf\n'), ((4015, 4040), 'tensorflow.argmax', 'tf.argmax', (['next_y'], {'axis': '(1)'}), '(next_y, axis=1)\n', (4024, 4040), True, 'import tensorflow as tf\n'), ((4042, 4066), 'tensorflow.argmax', 'tf.argmax', (['y_out'], {'axis': '(1)'}), '(y_out, axis=1)\n', (4051, 4066), True, 'import tensorflow as tf\n'), ((4221, 4268), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""Model"""'], {'reuse': 'tf.AUTO_REUSE'}), "('Model', reuse=tf.AUTO_REUSE)\n", (4238, 4268), True, 'import tensorflow as tf\n'), ((5266, 5380), 'tensorflow.data.experimental.map_and_batch', 'tf.data.experimental.map_and_batch', (['_preprocess', 'FLAGS.batch_size'], {'num_parallel_calls': 'FLAGS.num_parallel_calls'}), '(_preprocess, FLAGS.batch_size,\n num_parallel_calls=FLAGS.num_parallel_calls)\n', (5300, 5380), True, 'import tensorflow as tf\n'), ((6650, 6735), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['FLAGS.learning_rate', 'global_step', '(15000)', 'FLAGS.decay'], {}), '(FLAGS.learning_rate, global_step, 15000, FLAGS.decay\n )\n', (6676, 6735), True, 'import tensorflow as tf\n'), ((6929, 6964), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['update_ops'], {}), '(update_ops)\n', (6952, 6964), True, 'import tensorflow as tf\n'), ((8233, 8245), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (8243, 8245), True, 'import tensorflow as tf\n'), ((8363, 8420), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["(run_log_dir + '_train')", 'sess.graph'], {}), "(run_log_dir + '_train', sess.graph)\n", (8384, 8420), True, 'import tensorflow as tf\n'), ((8470, 8530), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["(run_log_dir + '_validate')", 'sess.graph'], {}), "(run_log_dir + '_validate', sess.graph)\n", (8491, 8530), True, 'import tensorflow as tf\n'), ((10403, 10420), 'evaluate.evaluate', 'evaluate', (['results'], {}), '(results)\n', (10411, 10420), False, 'from evaluate import evaluate\n'), ((2480, 2491), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2489, 2491), False, 'import os\n'), ((3274, 3345), 'tensorflow.nn.softmax_cross_entropy_with_logits_v2', 'tf.nn.softmax_cross_entropy_with_logits_v2', ([], {'labels': 'next_y', 'logits': 'y_out'}), '(labels=next_y, logits=y_out)\n', (3316, 3345), True, 'import tensorflow as tf\n'), ((8272, 8305), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8303, 8305), True, 'import tensorflow as tf\n'), ((4858, 4882), 'numpy.shape', 'np.shape', (['train_set_data'], {}), '(train_set_data)\n', (4866, 4882), True, 'import numpy as np\n'), ((5799, 5865), 'tensorflow.one_hot', 'tf.one_hot', ([], {'indices': 'label', 'depth': 'FLAGS.num_classes', 'dtype': 'tf.uint8'}), '(indices=label, depth=FLAGS.num_classes, dtype=tf.uint8)\n', (5809, 5865), True, 'import tensorflow as tf\n'), ((6986, 7039), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['learning_rate'], {'name': '"""AdamOpt"""'}), "(learning_rate, name='AdamOpt')\n", (7008, 7039), True, 'import tensorflow as tf\n'), ((10071, 10094), 'numpy.shape', 'np.shape', (['test_set_data'], {}), '(test_set_data)\n', (10079, 10094), True, 'import numpy as np\n')]
from implicit_neural_networks import IMLP import torch import torch.optim as optim import numpy as np from evaluate import evaluate_model from datetime import datetime from loss_utils import get_gradient_loss, get_rigidity_loss, \ get_optical_flow_loss, get_optical_flow_alpha_loss from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow import sys from torch.utils.tensorboard import SummaryWriter import logging import json from pathlib import Path device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def main(config): maximum_number_of_frames = config["maximum_number_of_frames"] resx = np.int64(config["resx"]) resy = np.int64(config["resy"]) iters_num = config["iters_num"] #batch size: samples = config["samples_batch"] # evaluation frequency (in terms of iterations number) evaluate_every = np.int64(config["evaluate_every"]) # optionally it is possible to load a checkpoint load_checkpoint = config["load_checkpoint"] # set to true to continue from a checkpoint checkpoint_path = config["checkpoint_path"] # a data folder that contains folders named "[video_name]","[video_name]_flow","[video_name]_maskrcnn" data_folder = Path(config["data_folder"]) results_folder_name = config["results_folder_name"] # the folder (under the code's folder where the experiments will be saved. add_to_experiment_folder_name = config["add_to_experiment_folder_name"] # for each experiment folder (saved inside "results_folder_name") add this string # boolean variables for determining if a pretraining is used: pretrain_mapping1 = config["pretrain_mapping1"] pretrain_mapping2 = config["pretrain_mapping2"] pretrain_iter_number = config["pretrain_iter_number"] # the scale of the atlas uv coordinates relative to frame's xy coordinates uv_mapping_scale = config["uv_mapping_scale"] # M_\alpha's hyper parameters: positional_encoding_num_alpha = config["positional_encoding_num_alpha"] number_of_channels_alpha = config["number_of_channels_alpha"] number_of_layers_alpha = config["number_of_layers_alpha"] # M_f's hyper parameters use_positional_encoding_mapping1 = config["use_positional_encoding_mapping1"] number_of_positional_encoding_mapping1 = config["number_of_positional_encoding_mapping1"] number_of_layers_mapping1 = config["number_of_layers_mapping1"] number_of_channels_mapping1 = config["number_of_channels_mapping1"] # M_b's hyper parameters use_positional_encoding_mapping2 = config["use_positional_encoding_mapping2"] number_of_positional_encoding_mapping2 = config["number_of_positional_encoding_mapping2"] number_of_layers_mapping2 = config["number_of_layers_mapping2"] number_of_channels_mapping2 = config["number_of_channels_mapping2"] # Atlas MLP's hyper parameters number_of_channels_atlas = config["number_of_channels_atlas"] number_of_layers_atlas = config["number_of_layers_atlas"] positional_encoding_num_atlas = config[ "positional_encoding_num_atlas"] # bootstrapping configuration: alpha_bootstrapping_factor = config["alpha_bootstrapping_factor"] stop_bootstrapping_iteration = config["stop_bootstrapping_iteration"] # coefficients for the different loss terms rgb_coeff = config["rgb_coeff"] # coefficient for rgb loss term: alpha_flow_factor = config["alpha_flow_factor"] sparsity_coeff = config["sparsity_coeff"] # optical flow loss term coefficient (beta_f in the paper): optical_flow_coeff = config["optical_flow_coeff"] use_gradient_loss = config["use_gradient_loss"] gradient_loss_coeff = config["gradient_loss_coeff"] rigidity_coeff = config["rigidity_coeff"] # coefficient for the rigidity loss term derivative_amount = config["derivative_amount"] # For finite differences gradient computation: # for using global (in addition to the current local) rigidity loss: include_global_rigidity_loss = config["include_global_rigidity_loss"] # Finite differences parameters for the global rigidity terms: global_rigidity_derivative_amount_fg = config["global_rigidity_derivative_amount_fg"] global_rigidity_derivative_amount_bg = config["global_rigidity_derivative_amount_bg"] global_rigidity_coeff_fg = config["global_rigidity_coeff_fg"] global_rigidity_coeff_bg = config["global_rigidity_coeff_bg"] stop_global_rigidity = config["stop_global_rigidity"] use_optical_flow = True vid_name = data_folder.name vid_root = data_folder.parent results_folder = Path( f'./{results_folder_name}/{vid_name}_{datetime.utcnow().strftime("%m_%d_%Y__%H_%M_%S_%f")}{add_to_experiment_folder_name}') results_folder.mkdir(parents=True, exist_ok=True) with open('%s/config.json' % results_folder, 'w') as json_file: json.dump(config, json_file, indent=4) logging.basicConfig( filename='%s/log.log' % results_folder, level=logging.INFO, format='%(asctime)s %(message)s') logging.info('Started') writer = SummaryWriter(log_dir=str(results_folder)) optical_flows_mask, video_frames, optical_flows_reverse_mask, mask_frames, video_frames_dx, video_frames_dy, optical_flows_reverse, optical_flows = load_input_data( resy, resx, maximum_number_of_frames, data_folder, True, True, vid_root, vid_name) number_of_frames=video_frames.shape[3] # save a video showing the masked part of the forward optical flow:s save_mask_flow(optical_flows_mask, video_frames, results_folder) model_F_mapping1 = IMLP( input_dim=3, output_dim=2, hidden_dim=number_of_channels_mapping1, use_positional=use_positional_encoding_mapping1, positional_dim=number_of_positional_encoding_mapping1, num_layers=number_of_layers_mapping1, skip_layers=[]).to(device) model_F_mapping2 = IMLP( input_dim=3, output_dim=2, hidden_dim=number_of_channels_mapping2, use_positional=use_positional_encoding_mapping2, positional_dim=number_of_positional_encoding_mapping2, num_layers=number_of_layers_mapping2, skip_layers=[]).to(device) model_F_atlas = IMLP( input_dim=2, output_dim=3, hidden_dim=number_of_channels_atlas, use_positional=True, positional_dim=positional_encoding_num_atlas, num_layers=number_of_layers_atlas, skip_layers=[4, 7]).to(device) model_alpha = IMLP( input_dim=3, output_dim=1, hidden_dim=number_of_channels_alpha, use_positional=True, positional_dim=positional_encoding_num_alpha, num_layers=number_of_layers_alpha, skip_layers=[]).to(device) start_iteration = 0 optimizer_all = optim.Adam( [{'params': list(model_F_mapping1.parameters())}, {'params': list(model_F_mapping2.parameters())}, {'params': list(model_alpha.parameters())}, {'params': list(model_F_atlas.parameters())}], lr=0.0001) larger_dim = np.maximum(resx, resy) if not load_checkpoint: if pretrain_mapping1: model_F_mapping1 = pre_train_mapping(model_F_mapping1, number_of_frames, uv_mapping_scale, resx=resx, resy=resy, larger_dim=larger_dim,device=device, pretrain_iters=pretrain_iter_number) if pretrain_mapping2: model_F_mapping2 = pre_train_mapping(model_F_mapping2, number_of_frames, uv_mapping_scale, resx=resx, resy=resy, larger_dim=larger_dim, device=device,pretrain_iters=pretrain_iter_number) else: init_file = torch.load(checkpoint_path) model_F_atlas.load_state_dict(init_file["F_atlas_state_dict"]) model_F_mapping1.load_state_dict(init_file["model_F_mapping1_state_dict"]) model_F_mapping2.load_state_dict(init_file["model_F_mapping2_state_dict"]) model_alpha.load_state_dict(init_file["model_F_alpha_state_dict"]) optimizer_all.load_state_dict(init_file["optimizer_all_state_dict"]) start_iteration = init_file["iteration"] jif_all = get_tuples(number_of_frames, video_frames) # Start training! for i in range(start_iteration, iters_num): if i > stop_bootstrapping_iteration: alpha_bootstrapping_factor = 0 if i > stop_global_rigidity: global_rigidity_coeff_fg = 0 global_rigidity_coeff_bg = 0 print(i) logging.info('Iteration %d' % i) # randomly choose indices for the current batch inds_foreground = torch.randint(jif_all.shape[1], (np.int64(samples * 1.0), 1)) jif_current = jif_all[:, inds_foreground] # size (3, batch, 1) rgb_current = video_frames[jif_current[1, :], jif_current[0, :], :, jif_current[2, :]].squeeze(1).to(device) # the correct alpha according to the precomputed maskrcnn alpha_maskrcnn = mask_frames[jif_current[1, :], jif_current[0, :], jif_current[2, :]].squeeze(1).to(device).unsqueeze(-1) # normalize coordinates to be in [-1,1] xyt_current = torch.cat( (jif_current[0, :] / (larger_dim / 2) - 1, jif_current[1, :] / (larger_dim / 2) - 1, jif_current[2, :] / (number_of_frames / 2.0) - 1), dim=1).to(device) # size (batch, 3) # get the atlas UV coordinates from the two mapping networks; uv_foreground1 = model_F_mapping1(xyt_current) uv_foreground2 = model_F_mapping2(xyt_current) # map tanh output of the alpha network to the range (0,1) : alpha = 0.5 * (model_alpha(xyt_current) + 1.0) # prevent a situation of alpha=0, or alpha=1 (for the BCE loss that uses log(alpha),log(1-alpha) below) alpha = alpha * 0.99 alpha = alpha + 0.001 # Sample atlas values. Foreground colors are sampled from [0,1]x[0,1] and background colors are sampled from [-1,0]x[-1,0] # Note that the original [u,v] coorinates are in [-1,1]x[-1,1] for both networks rgb_output1 = (model_F_atlas(uv_foreground1 * 0.5 + 0.5) + 1.0) * 0.5 rgb_output2 = (model_F_atlas( uv_foreground2 * 0.5 - 0.5) + 1.0) * 0.5 # Reconstruct final colors from the two layers (using alpha) rgb_output_foreground = rgb_output1 * alpha + rgb_output2 * (1.0 - alpha) if use_gradient_loss: gradient_loss = get_gradient_loss(video_frames_dx, video_frames_dy, jif_current, model_F_mapping1, model_F_mapping2, model_F_atlas, rgb_output_foreground,device,resx,number_of_frames,model_alpha) else: gradient_loss = 0.0 print("gradient_loss:") print(gradient_loss) rgb_output_foreground_not = rgb_output1 * (1.0 - alpha) rgb_loss = (torch.norm(rgb_output_foreground - rgb_current, dim=1) ** 2).mean() rgb_loss_sparsity = (torch.norm(rgb_output_foreground_not, dim=1) ** 2).mean() rigidity_loss1 = get_rigidity_loss( jif_current, derivative_amount, larger_dim, number_of_frames, model_F_mapping1, uv_foreground1,device, uv_mapping_scale=uv_mapping_scale) rigidity_loss2 = get_rigidity_loss( jif_current, derivative_amount, larger_dim, number_of_frames, model_F_mapping2, uv_foreground2,device, uv_mapping_scale=uv_mapping_scale) if include_global_rigidity_loss and i <= stop_global_rigidity: global_rigidity_loss1 = get_rigidity_loss( jif_current, global_rigidity_derivative_amount_fg, larger_dim, number_of_frames, model_F_mapping1, uv_foreground1,device, uv_mapping_scale=uv_mapping_scale) global_rigidity_loss2 = get_rigidity_loss( jif_current, global_rigidity_derivative_amount_bg, larger_dim, number_of_frames, model_F_mapping2, uv_foreground2,device, uv_mapping_scale=uv_mapping_scale) flow_loss1 = get_optical_flow_loss( jif_current, uv_foreground1, optical_flows_reverse, optical_flows_reverse_mask, larger_dim, number_of_frames, model_F_mapping1, optical_flows, optical_flows_mask, uv_mapping_scale,device, use_alpha=True, alpha=alpha) flow_loss2 = get_optical_flow_loss( jif_current, uv_foreground2, optical_flows_reverse, optical_flows_reverse_mask, larger_dim, number_of_frames, model_F_mapping2, optical_flows, optical_flows_mask, uv_mapping_scale,device, use_alpha=True, alpha=1 - alpha) flow_alpha_loss = get_optical_flow_alpha_loss(model_alpha, jif_current, alpha, optical_flows_reverse, optical_flows_reverse_mask, larger_dim, number_of_frames, optical_flows, optical_flows_mask, device) print("flow alpha loss:") print(flow_alpha_loss) alpha_bootstrapping_loss = torch.mean( -alpha_maskrcnn * torch.log(alpha) - (1 - alpha_maskrcnn) * torch.log(1 - alpha)) print("alpha_balancing_loss") print(alpha_bootstrapping_loss) if include_global_rigidity_loss and i <= stop_global_rigidity: loss = rigidity_coeff * ( rigidity_loss1 + rigidity_loss2) + global_rigidity_coeff_fg * global_rigidity_loss1 + global_rigidity_coeff_bg * global_rigidity_loss2 + \ rgb_loss * rgb_coeff + optical_flow_coeff * ( flow_loss1 + flow_loss2) + alpha_bootstrapping_loss * alpha_bootstrapping_factor + flow_alpha_loss * alpha_flow_factor + rgb_loss_sparsity * sparsity_coeff + gradient_loss * gradient_loss_coeff else: loss = rigidity_coeff * (rigidity_loss1 + rigidity_loss2) + rgb_loss * rgb_coeff + optical_flow_coeff * ( flow_loss1 + flow_loss2) + alpha_bootstrapping_loss * alpha_bootstrapping_factor + flow_alpha_loss * alpha_flow_factor + rgb_loss_sparsity * sparsity_coeff + gradient_loss * gradient_loss_coeff optimizer_all.zero_grad() loss.backward() optimizer_all.step() try: if use_optical_flow: print("of_loss1:%f" % flow_loss1.detach()) print("of_loss2:%f" % flow_loss2.detach()) logging.info("of_loss1:%f" % flow_loss1.detach()) writer.add_scalar('Loss/train_of1', flow_loss1.detach(), i) logging.info("of_loss2:%f" % flow_loss2.detach()) writer.add_scalar('Loss/train_of2', flow_loss2.detach(), i) except: pass logging.info("flow_alpha_loss: %f", flow_alpha_loss.detach()) logging.info("rgb_loss:%f" % rgb_loss.detach()) logging.info("total_loss:%f" % loss.detach()) logging.info("rigidity_loss1:%f" % rigidity_loss1.detach()) logging.info("rigidity_loss2:%f" % rigidity_loss2.detach()) logging.info('rgb_loss_negative %f' % rgb_loss_sparsity.detach()) logging.info('-------------------------------') print("rgb_loss:%f" % rgb_loss.detach()) print('rgb_loss_negative %f' % rgb_loss_sparsity.detach()) print("total_loss:%f" % loss.detach()) print("rigidity_loss1:%f" % rigidity_loss1.detach()) print("rigidity_loss2:%f" % rigidity_loss2.detach()) print("alpha_mean:%f" % alpha.mean().detach()) logging.info("alpha_mean:%f" % alpha.mean().detach()) print("alpha_mean_1:%f" % alpha[alpha > 0.5].mean().detach()) logging.info("alpha_mean_1:%f" % alpha[alpha > 0.5].mean().detach()) print("alpha_mean_0:%f" % alpha[alpha < 0.5].mean().detach()) logging.info("alpha_mean_0:%f" % alpha[alpha < 0.5].mean().detach()) print(f'------------{results_folder.name}------------------') writer.add_scalar('Loss/alpha_mean', alpha.mean().detach(), i) writer.add_scalar('Loss/rgb_loss', rgb_loss.detach(), i) writer.add_scalar('Loss/rigidity_loss1', rigidity_loss1.detach(), i) writer.add_scalar('Loss/rigidity_loss2', rigidity_loss2.detach(), i) try: # render and evaluate videos every N iterations if i % evaluate_every == 0 and i > start_iteration: evaluate_model(model_F_atlas, resx, resy, number_of_frames, model_F_mapping1, model_F_mapping2, model_alpha, video_frames, results_folder, i, mask_frames, optimizer_all, writer, vid_name, derivative_amount, uv_mapping_scale, optical_flows, optical_flows_mask,device) rgb_img = video_frames[:, :, :, 0].numpy() writer.add_image('Input/rgb_0', rgb_img, i, dataformats='HWC') model_F_atlas.train() model_F_mapping1.train() model_F_mapping2.train() model_alpha.train() except Exception: pass if __name__ == "__main__": with open(sys.argv[1]) as f: main(json.load(f))
[ "evaluate.evaluate_model" ]
[((659, 683), 'numpy.int64', 'np.int64', (["config['resx']"], {}), "(config['resx'])\n", (667, 683), True, 'import numpy as np\n'), ((695, 719), 'numpy.int64', 'np.int64', (["config['resy']"], {}), "(config['resy'])\n", (703, 719), True, 'import numpy as np\n'), ((893, 927), 'numpy.int64', 'np.int64', (["config['evaluate_every']"], {}), "(config['evaluate_every'])\n", (901, 927), True, 'import numpy as np\n'), ((1248, 1275), 'pathlib.Path', 'Path', (["config['data_folder']"], {}), "(config['data_folder'])\n", (1252, 1275), False, 'from pathlib import Path\n'), ((4931, 5049), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': "('%s/log.log' % results_folder)", 'level': 'logging.INFO', 'format': '"""%(asctime)s %(message)s"""'}), "(filename='%s/log.log' % results_folder, level=logging.\n INFO, format='%(asctime)s %(message)s')\n", (4950, 5049), False, 'import logging\n'), ((5074, 5097), 'logging.info', 'logging.info', (['"""Started"""'], {}), "('Started')\n", (5086, 5097), False, 'import logging\n'), ((5306, 5409), 'unwrap_utils.load_input_data', 'load_input_data', (['resy', 'resx', 'maximum_number_of_frames', 'data_folder', '(True)', '(True)', 'vid_root', 'vid_name'], {}), '(resy, resx, maximum_number_of_frames, data_folder, True, \n True, vid_root, vid_name)\n', (5321, 5409), False, 'from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow\n'), ((5535, 5599), 'unwrap_utils.save_mask_flow', 'save_mask_flow', (['optical_flows_mask', 'video_frames', 'results_folder'], {}), '(optical_flows_mask, video_frames, results_folder)\n', (5549, 5599), False, 'from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow\n'), ((7110, 7132), 'numpy.maximum', 'np.maximum', (['resx', 'resy'], {}), '(resx, resy)\n', (7120, 7132), True, 'import numpy as np\n'), ((8228, 8270), 'unwrap_utils.get_tuples', 'get_tuples', (['number_of_frames', 'video_frames'], {}), '(number_of_frames, video_frames)\n', (8238, 8270), False, 'from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow\n'), ((524, 549), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (547, 549), False, 'import torch\n'), ((4888, 4926), 'json.dump', 'json.dump', (['config', 'json_file'], {'indent': '(4)'}), '(config, json_file, indent=4)\n', (4897, 4926), False, 'import json\n'), ((7747, 7774), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (7757, 7774), False, 'import torch\n'), ((8575, 8607), 'logging.info', 'logging.info', (["('Iteration %d' % i)"], {}), "('Iteration %d' % i)\n", (8587, 8607), False, 'import logging\n'), ((11256, 11420), 'loss_utils.get_rigidity_loss', 'get_rigidity_loss', (['jif_current', 'derivative_amount', 'larger_dim', 'number_of_frames', 'model_F_mapping1', 'uv_foreground1', 'device'], {'uv_mapping_scale': 'uv_mapping_scale'}), '(jif_current, derivative_amount, larger_dim,\n number_of_frames, model_F_mapping1, uv_foreground1, device,\n uv_mapping_scale=uv_mapping_scale)\n', (11273, 11420), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((11522, 11686), 'loss_utils.get_rigidity_loss', 'get_rigidity_loss', (['jif_current', 'derivative_amount', 'larger_dim', 'number_of_frames', 'model_F_mapping2', 'uv_foreground2', 'device'], {'uv_mapping_scale': 'uv_mapping_scale'}), '(jif_current, derivative_amount, larger_dim,\n number_of_frames, model_F_mapping2, uv_foreground2, device,\n uv_mapping_scale=uv_mapping_scale)\n', (11539, 11686), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((12505, 12756), 'loss_utils.get_optical_flow_loss', 'get_optical_flow_loss', (['jif_current', 'uv_foreground1', 'optical_flows_reverse', 'optical_flows_reverse_mask', 'larger_dim', 'number_of_frames', 'model_F_mapping1', 'optical_flows', 'optical_flows_mask', 'uv_mapping_scale', 'device'], {'use_alpha': '(True)', 'alpha': 'alpha'}), '(jif_current, uv_foreground1, optical_flows_reverse,\n optical_flows_reverse_mask, larger_dim, number_of_frames,\n model_F_mapping1, optical_flows, optical_flows_mask, uv_mapping_scale,\n device, use_alpha=True, alpha=alpha)\n', (12526, 12756), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((12803, 13058), 'loss_utils.get_optical_flow_loss', 'get_optical_flow_loss', (['jif_current', 'uv_foreground2', 'optical_flows_reverse', 'optical_flows_reverse_mask', 'larger_dim', 'number_of_frames', 'model_F_mapping2', 'optical_flows', 'optical_flows_mask', 'uv_mapping_scale', 'device'], {'use_alpha': '(True)', 'alpha': '(1 - alpha)'}), '(jif_current, uv_foreground2, optical_flows_reverse,\n optical_flows_reverse_mask, larger_dim, number_of_frames,\n model_F_mapping2, optical_flows, optical_flows_mask, uv_mapping_scale,\n device, use_alpha=True, alpha=1 - alpha)\n', (12824, 13058), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((13110, 13302), 'loss_utils.get_optical_flow_alpha_loss', 'get_optical_flow_alpha_loss', (['model_alpha', 'jif_current', 'alpha', 'optical_flows_reverse', 'optical_flows_reverse_mask', 'larger_dim', 'number_of_frames', 'optical_flows', 'optical_flows_mask', 'device'], {}), '(model_alpha, jif_current, alpha,\n optical_flows_reverse, optical_flows_reverse_mask, larger_dim,\n number_of_frames, optical_flows, optical_flows_mask, device)\n', (13137, 13302), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((15681, 15728), 'logging.info', 'logging.info', (['"""-------------------------------"""'], {}), "('-------------------------------')\n", (15693, 15728), False, 'import logging\n'), ((5624, 5867), 'implicit_neural_networks.IMLP', 'IMLP', ([], {'input_dim': '(3)', 'output_dim': '(2)', 'hidden_dim': 'number_of_channels_mapping1', 'use_positional': 'use_positional_encoding_mapping1', 'positional_dim': 'number_of_positional_encoding_mapping1', 'num_layers': 'number_of_layers_mapping1', 'skip_layers': '[]'}), '(input_dim=3, output_dim=2, hidden_dim=number_of_channels_mapping1,\n use_positional=use_positional_encoding_mapping1, positional_dim=\n number_of_positional_encoding_mapping1, num_layers=\n number_of_layers_mapping1, skip_layers=[])\n', (5628, 5867), False, 'from implicit_neural_networks import IMLP\n'), ((5946, 6189), 'implicit_neural_networks.IMLP', 'IMLP', ([], {'input_dim': '(3)', 'output_dim': '(2)', 'hidden_dim': 'number_of_channels_mapping2', 'use_positional': 'use_positional_encoding_mapping2', 'positional_dim': 'number_of_positional_encoding_mapping2', 'num_layers': 'number_of_layers_mapping2', 'skip_layers': '[]'}), '(input_dim=3, output_dim=2, hidden_dim=number_of_channels_mapping2,\n use_positional=use_positional_encoding_mapping2, positional_dim=\n number_of_positional_encoding_mapping2, num_layers=\n number_of_layers_mapping2, skip_layers=[])\n', (5950, 6189), False, 'from implicit_neural_networks import IMLP\n'), ((6265, 6463), 'implicit_neural_networks.IMLP', 'IMLP', ([], {'input_dim': '(2)', 'output_dim': '(3)', 'hidden_dim': 'number_of_channels_atlas', 'use_positional': '(True)', 'positional_dim': 'positional_encoding_num_atlas', 'num_layers': 'number_of_layers_atlas', 'skip_layers': '[4, 7]'}), '(input_dim=2, output_dim=3, hidden_dim=number_of_channels_atlas,\n use_positional=True, positional_dim=positional_encoding_num_atlas,\n num_layers=number_of_layers_atlas, skip_layers=[4, 7])\n', (6269, 6463), False, 'from implicit_neural_networks import IMLP\n'), ((6543, 6737), 'implicit_neural_networks.IMLP', 'IMLP', ([], {'input_dim': '(3)', 'output_dim': '(1)', 'hidden_dim': 'number_of_channels_alpha', 'use_positional': '(True)', 'positional_dim': 'positional_encoding_num_alpha', 'num_layers': 'number_of_layers_alpha', 'skip_layers': '[]'}), '(input_dim=3, output_dim=1, hidden_dim=number_of_channels_alpha,\n use_positional=True, positional_dim=positional_encoding_num_alpha,\n num_layers=number_of_layers_alpha, skip_layers=[])\n', (6547, 6737), False, 'from implicit_neural_networks import IMLP\n'), ((7222, 7398), 'unwrap_utils.pre_train_mapping', 'pre_train_mapping', (['model_F_mapping1', 'number_of_frames', 'uv_mapping_scale'], {'resx': 'resx', 'resy': 'resy', 'larger_dim': 'larger_dim', 'device': 'device', 'pretrain_iters': 'pretrain_iter_number'}), '(model_F_mapping1, number_of_frames, uv_mapping_scale,\n resx=resx, resy=resy, larger_dim=larger_dim, device=device,\n pretrain_iters=pretrain_iter_number)\n', (7239, 7398), False, 'from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow\n'), ((7500, 7676), 'unwrap_utils.pre_train_mapping', 'pre_train_mapping', (['model_F_mapping2', 'number_of_frames', 'uv_mapping_scale'], {'resx': 'resx', 'resy': 'resy', 'larger_dim': 'larger_dim', 'device': 'device', 'pretrain_iters': 'pretrain_iter_number'}), '(model_F_mapping2, number_of_frames, uv_mapping_scale,\n resx=resx, resy=resy, larger_dim=larger_dim, device=device,\n pretrain_iters=pretrain_iter_number)\n', (7517, 7676), False, 'from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow\n'), ((10608, 10799), 'loss_utils.get_gradient_loss', 'get_gradient_loss', (['video_frames_dx', 'video_frames_dy', 'jif_current', 'model_F_mapping1', 'model_F_mapping2', 'model_F_atlas', 'rgb_output_foreground', 'device', 'resx', 'number_of_frames', 'model_alpha'], {}), '(video_frames_dx, video_frames_dy, jif_current,\n model_F_mapping1, model_F_mapping2, model_F_atlas,\n rgb_output_foreground, device, resx, number_of_frames, model_alpha)\n', (10625, 10799), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((11871, 12054), 'loss_utils.get_rigidity_loss', 'get_rigidity_loss', (['jif_current', 'global_rigidity_derivative_amount_fg', 'larger_dim', 'number_of_frames', 'model_F_mapping1', 'uv_foreground1', 'device'], {'uv_mapping_scale': 'uv_mapping_scale'}), '(jif_current, global_rigidity_derivative_amount_fg,\n larger_dim, number_of_frames, model_F_mapping1, uv_foreground1, device,\n uv_mapping_scale=uv_mapping_scale)\n', (11888, 12054), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((12195, 12378), 'loss_utils.get_rigidity_loss', 'get_rigidity_loss', (['jif_current', 'global_rigidity_derivative_amount_bg', 'larger_dim', 'number_of_frames', 'model_F_mapping2', 'uv_foreground2', 'device'], {'uv_mapping_scale': 'uv_mapping_scale'}), '(jif_current, global_rigidity_derivative_amount_bg,\n larger_dim, number_of_frames, model_F_mapping2, uv_foreground2, device,\n uv_mapping_scale=uv_mapping_scale)\n', (12212, 12378), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((17837, 17849), 'json.load', 'json.load', (['f'], {}), '(f)\n', (17846, 17849), False, 'import json\n'), ((8764, 8787), 'numpy.int64', 'np.int64', (['(samples * 1.0)'], {}), '(samples * 1.0)\n', (8772, 8787), True, 'import numpy as np\n'), ((9311, 9472), 'torch.cat', 'torch.cat', (['(jif_current[0, :] / (larger_dim / 2) - 1, jif_current[1, :] / (larger_dim /\n 2) - 1, jif_current[2, :] / (number_of_frames / 2.0) - 1)'], {'dim': '(1)'}), '((jif_current[0, :] / (larger_dim / 2) - 1, jif_current[1, :] / (\n larger_dim / 2) - 1, jif_current[2, :] / (number_of_frames / 2.0) - 1),\n dim=1)\n', (9320, 9472), False, 'import torch\n'), ((16941, 17224), 'evaluate.evaluate_model', 'evaluate_model', (['model_F_atlas', 'resx', 'resy', 'number_of_frames', 'model_F_mapping1', 'model_F_mapping2', 'model_alpha', 'video_frames', 'results_folder', 'i', 'mask_frames', 'optimizer_all', 'writer', 'vid_name', 'derivative_amount', 'uv_mapping_scale', 'optical_flows', 'optical_flows_mask', 'device'], {}), '(model_F_atlas, resx, resy, number_of_frames,\n model_F_mapping1, model_F_mapping2, model_alpha, video_frames,\n results_folder, i, mask_frames, optimizer_all, writer, vid_name,\n derivative_amount, uv_mapping_scale, optical_flows, optical_flows_mask,\n device)\n', (16955, 17224), False, 'from evaluate import evaluate_model\n'), ((11074, 11128), 'torch.norm', 'torch.norm', (['(rgb_output_foreground - rgb_current)'], {'dim': '(1)'}), '(rgb_output_foreground - rgb_current, dim=1)\n', (11084, 11128), False, 'import torch\n'), ((11172, 11216), 'torch.norm', 'torch.norm', (['rgb_output_foreground_not'], {'dim': '(1)'}), '(rgb_output_foreground_not, dim=1)\n', (11182, 11216), False, 'import torch\n'), ((13655, 13671), 'torch.log', 'torch.log', (['alpha'], {}), '(alpha)\n', (13664, 13671), False, 'import torch\n'), ((13697, 13717), 'torch.log', 'torch.log', (['(1 - alpha)'], {}), '(1 - alpha)\n', (13706, 13717), False, 'import torch\n'), ((4671, 4688), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (4686, 4688), False, 'from datetime import datetime\n')]
'''Train CIFAR10/100 with PyTorch using standard Contrastive Learning. This script tunes the L2 reg weight of the final classifier.''' import torch import torch.backends.cudnn as cudnn import torch.nn as nn import math import os import argparse from models import * from configs import get_datasets from evaluate import train_clf, encode_feature_averaging parser = argparse.ArgumentParser(description='Final evaluation with feature averaging.') parser.add_argument("--num-workers", type=int, default=2, help='Number of threads for data loaders') parser.add_argument("--load-from", type=str, default='ckpt.pth', help='File to load from') parser.add_argument("--num-passes", type=int, default=10, help='Number of passes to average') parser.add_argument("--reg-lower", type=float, default=-7, help='Minimum log regularization parameter (base 10)') parser.add_argument("--reg-upper", type=float, default=-3, help='Maximum log regularization parameter (base 10)') parser.add_argument("--num-steps", type=int, default=10, help='Number of log-linearly spaced reg parameters to try') args = parser.parse_args() # Load checkpoint. print('==> Loading settings from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' resume_from = os.path.join('./checkpoint', args.load_from) checkpoint = torch.load(resume_from) args.dataset = checkpoint['args']['dataset'] args.arch = checkpoint['args']['arch'] device = 'cuda' if torch.cuda.is_available() else 'cpu' # Data print('==> Preparing data..') _, testset, clftrainset, num_classes, stem = get_datasets(args.dataset, test_as_train=True) testloader = torch.utils.data.DataLoader(testset, batch_size=1000, shuffle=False, num_workers=args.num_workers, pin_memory=True) clftrainloader = torch.utils.data.DataLoader(clftrainset, batch_size=1000, shuffle=False, num_workers=args.num_workers, pin_memory=True) # Model print('==> Building model..') ############################################################## # Encoder ############################################################## if args.arch == 'resnet18': net = ResNet18(stem=stem) elif args.arch == 'resnet34': net = ResNet34(stem=stem) elif args.arch == 'resnet50': net = ResNet50(stem=stem) else: raise ValueError("Bad architecture specification") net = net.to(device) if device == 'cuda': repr_dim = net.representation_dim net = torch.nn.DataParallel(net) net.representation_dim = repr_dim cudnn.benchmark = True print('==> Loading encoder from checkpoint..') net.load_state_dict(checkpoint['net']) best_acc = 0 X, y = encode_feature_averaging(clftrainloader, device, net, num_passes=args.num_passes) X_test, y_test = encode_feature_averaging(testloader, device, net, num_passes=args.num_passes) for reg_weight in torch.exp(math.log(10) * torch.linspace(args.reg_lower, args.reg_upper, args.num_steps, dtype=torch.float, device=device)): clf = train_clf(X, y, net.representation_dim, num_classes, device, reg_weight=reg_weight) raw_scores = clf(X_test) _, predicted = raw_scores.max(1) correct = predicted.eq(y_test).sum().item() acc = 100 * correct / predicted.shape[0] print('Test accuracy', acc, '%') if acc > best_acc: best_acc = acc print("Best test accuracy", best_acc, "%")
[ "evaluate.encode_feature_averaging", "evaluate.train_clf" ]
[((368, 447), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Final evaluation with feature averaging."""'}), "(description='Final evaluation with feature averaging.')\n", (391, 447), False, 'import argparse\n'), ((1181, 1208), 'os.path.isdir', 'os.path.isdir', (['"""checkpoint"""'], {}), "('checkpoint')\n", (1194, 1208), False, 'import os\n'), ((1264, 1308), 'os.path.join', 'os.path.join', (['"""./checkpoint"""', 'args.load_from'], {}), "('./checkpoint', args.load_from)\n", (1276, 1308), False, 'import os\n'), ((1322, 1345), 'torch.load', 'torch.load', (['resume_from'], {}), '(resume_from)\n', (1332, 1345), False, 'import torch\n'), ((1570, 1616), 'configs.get_datasets', 'get_datasets', (['args.dataset'], {'test_as_train': '(True)'}), '(args.dataset, test_as_train=True)\n', (1582, 1616), False, 'from configs import get_datasets\n'), ((1631, 1750), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['testset'], {'batch_size': '(1000)', 'shuffle': '(False)', 'num_workers': 'args.num_workers', 'pin_memory': '(True)'}), '(testset, batch_size=1000, shuffle=False,\n num_workers=args.num_workers, pin_memory=True)\n', (1658, 1750), False, 'import torch\n'), ((1805, 1928), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['clftrainset'], {'batch_size': '(1000)', 'shuffle': '(False)', 'num_workers': 'args.num_workers', 'pin_memory': '(True)'}), '(clftrainset, batch_size=1000, shuffle=False,\n num_workers=args.num_workers, pin_memory=True)\n', (1832, 1928), False, 'import torch\n'), ((2676, 2762), 'evaluate.encode_feature_averaging', 'encode_feature_averaging', (['clftrainloader', 'device', 'net'], {'num_passes': 'args.num_passes'}), '(clftrainloader, device, net, num_passes=args.\n num_passes)\n', (2700, 2762), False, 'from evaluate import train_clf, encode_feature_averaging\n'), ((2775, 2852), 'evaluate.encode_feature_averaging', 'encode_feature_averaging', (['testloader', 'device', 'net'], {'num_passes': 'args.num_passes'}), '(testloader, device, net, num_passes=args.num_passes)\n', (2799, 2852), False, 'from evaluate import train_clf, encode_feature_averaging\n'), ((1450, 1475), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1473, 1475), False, 'import torch\n'), ((2475, 2501), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['net'], {}), '(net)\n', (2496, 2501), False, 'import torch\n'), ((3063, 3151), 'evaluate.train_clf', 'train_clf', (['X', 'y', 'net.representation_dim', 'num_classes', 'device'], {'reg_weight': 'reg_weight'}), '(X, y, net.representation_dim, num_classes, device, reg_weight=\n reg_weight)\n', (3072, 3151), False, 'from evaluate import train_clf, encode_feature_averaging\n'), ((2881, 2893), 'math.log', 'math.log', (['(10)'], {}), '(10)\n', (2889, 2893), False, 'import math\n'), ((2896, 2997), 'torch.linspace', 'torch.linspace', (['args.reg_lower', 'args.reg_upper', 'args.num_steps'], {'dtype': 'torch.float', 'device': 'device'}), '(args.reg_lower, args.reg_upper, args.num_steps, dtype=torch.\n float, device=device)\n', (2910, 2997), False, 'import torch\n')]
import os, sys root_path = os.path.realpath(__file__).split('/evaluate/multipose_coco_eval.py')[0] os.chdir(root_path) sys.path.append(root_path) from network.posenet import poseNet from evaluate.tester import Tester backbone = 'resnet101' # Set Training parameters params = Tester.TestParams() params.subnet_name = 'both' params.inp_size = 480 # input picture size = (inp_size, inp_size) params.coeff = 2 params.in_thres = 0.21 params.coco_root = '/mnt/hdd10tb/Datasets/COCO2017/' params.testresult_write_json = True # Whether to write json result params.coco_result_filename = './demo/multipose_coco2017_results.json' params.ckpt = '/home/vietnguyen/MultiPoseNet/extra/models/res50_detection_subnet/ckpt_39_0.59604.h5.best' # model model = poseNet(backbone) for name, module in model.named_children(): for para in module.parameters(): para.requires_grad = False tester = Tester(model, params) tester.coco_eval() # pic_test
[ "evaluate.tester.Tester", "evaluate.tester.Tester.TestParams" ]
[((99, 118), 'os.chdir', 'os.chdir', (['root_path'], {}), '(root_path)\n', (107, 118), False, 'import os, sys\n'), ((119, 145), 'sys.path.append', 'sys.path.append', (['root_path'], {}), '(root_path)\n', (134, 145), False, 'import os, sys\n'), ((278, 297), 'evaluate.tester.Tester.TestParams', 'Tester.TestParams', ([], {}), '()\n', (295, 297), False, 'from evaluate.tester import Tester\n'), ((748, 765), 'network.posenet.poseNet', 'poseNet', (['backbone'], {}), '(backbone)\n', (755, 765), False, 'from network.posenet import poseNet\n'), ((893, 914), 'evaluate.tester.Tester', 'Tester', (['model', 'params'], {}), '(model, params)\n', (899, 914), False, 'from evaluate.tester import Tester\n'), ((27, 53), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (43, 53), False, 'import os, sys\n')]
import torch from torch import nn from Fashion_Mnist import load_data_fashion_mnist from evaluate import Accumulator, accurate_num, evaluate_accuracy net = nn.Sequential(nn.Flatten(), nn.Linear(784,512), nn.BatchNorm1d(512), nn.ReLU(), nn.Linear(512, 256), nn.BatchNorm1d(256), nn.ReLU(), nn.Linear(256, 128), nn.BatchNorm1d(128), nn.ReLU(), nn.Linear(128, 64), nn.BatchNorm1d(64), nn.ReLU(), nn.Linear(64, 32), nn.BatchNorm1d(32), nn.ReLU(), nn.Linear(32,10)) def init_weights(m): if type(m) == nn.Linear: nn.init.kaiming_uniform_(m.weight) net.apply(init_weights) batch_size, lr, num_epochs = 256, 0.2, 10 loss = nn.CrossEntropyLoss() trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.75) train_iter, test_iter = load_data_fashion_mnist(batch_size) def train_epoch(net, train_iter, loss, updater): if isinstance(net, torch.nn.Module): net.train() metric = Accumulator(3) for X, y in train_iter: y_hat = net(X) l = loss(y_hat, y) if isinstance(updater, torch.optim.Optimizer): updater.zero_grad() l.sum().backward() updater.step() else: l.sum().backward() updater(X.shape[0]) metric.add(float(l.sum()), accurate_num(y_hat, y), y.numel()) return metric[0] / metric[2], metric[1] / metric[2] def train(net, train_iter, test_iter, loss, num_epochs, updater): for epoch in range(num_epochs): train_loss, train_acc = train_epoch(net, train_iter, loss, updater) test_acc = evaluate_accuracy(net, test_iter) print(f'epoch{epoch+1}: train loss: {train_loss:.5f} train acc: {train_acc:.2%} test acc: {test_acc:.2%}') train(net, train_iter, test_iter, loss, num_epochs, trainer)
[ "evaluate.Accumulator", "evaluate.evaluate_accuracy", "evaluate.accurate_num" ]
[((874, 895), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (893, 895), False, 'from torch import nn\n'), ((988, 1023), 'Fashion_Mnist.load_data_fashion_mnist', 'load_data_fashion_mnist', (['batch_size'], {}), '(batch_size)\n', (1011, 1023), False, 'from Fashion_Mnist import load_data_fashion_mnist\n'), ((176, 188), 'torch.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (186, 188), False, 'from torch import nn\n'), ((211, 230), 'torch.nn.Linear', 'nn.Linear', (['(784)', '(512)'], {}), '(784, 512)\n', (220, 230), False, 'from torch import nn\n'), ((231, 250), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(512)'], {}), '(512)\n', (245, 250), False, 'from torch import nn\n'), ((273, 282), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (280, 282), False, 'from torch import nn\n'), ((305, 324), 'torch.nn.Linear', 'nn.Linear', (['(512)', '(256)'], {}), '(512, 256)\n', (314, 324), False, 'from torch import nn\n'), ((326, 345), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(256)'], {}), '(256)\n', (340, 345), False, 'from torch import nn\n'), ((368, 377), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (375, 377), False, 'from torch import nn\n'), ((400, 419), 'torch.nn.Linear', 'nn.Linear', (['(256)', '(128)'], {}), '(256, 128)\n', (409, 419), False, 'from torch import nn\n'), ((421, 440), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(128)'], {}), '(128)\n', (435, 440), False, 'from torch import nn\n'), ((463, 472), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (470, 472), False, 'from torch import nn\n'), ((495, 513), 'torch.nn.Linear', 'nn.Linear', (['(128)', '(64)'], {}), '(128, 64)\n', (504, 513), False, 'from torch import nn\n'), ((515, 533), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(64)'], {}), '(64)\n', (529, 533), False, 'from torch import nn\n'), ((556, 565), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (563, 565), False, 'from torch import nn\n'), ((588, 605), 'torch.nn.Linear', 'nn.Linear', (['(64)', '(32)'], {}), '(64, 32)\n', (597, 605), False, 'from torch import nn\n'), ((607, 625), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(32)'], {}), '(32)\n', (621, 625), False, 'from torch import nn\n'), ((648, 657), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (655, 657), False, 'from torch import nn\n'), ((680, 697), 'torch.nn.Linear', 'nn.Linear', (['(32)', '(10)'], {}), '(32, 10)\n', (689, 697), False, 'from torch import nn\n'), ((1153, 1167), 'evaluate.Accumulator', 'Accumulator', (['(3)'], {}), '(3)\n', (1164, 1167), False, 'from evaluate import Accumulator, accurate_num, evaluate_accuracy\n'), ((759, 793), 'torch.nn.init.kaiming_uniform_', 'nn.init.kaiming_uniform_', (['m.weight'], {}), '(m.weight)\n', (783, 793), False, 'from torch import nn\n'), ((1809, 1842), 'evaluate.evaluate_accuracy', 'evaluate_accuracy', (['net', 'test_iter'], {}), '(net, test_iter)\n', (1826, 1842), False, 'from evaluate import Accumulator, accurate_num, evaluate_accuracy\n'), ((1514, 1536), 'evaluate.accurate_num', 'accurate_num', (['y_hat', 'y'], {}), '(y_hat, y)\n', (1526, 1536), False, 'from evaluate import Accumulator, accurate_num, evaluate_accuracy\n')]
import argparse, os import matplotlib matplotlib.use('Agg') import torch from evaluate import evaluate_synthesis, evaluate_projection import numpy as np from synth.synthesize import create_synth from utils.data import get_external_sounds parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default="/fast-1/philippe/flow_results_final/32par/models/vae_flow_mel_mse_cnn_mlp_iaf_1.model", help='') parser.add_argument('--real_output', type=str, default="/fast-1/naotake", help='') parser.add_argument('--batch_evals', type=int, default=16, help='') parser.add_argument('--epochs', type=int, default=200, help='') parser.add_argument('--device', type=str, default='cpu', help='Device for CUDA') parser.add_argument('--project', action="store_true", help='') parser.add_argument('--dataset', type=str, default='32par', help='') parser.add_argument('--n_classes', type=int, default=32, help='') parser.add_argument('--batch_out', type=int, default=3, help='') parser.add_argument('--test_sounds', type=str, default='/fast-2/datasets/flow_synth_test', help='') parser.add_argument('--nbworkers', type=int, default=0, help='') args = parser.parse_args() args.output = os.path.split(args.model_path)[0] #.../models args.output = os.path.split(args.output)[0] args.synthesize=True model_name = os.path.splitext(os.path.basename(args.model_path))[0] print args.base_model = args.real_output + '/models/' + model_name model_pars = model_name.split("_") if model_pars[0]+model_pars[1] in ["vaeflow", "gatedcnn", "gatedmlp", "rescnn"]: args.model = model_pars[0] + "_" + model_pars[1] idx = 2 else: args.model = model_pars[0] idx = 1 if model_pars[idx+1] == "mfcc": #mel_mfcc args.data="mel_mfcc" idx += 1 else: args.data = model_pars[idx] args.loss = model_pars[idx+1] base_img = '{0}/images/{1}_re'.format(args.real_output, model_name) base_audio = '{0}/audio/{1}_re'.format(args.real_output, model_name) args.cuda = not args.device == 'cpu' and torch.cuda.is_available() args.device = torch.device(args.device if torch.cuda.is_available() else 'cpu') args.model_name, args.base_img, args.base_audio = model_name, base_img, base_audio ref_split = '/fast-2/datasets/diva_dataset' + '/reference_split_' + args.dataset+ "_" +args.data + '.npz' data = np.load(ref_split)['arr_0'] train_loader, valid_loader, test_loader = data[0], data[1], data[2] args.batch_size = test_loader.batch_size args.output_size = train_loader.dataset.output_size args.input_size = train_loader.dataset.input_size model = torch.load(args.model_path, map_location=args.device) model.to(args.device) args.engine, args.generator, args.param_defaults, args.rev_idx = create_synth(args.dataset) if not args.project: evaluate_synthesis(model, test_loader, args, train=False) else: test_sounds = get_external_sounds(args.test_sounds, test_loader.dataset, args) evaluate_projection(model, test_sounds, args, train=False)
[ "evaluate.evaluate_projection", "evaluate.evaluate_synthesis" ]
[((38, 59), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (52, 59), False, 'import matplotlib\n'), ((247, 272), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (270, 272), False, 'import argparse, os\n'), ((2635, 2688), 'torch.load', 'torch.load', (['args.model_path'], {'map_location': 'args.device'}), '(args.model_path, map_location=args.device)\n', (2645, 2688), False, 'import torch\n'), ((2776, 2802), 'synth.synthesize.create_synth', 'create_synth', (['args.dataset'], {}), '(args.dataset)\n', (2788, 2802), False, 'from synth.synthesize import create_synth\n'), ((1279, 1309), 'os.path.split', 'os.path.split', (['args.model_path'], {}), '(args.model_path)\n', (1292, 1309), False, 'import argparse, os\n'), ((1339, 1365), 'os.path.split', 'os.path.split', (['args.output'], {}), '(args.output)\n', (1352, 1365), False, 'import argparse, os\n'), ((2084, 2109), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2107, 2109), False, 'import torch\n'), ((2388, 2406), 'numpy.load', 'np.load', (['ref_split'], {}), '(ref_split)\n', (2395, 2406), True, 'import numpy as np\n'), ((2828, 2885), 'evaluate.evaluate_synthesis', 'evaluate_synthesis', (['model', 'test_loader', 'args'], {'train': '(False)'}), '(model, test_loader, args, train=False)\n', (2846, 2885), False, 'from evaluate import evaluate_synthesis, evaluate_projection\n'), ((2910, 2974), 'utils.data.get_external_sounds', 'get_external_sounds', (['args.test_sounds', 'test_loader.dataset', 'args'], {}), '(args.test_sounds, test_loader.dataset, args)\n', (2929, 2974), False, 'from utils.data import get_external_sounds\n'), ((2979, 3037), 'evaluate.evaluate_projection', 'evaluate_projection', (['model', 'test_sounds', 'args'], {'train': '(False)'}), '(model, test_sounds, args, train=False)\n', (2998, 3037), False, 'from evaluate import evaluate_synthesis, evaluate_projection\n'), ((1421, 1454), 'os.path.basename', 'os.path.basename', (['args.model_path'], {}), '(args.model_path)\n', (1437, 1454), False, 'import argparse, os\n'), ((2152, 2177), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2175, 2177), False, 'import torch\n')]
import evaluate import pandas as pd import sys import glob sys.path.append('../gopher') import utils import numpy as np import json def get_runs(glob_pattern): bin_run = {} for run_dir in glob.glob(glob_pattern): config = utils.get_config(run_dir) if config['loss_fn']['value'] == 'poisson': bin_run[config['bin_size']['value']] = run_dir return bin_run result_base_dir = utils.make_dir('inter_results') # get datasets testset, targets = utils.collect_whole_testset('../datasets/quantitative_data/testset/') model_run_pattern = {'binloss_basenji_v2': '../trained_models/basenji_v2/binloss_basenji_v2/run*', 'bpnet_bin_loss_40': '../trained_models/bpnet/bin_loss_40/run*'} for model_label, run_pattern in model_run_pattern.items(): bin_run = get_runs(run_pattern) # get performance metrics for various evaluation bin sizes result_path = result_base_dir + '/{}_triangle_plot.txt'.format(model_label) bin_sizes = sorted(list(bin_run.keys())) performance_per_resolution = [] for raw_bin_size in bin_sizes: model, _ = utils.read_model(bin_run[raw_bin_size]) all_true, all_pred = utils.get_true_pred(model, raw_bin_size, testset) for eval_bin_size in bin_sizes: if eval_bin_size >= raw_bin_size: print(raw_bin_size, '--->', eval_bin_size) true_for_eval = evaluate.change_resolution(all_true, raw_bin_size, eval_bin_size) pred_for_eval = evaluate.change_resolution(all_pred, raw_bin_size, eval_bin_size) performance = evaluate.get_performance(true_for_eval, pred_for_eval, targets, 'whole') performance_per_resolution.append([raw_bin_size, eval_bin_size] + list(performance.mean().values)) metric = 'pr_corr' label = '<NAME>' sorted_personr = pd.DataFrame(performance_per_resolution, columns=['train', 'eval'] + list(performance.columns[:-1].values)).sort_values( ['train', 'eval'])[['train', 'eval', metric]] padded_values = [] for train_bin, df in sorted_personr.groupby('train'): pr_values = list(df[metric].values) add_N = len(bin_sizes) - len(pr_values) if add_N > 0: pr_values = [np.nan for n in range(add_N)] + pr_values padded_values.append(pr_values) with open(result_path, 'w') as f: f.write(json.dumps(padded_values))
[ "evaluate.change_resolution", "evaluate.get_performance" ]
[((59, 87), 'sys.path.append', 'sys.path.append', (['"""../gopher"""'], {}), "('../gopher')\n", (74, 87), False, 'import sys\n'), ((415, 446), 'utils.make_dir', 'utils.make_dir', (['"""inter_results"""'], {}), "('inter_results')\n", (429, 446), False, 'import utils\n'), ((481, 550), 'utils.collect_whole_testset', 'utils.collect_whole_testset', (['"""../datasets/quantitative_data/testset/"""'], {}), "('../datasets/quantitative_data/testset/')\n", (508, 550), False, 'import utils\n'), ((198, 221), 'glob.glob', 'glob.glob', (['glob_pattern'], {}), '(glob_pattern)\n', (207, 221), False, 'import glob\n'), ((240, 265), 'utils.get_config', 'utils.get_config', (['run_dir'], {}), '(run_dir)\n', (256, 265), False, 'import utils\n'), ((1110, 1149), 'utils.read_model', 'utils.read_model', (['bin_run[raw_bin_size]'], {}), '(bin_run[raw_bin_size])\n', (1126, 1149), False, 'import utils\n'), ((1179, 1228), 'utils.get_true_pred', 'utils.get_true_pred', (['model', 'raw_bin_size', 'testset'], {}), '(model, raw_bin_size, testset)\n', (1198, 1228), False, 'import utils\n'), ((2419, 2444), 'json.dumps', 'json.dumps', (['padded_values'], {}), '(padded_values)\n', (2429, 2444), False, 'import json\n'), ((1406, 1471), 'evaluate.change_resolution', 'evaluate.change_resolution', (['all_true', 'raw_bin_size', 'eval_bin_size'], {}), '(all_true, raw_bin_size, eval_bin_size)\n', (1432, 1471), False, 'import evaluate\n'), ((1504, 1569), 'evaluate.change_resolution', 'evaluate.change_resolution', (['all_pred', 'raw_bin_size', 'eval_bin_size'], {}), '(all_pred, raw_bin_size, eval_bin_size)\n', (1530, 1569), False, 'import evaluate\n'), ((1600, 1672), 'evaluate.get_performance', 'evaluate.get_performance', (['true_for_eval', 'pred_for_eval', 'targets', '"""whole"""'], {}), "(true_for_eval, pred_for_eval, targets, 'whole')\n", (1624, 1672), False, 'import evaluate\n')]
import logging import numpy as np import torch from torch import nn from anchor_based import anchor_helper from anchor_based.dsnet import DSNet from anchor_based.losses import calc_cls_loss, calc_loc_loss from evaluate import evaluate from helpers import data_helper, vsumm_helper, bbox_helper logger = logging.getLogger() def xavier_init(module): cls_name = module.__class__.__name__ if 'Linear' in cls_name or 'Conv' in cls_name: nn.init.xavier_uniform_(module.weight, gain=np.sqrt(2.0)) if module.bias is not None: nn.init.constant_(module.bias, 0.1) def train(args, split, save_path): model = DSNet(base_model=args.base_model, num_feature=args.num_feature, num_hidden=args.num_hidden, anchor_scales=args.anchor_scales, num_head=args.num_head) model = model.to(args.device) model.apply(xavier_init) parameters = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.Adam(parameters, lr=args.lr, weight_decay=args.weight_decay) max_val_fscore = -1 train_set = data_helper.VideoDataset(split['train_keys']) train_loader = data_helper.DataLoader(train_set, shuffle=True) val_set = data_helper.VideoDataset(split['test_keys']) val_loader = data_helper.DataLoader(val_set, shuffle=False) for epoch in range(args.max_epoch): model.train() stats = data_helper.AverageMeter('loss', 'cls_loss', 'loc_loss') for _, seq, gtscore, cps, n_frames, nfps, picks, _ in train_loader: keyshot_summ = vsumm_helper.get_keyshot_summ( gtscore, cps, n_frames, nfps, picks) target = vsumm_helper.downsample_summ(keyshot_summ) if not target.any(): continue target_bboxes = bbox_helper.seq2bbox(target) target_bboxes = bbox_helper.lr2cw(target_bboxes) anchors = anchor_helper.get_anchors(target.size, args.anchor_scales) # Get class and location label for positive samples cls_label, loc_label = anchor_helper.get_pos_label( anchors, target_bboxes, args.pos_iou_thresh) # Get negative samples num_pos = cls_label.sum() cls_label_neg, _ = anchor_helper.get_pos_label( anchors, target_bboxes, args.neg_iou_thresh) cls_label_neg = anchor_helper.get_neg_label( cls_label_neg, int(args.neg_sample_ratio * num_pos)) # Get incomplete samples cls_label_incomplete, _ = anchor_helper.get_pos_label( anchors, target_bboxes, args.incomplete_iou_thresh) cls_label_incomplete[cls_label_neg != 1] = 1 cls_label_incomplete = anchor_helper.get_neg_label( cls_label_incomplete, int(args.incomplete_sample_ratio * num_pos)) cls_label[cls_label_neg == -1] = -1 cls_label[cls_label_incomplete == -1] = -1 cls_label = torch.tensor(cls_label, dtype=torch.float32).to(args.device) loc_label = torch.tensor(loc_label, dtype=torch.float32).to(args.device) seq = torch.tensor(seq, dtype=torch.float32).unsqueeze(0).to(args.device) pred_cls, pred_loc = model(seq) loc_loss = calc_loc_loss(pred_loc, loc_label, cls_label) cls_loss = calc_cls_loss(pred_cls, cls_label) loss = cls_loss + args.lambda_reg * loc_loss optimizer.zero_grad() loss.backward() optimizer.step() stats.update(loss=loss.item(), cls_loss=cls_loss.item(), loc_loss=loc_loss.item()) val_fscore, _ = evaluate(model, val_loader, args.nms_thresh, args.device) if max_val_fscore < val_fscore: max_val_fscore = val_fscore torch.save(model.state_dict(), str(save_path)) logger.info(f'Epoch: {epoch}/{args.max_epoch} ' f'Loss: {stats.cls_loss:.4f}/{stats.loc_loss:.4f}/{stats.loss:.4f} ' f'F-score cur/max: {val_fscore:.4f}/{max_val_fscore:.4f}') return max_val_fscore
[ "evaluate.evaluate" ]
[((306, 325), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (323, 325), False, 'import logging\n'), ((644, 798), 'anchor_based.dsnet.DSNet', 'DSNet', ([], {'base_model': 'args.base_model', 'num_feature': 'args.num_feature', 'num_hidden': 'args.num_hidden', 'anchor_scales': 'args.anchor_scales', 'num_head': 'args.num_head'}), '(base_model=args.base_model, num_feature=args.num_feature, num_hidden=\n args.num_hidden, anchor_scales=args.anchor_scales, num_head=args.num_head)\n', (649, 798), False, 'from anchor_based.dsnet import DSNet\n'), ((979, 1051), 'torch.optim.Adam', 'torch.optim.Adam', (['parameters'], {'lr': 'args.lr', 'weight_decay': 'args.weight_decay'}), '(parameters, lr=args.lr, weight_decay=args.weight_decay)\n', (995, 1051), False, 'import torch\n'), ((1127, 1172), 'helpers.data_helper.VideoDataset', 'data_helper.VideoDataset', (["split['train_keys']"], {}), "(split['train_keys'])\n", (1151, 1172), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1192, 1239), 'helpers.data_helper.DataLoader', 'data_helper.DataLoader', (['train_set'], {'shuffle': '(True)'}), '(train_set, shuffle=True)\n', (1214, 1239), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1255, 1299), 'helpers.data_helper.VideoDataset', 'data_helper.VideoDataset', (["split['test_keys']"], {}), "(split['test_keys'])\n", (1279, 1299), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1317, 1363), 'helpers.data_helper.DataLoader', 'data_helper.DataLoader', (['val_set'], {'shuffle': '(False)'}), '(val_set, shuffle=False)\n', (1339, 1363), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1443, 1499), 'helpers.data_helper.AverageMeter', 'data_helper.AverageMeter', (['"""loss"""', '"""cls_loss"""', '"""loc_loss"""'], {}), "('loss', 'cls_loss', 'loc_loss')\n", (1467, 1499), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((3745, 3802), 'evaluate.evaluate', 'evaluate', (['model', 'val_loader', 'args.nms_thresh', 'args.device'], {}), '(model, val_loader, args.nms_thresh, args.device)\n', (3753, 3802), False, 'from evaluate import evaluate\n'), ((559, 594), 'torch.nn.init.constant_', 'nn.init.constant_', (['module.bias', '(0.1)'], {}), '(module.bias, 0.1)\n', (576, 594), False, 'from torch import nn\n'), ((1604, 1670), 'helpers.vsumm_helper.get_keyshot_summ', 'vsumm_helper.get_keyshot_summ', (['gtscore', 'cps', 'n_frames', 'nfps', 'picks'], {}), '(gtscore, cps, n_frames, nfps, picks)\n', (1633, 1670), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1709, 1751), 'helpers.vsumm_helper.downsample_summ', 'vsumm_helper.downsample_summ', (['keyshot_summ'], {}), '(keyshot_summ)\n', (1737, 1751), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1840, 1868), 'helpers.bbox_helper.seq2bbox', 'bbox_helper.seq2bbox', (['target'], {}), '(target)\n', (1860, 1868), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1897, 1929), 'helpers.bbox_helper.lr2cw', 'bbox_helper.lr2cw', (['target_bboxes'], {}), '(target_bboxes)\n', (1914, 1929), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1952, 2010), 'anchor_based.anchor_helper.get_anchors', 'anchor_helper.get_anchors', (['target.size', 'args.anchor_scales'], {}), '(target.size, args.anchor_scales)\n', (1977, 2010), False, 'from anchor_based import anchor_helper\n'), ((2110, 2182), 'anchor_based.anchor_helper.get_pos_label', 'anchor_helper.get_pos_label', (['anchors', 'target_bboxes', 'args.pos_iou_thresh'], {}), '(anchors, target_bboxes, args.pos_iou_thresh)\n', (2137, 2182), False, 'from anchor_based import anchor_helper\n'), ((2305, 2377), 'anchor_based.anchor_helper.get_pos_label', 'anchor_helper.get_pos_label', (['anchors', 'target_bboxes', 'args.neg_iou_thresh'], {}), '(anchors, target_bboxes, args.neg_iou_thresh)\n', (2332, 2377), False, 'from anchor_based import anchor_helper\n'), ((2597, 2676), 'anchor_based.anchor_helper.get_pos_label', 'anchor_helper.get_pos_label', (['anchors', 'target_bboxes', 'args.incomplete_iou_thresh'], {}), '(anchors, target_bboxes, args.incomplete_iou_thresh)\n', (2624, 2676), False, 'from anchor_based import anchor_helper\n'), ((3345, 3390), 'anchor_based.losses.calc_loc_loss', 'calc_loc_loss', (['pred_loc', 'loc_label', 'cls_label'], {}), '(pred_loc, loc_label, cls_label)\n', (3358, 3390), False, 'from anchor_based.losses import calc_cls_loss, calc_loc_loss\n'), ((3414, 3448), 'anchor_based.losses.calc_cls_loss', 'calc_cls_loss', (['pred_cls', 'cls_label'], {}), '(pred_cls, cls_label)\n', (3427, 3448), False, 'from anchor_based.losses import calc_cls_loss, calc_loc_loss\n'), ((497, 509), 'numpy.sqrt', 'np.sqrt', (['(2.0)'], {}), '(2.0)\n', (504, 509), True, 'import numpy as np\n'), ((3043, 3087), 'torch.tensor', 'torch.tensor', (['cls_label'], {'dtype': 'torch.float32'}), '(cls_label, dtype=torch.float32)\n', (3055, 3087), False, 'import torch\n'), ((3128, 3172), 'torch.tensor', 'torch.tensor', (['loc_label'], {'dtype': 'torch.float32'}), '(loc_label, dtype=torch.float32)\n', (3140, 3172), False, 'import torch\n'), ((3208, 3246), 'torch.tensor', 'torch.tensor', (['seq'], {'dtype': 'torch.float32'}), '(seq, dtype=torch.float32)\n', (3220, 3246), False, 'import torch\n')]
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
2