code
stringlengths
42
43.2k
apis
list
extract_api
stringlengths
115
61.9k
import numpy as np import pandas as pd import matplotlib.pyplot as plt from network import NN from evaluate import accuracy def read_data(fpath): iris = pd.read_csv(fpath) iris.loc[iris['species'] == 'virginica', 'species'] = 0 iris.loc[iris['species'] == 'versicolor', 'species'] = 1 iris.loc[iris['species'] == 'setosa', 'species'] = 2 iris = iris[iris['species'] != 2] return iris[['petal_length', 'petal_width']].values, iris[['species']].values.astype('uint8') def plot_data(X, y): plt.scatter(X[:, 0], X[:, 1], c=y[:, 0], s=40, cmap=plt.cm.Spectral) plt.title("IRIS DATA | Blue - Versicolor, Red - Virginica ") plt.xlabel('Petal Length') plt.ylabel('Petal Width') plt.show() def train_test_split(X, y, ratio=0.8): indices = np.arange(X.shape[0]) np.random.shuffle(indices) train_len = int(X.shape[0] * ratio) return X[indices[:train_len]], y[indices[:train_len]], X[indices[train_len:]], y[indices[train_len:]] if __name__ == '__main__': X, y = read_data('iris.csv') # comment the following line if you don't need the plot anymore plot_data(X, y) X_train, y_train, X_test, y_test = train_test_split(X, y, 0.7) nn = NN(len(X[0]), 5, 1) output = nn.feedforward(X_train) print(output) print(f'w1 before backward propagation: \n{nn.w1} \nw2 before backward propagation:\n{nn.w2}') nn.backward(X_train, y_train, output) print(f'w1 after backward propagation: \n{nn.w1} \nw2 after backward propagation:\n{nn.w2}') nn.train(X_train, y_train) print("Accuracy:") print(accuracy(nn, X_test, y_test))
[ "evaluate.accuracy" ]
[((159, 177), 'pandas.read_csv', 'pd.read_csv', (['fpath'], {}), '(fpath)\n', (170, 177), True, 'import pandas as pd\n'), ((519, 587), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X[:, 0]', 'X[:, 1]'], {'c': 'y[:, 0]', 's': '(40)', 'cmap': 'plt.cm.Spectral'}), '(X[:, 0], X[:, 1], c=y[:, 0], s=40, cmap=plt.cm.Spectral)\n', (530, 587), True, 'import matplotlib.pyplot as plt\n'), ((592, 652), 'matplotlib.pyplot.title', 'plt.title', (['"""IRIS DATA | Blue - Versicolor, Red - Virginica """'], {}), "('IRIS DATA | Blue - Versicolor, Red - Virginica ')\n", (601, 652), True, 'import matplotlib.pyplot as plt\n'), ((657, 683), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Petal Length"""'], {}), "('Petal Length')\n", (667, 683), True, 'import matplotlib.pyplot as plt\n'), ((688, 713), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Petal Width"""'], {}), "('Petal Width')\n", (698, 713), True, 'import matplotlib.pyplot as plt\n'), ((718, 728), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (726, 728), True, 'import matplotlib.pyplot as plt\n'), ((784, 805), 'numpy.arange', 'np.arange', (['X.shape[0]'], {}), '(X.shape[0])\n', (793, 805), True, 'import numpy as np\n'), ((810, 836), 'numpy.random.shuffle', 'np.random.shuffle', (['indices'], {}), '(indices)\n', (827, 836), True, 'import numpy as np\n'), ((1586, 1614), 'evaluate.accuracy', 'accuracy', (['nn', 'X_test', 'y_test'], {}), '(nn, X_test, y_test)\n', (1594, 1614), False, 'from evaluate import accuracy\n')]
import datetime import os import copy import json import numpy as np from pytz import timezone from gamified_squad import GamifiedSquad from agent import CustomAgent import generic import evaluate SAVE_CHECKPOINT = 100000 def train(): time_1 = datetime.datetime.now() config = generic.load_config() env = GamifiedSquad(config) env.split_reset("train") agent = CustomAgent(config, env.has_token_set) if config["general"]["visdom"]: # visdom import visdom viz = visdom.Visdom() plt_win = None eval_plt_win = None plt_q_value_win = None plt_steps_win = None eval_plt_steps_win = None viz_avg_ig_acc, viz_avg_qa_acc = [], [] viz_avg_ig_q_value = [] viz_eval_ig_acc, viz_eval_qa_acc, viz_eval_steps = [], [], [] viz_avg_steps = [] step_in_total = 0 batch_no = 0 episode_no = 0 running_avg_qa_acc = generic.HistoryScoreCache(capacity=50) running_avg_ig_acc = generic.HistoryScoreCache(capacity=50) running_avg_qa_loss = generic.HistoryScoreCache(capacity=50) running_avg_ig_loss = generic.HistoryScoreCache(capacity=50) running_avg_ig_q_value = generic.HistoryScoreCache(capacity=50) running_avg_steps = generic.HistoryScoreCache(capacity=50) output_dir = "." data_dir = "." json_file_name = agent.experiment_tag.replace(" ", "_") best_qa_acc_so_far = 0.0 prev_performance = 0.0 i_am_patient = 0 # load model from checkpoint if os.path.exists(output_dir + "/" + agent.experiment_tag + "_model.pt"): print("checkpoint already exist.") exit(0) if os.path.exists(data_dir + "/" + agent.load_graph_generation_model_from_tag + ".pt"): agent.load_pretrained_graph_generation_model(data_dir + "/" + agent.load_graph_generation_model_from_tag + ".pt") if agent.load_pretrained: if os.path.exists(data_dir + "/" + agent.load_from_tag + ".pt"): agent.load_pretrained_model(data_dir + "/" + agent.load_from_tag + ".pt") # load partial graph agent.update_target_net() while(True): if episode_no > agent.max_episode: break np.random.seed(episode_no) env.seed(episode_no) obs, infos = env.reset() batch_size = len(obs) report = agent.report_frequency > 0 and (episode_no % agent.report_frequency <= max(episode_no - batch_size, 0) % agent.report_frequency) __save__ = episode_no % SAVE_CHECKPOINT <= max(episode_no - batch_size, 0) % SAVE_CHECKPOINT if report: print("====================================================================================", episode_no) print("-- Q: %s" % (agent.bert_tokenizer.decode(infos[0]["q"]).encode('utf-8'))) print("-- A: %s" % (infos[0]["a_string"][0].encode('utf-8'))) agent.train() agent.init(obs, infos) quest_list = agent.get_game_quest_info(infos) agent.kg.push_batch_question(quest_list, [item["q_srl"] for item in infos]) previous_dynamics = None previous_belief = None input_quest, input_quest_mask, quest_id_list = agent.get_agent_inputs(quest_list) tmp_replay_buffer = [] print_cmds = [] prev_commands = ["restart" for _ in range(batch_size)] belief_buffer = [] act_randomly = False if agent.noisy_net else episode_no < agent.learn_start_from_this_episode for _ in range(agent.max_nb_steps_per_episode): # generate commands if agent.noisy_net: agent.reset_noise() # Draw a new set of noisy weights commands, replay_info, current_dynamics, current_belief = agent.act(obs, infos, input_quest, input_quest_mask, quest_id_list, prev_commands, previous_dynamics, previous_belief, random=act_randomly) tmp_replay_buffer.append(replay_info) obs, infos = env.step(commands) prev_commands = commands previous_dynamics = current_dynamics previous_belief = current_belief belief_buffer.append(current_belief) if agent.noisy_net and step_in_total % agent.update_per_k_game_steps == 0: agent.reset_noise() # Draw a new set of noisy weights if episode_no >= agent.learn_start_from_this_episode and step_in_total % agent.update_per_k_game_steps == 0: interaction_loss, interaction_q_value = agent.update_interaction() if interaction_loss is not None: running_avg_ig_loss.push(interaction_loss) running_avg_ig_q_value.push(interaction_q_value) qa_loss = agent.update_qa() if qa_loss is not None: running_avg_qa_loss.push(qa_loss) step_in_total += 1 still_running = generic.to_np(replay_info[-1]) print_cmds.append(commands[0] if still_running[0] else "--") if np.sum(still_running) == 0: break if report: print(" / ".join(print_cmds).encode('utf-8')) # The agent has exhausted all steps, now answer question. chosen_head_tails = agent.answer_question_act(agent.naozi.get(), quest_list, current_belief) # batch chosen_head_tails_np = generic.to_np(chosen_head_tails) chosen_answer_strings = generic.get_answer_strings(agent.naozi.get(), chosen_head_tails_np, agent.bert_tokenizer, agent.special_token_ids) answer_strings = [item["a_string"] for item in infos] answer_token_ids = [item["a"] for item in infos] qa_reward_np = generic.get_qa_reward(chosen_answer_strings, answer_strings) obs_strings = [agent.bert_tokenizer.decode(agent.naozi.get(i)) for i in range(batch_size)] ig_reward_np = generic.get_sufficient_info_reward(agent.naozi.get(), answer_token_ids) ig_reward = generic.to_pt(ig_reward_np, enable_cuda=False, type='float') # batch # push qa experience into qa replay buffer replay_node_vocab = agent.kg.get_node_vocabulary() replay_relation_vocab = agent.kg.get_relation_vocabulary() replay_triplets = agent.kg.get_triplets() for b in range(batch_size): # data points in batch is_prior = qa_reward_np[b] > agent.qa_reward_prior_threshold * agent.qa_replay_memory.avg_rewards() # if the agent is not in the correct state, do not push it into replay buffer if np.mean(ig_reward_np[b]) == 0.0: continue agent.qa_replay_memory.push(is_prior, qa_reward_np[b], agent.naozi.get_sentence_lists(b), quest_list[b], replay_node_vocab[b], replay_relation_vocab[b], replay_triplets[b], answer_token_ids[b], belief_buffer[-1][b].cpu() if belief_buffer[-1][b] is not None else None) # small positive reward whenever it answers question correctly masks_np = [generic.to_np(item[-1]) for item in tmp_replay_buffer] command_rewards_np = [] for i in range(len(tmp_replay_buffer)): if i == len(tmp_replay_buffer) - 1: r = ig_reward * tmp_replay_buffer[i][-1] r_np = ig_reward_np * masks_np[i] else: # give reward only at that one game step, not all r = ig_reward * (tmp_replay_buffer[i][-1] - tmp_replay_buffer[i + 1][-1]) r_np = ig_reward_np * (masks_np[i] - masks_np[i + 1]) tmp_replay_buffer[i].append(r) command_rewards_np.append(r_np) command_rewards_np = np.array(command_rewards_np) if report: print(command_rewards_np[:, 0]) # push experience into replay buffer for b in range(len(ig_reward_np)): is_prior = np.sum(command_rewards_np, 0)[b] > 0.0 mem = [] for i in range(len(tmp_replay_buffer)): batch_description_list, batch_chosen_indices, batch_chosen_ctrlf_indices, batch_graph_node_vocabulary, batch_graph_relation_vocabulary, batch_graph_triplets, _, batch_rewards = tmp_replay_buffer[i] mem.append([copy.deepcopy(batch_description_list[b]), copy.deepcopy(quest_list[b]), batch_chosen_indices[b], batch_chosen_ctrlf_indices[b], copy.deepcopy(batch_graph_node_vocabulary[b]), copy.deepcopy(batch_graph_relation_vocabulary[b]), copy.deepcopy(batch_graph_triplets[b]), copy.deepcopy(belief_buffer[i][b].cpu()) if belief_buffer[i][b] is not None else None, batch_rewards[b]]) if masks_np[i][b] == 0.0: break agent.replay_memory.push(is_prior, mem) qa_acc = np.mean(qa_reward_np) ig_acc = np.mean(ig_reward_np) step_masks_np = np.sum(np.array(masks_np), 0) # batch for i in range(len(qa_reward_np)): # if the answer is totally wrong, we assume it used all steps if qa_reward_np[i] == 0.0: step_masks_np[i] = agent.max_nb_steps_per_episode used_steps = np.mean(step_masks_np) running_avg_qa_acc.push(qa_acc) running_avg_ig_acc.push(ig_acc) running_avg_steps.push(used_steps) print_rewards = np.sum(np.mean(command_rewards_np, -1)) if report: print("-- OBS: %s" % (obs_strings[0].encode('utf-8'))) print("-- PRED: %s" % (chosen_answer_strings[0].encode('utf-8'))) # finish game agent.finish_of_episode(episode_no, batch_no, batch_size) time_2 = datetime.datetime.now() eastern_time = datetime.datetime.now(timezone('US/Eastern')).strftime("%b %d %Y %H:%M:%S") if report: print("Episode: {:3d} | {:s} | time spent: {:s} | interaction loss: {:2.3f} | interaction qvalue: {:2.3f} | qa loss: {:2.3f} | rewards: {:2.3f} | qa acc: {:2.3f}/{:2.3f} | sufficient info: {:2.3f}/{:2.3f} | used steps: {:2.3f}".format(episode_no, eastern_time, str(time_2 - time_1).rsplit(".")[0], running_avg_ig_loss.get_avg(), running_avg_ig_q_value.get_avg(), running_avg_qa_loss.get_avg(), print_rewards, qa_acc, running_avg_qa_acc.get_avg(), ig_acc, running_avg_ig_acc.get_avg(), running_avg_steps.get_avg())) if __save__: agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_ep" + str(episode_no) + "_model.pt") if not report or episode_no < agent.learn_start_from_this_episode: episode_no += batch_size batch_no += 1 continue eval_qa_acc, eval_ig_acc, eval_used_steps = 0.0, 0.0, 0.0 # evaluate if agent.run_eval: eval_qa_acc, eval_ig_acc, eval_used_steps = evaluate.evaluate(env, agent, "valid") env.split_reset("train") # if run eval, then save model by eval accucacy if eval_qa_acc >= best_qa_acc_so_far: best_qa_acc_so_far = eval_qa_acc agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_model.pt") curr_performance = eval_qa_acc else: if running_avg_qa_acc.get_avg() >= best_qa_acc_so_far: best_qa_acc_so_far = running_avg_qa_acc.get_avg() agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_model.pt") curr_performance = running_avg_qa_acc.get_avg() if prev_performance <= curr_performance: i_am_patient = 0 else: i_am_patient += 1 prev_performance = curr_performance # if patient >= patience, resume from checkpoint if agent.patience > 0 and i_am_patient >= agent.patience: if os.path.exists(output_dir + "/" + agent.experiment_tag + "_model.pt"): print('reload from a good checkpoint...') agent.load_pretrained_model(output_dir + "/" + agent.experiment_tag + "_model.pt", load_partial_graph=False) agent.update_target_net() i_am_patient = 0 # plot using visdom if config["general"]["visdom"] and not agent.debug_mode: viz_avg_ig_acc.append(running_avg_ig_acc.get_avg()) viz_avg_qa_acc.append(running_avg_qa_acc.get_avg()) viz_avg_ig_q_value.append(running_avg_ig_q_value.get_avg()) viz_eval_ig_acc.append(eval_ig_acc) viz_eval_qa_acc.append(eval_qa_acc) viz_eval_steps.append(eval_used_steps) viz_avg_steps.append(running_avg_steps.get_avg()) viz_x = np.arange(len(viz_avg_ig_acc)).tolist() if plt_win is None: plt_win = viz.line(X=viz_x, Y=viz_avg_ig_acc, opts=dict(title=agent.experiment_tag + "_train"), name="sufficient info") viz.line(X=viz_x, Y=viz_avg_qa_acc, opts=dict(title=agent.experiment_tag + "_train"), win=plt_win, update='append', name="qa") else: viz.line(X=[len(viz_avg_ig_acc) - 1], Y=[viz_avg_ig_acc[-1]], opts=dict(title=agent.experiment_tag + "_train"), win=plt_win, update='append', name="sufficient info") viz.line(X=[len(viz_avg_qa_acc) - 1], Y=[viz_avg_qa_acc[-1]], opts=dict(title=agent.experiment_tag + "_train"), win=plt_win, update='append', name="qa") if plt_q_value_win is None: plt_q_value_win = viz.line(X=viz_x, Y=viz_avg_ig_q_value, opts=dict(title=agent.experiment_tag + "_train_q_value"), name="sufficient info") else: viz.line(X=[len(viz_avg_ig_q_value) - 1], Y=[viz_avg_ig_q_value[-1]], opts=dict(title=agent.experiment_tag + "_train_q_value"), win=plt_q_value_win, update='append', name="sufficient info") if plt_steps_win is None: plt_steps_win = viz.line(X=viz_x, Y=viz_avg_steps, opts=dict(title=agent.experiment_tag + "_train_step"), name="used steps") else: viz.line(X=[len(viz_avg_steps) - 1], Y=[viz_avg_steps[-1]], opts=dict(title=agent.experiment_tag + "_train_step"), win=plt_steps_win, update='append', name="used steps") if agent.run_eval: if eval_plt_win is None: eval_plt_win = viz.line(X=viz_x, Y=viz_eval_ig_acc, opts=dict(title=agent.experiment_tag + "_eval"), name="sufficient info") viz.line(X=viz_x, Y=viz_eval_qa_acc, opts=dict(title=agent.experiment_tag + "_eval"), win=eval_plt_win, update='append', name="qa") else: viz.line(X=[len(viz_eval_ig_acc) - 1], Y=[viz_eval_ig_acc[-1]], opts=dict(title=agent.experiment_tag + "_eval"), win=eval_plt_win, update='append', name="sufficient info") viz.line(X=[len(viz_eval_qa_acc) - 1], Y=[viz_eval_qa_acc[-1]], opts=dict(title=agent.experiment_tag + "_eval"), win=eval_plt_win, update='append', name="qa") if eval_plt_steps_win is None: eval_plt_steps_win = viz.line(X=viz_x, Y=viz_eval_steps, opts=dict(title=agent.experiment_tag + "_eval_step"), name="used steps") else: viz.line(X=[len(viz_avg_steps) - 1], Y=[viz_eval_steps[-1]], opts=dict(title=agent.experiment_tag + "_eval_step"), win=eval_plt_steps_win, update='append', name="used steps") # write accucacies down into file _s = json.dumps({"time spent": str(time_2 - time_1).rsplit(".")[0], "sufficient info": str(running_avg_ig_acc.get_avg()), "qa": str(running_avg_qa_acc.get_avg()), "sufficient qvalue": str(running_avg_ig_q_value.get_avg()), "eval sufficient info": str(eval_ig_acc), "eval qa": str(eval_qa_acc), "eval steps": str(eval_used_steps), "used steps": str(running_avg_steps.get_avg())}) with open(output_dir + "/" + json_file_name + '.json', 'a+') as outfile: outfile.write(_s + '\n') outfile.flush() episode_no += batch_size batch_no += 1 if __name__ == '__main__': train()
[ "evaluate.evaluate" ]
[((252, 275), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (273, 275), False, 'import datetime\n'), ((289, 310), 'generic.load_config', 'generic.load_config', ([], {}), '()\n', (308, 310), False, 'import generic\n'), ((321, 342), 'gamified_squad.GamifiedSquad', 'GamifiedSquad', (['config'], {}), '(config)\n', (334, 342), False, 'from gamified_squad import GamifiedSquad\n'), ((384, 422), 'agent.CustomAgent', 'CustomAgent', (['config', 'env.has_token_set'], {}), '(config, env.has_token_set)\n', (395, 422), False, 'from agent import CustomAgent\n'), ((936, 974), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (961, 974), False, 'import generic\n'), ((1000, 1038), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (1025, 1038), False, 'import generic\n'), ((1065, 1103), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (1090, 1103), False, 'import generic\n'), ((1130, 1168), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (1155, 1168), False, 'import generic\n'), ((1198, 1236), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (1223, 1236), False, 'import generic\n'), ((1261, 1299), 'generic.HistoryScoreCache', 'generic.HistoryScoreCache', ([], {'capacity': '(50)'}), '(capacity=50)\n', (1286, 1299), False, 'import generic\n'), ((1523, 1592), 'os.path.exists', 'os.path.exists', (["(output_dir + '/' + agent.experiment_tag + '_model.pt')"], {}), "(output_dir + '/' + agent.experiment_tag + '_model.pt')\n", (1537, 1592), False, 'import os\n'), ((1661, 1748), 'os.path.exists', 'os.path.exists', (["(data_dir + '/' + agent.load_graph_generation_model_from_tag + '.pt')"], {}), "(data_dir + '/' + agent.load_graph_generation_model_from_tag +\n '.pt')\n", (1675, 1748), False, 'import os\n'), ((514, 529), 'visdom.Visdom', 'visdom.Visdom', ([], {}), '()\n', (527, 529), False, 'import visdom\n'), ((1909, 1969), 'os.path.exists', 'os.path.exists', (["(data_dir + '/' + agent.load_from_tag + '.pt')"], {}), "(data_dir + '/' + agent.load_from_tag + '.pt')\n", (1923, 1969), False, 'import os\n'), ((2204, 2230), 'numpy.random.seed', 'np.random.seed', (['episode_no'], {}), '(episode_no)\n', (2218, 2230), True, 'import numpy as np\n'), ((5347, 5379), 'generic.to_np', 'generic.to_np', (['chosen_head_tails'], {}), '(chosen_head_tails)\n', (5360, 5379), False, 'import generic\n'), ((5670, 5730), 'generic.get_qa_reward', 'generic.get_qa_reward', (['chosen_answer_strings', 'answer_strings'], {}), '(chosen_answer_strings, answer_strings)\n', (5691, 5730), False, 'import generic\n'), ((5945, 6005), 'generic.to_pt', 'generic.to_pt', (['ig_reward_np'], {'enable_cuda': '(False)', 'type': '"""float"""'}), "(ig_reward_np, enable_cuda=False, type='float')\n", (5958, 6005), False, 'import generic\n'), ((7600, 7628), 'numpy.array', 'np.array', (['command_rewards_np'], {}), '(command_rewards_np)\n', (7608, 7628), True, 'import numpy as np\n'), ((8900, 8921), 'numpy.mean', 'np.mean', (['qa_reward_np'], {}), '(qa_reward_np)\n', (8907, 8921), True, 'import numpy as np\n'), ((8939, 8960), 'numpy.mean', 'np.mean', (['ig_reward_np'], {}), '(ig_reward_np)\n', (8946, 8960), True, 'import numpy as np\n'), ((9267, 9289), 'numpy.mean', 'np.mean', (['step_masks_np'], {}), '(step_masks_np)\n', (9274, 9289), True, 'import numpy as np\n'), ((9750, 9773), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (9771, 9773), False, 'import datetime\n'), ((4892, 4922), 'generic.to_np', 'generic.to_np', (['replay_info[-1]'], {}), '(replay_info[-1])\n', (4905, 4922), False, 'import generic\n'), ((6950, 6973), 'generic.to_np', 'generic.to_np', (['item[-1]'], {}), '(item[-1])\n', (6963, 6973), False, 'import generic\n'), ((8992, 9010), 'numpy.array', 'np.array', (['masks_np'], {}), '(masks_np)\n', (9000, 9010), True, 'import numpy as np\n'), ((9445, 9476), 'numpy.mean', 'np.mean', (['command_rewards_np', '(-1)'], {}), '(command_rewards_np, -1)\n', (9452, 9476), True, 'import numpy as np\n'), ((10888, 10926), 'evaluate.evaluate', 'evaluate.evaluate', (['env', 'agent', '"""valid"""'], {}), "(env, agent, 'valid')\n", (10905, 10926), False, 'import evaluate\n'), ((11871, 11940), 'os.path.exists', 'os.path.exists', (["(output_dir + '/' + agent.experiment_tag + '_model.pt')"], {}), "(output_dir + '/' + agent.experiment_tag + '_model.pt')\n", (11885, 11940), False, 'import os\n'), ((5011, 5032), 'numpy.sum', 'np.sum', (['still_running'], {}), '(still_running)\n', (5017, 5032), True, 'import numpy as np\n'), ((6520, 6544), 'numpy.mean', 'np.mean', (['ig_reward_np[b]'], {}), '(ig_reward_np[b])\n', (6527, 6544), True, 'import numpy as np\n'), ((7805, 7834), 'numpy.sum', 'np.sum', (['command_rewards_np', '(0)'], {}), '(command_rewards_np, 0)\n', (7811, 7834), True, 'import numpy as np\n'), ((9819, 9841), 'pytz.timezone', 'timezone', (['"""US/Eastern"""'], {}), "('US/Eastern')\n", (9827, 9841), False, 'from pytz import timezone\n'), ((8159, 8199), 'copy.deepcopy', 'copy.deepcopy', (['batch_description_list[b]'], {}), '(batch_description_list[b])\n', (8172, 8199), False, 'import copy\n'), ((8230, 8258), 'copy.deepcopy', 'copy.deepcopy', (['quest_list[b]'], {}), '(quest_list[b])\n', (8243, 8258), False, 'import copy\n'), ((8403, 8448), 'copy.deepcopy', 'copy.deepcopy', (['batch_graph_node_vocabulary[b]'], {}), '(batch_graph_node_vocabulary[b])\n', (8416, 8448), False, 'import copy\n'), ((8479, 8528), 'copy.deepcopy', 'copy.deepcopy', (['batch_graph_relation_vocabulary[b]'], {}), '(batch_graph_relation_vocabulary[b])\n', (8492, 8528), False, 'import copy\n'), ((8559, 8597), 'copy.deepcopy', 'copy.deepcopy', (['batch_graph_triplets[b]'], {}), '(batch_graph_triplets[b])\n', (8572, 8597), False, 'import copy\n')]
#!/usr/bin/env python # coding: utf-8 from __future__ import division, print_function, unicode_literals import argparse import json import os import shutil import time import torch from utils import util from evaluate import MultiWozEvaluator from model.model import Model parser = argparse.ArgumentParser(description='S2S') parser.add_argument('--no_cuda', type=util.str2bool, nargs='?', const=True, default=True, help='enables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--no_models', type=int, default=20, help='how many models to evaluate') parser.add_argument('--original', type=str, default='model/model/', help='Original path.') parser.add_argument('--dropout', type=float, default=0.0) parser.add_argument('--use_emb', type=str, default='False') parser.add_argument('--beam_width', type=int, default=10, help='Beam width used in beamsearch') parser.add_argument('--write_n_best', type=util.str2bool, nargs='?', const=True, default=False, help='Write n-best list (n=beam_width)') parser.add_argument('--model_path', type=str, default='model/model/translate.ckpt', help='Path to a specific model checkpoint.') parser.add_argument('--model_dir', type=str, default='model/') parser.add_argument('--model_name', type=str, default='translate.ckpt') parser.add_argument('--valid_output', type=str, default='model/data/val_dials/', help='Validation Decoding output dir path') parser.add_argument('--decode_output', type=str, default='model/data/test_dials/', help='Decoding output dir path') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if args.cuda else "cpu") def load_config(args): config = util.unicode_to_utf8( json.load(open('%s.json' % args.model_path, 'rb'))) for key, value in args.__args.items(): try: config[key] = value.value except: config[key] = value return config def loadModelAndData(num): # Load dictionaries with open('data/input_lang.index2word.json') as f: input_lang_index2word = json.load(f) with open('data/input_lang.word2index.json') as f: input_lang_word2index = json.load(f) with open('data/output_lang.index2word.json') as f: output_lang_index2word = json.load(f) with open('data/output_lang.word2index.json') as f: output_lang_word2index = json.load(f) # Reload existing checkpoint model = Model(args, input_lang_index2word, output_lang_index2word, input_lang_word2index, output_lang_word2index) if args.load_param: model.loadModel(iter=num) # Load data if os.path.exists(args.decode_output): shutil.rmtree(args.decode_output) os.makedirs(args.decode_output) else: os.makedirs(args.decode_output) if os.path.exists(args.valid_output): shutil.rmtree(args.valid_output) os.makedirs(args.valid_output) else: os.makedirs(args.valid_output) # Load validation file list: with open('data/val_dials.json') as outfile: val_dials = json.load(outfile) # Load test file list: with open('data/test_dials.json') as outfile: test_dials = json.load(outfile) return model, val_dials, test_dials def decode(num=1): model, val_dials, test_dials = loadModelAndData(num) evaluator_valid = MultiWozEvaluator("valid") evaluator_test = MultiWozEvaluator("test") start_time = time.time() for ii in range(2): if ii == 0: print(50 * '-' + 'GREEDY') model.beam_search = False else: print(50 * '-' + 'BEAM') model.beam_search = True # VALIDATION val_dials_gen = {} valid_loss = 0 for name, val_file in val_dials.items(): input_tensor = []; target_tensor = [];bs_tensor = [];db_tensor = [] input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(model, val_file, input_tensor, target_tensor, bs_tensor, db_tensor) # create an empty matrix with padding tokens input_tensor, input_lengths = util.padSequence(input_tensor) target_tensor, target_lengths = util.padSequence(target_tensor) bs_tensor = torch.tensor(bs_tensor, dtype=torch.float, device=device) db_tensor = torch.tensor(db_tensor, dtype=torch.float, device=device) output_words, loss_sentence = model.predict(input_tensor, input_lengths, target_tensor, target_lengths, db_tensor, bs_tensor) valid_loss += 0 val_dials_gen[name] = output_words print('Current VALID LOSS:', valid_loss) with open(args.valid_output + 'val_dials_gen.json', 'w') as outfile: json.dump(val_dials_gen, outfile) evaluator_valid.evaluateModel(val_dials_gen, val_dials, mode='valid') # TESTING test_dials_gen = {} test_loss = 0 for name, test_file in test_dials.items(): input_tensor = []; target_tensor = [];bs_tensor = [];db_tensor = [] input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(model, test_file, input_tensor, target_tensor, bs_tensor, db_tensor) # create an empty matrix with padding tokens input_tensor, input_lengths = util.padSequence(input_tensor) target_tensor, target_lengths = util.padSequence(target_tensor) bs_tensor = torch.tensor(bs_tensor, dtype=torch.float, device=device) db_tensor = torch.tensor(db_tensor, dtype=torch.float, device=device) output_words, loss_sentence = model.predict(input_tensor, input_lengths, target_tensor, target_lengths, db_tensor, bs_tensor) test_loss += 0 test_dials_gen[name] = output_words test_loss /= len(test_dials) print('Current TEST LOSS:', test_loss) with open(args.decode_output + 'test_dials_gen.json', 'w') as outfile: json.dump(test_dials_gen, outfile) evaluator_test.evaluateModel(test_dials_gen, test_dials, mode='test') print('TIME:', time.time() - start_time) def decodeWrapper(): # Load config file with open(args.model_path + '.config') as f: add_args = json.load(f) for k, v in add_args.items(): setattr(args, k, v) args.mode = 'test' args.load_param = True args.dropout = 0.0 assert args.dropout == 0.0 # Start going through models args.original = args.model_path for ii in range(1, args.no_models + 1): print(70 * '-' + 'EVALUATING EPOCH %s' % ii) args.model_path = args.model_path + '-' + str(ii) try: decode(ii) except: print('cannot decode') args.model_path = args.original if __name__ == '__main__': decodeWrapper()
[ "evaluate.MultiWozEvaluator" ]
[((286, 328), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""S2S"""'}), "(description='S2S')\n", (309, 328), False, 'import argparse\n'), ((1679, 1707), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (1696, 1707), False, 'import torch\n'), ((1718, 1762), 'torch.device', 'torch.device', (["('cuda' if args.cuda else 'cpu')"], {}), "('cuda' if args.cuda else 'cpu')\n", (1730, 1762), False, 'import torch\n'), ((1652, 1677), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1675, 1677), False, 'import torch\n'), ((2547, 2656), 'model.model.Model', 'Model', (['args', 'input_lang_index2word', 'output_lang_index2word', 'input_lang_word2index', 'output_lang_word2index'], {}), '(args, input_lang_index2word, output_lang_index2word,\n input_lang_word2index, output_lang_word2index)\n', (2552, 2656), False, 'from model.model import Model\n'), ((2735, 2769), 'os.path.exists', 'os.path.exists', (['args.decode_output'], {}), '(args.decode_output)\n', (2749, 2769), False, 'import os\n'), ((2911, 2944), 'os.path.exists', 'os.path.exists', (['args.valid_output'], {}), '(args.valid_output)\n', (2925, 2944), False, 'import os\n'), ((3455, 3481), 'evaluate.MultiWozEvaluator', 'MultiWozEvaluator', (['"""valid"""'], {}), "('valid')\n", (3472, 3481), False, 'from evaluate import MultiWozEvaluator\n'), ((3503, 3528), 'evaluate.MultiWozEvaluator', 'MultiWozEvaluator', (['"""test"""'], {}), "('test')\n", (3520, 3528), False, 'from evaluate import MultiWozEvaluator\n'), ((3547, 3558), 'time.time', 'time.time', ([], {}), '()\n', (3556, 3558), False, 'import time\n'), ((2184, 2196), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2193, 2196), False, 'import json\n'), ((2284, 2296), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2293, 2296), False, 'import json\n'), ((2386, 2398), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2395, 2398), False, 'import json\n'), ((2488, 2500), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2497, 2500), False, 'import json\n'), ((2779, 2812), 'shutil.rmtree', 'shutil.rmtree', (['args.decode_output'], {}), '(args.decode_output)\n', (2792, 2812), False, 'import shutil\n'), ((2821, 2852), 'os.makedirs', 'os.makedirs', (['args.decode_output'], {}), '(args.decode_output)\n', (2832, 2852), False, 'import os\n'), ((2871, 2902), 'os.makedirs', 'os.makedirs', (['args.decode_output'], {}), '(args.decode_output)\n', (2882, 2902), False, 'import os\n'), ((2954, 2986), 'shutil.rmtree', 'shutil.rmtree', (['args.valid_output'], {}), '(args.valid_output)\n', (2967, 2986), False, 'import shutil\n'), ((2995, 3025), 'os.makedirs', 'os.makedirs', (['args.valid_output'], {}), '(args.valid_output)\n', (3006, 3025), False, 'import os\n'), ((3044, 3074), 'os.makedirs', 'os.makedirs', (['args.valid_output'], {}), '(args.valid_output)\n', (3055, 3074), False, 'import os\n'), ((3178, 3196), 'json.load', 'json.load', (['outfile'], {}), '(outfile)\n', (3187, 3196), False, 'import json\n'), ((3296, 3314), 'json.load', 'json.load', (['outfile'], {}), '(outfile)\n', (3305, 3314), False, 'import json\n'), ((6453, 6465), 'json.load', 'json.load', (['f'], {}), '(f)\n', (6462, 6465), False, 'import json\n'), ((4034, 4123), 'utils.util.loadDialogue', 'util.loadDialogue', (['model', 'val_file', 'input_tensor', 'target_tensor', 'bs_tensor', 'db_tensor'], {}), '(model, val_file, input_tensor, target_tensor, bs_tensor,\n db_tensor)\n', (4051, 4123), False, 'from utils import util\n'), ((4219, 4249), 'utils.util.padSequence', 'util.padSequence', (['input_tensor'], {}), '(input_tensor)\n', (4235, 4249), False, 'from utils import util\n'), ((4294, 4325), 'utils.util.padSequence', 'util.padSequence', (['target_tensor'], {}), '(target_tensor)\n', (4310, 4325), False, 'from utils import util\n'), ((4350, 4407), 'torch.tensor', 'torch.tensor', (['bs_tensor'], {'dtype': 'torch.float', 'device': 'device'}), '(bs_tensor, dtype=torch.float, device=device)\n', (4362, 4407), False, 'import torch\n'), ((4432, 4489), 'torch.tensor', 'torch.tensor', (['db_tensor'], {'dtype': 'torch.float', 'device': 'device'}), '(db_tensor, dtype=torch.float, device=device)\n', (4444, 4489), False, 'import torch\n'), ((4900, 4933), 'json.dump', 'json.dump', (['val_dials_gen', 'outfile'], {}), '(val_dials_gen, outfile)\n', (4909, 4933), False, 'import json\n'), ((5277, 5367), 'utils.util.loadDialogue', 'util.loadDialogue', (['model', 'test_file', 'input_tensor', 'target_tensor', 'bs_tensor', 'db_tensor'], {}), '(model, test_file, input_tensor, target_tensor, bs_tensor,\n db_tensor)\n', (5294, 5367), False, 'from utils import util\n'), ((5463, 5493), 'utils.util.padSequence', 'util.padSequence', (['input_tensor'], {}), '(input_tensor)\n', (5479, 5493), False, 'from utils import util\n'), ((5538, 5569), 'utils.util.padSequence', 'util.padSequence', (['target_tensor'], {}), '(target_tensor)\n', (5554, 5569), False, 'from utils import util\n'), ((5594, 5651), 'torch.tensor', 'torch.tensor', (['bs_tensor'], {'dtype': 'torch.float', 'device': 'device'}), '(bs_tensor, dtype=torch.float, device=device)\n', (5606, 5651), False, 'import torch\n'), ((5676, 5733), 'torch.tensor', 'torch.tensor', (['db_tensor'], {'dtype': 'torch.float', 'device': 'device'}), '(db_tensor, dtype=torch.float, device=device)\n', (5688, 5733), False, 'import torch\n'), ((6180, 6214), 'json.dump', 'json.dump', (['test_dials_gen', 'outfile'], {}), '(test_dials_gen, outfile)\n', (6189, 6214), False, 'import json\n'), ((6313, 6324), 'time.time', 'time.time', ([], {}), '()\n', (6322, 6324), False, 'import time\n')]
import argparse import os import torch import yaml import torch.nn as nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from utils.model import get_vocoder, get_param_num from utils.tools import to_device, log, synth_one_sample from model import FastSpeech2Loss, FastSpeech2 from dataset import Dataset from evaluate import evaluate import wandb import pandas as pd from pytorch_lamb import Lamb, log_lamb_rs device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def main(args, configs): print("Prepare training ...") preprocess_config, model_config, train_config = configs # Get dataset dataset = Dataset( "train.txt", preprocess_config, train_config, sort=True, drop_last=True ) batch_size = args.batch_size if args.batch_size else train_config["optimizer"]["batch_size"] group_size = 1 # Set this larger than 1 to enable sorting in Dataset print(f"Number of rows in training dataset: {len(dataset)}") assert batch_size * group_size < len(dataset) loader = DataLoader( dataset, batch_size=batch_size * group_size, shuffle=True, collate_fn=dataset.collate_fn, ) # Prepare model model = FastSpeech2(preprocess_config, model_config).to(device) model.train() # sets the model into training mode step_size = train_config["optimizer"]["step_size"] weight_decay = args.wd if args.wd else train_config["optimizer"]["weight_decay"] betas=train_config["optimizer"]["betas"] eps=train_config["optimizer"]["eps"] # reading the paper you'd think 'lr' (learning rate) is not needed for Lamb but basically lr param is an Adam learning rate # which is then multiplied by Trust Ratio for that layer to get the actual learning rate used at each step/each layer optimizer = Lamb(model.parameters(), lr=step_size, weight_decay=weight_decay, betas=betas, eps=eps) model = nn.DataParallel(model) num_param = get_param_num(model) Loss = FastSpeech2Loss(preprocess_config, model_config).to(device) print("Number of FastSpeech2 Parameters:", num_param) if args.wandb: from flatten_json import flatten log_config = {} for key, val in pd.json_normalize(model_config["transformer"]).iloc[0].items(): log_config[f"transformer.{key}"]=str(val) log_config["multi_speaker"]=model_config["multi_speaker"] log_config["vocoder"]=model_config["vocoder"] log_config["sample_rate"] = preprocess_config["preprocessing"]["audio"]["sampling_rate"] log_config["train.batch_size"] = batch_size log_config["train.optimizer"] = "lamb" log_config["train.step_size"] = step_size log_config["train.weight_decay"] = weight_decay log_config["train.betas"] = str(betas) log_config["train.eps"] = eps log_config["num_params"] = num_param log_config["len(dataset)"] = len(dataset) print(log_config) if args.wandb: wandb.init(project="synthesis-fastspeech2", entity="papa-reo", config=log_config) # Load vocoder vocoder = get_vocoder(model_config, device) # Init logger for p in train_config["path"].values(): os.makedirs(p, exist_ok=True) train_log_path = os.path.join(train_config["path"]["log_path"], "train") val_log_path = os.path.join(train_config["path"]["log_path"], "val") os.makedirs(train_log_path, exist_ok=True) os.makedirs(val_log_path, exist_ok=True) train_logger = SummaryWriter(train_log_path) val_logger = SummaryWriter(val_log_path) # Training step = args.restore_step + 1 epoch = 1 grad_acc_step = train_config["optimizer"]["grad_acc_step"] grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"] total_step = train_config["step"]["total_step"] log_step = train_config["step"]["log_step"] save_step = train_config["step"]["save_step"] synth_step = train_config["step"]["synth_step"] val_step = train_config["step"]["val_step"] outer_bar = tqdm(total=total_step, desc="Training", position=0) outer_bar.n = args.restore_step outer_bar.update() while True: inner_bar = tqdm(total=len(loader), desc="Epoch {}".format(epoch), position=1) for batchs in loader: for batch in batchs: batch = to_device(batch, device) # Forward output = model(*(batch[2:])) # Cal Loss losses = Loss(batch, output) total_loss = losses[0] # Backward total_loss = total_loss / grad_acc_step total_loss.backward() if step % grad_acc_step == 0: # Clipping gradients to avoid gradient explosion nn.utils.clip_grad_norm_(model.parameters(), grad_clip_thresh) # Update weights optimizer.step() optimizer.zero_grad() if step % log_step == 0: losses = [l.item() for l in losses] message1 = "Step {}/{}, ".format(step, total_step) message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}, Pitch Loss: {:.4f}, Energy Loss: {:.4f}, Duration Loss: {:.4f}".format( *losses ) with open(os.path.join(train_log_path, "log.txt"), "a") as f: f.write(message1 + message2 + "\n") outer_bar.write(message1 + message2) log(train_logger, step, losses=losses) log_lamb_rs(optimizer, train_logger, step) if args.wandb: wandb.log({"train_loss": total_loss}) wandb.watch(model) if step % synth_step == 0: fig, wav_reconstruction, wav_prediction, tag = synth_one_sample( batch, output, vocoder, model_config, preprocess_config, ) log( train_logger, fig=fig, tag="Training/step_{}_{}".format(step, tag), ) sampling_rate = preprocess_config["preprocessing"]["audio"][ "sampling_rate" ] log( train_logger, audio=wav_reconstruction, sampling_rate=sampling_rate, tag="Training/step_{}_{}_reconstructed".format(step, tag), ) log( train_logger, audio=wav_prediction, sampling_rate=sampling_rate, tag="Training/step_{}_{}_synthesized".format(step, tag), ) if step % val_step == 0: model.eval() message = evaluate(model, step, configs, val_logger, vocoder, log_to_wandb=args.wandb) with open(os.path.join(val_log_path, "log.txt"), "a") as f: f.write(message + "\n") outer_bar.write(message) model.train() if step % save_step == 0: torch.save( { "model": model.module.state_dict(), "optimizer": optimizer.state_dict(), }, os.path.join( train_config["path"]["ckpt_path"], "{}.pth.tar".format(step), ), ) if step == total_step: quit() step += 1 outer_bar.update(1) inner_bar.update(1) epoch += 1 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--restore_step", type=int, default=0) parser.add_argument( "-p", "--preprocess_config", type=str, required=True, help="path to preprocess.yaml", ) parser.add_argument( "-m", "--model_config", type=str, required=True, help="path to model.yaml" ) parser.add_argument( "-t", "--train_config", type=str, required=True, help="path to train.yaml" ) parser.add_argument( '--batch-size', type=int, default=None, metavar='N', help='input batch size for training (for default val see config/../train.yaml)' ) parser.add_argument( '--wd', type=float, default=None, metavar='WD', help='weight decay (for default val see config/../train.yaml)' ) parser.add_argument( '--wandb', type=bool, default=False, help='log to wandb' ) args = parser.parse_args() # Read Config preprocess_config = yaml.load( open(args.preprocess_config, "r"), Loader=yaml.FullLoader ) model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader) train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader) configs = (preprocess_config, model_config, train_config) main(args, configs)
[ "evaluate.evaluate" ]
[((740, 825), 'dataset.Dataset', 'Dataset', (['"""train.txt"""', 'preprocess_config', 'train_config'], {'sort': '(True)', 'drop_last': '(True)'}), "('train.txt', preprocess_config, train_config, sort=True, drop_last=True\n )\n", (747, 825), False, 'from dataset import Dataset\n'), ((1141, 1245), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': '(batch_size * group_size)', 'shuffle': '(True)', 'collate_fn': 'dataset.collate_fn'}), '(dataset, batch_size=batch_size * group_size, shuffle=True,\n collate_fn=dataset.collate_fn)\n', (1151, 1245), False, 'from torch.utils.data import DataLoader\n'), ((2044, 2066), 'torch.nn.DataParallel', 'nn.DataParallel', (['model'], {}), '(model)\n', (2059, 2066), True, 'import torch.nn as nn\n'), ((2084, 2104), 'utils.model.get_param_num', 'get_param_num', (['model'], {}), '(model)\n', (2097, 2104), False, 'from utils.model import get_vocoder, get_param_num\n'), ((3275, 3308), 'utils.model.get_vocoder', 'get_vocoder', (['model_config', 'device'], {}), '(model_config, device)\n', (3286, 3308), False, 'from utils.model import get_vocoder, get_param_num\n'), ((3436, 3491), 'os.path.join', 'os.path.join', (["train_config['path']['log_path']", '"""train"""'], {}), "(train_config['path']['log_path'], 'train')\n", (3448, 3491), False, 'import os\n'), ((3512, 3565), 'os.path.join', 'os.path.join', (["train_config['path']['log_path']", '"""val"""'], {}), "(train_config['path']['log_path'], 'val')\n", (3524, 3565), False, 'import os\n'), ((3571, 3613), 'os.makedirs', 'os.makedirs', (['train_log_path'], {'exist_ok': '(True)'}), '(train_log_path, exist_ok=True)\n', (3582, 3613), False, 'import os\n'), ((3619, 3659), 'os.makedirs', 'os.makedirs', (['val_log_path'], {'exist_ok': '(True)'}), '(val_log_path, exist_ok=True)\n', (3630, 3659), False, 'import os\n'), ((3680, 3709), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', (['train_log_path'], {}), '(train_log_path)\n', (3693, 3709), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((3728, 3755), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', (['val_log_path'], {}), '(val_log_path)\n', (3741, 3755), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((4231, 4282), 'tqdm.tqdm', 'tqdm', ([], {'total': 'total_step', 'desc': '"""Training"""', 'position': '(0)'}), "(total=total_step, desc='Training', position=0)\n", (4235, 4282), False, 'from tqdm import tqdm\n'), ((8412, 8437), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (8435, 8437), False, 'import argparse\n'), ((534, 559), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (557, 559), False, 'import torch\n'), ((3384, 3413), 'os.makedirs', 'os.makedirs', (['p'], {'exist_ok': '(True)'}), '(p, exist_ok=True)\n', (3395, 3413), False, 'import os\n'), ((1322, 1366), 'model.FastSpeech2', 'FastSpeech2', (['preprocess_config', 'model_config'], {}), '(preprocess_config, model_config)\n', (1333, 1366), False, 'from model import FastSpeech2Loss, FastSpeech2\n'), ((2117, 2165), 'model.FastSpeech2Loss', 'FastSpeech2Loss', (['preprocess_config', 'model_config'], {}), '(preprocess_config, model_config)\n', (2132, 2165), False, 'from model import FastSpeech2Loss, FastSpeech2\n'), ((3156, 3242), 'wandb.init', 'wandb.init', ([], {'project': '"""synthesis-fastspeech2"""', 'entity': '"""papa-reo"""', 'config': 'log_config'}), "(project='synthesis-fastspeech2', entity='papa-reo', config=\n log_config)\n", (3166, 3242), False, 'import wandb\n'), ((4541, 4565), 'utils.tools.to_device', 'to_device', (['batch', 'device'], {}), '(batch, device)\n', (4550, 4565), False, 'from utils.tools import to_device, log, synth_one_sample\n'), ((5832, 5870), 'utils.tools.log', 'log', (['train_logger', 'step'], {'losses': 'losses'}), '(train_logger, step, losses=losses)\n', (5835, 5870), False, 'from utils.tools import to_device, log, synth_one_sample\n'), ((5892, 5934), 'pytorch_lamb.log_lamb_rs', 'log_lamb_rs', (['optimizer', 'train_logger', 'step'], {}), '(optimizer, train_logger, step)\n', (5903, 5934), False, 'from pytorch_lamb import Lamb, log_lamb_rs\n'), ((6194, 6267), 'utils.tools.synth_one_sample', 'synth_one_sample', (['batch', 'output', 'vocoder', 'model_config', 'preprocess_config'], {}), '(batch, output, vocoder, model_config, preprocess_config)\n', (6210, 6267), False, 'from utils.tools import to_device, log, synth_one_sample\n'), ((7412, 7488), 'evaluate.evaluate', 'evaluate', (['model', 'step', 'configs', 'val_logger', 'vocoder'], {'log_to_wandb': 'args.wandb'}), '(model, step, configs, val_logger, vocoder, log_to_wandb=args.wandb)\n', (7420, 7488), False, 'from evaluate import evaluate\n'), ((2350, 2396), 'pandas.json_normalize', 'pd.json_normalize', (["model_config['transformer']"], {}), "(model_config['transformer'])\n", (2367, 2396), True, 'import pandas as pd\n'), ((5998, 6035), 'wandb.log', 'wandb.log', (["{'train_loss': total_loss}"], {}), "({'train_loss': total_loss})\n", (6007, 6035), False, 'import wandb\n'), ((6061, 6079), 'wandb.watch', 'wandb.watch', (['model'], {}), '(model)\n', (6072, 6079), False, 'import wandb\n'), ((5636, 5675), 'os.path.join', 'os.path.join', (['train_log_path', '"""log.txt"""'], {}), "(train_log_path, 'log.txt')\n", (5648, 5675), False, 'import os\n'), ((7520, 7557), 'os.path.join', 'os.path.join', (['val_log_path', '"""log.txt"""'], {}), "(val_log_path, 'log.txt')\n", (7532, 7557), False, 'import os\n')]
from i3Deep import utils import os from evaluate import evaluate import numpy as np from skimage.segmentation.random_walker_segmentation import random_walker from tqdm import tqdm import torchio import torch def compute_predictions(image_path, mask_path, gt_path, save_path, nr_modalities, class_labels, resize=True, beta=10): image_filenames = utils.load_filenames(image_path)[::nr_modalities] mask_filenames = utils.load_filenames(mask_path) target_shape = (256, 256, 200) # (256, 256, 100) is_resized = False for i in tqdm(range(len(image_filenames))): image, affine, spacing, header = utils.load_nifty(image_filenames[i]) mask, _, _, _ = utils.load_nifty(mask_filenames[i]) if resize and image.size > np.prod(target_shape): is_resized = True print("Resized: ", os.path.basename(image_filenames[i])) original_shape = image.shape image = utils.interpolate(image, (target_shape[0], target_shape[1], original_shape[2])) mask = utils.interpolate(mask, (target_shape[0], target_shape[1], original_shape[2]), mask=True) image = utils.normalize(image) labels = np.unique(mask) # labels = labels[labels > 0] for label in np.flip(labels): mask[mask == label] = label + 1 mask = mask.astype(np.uint8) mask = random_walker(data=image, labels=mask, beta=beta, mode='cg_mg') for label in labels: mask[mask == label + 1] = label if is_resized: mask = utils.interpolate(mask, original_shape, mask=True) utils.save_nifty(save_path + os.path.basename(mask_filenames[i][:-12] + ".nii.gz"), mask, affine, spacing, header, is_mask=True) results = evaluate(gt_path, save_path, class_labels) return results # def compute_predictions(image_path, mask_path, gt_path, save_path): # image_filenames = utils.load_filenames(image_path) # mask_filenames = utils.load_filenames(mask_path) # # for i in tqdm(range(len(image_filenames))): # _, affine, spacing, header = utils.load_nifty(mask_filenames[i]) # subject = torchio.Subject(image=torchio.ScalarImage(image_filenames[i]), mask=torchio.LabelMap(mask_filenames[i])) # sampler = torchio.inference.GridSampler(subject, patch_size=(20, 20, 10), padding_mode='edge') # aggregator = torchio.inference.GridAggregator(sampler) # for patch in sampler: # image = patch["image"][torchio.DATA].numpy()[0] # image = utils.normalize(image) # mask = patch["mask"][torchio.DATA].numpy()[0] # location = torch.tensor(patch[torchio.LOCATION]).unsqueeze(0) # if not(image.max() <= 0 or mask.max() == 0): # # image[image < 0] = 0 # mask = mask.astype(np.int32) # mask = random_walker(data=image, labels=mask, mode='cg_j') # mask = torch.tensor(mask).unsqueeze(0).unsqueeze(0) # aggregator.add_batch(mask, location) # mask = aggregator.get_output_tensor() # utils.save_nifty(save_path + os.path.basename(mask_filenames[i]), mask, affine, spacing, header, is_mask=True) # mean_dice_score, median_dice_score = evaluate(gt_path, save_path) # return mean_dice_score, median_dice_score
[ "evaluate.evaluate" ]
[((432, 463), 'i3Deep.utils.load_filenames', 'utils.load_filenames', (['mask_path'], {}), '(mask_path)\n', (452, 463), False, 'from i3Deep import utils\n'), ((1785, 1827), 'evaluate.evaluate', 'evaluate', (['gt_path', 'save_path', 'class_labels'], {}), '(gt_path, save_path, class_labels)\n', (1793, 1827), False, 'from evaluate import evaluate\n'), ((360, 392), 'i3Deep.utils.load_filenames', 'utils.load_filenames', (['image_path'], {}), '(image_path)\n', (380, 392), False, 'from i3Deep import utils\n'), ((636, 672), 'i3Deep.utils.load_nifty', 'utils.load_nifty', (['image_filenames[i]'], {}), '(image_filenames[i])\n', (652, 672), False, 'from i3Deep import utils\n'), ((698, 733), 'i3Deep.utils.load_nifty', 'utils.load_nifty', (['mask_filenames[i]'], {}), '(mask_filenames[i])\n', (714, 733), False, 'from i3Deep import utils\n'), ((1164, 1186), 'i3Deep.utils.normalize', 'utils.normalize', (['image'], {}), '(image)\n', (1179, 1186), False, 'from i3Deep import utils\n'), ((1205, 1220), 'numpy.unique', 'np.unique', (['mask'], {}), '(mask)\n', (1214, 1220), True, 'import numpy as np\n'), ((1282, 1297), 'numpy.flip', 'np.flip', (['labels'], {}), '(labels)\n', (1289, 1297), True, 'import numpy as np\n'), ((1398, 1461), 'skimage.segmentation.random_walker_segmentation.random_walker', 'random_walker', ([], {'data': 'image', 'labels': 'mask', 'beta': 'beta', 'mode': '"""cg_mg"""'}), "(data=image, labels=mask, beta=beta, mode='cg_mg')\n", (1411, 1461), False, 'from skimage.segmentation.random_walker_segmentation import random_walker\n'), ((957, 1036), 'i3Deep.utils.interpolate', 'utils.interpolate', (['image', '(target_shape[0], target_shape[1], original_shape[2])'], {}), '(image, (target_shape[0], target_shape[1], original_shape[2]))\n', (974, 1036), False, 'from i3Deep import utils\n'), ((1057, 1151), 'i3Deep.utils.interpolate', 'utils.interpolate', (['mask', '(target_shape[0], target_shape[1], original_shape[2])'], {'mask': '(True)'}), '(mask, (target_shape[0], target_shape[1], original_shape[2\n ]), mask=True)\n', (1074, 1151), False, 'from i3Deep import utils\n'), ((1581, 1631), 'i3Deep.utils.interpolate', 'utils.interpolate', (['mask', 'original_shape'], {'mask': '(True)'}), '(mask, original_shape, mask=True)\n', (1598, 1631), False, 'from i3Deep import utils\n'), ((770, 791), 'numpy.prod', 'np.prod', (['target_shape'], {}), '(target_shape)\n', (777, 791), True, 'import numpy as np\n'), ((856, 892), 'os.path.basename', 'os.path.basename', (['image_filenames[i]'], {}), '(image_filenames[i])\n', (872, 892), False, 'import os\n'), ((1670, 1723), 'os.path.basename', 'os.path.basename', (["(mask_filenames[i][:-12] + '.nii.gz')"], {}), "(mask_filenames[i][:-12] + '.nii.gz')\n", (1686, 1723), False, 'import os\n')]
import random import os import sys from models.bert import BERT_Model from models.bilstm_crf_ import BiLSTM_CRF_Model from data import build_corpus from config import ModelPathConfig,ResultPathConfig from datetime import datetime from utils import extend_map_bert,save_model,load_model,extend_map,add_label_for_lstmcrf from evaluate import evaluate_entity_label,evaluate_multiclass,evaluate_single_label,unitstopd from tabulate import tabulate import pandas as pd def bert_test(): model_is_exitsed=os.path.exists(ModelPathConfig.bert) print("upload data!") word_lists,tag_lists,word2id,tag2id=build_corpus("train") test_word_lists,test_tag_lists,_,_=build_corpus("test") labels=list(tag2id.keys()) dev_indices=random.sample(range(len(word_lists)),len(word_lists)//5) train_indices=[i for i in range(len(word_lists)) if i not in dev_indices] dev_word_lists=[ word_lists[ind] for ind in dev_indices] dev_tag_lists=[tag_lists[ind] for ind in dev_indices] train_word_lists=[word_lists[ind] for ind in train_indices] train_tag_lists=[tag_lists[ind] for ind in train_indices] bert_tag2id=extend_map_bert(tag2id) if not model_is_exitsed: print('start to training') start=datetime.now() vocab_size=len(word2id) out_size=len(bert_tag2id) bert_model=BERT_Model(vocab_size,out_size) bert_model.train(train_word_lists,train_tag_lists,\ word2id,bert_tag2id,dev_word_lists,dev_tag_lists) deltatime=datetime.now()-start print("Training is finished, {} second".format(deltatime.seconds)) try: print("Save the model") save_model(bert_model,ModelPathConfig.bert) except: print("fail to save model") else: try: print("load model") bert_model=load_model(ModelPathConfig.bert) except: print("fail to load model") sys.exit(0) print("test the model") pred_tag_lists=bert_model.test(test_word_lists,test_tag_lists,word2id,bert_tag2id) label_tag_lists=test_tag_lists units=evaluate_entity_label(pred_tag_lists,label_tag_lists,labels) df=unitstopd(units) df.to_csv(ResultPathConfig.bert_entity) print(tabulate(df,headers='keys',tablefmt='psql')) units=evaluate_single_label(pred_tag_lists,label_tag_lists,labels) df=unitstopd(units) df.to_csv(ResultPathConfig.bert_model) print(tabulate(df,headers='keys',tablefmt='psql')) def _bilstm_crf_test(if_train=True): model_is_existed=os.path.exists(ModelPathConfig._bilstm_crf) print("upload data!") word_lists,tag_lists,word2id,tag2id=build_corpus("train") test_word_lists,test_tag_lists,_,_=build_corpus("test") labels=list(tag2id.keys()) dev_indices=random.sample(range(len(word_lists)),len(word_lists)//5) train_indices=[i for i in range(len(word_lists)) if i not in dev_indices] dev_word_lists=[ word_lists[ind] for ind in dev_indices] dev_tag_lists=[tag_lists[ind] for ind in dev_indices] train_word_lists=[word_lists[ind] for ind in train_indices] train_tag_lists=[tag_lists[ind] for ind in train_indices] # bilstm_crf_word2id,bilstm_crf_tag2id=extend_map(word2id,tag2id,crf=True) bilstm_crf_word2id,bilstm_crf_tag2id=extend_map(word2id,tag2id,crf=False) if if_train or not model_is_existed: print('start to training') # sample_print_test(train_word_lists,train_tag_lists) start=datetime.now() vocab_size=len(bilstm_crf_word2id) out_size=len(tag2id) bilstm_model=BiLSTM_CRF_Model(vocab_size,out_size) bilstm_model.train(train_word_lists,train_tag_lists,\ word2id,bilstm_crf_tag2id,dev_word_lists,dev_tag_lists) deltatime=datetime.now()-start print("Training is finished, {} second".format(deltatime.seconds)) save_model(bilstm_model,ModelPathConfig._bilstm_crf) print("Save the model") else: print("load model") bilstm_model=load_model(ModelPathConfig._bilstm_crf) print("test the model") pred_tag_lists,label_tag_lists,=bilstm_model.test(test_word_lists,test_tag_lists,word2id,tag2id) units=evaluate_entity_label(pred_tag_lists,label_tag_lists,labels) df=unitstopd(units) df.to_csv(ResultPathConfig._bilstm_crf_entity) print(tabulate(df,headers='keys',tablefmt='psql')) units=evaluate_single_label(pred_tag_lists,label_tag_lists,labels) df=unitstopd(units) df.to_csv(ResultPathConfig._bilstm_crf_model) print(tabulate(df,headers='keys',tablefmt='psql')) def mrc_bert_test(if_train=True): pass if __name__=='__main__': pass
[ "evaluate.unitstopd", "evaluate.evaluate_single_label", "evaluate.evaluate_entity_label" ]
[((504, 540), 'os.path.exists', 'os.path.exists', (['ModelPathConfig.bert'], {}), '(ModelPathConfig.bert)\n', (518, 540), False, 'import os\n'), ((609, 630), 'data.build_corpus', 'build_corpus', (['"""train"""'], {}), "('train')\n", (621, 630), False, 'from data import build_corpus\n'), ((670, 690), 'data.build_corpus', 'build_corpus', (['"""test"""'], {}), "('test')\n", (682, 690), False, 'from data import build_corpus\n'), ((1138, 1161), 'utils.extend_map_bert', 'extend_map_bert', (['tag2id'], {}), '(tag2id)\n', (1153, 1161), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((2138, 2200), 'evaluate.evaluate_entity_label', 'evaluate_entity_label', (['pred_tag_lists', 'label_tag_lists', 'labels'], {}), '(pred_tag_lists, label_tag_lists, labels)\n', (2159, 2200), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((2206, 2222), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (2215, 2222), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((2333, 2395), 'evaluate.evaluate_single_label', 'evaluate_single_label', (['pred_tag_lists', 'label_tag_lists', 'labels'], {}), '(pred_tag_lists, label_tag_lists, labels)\n', (2354, 2395), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((2401, 2417), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (2410, 2417), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((2577, 2620), 'os.path.exists', 'os.path.exists', (['ModelPathConfig._bilstm_crf'], {}), '(ModelPathConfig._bilstm_crf)\n', (2591, 2620), False, 'import os\n'), ((2688, 2709), 'data.build_corpus', 'build_corpus', (['"""train"""'], {}), "('train')\n", (2700, 2709), False, 'from data import build_corpus\n'), ((2749, 2769), 'data.build_corpus', 'build_corpus', (['"""test"""'], {}), "('test')\n", (2761, 2769), False, 'from data import build_corpus\n'), ((3318, 3356), 'utils.extend_map', 'extend_map', (['word2id', 'tag2id'], {'crf': '(False)'}), '(word2id, tag2id, crf=False)\n', (3328, 3356), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((4235, 4297), 'evaluate.evaluate_entity_label', 'evaluate_entity_label', (['pred_tag_lists', 'label_tag_lists', 'labels'], {}), '(pred_tag_lists, label_tag_lists, labels)\n', (4256, 4297), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((4303, 4319), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (4312, 4319), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((4437, 4499), 'evaluate.evaluate_single_label', 'evaluate_single_label', (['pred_tag_lists', 'label_tag_lists', 'labels'], {}), '(pred_tag_lists, label_tag_lists, labels)\n', (4458, 4499), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((4505, 4521), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (4514, 4521), False, 'from evaluate import evaluate_entity_label, evaluate_multiclass, evaluate_single_label, unitstopd\n'), ((1245, 1259), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1257, 1259), False, 'from datetime import datetime\n'), ((1345, 1377), 'models.bert.BERT_Model', 'BERT_Model', (['vocab_size', 'out_size'], {}), '(vocab_size, out_size)\n', (1355, 1377), False, 'from models.bert import BERT_Model\n'), ((2277, 2322), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (2285, 2322), False, 'from tabulate import tabulate\n'), ((2471, 2516), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (2479, 2516), False, 'from tabulate import tabulate\n'), ((3508, 3522), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3520, 3522), False, 'from datetime import datetime\n'), ((3617, 3655), 'models.bilstm_crf_.BiLSTM_CRF_Model', 'BiLSTM_CRF_Model', (['vocab_size', 'out_size'], {}), '(vocab_size, out_size)\n', (3633, 3655), False, 'from models.bilstm_crf_ import BiLSTM_CRF_Model\n'), ((3908, 3961), 'utils.save_model', 'save_model', (['bilstm_model', 'ModelPathConfig._bilstm_crf'], {}), '(bilstm_model, ModelPathConfig._bilstm_crf)\n', (3918, 3961), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((4052, 4091), 'utils.load_model', 'load_model', (['ModelPathConfig._bilstm_crf'], {}), '(ModelPathConfig._bilstm_crf)\n', (4062, 4091), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((4381, 4426), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (4389, 4426), False, 'from tabulate import tabulate\n'), ((4582, 4627), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (4590, 4627), False, 'from tabulate import tabulate\n'), ((1518, 1532), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1530, 1532), False, 'from datetime import datetime\n'), ((1675, 1719), 'utils.save_model', 'save_model', (['bert_model', 'ModelPathConfig.bert'], {}), '(bert_model, ModelPathConfig.bert)\n', (1685, 1719), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((1862, 1894), 'utils.load_model', 'load_model', (['ModelPathConfig.bert'], {}), '(ModelPathConfig.bert)\n', (1872, 1894), False, 'from utils import extend_map_bert, save_model, load_model, extend_map, add_label_for_lstmcrf\n'), ((3803, 3817), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3815, 3817), False, 'from datetime import datetime\n'), ((1963, 1974), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (1971, 1974), False, 'import sys\n')]
from __future__ import print_function, division import sys sys.path.append('core') import argparse import os import cv2 import time import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import DataLoader # from raft import RAFT from core.ours import RAFT import evaluate import datasets import flow_vis import random from torch.utils.tensorboard import SummaryWriter from utils.scheduler import CosineAnnealingWarmupRestarts try: from torch.cuda.amp import GradScaler except: # dummy GradScaler for PyTorch < 1.6 class GradScaler: def __init__(self): pass def scale(self, loss): return loss def unscale_(self, optimizer): pass def step(self, optimizer): optimizer.step() def update(self): pass # exclude extremly large displacements MAX_FLOW = 400 SUM_FREQ = 100 VAL_FREQ = 5000 def sequence_loss(flow_preds, flow_gt, valid, sparse_lambda=1.0, gamma=0.8, max_flow=MAX_FLOW): """ Loss function defined over sequence of flow predictions """ n_predictions = len(flow_preds[0]) flow_loss = 0.0 sparse_loss = 0.0 # exlude invalid pixels and extremely large diplacements mag = torch.sum(flow_gt ** 2, dim=1).sqrt() dense_valid = (valid >= 0.5) & (mag < max_flow) bs, _, I_H, I_W = flow_gt.shape for i in range(n_predictions): # i_weight = gamma ** (n_predictions - i - 1) i_weight = 1.0 i_loss = (flow_preds[0][i] - flow_gt).abs() # i_loss = (flow_preds[0][i] - flow_gt).square() flow_loss += i_weight * (dense_valid[:, None] * i_loss).mean() if sparse_lambda > 0.0: ref, sparse_flow, _, _ = flow_preds[1][i] scale = torch.tensor((I_W - 1, I_H - 1), dtype=torch.float32).view(1, 1, 2).to(sparse_flow.device) flatten_gt = flow_gt.flatten(2).permute(0, 2, 1) flatten_valid = valid.flatten(1) coords = torch.round(ref * scale).long() coords = torch.clamp_max(coords[..., 1] * coords[..., 0], I_H * I_W - 1) sparse_gt = torch.gather(flatten_gt, 1, coords.unsqueeze(-1).repeat(1, 1, 2)) sparse_valid = torch.gather(flatten_valid, 1, coords) sparse_valid = (sparse_valid >= 0.5) & (torch.sum(sparse_gt ** 2, dim=-1).sqrt() < max_flow) sparse_i_loss = (sparse_flow * scale - sparse_gt).abs() # sparse_i_loss = (sparse_flow * scale - sparse_gt).square() sparse_loss += i_weight * (sparse_valid[..., None] * sparse_i_loss).mean() loss = flow_loss + sparse_loss * sparse_lambda epe = torch.sum((flow_preds[0][-1] - flow_gt)**2, dim=1).sqrt() epe = epe.view(-1)[dense_valid.view(-1)] metrics = { 'epe': epe.mean().item(), '1px': (epe < 1).float().mean().item(), '3px': (epe < 3).float().mean().item(), '5px': (epe < 5).float().mean().item(), 'loss': loss, 'flow_loss': flow_loss, 'sparse_loss': sparse_loss } return loss, metrics def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def fetch_optimizer(args, model): """ Create the optimizer and learning rate scheduler """ # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.wdecay) optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, round(args.num_steps * 0.8)) # scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100, # pct_start=0.05, cycle_momentum=False, anneal_strategy='linear') # scheduler = torch.optim.lr_scheduler.OneCycleLR( # optimizer, args.lr, # args.num_steps + 10, # pct_start=0.05, # cycle_momentum=False, # anneal_strategy='cos') # scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts( # optimizer, 1000, T_mult=1, eta_min=0, last_epoch=- 1, verbose=False) return optimizer, scheduler class Logger: def __init__(self, model, scheduler): self.model = model self.scheduler = scheduler self.total_steps = 0 self.running_loss = {} self.writer = None def _print_training_status(self): metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())] training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0]) metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data) # print the training status print(training_str + metrics_str) if self.writer is None: self.writer = SummaryWriter() for k in self.running_loss: self.writer.add_scalar(k, self.running_loss[k]/SUM_FREQ, self.total_steps) self.running_loss[k] = 0.0 def push(self, metrics): self.total_steps += 1 for key in metrics: if key not in self.running_loss: self.running_loss[key] = 0.0 self.running_loss[key] += metrics[key] if self.total_steps % SUM_FREQ == SUM_FREQ-1: self._print_training_status() self.running_loss = {} def write_dict(self, results): if self.writer is None: self.writer = SummaryWriter() for key in results: self.writer.add_scalar(key, results[key], self.total_steps) def write_image(self, image1, image2, target, pred, phase="T", idx=0): if self.writer is None: self.writer = SummaryWriter() _, I_H, I_W = image1.shape scale = torch.tensor((I_W, I_H), dtype=torch.float32).view(1, 2).to(image1.device) image1 = image1.detach().cpu().numpy() image1 = np.transpose(image1, (1, 2, 0)) image2 = image2.detach().cpu().numpy() image2 = np.transpose(image2, (1, 2, 0)) target = target.detach().cpu().numpy() target = np.transpose(target, (1, 2, 0)) target_img = flow_vis.flow_to_color(target, convert_to_bgr=False) pred_img = list() for p_i in range(len(pred[0])): ref, sparse_flow, masks, scores = pred[1][p_i] coords = torch.round(ref.squeeze(0) * scale).long() coords = coords.cpu().numpy() confidence = np.squeeze(scores.squeeze(0).cpu().numpy()) ref_img = cv2.cvtColor(np.array(image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) for k_i in range(len(coords)): coord = coords[k_i] ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[k_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) pred_img.append(ref_img) this_pred = pred[0][p_i].squeeze(0).detach().cpu().numpy() this_pred = np.transpose(this_pred, (1, 2, 0)) this_pred = flow_vis.flow_to_color(this_pred, convert_to_bgr=False) pred_img.append(this_pred) mask_img = list() top_k = len(pred[0]) # top_k_indices = np.argsort(-confidence)[:top_k] masks = masks.squeeze(0).cpu() # masks = masks.reshape(self.num_keypoints, 1, H, W) masks = F.interpolate(masks, size=(I_H, I_W), mode="bilinear", align_corners=False).numpy() masks = masks.squeeze(1) top_k_indices = np.argsort(-np.sum(masks, axis=(1, 2)))[:top_k] for m_i in top_k_indices: coord = coords[m_i] # ref_img = cv2.circle(ref_img, coord, 10, (255, 0, 0), 10) ref_img = cv2.cvtColor(np.array(image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[m_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) mask_img.append(ref_img) masked_flow = np.expand_dims(masks[m_i], axis=-1) * this_pred mask_img.append(masked_flow) pred_img = np.concatenate(pred_img, axis=1) mask_img = np.concatenate(mask_img, axis=1) image = np.concatenate((np.concatenate((image1, image2, target_img, pred_img), axis=1), np.concatenate((image1, image2, target_img, mask_img), axis=1)), axis=0) image = image.astype(np.uint8) self.writer.add_image("{}_Image_{:02d}".format(phase, idx + 1), image, self.total_steps, dataformats='HWC') def write_images(self, image1, image2, targets, preds, phase="T"): if self.writer is None: self.writer = SummaryWriter() _, _, I_H, I_W = image1.shape scale = torch.tensor((I_W, I_H), dtype=torch.float32).view(1, 1, 2).to(image1.device) image1 = image1.detach().cpu().numpy() image1 = np.transpose(image1, (0, 2, 3, 1)) image2 = image2.detach().cpu().numpy() image2 = np.transpose(image2, (0, 2, 3, 1)) targets = targets.detach().cpu().numpy() targets = np.transpose(targets, (0, 2, 3, 1)) sampled_indices = random.sample(range(len(targets)), min(10, len(targets))) for i_i, n_i in enumerate(sampled_indices): this_image1 = image1[n_i] this_image2 = image2[n_i] target_img = flow_vis.flow_to_color(targets[n_i], convert_to_bgr=False) pred_img = list() for p_i in range(len(preds[0])): ref, sparse_flow, masks, scores = preds[1][p_i] coords = torch.round(ref * scale).long() coords = coords.cpu().numpy()[n_i] confidence = np.squeeze(scores.cpu().numpy()[n_i]) ref_img = cv2.cvtColor(np.array(this_image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) for k_i in range(len(coords)): coord = coords[k_i] # ref_img = cv2.circle(ref_img, coord, 10, (255, 0, 0), 10) ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[k_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) pred_img.append(ref_img) this_pred = preds[0][p_i].detach().cpu().numpy()[n_i] this_pred = np.transpose(this_pred, (1, 2, 0)) this_pred = flow_vis.flow_to_color(this_pred, convert_to_bgr=False) pred_img.append(this_pred) mask_img = list() top_k = len(preds[0]) # top_k_indices = np.argsort(-confidence)[:top_k] masks = masks[n_i].cpu() masks = F.interpolate(masks, size=(I_H, I_W), mode="bilinear", align_corners=False).numpy() masks = masks.squeeze(1) top_k_indices = np.argsort(-np.sum(masks, axis=(1, 2)))[:top_k] for m_i in top_k_indices: coord = coords[m_i] # ref_img = cv2.circle(ref_img, coord, 10, (255, 0, 0), 10) ref_img = cv2.cvtColor(np.array(this_image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[m_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) mask_img.append(ref_img) masked_flow = np.expand_dims(masks[m_i], axis=-1) * this_pred mask_img.append(masked_flow) pred_img = np.concatenate(pred_img, axis=1) mask_img = np.concatenate(mask_img, axis=1) image = np.concatenate((np.concatenate((this_image1, this_image2, target_img, pred_img), axis=1), np.concatenate((this_image1, this_image2, target_img, mask_img), axis=1)), axis=0) image = image.astype(np.uint8) self.writer.add_image("{}_Image_{:02d}".format(phase, i_i + 1), image, self.total_steps, dataformats='HWC') def write_seg_images(self, image1, image2, targets, preds, phase="T"): if self.writer is None: self.writer = SummaryWriter() _, _, I_H, I_W = image1.shape scale = torch.tensor((I_W, I_H), dtype=torch.float32).view(1, 1, 2).to(image1.device) image1 = image1.detach().cpu().numpy() image1 = np.transpose(image1, (0, 2, 3, 1)) image2 = image2.detach().cpu().numpy() image2 = np.transpose(image2, (0, 2, 3, 1)) targets = targets.detach().cpu().numpy() targets = np.transpose(targets, (0, 2, 3, 1)) for n_i in range(len(targets)): this_image1 = image1[n_i] this_image2 = image2[n_i] target_img = flow_vis.flow_to_color(targets[n_i], convert_to_bgr=False) pred_img = list() for p_i in range(len(preds[0])): ref, sparse_flow, masks, scores = preds[1][p_i] coords = torch.round(ref * scale).long() coords = coords.detach().cpu().numpy()[n_i] confidence = np.squeeze(scores.detach().cpu().numpy()[n_i]) ref_img = cv2.cvtColor(np.array(this_image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) for k_i in range(len(coords)): coord = coords[k_i] # ref_img = cv2.circle(ref_img, coord, 10, (255, 0, 0), 10) ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[k_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) pred_img.append(ref_img) this_pred = preds[0][p_i].detach().cpu().numpy()[n_i] this_pred = np.transpose(this_pred, (1, 2, 0)) pred_img.append(flow_vis.flow_to_color(this_pred, convert_to_bgr=False)) pred_img = np.concatenate(pred_img, axis=1) image = np.concatenate((this_image1, this_image2, target_img, pred_img), axis=1) image = image.astype(np.uint8) self.writer.add_image("{}_Image_{:02d}".format(phase, n_i + 1), image, self.total_steps, dataformats='HWC') def close(self): self.writer.close() def train(args): model = nn.DataParallel(RAFT(args), device_ids=args.gpus) print("Parameter Count: %d" % count_parameters(model)) if args.restore_ckpt is not None: model.load_state_dict(torch.load(args.restore_ckpt), strict=False) model.cuda() model.train() # if args.stage != 'chairs': # model.module.freeze_bn() train_loader = datasets.fetch_dataloader(args) optimizer, scheduler = fetch_optimizer(args, model) total_steps = 0 # scaler = GradScaler(enabled=args.mixed_precision) logger = Logger(model, scheduler) VAL_FREQ = 5000 # VAL_FREQ = 10 IMAGE_FREQ = 5000 add_noise = True should_keep_training = True while should_keep_training: for i_batch, data_blob in enumerate(train_loader): optimizer.zero_grad() image1, image2, flow, valid = [x.cuda() for x in data_blob] if args.add_noise: stdv = np.random.uniform(0.0, 5.0) image1 = (image1 + stdv * torch.randn(*image1.shape).cuda()).clamp(0.0, 255.0) image2 = (image2 + stdv * torch.randn(*image2.shape).cuda()).clamp(0.0, 255.0) flow_predictions = model(image1, image2, iters=args.iters) sparse_lambda = 1.0 if total_steps < 20000 else 0.0 # sparse_lambda = 1.0 loss, metrics = sequence_loss(flow_predictions, flow, valid, sparse_lambda, args.gamma) # scaler.scale(loss).backward() # scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) loss.backward() optimizer.step() # scaler.step(optimizer) scheduler.step() # scaler.update() logger.push(metrics) if total_steps % IMAGE_FREQ == IMAGE_FREQ - 1: logger.write_images(image1, image2, flow, flow_predictions, phase="T") if total_steps % VAL_FREQ == VAL_FREQ - 1: PATH = 'checkpoints/%d_%s.pth' % (total_steps+1, args.name) torch.save(model.state_dict(), PATH) results = {} for val_dataset in args.validation: if val_dataset == 'chairs': results.update(evaluate.validate_chairs(model.module, logger=logger, iters=args.iters)) elif val_dataset == 'sintel': results.update(evaluate.validate_sintel(model.module, iters=args.iters)) elif val_dataset == 'kitti': results.update(evaluate.validate_kitti(model.module, iters=args.iters)) logger.write_dict(results) model.train() if args.stage != 'chairs': model.module.freeze_bn() total_steps += 1 if total_steps > args.num_steps: should_keep_training = False break logger.close() PATH = 'checkpoints/%s.pth' % args.name torch.save(model.state_dict(), PATH) return PATH if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--name', default='raft', help="name your experiment") parser.add_argument('--stage', help="determines which dataset to use for training") parser.add_argument('--restore_ckpt', help="restore checkpoint") parser.add_argument('--small', action='store_true', help='use small model') parser.add_argument('--validation', type=str, nargs='+') parser.add_argument('--lr', type=float, default=0.0002) parser.add_argument('--num_steps', type=int, default=100000) parser.add_argument('--batch_size', type=int, default=6) parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512]) parser.add_argument('--gpus', type=int, nargs='+', default=[0,1]) parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') parser.add_argument('--iters', type=int, default=3) parser.add_argument('--wdecay', type=float, default=.00005) parser.add_argument('--epsilon', type=float, default=1e-8) parser.add_argument('--clip', type=float, default=1.0) parser.add_argument('--dropout', type=float, default=0.0) parser.add_argument('--gamma', type=float, default=0.8, help='exponential weighting') parser.add_argument('--add_noise', action='store_true') args = parser.parse_args() torch.manual_seed(2022) np.random.seed(2022) if not os.path.isdir('checkpoints'): os.mkdir('checkpoints') train(args)
[ "evaluate.validate_chairs", "evaluate.validate_kitti", "evaluate.validate_sintel" ]
[((59, 82), 'sys.path.append', 'sys.path.append', (['"""core"""'], {}), "('core')\n", (74, 82), False, 'import sys\n'), ((14695, 14726), 'datasets.fetch_dataloader', 'datasets.fetch_dataloader', (['args'], {}), '(args)\n', (14720, 14726), False, 'import datasets\n'), ((17465, 17490), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (17488, 17490), False, 'import argparse\n'), ((18792, 18815), 'torch.manual_seed', 'torch.manual_seed', (['(2022)'], {}), '(2022)\n', (18809, 18815), False, 'import torch\n'), ((18820, 18840), 'numpy.random.seed', 'np.random.seed', (['(2022)'], {}), '(2022)\n', (18834, 18840), True, 'import numpy as np\n'), ((5981, 6012), 'numpy.transpose', 'np.transpose', (['image1', '(1, 2, 0)'], {}), '(image1, (1, 2, 0))\n', (5993, 6012), True, 'import numpy as np\n'), ((6077, 6108), 'numpy.transpose', 'np.transpose', (['image2', '(1, 2, 0)'], {}), '(image2, (1, 2, 0))\n', (6089, 6108), True, 'import numpy as np\n'), ((6173, 6204), 'numpy.transpose', 'np.transpose', (['target', '(1, 2, 0)'], {}), '(target, (1, 2, 0))\n', (6185, 6204), True, 'import numpy as np\n'), ((6227, 6279), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['target'], {'convert_to_bgr': '(False)'}), '(target, convert_to_bgr=False)\n', (6249, 6279), False, 'import flow_vis\n'), ((8223, 8255), 'numpy.concatenate', 'np.concatenate', (['pred_img'], {'axis': '(1)'}), '(pred_img, axis=1)\n', (8237, 8255), True, 'import numpy as np\n'), ((8275, 8307), 'numpy.concatenate', 'np.concatenate', (['mask_img'], {'axis': '(1)'}), '(mask_img, axis=1)\n', (8289, 8307), True, 'import numpy as np\n'), ((9010, 9044), 'numpy.transpose', 'np.transpose', (['image1', '(0, 2, 3, 1)'], {}), '(image1, (0, 2, 3, 1))\n', (9022, 9044), True, 'import numpy as np\n'), ((9109, 9143), 'numpy.transpose', 'np.transpose', (['image2', '(0, 2, 3, 1)'], {}), '(image2, (0, 2, 3, 1))\n', (9121, 9143), True, 'import numpy as np\n'), ((9211, 9246), 'numpy.transpose', 'np.transpose', (['targets', '(0, 2, 3, 1)'], {}), '(targets, (0, 2, 3, 1))\n', (9223, 9246), True, 'import numpy as np\n'), ((12457, 12491), 'numpy.transpose', 'np.transpose', (['image1', '(0, 2, 3, 1)'], {}), '(image1, (0, 2, 3, 1))\n', (12469, 12491), True, 'import numpy as np\n'), ((12556, 12590), 'numpy.transpose', 'np.transpose', (['image2', '(0, 2, 3, 1)'], {}), '(image2, (0, 2, 3, 1))\n', (12568, 12590), True, 'import numpy as np\n'), ((12658, 12693), 'numpy.transpose', 'np.transpose', (['targets', '(0, 2, 3, 1)'], {}), '(targets, (0, 2, 3, 1))\n', (12670, 12693), True, 'import numpy as np\n'), ((14363, 14373), 'core.ours.RAFT', 'RAFT', (['args'], {}), '(args)\n', (14367, 14373), False, 'from core.ours import RAFT\n'), ((18853, 18881), 'os.path.isdir', 'os.path.isdir', (['"""checkpoints"""'], {}), "('checkpoints')\n", (18866, 18881), False, 'import os\n'), ((18891, 18914), 'os.mkdir', 'os.mkdir', (['"""checkpoints"""'], {}), "('checkpoints')\n", (18899, 18914), False, 'import os\n'), ((1332, 1362), 'torch.sum', 'torch.sum', (['(flow_gt ** 2)'], {'dim': '(1)'}), '(flow_gt ** 2, dim=1)\n', (1341, 1362), False, 'import torch\n'), ((2130, 2193), 'torch.clamp_max', 'torch.clamp_max', (['(coords[..., 1] * coords[..., 0])', '(I_H * I_W - 1)'], {}), '(coords[..., 1] * coords[..., 0], I_H * I_W - 1)\n', (2145, 2193), False, 'import torch\n'), ((2311, 2349), 'torch.gather', 'torch.gather', (['flatten_valid', '(1)', 'coords'], {}), '(flatten_valid, 1, coords)\n', (2323, 2349), False, 'import torch\n'), ((2746, 2798), 'torch.sum', 'torch.sum', (['((flow_preds[0][-1] - flow_gt) ** 2)'], {'dim': '(1)'}), '((flow_preds[0][-1] - flow_gt) ** 2, dim=1)\n', (2755, 2798), False, 'import torch\n'), ((4886, 4901), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (4899, 4901), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((5522, 5537), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (5535, 5537), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((5773, 5788), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (5786, 5788), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((7068, 7102), 'numpy.transpose', 'np.transpose', (['this_pred', '(1, 2, 0)'], {}), '(this_pred, (1, 2, 0))\n', (7080, 7102), True, 'import numpy as np\n'), ((7127, 7182), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['this_pred'], {'convert_to_bgr': '(False)'}), '(this_pred, convert_to_bgr=False)\n', (7149, 7182), False, 'import flow_vis\n'), ((8796, 8811), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (8809, 8811), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((9484, 9542), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['targets[n_i]'], {'convert_to_bgr': '(False)'}), '(targets[n_i], convert_to_bgr=False)\n', (9506, 9542), False, 'import flow_vis\n'), ((11627, 11659), 'numpy.concatenate', 'np.concatenate', (['pred_img'], {'axis': '(1)'}), '(pred_img, axis=1)\n', (11641, 11659), True, 'import numpy as np\n'), ((11683, 11715), 'numpy.concatenate', 'np.concatenate', (['mask_img'], {'axis': '(1)'}), '(mask_img, axis=1)\n', (11697, 11715), True, 'import numpy as np\n'), ((12243, 12258), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (12256, 12258), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((12835, 12893), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['targets[n_i]'], {'convert_to_bgr': '(False)'}), '(targets[n_i], convert_to_bgr=False)\n', (12857, 12893), False, 'import flow_vis\n'), ((13974, 14006), 'numpy.concatenate', 'np.concatenate', (['pred_img'], {'axis': '(1)'}), '(pred_img, axis=1)\n', (13988, 14006), True, 'import numpy as np\n'), ((14027, 14099), 'numpy.concatenate', 'np.concatenate', (['(this_image1, this_image2, target_img, pred_img)'], {'axis': '(1)'}), '((this_image1, this_image2, target_img, pred_img), axis=1)\n', (14041, 14099), True, 'import numpy as np\n'), ((14525, 14554), 'torch.load', 'torch.load', (['args.restore_ckpt'], {}), '(args.restore_ckpt)\n', (14535, 14554), False, 'import torch\n'), ((6615, 6647), 'numpy.array', 'np.array', (['image1'], {'dtype': 'np.uint8'}), '(image1, dtype=np.uint8)\n', (6623, 6647), True, 'import numpy as np\n'), ((6881, 6914), 'numpy.array', 'np.array', (['ref_img'], {'dtype': 'np.uint8'}), '(ref_img, dtype=np.uint8)\n', (6889, 6914), True, 'import numpy as np\n'), ((7452, 7527), 'torch.nn.functional.interpolate', 'F.interpolate', (['masks'], {'size': '(I_H, I_W)', 'mode': '"""bilinear"""', 'align_corners': '(False)'}), "(masks, size=(I_H, I_W), mode='bilinear', align_corners=False)\n", (7465, 7527), True, 'import torch.nn.functional as F\n'), ((7814, 7846), 'numpy.array', 'np.array', (['image1'], {'dtype': 'np.uint8'}), '(image1, dtype=np.uint8)\n', (7822, 7846), True, 'import numpy as np\n'), ((7997, 8030), 'numpy.array', 'np.array', (['ref_img'], {'dtype': 'np.uint8'}), '(ref_img, dtype=np.uint8)\n', (8005, 8030), True, 'import numpy as np\n'), ((8114, 8149), 'numpy.expand_dims', 'np.expand_dims', (['masks[m_i]'], {'axis': '(-1)'}), '(masks[m_i], axis=-1)\n', (8128, 8149), True, 'import numpy as np\n'), ((8340, 8402), 'numpy.concatenate', 'np.concatenate', (['(image1, image2, target_img, pred_img)'], {'axis': '(1)'}), '((image1, image2, target_img, pred_img), axis=1)\n', (8354, 8402), True, 'import numpy as np\n'), ((8436, 8498), 'numpy.concatenate', 'np.concatenate', (['(image1, image2, target_img, mask_img)'], {'axis': '(1)'}), '((image1, image2, target_img, mask_img), axis=1)\n', (8450, 8498), True, 'import numpy as np\n'), ((10457, 10491), 'numpy.transpose', 'np.transpose', (['this_pred', '(1, 2, 0)'], {}), '(this_pred, (1, 2, 0))\n', (10469, 10491), True, 'import numpy as np\n'), ((10520, 10575), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['this_pred'], {'convert_to_bgr': '(False)'}), '(this_pred, convert_to_bgr=False)\n', (10542, 10575), False, 'import flow_vis\n'), ((13826, 13860), 'numpy.transpose', 'np.transpose', (['this_pred', '(1, 2, 0)'], {}), '(this_pred, (1, 2, 0))\n', (13838, 13860), True, 'import numpy as np\n'), ((15267, 15294), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(5.0)'], {}), '(0.0, 5.0)\n', (15284, 15294), True, 'import numpy as np\n'), ((2077, 2101), 'torch.round', 'torch.round', (['(ref * scale)'], {}), '(ref * scale)\n', (2088, 2101), False, 'import torch\n'), ((7605, 7631), 'numpy.sum', 'np.sum', (['masks'], {'axis': '(1, 2)'}), '(masks, axis=(1, 2))\n', (7611, 7631), True, 'import numpy as np\n'), ((9896, 9933), 'numpy.array', 'np.array', (['this_image1'], {'dtype': 'np.uint8'}), '(this_image1, dtype=np.uint8)\n', (9904, 9933), True, 'import numpy as np\n'), ((10263, 10296), 'numpy.array', 'np.array', (['ref_img'], {'dtype': 'np.uint8'}), '(ref_img, dtype=np.uint8)\n', (10271, 10296), True, 'import numpy as np\n'), ((10803, 10878), 'torch.nn.functional.interpolate', 'F.interpolate', (['masks'], {'size': '(I_H, I_W)', 'mode': '"""bilinear"""', 'align_corners': '(False)'}), "(masks, size=(I_H, I_W), mode='bilinear', align_corners=False)\n", (10816, 10878), True, 'import torch.nn.functional as F\n'), ((11189, 11226), 'numpy.array', 'np.array', (['this_image1'], {'dtype': 'np.uint8'}), '(this_image1, dtype=np.uint8)\n', (11197, 11226), True, 'import numpy as np\n'), ((11385, 11418), 'numpy.array', 'np.array', (['ref_img'], {'dtype': 'np.uint8'}), '(ref_img, dtype=np.uint8)\n', (11393, 11418), True, 'import numpy as np\n'), ((11510, 11545), 'numpy.expand_dims', 'np.expand_dims', (['masks[m_i]'], {'axis': '(-1)'}), '(masks[m_i], axis=-1)\n', (11524, 11545), True, 'import numpy as np\n'), ((11752, 11824), 'numpy.concatenate', 'np.concatenate', (['(this_image1, this_image2, target_img, pred_img)'], {'axis': '(1)'}), '((this_image1, this_image2, target_img, pred_img), axis=1)\n', (11766, 11824), True, 'import numpy as np\n'), ((11862, 11934), 'numpy.concatenate', 'np.concatenate', (['(this_image1, this_image2, target_img, mask_img)'], {'axis': '(1)'}), '((this_image1, this_image2, target_img, mask_img), axis=1)\n', (11876, 11934), True, 'import numpy as np\n'), ((13265, 13302), 'numpy.array', 'np.array', (['this_image1'], {'dtype': 'np.uint8'}), '(this_image1, dtype=np.uint8)\n', (13273, 13302), True, 'import numpy as np\n'), ((13632, 13665), 'numpy.array', 'np.array', (['ref_img'], {'dtype': 'np.uint8'}), '(ref_img, dtype=np.uint8)\n', (13640, 13665), True, 'import numpy as np\n'), ((13893, 13948), 'flow_vis.flow_to_color', 'flow_vis.flow_to_color', (['this_pred'], {'convert_to_bgr': '(False)'}), '(this_pred, convert_to_bgr=False)\n', (13915, 13948), False, 'import flow_vis\n'), ((5841, 5886), 'torch.tensor', 'torch.tensor', (['(I_W, I_H)'], {'dtype': 'torch.float32'}), '((I_W, I_H), dtype=torch.float32)\n', (5853, 5886), False, 'import torch\n'), ((8867, 8912), 'torch.tensor', 'torch.tensor', (['(I_W, I_H)'], {'dtype': 'torch.float32'}), '((I_W, I_H), dtype=torch.float32)\n', (8879, 8912), False, 'import torch\n'), ((9707, 9731), 'torch.round', 'torch.round', (['(ref * scale)'], {}), '(ref * scale)\n', (9718, 9731), False, 'import torch\n'), ((10964, 10990), 'numpy.sum', 'np.sum', (['masks'], {'axis': '(1, 2)'}), '(masks, axis=(1, 2))\n', (10970, 10990), True, 'import numpy as np\n'), ((12314, 12359), 'torch.tensor', 'torch.tensor', (['(I_W, I_H)'], {'dtype': 'torch.float32'}), '((I_W, I_H), dtype=torch.float32)\n', (12326, 12359), False, 'import torch\n'), ((13058, 13082), 'torch.round', 'torch.round', (['(ref * scale)'], {}), '(ref * scale)\n', (13069, 13082), False, 'import torch\n'), ((1859, 1912), 'torch.tensor', 'torch.tensor', (['(I_W - 1, I_H - 1)'], {'dtype': 'torch.float32'}), '((I_W - 1, I_H - 1), dtype=torch.float32)\n', (1871, 1912), False, 'import torch\n'), ((2402, 2435), 'torch.sum', 'torch.sum', (['(sparse_gt ** 2)'], {'dim': '(-1)'}), '(sparse_gt ** 2, dim=-1)\n', (2411, 2435), False, 'import torch\n'), ((16602, 16673), 'evaluate.validate_chairs', 'evaluate.validate_chairs', (['model.module'], {'logger': 'logger', 'iters': 'args.iters'}), '(model.module, logger=logger, iters=args.iters)\n', (16626, 16673), False, 'import evaluate\n'), ((16764, 16820), 'evaluate.validate_sintel', 'evaluate.validate_sintel', (['model.module'], {'iters': 'args.iters'}), '(model.module, iters=args.iters)\n', (16788, 16820), False, 'import evaluate\n'), ((16910, 16965), 'evaluate.validate_kitti', 'evaluate.validate_kitti', (['model.module'], {'iters': 'args.iters'}), '(model.module, iters=args.iters)\n', (16933, 16965), False, 'import evaluate\n'), ((15337, 15363), 'torch.randn', 'torch.randn', (['*image1.shape'], {}), '(*image1.shape)\n', (15348, 15363), False, 'import torch\n'), ((15432, 15458), 'torch.randn', 'torch.randn', (['*image2.shape'], {}), '(*image2.shape)\n', (15443, 15458), False, 'import torch\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import numpy as np import tensorflow as tf from evaluate import evaluate from utils import get_data, tf_melspectogram from shallow_nn import shallow_nn from deep_nn import deep_nn from shallow_nn_improve import shallow_nn as shallow_nn_improve from deep_nn_improve import deep_nn as deep_nn_improve FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer('epochs', 100, 'Number of mini-batches to train on. (default: %(default)d)') tf.app.flags.DEFINE_integer('network', 0, 'Type of network to use, 0 for shallow, 1 for deep. (default: %(default)d)') tf.app.flags.DEFINE_integer('improve', 0, 'Turn improvements on or off, 0 for off, 1 for improvements on. (default: %(default)d)') tf.app.flags.DEFINE_float('decay', 0, 'Amount to decay learning rate. Greater than 0 enables decaying (default: %(default)d') tf.app.flags.DEFINE_integer('log_frequency', 100, 'Number of steps between logging results to the console and saving summaries (default: %(default)d)') tf.app.flags.DEFINE_integer('augment', 0, 'Use augmentation, 0 for off, 1 for on (default: %(default)d)') tf.app.flags.DEFINE_integer('num_parallel_calls', 1, 'Number of cpu cores to use to preprocess data') tf.app.flags.DEFINE_integer('save_model', 1000, 'Number of steps between model saves (default: %(default)d)') tf.app.flags.DEFINE_integer('save_images', 0, 'Whether to save spectrogram images, 0 to not save, 1 to save. (default: %(default)d)') # Optimisation hyperparameters tf.app.flags.DEFINE_integer( 'batch_size', 16, 'Number of examples per mini-batch (default: %(default)d)') tf.app.flags.DEFINE_float( 'learning_rate', 5e-5, 'Learning rate (default: %(default)d)') tf.app.flags.DEFINE_integer( "input_width", 80, "Input width (default: %(default)d)") tf.app.flags.DEFINE_integer( "input_height", 80, "Input height (default: %(default)d)") tf.app.flags.DEFINE_integer( "input_channels", 1, "Input channels (default: %(default)d)" ) tf.app.flags.DEFINE_integer( "num_classes", 10, "Number of classes (default: %(default)d)" ) tf.app.flags.DEFINE_string( "log_dir", "{cwd}/logs/".format(cwd=os.getcwd()), "Directory where to write event logs and checkpoint. (default: %(default)s)", ) run_log_dir = os.path.join(FLAGS.log_dir, 'exp_lr_{learning_rate}_decay_{decay}_bs_{batch_size}_e_{epochs}_{network}_improve_{improve}_augment_{augment}'.format( learning_rate=FLAGS.learning_rate, decay=FLAGS.decay, batch_size=FLAGS.batch_size, epochs=FLAGS.epochs, network='shallow' if (FLAGS.network == 0) else 'deep', improve=FLAGS.improve, augment=FLAGS.augment)) def model(iterator, is_training, nn): next_x, next_y = iterator.get_next() with tf.variable_scope('Model', reuse=tf.AUTO_REUSE): y_out, img_summary = nn(next_x, is_training) # Compute categorical loss with tf.variable_scope("cross_entropy"): cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2( labels=next_y, logits=y_out) ) # L1 regularise regularization_penalty = tf.losses.get_regularization_loss( name="total_regularization_loss" ) regularized_loss = cross_entropy + regularization_penalty accuracy, accuracy_op = tf.metrics.accuracy( tf.argmax(next_y, axis=1), tf.argmax(y_out, axis=1), name="accuracy_train") return regularized_loss, img_summary, accuracy, accuracy_op def calc_accuracy(iterator, is_training, nn): next_x, next_y = iterator.get_next() with tf.variable_scope('Model', reuse=tf.AUTO_REUSE): y_out, _ = nn(next_x, is_training) accuracy, accuracy_op = tf.metrics.accuracy( tf.argmax(next_y, axis=1), tf.argmax(y_out, axis=1), name="accuracy_test") return accuracy, accuracy_op def accumulate_results(iterator, is_training, nn): x, y, i = iterator.get_next() with tf.variable_scope('Model', reuse=tf.AUTO_REUSE): y_out, _ = nn(x, is_training) return (x, y, y_out, i) def _preprocess(features, label): label = tf.one_hot(indices=label, depth=FLAGS.num_classes, dtype=tf.uint8) return features, label def main(_): ( train_set_data, train_set_labels, _, test_set_data, test_set_labels, test_set_track_ids, ) = get_data() print("Making TF graph") start = time.time() is_training_placeholder = tf.placeholder_with_default(False, shape=()) features_placeholder = tf.placeholder( tf.float32, (None, np.shape(train_set_data)[1]) ) labels_placeholder = tf.placeholder(tf.uint8, (None)) track_ids_placeholder = tf.placeholder(tf.uint8, (None)) shuffle_buffer_size = len(train_set_data) dataset = tf.data.Dataset.from_tensor_slices( (features_placeholder, labels_placeholder) ) dataset = dataset.shuffle(buffer_size=shuffle_buffer_size) dataset = dataset.apply( tf.data.experimental.map_and_batch( _preprocess, FLAGS.batch_size, num_parallel_calls=FLAGS.num_parallel_calls) ) dataset = dataset.prefetch(1) train_iterator = dataset.make_initializable_iterator() test_iterator = dataset.make_initializable_iterator() eval_dataset = tf.data.Dataset.from_tensor_slices( (features_placeholder, labels_placeholder, track_ids_placeholder) ) eval_dataset = eval_dataset.map( lambda features, label, track_id: ( features, tf.one_hot(indices=label, depth=FLAGS.num_classes, dtype=tf.uint8), track_id, ) ) eval_dataset = eval_dataset.batch(1) eval_iterator = eval_dataset.make_initializable_iterator() if (FLAGS.network == 0): if (FLAGS.improve == 0): print("Using Shallow network") nn = shallow_nn else: print("Using Shallow Improved network") nn = shallow_nn_improve else: if (FLAGS.improve == 0): print("Using Deep Network") nn = deep_nn else: print("Using Deep Improved Network") nn = deep_nn_improve loss, _, train_acc, train_acc_op = model( train_iterator, is_training_placeholder, nn) global_step = tf.Variable(0, trainable=False) if (FLAGS.decay > 0): learning_rate = tf.train.exponential_decay( FLAGS.learning_rate, global_step, 15000, FLAGS.decay) else: learning_rate = FLAGS.learning_rate # Adam Optimiser # default values match that in paper update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimiser = tf.train.AdamOptimizer( learning_rate, name="AdamOpt").minimize(loss, global_step=global_step) validation_accuracy, acc_op = calc_accuracy( test_iterator, is_training_placeholder, nn) evaluator = accumulate_results( eval_iterator, is_training_placeholder, nn) loss_summary = tf.summary.scalar("Loss", loss) acc_summary = tf.summary.scalar("Accuracy", validation_accuracy) train_acc_summary = tf.summary.scalar("Accuracy", train_acc) training_summary = tf.summary.merge([loss_summary, train_acc_summary]) validation_summary = tf.summary.merge([acc_summary]) # Isolate the variables stored behind the scenes by the metric operation running_vars = tf.get_collection( tf.GraphKeys.LOCAL_VARIABLES, scope="accuracy_test") train_running_vars = tf.get_collection( tf.GraphKeys.LOCAL_VARIABLES, scope="accuracy_train") # Define initializer to initialize/reset running variables running_vars_initializer = tf.variables_initializer( var_list=running_vars) train_running_vars_initializer = tf.variables_initializer( var_list=train_running_vars) end = time.time() print("Time to prep TF ops: {:.2f}s".format(end - start)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.graph.finalize() summary_writer = tf.summary.FileWriter( run_log_dir + "_train", sess.graph) summary_writer_validation = tf.summary.FileWriter( run_log_dir + "_validate", sess.graph ) for epoch in range(FLAGS.epochs): sess.run(running_vars_initializer) sess.run(train_running_vars_initializer) sess.run(train_iterator.initializer, feed_dict={ features_placeholder: train_set_data, labels_placeholder: train_set_labels}) # Run until all samples done while True: try: _, acc_train, summary_str = sess.run([optimiser, train_acc_op, training_summary], feed_dict={ is_training_placeholder: True}) except tf.errors.OutOfRangeError: break summary_writer.add_summary(summary_str, epoch) sess.run(test_iterator.initializer, feed_dict={ features_placeholder: test_set_data, labels_placeholder: test_set_labels}) while True: try: acc, acc_summary_str = sess.run( [acc_op, validation_summary]) except tf.errors.OutOfRangeError: break summary_writer_validation.add_summary(acc_summary_str, epoch) print("Accuracy after epoch {} - Training: {:.2f}% Validation: {:.2f}%".format( str(epoch), acc_train * 100.0, acc * 100.0)) sess.run(eval_iterator.initializer, feed_dict={ features_placeholder: test_set_data, labels_placeholder: test_set_labels, track_ids_placeholder: test_set_track_ids}) results = [None] * np.shape(test_set_data)[0] count = 0 while True: try: evaluated = sess.run(evaluator) results[count] = evaluated count += 1 except tf.errors.OutOfRangeError: break raw_probability, maximum_probability, majority_vote = evaluate(results) print("-----===== Summary =====-----") print("Raw Probability: {:.2f}%".format(raw_probability * 100.0)) print("Maximum Probability: {:.2f}%".format( maximum_probability * 100.0)) print("Majority Vote: {:.2f}%".format(majority_vote * 100)) if __name__ == "__main__": tf.app.run(main=main)
[ "evaluate.evaluate" ]
[((461, 569), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""epochs"""', '(100)', '"""Number of mini-batches to train on. (default: %(default)d)"""'], {}), "('epochs', 100,\n 'Number of mini-batches to train on. (default: %(default)d)')\n", (488, 569), True, 'import tensorflow as tf\n'), ((594, 721), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""network"""', '(0)', '"""Type of network to use, 0 for shallow, 1 for deep. (default: %(default)d)"""'], {}), "('network', 0,\n 'Type of network to use, 0 for shallow, 1 for deep. (default: %(default)d)'\n )\n", (621, 721), True, 'import tensorflow as tf\n'), ((741, 880), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""improve"""', '(0)', '"""Turn improvements on or off, 0 for off, 1 for improvements on. (default: %(default)d)"""'], {}), "('improve', 0,\n 'Turn improvements on or off, 0 for off, 1 for improvements on. (default: %(default)d)'\n )\n", (768, 880), True, 'import tensorflow as tf\n'), ((900, 1034), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""decay"""', '(0)', '"""Amount to decay learning rate. Greater than 0 enables decaying (default: %(default)d"""'], {}), "('decay', 0,\n 'Amount to decay learning rate. Greater than 0 enables decaying (default: %(default)d'\n )\n", (925, 1034), True, 'import tensorflow as tf\n'), ((1052, 1212), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""log_frequency"""', '(100)', '"""Number of steps between logging results to the console and saving summaries (default: %(default)d)"""'], {}), "('log_frequency', 100,\n 'Number of steps between logging results to the console and saving summaries (default: %(default)d)'\n )\n", (1079, 1212), True, 'import tensorflow as tf\n'), ((1232, 1341), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""augment"""', '(0)', '"""Use augmentation, 0 for off, 1 for on (default: %(default)d)"""'], {}), "('augment', 0,\n 'Use augmentation, 0 for off, 1 for on (default: %(default)d)')\n", (1259, 1341), True, 'import tensorflow as tf\n'), ((1366, 1471), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_parallel_calls"""', '(1)', '"""Number of cpu cores to use to preprocess data"""'], {}), "('num_parallel_calls', 1,\n 'Number of cpu cores to use to preprocess data')\n", (1393, 1471), True, 'import tensorflow as tf\n'), ((1496, 1609), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""save_model"""', '(1000)', '"""Number of steps between model saves (default: %(default)d)"""'], {}), "('save_model', 1000,\n 'Number of steps between model saves (default: %(default)d)')\n", (1523, 1609), True, 'import tensorflow as tf\n'), ((1634, 1776), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""save_images"""', '(0)', '"""Whether to save spectrogram images, 0 to not save, 1 to save. (default: %(default)d)"""'], {}), "('save_images', 0,\n 'Whether to save spectrogram images, 0 to not save, 1 to save. (default: %(default)d)'\n )\n", (1661, 1776), True, 'import tensorflow as tf\n'), ((1828, 1937), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""batch_size"""', '(16)', '"""Number of examples per mini-batch (default: %(default)d)"""'], {}), "('batch_size', 16,\n 'Number of examples per mini-batch (default: %(default)d)')\n", (1855, 1937), True, 'import tensorflow as tf\n'), ((1939, 2032), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""learning_rate"""', '(5e-05)', '"""Learning rate (default: %(default)d)"""'], {}), "('learning_rate', 5e-05,\n 'Learning rate (default: %(default)d)')\n", (1964, 2032), True, 'import tensorflow as tf\n'), ((2033, 2121), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""input_width"""', '(80)', '"""Input width (default: %(default)d)"""'], {}), "('input_width', 80,\n 'Input width (default: %(default)d)')\n", (2060, 2121), True, 'import tensorflow as tf\n'), ((2123, 2213), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""input_height"""', '(80)', '"""Input height (default: %(default)d)"""'], {}), "('input_height', 80,\n 'Input height (default: %(default)d)')\n", (2150, 2213), True, 'import tensorflow as tf\n'), ((2215, 2308), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""input_channels"""', '(1)', '"""Input channels (default: %(default)d)"""'], {}), "('input_channels', 1,\n 'Input channels (default: %(default)d)')\n", (2242, 2308), True, 'import tensorflow as tf\n'), ((2311, 2405), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_classes"""', '(10)', '"""Number of classes (default: %(default)d)"""'], {}), "('num_classes', 10,\n 'Number of classes (default: %(default)d)')\n", (2338, 2405), True, 'import tensorflow as tf\n'), ((3423, 3490), 'tensorflow.losses.get_regularization_loss', 'tf.losses.get_regularization_loss', ([], {'name': '"""total_regularization_loss"""'}), "(name='total_regularization_loss')\n", (3456, 3490), True, 'import tensorflow as tf\n'), ((4385, 4451), 'tensorflow.one_hot', 'tf.one_hot', ([], {'indices': 'label', 'depth': 'FLAGS.num_classes', 'dtype': 'tf.uint8'}), '(indices=label, depth=FLAGS.num_classes, dtype=tf.uint8)\n', (4395, 4451), True, 'import tensorflow as tf\n'), ((4646, 4656), 'utils.get_data', 'get_data', ([], {}), '()\n', (4654, 4656), False, 'from utils import get_data, tf_melspectogram\n'), ((4699, 4710), 'time.time', 'time.time', ([], {}), '()\n', (4708, 4710), False, 'import time\n'), ((4742, 4786), 'tensorflow.placeholder_with_default', 'tf.placeholder_with_default', (['(False)'], {'shape': '()'}), '(False, shape=())\n', (4769, 4786), True, 'import tensorflow as tf\n'), ((4918, 4948), 'tensorflow.placeholder', 'tf.placeholder', (['tf.uint8', 'None'], {}), '(tf.uint8, None)\n', (4932, 4948), True, 'import tensorflow as tf\n'), ((4979, 5009), 'tensorflow.placeholder', 'tf.placeholder', (['tf.uint8', 'None'], {}), '(tf.uint8, None)\n', (4993, 5009), True, 'import tensorflow as tf\n'), ((5073, 5151), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(features_placeholder, labels_placeholder)'], {}), '((features_placeholder, labels_placeholder))\n', (5107, 5151), True, 'import tensorflow as tf\n'), ((5568, 5673), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(features_placeholder, labels_placeholder, track_ids_placeholder)'], {}), '((features_placeholder,\n labels_placeholder, track_ids_placeholder))\n', (5602, 5673), True, 'import tensorflow as tf\n'), ((6568, 6599), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'trainable': '(False)'}), '(0, trainable=False)\n', (6579, 6599), True, 'import tensorflow as tf\n'), ((6877, 6919), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.UPDATE_OPS'], {}), '(tf.GraphKeys.UPDATE_OPS)\n', (6894, 6919), True, 'import tensorflow as tf\n'), ((7304, 7335), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""Loss"""', 'loss'], {}), "('Loss', loss)\n", (7321, 7335), True, 'import tensorflow as tf\n'), ((7354, 7404), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""Accuracy"""', 'validation_accuracy'], {}), "('Accuracy', validation_accuracy)\n", (7371, 7404), True, 'import tensorflow as tf\n'), ((7429, 7469), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""Accuracy"""', 'train_acc'], {}), "('Accuracy', train_acc)\n", (7446, 7469), True, 'import tensorflow as tf\n'), ((7494, 7545), 'tensorflow.summary.merge', 'tf.summary.merge', (['[loss_summary, train_acc_summary]'], {}), '([loss_summary, train_acc_summary])\n', (7510, 7545), True, 'import tensorflow as tf\n'), ((7571, 7602), 'tensorflow.summary.merge', 'tf.summary.merge', (['[acc_summary]'], {}), '([acc_summary])\n', (7587, 7602), True, 'import tensorflow as tf\n'), ((7700, 7770), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.LOCAL_VARIABLES'], {'scope': '"""accuracy_test"""'}), "(tf.GraphKeys.LOCAL_VARIABLES, scope='accuracy_test')\n", (7717, 7770), True, 'import tensorflow as tf\n'), ((7805, 7876), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.LOCAL_VARIABLES'], {'scope': '"""accuracy_train"""'}), "(tf.GraphKeys.LOCAL_VARIABLES, scope='accuracy_train')\n", (7822, 7876), True, 'import tensorflow as tf\n'), ((7981, 8028), 'tensorflow.variables_initializer', 'tf.variables_initializer', ([], {'var_list': 'running_vars'}), '(var_list=running_vars)\n', (8005, 8028), True, 'import tensorflow as tf\n'), ((8075, 8128), 'tensorflow.variables_initializer', 'tf.variables_initializer', ([], {'var_list': 'train_running_vars'}), '(var_list=train_running_vars)\n', (8099, 8128), True, 'import tensorflow as tf\n'), ((8149, 8160), 'time.time', 'time.time', ([], {}), '()\n', (8158, 8160), False, 'import time\n'), ((10739, 10760), 'tensorflow.app.run', 'tf.app.run', ([], {'main': 'main'}), '(main=main)\n', (10749, 10760), True, 'import tensorflow as tf\n'), ((3043, 3090), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""Model"""'], {'reuse': 'tf.AUTO_REUSE'}), "('Model', reuse=tf.AUTO_REUSE)\n", (3060, 3090), True, 'import tensorflow as tf\n'), ((3186, 3220), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""cross_entropy"""'], {}), "('cross_entropy')\n", (3203, 3220), True, 'import tensorflow as tf\n'), ((3625, 3650), 'tensorflow.argmax', 'tf.argmax', (['next_y'], {'axis': '(1)'}), '(next_y, axis=1)\n', (3634, 3650), True, 'import tensorflow as tf\n'), ((3652, 3676), 'tensorflow.argmax', 'tf.argmax', (['y_out'], {'axis': '(1)'}), '(y_out, axis=1)\n', (3661, 3676), True, 'import tensorflow as tf\n'), ((3865, 3912), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""Model"""'], {'reuse': 'tf.AUTO_REUSE'}), "('Model', reuse=tf.AUTO_REUSE)\n", (3882, 3912), True, 'import tensorflow as tf\n'), ((4015, 4040), 'tensorflow.argmax', 'tf.argmax', (['next_y'], {'axis': '(1)'}), '(next_y, axis=1)\n', (4024, 4040), True, 'import tensorflow as tf\n'), ((4042, 4066), 'tensorflow.argmax', 'tf.argmax', (['y_out'], {'axis': '(1)'}), '(y_out, axis=1)\n', (4051, 4066), True, 'import tensorflow as tf\n'), ((4221, 4268), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""Model"""'], {'reuse': 'tf.AUTO_REUSE'}), "('Model', reuse=tf.AUTO_REUSE)\n", (4238, 4268), True, 'import tensorflow as tf\n'), ((5266, 5380), 'tensorflow.data.experimental.map_and_batch', 'tf.data.experimental.map_and_batch', (['_preprocess', 'FLAGS.batch_size'], {'num_parallel_calls': 'FLAGS.num_parallel_calls'}), '(_preprocess, FLAGS.batch_size,\n num_parallel_calls=FLAGS.num_parallel_calls)\n', (5300, 5380), True, 'import tensorflow as tf\n'), ((6650, 6735), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['FLAGS.learning_rate', 'global_step', '(15000)', 'FLAGS.decay'], {}), '(FLAGS.learning_rate, global_step, 15000, FLAGS.decay\n )\n', (6676, 6735), True, 'import tensorflow as tf\n'), ((6929, 6964), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['update_ops'], {}), '(update_ops)\n', (6952, 6964), True, 'import tensorflow as tf\n'), ((8233, 8245), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (8243, 8245), True, 'import tensorflow as tf\n'), ((8363, 8420), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["(run_log_dir + '_train')", 'sess.graph'], {}), "(run_log_dir + '_train', sess.graph)\n", (8384, 8420), True, 'import tensorflow as tf\n'), ((8470, 8530), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["(run_log_dir + '_validate')", 'sess.graph'], {}), "(run_log_dir + '_validate', sess.graph)\n", (8491, 8530), True, 'import tensorflow as tf\n'), ((10403, 10420), 'evaluate.evaluate', 'evaluate', (['results'], {}), '(results)\n', (10411, 10420), False, 'from evaluate import evaluate\n'), ((2480, 2491), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2489, 2491), False, 'import os\n'), ((3274, 3345), 'tensorflow.nn.softmax_cross_entropy_with_logits_v2', 'tf.nn.softmax_cross_entropy_with_logits_v2', ([], {'labels': 'next_y', 'logits': 'y_out'}), '(labels=next_y, logits=y_out)\n', (3316, 3345), True, 'import tensorflow as tf\n'), ((8272, 8305), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8303, 8305), True, 'import tensorflow as tf\n'), ((4858, 4882), 'numpy.shape', 'np.shape', (['train_set_data'], {}), '(train_set_data)\n', (4866, 4882), True, 'import numpy as np\n'), ((5799, 5865), 'tensorflow.one_hot', 'tf.one_hot', ([], {'indices': 'label', 'depth': 'FLAGS.num_classes', 'dtype': 'tf.uint8'}), '(indices=label, depth=FLAGS.num_classes, dtype=tf.uint8)\n', (5809, 5865), True, 'import tensorflow as tf\n'), ((6986, 7039), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['learning_rate'], {'name': '"""AdamOpt"""'}), "(learning_rate, name='AdamOpt')\n", (7008, 7039), True, 'import tensorflow as tf\n'), ((10071, 10094), 'numpy.shape', 'np.shape', (['test_set_data'], {}), '(test_set_data)\n', (10079, 10094), True, 'import numpy as np\n')]
from implicit_neural_networks import IMLP import torch import torch.optim as optim import numpy as np from evaluate import evaluate_model from datetime import datetime from loss_utils import get_gradient_loss, get_rigidity_loss, \ get_optical_flow_loss, get_optical_flow_alpha_loss from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow import sys from torch.utils.tensorboard import SummaryWriter import logging import json from pathlib import Path device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def main(config): maximum_number_of_frames = config["maximum_number_of_frames"] resx = np.int64(config["resx"]) resy = np.int64(config["resy"]) iters_num = config["iters_num"] #batch size: samples = config["samples_batch"] # evaluation frequency (in terms of iterations number) evaluate_every = np.int64(config["evaluate_every"]) # optionally it is possible to load a checkpoint load_checkpoint = config["load_checkpoint"] # set to true to continue from a checkpoint checkpoint_path = config["checkpoint_path"] # a data folder that contains folders named "[video_name]","[video_name]_flow","[video_name]_maskrcnn" data_folder = Path(config["data_folder"]) results_folder_name = config["results_folder_name"] # the folder (under the code's folder where the experiments will be saved. add_to_experiment_folder_name = config["add_to_experiment_folder_name"] # for each experiment folder (saved inside "results_folder_name") add this string # boolean variables for determining if a pretraining is used: pretrain_mapping1 = config["pretrain_mapping1"] pretrain_mapping2 = config["pretrain_mapping2"] pretrain_iter_number = config["pretrain_iter_number"] # the scale of the atlas uv coordinates relative to frame's xy coordinates uv_mapping_scale = config["uv_mapping_scale"] # M_\alpha's hyper parameters: positional_encoding_num_alpha = config["positional_encoding_num_alpha"] number_of_channels_alpha = config["number_of_channels_alpha"] number_of_layers_alpha = config["number_of_layers_alpha"] # M_f's hyper parameters use_positional_encoding_mapping1 = config["use_positional_encoding_mapping1"] number_of_positional_encoding_mapping1 = config["number_of_positional_encoding_mapping1"] number_of_layers_mapping1 = config["number_of_layers_mapping1"] number_of_channels_mapping1 = config["number_of_channels_mapping1"] # M_b's hyper parameters use_positional_encoding_mapping2 = config["use_positional_encoding_mapping2"] number_of_positional_encoding_mapping2 = config["number_of_positional_encoding_mapping2"] number_of_layers_mapping2 = config["number_of_layers_mapping2"] number_of_channels_mapping2 = config["number_of_channels_mapping2"] # Atlas MLP's hyper parameters number_of_channels_atlas = config["number_of_channels_atlas"] number_of_layers_atlas = config["number_of_layers_atlas"] positional_encoding_num_atlas = config[ "positional_encoding_num_atlas"] # bootstrapping configuration: alpha_bootstrapping_factor = config["alpha_bootstrapping_factor"] stop_bootstrapping_iteration = config["stop_bootstrapping_iteration"] # coefficients for the different loss terms rgb_coeff = config["rgb_coeff"] # coefficient for rgb loss term: alpha_flow_factor = config["alpha_flow_factor"] sparsity_coeff = config["sparsity_coeff"] # optical flow loss term coefficient (beta_f in the paper): optical_flow_coeff = config["optical_flow_coeff"] use_gradient_loss = config["use_gradient_loss"] gradient_loss_coeff = config["gradient_loss_coeff"] rigidity_coeff = config["rigidity_coeff"] # coefficient for the rigidity loss term derivative_amount = config["derivative_amount"] # For finite differences gradient computation: # for using global (in addition to the current local) rigidity loss: include_global_rigidity_loss = config["include_global_rigidity_loss"] # Finite differences parameters for the global rigidity terms: global_rigidity_derivative_amount_fg = config["global_rigidity_derivative_amount_fg"] global_rigidity_derivative_amount_bg = config["global_rigidity_derivative_amount_bg"] global_rigidity_coeff_fg = config["global_rigidity_coeff_fg"] global_rigidity_coeff_bg = config["global_rigidity_coeff_bg"] stop_global_rigidity = config["stop_global_rigidity"] use_optical_flow = True vid_name = data_folder.name vid_root = data_folder.parent results_folder = Path( f'./{results_folder_name}/{vid_name}_{datetime.utcnow().strftime("%m_%d_%Y__%H_%M_%S_%f")}{add_to_experiment_folder_name}') results_folder.mkdir(parents=True, exist_ok=True) with open('%s/config.json' % results_folder, 'w') as json_file: json.dump(config, json_file, indent=4) logging.basicConfig( filename='%s/log.log' % results_folder, level=logging.INFO, format='%(asctime)s %(message)s') logging.info('Started') writer = SummaryWriter(log_dir=str(results_folder)) optical_flows_mask, video_frames, optical_flows_reverse_mask, mask_frames, video_frames_dx, video_frames_dy, optical_flows_reverse, optical_flows = load_input_data( resy, resx, maximum_number_of_frames, data_folder, True, True, vid_root, vid_name) number_of_frames=video_frames.shape[3] # save a video showing the masked part of the forward optical flow:s save_mask_flow(optical_flows_mask, video_frames, results_folder) model_F_mapping1 = IMLP( input_dim=3, output_dim=2, hidden_dim=number_of_channels_mapping1, use_positional=use_positional_encoding_mapping1, positional_dim=number_of_positional_encoding_mapping1, num_layers=number_of_layers_mapping1, skip_layers=[]).to(device) model_F_mapping2 = IMLP( input_dim=3, output_dim=2, hidden_dim=number_of_channels_mapping2, use_positional=use_positional_encoding_mapping2, positional_dim=number_of_positional_encoding_mapping2, num_layers=number_of_layers_mapping2, skip_layers=[]).to(device) model_F_atlas = IMLP( input_dim=2, output_dim=3, hidden_dim=number_of_channels_atlas, use_positional=True, positional_dim=positional_encoding_num_atlas, num_layers=number_of_layers_atlas, skip_layers=[4, 7]).to(device) model_alpha = IMLP( input_dim=3, output_dim=1, hidden_dim=number_of_channels_alpha, use_positional=True, positional_dim=positional_encoding_num_alpha, num_layers=number_of_layers_alpha, skip_layers=[]).to(device) start_iteration = 0 optimizer_all = optim.Adam( [{'params': list(model_F_mapping1.parameters())}, {'params': list(model_F_mapping2.parameters())}, {'params': list(model_alpha.parameters())}, {'params': list(model_F_atlas.parameters())}], lr=0.0001) larger_dim = np.maximum(resx, resy) if not load_checkpoint: if pretrain_mapping1: model_F_mapping1 = pre_train_mapping(model_F_mapping1, number_of_frames, uv_mapping_scale, resx=resx, resy=resy, larger_dim=larger_dim,device=device, pretrain_iters=pretrain_iter_number) if pretrain_mapping2: model_F_mapping2 = pre_train_mapping(model_F_mapping2, number_of_frames, uv_mapping_scale, resx=resx, resy=resy, larger_dim=larger_dim, device=device,pretrain_iters=pretrain_iter_number) else: init_file = torch.load(checkpoint_path) model_F_atlas.load_state_dict(init_file["F_atlas_state_dict"]) model_F_mapping1.load_state_dict(init_file["model_F_mapping1_state_dict"]) model_F_mapping2.load_state_dict(init_file["model_F_mapping2_state_dict"]) model_alpha.load_state_dict(init_file["model_F_alpha_state_dict"]) optimizer_all.load_state_dict(init_file["optimizer_all_state_dict"]) start_iteration = init_file["iteration"] jif_all = get_tuples(number_of_frames, video_frames) # Start training! for i in range(start_iteration, iters_num): if i > stop_bootstrapping_iteration: alpha_bootstrapping_factor = 0 if i > stop_global_rigidity: global_rigidity_coeff_fg = 0 global_rigidity_coeff_bg = 0 print(i) logging.info('Iteration %d' % i) # randomly choose indices for the current batch inds_foreground = torch.randint(jif_all.shape[1], (np.int64(samples * 1.0), 1)) jif_current = jif_all[:, inds_foreground] # size (3, batch, 1) rgb_current = video_frames[jif_current[1, :], jif_current[0, :], :, jif_current[2, :]].squeeze(1).to(device) # the correct alpha according to the precomputed maskrcnn alpha_maskrcnn = mask_frames[jif_current[1, :], jif_current[0, :], jif_current[2, :]].squeeze(1).to(device).unsqueeze(-1) # normalize coordinates to be in [-1,1] xyt_current = torch.cat( (jif_current[0, :] / (larger_dim / 2) - 1, jif_current[1, :] / (larger_dim / 2) - 1, jif_current[2, :] / (number_of_frames / 2.0) - 1), dim=1).to(device) # size (batch, 3) # get the atlas UV coordinates from the two mapping networks; uv_foreground1 = model_F_mapping1(xyt_current) uv_foreground2 = model_F_mapping2(xyt_current) # map tanh output of the alpha network to the range (0,1) : alpha = 0.5 * (model_alpha(xyt_current) + 1.0) # prevent a situation of alpha=0, or alpha=1 (for the BCE loss that uses log(alpha),log(1-alpha) below) alpha = alpha * 0.99 alpha = alpha + 0.001 # Sample atlas values. Foreground colors are sampled from [0,1]x[0,1] and background colors are sampled from [-1,0]x[-1,0] # Note that the original [u,v] coorinates are in [-1,1]x[-1,1] for both networks rgb_output1 = (model_F_atlas(uv_foreground1 * 0.5 + 0.5) + 1.0) * 0.5 rgb_output2 = (model_F_atlas( uv_foreground2 * 0.5 - 0.5) + 1.0) * 0.5 # Reconstruct final colors from the two layers (using alpha) rgb_output_foreground = rgb_output1 * alpha + rgb_output2 * (1.0 - alpha) if use_gradient_loss: gradient_loss = get_gradient_loss(video_frames_dx, video_frames_dy, jif_current, model_F_mapping1, model_F_mapping2, model_F_atlas, rgb_output_foreground,device,resx,number_of_frames,model_alpha) else: gradient_loss = 0.0 print("gradient_loss:") print(gradient_loss) rgb_output_foreground_not = rgb_output1 * (1.0 - alpha) rgb_loss = (torch.norm(rgb_output_foreground - rgb_current, dim=1) ** 2).mean() rgb_loss_sparsity = (torch.norm(rgb_output_foreground_not, dim=1) ** 2).mean() rigidity_loss1 = get_rigidity_loss( jif_current, derivative_amount, larger_dim, number_of_frames, model_F_mapping1, uv_foreground1,device, uv_mapping_scale=uv_mapping_scale) rigidity_loss2 = get_rigidity_loss( jif_current, derivative_amount, larger_dim, number_of_frames, model_F_mapping2, uv_foreground2,device, uv_mapping_scale=uv_mapping_scale) if include_global_rigidity_loss and i <= stop_global_rigidity: global_rigidity_loss1 = get_rigidity_loss( jif_current, global_rigidity_derivative_amount_fg, larger_dim, number_of_frames, model_F_mapping1, uv_foreground1,device, uv_mapping_scale=uv_mapping_scale) global_rigidity_loss2 = get_rigidity_loss( jif_current, global_rigidity_derivative_amount_bg, larger_dim, number_of_frames, model_F_mapping2, uv_foreground2,device, uv_mapping_scale=uv_mapping_scale) flow_loss1 = get_optical_flow_loss( jif_current, uv_foreground1, optical_flows_reverse, optical_flows_reverse_mask, larger_dim, number_of_frames, model_F_mapping1, optical_flows, optical_flows_mask, uv_mapping_scale,device, use_alpha=True, alpha=alpha) flow_loss2 = get_optical_flow_loss( jif_current, uv_foreground2, optical_flows_reverse, optical_flows_reverse_mask, larger_dim, number_of_frames, model_F_mapping2, optical_flows, optical_flows_mask, uv_mapping_scale,device, use_alpha=True, alpha=1 - alpha) flow_alpha_loss = get_optical_flow_alpha_loss(model_alpha, jif_current, alpha, optical_flows_reverse, optical_flows_reverse_mask, larger_dim, number_of_frames, optical_flows, optical_flows_mask, device) print("flow alpha loss:") print(flow_alpha_loss) alpha_bootstrapping_loss = torch.mean( -alpha_maskrcnn * torch.log(alpha) - (1 - alpha_maskrcnn) * torch.log(1 - alpha)) print("alpha_balancing_loss") print(alpha_bootstrapping_loss) if include_global_rigidity_loss and i <= stop_global_rigidity: loss = rigidity_coeff * ( rigidity_loss1 + rigidity_loss2) + global_rigidity_coeff_fg * global_rigidity_loss1 + global_rigidity_coeff_bg * global_rigidity_loss2 + \ rgb_loss * rgb_coeff + optical_flow_coeff * ( flow_loss1 + flow_loss2) + alpha_bootstrapping_loss * alpha_bootstrapping_factor + flow_alpha_loss * alpha_flow_factor + rgb_loss_sparsity * sparsity_coeff + gradient_loss * gradient_loss_coeff else: loss = rigidity_coeff * (rigidity_loss1 + rigidity_loss2) + rgb_loss * rgb_coeff + optical_flow_coeff * ( flow_loss1 + flow_loss2) + alpha_bootstrapping_loss * alpha_bootstrapping_factor + flow_alpha_loss * alpha_flow_factor + rgb_loss_sparsity * sparsity_coeff + gradient_loss * gradient_loss_coeff optimizer_all.zero_grad() loss.backward() optimizer_all.step() try: if use_optical_flow: print("of_loss1:%f" % flow_loss1.detach()) print("of_loss2:%f" % flow_loss2.detach()) logging.info("of_loss1:%f" % flow_loss1.detach()) writer.add_scalar('Loss/train_of1', flow_loss1.detach(), i) logging.info("of_loss2:%f" % flow_loss2.detach()) writer.add_scalar('Loss/train_of2', flow_loss2.detach(), i) except: pass logging.info("flow_alpha_loss: %f", flow_alpha_loss.detach()) logging.info("rgb_loss:%f" % rgb_loss.detach()) logging.info("total_loss:%f" % loss.detach()) logging.info("rigidity_loss1:%f" % rigidity_loss1.detach()) logging.info("rigidity_loss2:%f" % rigidity_loss2.detach()) logging.info('rgb_loss_negative %f' % rgb_loss_sparsity.detach()) logging.info('-------------------------------') print("rgb_loss:%f" % rgb_loss.detach()) print('rgb_loss_negative %f' % rgb_loss_sparsity.detach()) print("total_loss:%f" % loss.detach()) print("rigidity_loss1:%f" % rigidity_loss1.detach()) print("rigidity_loss2:%f" % rigidity_loss2.detach()) print("alpha_mean:%f" % alpha.mean().detach()) logging.info("alpha_mean:%f" % alpha.mean().detach()) print("alpha_mean_1:%f" % alpha[alpha > 0.5].mean().detach()) logging.info("alpha_mean_1:%f" % alpha[alpha > 0.5].mean().detach()) print("alpha_mean_0:%f" % alpha[alpha < 0.5].mean().detach()) logging.info("alpha_mean_0:%f" % alpha[alpha < 0.5].mean().detach()) print(f'------------{results_folder.name}------------------') writer.add_scalar('Loss/alpha_mean', alpha.mean().detach(), i) writer.add_scalar('Loss/rgb_loss', rgb_loss.detach(), i) writer.add_scalar('Loss/rigidity_loss1', rigidity_loss1.detach(), i) writer.add_scalar('Loss/rigidity_loss2', rigidity_loss2.detach(), i) try: # render and evaluate videos every N iterations if i % evaluate_every == 0 and i > start_iteration: evaluate_model(model_F_atlas, resx, resy, number_of_frames, model_F_mapping1, model_F_mapping2, model_alpha, video_frames, results_folder, i, mask_frames, optimizer_all, writer, vid_name, derivative_amount, uv_mapping_scale, optical_flows, optical_flows_mask,device) rgb_img = video_frames[:, :, :, 0].numpy() writer.add_image('Input/rgb_0', rgb_img, i, dataformats='HWC') model_F_atlas.train() model_F_mapping1.train() model_F_mapping2.train() model_alpha.train() except Exception: pass if __name__ == "__main__": with open(sys.argv[1]) as f: main(json.load(f))
[ "evaluate.evaluate_model" ]
[((659, 683), 'numpy.int64', 'np.int64', (["config['resx']"], {}), "(config['resx'])\n", (667, 683), True, 'import numpy as np\n'), ((695, 719), 'numpy.int64', 'np.int64', (["config['resy']"], {}), "(config['resy'])\n", (703, 719), True, 'import numpy as np\n'), ((893, 927), 'numpy.int64', 'np.int64', (["config['evaluate_every']"], {}), "(config['evaluate_every'])\n", (901, 927), True, 'import numpy as np\n'), ((1248, 1275), 'pathlib.Path', 'Path', (["config['data_folder']"], {}), "(config['data_folder'])\n", (1252, 1275), False, 'from pathlib import Path\n'), ((4931, 5049), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': "('%s/log.log' % results_folder)", 'level': 'logging.INFO', 'format': '"""%(asctime)s %(message)s"""'}), "(filename='%s/log.log' % results_folder, level=logging.\n INFO, format='%(asctime)s %(message)s')\n", (4950, 5049), False, 'import logging\n'), ((5074, 5097), 'logging.info', 'logging.info', (['"""Started"""'], {}), "('Started')\n", (5086, 5097), False, 'import logging\n'), ((5306, 5409), 'unwrap_utils.load_input_data', 'load_input_data', (['resy', 'resx', 'maximum_number_of_frames', 'data_folder', '(True)', '(True)', 'vid_root', 'vid_name'], {}), '(resy, resx, maximum_number_of_frames, data_folder, True, \n True, vid_root, vid_name)\n', (5321, 5409), False, 'from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow\n'), ((5535, 5599), 'unwrap_utils.save_mask_flow', 'save_mask_flow', (['optical_flows_mask', 'video_frames', 'results_folder'], {}), '(optical_flows_mask, video_frames, results_folder)\n', (5549, 5599), False, 'from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow\n'), ((7110, 7132), 'numpy.maximum', 'np.maximum', (['resx', 'resy'], {}), '(resx, resy)\n', (7120, 7132), True, 'import numpy as np\n'), ((8228, 8270), 'unwrap_utils.get_tuples', 'get_tuples', (['number_of_frames', 'video_frames'], {}), '(number_of_frames, video_frames)\n', (8238, 8270), False, 'from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow\n'), ((524, 549), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (547, 549), False, 'import torch\n'), ((4888, 4926), 'json.dump', 'json.dump', (['config', 'json_file'], {'indent': '(4)'}), '(config, json_file, indent=4)\n', (4897, 4926), False, 'import json\n'), ((7747, 7774), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (7757, 7774), False, 'import torch\n'), ((8575, 8607), 'logging.info', 'logging.info', (["('Iteration %d' % i)"], {}), "('Iteration %d' % i)\n", (8587, 8607), False, 'import logging\n'), ((11256, 11420), 'loss_utils.get_rigidity_loss', 'get_rigidity_loss', (['jif_current', 'derivative_amount', 'larger_dim', 'number_of_frames', 'model_F_mapping1', 'uv_foreground1', 'device'], {'uv_mapping_scale': 'uv_mapping_scale'}), '(jif_current, derivative_amount, larger_dim,\n number_of_frames, model_F_mapping1, uv_foreground1, device,\n uv_mapping_scale=uv_mapping_scale)\n', (11273, 11420), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((11522, 11686), 'loss_utils.get_rigidity_loss', 'get_rigidity_loss', (['jif_current', 'derivative_amount', 'larger_dim', 'number_of_frames', 'model_F_mapping2', 'uv_foreground2', 'device'], {'uv_mapping_scale': 'uv_mapping_scale'}), '(jif_current, derivative_amount, larger_dim,\n number_of_frames, model_F_mapping2, uv_foreground2, device,\n uv_mapping_scale=uv_mapping_scale)\n', (11539, 11686), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((12505, 12756), 'loss_utils.get_optical_flow_loss', 'get_optical_flow_loss', (['jif_current', 'uv_foreground1', 'optical_flows_reverse', 'optical_flows_reverse_mask', 'larger_dim', 'number_of_frames', 'model_F_mapping1', 'optical_flows', 'optical_flows_mask', 'uv_mapping_scale', 'device'], {'use_alpha': '(True)', 'alpha': 'alpha'}), '(jif_current, uv_foreground1, optical_flows_reverse,\n optical_flows_reverse_mask, larger_dim, number_of_frames,\n model_F_mapping1, optical_flows, optical_flows_mask, uv_mapping_scale,\n device, use_alpha=True, alpha=alpha)\n', (12526, 12756), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((12803, 13058), 'loss_utils.get_optical_flow_loss', 'get_optical_flow_loss', (['jif_current', 'uv_foreground2', 'optical_flows_reverse', 'optical_flows_reverse_mask', 'larger_dim', 'number_of_frames', 'model_F_mapping2', 'optical_flows', 'optical_flows_mask', 'uv_mapping_scale', 'device'], {'use_alpha': '(True)', 'alpha': '(1 - alpha)'}), '(jif_current, uv_foreground2, optical_flows_reverse,\n optical_flows_reverse_mask, larger_dim, number_of_frames,\n model_F_mapping2, optical_flows, optical_flows_mask, uv_mapping_scale,\n device, use_alpha=True, alpha=1 - alpha)\n', (12824, 13058), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((13110, 13302), 'loss_utils.get_optical_flow_alpha_loss', 'get_optical_flow_alpha_loss', (['model_alpha', 'jif_current', 'alpha', 'optical_flows_reverse', 'optical_flows_reverse_mask', 'larger_dim', 'number_of_frames', 'optical_flows', 'optical_flows_mask', 'device'], {}), '(model_alpha, jif_current, alpha,\n optical_flows_reverse, optical_flows_reverse_mask, larger_dim,\n number_of_frames, optical_flows, optical_flows_mask, device)\n', (13137, 13302), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((15681, 15728), 'logging.info', 'logging.info', (['"""-------------------------------"""'], {}), "('-------------------------------')\n", (15693, 15728), False, 'import logging\n'), ((5624, 5867), 'implicit_neural_networks.IMLP', 'IMLP', ([], {'input_dim': '(3)', 'output_dim': '(2)', 'hidden_dim': 'number_of_channels_mapping1', 'use_positional': 'use_positional_encoding_mapping1', 'positional_dim': 'number_of_positional_encoding_mapping1', 'num_layers': 'number_of_layers_mapping1', 'skip_layers': '[]'}), '(input_dim=3, output_dim=2, hidden_dim=number_of_channels_mapping1,\n use_positional=use_positional_encoding_mapping1, positional_dim=\n number_of_positional_encoding_mapping1, num_layers=\n number_of_layers_mapping1, skip_layers=[])\n', (5628, 5867), False, 'from implicit_neural_networks import IMLP\n'), ((5946, 6189), 'implicit_neural_networks.IMLP', 'IMLP', ([], {'input_dim': '(3)', 'output_dim': '(2)', 'hidden_dim': 'number_of_channels_mapping2', 'use_positional': 'use_positional_encoding_mapping2', 'positional_dim': 'number_of_positional_encoding_mapping2', 'num_layers': 'number_of_layers_mapping2', 'skip_layers': '[]'}), '(input_dim=3, output_dim=2, hidden_dim=number_of_channels_mapping2,\n use_positional=use_positional_encoding_mapping2, positional_dim=\n number_of_positional_encoding_mapping2, num_layers=\n number_of_layers_mapping2, skip_layers=[])\n', (5950, 6189), False, 'from implicit_neural_networks import IMLP\n'), ((6265, 6463), 'implicit_neural_networks.IMLP', 'IMLP', ([], {'input_dim': '(2)', 'output_dim': '(3)', 'hidden_dim': 'number_of_channels_atlas', 'use_positional': '(True)', 'positional_dim': 'positional_encoding_num_atlas', 'num_layers': 'number_of_layers_atlas', 'skip_layers': '[4, 7]'}), '(input_dim=2, output_dim=3, hidden_dim=number_of_channels_atlas,\n use_positional=True, positional_dim=positional_encoding_num_atlas,\n num_layers=number_of_layers_atlas, skip_layers=[4, 7])\n', (6269, 6463), False, 'from implicit_neural_networks import IMLP\n'), ((6543, 6737), 'implicit_neural_networks.IMLP', 'IMLP', ([], {'input_dim': '(3)', 'output_dim': '(1)', 'hidden_dim': 'number_of_channels_alpha', 'use_positional': '(True)', 'positional_dim': 'positional_encoding_num_alpha', 'num_layers': 'number_of_layers_alpha', 'skip_layers': '[]'}), '(input_dim=3, output_dim=1, hidden_dim=number_of_channels_alpha,\n use_positional=True, positional_dim=positional_encoding_num_alpha,\n num_layers=number_of_layers_alpha, skip_layers=[])\n', (6547, 6737), False, 'from implicit_neural_networks import IMLP\n'), ((7222, 7398), 'unwrap_utils.pre_train_mapping', 'pre_train_mapping', (['model_F_mapping1', 'number_of_frames', 'uv_mapping_scale'], {'resx': 'resx', 'resy': 'resy', 'larger_dim': 'larger_dim', 'device': 'device', 'pretrain_iters': 'pretrain_iter_number'}), '(model_F_mapping1, number_of_frames, uv_mapping_scale,\n resx=resx, resy=resy, larger_dim=larger_dim, device=device,\n pretrain_iters=pretrain_iter_number)\n', (7239, 7398), False, 'from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow\n'), ((7500, 7676), 'unwrap_utils.pre_train_mapping', 'pre_train_mapping', (['model_F_mapping2', 'number_of_frames', 'uv_mapping_scale'], {'resx': 'resx', 'resy': 'resy', 'larger_dim': 'larger_dim', 'device': 'device', 'pretrain_iters': 'pretrain_iter_number'}), '(model_F_mapping2, number_of_frames, uv_mapping_scale,\n resx=resx, resy=resy, larger_dim=larger_dim, device=device,\n pretrain_iters=pretrain_iter_number)\n', (7517, 7676), False, 'from unwrap_utils import get_tuples, pre_train_mapping, load_input_data, save_mask_flow\n'), ((10608, 10799), 'loss_utils.get_gradient_loss', 'get_gradient_loss', (['video_frames_dx', 'video_frames_dy', 'jif_current', 'model_F_mapping1', 'model_F_mapping2', 'model_F_atlas', 'rgb_output_foreground', 'device', 'resx', 'number_of_frames', 'model_alpha'], {}), '(video_frames_dx, video_frames_dy, jif_current,\n model_F_mapping1, model_F_mapping2, model_F_atlas,\n rgb_output_foreground, device, resx, number_of_frames, model_alpha)\n', (10625, 10799), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((11871, 12054), 'loss_utils.get_rigidity_loss', 'get_rigidity_loss', (['jif_current', 'global_rigidity_derivative_amount_fg', 'larger_dim', 'number_of_frames', 'model_F_mapping1', 'uv_foreground1', 'device'], {'uv_mapping_scale': 'uv_mapping_scale'}), '(jif_current, global_rigidity_derivative_amount_fg,\n larger_dim, number_of_frames, model_F_mapping1, uv_foreground1, device,\n uv_mapping_scale=uv_mapping_scale)\n', (11888, 12054), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((12195, 12378), 'loss_utils.get_rigidity_loss', 'get_rigidity_loss', (['jif_current', 'global_rigidity_derivative_amount_bg', 'larger_dim', 'number_of_frames', 'model_F_mapping2', 'uv_foreground2', 'device'], {'uv_mapping_scale': 'uv_mapping_scale'}), '(jif_current, global_rigidity_derivative_amount_bg,\n larger_dim, number_of_frames, model_F_mapping2, uv_foreground2, device,\n uv_mapping_scale=uv_mapping_scale)\n', (12212, 12378), False, 'from loss_utils import get_gradient_loss, get_rigidity_loss, get_optical_flow_loss, get_optical_flow_alpha_loss\n'), ((17837, 17849), 'json.load', 'json.load', (['f'], {}), '(f)\n', (17846, 17849), False, 'import json\n'), ((8764, 8787), 'numpy.int64', 'np.int64', (['(samples * 1.0)'], {}), '(samples * 1.0)\n', (8772, 8787), True, 'import numpy as np\n'), ((9311, 9472), 'torch.cat', 'torch.cat', (['(jif_current[0, :] / (larger_dim / 2) - 1, jif_current[1, :] / (larger_dim /\n 2) - 1, jif_current[2, :] / (number_of_frames / 2.0) - 1)'], {'dim': '(1)'}), '((jif_current[0, :] / (larger_dim / 2) - 1, jif_current[1, :] / (\n larger_dim / 2) - 1, jif_current[2, :] / (number_of_frames / 2.0) - 1),\n dim=1)\n', (9320, 9472), False, 'import torch\n'), ((16941, 17224), 'evaluate.evaluate_model', 'evaluate_model', (['model_F_atlas', 'resx', 'resy', 'number_of_frames', 'model_F_mapping1', 'model_F_mapping2', 'model_alpha', 'video_frames', 'results_folder', 'i', 'mask_frames', 'optimizer_all', 'writer', 'vid_name', 'derivative_amount', 'uv_mapping_scale', 'optical_flows', 'optical_flows_mask', 'device'], {}), '(model_F_atlas, resx, resy, number_of_frames,\n model_F_mapping1, model_F_mapping2, model_alpha, video_frames,\n results_folder, i, mask_frames, optimizer_all, writer, vid_name,\n derivative_amount, uv_mapping_scale, optical_flows, optical_flows_mask,\n device)\n', (16955, 17224), False, 'from evaluate import evaluate_model\n'), ((11074, 11128), 'torch.norm', 'torch.norm', (['(rgb_output_foreground - rgb_current)'], {'dim': '(1)'}), '(rgb_output_foreground - rgb_current, dim=1)\n', (11084, 11128), False, 'import torch\n'), ((11172, 11216), 'torch.norm', 'torch.norm', (['rgb_output_foreground_not'], {'dim': '(1)'}), '(rgb_output_foreground_not, dim=1)\n', (11182, 11216), False, 'import torch\n'), ((13655, 13671), 'torch.log', 'torch.log', (['alpha'], {}), '(alpha)\n', (13664, 13671), False, 'import torch\n'), ((13697, 13717), 'torch.log', 'torch.log', (['(1 - alpha)'], {}), '(1 - alpha)\n', (13706, 13717), False, 'import torch\n'), ((4671, 4688), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (4686, 4688), False, 'from datetime import datetime\n')]
'''Train CIFAR10/100 with PyTorch using standard Contrastive Learning. This script tunes the L2 reg weight of the final classifier.''' import torch import torch.backends.cudnn as cudnn import torch.nn as nn import math import os import argparse from models import * from configs import get_datasets from evaluate import train_clf, encode_feature_averaging parser = argparse.ArgumentParser(description='Final evaluation with feature averaging.') parser.add_argument("--num-workers", type=int, default=2, help='Number of threads for data loaders') parser.add_argument("--load-from", type=str, default='ckpt.pth', help='File to load from') parser.add_argument("--num-passes", type=int, default=10, help='Number of passes to average') parser.add_argument("--reg-lower", type=float, default=-7, help='Minimum log regularization parameter (base 10)') parser.add_argument("--reg-upper", type=float, default=-3, help='Maximum log regularization parameter (base 10)') parser.add_argument("--num-steps", type=int, default=10, help='Number of log-linearly spaced reg parameters to try') args = parser.parse_args() # Load checkpoint. print('==> Loading settings from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' resume_from = os.path.join('./checkpoint', args.load_from) checkpoint = torch.load(resume_from) args.dataset = checkpoint['args']['dataset'] args.arch = checkpoint['args']['arch'] device = 'cuda' if torch.cuda.is_available() else 'cpu' # Data print('==> Preparing data..') _, testset, clftrainset, num_classes, stem = get_datasets(args.dataset, test_as_train=True) testloader = torch.utils.data.DataLoader(testset, batch_size=1000, shuffle=False, num_workers=args.num_workers, pin_memory=True) clftrainloader = torch.utils.data.DataLoader(clftrainset, batch_size=1000, shuffle=False, num_workers=args.num_workers, pin_memory=True) # Model print('==> Building model..') ############################################################## # Encoder ############################################################## if args.arch == 'resnet18': net = ResNet18(stem=stem) elif args.arch == 'resnet34': net = ResNet34(stem=stem) elif args.arch == 'resnet50': net = ResNet50(stem=stem) else: raise ValueError("Bad architecture specification") net = net.to(device) if device == 'cuda': repr_dim = net.representation_dim net = torch.nn.DataParallel(net) net.representation_dim = repr_dim cudnn.benchmark = True print('==> Loading encoder from checkpoint..') net.load_state_dict(checkpoint['net']) best_acc = 0 X, y = encode_feature_averaging(clftrainloader, device, net, num_passes=args.num_passes) X_test, y_test = encode_feature_averaging(testloader, device, net, num_passes=args.num_passes) for reg_weight in torch.exp(math.log(10) * torch.linspace(args.reg_lower, args.reg_upper, args.num_steps, dtype=torch.float, device=device)): clf = train_clf(X, y, net.representation_dim, num_classes, device, reg_weight=reg_weight) raw_scores = clf(X_test) _, predicted = raw_scores.max(1) correct = predicted.eq(y_test).sum().item() acc = 100 * correct / predicted.shape[0] print('Test accuracy', acc, '%') if acc > best_acc: best_acc = acc print("Best test accuracy", best_acc, "%")
[ "evaluate.encode_feature_averaging", "evaluate.train_clf" ]
[((368, 447), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Final evaluation with feature averaging."""'}), "(description='Final evaluation with feature averaging.')\n", (391, 447), False, 'import argparse\n'), ((1181, 1208), 'os.path.isdir', 'os.path.isdir', (['"""checkpoint"""'], {}), "('checkpoint')\n", (1194, 1208), False, 'import os\n'), ((1264, 1308), 'os.path.join', 'os.path.join', (['"""./checkpoint"""', 'args.load_from'], {}), "('./checkpoint', args.load_from)\n", (1276, 1308), False, 'import os\n'), ((1322, 1345), 'torch.load', 'torch.load', (['resume_from'], {}), '(resume_from)\n', (1332, 1345), False, 'import torch\n'), ((1570, 1616), 'configs.get_datasets', 'get_datasets', (['args.dataset'], {'test_as_train': '(True)'}), '(args.dataset, test_as_train=True)\n', (1582, 1616), False, 'from configs import get_datasets\n'), ((1631, 1750), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['testset'], {'batch_size': '(1000)', 'shuffle': '(False)', 'num_workers': 'args.num_workers', 'pin_memory': '(True)'}), '(testset, batch_size=1000, shuffle=False,\n num_workers=args.num_workers, pin_memory=True)\n', (1658, 1750), False, 'import torch\n'), ((1805, 1928), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['clftrainset'], {'batch_size': '(1000)', 'shuffle': '(False)', 'num_workers': 'args.num_workers', 'pin_memory': '(True)'}), '(clftrainset, batch_size=1000, shuffle=False,\n num_workers=args.num_workers, pin_memory=True)\n', (1832, 1928), False, 'import torch\n'), ((2676, 2762), 'evaluate.encode_feature_averaging', 'encode_feature_averaging', (['clftrainloader', 'device', 'net'], {'num_passes': 'args.num_passes'}), '(clftrainloader, device, net, num_passes=args.\n num_passes)\n', (2700, 2762), False, 'from evaluate import train_clf, encode_feature_averaging\n'), ((2775, 2852), 'evaluate.encode_feature_averaging', 'encode_feature_averaging', (['testloader', 'device', 'net'], {'num_passes': 'args.num_passes'}), '(testloader, device, net, num_passes=args.num_passes)\n', (2799, 2852), False, 'from evaluate import train_clf, encode_feature_averaging\n'), ((1450, 1475), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1473, 1475), False, 'import torch\n'), ((2475, 2501), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['net'], {}), '(net)\n', (2496, 2501), False, 'import torch\n'), ((3063, 3151), 'evaluate.train_clf', 'train_clf', (['X', 'y', 'net.representation_dim', 'num_classes', 'device'], {'reg_weight': 'reg_weight'}), '(X, y, net.representation_dim, num_classes, device, reg_weight=\n reg_weight)\n', (3072, 3151), False, 'from evaluate import train_clf, encode_feature_averaging\n'), ((2881, 2893), 'math.log', 'math.log', (['(10)'], {}), '(10)\n', (2889, 2893), False, 'import math\n'), ((2896, 2997), 'torch.linspace', 'torch.linspace', (['args.reg_lower', 'args.reg_upper', 'args.num_steps'], {'dtype': 'torch.float', 'device': 'device'}), '(args.reg_lower, args.reg_upper, args.num_steps, dtype=torch.\n float, device=device)\n', (2910, 2997), False, 'import torch\n')]
import os, sys root_path = os.path.realpath(__file__).split('/evaluate/multipose_coco_eval.py')[0] os.chdir(root_path) sys.path.append(root_path) from network.posenet import poseNet from evaluate.tester import Tester backbone = 'resnet101' # Set Training parameters params = Tester.TestParams() params.subnet_name = 'both' params.inp_size = 480 # input picture size = (inp_size, inp_size) params.coeff = 2 params.in_thres = 0.21 params.coco_root = '/mnt/hdd10tb/Datasets/COCO2017/' params.testresult_write_json = True # Whether to write json result params.coco_result_filename = './demo/multipose_coco2017_results.json' params.ckpt = '/home/vietnguyen/MultiPoseNet/extra/models/res50_detection_subnet/ckpt_39_0.59604.h5.best' # model model = poseNet(backbone) for name, module in model.named_children(): for para in module.parameters(): para.requires_grad = False tester = Tester(model, params) tester.coco_eval() # pic_test
[ "evaluate.tester.Tester", "evaluate.tester.Tester.TestParams" ]
[((99, 118), 'os.chdir', 'os.chdir', (['root_path'], {}), '(root_path)\n', (107, 118), False, 'import os, sys\n'), ((119, 145), 'sys.path.append', 'sys.path.append', (['root_path'], {}), '(root_path)\n', (134, 145), False, 'import os, sys\n'), ((278, 297), 'evaluate.tester.Tester.TestParams', 'Tester.TestParams', ([], {}), '()\n', (295, 297), False, 'from evaluate.tester import Tester\n'), ((748, 765), 'network.posenet.poseNet', 'poseNet', (['backbone'], {}), '(backbone)\n', (755, 765), False, 'from network.posenet import poseNet\n'), ((893, 914), 'evaluate.tester.Tester', 'Tester', (['model', 'params'], {}), '(model, params)\n', (899, 914), False, 'from evaluate.tester import Tester\n'), ((27, 53), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (43, 53), False, 'import os, sys\n')]
import torch from torch import nn from Fashion_Mnist import load_data_fashion_mnist from evaluate import Accumulator, accurate_num, evaluate_accuracy net = nn.Sequential(nn.Flatten(), nn.Linear(784,512), nn.BatchNorm1d(512), nn.ReLU(), nn.Linear(512, 256), nn.BatchNorm1d(256), nn.ReLU(), nn.Linear(256, 128), nn.BatchNorm1d(128), nn.ReLU(), nn.Linear(128, 64), nn.BatchNorm1d(64), nn.ReLU(), nn.Linear(64, 32), nn.BatchNorm1d(32), nn.ReLU(), nn.Linear(32,10)) def init_weights(m): if type(m) == nn.Linear: nn.init.kaiming_uniform_(m.weight) net.apply(init_weights) batch_size, lr, num_epochs = 256, 0.2, 10 loss = nn.CrossEntropyLoss() trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.75) train_iter, test_iter = load_data_fashion_mnist(batch_size) def train_epoch(net, train_iter, loss, updater): if isinstance(net, torch.nn.Module): net.train() metric = Accumulator(3) for X, y in train_iter: y_hat = net(X) l = loss(y_hat, y) if isinstance(updater, torch.optim.Optimizer): updater.zero_grad() l.sum().backward() updater.step() else: l.sum().backward() updater(X.shape[0]) metric.add(float(l.sum()), accurate_num(y_hat, y), y.numel()) return metric[0] / metric[2], metric[1] / metric[2] def train(net, train_iter, test_iter, loss, num_epochs, updater): for epoch in range(num_epochs): train_loss, train_acc = train_epoch(net, train_iter, loss, updater) test_acc = evaluate_accuracy(net, test_iter) print(f'epoch{epoch+1}: train loss: {train_loss:.5f} train acc: {train_acc:.2%} test acc: {test_acc:.2%}') train(net, train_iter, test_iter, loss, num_epochs, trainer)
[ "evaluate.Accumulator", "evaluate.evaluate_accuracy", "evaluate.accurate_num" ]
[((874, 895), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (893, 895), False, 'from torch import nn\n'), ((988, 1023), 'Fashion_Mnist.load_data_fashion_mnist', 'load_data_fashion_mnist', (['batch_size'], {}), '(batch_size)\n', (1011, 1023), False, 'from Fashion_Mnist import load_data_fashion_mnist\n'), ((176, 188), 'torch.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (186, 188), False, 'from torch import nn\n'), ((211, 230), 'torch.nn.Linear', 'nn.Linear', (['(784)', '(512)'], {}), '(784, 512)\n', (220, 230), False, 'from torch import nn\n'), ((231, 250), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(512)'], {}), '(512)\n', (245, 250), False, 'from torch import nn\n'), ((273, 282), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (280, 282), False, 'from torch import nn\n'), ((305, 324), 'torch.nn.Linear', 'nn.Linear', (['(512)', '(256)'], {}), '(512, 256)\n', (314, 324), False, 'from torch import nn\n'), ((326, 345), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(256)'], {}), '(256)\n', (340, 345), False, 'from torch import nn\n'), ((368, 377), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (375, 377), False, 'from torch import nn\n'), ((400, 419), 'torch.nn.Linear', 'nn.Linear', (['(256)', '(128)'], {}), '(256, 128)\n', (409, 419), False, 'from torch import nn\n'), ((421, 440), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(128)'], {}), '(128)\n', (435, 440), False, 'from torch import nn\n'), ((463, 472), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (470, 472), False, 'from torch import nn\n'), ((495, 513), 'torch.nn.Linear', 'nn.Linear', (['(128)', '(64)'], {}), '(128, 64)\n', (504, 513), False, 'from torch import nn\n'), ((515, 533), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(64)'], {}), '(64)\n', (529, 533), False, 'from torch import nn\n'), ((556, 565), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (563, 565), False, 'from torch import nn\n'), ((588, 605), 'torch.nn.Linear', 'nn.Linear', (['(64)', '(32)'], {}), '(64, 32)\n', (597, 605), False, 'from torch import nn\n'), ((607, 625), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(32)'], {}), '(32)\n', (621, 625), False, 'from torch import nn\n'), ((648, 657), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (655, 657), False, 'from torch import nn\n'), ((680, 697), 'torch.nn.Linear', 'nn.Linear', (['(32)', '(10)'], {}), '(32, 10)\n', (689, 697), False, 'from torch import nn\n'), ((1153, 1167), 'evaluate.Accumulator', 'Accumulator', (['(3)'], {}), '(3)\n', (1164, 1167), False, 'from evaluate import Accumulator, accurate_num, evaluate_accuracy\n'), ((759, 793), 'torch.nn.init.kaiming_uniform_', 'nn.init.kaiming_uniform_', (['m.weight'], {}), '(m.weight)\n', (783, 793), False, 'from torch import nn\n'), ((1809, 1842), 'evaluate.evaluate_accuracy', 'evaluate_accuracy', (['net', 'test_iter'], {}), '(net, test_iter)\n', (1826, 1842), False, 'from evaluate import Accumulator, accurate_num, evaluate_accuracy\n'), ((1514, 1536), 'evaluate.accurate_num', 'accurate_num', (['y_hat', 'y'], {}), '(y_hat, y)\n', (1526, 1536), False, 'from evaluate import Accumulator, accurate_num, evaluate_accuracy\n')]
import argparse, os import matplotlib matplotlib.use('Agg') import torch from evaluate import evaluate_synthesis, evaluate_projection import numpy as np from synth.synthesize import create_synth from utils.data import get_external_sounds parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default="/fast-1/philippe/flow_results_final/32par/models/vae_flow_mel_mse_cnn_mlp_iaf_1.model", help='') parser.add_argument('--real_output', type=str, default="/fast-1/naotake", help='') parser.add_argument('--batch_evals', type=int, default=16, help='') parser.add_argument('--epochs', type=int, default=200, help='') parser.add_argument('--device', type=str, default='cpu', help='Device for CUDA') parser.add_argument('--project', action="store_true", help='') parser.add_argument('--dataset', type=str, default='32par', help='') parser.add_argument('--n_classes', type=int, default=32, help='') parser.add_argument('--batch_out', type=int, default=3, help='') parser.add_argument('--test_sounds', type=str, default='/fast-2/datasets/flow_synth_test', help='') parser.add_argument('--nbworkers', type=int, default=0, help='') args = parser.parse_args() args.output = os.path.split(args.model_path)[0] #.../models args.output = os.path.split(args.output)[0] args.synthesize=True model_name = os.path.splitext(os.path.basename(args.model_path))[0] print args.base_model = args.real_output + '/models/' + model_name model_pars = model_name.split("_") if model_pars[0]+model_pars[1] in ["vaeflow", "gatedcnn", "gatedmlp", "rescnn"]: args.model = model_pars[0] + "_" + model_pars[1] idx = 2 else: args.model = model_pars[0] idx = 1 if model_pars[idx+1] == "mfcc": #mel_mfcc args.data="mel_mfcc" idx += 1 else: args.data = model_pars[idx] args.loss = model_pars[idx+1] base_img = '{0}/images/{1}_re'.format(args.real_output, model_name) base_audio = '{0}/audio/{1}_re'.format(args.real_output, model_name) args.cuda = not args.device == 'cpu' and torch.cuda.is_available() args.device = torch.device(args.device if torch.cuda.is_available() else 'cpu') args.model_name, args.base_img, args.base_audio = model_name, base_img, base_audio ref_split = '/fast-2/datasets/diva_dataset' + '/reference_split_' + args.dataset+ "_" +args.data + '.npz' data = np.load(ref_split)['arr_0'] train_loader, valid_loader, test_loader = data[0], data[1], data[2] args.batch_size = test_loader.batch_size args.output_size = train_loader.dataset.output_size args.input_size = train_loader.dataset.input_size model = torch.load(args.model_path, map_location=args.device) model.to(args.device) args.engine, args.generator, args.param_defaults, args.rev_idx = create_synth(args.dataset) if not args.project: evaluate_synthesis(model, test_loader, args, train=False) else: test_sounds = get_external_sounds(args.test_sounds, test_loader.dataset, args) evaluate_projection(model, test_sounds, args, train=False)
[ "evaluate.evaluate_projection", "evaluate.evaluate_synthesis" ]
[((38, 59), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (52, 59), False, 'import matplotlib\n'), ((247, 272), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (270, 272), False, 'import argparse, os\n'), ((2635, 2688), 'torch.load', 'torch.load', (['args.model_path'], {'map_location': 'args.device'}), '(args.model_path, map_location=args.device)\n', (2645, 2688), False, 'import torch\n'), ((2776, 2802), 'synth.synthesize.create_synth', 'create_synth', (['args.dataset'], {}), '(args.dataset)\n', (2788, 2802), False, 'from synth.synthesize import create_synth\n'), ((1279, 1309), 'os.path.split', 'os.path.split', (['args.model_path'], {}), '(args.model_path)\n', (1292, 1309), False, 'import argparse, os\n'), ((1339, 1365), 'os.path.split', 'os.path.split', (['args.output'], {}), '(args.output)\n', (1352, 1365), False, 'import argparse, os\n'), ((2084, 2109), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2107, 2109), False, 'import torch\n'), ((2388, 2406), 'numpy.load', 'np.load', (['ref_split'], {}), '(ref_split)\n', (2395, 2406), True, 'import numpy as np\n'), ((2828, 2885), 'evaluate.evaluate_synthesis', 'evaluate_synthesis', (['model', 'test_loader', 'args'], {'train': '(False)'}), '(model, test_loader, args, train=False)\n', (2846, 2885), False, 'from evaluate import evaluate_synthesis, evaluate_projection\n'), ((2910, 2974), 'utils.data.get_external_sounds', 'get_external_sounds', (['args.test_sounds', 'test_loader.dataset', 'args'], {}), '(args.test_sounds, test_loader.dataset, args)\n', (2929, 2974), False, 'from utils.data import get_external_sounds\n'), ((2979, 3037), 'evaluate.evaluate_projection', 'evaluate_projection', (['model', 'test_sounds', 'args'], {'train': '(False)'}), '(model, test_sounds, args, train=False)\n', (2998, 3037), False, 'from evaluate import evaluate_synthesis, evaluate_projection\n'), ((1421, 1454), 'os.path.basename', 'os.path.basename', (['args.model_path'], {}), '(args.model_path)\n', (1437, 1454), False, 'import argparse, os\n'), ((2152, 2177), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2175, 2177), False, 'import torch\n')]
import evaluate import pandas as pd import sys import glob sys.path.append('../gopher') import utils import numpy as np import json def get_runs(glob_pattern): bin_run = {} for run_dir in glob.glob(glob_pattern): config = utils.get_config(run_dir) if config['loss_fn']['value'] == 'poisson': bin_run[config['bin_size']['value']] = run_dir return bin_run result_base_dir = utils.make_dir('inter_results') # get datasets testset, targets = utils.collect_whole_testset('../datasets/quantitative_data/testset/') model_run_pattern = {'binloss_basenji_v2': '../trained_models/basenji_v2/binloss_basenji_v2/run*', 'bpnet_bin_loss_40': '../trained_models/bpnet/bin_loss_40/run*'} for model_label, run_pattern in model_run_pattern.items(): bin_run = get_runs(run_pattern) # get performance metrics for various evaluation bin sizes result_path = result_base_dir + '/{}_triangle_plot.txt'.format(model_label) bin_sizes = sorted(list(bin_run.keys())) performance_per_resolution = [] for raw_bin_size in bin_sizes: model, _ = utils.read_model(bin_run[raw_bin_size]) all_true, all_pred = utils.get_true_pred(model, raw_bin_size, testset) for eval_bin_size in bin_sizes: if eval_bin_size >= raw_bin_size: print(raw_bin_size, '--->', eval_bin_size) true_for_eval = evaluate.change_resolution(all_true, raw_bin_size, eval_bin_size) pred_for_eval = evaluate.change_resolution(all_pred, raw_bin_size, eval_bin_size) performance = evaluate.get_performance(true_for_eval, pred_for_eval, targets, 'whole') performance_per_resolution.append([raw_bin_size, eval_bin_size] + list(performance.mean().values)) metric = 'pr_corr' label = '<NAME>' sorted_personr = pd.DataFrame(performance_per_resolution, columns=['train', 'eval'] + list(performance.columns[:-1].values)).sort_values( ['train', 'eval'])[['train', 'eval', metric]] padded_values = [] for train_bin, df in sorted_personr.groupby('train'): pr_values = list(df[metric].values) add_N = len(bin_sizes) - len(pr_values) if add_N > 0: pr_values = [np.nan for n in range(add_N)] + pr_values padded_values.append(pr_values) with open(result_path, 'w') as f: f.write(json.dumps(padded_values))
[ "evaluate.change_resolution", "evaluate.get_performance" ]
[((59, 87), 'sys.path.append', 'sys.path.append', (['"""../gopher"""'], {}), "('../gopher')\n", (74, 87), False, 'import sys\n'), ((415, 446), 'utils.make_dir', 'utils.make_dir', (['"""inter_results"""'], {}), "('inter_results')\n", (429, 446), False, 'import utils\n'), ((481, 550), 'utils.collect_whole_testset', 'utils.collect_whole_testset', (['"""../datasets/quantitative_data/testset/"""'], {}), "('../datasets/quantitative_data/testset/')\n", (508, 550), False, 'import utils\n'), ((198, 221), 'glob.glob', 'glob.glob', (['glob_pattern'], {}), '(glob_pattern)\n', (207, 221), False, 'import glob\n'), ((240, 265), 'utils.get_config', 'utils.get_config', (['run_dir'], {}), '(run_dir)\n', (256, 265), False, 'import utils\n'), ((1110, 1149), 'utils.read_model', 'utils.read_model', (['bin_run[raw_bin_size]'], {}), '(bin_run[raw_bin_size])\n', (1126, 1149), False, 'import utils\n'), ((1179, 1228), 'utils.get_true_pred', 'utils.get_true_pred', (['model', 'raw_bin_size', 'testset'], {}), '(model, raw_bin_size, testset)\n', (1198, 1228), False, 'import utils\n'), ((2419, 2444), 'json.dumps', 'json.dumps', (['padded_values'], {}), '(padded_values)\n', (2429, 2444), False, 'import json\n'), ((1406, 1471), 'evaluate.change_resolution', 'evaluate.change_resolution', (['all_true', 'raw_bin_size', 'eval_bin_size'], {}), '(all_true, raw_bin_size, eval_bin_size)\n', (1432, 1471), False, 'import evaluate\n'), ((1504, 1569), 'evaluate.change_resolution', 'evaluate.change_resolution', (['all_pred', 'raw_bin_size', 'eval_bin_size'], {}), '(all_pred, raw_bin_size, eval_bin_size)\n', (1530, 1569), False, 'import evaluate\n'), ((1600, 1672), 'evaluate.get_performance', 'evaluate.get_performance', (['true_for_eval', 'pred_for_eval', 'targets', '"""whole"""'], {}), "(true_for_eval, pred_for_eval, targets, 'whole')\n", (1624, 1672), False, 'import evaluate\n')]
import logging import numpy as np import torch from torch import nn from anchor_based import anchor_helper from anchor_based.dsnet import DSNet from anchor_based.losses import calc_cls_loss, calc_loc_loss from evaluate import evaluate from helpers import data_helper, vsumm_helper, bbox_helper logger = logging.getLogger() def xavier_init(module): cls_name = module.__class__.__name__ if 'Linear' in cls_name or 'Conv' in cls_name: nn.init.xavier_uniform_(module.weight, gain=np.sqrt(2.0)) if module.bias is not None: nn.init.constant_(module.bias, 0.1) def train(args, split, save_path): model = DSNet(base_model=args.base_model, num_feature=args.num_feature, num_hidden=args.num_hidden, anchor_scales=args.anchor_scales, num_head=args.num_head) model = model.to(args.device) model.apply(xavier_init) parameters = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.Adam(parameters, lr=args.lr, weight_decay=args.weight_decay) max_val_fscore = -1 train_set = data_helper.VideoDataset(split['train_keys']) train_loader = data_helper.DataLoader(train_set, shuffle=True) val_set = data_helper.VideoDataset(split['test_keys']) val_loader = data_helper.DataLoader(val_set, shuffle=False) for epoch in range(args.max_epoch): model.train() stats = data_helper.AverageMeter('loss', 'cls_loss', 'loc_loss') for _, seq, gtscore, cps, n_frames, nfps, picks, _ in train_loader: keyshot_summ = vsumm_helper.get_keyshot_summ( gtscore, cps, n_frames, nfps, picks) target = vsumm_helper.downsample_summ(keyshot_summ) if not target.any(): continue target_bboxes = bbox_helper.seq2bbox(target) target_bboxes = bbox_helper.lr2cw(target_bboxes) anchors = anchor_helper.get_anchors(target.size, args.anchor_scales) # Get class and location label for positive samples cls_label, loc_label = anchor_helper.get_pos_label( anchors, target_bboxes, args.pos_iou_thresh) # Get negative samples num_pos = cls_label.sum() cls_label_neg, _ = anchor_helper.get_pos_label( anchors, target_bboxes, args.neg_iou_thresh) cls_label_neg = anchor_helper.get_neg_label( cls_label_neg, int(args.neg_sample_ratio * num_pos)) # Get incomplete samples cls_label_incomplete, _ = anchor_helper.get_pos_label( anchors, target_bboxes, args.incomplete_iou_thresh) cls_label_incomplete[cls_label_neg != 1] = 1 cls_label_incomplete = anchor_helper.get_neg_label( cls_label_incomplete, int(args.incomplete_sample_ratio * num_pos)) cls_label[cls_label_neg == -1] = -1 cls_label[cls_label_incomplete == -1] = -1 cls_label = torch.tensor(cls_label, dtype=torch.float32).to(args.device) loc_label = torch.tensor(loc_label, dtype=torch.float32).to(args.device) seq = torch.tensor(seq, dtype=torch.float32).unsqueeze(0).to(args.device) pred_cls, pred_loc = model(seq) loc_loss = calc_loc_loss(pred_loc, loc_label, cls_label) cls_loss = calc_cls_loss(pred_cls, cls_label) loss = cls_loss + args.lambda_reg * loc_loss optimizer.zero_grad() loss.backward() optimizer.step() stats.update(loss=loss.item(), cls_loss=cls_loss.item(), loc_loss=loc_loss.item()) val_fscore, _ = evaluate(model, val_loader, args.nms_thresh, args.device) if max_val_fscore < val_fscore: max_val_fscore = val_fscore torch.save(model.state_dict(), str(save_path)) logger.info(f'Epoch: {epoch}/{args.max_epoch} ' f'Loss: {stats.cls_loss:.4f}/{stats.loc_loss:.4f}/{stats.loss:.4f} ' f'F-score cur/max: {val_fscore:.4f}/{max_val_fscore:.4f}') return max_val_fscore
[ "evaluate.evaluate" ]
[((306, 325), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (323, 325), False, 'import logging\n'), ((644, 798), 'anchor_based.dsnet.DSNet', 'DSNet', ([], {'base_model': 'args.base_model', 'num_feature': 'args.num_feature', 'num_hidden': 'args.num_hidden', 'anchor_scales': 'args.anchor_scales', 'num_head': 'args.num_head'}), '(base_model=args.base_model, num_feature=args.num_feature, num_hidden=\n args.num_hidden, anchor_scales=args.anchor_scales, num_head=args.num_head)\n', (649, 798), False, 'from anchor_based.dsnet import DSNet\n'), ((979, 1051), 'torch.optim.Adam', 'torch.optim.Adam', (['parameters'], {'lr': 'args.lr', 'weight_decay': 'args.weight_decay'}), '(parameters, lr=args.lr, weight_decay=args.weight_decay)\n', (995, 1051), False, 'import torch\n'), ((1127, 1172), 'helpers.data_helper.VideoDataset', 'data_helper.VideoDataset', (["split['train_keys']"], {}), "(split['train_keys'])\n", (1151, 1172), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1192, 1239), 'helpers.data_helper.DataLoader', 'data_helper.DataLoader', (['train_set'], {'shuffle': '(True)'}), '(train_set, shuffle=True)\n', (1214, 1239), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1255, 1299), 'helpers.data_helper.VideoDataset', 'data_helper.VideoDataset', (["split['test_keys']"], {}), "(split['test_keys'])\n", (1279, 1299), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1317, 1363), 'helpers.data_helper.DataLoader', 'data_helper.DataLoader', (['val_set'], {'shuffle': '(False)'}), '(val_set, shuffle=False)\n', (1339, 1363), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1443, 1499), 'helpers.data_helper.AverageMeter', 'data_helper.AverageMeter', (['"""loss"""', '"""cls_loss"""', '"""loc_loss"""'], {}), "('loss', 'cls_loss', 'loc_loss')\n", (1467, 1499), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((3745, 3802), 'evaluate.evaluate', 'evaluate', (['model', 'val_loader', 'args.nms_thresh', 'args.device'], {}), '(model, val_loader, args.nms_thresh, args.device)\n', (3753, 3802), False, 'from evaluate import evaluate\n'), ((559, 594), 'torch.nn.init.constant_', 'nn.init.constant_', (['module.bias', '(0.1)'], {}), '(module.bias, 0.1)\n', (576, 594), False, 'from torch import nn\n'), ((1604, 1670), 'helpers.vsumm_helper.get_keyshot_summ', 'vsumm_helper.get_keyshot_summ', (['gtscore', 'cps', 'n_frames', 'nfps', 'picks'], {}), '(gtscore, cps, n_frames, nfps, picks)\n', (1633, 1670), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1709, 1751), 'helpers.vsumm_helper.downsample_summ', 'vsumm_helper.downsample_summ', (['keyshot_summ'], {}), '(keyshot_summ)\n', (1737, 1751), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1840, 1868), 'helpers.bbox_helper.seq2bbox', 'bbox_helper.seq2bbox', (['target'], {}), '(target)\n', (1860, 1868), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1897, 1929), 'helpers.bbox_helper.lr2cw', 'bbox_helper.lr2cw', (['target_bboxes'], {}), '(target_bboxes)\n', (1914, 1929), False, 'from helpers import data_helper, vsumm_helper, bbox_helper\n'), ((1952, 2010), 'anchor_based.anchor_helper.get_anchors', 'anchor_helper.get_anchors', (['target.size', 'args.anchor_scales'], {}), '(target.size, args.anchor_scales)\n', (1977, 2010), False, 'from anchor_based import anchor_helper\n'), ((2110, 2182), 'anchor_based.anchor_helper.get_pos_label', 'anchor_helper.get_pos_label', (['anchors', 'target_bboxes', 'args.pos_iou_thresh'], {}), '(anchors, target_bboxes, args.pos_iou_thresh)\n', (2137, 2182), False, 'from anchor_based import anchor_helper\n'), ((2305, 2377), 'anchor_based.anchor_helper.get_pos_label', 'anchor_helper.get_pos_label', (['anchors', 'target_bboxes', 'args.neg_iou_thresh'], {}), '(anchors, target_bboxes, args.neg_iou_thresh)\n', (2332, 2377), False, 'from anchor_based import anchor_helper\n'), ((2597, 2676), 'anchor_based.anchor_helper.get_pos_label', 'anchor_helper.get_pos_label', (['anchors', 'target_bboxes', 'args.incomplete_iou_thresh'], {}), '(anchors, target_bboxes, args.incomplete_iou_thresh)\n', (2624, 2676), False, 'from anchor_based import anchor_helper\n'), ((3345, 3390), 'anchor_based.losses.calc_loc_loss', 'calc_loc_loss', (['pred_loc', 'loc_label', 'cls_label'], {}), '(pred_loc, loc_label, cls_label)\n', (3358, 3390), False, 'from anchor_based.losses import calc_cls_loss, calc_loc_loss\n'), ((3414, 3448), 'anchor_based.losses.calc_cls_loss', 'calc_cls_loss', (['pred_cls', 'cls_label'], {}), '(pred_cls, cls_label)\n', (3427, 3448), False, 'from anchor_based.losses import calc_cls_loss, calc_loc_loss\n'), ((497, 509), 'numpy.sqrt', 'np.sqrt', (['(2.0)'], {}), '(2.0)\n', (504, 509), True, 'import numpy as np\n'), ((3043, 3087), 'torch.tensor', 'torch.tensor', (['cls_label'], {'dtype': 'torch.float32'}), '(cls_label, dtype=torch.float32)\n', (3055, 3087), False, 'import torch\n'), ((3128, 3172), 'torch.tensor', 'torch.tensor', (['loc_label'], {'dtype': 'torch.float32'}), '(loc_label, dtype=torch.float32)\n', (3140, 3172), False, 'import torch\n'), ((3208, 3246), 'torch.tensor', 'torch.tensor', (['seq'], {'dtype': 'torch.float32'}), '(seq, dtype=torch.float32)\n', (3220, 3246), False, 'import torch\n')]
import chess import chess.pgn from evaluate import Evaluator from weightsHandler import WeightsHandler import config def main(): # Open PGN file with games database gamesFile = open(config.GAMES_FILE_NAME) # Initialize counter gamesCounter = 0 # Initialize move selection module # moveSelector = MoveSelector(config.MAX_ITER_MTD, config.MAX_DEPTH, config.MAX_SCORE) evaluator = Evaluator(config.MAX_ITER_MTD, config.MAX_DEPTH, config.MAX_SCORE) # Initialize weight-handling module weightsHandler = WeightsHandler("weights.py") # Initialize learning rate learningRate = config.ALPHA_INIT current_game_num = weightsHandler.getGameNum() # Loop over recorded games in file until counter reaches limit while gamesCounter < config.MAX_GAMES + current_game_num: # Get a game game = chess.pgn.read_game(gamesFile) if gamesCounter < current_game_num: gamesCounter += 1 continue try: game.variation(0) except KeyError: continue if not game: break # Find the winner whitePnt = game.headers["Result"] if whitePnt == "1-0": winColor = chess.WHITE elif whitePnt == "0-1": winColor = chess.BLACK else: continue print("\nGame ", gamesCounter + 1) # Clear transposition table evaluator.clearTranspositionTable() # Play as both black and white for color in range(2): # Use local copy of game state = game # Get board object from game board = state.board() # Initialize list of board and board scores scores = [] boards = [board.copy()] # Initialize features list featuresInit = [] featuresFinal = [] # Initialize turn counter turnCounter = 0 if color: print("White") else: print("Black") # Loop through game, move by move while not state.is_end(): # Get next board position state = state.variation(0) board = state.board() # If computer's turn to move if board.turn == color: # Get score of board and position that computer aims to reach _, score, finalBoard = evaluator.selectMove(board) # Store score, finalBoard and features of finalBoard scores.append(score) boards.append(finalBoard) fI, fF = evaluator.findFeatures(finalBoard, color) featuresInit.append(fI) featuresFinal.append(fF) turnCounter = turnCounter + 1 print("Turn ", turnCounter, '\r', end='') print('\n', end='') # Depending on winner, store final score if winColor == color: scores.append(config.MAX_SCORE) else: scores.append(-config.MAX_SCORE) # Learn weights initPosWeights, finalPosWeights = weightsHandler.getWeights() initPosWeights, finalPosWeights = learn( initPosWeights, finalPosWeights, featuresInit, featuresFinal, scores, learningRate, config.LAMBDA, config.MAX_POSITION_SCORE ) # Store weights weightsHandler.setWeights(initPosWeights, finalPosWeights) weightsHandler.setGameNum(gamesCounter) weightsHandler.writeWeightsToFile() # Decrease learning rate learningRate /= config.ALPHA_DEC_FACTOR # Debug info # print scores # print featuresInit[10] # print featuresFinal[10] # print moveSelector._transTable.hits # print moveSelector._transTable.notHits # print moveSelector._transTable.size # print initPosWeights # Done learning from one game, so increment game counter gamesCounter = gamesCounter + 1 # Close file handlers when learning is complete weightsHandler.closeWeightsFile() gamesFile.close() def learn(wRawInit, wRawFin, fInit, fFinal, J, alpha, lambdaDecay, clampVal): wInit = [] wFin = [] sizeJ = len(J) # Unrolling parameters into vector for j in range(6): for i in range(64): wInit.append(wRawInit[j][i]) wFin.append(wRawFin[j][i]) sizeW = len(wInit) # Calculate update amount (with sign) for parameters updateMagInit = [0 for i in range(sizeW)] updateMagFinal = [0 for i in range(sizeW)] for t in range(sizeJ - 1): propTempDiff = 0 # Propagated temporal difference for j in range(t, sizeJ - 1): propTempDiff += lambdaDecay**(j - t) * (J[j + 1] - J[j]) updateMagInit = [updateMagInit[i] + (propTempDiff * fInit[t][i]) for i in range(sizeW)] updateMagFinal = [updateMagFinal[i] + (propTempDiff * fFinal[t][i]) for i in range(sizeW)] # Update parameters for i in range(len(wInit)): wInit[i] += alpha * updateMagInit[i] wFin[i] += alpha * updateMagFinal[i] # Rolling parameter vector wRawInit = [[max(min(int(round(wInit[i + 64*j])), clampVal), -clampVal) for i in range(0, 64)] for j in range(0, 6)] wRawFin = [[max(min(int(round(wFin[i + 64*j])), clampVal), -clampVal) for i in range(0, 64)] for j in range(0, 6)] # print(wRawInit, wRawFin) # Return final weights return (wRawInit, wRawFin) if __name__ == "__main__": main()
[ "evaluate.Evaluator" ]
[((409, 475), 'evaluate.Evaluator', 'Evaluator', (['config.MAX_ITER_MTD', 'config.MAX_DEPTH', 'config.MAX_SCORE'], {}), '(config.MAX_ITER_MTD, config.MAX_DEPTH, config.MAX_SCORE)\n', (418, 475), False, 'from evaluate import Evaluator\n'), ((563, 591), 'weightsHandler.WeightsHandler', 'WeightsHandler', (['"""weights.py"""'], {}), "('weights.py')\n", (577, 591), False, 'from weightsHandler import WeightsHandler\n'), ((878, 908), 'chess.pgn.read_game', 'chess.pgn.read_game', (['gamesFile'], {}), '(gamesFile)\n', (897, 908), False, 'import chess\n')]
import evaluate from formulas import jaccard, ochiai, tarantula, ample, wong1, wong2, wong3, op1, op2, gp_list, gpif, gpasgn, gpcall, gpseq import math import sys def compare_formula(spectra_list, f1, f2): f1_list = list(map(lambda sp : f1(sp[0], sp[1], sp[2], sp[3]), spectra_list)) f2_list = list(map(lambda sp : f2(sp[0], sp[1], sp[2], sp[3]), spectra_list)) f1_sorted = sorted(f1_list, reverse = True) f2_sorted = sorted(f2_list, reverse = True) f1_rank = list(map(lambda x : f1_sorted.index(x), f1_list)) f2_rank = list(map(lambda x : f2_sorted.index(x), f2_list)) return measure_similarity(f1_rank, f2_rank) def measure_similarity(order1, order2): res = 0 for (i1, i2) in zip(order1, order2): res += abs(i1 - i2) return res def add(a, b): return a + b def sub(a, b): return a - b def mul(a, b): return a * b def div(a, b): if b == 0: return 1 else: return a / b def sqrt(a): return math.sqrt(abs(a)) def parse_formula(fun_str): return lambda ep, ef, np, nf : eval(fun_str) def read_formulas(file_path): formula_list = [] with open(file_path, 'r') as file: while True: line = file.readline() if '"' not in line: continue if not line: break fun_str = line.split('"')[1] formula_list.append(parse_formula(fun_str)) return formula_list def file_test(formula_path, data_path, write_path): formula_path = sys.argv[1] formula_list = read_formulas(formula_path) data_path = sys.argv[2] write_path = sys.argv[3] human_list = [("jaccard", jaccard), ("ochiai", ochiai), ("tarantula", tarantula), ("ample", ample), ("wong1", wong1), ("wong2", wong2), ("wong3", wong3), ("op1", op1), ("op2", op2)] spectra_list = evaluate.spectra_list([data_path])[0]["spectra_list"] with open(write_path, 'w') as out: for i in range(1, 31): eval_formula = gp_list[i - 1] formula_name = "gp" + str(i) sim_list = list(map(lambda f : str(compare_formula(spectra_list, f, eval_formula)), formula_list)) out.write(formula_name + "," + ','.join(sim_list) + '\n') for name, eval_formula in human_list: sim_list = list(map(lambda f : str(compare_formula(spectra_list, f, eval_formula)), formula_list)) out.write(name + "," + ','.join(sim_list) + '\n') def form_test(data_path, write_path): formula_list = [gpif, gpasgn, gpcall, gpseq] human_list = [("jaccard", jaccard), ("ochiai", ochiai), ("tarantula", tarantula), ("ample", ample), ("wong1", wong1), ("wong2", wong2), ("wong3", wong3), ("op1", op1), ("op2", op2)] spectra_list = evaluate.spectra_list([data_path])[0]["spectra_list"] with open(write_path, 'w') as out: for i in range(1, 31): eval_formula = gp_list[i - 1] formula_name = "gp" + str(i) sim_list = list(map(lambda f : str(compare_formula(spectra_list, f, eval_formula)), formula_list)) out.write(formula_name + "," + ','.join(sim_list) + '\n') for name, eval_formula in human_list: sim_list = list(map(lambda f : str(compare_formula(spectra_list, f, eval_formula)), formula_list)) out.write(name + "," + ','.join(sim_list) + '\n') if __name__ == "__main__": if len(sys.argv) == 4: file_test(sys.argv[1], sys.argv[2], sys.argv[3]) else: form_test(sys.argv[1], sys.argv[2])
[ "evaluate.spectra_list" ]
[((1864, 1898), 'evaluate.spectra_list', 'evaluate.spectra_list', (['[data_path]'], {}), '([data_path])\n', (1885, 1898), False, 'import evaluate\n'), ((2784, 2818), 'evaluate.spectra_list', 'evaluate.spectra_list', (['[data_path]'], {}), '([data_path])\n', (2805, 2818), False, 'import evaluate\n')]
# -*- coding: utf-8 -*- # @Time : 2018/11/4 15:34 # @Author : QuietWoods # @FileName: eval_full_model.py # @Software: PyCharm """ Evaluate the baselines ont ROUGE/METEOR""" import argparse import json import os from os.path import join, exists from evaluate import eval_meteor, eval_rouge try: _DATA_DIR = os.environ['DATA'] except KeyError: print('please use environment variable to specify data directories') def main(args): dec_dir = args.decode_file ref_dir = args.ref_file assert exists(ref_dir) if args.rouge: output = eval_rouge(dec_dir, ref_dir) metric = 'rouge' else: output = eval_meteor(dec_dir, ref_dir) metric = 'meteor' print(output) with open('{}.txt'.format(metric), 'w') as f: f.write(output) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Evaluate the output files for the RL full models') # choose metric to evaluate metric_opt = parser.add_mutually_exclusive_group(required=True) metric_opt.add_argument('--rouge', action='store_true', help='ROUGE evaluation') metric_opt.add_argument('--meteor', action='store_true', help='METEOR evaluation') parser.add_argument('--decode_file', action='store', required=True, help='directory of decoded summaries') parser.add_argument('--ref_file', action='store', required=True, help='directory of decoded summaries') args = parser.parse_args() main(args)
[ "evaluate.eval_meteor", "evaluate.eval_rouge" ]
[((515, 530), 'os.path.exists', 'exists', (['ref_dir'], {}), '(ref_dir)\n', (521, 530), False, 'from os.path import join, exists\n'), ((839, 931), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Evaluate the output files for the RL full models"""'}), "(description=\n 'Evaluate the output files for the RL full models')\n", (862, 931), False, 'import argparse\n'), ((568, 596), 'evaluate.eval_rouge', 'eval_rouge', (['dec_dir', 'ref_dir'], {}), '(dec_dir, ref_dir)\n', (578, 596), False, 'from evaluate import eval_meteor, eval_rouge\n'), ((649, 678), 'evaluate.eval_meteor', 'eval_meteor', (['dec_dir', 'ref_dir'], {}), '(dec_dir, ref_dir)\n', (660, 678), False, 'from evaluate import eval_meteor, eval_rouge\n')]
import argparse import os import torch import yaml import torch.nn as nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from utils.model import get_model, get_vocoder, get_param_num from utils.tools import get_configs_of, to_device, log, synth_one_sample from model import FastSpeech2Loss from dataset import Dataset from evaluate import evaluate device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def main(args, configs): print("Prepare training ...") preprocess_config, model_config, train_config = configs # Get dataset dataset = Dataset( "train.txt", preprocess_config, train_config, sort=True, drop_last=True ) batch_size = train_config["optimizer"]["batch_size"] group_size = 4 # Set this larger than 1 to enable sorting in Dataset assert batch_size * group_size < len(dataset) loader = DataLoader( dataset, batch_size=batch_size * group_size, shuffle=True, collate_fn=dataset.collate_fn, ) # Prepare model model, optimizer = get_model(args, configs, device, train=True) model = nn.DataParallel(model) num_param = get_param_num(model) Loss = FastSpeech2Loss(preprocess_config, model_config).to(device) print("Number of FastSpeech2 Parameters:", num_param) # Load vocoder vocoder = get_vocoder(model_config, device) # Init logger for p in train_config["path"].values(): os.makedirs(p, exist_ok=True) train_log_path = os.path.join(train_config["path"]["log_path"], "train") val_log_path = os.path.join(train_config["path"]["log_path"], "val") os.makedirs(train_log_path, exist_ok=True) os.makedirs(val_log_path, exist_ok=True) train_logger = SummaryWriter(train_log_path) val_logger = SummaryWriter(val_log_path) # Training step = args.restore_step + 1 epoch = 1 grad_acc_step = train_config["optimizer"]["grad_acc_step"] grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"] total_step = train_config["step"]["total_step"] log_step = train_config["step"]["log_step"] save_step = train_config["step"]["save_step"] synth_step = train_config["step"]["synth_step"] val_step = train_config["step"]["val_step"] outer_bar = tqdm(total=total_step, desc="Training", position=0) outer_bar.n = args.restore_step outer_bar.update() while True: inner_bar = tqdm(total=len(loader), desc="Epoch {}".format(epoch), position=1) for batchs in loader: for batch in batchs: batch = to_device(batch, device) # Forward with torch.no_grad(): output = model(*(batch[2:])) # Cal Loss losses = Loss(batch, output) total_loss = losses[0] # Backward total_loss = total_loss / grad_acc_step total_loss.requires_grad_(True) total_loss.backward() if step % grad_acc_step == 0: # Clipping gradients to avoid gradient explosion nn.utils.clip_grad_norm_(model.parameters(), grad_clip_thresh) # Update weights optimizer.step_and_update_lr() optimizer.zero_grad() if step % log_step == 0: losses = [l.item() for l in losses] message1 = "Step {}/{}, ".format(step, total_step) message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}, Pitch Loss: {:.4f}, Energy Loss: {:.4f}, Duration Loss: {:.4f}".format( *losses ) with open(os.path.join(train_log_path, "log.txt"), "a") as f: f.write(message1 + message2 + "\n") outer_bar.write(message1 + message2) log(train_logger, step, losses=losses) if step % synth_step == 0: fig, wav_reconstruction, wav_prediction, tag = synth_one_sample( batch, output, vocoder, model_config, preprocess_config, ) log( train_logger, fig=fig, tag="Training/step_{}_{}".format(step, tag), ) sampling_rate = preprocess_config["preprocessing"]["audio"][ "sampling_rate" ] log( train_logger, audio=wav_reconstruction, sampling_rate=sampling_rate, tag="Training/step_{}_{}_reconstructed".format(step, tag), ) log( train_logger, audio=wav_prediction, sampling_rate=sampling_rate, tag="Training/step_{}_{}_synthesized".format(step, tag), ) if step % val_step == 0: model.eval() message = evaluate(model, step, configs, val_logger, vocoder) with open(os.path.join(val_log_path, "log.txt"), "a") as f: f.write(message + "\n") outer_bar.write(message) model.train() if step % save_step == 0: torch.save( { "model": model.module.state_dict(), "optimizer": optimizer._optimizer.state_dict(), }, os.path.join( train_config["path"]["ckpt_path"], "{}.pth.tar".format(step), ), ) if step == total_step: quit() step += 1 outer_bar.update(1) inner_bar.update(1) epoch += 1 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--restore_step", type=int, default=0) parser.add_argument("--FineTune", type=bool, default=False) parser.add_argument( "--dataset", type=str, required=True, help="name of dataset", ) args = parser.parse_args() # Read Config preprocess_config, model_config, train_config = get_configs_of( args.dataset) configs = (preprocess_config, model_config, train_config) main(args, configs)
[ "evaluate.evaluate" ]
[((641, 726), 'dataset.Dataset', 'Dataset', (['"""train.txt"""', 'preprocess_config', 'train_config'], {'sort': '(True)', 'drop_last': '(True)'}), "('train.txt', preprocess_config, train_config, sort=True, drop_last=True\n )\n", (648, 726), False, 'from dataset import Dataset\n'), ((930, 1034), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': '(batch_size * group_size)', 'shuffle': '(True)', 'collate_fn': 'dataset.collate_fn'}), '(dataset, batch_size=batch_size * group_size, shuffle=True,\n collate_fn=dataset.collate_fn)\n', (940, 1034), False, 'from torch.utils.data import DataLoader\n'), ((1114, 1158), 'utils.model.get_model', 'get_model', (['args', 'configs', 'device'], {'train': '(True)'}), '(args, configs, device, train=True)\n', (1123, 1158), False, 'from utils.model import get_model, get_vocoder, get_param_num\n'), ((1171, 1193), 'torch.nn.DataParallel', 'nn.DataParallel', (['model'], {}), '(model)\n', (1186, 1193), True, 'import torch.nn as nn\n'), ((1210, 1230), 'utils.model.get_param_num', 'get_param_num', (['model'], {}), '(model)\n', (1223, 1230), False, 'from utils.model import get_model, get_vocoder, get_param_num\n'), ((1394, 1427), 'utils.model.get_vocoder', 'get_vocoder', (['model_config', 'device'], {}), '(model_config, device)\n', (1405, 1427), False, 'from utils.model import get_model, get_vocoder, get_param_num\n'), ((1550, 1605), 'os.path.join', 'os.path.join', (["train_config['path']['log_path']", '"""train"""'], {}), "(train_config['path']['log_path'], 'train')\n", (1562, 1605), False, 'import os\n'), ((1625, 1678), 'os.path.join', 'os.path.join', (["train_config['path']['log_path']", '"""val"""'], {}), "(train_config['path']['log_path'], 'val')\n", (1637, 1678), False, 'import os\n'), ((1683, 1725), 'os.makedirs', 'os.makedirs', (['train_log_path'], {'exist_ok': '(True)'}), '(train_log_path, exist_ok=True)\n', (1694, 1725), False, 'import os\n'), ((1730, 1770), 'os.makedirs', 'os.makedirs', (['val_log_path'], {'exist_ok': '(True)'}), '(val_log_path, exist_ok=True)\n', (1741, 1770), False, 'import os\n'), ((1790, 1819), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', (['train_log_path'], {}), '(train_log_path)\n', (1803, 1819), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((1837, 1864), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', (['val_log_path'], {}), '(val_log_path)\n', (1850, 1864), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((2327, 2378), 'tqdm.tqdm', 'tqdm', ([], {'total': 'total_step', 'desc': '"""Training"""', 'position': '(0)'}), "(total=total_step, desc='Training', position=0)\n", (2331, 2378), False, 'from tqdm import tqdm\n'), ((6286, 6311), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6309, 6311), False, 'import argparse\n'), ((6666, 6694), 'utils.tools.get_configs_of', 'get_configs_of', (['args.dataset'], {}), '(args.dataset)\n', (6680, 6694), False, 'from utils.tools import get_configs_of, to_device, log, synth_one_sample\n'), ((448, 473), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (471, 473), False, 'import torch\n'), ((1499, 1528), 'os.makedirs', 'os.makedirs', (['p'], {'exist_ok': '(True)'}), '(p, exist_ok=True)\n', (1510, 1528), False, 'import os\n'), ((1242, 1290), 'model.FastSpeech2Loss', 'FastSpeech2Loss', (['preprocess_config', 'model_config'], {}), '(preprocess_config, model_config)\n', (1257, 1290), False, 'from model import FastSpeech2Loss\n'), ((2629, 2653), 'utils.tools.to_device', 'to_device', (['batch', 'device'], {}), '(batch, device)\n', (2638, 2653), False, 'from utils.tools import get_configs_of, to_device, log, synth_one_sample\n'), ((2702, 2717), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2715, 2717), False, 'import torch\n'), ((3992, 4030), 'utils.tools.log', 'log', (['train_logger', 'step'], {'losses': 'losses'}), '(train_logger, step, losses=losses)\n', (3995, 4030), False, 'from utils.tools import get_configs_of, to_device, log, synth_one_sample\n'), ((4142, 4215), 'utils.tools.synth_one_sample', 'synth_one_sample', (['batch', 'output', 'vocoder', 'model_config', 'preprocess_config'], {}), '(batch, output, vocoder, model_config, preprocess_config)\n', (4158, 4215), False, 'from utils.tools import get_configs_of, to_device, log, synth_one_sample\n'), ((5330, 5381), 'evaluate.evaluate', 'evaluate', (['model', 'step', 'configs', 'val_logger', 'vocoder'], {}), '(model, step, configs, val_logger, vocoder)\n', (5338, 5381), False, 'from evaluate import evaluate\n'), ((3801, 3840), 'os.path.join', 'os.path.join', (['train_log_path', '"""log.txt"""'], {}), "(train_log_path, 'log.txt')\n", (3813, 3840), False, 'import os\n'), ((5412, 5449), 'os.path.join', 'os.path.join', (['val_log_path', '"""log.txt"""'], {}), "(val_log_path, 'log.txt')\n", (5424, 5449), False, 'import os\n')]
import random import numpy as np import os import logging import torch from utilities import get_device, current_utc_time import pandas as pd from imp import reload from data_loader import get_loader, prepare_dataset from transformers import AdamW, get_linear_schedule_with_warmup from models import get_model from trainer import train_model from evaluate import evaluate_model import pickle from datetime import datetime reload(logging) # Parameters model_name = "BERT" seed = 57 epochs = 15 batch_size = 16 learning_rate = 2e-4 epsilon = 1e-8 golden_1 = pd.read_excel("./data/P1-Golden.xlsx") SAVE_MODEL = True output_dir = "./models/" # Set up log file current_time = current_utc_time() logging.basicConfig( filename=f"{os.getcwd()}/bert-p1.log", filemode="a", format="%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s", datefmt="%H:%M:%S", level=logging.INFO, ) device = get_device() # Set the seed value all over the place to make this reproducible. random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Prepare dataset all_input_ids, all_attention_masks, all_labels = prepare_dataset(golden_1) # Shuffle data and separate evaluation dataset print("Separating test and train data") while True: indices = np.arange(all_input_ids.shape[0]) np.random.shuffle(indices) all_input_ids = all_input_ids[indices] all_attention_masks = all_attention_masks[indices] all_labels = all_labels[indices] val_labels = all_labels[:50] # Ensure that we do not have too much bias in validation dataset bias_ratio = np.count_nonzero(val_labels == 1) / np.count_nonzero(val_labels == 0) if 0.9 < bias_ratio < 1.1: val_input_ids = all_input_ids[:50] val_attention_masks = all_attention_masks[:50] break val_dataloader = get_loader( val_input_ids, val_attention_masks, val_labels, batch_size=batch_size, loader_type="VALIDATE" ) input_ids = all_input_ids[50:] attention_masks = all_attention_masks[50:] labels = all_labels[50:] logging.info(f"Number of train samples: {len(input_ids)}") logging.info(f"Number of validation samples: {len(val_input_ids)}") # Measure the total training time for the whole run. start_time = datetime.now() # ======================================== # Training # ======================================== # Prepare dataloader train_dataloader = get_loader(input_ids, attention_masks, labels, batch_size=batch_size) # model model = get_model(model_name).to(device) # Optimizer optimizer = AdamW( model.parameters(), lr=learning_rate, # args.learning_rate - default is 5e-5, our notebook had 2e-5 eps=epsilon, # args.adam_epsilon - default is 1e-8. ) # Total number of training steps is [number of batches] x [number of epochs]. # (Note that this is not the same as the number of training samples). total_steps = len(train_dataloader) * epochs # Create the learning rate scheduler. scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=0, # Default value in run_glue.py num_training_steps=total_steps, ) model, stats = train_model( model, train_dataloader, val_dataloader, optimizer, scheduler, seed=seed, epochs=epochs ) # ======================================== # Evaluation # ======================================== train_time = (datetime.now() - start_time).total_seconds() eval_time_start = datetime.now() eval_report = evaluate_model(model, val_dataloader) eval_time = (datetime.now() - eval_time_start).total_seconds() training_stats = { "train_size": len(labels), "val_size": len(val_labels), "training_stats": stats, "evaluation_report": eval_report, "train_time": train_time, "eval_time": eval_time, } logging.info(f"Training Stats: \n {training_stats}") print(f"Evaluation Report: \n {eval_report}") # Save report with open("bert-p1.pkl", "wb") as f: pickle.dump(training_stats, f) if SAVE_MODEL: # Create output directory if needed if not os.path.exists(output_dir): os.makedirs(output_dir) print(f"Saving model to {output_dir}") # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir)
[ "evaluate.evaluate_model" ]
[((439, 454), 'imp.reload', 'reload', (['logging'], {}), '(logging)\n', (445, 454), False, 'from imp import reload\n'), ((583, 621), 'pandas.read_excel', 'pd.read_excel', (['"""./data/P1-Golden.xlsx"""'], {}), "('./data/P1-Golden.xlsx')\n", (596, 621), True, 'import pandas as pd\n'), ((704, 722), 'utilities.current_utc_time', 'current_utc_time', ([], {}), '()\n', (720, 722), False, 'from utilities import get_device, current_utc_time\n'), ((945, 957), 'utilities.get_device', 'get_device', ([], {}), '()\n', (955, 957), False, 'from utilities import get_device, current_utc_time\n'), ((1027, 1044), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (1038, 1044), False, 'import random\n'), ((1046, 1066), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1060, 1066), True, 'import numpy as np\n'), ((1068, 1091), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (1085, 1091), False, 'import torch\n'), ((1093, 1125), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['seed'], {}), '(seed)\n', (1119, 1125), False, 'import torch\n'), ((1197, 1222), 'data_loader.prepare_dataset', 'prepare_dataset', (['golden_1'], {}), '(golden_1)\n', (1212, 1222), False, 'from data_loader import get_loader, prepare_dataset\n'), ((1907, 2017), 'data_loader.get_loader', 'get_loader', (['val_input_ids', 'val_attention_masks', 'val_labels'], {'batch_size': 'batch_size', 'loader_type': '"""VALIDATE"""'}), "(val_input_ids, val_attention_masks, val_labels, batch_size=\n batch_size, loader_type='VALIDATE')\n", (1917, 2017), False, 'from data_loader import get_loader, prepare_dataset\n'), ((2326, 2340), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2338, 2340), False, 'from datetime import datetime\n'), ((2501, 2570), 'data_loader.get_loader', 'get_loader', (['input_ids', 'attention_masks', 'labels'], {'batch_size': 'batch_size'}), '(input_ids, attention_masks, labels, batch_size=batch_size)\n', (2511, 2570), False, 'from data_loader import get_loader, prepare_dataset\n'), ((3084, 3182), 'transformers.get_linear_schedule_with_warmup', 'get_linear_schedule_with_warmup', (['optimizer'], {'num_warmup_steps': '(0)', 'num_training_steps': 'total_steps'}), '(optimizer, num_warmup_steps=0,\n num_training_steps=total_steps)\n', (3115, 3182), False, 'from transformers import AdamW, get_linear_schedule_with_warmup\n'), ((3248, 3352), 'trainer.train_model', 'train_model', (['model', 'train_dataloader', 'val_dataloader', 'optimizer', 'scheduler'], {'seed': 'seed', 'epochs': 'epochs'}), '(model, train_dataloader, val_dataloader, optimizer, scheduler,\n seed=seed, epochs=epochs)\n', (3259, 3352), False, 'from trainer import train_model\n'), ((3554, 3568), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3566, 3568), False, 'from datetime import datetime\n'), ((3584, 3621), 'evaluate.evaluate_model', 'evaluate_model', (['model', 'val_dataloader'], {}), '(model, val_dataloader)\n', (3598, 3621), False, 'from evaluate import evaluate_model\n'), ((3909, 3964), 'logging.info', 'logging.info', (['f"""Training Stats: \n {training_stats}"""'], {}), '(f"""Training Stats: \n {training_stats}""")\n', (3921, 3964), False, 'import logging\n'), ((1342, 1375), 'numpy.arange', 'np.arange', (['all_input_ids.shape[0]'], {}), '(all_input_ids.shape[0])\n', (1351, 1375), True, 'import numpy as np\n'), ((1381, 1407), 'numpy.random.shuffle', 'np.random.shuffle', (['indices'], {}), '(indices)\n', (1398, 1407), True, 'import numpy as np\n'), ((4069, 4099), 'pickle.dump', 'pickle.dump', (['training_stats', 'f'], {}), '(training_stats, f)\n', (4080, 4099), False, 'import pickle\n'), ((1670, 1703), 'numpy.count_nonzero', 'np.count_nonzero', (['(val_labels == 1)'], {}), '(val_labels == 1)\n', (1686, 1703), True, 'import numpy as np\n'), ((1706, 1739), 'numpy.count_nonzero', 'np.count_nonzero', (['(val_labels == 0)'], {}), '(val_labels == 0)\n', (1722, 1739), True, 'import numpy as np\n'), ((2591, 2612), 'models.get_model', 'get_model', (['model_name'], {}), '(model_name)\n', (2600, 2612), False, 'from models import get_model\n'), ((4171, 4197), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (4185, 4197), False, 'import os\n'), ((4208, 4231), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (4219, 4231), False, 'import os\n'), ((3490, 3504), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3502, 3504), False, 'from datetime import datetime\n'), ((3636, 3650), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3648, 3650), False, 'from datetime import datetime\n'), ((762, 773), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (771, 773), False, 'import os\n')]
from pathlib import Path import random from fire import Fire from munch import Munch import torch import numpy as np from config import config, debug_options from dataset import get_iterator from utils import wait_for_key, suppress_stdout from train import train from evaluate import evaluate from infer import infer class Cli: def __init__(self): self.defaults = config self.debug = debug_options def _default_args(self, **kwargs): args = self.defaults if 'debug' in kwargs: args.update(self.debug) args.update(kwargs) args.update(resolve_paths(config)) args.update(fix_seed(args)) args.update(get_device(args)) print(args) return Munch(args) def check_dataloader(self, **kwargs): args = self._default_args(**kwargs) iters, vocab = get_iterator(args) for batch in iters['train']: import ipdb; ipdb.set_trace() # XXX DEBUG def train(self, **kwargs): args = self._default_args(**kwargs) train(args) wait_for_key() def evaluate(self, **kwargs): args = self._default_args(**kwargs) evaluate(args) wait_for_key() def infer(self, **kwargs): with suppress_stdout(): args = self._default_args(**kwargs) ans = infer(args) print(ans) def resolve_paths(config): paths = [k for k in config.keys() if k.endswith('_path')] res = {} for path in paths: res[path] = Path(config[path]) return res def fix_seed(args): if 'random_seed' not in args: args['random_seed'] = 0 random.seed(args['random_seed']) np.random.seed(args['random_seed']) torch.manual_seed(args['random_seed']) torch.cuda.manual_seed_all(args['random_seed']) return args def get_device(args): if hasattr(args, 'device'): device = args.device else: device = "cuda" if torch.cuda.is_available() else "cpu" return {'device': device} if __name__ == "__main__": Fire(Cli)
[ "evaluate.evaluate" ]
[((1658, 1690), 'random.seed', 'random.seed', (["args['random_seed']"], {}), "(args['random_seed'])\n", (1669, 1690), False, 'import random\n'), ((1695, 1730), 'numpy.random.seed', 'np.random.seed', (["args['random_seed']"], {}), "(args['random_seed'])\n", (1709, 1730), True, 'import numpy as np\n'), ((1735, 1773), 'torch.manual_seed', 'torch.manual_seed', (["args['random_seed']"], {}), "(args['random_seed'])\n", (1752, 1773), False, 'import torch\n'), ((1778, 1825), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (["args['random_seed']"], {}), "(args['random_seed'])\n", (1804, 1825), False, 'import torch\n'), ((2064, 2073), 'fire.Fire', 'Fire', (['Cli'], {}), '(Cli)\n', (2068, 2073), False, 'from fire import Fire\n'), ((739, 750), 'munch.Munch', 'Munch', (['args'], {}), '(args)\n', (744, 750), False, 'from munch import Munch\n'), ((862, 880), 'dataset.get_iterator', 'get_iterator', (['args'], {}), '(args)\n', (874, 880), False, 'from dataset import get_iterator\n'), ((1058, 1069), 'train.train', 'train', (['args'], {}), '(args)\n', (1063, 1069), False, 'from train import train\n'), ((1079, 1093), 'utils.wait_for_key', 'wait_for_key', ([], {}), '()\n', (1091, 1093), False, 'from utils import wait_for_key, suppress_stdout\n'), ((1182, 1196), 'evaluate.evaluate', 'evaluate', (['args'], {}), '(args)\n', (1190, 1196), False, 'from evaluate import evaluate\n'), ((1206, 1220), 'utils.wait_for_key', 'wait_for_key', ([], {}), '()\n', (1218, 1220), False, 'from utils import wait_for_key, suppress_stdout\n'), ((1531, 1549), 'pathlib.Path', 'Path', (['config[path]'], {}), '(config[path])\n', (1535, 1549), False, 'from pathlib import Path\n'), ((943, 959), 'ipdb.set_trace', 'ipdb.set_trace', ([], {}), '()\n', (957, 959), False, 'import ipdb\n'), ((1266, 1283), 'utils.suppress_stdout', 'suppress_stdout', ([], {}), '()\n', (1281, 1283), False, 'from utils import wait_for_key, suppress_stdout\n'), ((1352, 1363), 'infer.infer', 'infer', (['args'], {}), '(args)\n', (1357, 1363), False, 'from infer import infer\n'), ((1437, 1450), 'config.config.keys', 'config.keys', ([], {}), '()\n', (1448, 1450), False, 'from config import config, debug_options\n'), ((1964, 1989), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1987, 1989), False, 'import torch\n')]
import subprocess as sp import datetime import os from math import isclose import sys import pytest import json import argparse sys.path.append("../../../DeepSpeedExamples/BingBertSquad") import evaluate as eval squad_dir = "/data/BingBertSquad" base_dir = "../../../DeepSpeedExamples/BingBertSquad" script_file_name = "run_squad_deepspeed.sh" model_file_name = "training_state_checkpoint_162.tar" eval_file_name = "dev-v1.1.json" pred_file_name = "predictions.json" num_gpus = "4" timeout_sec = 5 * 60 * 60 # 5 hours eval_version = "1.1" def create_config_file(tmpdir, zeroenabled=False): config_dict = { "train_batch_size": 24, "train_micro_batch_size_per_gpu": 6, "steps_per_print": 10, "optimizer": { "type": "Adam", "params": { "lr": 3e-5, "weight_decay": 0.0, "bias_correction": False } }, "gradient_clipping": 1.0, "fp16": { "enabled": True } } config_dict["zero_optimization"] = zeroenabled config_path = os.path.join(tmpdir, 'temp_config.json') with open(config_path, 'w') as fd: json.dump(config_dict, fd) return config_path def test_e2e_squad_deepspeed_base(tmpdir): config_file = create_config_file(tmpdir) # base run results => {"exact_match": 83.9829706717124, "f1": 90.71138132004097} expected_exact_match = 83.98 expected_f1 = 90.71 model_file = os.path.join(squad_dir, model_file_name) eval_file = os.path.join(squad_dir, eval_file_name) output_dir = os.path.join(tmpdir, "output") pred_file = os.path.join(output_dir, pred_file_name) proc = sp.Popen([ "bash", script_file_name, num_gpus, model_file, squad_dir, output_dir, config_file ], cwd=base_dir) try: proc.communicate(timeout=timeout_sec) if os.path.exists(pred_file): eval_result = eval.evaluate(eval_version, eval_file, pred_file) print("evaluation result: ", json.dumps(eval_result)) assert isclose(eval_result["exact_match"], expected_exact_match, abs_tol=1e-2) assert isclose(eval_result["f1"], expected_f1, abs_tol=1e-2) else: pytest.fail("Error: Run Failed") except sp.TimeoutExpired: proc.kill() pytest.fail("Error: Timeout") except sp.CalledProcessError: pytest.fail("Error: Run Failed") def test_e2e_squad_deepspeed_zero(tmpdir): config_file = create_config_file(tmpdir, True) # base run results => {"exact_match": 84.1438032166509, "f1": 90.89776136505441} expected_exact_match = 84.14 expected_f1 = 90.89 model_file = os.path.join(squad_dir, model_file_name) eval_file = os.path.join(squad_dir, eval_file_name) output_dir = os.path.join(tmpdir, "output") pred_file = os.path.join(output_dir, pred_file_name) proc = sp.Popen([ "bash", script_file_name, num_gpus, model_file, squad_dir, output_dir, config_file ], cwd=base_dir) try: proc.communicate(timeout=timeout_sec) if os.path.exists(pred_file): eval_result = eval.evaluate(eval_version, eval_file, pred_file) print("evaluation result: ", json.dumps(eval_result)) assert isclose(eval_result["exact_match"], expected_exact_match, abs_tol=1e-2) assert isclose(eval_result["f1"], expected_f1, abs_tol=1e-2) else: pytest.fail("Error: Run Failed") except sp.TimeoutExpired: proc.kill() pytest.fail("Error: Timeout") except sp.CalledProcessError: pytest.fail("Error: Run Failed")
[ "evaluate.evaluate" ]
[((129, 188), 'sys.path.append', 'sys.path.append', (['"""../../../DeepSpeedExamples/BingBertSquad"""'], {}), "('../../../DeepSpeedExamples/BingBertSquad')\n", (144, 188), False, 'import sys\n'), ((1098, 1138), 'os.path.join', 'os.path.join', (['tmpdir', '"""temp_config.json"""'], {}), "(tmpdir, 'temp_config.json')\n", (1110, 1138), False, 'import os\n'), ((1487, 1527), 'os.path.join', 'os.path.join', (['squad_dir', 'model_file_name'], {}), '(squad_dir, model_file_name)\n', (1499, 1527), False, 'import os\n'), ((1544, 1583), 'os.path.join', 'os.path.join', (['squad_dir', 'eval_file_name'], {}), '(squad_dir, eval_file_name)\n', (1556, 1583), False, 'import os\n'), ((1602, 1632), 'os.path.join', 'os.path.join', (['tmpdir', '"""output"""'], {}), "(tmpdir, 'output')\n", (1614, 1632), False, 'import os\n'), ((1649, 1689), 'os.path.join', 'os.path.join', (['output_dir', 'pred_file_name'], {}), '(output_dir, pred_file_name)\n', (1661, 1689), False, 'import os\n'), ((1702, 1814), 'subprocess.Popen', 'sp.Popen', (["['bash', script_file_name, num_gpus, model_file, squad_dir, output_dir,\n config_file]"], {'cwd': 'base_dir'}), "(['bash', script_file_name, num_gpus, model_file, squad_dir,\n output_dir, config_file], cwd=base_dir)\n", (1710, 1814), True, 'import subprocess as sp\n'), ((2831, 2871), 'os.path.join', 'os.path.join', (['squad_dir', 'model_file_name'], {}), '(squad_dir, model_file_name)\n', (2843, 2871), False, 'import os\n'), ((2888, 2927), 'os.path.join', 'os.path.join', (['squad_dir', 'eval_file_name'], {}), '(squad_dir, eval_file_name)\n', (2900, 2927), False, 'import os\n'), ((2946, 2976), 'os.path.join', 'os.path.join', (['tmpdir', '"""output"""'], {}), "(tmpdir, 'output')\n", (2958, 2976), False, 'import os\n'), ((2993, 3033), 'os.path.join', 'os.path.join', (['output_dir', 'pred_file_name'], {}), '(output_dir, pred_file_name)\n', (3005, 3033), False, 'import os\n'), ((3046, 3158), 'subprocess.Popen', 'sp.Popen', (["['bash', script_file_name, num_gpus, model_file, squad_dir, output_dir,\n config_file]"], {'cwd': 'base_dir'}), "(['bash', script_file_name, num_gpus, model_file, squad_dir,\n output_dir, config_file], cwd=base_dir)\n", (3054, 3158), True, 'import subprocess as sp\n'), ((1186, 1212), 'json.dump', 'json.dump', (['config_dict', 'fd'], {}), '(config_dict, fd)\n', (1195, 1212), False, 'import json\n'), ((1961, 1986), 'os.path.exists', 'os.path.exists', (['pred_file'], {}), '(pred_file)\n', (1975, 1986), False, 'import os\n'), ((3305, 3330), 'os.path.exists', 'os.path.exists', (['pred_file'], {}), '(pred_file)\n', (3319, 3330), False, 'import os\n'), ((2014, 2063), 'evaluate.evaluate', 'eval.evaluate', (['eval_version', 'eval_file', 'pred_file'], {}), '(eval_version, eval_file, pred_file)\n', (2027, 2063), True, 'import evaluate as eval\n'), ((2151, 2222), 'math.isclose', 'isclose', (["eval_result['exact_match']", 'expected_exact_match'], {'abs_tol': '(0.01)'}), "(eval_result['exact_match'], expected_exact_match, abs_tol=0.01)\n", (2158, 2222), False, 'from math import isclose\n'), ((2296, 2349), 'math.isclose', 'isclose', (["eval_result['f1']", 'expected_f1'], {'abs_tol': '(0.01)'}), "(eval_result['f1'], expected_f1, abs_tol=0.01)\n", (2303, 2349), False, 'from math import isclose\n'), ((2377, 2409), 'pytest.fail', 'pytest.fail', (['"""Error: Run Failed"""'], {}), "('Error: Run Failed')\n", (2388, 2409), False, 'import pytest\n'), ((2469, 2498), 'pytest.fail', 'pytest.fail', (['"""Error: Timeout"""'], {}), "('Error: Timeout')\n", (2480, 2498), False, 'import pytest\n'), ((2541, 2573), 'pytest.fail', 'pytest.fail', (['"""Error: Run Failed"""'], {}), "('Error: Run Failed')\n", (2552, 2573), False, 'import pytest\n'), ((3358, 3407), 'evaluate.evaluate', 'eval.evaluate', (['eval_version', 'eval_file', 'pred_file'], {}), '(eval_version, eval_file, pred_file)\n', (3371, 3407), True, 'import evaluate as eval\n'), ((3495, 3566), 'math.isclose', 'isclose', (["eval_result['exact_match']", 'expected_exact_match'], {'abs_tol': '(0.01)'}), "(eval_result['exact_match'], expected_exact_match, abs_tol=0.01)\n", (3502, 3566), False, 'from math import isclose\n'), ((3640, 3693), 'math.isclose', 'isclose', (["eval_result['f1']", 'expected_f1'], {'abs_tol': '(0.01)'}), "(eval_result['f1'], expected_f1, abs_tol=0.01)\n", (3647, 3693), False, 'from math import isclose\n'), ((3721, 3753), 'pytest.fail', 'pytest.fail', (['"""Error: Run Failed"""'], {}), "('Error: Run Failed')\n", (3732, 3753), False, 'import pytest\n'), ((3813, 3842), 'pytest.fail', 'pytest.fail', (['"""Error: Timeout"""'], {}), "('Error: Timeout')\n", (3824, 3842), False, 'import pytest\n'), ((3885, 3917), 'pytest.fail', 'pytest.fail', (['"""Error: Run Failed"""'], {}), "('Error: Run Failed')\n", (3896, 3917), False, 'import pytest\n'), ((2106, 2129), 'json.dumps', 'json.dumps', (['eval_result'], {}), '(eval_result)\n', (2116, 2129), False, 'import json\n'), ((3450, 3473), 'json.dumps', 'json.dumps', (['eval_result'], {}), '(eval_result)\n', (3460, 3473), False, 'import json\n')]
""" This tests how assymetric window sizes affects the evaluation results on the development set. """ from config import base import evaluate as e config = base.get_config() config['test_filepath'] = 'resources/test/teddev/data-with-doc.csv' window_sizes = [(4, 0), (4, 1), (4, 2), (4, 3), (3, 4), (2, 4), (1, 4), (0, 4)] for window_size in window_sizes: print("Running {}".format(window_size)) config['window_size'] = window_size config['no_embeddings'] = 2 * (window_size[0] + window_size[1]) + 1 + config['n_tags'] * 2 predictions = e.evaluate(config) test_data = e.load_data(config['test_filepath']) e.output(predictions, test_data, config['classes'], 'results/base.dev.window_size.{}+{}.txt'.format(window_size[0], window_size[1])) print("Saving {}".format(window_size))
[ "evaluate.load_data", "evaluate.evaluate" ]
[((158, 175), 'config.base.get_config', 'base.get_config', ([], {}), '()\n', (173, 175), False, 'from config import base\n'), ((556, 574), 'evaluate.evaluate', 'e.evaluate', (['config'], {}), '(config)\n', (566, 574), True, 'import evaluate as e\n'), ((591, 627), 'evaluate.load_data', 'e.load_data', (["config['test_filepath']"], {}), "(config['test_filepath'])\n", (602, 627), True, 'import evaluate as e\n')]
import os from matplotlib.colors import from_levels_and_colors import numpy as np import argparse from config import config os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = config['gpu_num'] from Models import Resnet3DBuilder, resnet3d_model, densenet3d_model from Models.training import get_callbacks from Models.generator import convertData, preprocess, DataGeneratorNew from keras.models import Sequential from keras.optimizers import SGD, Adam from keras.regularizers import l2 from keras.layers import Activation, Dense, Flatten from keras.callbacks import ModelCheckpoint, EarlyStopping from keras.utils import np_utils from evaluate import evaluate from keras import backend as K from skimage.transform import resize from math import ceil K.image_data_format() == "channels_last" #%% class_weight = None dimz = config['dimz'] dimx = config['dimx'] dimy = config['dimy'] channelNum = config['channelNum'] #%% def get_model_new(baseModeType, num_outputs, optType, learning_rate, reg_factor=1e-4): if baseModeType == 'resori': model = Resnet3DBuilder.build_resnet_18((dimz, dimx, dimy, channelNum), num_outputs, reg_factor = reg_factor, ifbase=False) elif baseModeType == 'resnew': model = resnet3d_model(input_shape=(dimz, dimx, dimy, channelNum), num_outputs=num_outputs, n_base_filters=64, depth=3, dropout_rate=0.3, kernel_reg_factor = reg_factor, ifbase=False) elif baseModeType == 'dense': model = densenet3d_model(input_shape=(dimz, dimx, dimy, channelNum), num_outputs=num_outputs, n_base_filters=64, depth=3, dropout_rate=0.3, kernel_reg_factor = reg_factor, ifbase=False) # Name layers for i, layer in enumerate(model.layers): layer.name = 'layer_' + str(i) if optType == 'adam': opt = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08) elif optType == 'sgd': opt = SGD(lr=learning_rate, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) # model.summary() return model # train def train_and_predict(projectRoot, args): print('-'*30) print('Loading and preprocessing train data...') print('-'*30) inputDict = dict() inputDict['MSA'] = os.path.join(projectRoot, 'MSA.npy') inputDict['PID'] = os.path.join(projectRoot, 'PID.npy') inputDict['PSP'] = os.path.join(projectRoot, 'PSP.npy') features=dict() features['MSA'] = np.load(inputDict['MSA']) features['PID'] = np.load(inputDict['PID']) features['PSP'] = np.load(inputDict['PSP']) itemNum = int(0) for key, value in features.items(): itemNum = itemNum+value.shape[0] steps_per_epoch = ceil(itemNum / args.batch_size) labelDef = config['labelDef'] labelPercentage = dict() labelPercentage['MSA'] = 1/float(3) labelPercentage['PSP'] = 1/float(3) labelPercentage['PID'] = 1/float(3) X_test = np.load(os.path.join(projectRoot,'testFeatures.npy')) y_test = np.load(os.path.join(projectRoot,'testLabels.npy')) X_test,Y_test = convertData(X_test,y_test, config) validation_data = (X_test,Y_test) TrainData = DataGeneratorNew(features, labelDef, labelPercentage, args.batch_size) print('-'*30) print('Creating and compiling model...') print('-'*30) #---------------------------------# model = get_model_new(args.baseModeType, args.num_outputs, args.optType, args.learning_rate, reg_factor=1e-4) #---------------------------------# weightDir = os.path.join(projectRoot, 'Weights.h5') callbackList = get_callbacks(weightDir, args.learning_rate, args.learning_rate_drop, args.learning_rate_patience, learning_rate_epochs=None, logging_file="training.log", verbosity=1, early_stopping_patience=args.early_stopping_patience) print('-'*30) print('Fitting model...') print('-'*30) if os.path.exists(args.pretrained_weight_dir) and args.UseWeight == True: model.load_weights(args.pretrained_weight_dir) if class_weight != None: train_history = model.fit_generator(TrainData.generator(), steps_per_epoch=steps_per_epoch, epochs=args.epochs, verbose=1, callbacks=callbackList, validation_data=validation_data, validation_steps=1, class_weight=class_weight, max_queue_size=10, workers=1, use_multiprocessing=False) else: train_history = model.fit_generator(TrainData.generator(), steps_per_epoch=steps_per_epoch, epochs=args.epochs, verbose=1, callbacks=callbackList, validation_data=validation_data, validation_steps=1, max_queue_size=10, workers=1, use_multiprocessing=False) loss = train_history.history['loss'] val_loss = train_history.history['val_loss'] np.save(os.path.join(projectRoot,'loss.npy'),loss) np.save(os.path.join(projectRoot,'val_loss.npy'),val_loss) print('-'*30) print('Loading and preprocessing test data...') print('-'*30) X_test = np.load(os.path.join(projectRoot,'testFeatures.npy')) y_test = np.load(os.path.join(projectRoot,'testLabels.npy')) X_test, Y_test = convertData(X_test,y_test, config) score = model.evaluate(X_test, Y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) print('-'*30) print('Loading saved weights...') print('-'*30) model.load_weights(weightDir) print('-'*30) print('Predicting masks on test data...') print('-'*30) Y_predict = model.predict(X_test, verbose=1) np.save(os.path.join(projectRoot,'Y_predict.npy'), Y_predict) def value_predict(X_test, baseModeType, optType, load_weight_dir, outputDir=None): print('-'*30) print('Loading and preprocessing test data...') print('-'*30) X_test = preprocess(X_test,dimz,dimx,dimy,channelNum) X_test = X_test.astype('float32') print('-'*30) print('Loading saved weights...') print('-'*30) #---------------------------------# model = get_model_new(baseModeType, optType, reg_factor=1e-4) #---------------------------------# model.load_weights(load_weight_dir) print('-'*30) print('Predicting masks on test data...') print('-'*30) Y_predict = model.predict(X_test, verbose=1) if outputDir != None: if not os.path.exists(outputDir): os.mkdir(outputDir) np.save(os.path.join(outputDir,'Y_predict.npy'), Y_predict) return Y_predict def main(): parser = argparse.ArgumentParser(description = "PDDNET command line tool") parser.add_argument("--project_folder", type=str, help = "project folder to save the output data.") parser.add_argument("--baseModeType", type=str, default='resnew', help = "network type: 'resori', 'resnew', 'dense'") parser.add_argument("--num_outputs", type=int, default=3, help = "class number") parser.add_argument("--optType", type=str, default='adam', help = "optimizer type: 'adam', 'sgd'") parser.add_argument("--epochs", type=int, default=30, help = "training epochs") parser.add_argument("--batch_size", type=int, default=4, help = "class number") parser.add_argument('--CV_fold', type=int, default=6, help='cross validation fold') parser.add_argument('--currentFold', type=int, default=1, help='current training fold') parser.add_argument("--UseWeight", help = "Whether conduct data normalization.", action = 'store_true') parser.add_argument("--pretrained_weight_dir", type=str, default=None, help = "pretrained weights as the starting point, usefull if UseWeight=True") parser.add_argument('--learning_rate', type=float, default=1e-4, help='learning rate') parser.add_argument('--learning_rate_drop', type=float, default=0.5, help='learning rate drop') parser.add_argument('--learning_rate_patience', type=int, default=10, help='learning rate drop patience') parser.add_argument('--early_stopping_patience', type=int, default=30, help='early stopping patience') args = parser.parse_args() currentOpePath = os.path.realpath(__file__) print(currentOpePath) projectRoot = os.path.join(args.project_folder, 'data_{0}_{1}'.format(kfold=args.CV_fold, currentFold=args.currentFold)) train_and_predict(projectRoot, args) evaluate(projectRoot) if __name__ == '__main__': main()
[ "evaluate.evaluate" ]
[((782, 803), 'keras.backend.image_data_format', 'K.image_data_format', ([], {}), '()\n', (801, 803), True, 'from keras import backend as K\n'), ((2403, 2439), 'os.path.join', 'os.path.join', (['projectRoot', '"""MSA.npy"""'], {}), "(projectRoot, 'MSA.npy')\n", (2415, 2439), False, 'import os\n'), ((2463, 2499), 'os.path.join', 'os.path.join', (['projectRoot', '"""PID.npy"""'], {}), "(projectRoot, 'PID.npy')\n", (2475, 2499), False, 'import os\n'), ((2523, 2559), 'os.path.join', 'os.path.join', (['projectRoot', '"""PSP.npy"""'], {}), "(projectRoot, 'PSP.npy')\n", (2535, 2559), False, 'import os\n'), ((2603, 2628), 'numpy.load', 'np.load', (["inputDict['MSA']"], {}), "(inputDict['MSA'])\n", (2610, 2628), True, 'import numpy as np\n'), ((2651, 2676), 'numpy.load', 'np.load', (["inputDict['PID']"], {}), "(inputDict['PID'])\n", (2658, 2676), True, 'import numpy as np\n'), ((2699, 2724), 'numpy.load', 'np.load', (["inputDict['PSP']"], {}), "(inputDict['PSP'])\n", (2706, 2724), True, 'import numpy as np\n'), ((2854, 2885), 'math.ceil', 'ceil', (['(itemNum / args.batch_size)'], {}), '(itemNum / args.batch_size)\n', (2858, 2885), False, 'from math import ceil\n'), ((3228, 3263), 'Models.generator.convertData', 'convertData', (['X_test', 'y_test', 'config'], {}), '(X_test, y_test, config)\n', (3239, 3263), False, 'from Models.generator import convertData, preprocess, DataGeneratorNew\n'), ((3319, 3389), 'Models.generator.DataGeneratorNew', 'DataGeneratorNew', (['features', 'labelDef', 'labelPercentage', 'args.batch_size'], {}), '(features, labelDef, labelPercentage, args.batch_size)\n', (3335, 3389), False, 'from Models.generator import convertData, preprocess, DataGeneratorNew\n'), ((3686, 3725), 'os.path.join', 'os.path.join', (['projectRoot', '"""Weights.h5"""'], {}), "(projectRoot, 'Weights.h5')\n", (3698, 3725), False, 'import os\n'), ((3749, 3985), 'Models.training.get_callbacks', 'get_callbacks', (['weightDir', 'args.learning_rate', 'args.learning_rate_drop', 'args.learning_rate_patience'], {'learning_rate_epochs': 'None', 'logging_file': '"""training.log"""', 'verbosity': '(1)', 'early_stopping_patience': 'args.early_stopping_patience'}), "(weightDir, args.learning_rate, args.learning_rate_drop, args.\n learning_rate_patience, learning_rate_epochs=None, logging_file=\n 'training.log', verbosity=1, early_stopping_patience=args.\n early_stopping_patience)\n", (3762, 3985), False, 'from Models.training import get_callbacks\n'), ((6148, 6183), 'Models.generator.convertData', 'convertData', (['X_test', 'y_test', 'config'], {}), '(X_test, y_test, config)\n', (6159, 6183), False, 'from Models.generator import convertData, preprocess, DataGeneratorNew\n'), ((6825, 6873), 'Models.generator.preprocess', 'preprocess', (['X_test', 'dimz', 'dimx', 'dimy', 'channelNum'], {}), '(X_test, dimz, dimx, dimy, channelNum)\n', (6835, 6873), False, 'from Models.generator import convertData, preprocess, DataGeneratorNew\n'), ((7530, 7593), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""PDDNET command line tool"""'}), "(description='PDDNET command line tool')\n", (7553, 7593), False, 'import argparse\n'), ((9080, 9106), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (9096, 9106), False, 'import os\n'), ((9303, 9324), 'evaluate.evaluate', 'evaluate', (['projectRoot'], {}), '(projectRoot)\n', (9311, 9324), False, 'from evaluate import evaluate\n'), ((1093, 1210), 'Models.Resnet3DBuilder.build_resnet_18', 'Resnet3DBuilder.build_resnet_18', (['(dimz, dimx, dimy, channelNum)', 'num_outputs'], {'reg_factor': 'reg_factor', 'ifbase': '(False)'}), '((dimz, dimx, dimy, channelNum), num_outputs,\n reg_factor=reg_factor, ifbase=False)\n', (1124, 1210), False, 'from Models import Resnet3DBuilder, resnet3d_model, densenet3d_model\n'), ((1907, 1970), 'keras.optimizers.Adam', 'Adam', ([], {'lr': 'learning_rate', 'beta_1': '(0.9)', 'beta_2': '(0.999)', 'epsilon': '(1e-08)'}), '(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08)\n', (1911, 1970), False, 'from keras.optimizers import SGD, Adam\n'), ((3097, 3142), 'os.path.join', 'os.path.join', (['projectRoot', '"""testFeatures.npy"""'], {}), "(projectRoot, 'testFeatures.npy')\n", (3109, 3142), False, 'import os\n'), ((3164, 3207), 'os.path.join', 'os.path.join', (['projectRoot', '"""testLabels.npy"""'], {}), "(projectRoot, 'testLabels.npy')\n", (3176, 3207), False, 'import os\n'), ((4110, 4152), 'os.path.exists', 'os.path.exists', (['args.pretrained_weight_dir'], {}), '(args.pretrained_weight_dir)\n', (4124, 4152), False, 'import os\n'), ((5791, 5828), 'os.path.join', 'os.path.join', (['projectRoot', '"""loss.npy"""'], {}), "(projectRoot, 'loss.npy')\n", (5803, 5828), False, 'import os\n'), ((5846, 5887), 'os.path.join', 'os.path.join', (['projectRoot', '"""val_loss.npy"""'], {}), "(projectRoot, 'val_loss.npy')\n", (5858, 5887), False, 'import os\n'), ((6016, 6061), 'os.path.join', 'os.path.join', (['projectRoot', '"""testFeatures.npy"""'], {}), "(projectRoot, 'testFeatures.npy')\n", (6028, 6061), False, 'import os\n'), ((6083, 6126), 'os.path.join', 'os.path.join', (['projectRoot', '"""testLabels.npy"""'], {}), "(projectRoot, 'testLabels.npy')\n", (6095, 6126), False, 'import os\n'), ((6574, 6616), 'os.path.join', 'os.path.join', (['projectRoot', '"""Y_predict.npy"""'], {}), "(projectRoot, 'Y_predict.npy')\n", (6586, 6616), False, 'import os\n'), ((1309, 1491), 'Models.resnet3d_model', 'resnet3d_model', ([], {'input_shape': '(dimz, dimx, dimy, channelNum)', 'num_outputs': 'num_outputs', 'n_base_filters': '(64)', 'depth': '(3)', 'dropout_rate': '(0.3)', 'kernel_reg_factor': 'reg_factor', 'ifbase': '(False)'}), '(input_shape=(dimz, dimx, dimy, channelNum), num_outputs=\n num_outputs, n_base_filters=64, depth=3, dropout_rate=0.3,\n kernel_reg_factor=reg_factor, ifbase=False)\n', (1323, 1491), False, 'from Models import Resnet3DBuilder, resnet3d_model, densenet3d_model\n'), ((2012, 2075), 'keras.optimizers.SGD', 'SGD', ([], {'lr': 'learning_rate', 'decay': '(1e-06)', 'momentum': '(0.9)', 'nesterov': '(True)'}), '(lr=learning_rate, decay=1e-06, momentum=0.9, nesterov=True)\n', (2015, 2075), False, 'from keras.optimizers import SGD, Adam\n'), ((7351, 7376), 'os.path.exists', 'os.path.exists', (['outputDir'], {}), '(outputDir)\n', (7365, 7376), False, 'import os\n'), ((7390, 7409), 'os.mkdir', 'os.mkdir', (['outputDir'], {}), '(outputDir)\n', (7398, 7409), False, 'import os\n'), ((1556, 1740), 'Models.densenet3d_model', 'densenet3d_model', ([], {'input_shape': '(dimz, dimx, dimy, channelNum)', 'num_outputs': 'num_outputs', 'n_base_filters': '(64)', 'depth': '(3)', 'dropout_rate': '(0.3)', 'kernel_reg_factor': 'reg_factor', 'ifbase': '(False)'}), '(input_shape=(dimz, dimx, dimy, channelNum), num_outputs=\n num_outputs, n_base_filters=64, depth=3, dropout_rate=0.3,\n kernel_reg_factor=reg_factor, ifbase=False)\n', (1572, 1740), False, 'from Models import Resnet3DBuilder, resnet3d_model, densenet3d_model\n'), ((7430, 7470), 'os.path.join', 'os.path.join', (['outputDir', '"""Y_predict.npy"""'], {}), "(outputDir, 'Y_predict.npy')\n", (7442, 7470), False, 'import os\n')]
import yaml import torch import torch.nn as nn from torch.nn.utils import clip_grad_norm_ from tqdm import tqdm from transformers.models.bert.tokenization_bert import BertTokenizer from train_util import create_masks, create_train_data, seed_everything from dataset import ChatDataSet, SampledDataLoader from torch.optim import AdamW from model.transformer import Transformer from evaluate import evaluate def train(epoch, config, device, data_loader, toker, model, optimizer, criterion): # set model to train mode model.train() with tqdm(total=len(data_loader), desc=f"Epoch {epoch + 1}") as pbar: for i, batch in enumerate(data_loader): batch = tuple(t.to(device) for t in batch) x, y = batch target = y[:, :-1] target_y = y[:, 1:] source_mask, target_mask = create_masks(x, target, toker.pad_token_id) out = model(x, source_mask, target, target_mask) optimizer.zero_grad() loss = criterion(out.transpose(1, 2), target_y).mean() loss.backward() optimizer.step() clip_grad_norm_(model.parameters(), config['max_grad_norm']) pbar.update(1) pbar.set_postfix_str(f"loss: {loss.item():.5f}") # Save model for each epoch with a different name torch.save( { "epoch": epoch, "model": model.state_dict(), "optimizer": optimizer.state_dict(), }, f"{config['data_dir']}/{config['fn']}_{epoch}.pth", ) # Save the final model torch.save( { "epoch": epoch, "model": model.state_dict(), "optimizer": optimizer.state_dict(), }, f"{config['data_dir']}/{config['fn']}.pth", ) print("--------------------------------") print("Model Saved") print("--------------------------------") def main(): with open('config.yaml') as file: config = yaml.load(file, Loader=yaml.FullLoader) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") seed_everything(config['seed']) toker = BertTokenizer.from_pretrained(config['bert_model_name']) data = create_train_data(config, toker, True) dataset = ChatDataSet(data) data_loader = SampledDataLoader( dataset, batch_size=config['batch_size'], padding=toker.pad_token_id ) model = Transformer(config) model = model.to(device) adam_opim = AdamW( model.parameters(), lr=config['learning_rate'], betas=config['betas'], eps=1e-9 ) criterion = nn.CrossEntropyLoss(ignore_index=toker.pad_token_id, reduction="none") start_epoch = 0 if config['load']: start_epoch = 10 state_dict = torch.load(config['ckpt_path'], map_location=device) model.load_state_dict(state_dict["model"]) adam_opim.load_state_dict(state_dict["optimizer"]) for epoch in range(start_epoch, config['n_epochs']): train(epoch, config, device, data_loader, toker, model, adam_opim, criterion) evaluate( config, "if you accomplish your task, it is great then", toker, model, device, False, ) print("Training Finished") if __name__ == "__main__": main()
[ "evaluate.evaluate" ]
[((2101, 2132), 'train_util.seed_everything', 'seed_everything', (["config['seed']"], {}), "(config['seed'])\n", (2116, 2132), False, 'from train_util import create_masks, create_train_data, seed_everything\n'), ((2145, 2201), 'transformers.models.bert.tokenization_bert.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (["config['bert_model_name']"], {}), "(config['bert_model_name'])\n", (2174, 2201), False, 'from transformers.models.bert.tokenization_bert import BertTokenizer\n'), ((2213, 2251), 'train_util.create_train_data', 'create_train_data', (['config', 'toker', '(True)'], {}), '(config, toker, True)\n', (2230, 2251), False, 'from train_util import create_masks, create_train_data, seed_everything\n'), ((2266, 2283), 'dataset.ChatDataSet', 'ChatDataSet', (['data'], {}), '(data)\n', (2277, 2283), False, 'from dataset import ChatDataSet, SampledDataLoader\n'), ((2302, 2394), 'dataset.SampledDataLoader', 'SampledDataLoader', (['dataset'], {'batch_size': "config['batch_size']", 'padding': 'toker.pad_token_id'}), "(dataset, batch_size=config['batch_size'], padding=toker.\n pad_token_id)\n", (2319, 2394), False, 'from dataset import ChatDataSet, SampledDataLoader\n'), ((2417, 2436), 'model.transformer.Transformer', 'Transformer', (['config'], {}), '(config)\n', (2428, 2436), False, 'from model.transformer import Transformer\n'), ((2601, 2671), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'ignore_index': 'toker.pad_token_id', 'reduction': '"""none"""'}), "(ignore_index=toker.pad_token_id, reduction='none')\n", (2620, 2671), True, 'import torch.nn as nn\n'), ((1973, 2012), 'yaml.load', 'yaml.load', (['file'], {'Loader': 'yaml.FullLoader'}), '(file, Loader=yaml.FullLoader)\n', (1982, 2012), False, 'import yaml\n'), ((2762, 2814), 'torch.load', 'torch.load', (["config['ckpt_path']"], {'map_location': 'device'}), "(config['ckpt_path'], map_location=device)\n", (2772, 2814), False, 'import torch\n'), ((3077, 3175), 'evaluate.evaluate', 'evaluate', (['config', '"""if you accomplish your task, it is great then"""', 'toker', 'model', 'device', '(False)'], {}), "(config, 'if you accomplish your task, it is great then', toker,\n model, device, False)\n", (3085, 3175), False, 'from evaluate import evaluate\n'), ((846, 889), 'train_util.create_masks', 'create_masks', (['x', 'target', 'toker.pad_token_id'], {}), '(x, target, toker.pad_token_id)\n', (858, 889), False, 'from train_util import create_masks, create_train_data, seed_everything\n'), ((2058, 2083), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2081, 2083), False, 'import torch\n')]
from typing import List from numpy import ndarray import matplotlib.pyplot as plt import threading # import tensorflow as tf from PIL import Image, ImageTk import PySimpleGUI as sg from config import * import evaluate import utility # Global variables input_values = [] # Input values for evaluator (ex. image paths) ml_datas = [] # Output values from evaluator (ex. evaluated raw data) display_image = None # Image displayed. window = None # main window. eval_event = threading.Event() def initialize_window() -> sg.Window: sg.theme(WINDOW_THEME) sg_image = sg.Image(size=(900, 9000), key=KEY_CANVAS, expand_x=True, expand_y=True) image_column = [[sg.pin( sg.Column([[sg_image]], key=KEY_IMAGE_COLUMN, visible=False, scrollable=True, expand_x=True, expand_y=True) )]] output_text = sg.Text(TEXT_OUTPUT_INITIAL, key=KEY_OUTPUT) control_group = [[sg.Input(key='_FILES_'), sg.FilesBrowse(key=KEY_BROWSE_FILES, file_types=IMAGE_FILETYPES, initial_folder=DIR_PATH, disabled=True)], [sg.OK(button_text=BUTTON_DETECT, key=BUTTON_DETECT, disabled=True), sg.FileSaveAs( key=BUTTON_SAVE_FILE, target=KEY_SAVE_FILE, file_types=IMAGE_FILETYPES, default_extension=".jpg", disabled=True ), sg.In(key=KEY_SAVE_FILE, enable_events=True, visible=False)], [sg.Submit(KEY_RERENDER, key=KEY_RERENDER, disabled=True)], [output_text]] output_group = [[sg.Output(size=(200, 10))]] # output_group = [[sg.Text("__")]] # Dummy group for evaluation layout = [[sg.Column(control_group, key=KEY_CONTROL_GROUP), sg.Column(output_group, key=KEY_OUTPUT_GROUP)], [image_column]] window = sg.Window('Example GUI for ML Project', resizable=True, auto_size_text=True, size=(900, 800), finalize=True).Layout(layout) return window def create_thread(window:sg.Window, result_values:List[evaluate.MLData], eval_event:threading.Event): evaluator = evaluate.Evaluator(window) print("evaluator ready") while True: eval_event.wait() print("starting...") evaluator.try_evaluate(input_values, result_values) eval_event.clear() # Do evaluator clearing action here def excepthook(args): print(args) # TODO: reactivate buttons in main thread when exception happens in other thread # disable_buttons(window, False) eval_event.clear() print("Unknown problem while evaluating. Run inside console to see tensorflow debug messages.") print("Possibly: Your GPU may not have enough memory to run model. Try running it in a CPU mode.") threading.excepthook = excepthook def main() -> None: # Initialize Window window = initialize_window() # Set memory growth for all GPUs to use least VRAM possible # gpus = tf.config.experimental.list_physical_devices('GPU') # for gpu in gpus: # tf.config.experimental.set_memory_growth(gpu, True) # Initialize evaluator with default window eval_thread = threading.Thread(target=create_thread, args=(window, ml_datas, eval_event), daemon=True) eval_thread.start() # Main loop while True: event, values = window.Read() if event == sg.WIN_CLOSED or event == 'Cancel' or event == BUTTON_EXIT: # if user closes window or clicks cancel break if (event == KEY_RERENDER): # if Rerender without evaluating display_image = draw_on_image(window, ml_datas) if (event.startswith(BUTTON_DETECT)): # if user presses Detect button window[KEY_IMAGE_COLUMN].Update(visible = False) input_values.clear() input_values.extend(values['_FILES_'].split(';')) print(input_values) try: # physical_devices = tf.config.list_physical_devices('GPU') # print("GPU Available: ", len(physical_devices)) disable_buttons(window, True) eval_event.set() except Exception as e: eval_event.clear() disable_buttons(window, False) print(e) print("Unknown problem while evaluating. Run inside console to see tensorflow debug messages.") print("Possibly: Your GPU may not have enough memory to run model. Try running it in a CPU mode.") if (event.startswith(KEY_SAVE_FILE)): # if user closes file save dialog print("Try Saving file...") try: filename = values['filename'] print(filename) display_image.convert('RGB').save(filename) print("Image saved") except Exception as e: print(e) if (event == THREAD_EVENT): # if try_evaluate signals THREAD_EVENT if values[THREAD_EVENT] == EVAL_READY: disable_buttons(window, False) window[KEY_OUTPUT].Update(value=TEXT_EVAL_READY) if values[THREAD_EVENT] == EVAL_START: window[KEY_OUTPUT].Update(value=TEXT_EVAL_START) if values[THREAD_EVENT] == EVAL_COMPLETE: window[KEY_OUTPUT].Update(value=TEXT_EVAL_COMPLETE) disable_buttons(window, False) display_image = draw_on_image(window, ml_datas) window.close() def disable_buttons(window, disabled): window[BUTTON_DETECT].Update(disabled=disabled) window[KEY_SAVE_FILE].Update(disabled=disabled) window[KEY_BROWSE_FILES].Update(disabled=disabled) window[BUTTON_SAVE_FILE].Update(disabled=disabled) window[KEY_RERENDER].Update(disabled=disabled) def draw_on_image(window: sg.Window, ml_datas:List[evaluate.MLData]) -> Image.Image: """ Draw contents of RESULTS inside WINDOW. """ print(f"drawing {len(ml_datas)} image(s)...") sg_image = window[KEY_CANVAS] display_image = None try: fig, axs = plt.subplots(nrows=len(ml_datas), ncols=1) for i, ml_data in enumerate(ml_datas): ax = axs[i] if type(axs) == ndarray else axs ax.set_anchor('N') # use drawing function that might come with your ML Package, # or simple draw image and data on ax using ml_data. ax.text(0, 0, ml_data.result["key"]) ax.imshow(ml_data.image) fig.set_dpi(120) fig.subplots_adjust(left=0, right=1, wspace=0.01, hspace=0.15) # FIXME: magic number 대신, 추가 legend 비례한 값으로 fig 크기 늘리기 height = 2.3 * len(ml_datas) fig.set_size_inches(7, height, forward=True) fig.tight_layout() display_image = Image.fromarray(utility.figure_to_array(fig)) result_image = ImageTk.PhotoImage(image=display_image) # display image in main screen sg_image.update(data=result_image) window.refresh() window[KEY_IMAGE_COLUMN].contents_changed() window[KEY_IMAGE_COLUMN].Update(visible = True) except ValueError as e: print(e) print("length of data detected is ", len(ml_datas)) finally: return display_image if __name__ == "__main__": main()
[ "evaluate.Evaluator" ]
[((473, 490), 'threading.Event', 'threading.Event', ([], {}), '()\n', (488, 490), False, 'import threading\n'), ((534, 556), 'PySimpleGUI.theme', 'sg.theme', (['WINDOW_THEME'], {}), '(WINDOW_THEME)\n', (542, 556), True, 'import PySimpleGUI as sg\n'), ((572, 644), 'PySimpleGUI.Image', 'sg.Image', ([], {'size': '(900, 9000)', 'key': 'KEY_CANVAS', 'expand_x': '(True)', 'expand_y': '(True)'}), '(size=(900, 9000), key=KEY_CANVAS, expand_x=True, expand_y=True)\n', (580, 644), True, 'import PySimpleGUI as sg\n'), ((820, 864), 'PySimpleGUI.Text', 'sg.Text', (['TEXT_OUTPUT_INITIAL'], {'key': 'KEY_OUTPUT'}), '(TEXT_OUTPUT_INITIAL, key=KEY_OUTPUT)\n', (827, 864), True, 'import PySimpleGUI as sg\n'), ((2091, 2117), 'evaluate.Evaluator', 'evaluate.Evaluator', (['window'], {}), '(window)\n', (2109, 2117), False, 'import evaluate\n'), ((3140, 3232), 'threading.Thread', 'threading.Thread', ([], {'target': 'create_thread', 'args': '(window, ml_datas, eval_event)', 'daemon': '(True)'}), '(target=create_thread, args=(window, ml_datas, eval_event),\n daemon=True)\n', (3156, 3232), False, 'import threading\n'), ((6840, 6879), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', ([], {'image': 'display_image'}), '(image=display_image)\n', (6858, 6879), False, 'from PIL import Image, ImageTk\n'), ((887, 910), 'PySimpleGUI.Input', 'sg.Input', ([], {'key': '"""_FILES_"""'}), "(key='_FILES_')\n", (895, 910), True, 'import PySimpleGUI as sg\n'), ((912, 1020), 'PySimpleGUI.FilesBrowse', 'sg.FilesBrowse', ([], {'key': 'KEY_BROWSE_FILES', 'file_types': 'IMAGE_FILETYPES', 'initial_folder': 'DIR_PATH', 'disabled': '(True)'}), '(key=KEY_BROWSE_FILES, file_types=IMAGE_FILETYPES,\n initial_folder=DIR_PATH, disabled=True)\n', (926, 1020), True, 'import PySimpleGUI as sg\n'), ((1036, 1102), 'PySimpleGUI.OK', 'sg.OK', ([], {'button_text': 'BUTTON_DETECT', 'key': 'BUTTON_DETECT', 'disabled': '(True)'}), '(button_text=BUTTON_DETECT, key=BUTTON_DETECT, disabled=True)\n', (1041, 1102), True, 'import PySimpleGUI as sg\n'), ((1121, 1252), 'PySimpleGUI.FileSaveAs', 'sg.FileSaveAs', ([], {'key': 'BUTTON_SAVE_FILE', 'target': 'KEY_SAVE_FILE', 'file_types': 'IMAGE_FILETYPES', 'default_extension': '""".jpg"""', 'disabled': '(True)'}), "(key=BUTTON_SAVE_FILE, target=KEY_SAVE_FILE, file_types=\n IMAGE_FILETYPES, default_extension='.jpg', disabled=True)\n", (1134, 1252), True, 'import PySimpleGUI as sg\n'), ((1386, 1445), 'PySimpleGUI.In', 'sg.In', ([], {'key': 'KEY_SAVE_FILE', 'enable_events': '(True)', 'visible': '(False)'}), '(key=KEY_SAVE_FILE, enable_events=True, visible=False)\n', (1391, 1445), True, 'import PySimpleGUI as sg\n'), ((1465, 1521), 'PySimpleGUI.Submit', 'sg.Submit', (['KEY_RERENDER'], {'key': 'KEY_RERENDER', 'disabled': '(True)'}), '(KEY_RERENDER, key=KEY_RERENDER, disabled=True)\n', (1474, 1521), True, 'import PySimpleGUI as sg\n'), ((1576, 1601), 'PySimpleGUI.Output', 'sg.Output', ([], {'size': '(200, 10)'}), '(size=(200, 10))\n', (1585, 1601), True, 'import PySimpleGUI as sg\n'), ((1687, 1734), 'PySimpleGUI.Column', 'sg.Column', (['control_group'], {'key': 'KEY_CONTROL_GROUP'}), '(control_group, key=KEY_CONTROL_GROUP)\n', (1696, 1734), True, 'import PySimpleGUI as sg\n'), ((1736, 1781), 'PySimpleGUI.Column', 'sg.Column', (['output_group'], {'key': 'KEY_OUTPUT_GROUP'}), '(output_group, key=KEY_OUTPUT_GROUP)\n', (1745, 1781), True, 'import PySimpleGUI as sg\n'), ((1829, 1941), 'PySimpleGUI.Window', 'sg.Window', (['"""Example GUI for ML Project"""'], {'resizable': '(True)', 'auto_size_text': '(True)', 'size': '(900, 800)', 'finalize': '(True)'}), "('Example GUI for ML Project', resizable=True, auto_size_text=True,\n size=(900, 800), finalize=True)\n", (1838, 1941), True, 'import PySimpleGUI as sg\n'), ((6787, 6815), 'utility.figure_to_array', 'utility.figure_to_array', (['fig'], {}), '(fig)\n', (6810, 6815), False, 'import utility\n'), ((682, 794), 'PySimpleGUI.Column', 'sg.Column', (['[[sg_image]]'], {'key': 'KEY_IMAGE_COLUMN', 'visible': '(False)', 'scrollable': '(True)', 'expand_x': '(True)', 'expand_y': '(True)'}), '([[sg_image]], key=KEY_IMAGE_COLUMN, visible=False, scrollable=\n True, expand_x=True, expand_y=True)\n', (691, 794), True, 'import PySimpleGUI as sg\n')]
import argparse, torch, gc, os, random, json from data import MyDataset, load_data, my_collate_fn, device, word2sememe, label_multihot, word2POS, word2chara, word2Cn, my_collate_fn_test from model import Encoder from tqdm import tqdm from evaluate import evaluate, evaluate_test import numpy as np def main(epoch_num, batch_size, verbose, UNSEEN, SEEN, MODE): [hownet_file, sememe_file, word_index_file, word_vector_file, dictionary_file, word_cilinClass_file] = ['hownet.json', 'sememe.json', 'word_index.json', 'word_vector.npy', 'dictionary_sense.json', 'word_cilinClass.json'] word2index, index2word, word2vec, sememe_num, label_size, label_size_chara, word_defi_idx_all = load_data(hownet_file, sememe_file, word_index_file, word_vector_file, dictionary_file, word_cilinClass_file) (word_defi_idx_TrainDev, word_defi_idx_seen, word_defi_idx_test2000, word_defi_idx_test200, word_defi_idx_test272) = word_defi_idx_all index2word = np.array(index2word) length = len(word_defi_idx_TrainDev) valid_dataset = MyDataset(word_defi_idx_TrainDev[int(0.9*length):]) test_dataset = MyDataset(word_defi_idx_test2000 + word_defi_idx_test200 + word_defi_idx_test272) if SEEN: mode = 'S_'+MODE print('*METHOD: Seen defi.') print('*TRAIN: [Train + allSeen(2000+200+272)]') print('*TEST: [2000rand1 + 200desc + 272desc]') train_dataset = MyDataset(word_defi_idx_TrainDev[:int(0.9*length)] + word_defi_idx_seen) elif UNSEEN: mode = 'U_'+MODE print('*METHOD: Unseen All words and defi.') print('*TRAIN: [Train]') print('*TEST: [2000rand1 + 200desc + 272desc]') train_dataset = MyDataset(word_defi_idx_TrainDev[:int(0.9*length)]) print('*MODE: [%s]'%mode) train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=my_collate_fn) valid_dataloader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size, shuffle=True, collate_fn=my_collate_fn) test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, collate_fn=my_collate_fn_test) print('Train dataset: ', len(train_dataset)) print('Valid dataset: ', len(valid_dataset)) print('Test dataset: ', len(test_dataset)) word_defi_idx = word_defi_idx_TrainDev + word_defi_idx_seen wd2sem = word2sememe(word_defi_idx, len(word2index), sememe_num) wd_sems = label_multihot(wd2sem, sememe_num) wd_sems = torch.from_numpy(np.array(wd_sems[:label_size])).to(device) wd_POSs = label_multihot(word2POS(word_defi_idx, len(word2index), 13), 13) wd_POSs = torch.from_numpy(np.array(wd_POSs[:label_size])).to(device) wd_charas = label_multihot(word2chara(word_defi_idx, len(word2index), label_size_chara), label_size_chara) wd_charas = torch.from_numpy(np.array(wd_charas[:label_size])).to(device) wd2Cilin1 = word2Cn(word_defi_idx, len(word2index), 'C1', 13) wd_C1 = label_multihot(wd2Cilin1, 13) #13 96 1426 4098 wd_C1 = torch.from_numpy(np.array(wd_C1[:label_size])).to(device) wd_C2 = label_multihot(word2Cn(word_defi_idx, len(word2index), 'C2', 96), 96) wd_C2 = torch.from_numpy(np.array(wd_C2[:label_size])).to(device) wd_C3 = label_multihot(word2Cn(word_defi_idx, len(word2index), 'C3', 1426), 1426) wd_C3 = torch.from_numpy(np.array(wd_C3[:label_size])).to(device) wd_C4 = label_multihot(word2Cn(word_defi_idx, len(word2index), 'C4', 4098), 4098) wd_C4 = torch.from_numpy(np.array(wd_C4[:label_size])).to(device) '''wd2Cilin = word2Cn(word_defi_idx, len(word2index), 'C', 5633) wd_C0 = label_multihot(wd2Cilin, 5633) wd_C0 = torch.from_numpy(np.array(wd_C0[:label_size])).to(device) wd_C = [wd_C1, wd_C2, wd_C3, wd_C4, wd_C0] ''' wd_C = [wd_C1, wd_C2, wd_C3, wd_C4] #----------mask of no sememes print('calculating mask of no sememes...') mask_s = torch.zeros(label_size, dtype=torch.float32, device=device) for i in range(label_size): sems = set(wd2sem[i].detach().cpu().numpy().tolist())-set([sememe_num]) if len(sems)==0: mask_s[i] = 1 mask_c = torch.zeros(label_size, dtype=torch.float32, device=device) for i in range(label_size): cc = set(wd2Cilin1[i].detach().cpu().numpy().tolist())-set([13]) if len(cc)==0: mask_c[i] = 1 model = Encoder(vocab_size=len(word2index), embed_dim=word2vec.shape[1], hidden_dim=200, layers=1, class_num=label_size, sememe_num=sememe_num, chara_num=label_size_chara) model.embedding.weight.data = torch.from_numpy(word2vec) model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Adam best_valid_accu = 0 DEF_UPDATE = True for epoch in range(epoch_num): print('epoch: ', epoch) model.train() train_loss = 0 label_list = list() pred_list = list() for words_t, sememes_t, definition_words_t, POS_t, sememes, POSs, charas_t, C, C_t in tqdm(train_dataloader, disable=verbose): optimizer.zero_grad() loss, _, indices = model('train', x=definition_words_t, w=words_t, ws=wd_sems, wP=wd_POSs, wc=wd_charas, wC=wd_C, msk_s=mask_s, msk_c=mask_c, mode=MODE) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1) optimizer.step() predicted = indices[:, :100].detach().cpu().numpy().tolist() train_loss += loss.item() label_list.extend(words_t.detach().cpu().numpy()) pred_list.extend(predicted) train_accu_1, train_accu_10, train_accu_100 = evaluate(label_list, pred_list) del label_list del pred_list gc.collect() print('train_loss: ', train_loss/len(train_dataset)) print('train_accu(1/10/100): %.2f %.2F %.2f'%(train_accu_1, train_accu_10, train_accu_100)) model.eval() with torch.no_grad(): valid_loss = 0 label_list = [] pred_list = [] for words_t, sememes_t, definition_words_t, POS_t, sememes, POSs, charas_t, C, C_t in tqdm(valid_dataloader, disable=verbose): loss, _, indices = model('train', x=definition_words_t, w=words_t, ws=wd_sems, wP=wd_POSs, wc=wd_charas, wC=wd_C, msk_s=mask_s, msk_c=mask_c, mode=MODE) predicted = indices[:, :100].detach().cpu().numpy().tolist() valid_loss += loss.item() label_list.extend(words_t.detach().cpu().numpy()) pred_list.extend(predicted) valid_accu_1, valid_accu_10, valid_accu_100 = evaluate(label_list, pred_list) print('valid_loss: ', valid_loss/len(valid_dataset)) print('valid_accu(1/10/100): %.2f %.2F %.2f'%(valid_accu_1, valid_accu_10, valid_accu_100)) del label_list del pred_list gc.collect() if valid_accu_10>best_valid_accu: best_valid_accu = valid_accu_10 print('-----best_valid_accu-----') #torch.save(model, 'saved.model') label_list = [] pred_list = [] for words_t, definition_words_t in tqdm(test_dataloader, disable=verbose): indices = model('test', x=definition_words_t, w=words_t, ws=wd_sems, wP=wd_POSs, wc=wd_charas, wC=wd_C, msk_s=mask_s, msk_c=mask_c, mode=MODE) predicted = indices[:, :1000].detach().cpu().numpy().tolist() label_list.extend(words_t.detach().cpu().numpy()) pred_list.extend(predicted) test_accu_1, test_accu_10, test_accu_100, median, variance = evaluate_test(label_list, pred_list) print('test_accu(1/10/100): %.2f %.2F %.2f %.1f %.2f'%(test_accu_1, test_accu_10, test_accu_100, median, variance)) if epoch>10: json.dump((index2word[label_list]).tolist(), open(mode+'_label_list.json', 'w')) json.dump((index2word[np.array(pred_list)]).tolist(), open(mode+'_pred_list.json', 'w')) del label_list del pred_list gc.collect() def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-e', '--epoch_num', type=int, default=50) parser.add_argument('-v', '--verbose',default=True, action='store_false') parser.add_argument('-g', '--gpu', type=str, default='0') parser.add_argument('-b', '--batch_size', type=int, default=128) # 256 parser.add_argument('-u', '--unseen', default=False, action='store_true') parser.add_argument('-s', '--seen', default=False, action='store_true') parser.add_argument('-m', '--mode', type=str, default='b') parser.add_argument('-sd', '--seed', type=int, default=543624) args = parser.parse_args() setup_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu main(args.epoch_num, args.batch_size, args.verbose, args.unseen, args.seen, args.mode)
[ "evaluate.evaluate_test", "evaluate.evaluate" ]
[((695, 808), 'data.load_data', 'load_data', (['hownet_file', 'sememe_file', 'word_index_file', 'word_vector_file', 'dictionary_file', 'word_cilinClass_file'], {}), '(hownet_file, sememe_file, word_index_file, word_vector_file,\n dictionary_file, word_cilinClass_file)\n', (704, 808), False, 'from data import MyDataset, load_data, my_collate_fn, device, word2sememe, label_multihot, word2POS, word2chara, word2Cn, my_collate_fn_test\n'), ((963, 983), 'numpy.array', 'np.array', (['index2word'], {}), '(index2word)\n', (971, 983), True, 'import numpy as np\n'), ((1119, 1204), 'data.MyDataset', 'MyDataset', (['(word_defi_idx_test2000 + word_defi_idx_test200 + word_defi_idx_test272)'], {}), '(word_defi_idx_test2000 + word_defi_idx_test200 +\n word_defi_idx_test272)\n', (1128, 1204), False, 'from data import MyDataset, load_data, my_collate_fn, device, word2sememe, label_multihot, word2POS, word2chara, word2Cn, my_collate_fn_test\n'), ((1815, 1925), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['train_dataset'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'collate_fn': 'my_collate_fn'}), '(train_dataset, batch_size=batch_size, shuffle=\n True, collate_fn=my_collate_fn)\n', (1842, 1925), False, 'import argparse, torch, gc, os, random, json\n'), ((1945, 2055), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['valid_dataset'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'collate_fn': 'my_collate_fn'}), '(valid_dataset, batch_size=batch_size, shuffle=\n True, collate_fn=my_collate_fn)\n', (1972, 2055), False, 'import argparse, torch, gc, os, random, json\n'), ((2074, 2189), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['test_dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'collate_fn': 'my_collate_fn_test'}), '(test_dataset, batch_size=batch_size, shuffle=\n False, collate_fn=my_collate_fn_test)\n', (2101, 2189), False, 'import argparse, torch, gc, os, random, json\n'), ((2499, 2533), 'data.label_multihot', 'label_multihot', (['wd2sem', 'sememe_num'], {}), '(wd2sem, sememe_num)\n', (2513, 2533), False, 'from data import MyDataset, load_data, my_collate_fn, device, word2sememe, label_multihot, word2POS, word2chara, word2Cn, my_collate_fn_test\n'), ((3035, 3064), 'data.label_multihot', 'label_multihot', (['wd2Cilin1', '(13)'], {}), '(wd2Cilin1, 13)\n', (3049, 3064), False, 'from data import MyDataset, load_data, my_collate_fn, device, word2sememe, label_multihot, word2POS, word2chara, word2Cn, my_collate_fn_test\n'), ((4007, 4066), 'torch.zeros', 'torch.zeros', (['label_size'], {'dtype': 'torch.float32', 'device': 'device'}), '(label_size, dtype=torch.float32, device=device)\n', (4018, 4066), False, 'import argparse, torch, gc, os, random, json\n'), ((4250, 4309), 'torch.zeros', 'torch.zeros', (['label_size'], {'dtype': 'torch.float32', 'device': 'device'}), '(label_size, dtype=torch.float32, device=device)\n', (4261, 4309), False, 'import argparse, torch, gc, os, random, json\n'), ((4686, 4712), 'torch.from_numpy', 'torch.from_numpy', (['word2vec'], {}), '(word2vec)\n', (4702, 4712), False, 'import argparse, torch, gc, os, random, json\n'), ((8414, 8437), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (8431, 8437), False, 'import argparse, torch, gc, os, random, json\n'), ((8443, 8475), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['seed'], {}), '(seed)\n', (8469, 8475), False, 'import argparse, torch, gc, os, random, json\n'), ((8481, 8501), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (8495, 8501), True, 'import numpy as np\n'), ((8507, 8524), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (8518, 8524), False, 'import argparse, torch, gc, os, random, json\n'), ((8624, 8649), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (8647, 8649), False, 'import argparse, torch, gc, os, random, json\n'), ((5124, 5163), 'tqdm.tqdm', 'tqdm', (['train_dataloader'], {'disable': 'verbose'}), '(train_dataloader, disable=verbose)\n', (5128, 5163), False, 'from tqdm import tqdm\n'), ((5764, 5795), 'evaluate.evaluate', 'evaluate', (['label_list', 'pred_list'], {}), '(label_list, pred_list)\n', (5772, 5795), False, 'from evaluate import evaluate, evaluate_test\n'), ((5852, 5864), 'gc.collect', 'gc.collect', ([], {}), '()\n', (5862, 5864), False, 'import argparse, torch, gc, os, random, json\n'), ((6064, 6079), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6077, 6079), False, 'import argparse, torch, gc, os, random, json\n'), ((6265, 6304), 'tqdm.tqdm', 'tqdm', (['valid_dataloader'], {'disable': 'verbose'}), '(valid_dataloader, disable=verbose)\n', (6269, 6304), False, 'from tqdm import tqdm\n'), ((6768, 6799), 'evaluate.evaluate', 'evaluate', (['label_list', 'pred_list'], {}), '(label_list, pred_list)\n', (6776, 6799), False, 'from evaluate import evaluate, evaluate_test\n'), ((7039, 7051), 'gc.collect', 'gc.collect', ([], {}), '()\n', (7049, 7051), False, 'import argparse, torch, gc, os, random, json\n'), ((2566, 2596), 'numpy.array', 'np.array', (['wd_sems[:label_size]'], {}), '(wd_sems[:label_size])\n', (2574, 2596), True, 'import numpy as np\n'), ((2721, 2751), 'numpy.array', 'np.array', (['wd_POSs[:label_size]'], {}), '(wd_POSs[:label_size])\n', (2729, 2751), True, 'import numpy as np\n'), ((2910, 2942), 'numpy.array', 'np.array', (['wd_charas[:label_size]'], {}), '(wd_charas[:label_size])\n', (2918, 2942), True, 'import numpy as np\n'), ((3112, 3140), 'numpy.array', 'np.array', (['wd_C1[:label_size]'], {}), '(wd_C1[:label_size])\n', (3120, 3140), True, 'import numpy as np\n'), ((3267, 3295), 'numpy.array', 'np.array', (['wd_C2[:label_size]'], {}), '(wd_C2[:label_size])\n', (3275, 3295), True, 'import numpy as np\n'), ((3426, 3454), 'numpy.array', 'np.array', (['wd_C3[:label_size]'], {}), '(wd_C3[:label_size])\n', (3434, 3454), True, 'import numpy as np\n'), ((3585, 3613), 'numpy.array', 'np.array', (['wd_C4[:label_size]'], {}), '(wd_C4[:label_size])\n', (3593, 3613), True, 'import numpy as np\n'), ((7382, 7420), 'tqdm.tqdm', 'tqdm', (['test_dataloader'], {'disable': 'verbose'}), '(test_dataloader, disable=verbose)\n', (7386, 7420), False, 'from tqdm import tqdm\n'), ((7867, 7903), 'evaluate.evaluate_test', 'evaluate_test', (['label_list', 'pred_list'], {}), '(label_list, pred_list)\n', (7880, 7903), False, 'from evaluate import evaluate, evaluate_test\n'), ((8359, 8371), 'gc.collect', 'gc.collect', ([], {}), '()\n', (8369, 8371), False, 'import argparse, torch, gc, os, random, json\n'), ((8212, 8231), 'numpy.array', 'np.array', (['pred_list'], {}), '(pred_list)\n', (8220, 8231), True, 'import numpy as np\n')]
# Copyright (c) Facebook, Inc. and its affiliates. import argparse import collections import copy import dotdict import json import numpy as np import os import random import regex import tempfile import torch import torch.nn as nn from chinese_converter import to_traditional, to_simplified from tqdm import tqdm from evaluate import evaluate from models import CRISSWrapper, LexiconInducer cos = nn.CosineSimilarity(dim=-1) def setup_configs(configs): configs.save_path = configs.save_path.format(src=configs.src_lang, trg=configs.trg_lang) configs.stats_path = configs.save_path + '/stats.pt' def collect_bitext_stats(bitext_path, align_path, save_path, src_lang, trg_lang, is_reversed=False): stats_path = save_path + '/stats.pt' freq_path = save_path + '/freqs.pt' if os.path.exists(stats_path): coocc, semi_matched_coocc, matched_coocc = torch.load(stats_path) else: coocc = collections.defaultdict(collections.Counter) semi_matched_coocc = collections.defaultdict(collections.Counter) matched_coocc = collections.defaultdict(collections.Counter) tmpdir = tempfile.TemporaryDirectory() os.system(f'cat {bitext_path} > {tmpdir.name}/bitext.txt') os.system(f'cat {align_path} > {tmpdir.name}/aligns.txt') bitext = open(f'{tmpdir.name}/bitext.txt').readlines() aligns = open(f'{tmpdir.name}/aligns.txt').readlines() tmpdir.cleanup() assert len(bitext) == len(aligns) bar = tqdm(bitext) for i, item in enumerate(bar): try: src_sent, trg_sent = regex.split(r'\|\|\|', item.strip()) if is_reversed: src_sent, trg_sent = trg_sent, src_sent align = [tuple(x if not is_reversed else reversed(x)) for x in json.loads(aligns[i])['inter']] # only focus on inter based alignment except: continue if src_lang == 'zh_CN': src_sent = to_simplified(src_sent) if trg_lang == 'zh_CN': trg_sent = to_simplified(trg_sent) src_words = src_sent.lower().split() trg_words = trg_sent.lower().split() src_cnt = collections.Counter([x[0] for x in align]) trg_cnt = collections.Counter([x[1] for x in align]) for x, sw in enumerate(src_words): for y, tw in enumerate(trg_words): if (x, y) in align: semi_matched_coocc[sw][tw] += 1 if src_cnt[x] == 1 and trg_cnt[y] == 1: matched_coocc[sw][tw] += 1 coocc[sw][tw] += 1 torch.save((coocc, semi_matched_coocc, matched_coocc), stats_path) if os.path.exists(freq_path): freq_src, freq_trg = torch.load(freq_path) else: freq_src = collections.Counter() freq_trg = collections.Counter() tmpdir = tempfile.TemporaryDirectory() os.system(f'cat {bitext_path} > {tmpdir.name}/bitext.txt') bitext = open(f'{tmpdir.name}/bitext.txt').readlines() tmpdir.cleanup() bar = tqdm(bitext) for i, item in enumerate(bar): try: src_sent, trg_sent = regex.split(r'\|\|\|', item.strip()) if is_reversed: src_sent, trg_sent = trg_sent, src_sent except: continue if src_lang == 'zh_CN': src_sent = to_simplified(src_sent) if trg_lang == 'zh_CN': trg_sent = to_simplified(trg_sent) for w in src_sent.split(): freq_src[w] += 1 for w in trg_sent.split(): freq_trg[w] += 1 torch.save((freq_src, freq_trg), freq_path) return coocc, semi_matched_coocc, matched_coocc, freq_src, freq_trg def load_lexicon(path): lexicon = [regex.split(r'\t| ', x.strip()) for x in open(path)] return set([tuple(x) for x in lexicon]) def get_test_lexicon(test_lexicon, info): induced_lexicon = list() coocc, semi_matched_coocc, matched_coocc, freq_src, freq_trg = info for tsw in tqdm(set([x[0] for x in test_lexicon])): ssw = to_simplified(tsw) candidates = list() for stw in matched_coocc[ssw]: ttw = to_traditional(stw) candidates.append([tsw, ttw, matched_coocc[ssw][stw] / (coocc[ssw][stw] + 20)]) if len(candidates) == 0: continue candidates = sorted(candidates, key=lambda x:-x[-1]) induced_lexicon.append(candidates[0][:2]) eval_result = evaluate(induced_lexicon, test_lexicon) return induced_lexicon, eval_result def test(configs, logging_steps=50000): setup_configs(configs) # prepare feature extractor info = collect_bitext_stats( configs.bitext_path, configs.align_path, configs.save_path, configs.src_lang, configs.trg_lang, configs.reversed ) # dataset test_lexicon = load_lexicon(configs.test_set) induced_test_lexicon, test_eval = get_test_lexicon(test_lexicon, info) with open(configs.save_path + '/induced.fullyunsup.dict', 'w') as fout: for item in induced_test_lexicon: fout.write('\t'.join([str(x) for x in item]) + '\n') fout.close() return induced_test_lexicon, test_eval if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-a', '--align', type=str, help='path to word alignment') parser.add_argument('-b', '--bitext', type=str, help='path to bitext') parser.add_argument('-src', '--source', type=str, help='source language code') parser.add_argument('-trg', '--target', type=str, help='target language code') parser.add_argument('-te', '--test', type=str, help='path to test lexicon') parser.add_argument('-o', '--output', type=str, default='./model/', help='path to output folder') parser.add_argument('-d', '--device', type=str, default='cuda', help='device for training [cuda|cpu]') args = parser.parse_args() configs = dotdict.DotDict( { 'test_set': args.test, 'align_path': args.align, 'bitext_path': args.bitext, 'save_path': args.output, 'batch_size': 128, 'epochs': 50, 'device': args.device, 'hiddens': [8] } ) res = test(configs) print(res[-1])
[ "evaluate.evaluate" ]
[((402, 429), 'torch.nn.CosineSimilarity', 'nn.CosineSimilarity', ([], {'dim': '(-1)'}), '(dim=-1)\n', (421, 429), True, 'import torch.nn as nn\n'), ((801, 827), 'os.path.exists', 'os.path.exists', (['stats_path'], {}), '(stats_path)\n', (815, 827), False, 'import os\n'), ((2770, 2795), 'os.path.exists', 'os.path.exists', (['freq_path'], {}), '(freq_path)\n', (2784, 2795), False, 'import os\n'), ((4634, 4673), 'evaluate.evaluate', 'evaluate', (['induced_lexicon', 'test_lexicon'], {}), '(induced_lexicon, test_lexicon)\n', (4642, 4673), False, 'from evaluate import evaluate\n'), ((5404, 5429), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (5427, 5429), False, 'import argparse\n'), ((6088, 6288), 'dotdict.DotDict', 'dotdict.DotDict', (["{'test_set': args.test, 'align_path': args.align, 'bitext_path': args.\n bitext, 'save_path': args.output, 'batch_size': 128, 'epochs': 50,\n 'device': args.device, 'hiddens': [8]}"], {}), "({'test_set': args.test, 'align_path': args.align,\n 'bitext_path': args.bitext, 'save_path': args.output, 'batch_size': 128,\n 'epochs': 50, 'device': args.device, 'hiddens': [8]})\n", (6103, 6288), False, 'import dotdict\n'), ((880, 902), 'torch.load', 'torch.load', (['stats_path'], {}), '(stats_path)\n', (890, 902), False, 'import torch\n'), ((929, 973), 'collections.defaultdict', 'collections.defaultdict', (['collections.Counter'], {}), '(collections.Counter)\n', (952, 973), False, 'import collections\n'), ((1003, 1047), 'collections.defaultdict', 'collections.defaultdict', (['collections.Counter'], {}), '(collections.Counter)\n', (1026, 1047), False, 'import collections\n'), ((1072, 1116), 'collections.defaultdict', 'collections.defaultdict', (['collections.Counter'], {}), '(collections.Counter)\n', (1095, 1116), False, 'import collections\n'), ((1134, 1163), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (1161, 1163), False, 'import tempfile\n'), ((1172, 1230), 'os.system', 'os.system', (['f"""cat {bitext_path} > {tmpdir.name}/bitext.txt"""'], {}), "(f'cat {bitext_path} > {tmpdir.name}/bitext.txt')\n", (1181, 1230), False, 'import os\n'), ((1239, 1296), 'os.system', 'os.system', (['f"""cat {align_path} > {tmpdir.name}/aligns.txt"""'], {}), "(f'cat {align_path} > {tmpdir.name}/aligns.txt')\n", (1248, 1296), False, 'import os\n'), ((1504, 1516), 'tqdm.tqdm', 'tqdm', (['bitext'], {}), '(bitext)\n', (1508, 1516), False, 'from tqdm import tqdm\n'), ((2696, 2762), 'torch.save', 'torch.save', (['(coocc, semi_matched_coocc, matched_coocc)', 'stats_path'], {}), '((coocc, semi_matched_coocc, matched_coocc), stats_path)\n', (2706, 2762), False, 'import torch\n'), ((2826, 2847), 'torch.load', 'torch.load', (['freq_path'], {}), '(freq_path)\n', (2836, 2847), False, 'import torch\n'), ((2877, 2898), 'collections.Counter', 'collections.Counter', ([], {}), '()\n', (2896, 2898), False, 'import collections\n'), ((2918, 2939), 'collections.Counter', 'collections.Counter', ([], {}), '()\n', (2937, 2939), False, 'import collections\n'), ((2957, 2986), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (2984, 2986), False, 'import tempfile\n'), ((2995, 3053), 'os.system', 'os.system', (['f"""cat {bitext_path} > {tmpdir.name}/bitext.txt"""'], {}), "(f'cat {bitext_path} > {tmpdir.name}/bitext.txt')\n", (3004, 3053), False, 'import os\n'), ((3156, 3168), 'tqdm.tqdm', 'tqdm', (['bitext'], {}), '(bitext)\n', (3160, 3168), False, 'from tqdm import tqdm\n'), ((3762, 3805), 'torch.save', 'torch.save', (['(freq_src, freq_trg)', 'freq_path'], {}), '((freq_src, freq_trg), freq_path)\n', (3772, 3805), False, 'import torch\n'), ((4235, 4253), 'chinese_converter.to_simplified', 'to_simplified', (['tsw'], {}), '(tsw)\n', (4248, 4253), False, 'from chinese_converter import to_traditional, to_simplified\n'), ((2228, 2270), 'collections.Counter', 'collections.Counter', (['[x[0] for x in align]'], {}), '([x[0] for x in align])\n', (2247, 2270), False, 'import collections\n'), ((2293, 2335), 'collections.Counter', 'collections.Counter', (['[x[1] for x in align]'], {}), '([x[1] for x in align])\n', (2312, 2335), False, 'import collections\n'), ((4339, 4358), 'chinese_converter.to_traditional', 'to_traditional', (['stw'], {}), '(stw)\n', (4353, 4358), False, 'from chinese_converter import to_traditional, to_simplified\n'), ((1997, 2020), 'chinese_converter.to_simplified', 'to_simplified', (['src_sent'], {}), '(src_sent)\n', (2010, 2020), False, 'from chinese_converter import to_traditional, to_simplified\n'), ((2084, 2107), 'chinese_converter.to_simplified', 'to_simplified', (['trg_sent'], {}), '(trg_sent)\n', (2097, 2107), False, 'from chinese_converter import to_traditional, to_simplified\n'), ((3499, 3522), 'chinese_converter.to_simplified', 'to_simplified', (['src_sent'], {}), '(src_sent)\n', (3512, 3522), False, 'from chinese_converter import to_traditional, to_simplified\n'), ((3586, 3609), 'chinese_converter.to_simplified', 'to_simplified', (['trg_sent'], {}), '(trg_sent)\n', (3599, 3609), False, 'from chinese_converter import to_traditional, to_simplified\n'), ((1818, 1839), 'json.loads', 'json.loads', (['aligns[i]'], {}), '(aligns[i])\n', (1828, 1839), False, 'import json\n')]
#!/usr/bin/env python # <NAME> (<EMAIL>) # April 2018 import os, sys BASE_DIR = os.path.normpath( os.path.join(os.path.dirname(os.path.abspath(__file__)))) sys.path.append(os.path.join(BASE_DIR, '..')) from datasets import dataset from datetime import datetime from generate_outputs import * from network import Network from network_sem_seg import NetworkSemSeg from train_util import validate, train import argparse import numpy as np import evaluate import evaluate_keypoints import evaluate_obj_det import evaluate_sem_seg import random import tensorflow as tf ''' parser = argparse.ArgumentParser() parser.add_argument('--exp_type', type=str, default='ours',\ choices=['ours', 'sem_seg']) parser.add_argument('--eval_type', action='append', default=['eval'], help='[eval, eval_keypoints, eval_obj_det, save_dict]') parser.add_argument('--net_options', action='append', default=['softmax', 'use_stn'], help='[softmax, column_softmax, sigmoid, clip_A, use_stn, pointnet2]') parser.add_argument('--in_model_dirs', type=str, default='', help='') parser.add_argument('--in_model_scopes', type=str, default='', help='') parser.add_argument('--out_model_dir', type=str, default='model', help='') parser.add_argument('--out_dir', type=str, default='outputs', help='') parser.add_argument('--log_dir', type=str, default='log', help='') parser.add_argument('--train', action="store_true", help='') parser.add_argument('--init_learning_rate', type=float, default=0.001,\ help='Initial learning rate [default: 0.001]') parser.add_argument('--decay_step', type=int, default=200000,\ help='Decay step for lr decay [default: 200000]') parser.add_argument('--decay_rate', type=float, default=0.7,\ help='Decay rate for lr decay [default: 0.7]') parser.add_argument('--bn_decay_step', type=int, default=200000,\ help='Decay step for bn decay [default: 200000]') parser.add_argument('--n_epochs', type=int, default=1000,\ help='Number of epochs') parser.add_argument('--batch_size', type=int, default=32,\ help='Batch size') parser.add_argument('--snapshot_epoch', type=int, default=100,\ help='Interval of snapshot') parser.add_argument('--validation_epoch', type=int, default=10,\ help='Interval of validation') parser.add_argument('--K', type=int, default=10,\ help='Number of predicted basis functions [default: 10]') parser.add_argument('--l21_norm_weight', type=float, default=0.0, help='L2,1 norm regularizer weight [default: 0.0]') parser.add_argument('--part_removal_fraction', type=float, default=0.0, help='Fraction of parts to be removed [default: 0.0]') parser.add_argument('--indicator_noise_probability', type=float, default=0.0, help='Probability of adding noise in indicator functions [default: 0.0]') args = parser.parse_args() ''' def load_model(sess, in_model_dir, include=''): # Read variables names in checkpoint. var_names = [x for x,_ in tf.contrib.framework.list_variables(in_model_dir)] # Find variables with given names. # HACK: # Convert unicode to string and remove postfix ':0'. var_list = [x for x in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)\ if str(x.name)[:-2] in var_names] if include != '': var_list = [x for x in var_list if include in x.name] #print([x.name for x in var_list]) saver = tf.train.Saver(var_list) ckpt = tf.train.get_checkpoint_state(in_model_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print ("Loaded '{}'.".format(ckpt.model_checkpoint_path)) else: print ("Failed to loaded '{}'.".format(in_model_dir)) return False return True def run(args, train_data, val_data, test_data): tf.set_random_seed(1234) np.random.seed(1234) random.seed(1234) print('\n==== PARAMS ====') for arg in vars(args): print('{}={}'.format(arg, getattr(args, arg))) print('========\n') if args.exp_type == 'ours': net = Network(train_data.n_points, train_data.n_dim, test_data.n_seg_ids, args.K, args.batch_size, args.init_learning_rate, args.decay_step, args.decay_rate, args.bn_decay_step, args.l21_norm_weight, args.net_options) elif args.exp_type == 'sem_seg': print("## Sementic Segmentation ##") net = NetworkSemSeg(train_data.n_points, train_data.n_dim, train_data.n_labels, args.batch_size, args.init_learning_rate, args.decay_step, args.decay_rate, args.bn_decay_step, args.net_options) else: assert(False) config = tf.ConfigProto() config.allow_soft_placement = True config.gpu_options.allow_growth = True with tf.Session(config=config, graph=net.graph) as sess: sess.run(tf.global_variables_initializer(), {net.is_training: True}) if args.in_model_dirs: include = '' for in_model_dir in args.in_model_dirs.split(','): assert(load_model(sess, in_model_dir, include)) if args.train: train(sess, net, args.exp_type, train_data, val_data, n_epochs=args.n_epochs, snapshot_epoch=args.snapshot_epoch, validation_epoch=args.validation_epoch, model_dir=args.out_model_dir, log_dir=args.log_dir, data_name=train_data.name, output_generator=None) """ train_loss, _ = validate(sess, net, args.exp_type, train_data) test_loss, _ = validate(sess, net, args.exp_type, test_data) msg = "|| Train Loss: {:6f}".format(train_loss) msg += " | Test Loss: {:6f}".format(test_loss) msg += " ||" print(msg) if args.train: # Save training result. if not os.path.exists(args.out_dir): os.makedirs(args.out_dir) out_file = os.path.join(args.out_dir, '{}.txt'.format( datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))) with open(out_file, 'w') as f: f.write(msg + '\n') print("Saved '{}'.".format(out_file)) """ if args.exp_type == 'ours': if 'eval' in args.eval_type: evaluate.evaluate(sess, net, test_data, args.out_dir) if 'eval_keypoints' in args.eval_type: evaluate_keypoints.evaluate(sess, net, test_data, args.out_dir) if 'eval_obj_det' in args.eval_type: evaluate_obj_det.evaluate(sess, net, test_data, args.out_dir) if 'save_dict' in args.eval_type: P = test_data.point_clouds A = predict_A(P, sess, net) out_file = os.path.join(args.out_dir, 'dictionary.npy') np.save(out_file, A) print("Saved '{}'".format(out_file)) elif args.exp_type == 'sem_seg': evaluate_sem_seg.evaluate(sess, net, test_data, args.out_dir)
[ "evaluate.evaluate" ]
[((181, 209), 'os.path.join', 'os.path.join', (['BASE_DIR', '""".."""'], {}), "(BASE_DIR, '..')\n", (193, 209), False, 'import os, sys\n'), ((3418, 3442), 'tensorflow.train.Saver', 'tf.train.Saver', (['var_list'], {}), '(var_list)\n', (3432, 3442), True, 'import tensorflow as tf\n'), ((3455, 3498), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['in_model_dir'], {}), '(in_model_dir)\n', (3484, 3498), True, 'import tensorflow as tf\n'), ((3828, 3852), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(1234)'], {}), '(1234)\n', (3846, 3852), True, 'import tensorflow as tf\n'), ((3857, 3877), 'numpy.random.seed', 'np.random.seed', (['(1234)'], {}), '(1234)\n', (3871, 3877), True, 'import numpy as np\n'), ((3882, 3899), 'random.seed', 'random.seed', (['(1234)'], {}), '(1234)\n', (3893, 3899), False, 'import random\n'), ((4726, 4742), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (4740, 4742), True, 'import tensorflow as tf\n'), ((4087, 4307), 'network.Network', 'Network', (['train_data.n_points', 'train_data.n_dim', 'test_data.n_seg_ids', 'args.K', 'args.batch_size', 'args.init_learning_rate', 'args.decay_step', 'args.decay_rate', 'args.bn_decay_step', 'args.l21_norm_weight', 'args.net_options'], {}), '(train_data.n_points, train_data.n_dim, test_data.n_seg_ids, args.K,\n args.batch_size, args.init_learning_rate, args.decay_step, args.\n decay_rate, args.bn_decay_step, args.l21_norm_weight, args.net_options)\n', (4094, 4307), False, 'from network import Network\n'), ((4835, 4877), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config', 'graph': 'net.graph'}), '(config=config, graph=net.graph)\n', (4845, 4877), True, 'import tensorflow as tf\n'), ((136, 161), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (151, 161), False, 'import os, sys\n'), ((2998, 3047), 'tensorflow.contrib.framework.list_variables', 'tf.contrib.framework.list_variables', (['in_model_dir'], {}), '(in_model_dir)\n', (3033, 3047), True, 'import tensorflow as tf\n'), ((3185, 3233), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.GLOBAL_VARIABLES'], {}), '(tf.GraphKeys.GLOBAL_VARIABLES)\n', (3202, 3233), True, 'import tensorflow as tf\n'), ((4443, 4639), 'network_sem_seg.NetworkSemSeg', 'NetworkSemSeg', (['train_data.n_points', 'train_data.n_dim', 'train_data.n_labels', 'args.batch_size', 'args.init_learning_rate', 'args.decay_step', 'args.decay_rate', 'args.bn_decay_step', 'args.net_options'], {}), '(train_data.n_points, train_data.n_dim, train_data.n_labels,\n args.batch_size, args.init_learning_rate, args.decay_step, args.\n decay_rate, args.bn_decay_step, args.net_options)\n', (4456, 4639), False, 'from network_sem_seg import NetworkSemSeg\n'), ((4904, 4937), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (4935, 4937), True, 'import tensorflow as tf\n'), ((5184, 5453), 'train_util.train', 'train', (['sess', 'net', 'args.exp_type', 'train_data', 'val_data'], {'n_epochs': 'args.n_epochs', 'snapshot_epoch': 'args.snapshot_epoch', 'validation_epoch': 'args.validation_epoch', 'model_dir': 'args.out_model_dir', 'log_dir': 'args.log_dir', 'data_name': 'train_data.name', 'output_generator': 'None'}), '(sess, net, args.exp_type, train_data, val_data, n_epochs=args.\n n_epochs, snapshot_epoch=args.snapshot_epoch, validation_epoch=args.\n validation_epoch, model_dir=args.out_model_dir, log_dir=args.log_dir,\n data_name=train_data.name, output_generator=None)\n', (5189, 5453), False, 'from train_util import validate, train\n'), ((6323, 6376), 'evaluate.evaluate', 'evaluate.evaluate', (['sess', 'net', 'test_data', 'args.out_dir'], {}), '(sess, net, test_data, args.out_dir)\n', (6340, 6376), False, 'import evaluate\n'), ((6444, 6507), 'evaluate_keypoints.evaluate', 'evaluate_keypoints.evaluate', (['sess', 'net', 'test_data', 'args.out_dir'], {}), '(sess, net, test_data, args.out_dir)\n', (6471, 6507), False, 'import evaluate_keypoints\n'), ((6573, 6634), 'evaluate_obj_det.evaluate', 'evaluate_obj_det.evaluate', (['sess', 'net', 'test_data', 'args.out_dir'], {}), '(sess, net, test_data, args.out_dir)\n', (6598, 6634), False, 'import evaluate_obj_det\n'), ((6795, 6839), 'os.path.join', 'os.path.join', (['args.out_dir', '"""dictionary.npy"""'], {}), "(args.out_dir, 'dictionary.npy')\n", (6807, 6839), False, 'import os, sys\n'), ((6856, 6876), 'numpy.save', 'np.save', (['out_file', 'A'], {}), '(out_file, A)\n', (6863, 6876), True, 'import numpy as np\n'), ((6983, 7044), 'evaluate_sem_seg.evaluate', 'evaluate_sem_seg.evaluate', (['sess', 'net', 'test_data', 'args.out_dir'], {}), '(sess, net, test_data, args.out_dir)\n', (7008, 7044), False, 'import evaluate_sem_seg\n')]
# Lint as: python3 """Pipeline for training and evaluating a loudness predictor.""" import os from typing import List from absl import app from absl import flags from absl import logging import tensorflow.compat.v2 as tf from data_processing import get_datasets, get_testdata from evaluate import evaluate, write_predictions from model import LoudnessPredictor import train import helpers tf.enable_v2_behavior() FLAGS = flags.FLAGS flags.DEFINE_string( "mode", "train", "Whether to train, test, or predict.") flags.DEFINE_string( "loudness_traindata_proto_file_pattern", "../../data/preprocessed_data/all_dl_data/traindataraw_*", "Proto file to read loudness data from.") flags.DEFINE_string( "extra_loudness_traindata_proto_file_pattern", "../../data/preprocessed_data/all_dl_data/extratraindataraw_*", "Proto file to read loudness data from.") flags.DEFINE_string( "loudness_testdata_proto_file_pattern", "../../data/preprocessed_data/all_dl_data/traindataraw_*", "Proto file to read loudness data from.") flags.DEFINE_bool("use_carfac", True, "Whether to use CARFAC features or not.") flags.DEFINE_string( "logs_dir", "logs/loudness_predictor", "Directory to put summary logs.") flags.DEFINE_string( "load_from_checkpoint", "", "Which checkpoint from log dir to load when starting (e.g., cp.ckpt).") flags.DEFINE_integer( "num_rows_channel_kernel", 5, "Number of rows on the kernel that will convolve the input across " "CARFAC channels; it will summarize num_rows_channel_kernel channels.") flags.DEFINE_integer( "num_cols_channel_kernel", 1, "Number of cols on the kernel that will convolve the input across " "CARFAC channels; it will summarize num_cols_channel_kernel freq. bins.") flags.DEFINE_integer( "num_filters_channels", 5, "Number of filters when convolving channels across bins.") flags.DEFINE_integer( "num_rows_bin_kernel", 1, "Number of rows on the kernel that will convolve the input across " "frequency bins; it will summarize num_rows_bin_kernel CARFAC channels.") flags.DEFINE_integer( "num_cols_bin_kernel", 1, "Number of rows on the kernel that will convolve the input across " "frequency bins; it will summarize num_cols_bin_kernel frequency bins.") flags.DEFINE_integer( "num_filters_bins", 5, "Number of filters when convolving bins across channels.") flags.DEFINE_integer( "batch_size", 1, "Batch size when training.") flags.DEFINE_integer( "epochs", 150, "Number of epochs (full passes of the training data) to train the model.") flags.DEFINE_string( "save_model_to_dir", "saved_model", "Destination directory for saving the model before early exit.") flags.DEFINE_string( "load_model_from_file", "", "A saved model to eval once and then return.") flags.DEFINE_string( "save_predictions_file", "predictions.txt", "A saved model to eval once and then return.") flags.DEFINE_integer( "seed", 4, "TensorFlow random seed.") flags.DEFINE_float("learning_rate", 1e-3, "The initial learning rate for Adam.") flags.DEFINE_float("dropout_p", 0., "Dropout to apply to the fc layers.") def main(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") tf.random.set_seed(FLAGS.seed) if FLAGS.loudness_traindata_proto_file_pattern is None: raise app.UsageError("Must provide --loudness_data_proto_file_pattern.") log_dir = os.path.join( os.path.dirname(os.path.realpath(__file__)), FLAGS.logs_dir) if not os.path.exists(log_dir): os.mkdir(log_dir) logging.info("TensorFlow seed: %d", FLAGS.seed) input_shape = None if FLAGS.mode == "test": raise NotImplementedError("Did not implement mode test.") data = get_datasets(FLAGS.loudness_testdata_proto_file_pattern, 1, carfac=FLAGS.use_carfac) logging.info("Created testing datasets") model = tf.keras.models.load_model(FLAGS.load_model_from_file) logging.info("Loaded model") elif FLAGS.mode == "train": data = get_datasets(FLAGS.loudness_traindata_proto_file_pattern, FLAGS.batch_size, carfac=FLAGS.use_carfac, extra_file_pattern=FLAGS.extra_loudness_traindata_proto_file_pattern) frequency_bins = None for example in data["train"].take(1): input_example, target_example = example input_shape = input_example.shape carfac_channels = input_example.shape[1] frequency_bins = input_example.shape[2] logging.info("Created model") elif FLAGS.mode == "eval_once": data = get_testdata(FLAGS.loudness_testdata_proto_file_pattern, carfac=FLAGS.use_carfac) frequency_bins = None for example in data["test"].take(1): input_example, target_example, _ = example input_shape = input_example.shape carfac_channels = input_example.shape[1] frequency_bins = input_example.shape[2] model = LoudnessPredictor( frequency_bins=frequency_bins, carfac_channels=carfac_channels, num_rows_channel_kernel=FLAGS.num_rows_channel_kernel, num_cols_channel_kernel=FLAGS.num_cols_channel_kernel, num_filters_channels=FLAGS.num_filters_channels, num_rows_bin_kernel=FLAGS.num_rows_bin_kernel, num_cols_bin_kernel=FLAGS.num_cols_bin_kernel, num_filters_bins=FLAGS.num_filters_bins, dropout_p=FLAGS.dropout_p, use_channels=FLAGS.use_carfac, seed=FLAGS.seed) if FLAGS.load_from_checkpoint: path_to_load = os.path.join(log_dir, FLAGS.load_from_checkpoint) logging.info("Attempting to load model from %s", path_to_load) loaded = False try: model.load_weights(path_to_load) loaded = True logging.info("Loaded model") except Exception as err: logging.info("Unable to load log dir checkpoint %s, trying " "'load_from_checkpoint' flag: %s", path_to_load, err) path_to_load = FLAGS.load_from_checkpoint try: model.load_weights(path_to_load) loaded = True except Exception as err: logging.info("Unable to load flag checkpoint %s: %s", path_to_load, err) else: loaded = False example_image_batch = [] if FLAGS.mode == "train": data_key = "train" for example in data[data_key].take(4): input_example, target = example input_shape = input_example.shape tf.print("(start train) input shape: ", input_shape) tf.print("(start train) target phons shape: ", target.shape) input_example = tf.expand_dims(input_example[0], axis=0) example_image_batch.append( [input_example, target]) elif FLAGS.mode == "eval_once": data_key = "test" for example in data[data_key].take(4): input_example, target, _ = example input_shape = input_example.shape tf.print("(start eval) input shape: ", input_shape) tf.print("(start eval) target phons shape: ", target.shape) input_example = tf.expand_dims(input_example[0], axis=0) example_image_batch.append( [input_example, target]) callbacks = [helpers.StepIncrementingCallback()] callbacks.append(tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1, update_freq="batch", write_graph=True)) model.build(input_shape) logging.info("Model summary") model.summary() if FLAGS.extra_loudness_traindata_proto_file_pattern: extra_data = True else: extra_data = False save_ckpt = log_dir + "/cp_carfac{}_extradata{}".format( FLAGS.use_carfac, extra_data) + "_{epoch:04d}.ckpt" logging.info("Save checkpoint to: %s" % save_ckpt) callbacks.append(tf.keras.callbacks.ModelCheckpoint(filepath=save_ckpt, save_weights_only=True, verbose=1, period=5)) if FLAGS.mode == "train": logging.info("Starting training for %d epochs" % FLAGS.epochs) if FLAGS.extra_loudness_traindata_proto_file_pattern: steps_per_epoch = (317 + 639) // FLAGS.batch_size else: steps_per_epoch = 317 // FLAGS.batch_size train(model, data["train"], data["validate"], FLAGS.learning_rate, FLAGS.epochs, steps_per_epoch, callbacks) elif FLAGS.mode == "test": raise NotImplementedError("Mode test not implemented.") evaluate(model, data["test"], batch_size=FLAGS.eval_batch_size) elif FLAGS.mode == "eval_once": if not loaded: raise ValueError("Trying to eval. a model with unitialized weights.") save_dir = os.path.join( os.path.dirname(os.path.realpath(__file__)), log_dir) write_predictions(model, data["test"], batch_size=1, save_directory=save_dir, save_file=FLAGS.save_predictions_file) return else: raise ValueError("Specified value for '--mode' (%s) unknown", FLAGS.mode) if __name__ == "__main__": app.run(main)
[ "evaluate.evaluate", "evaluate.write_predictions" ]
[((392, 415), 'tensorflow.compat.v2.enable_v2_behavior', 'tf.enable_v2_behavior', ([], {}), '()\n', (413, 415), True, 'import tensorflow.compat.v2 as tf\n'), ((438, 513), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""mode"""', '"""train"""', '"""Whether to train, test, or predict."""'], {}), "('mode', 'train', 'Whether to train, test, or predict.')\n", (457, 513), False, 'from absl import flags\n'), ((527, 696), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""loudness_traindata_proto_file_pattern"""', '"""../../data/preprocessed_data/all_dl_data/traindataraw_*"""', '"""Proto file to read loudness data from."""'], {}), "('loudness_traindata_proto_file_pattern',\n '../../data/preprocessed_data/all_dl_data/traindataraw_*',\n 'Proto file to read loudness data from.')\n", (546, 696), False, 'from absl import flags\n'), ((702, 882), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""extra_loudness_traindata_proto_file_pattern"""', '"""../../data/preprocessed_data/all_dl_data/extratraindataraw_*"""', '"""Proto file to read loudness data from."""'], {}), "('extra_loudness_traindata_proto_file_pattern',\n '../../data/preprocessed_data/all_dl_data/extratraindataraw_*',\n 'Proto file to read loudness data from.')\n", (721, 882), False, 'from absl import flags\n'), ((888, 1056), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""loudness_testdata_proto_file_pattern"""', '"""../../data/preprocessed_data/all_dl_data/traindataraw_*"""', '"""Proto file to read loudness data from."""'], {}), "('loudness_testdata_proto_file_pattern',\n '../../data/preprocessed_data/all_dl_data/traindataraw_*',\n 'Proto file to read loudness data from.')\n", (907, 1056), False, 'from absl import flags\n'), ((1062, 1141), 'absl.flags.DEFINE_bool', 'flags.DEFINE_bool', (['"""use_carfac"""', '(True)', '"""Whether to use CARFAC features or not."""'], {}), "('use_carfac', True, 'Whether to use CARFAC features or not.')\n", (1079, 1141), False, 'from absl import flags\n'), ((1160, 1256), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""logs_dir"""', '"""logs/loudness_predictor"""', '"""Directory to put summary logs."""'], {}), "('logs_dir', 'logs/loudness_predictor',\n 'Directory to put summary logs.')\n", (1179, 1256), False, 'from absl import flags\n'), ((1266, 1389), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""load_from_checkpoint"""', '""""""', '"""Which checkpoint from log dir to load when starting (e.g., cp.ckpt)."""'], {}), "('load_from_checkpoint', '',\n 'Which checkpoint from log dir to load when starting (e.g., cp.ckpt).')\n", (1285, 1389), False, 'from absl import flags\n'), ((1399, 1595), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_rows_channel_kernel"""', '(5)', '"""Number of rows on the kernel that will convolve the input across CARFAC channels; it will summarize num_rows_channel_kernel channels."""'], {}), "('num_rows_channel_kernel', 5,\n 'Number of rows on the kernel that will convolve the input across CARFAC channels; it will summarize num_rows_channel_kernel channels.'\n )\n", (1419, 1595), False, 'from absl import flags\n'), ((1607, 1805), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_cols_channel_kernel"""', '(1)', '"""Number of cols on the kernel that will convolve the input across CARFAC channels; it will summarize num_cols_channel_kernel freq. bins."""'], {}), "('num_cols_channel_kernel', 1,\n 'Number of cols on the kernel that will convolve the input across CARFAC channels; it will summarize num_cols_channel_kernel freq. bins.'\n )\n", (1627, 1805), False, 'from absl import flags\n'), ((1817, 1927), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_filters_channels"""', '(5)', '"""Number of filters when convolving channels across bins."""'], {}), "('num_filters_channels', 5,\n 'Number of filters when convolving channels across bins.')\n", (1837, 1927), False, 'from absl import flags\n'), ((1937, 2131), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_rows_bin_kernel"""', '(1)', '"""Number of rows on the kernel that will convolve the input across frequency bins; it will summarize num_rows_bin_kernel CARFAC channels."""'], {}), "('num_rows_bin_kernel', 1,\n 'Number of rows on the kernel that will convolve the input across frequency bins; it will summarize num_rows_bin_kernel CARFAC channels.'\n )\n", (1957, 2131), False, 'from absl import flags\n'), ((2143, 2336), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_cols_bin_kernel"""', '(1)', '"""Number of rows on the kernel that will convolve the input across frequency bins; it will summarize num_cols_bin_kernel frequency bins."""'], {}), "('num_cols_bin_kernel', 1,\n 'Number of rows on the kernel that will convolve the input across frequency bins; it will summarize num_cols_bin_kernel frequency bins.'\n )\n", (2163, 2336), False, 'from absl import flags\n'), ((2348, 2454), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_filters_bins"""', '(5)', '"""Number of filters when convolving bins across channels."""'], {}), "('num_filters_bins', 5,\n 'Number of filters when convolving bins across channels.')\n", (2368, 2454), False, 'from absl import flags\n'), ((2464, 2530), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""batch_size"""', '(1)', '"""Batch size when training."""'], {}), "('batch_size', 1, 'Batch size when training.')\n", (2484, 2530), False, 'from absl import flags\n'), ((2544, 2658), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""epochs"""', '(150)', '"""Number of epochs (full passes of the training data) to train the model."""'], {}), "('epochs', 150,\n 'Number of epochs (full passes of the training data) to train the model.')\n", (2564, 2658), False, 'from absl import flags\n'), ((2668, 2792), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""save_model_to_dir"""', '"""saved_model"""', '"""Destination directory for saving the model before early exit."""'], {}), "('save_model_to_dir', 'saved_model',\n 'Destination directory for saving the model before early exit.')\n", (2687, 2792), False, 'from absl import flags\n'), ((2802, 2900), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""load_model_from_file"""', '""""""', '"""A saved model to eval once and then return."""'], {}), "('load_model_from_file', '',\n 'A saved model to eval once and then return.')\n", (2821, 2900), False, 'from absl import flags\n'), ((2910, 3024), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""save_predictions_file"""', '"""predictions.txt"""', '"""A saved model to eval once and then return."""'], {}), "('save_predictions_file', 'predictions.txt',\n 'A saved model to eval once and then return.')\n", (2929, 3024), False, 'from absl import flags\n'), ((3034, 3092), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""seed"""', '(4)', '"""TensorFlow random seed."""'], {}), "('seed', 4, 'TensorFlow random seed.')\n", (3054, 3092), False, 'from absl import flags\n'), ((3106, 3191), 'absl.flags.DEFINE_float', 'flags.DEFINE_float', (['"""learning_rate"""', '(0.001)', '"""The initial learning rate for Adam."""'], {}), "('learning_rate', 0.001,\n 'The initial learning rate for Adam.')\n", (3124, 3191), False, 'from absl import flags\n'), ((3187, 3261), 'absl.flags.DEFINE_float', 'flags.DEFINE_float', (['"""dropout_p"""', '(0.0)', '"""Dropout to apply to the fc layers."""'], {}), "('dropout_p', 0.0, 'Dropout to apply to the fc layers.')\n", (3205, 3261), False, 'from absl import flags\n'), ((3365, 3395), 'tensorflow.compat.v2.random.set_seed', 'tf.random.set_seed', (['FLAGS.seed'], {}), '(FLAGS.seed)\n', (3383, 3395), True, 'import tensorflow.compat.v2 as tf\n'), ((3685, 3732), 'absl.logging.info', 'logging.info', (['"""TensorFlow seed: %d"""', 'FLAGS.seed'], {}), "('TensorFlow seed: %d', FLAGS.seed)\n", (3697, 3732), False, 'from absl import logging\n'), ((5060, 5538), 'model.LoudnessPredictor', 'LoudnessPredictor', ([], {'frequency_bins': 'frequency_bins', 'carfac_channels': 'carfac_channels', 'num_rows_channel_kernel': 'FLAGS.num_rows_channel_kernel', 'num_cols_channel_kernel': 'FLAGS.num_cols_channel_kernel', 'num_filters_channels': 'FLAGS.num_filters_channels', 'num_rows_bin_kernel': 'FLAGS.num_rows_bin_kernel', 'num_cols_bin_kernel': 'FLAGS.num_cols_bin_kernel', 'num_filters_bins': 'FLAGS.num_filters_bins', 'dropout_p': 'FLAGS.dropout_p', 'use_channels': 'FLAGS.use_carfac', 'seed': 'FLAGS.seed'}), '(frequency_bins=frequency_bins, carfac_channels=\n carfac_channels, num_rows_channel_kernel=FLAGS.num_rows_channel_kernel,\n num_cols_channel_kernel=FLAGS.num_cols_channel_kernel,\n num_filters_channels=FLAGS.num_filters_channels, num_rows_bin_kernel=\n FLAGS.num_rows_bin_kernel, num_cols_bin_kernel=FLAGS.\n num_cols_bin_kernel, num_filters_bins=FLAGS.num_filters_bins, dropout_p\n =FLAGS.dropout_p, use_channels=FLAGS.use_carfac, seed=FLAGS.seed)\n', (5077, 5538), False, 'from model import LoudnessPredictor\n'), ((7593, 7622), 'absl.logging.info', 'logging.info', (['"""Model summary"""'], {}), "('Model summary')\n", (7605, 7622), False, 'from absl import logging\n'), ((7870, 7920), 'absl.logging.info', 'logging.info', (["('Save checkpoint to: %s' % save_ckpt)"], {}), "('Save checkpoint to: %s' % save_ckpt)\n", (7882, 7920), False, 'from absl import logging\n'), ((9263, 9276), 'absl.app.run', 'app.run', (['main'], {}), '(main)\n', (9270, 9276), False, 'from absl import app\n'), ((3311, 3361), 'absl.app.UsageError', 'app.UsageError', (['"""Too many command-line arguments."""'], {}), "('Too many command-line arguments.')\n", (3325, 3361), False, 'from absl import app\n'), ((3465, 3531), 'absl.app.UsageError', 'app.UsageError', (['"""Must provide --loudness_data_proto_file_pattern."""'], {}), "('Must provide --loudness_data_proto_file_pattern.')\n", (3479, 3531), False, 'from absl import app\n'), ((3635, 3658), 'os.path.exists', 'os.path.exists', (['log_dir'], {}), '(log_dir)\n', (3649, 3658), False, 'import os\n'), ((3664, 3681), 'os.mkdir', 'os.mkdir', (['log_dir'], {}), '(log_dir)\n', (3672, 3681), False, 'import os\n'), ((3855, 3944), 'data_processing.get_datasets', 'get_datasets', (['FLAGS.loudness_testdata_proto_file_pattern', '(1)'], {'carfac': 'FLAGS.use_carfac'}), '(FLAGS.loudness_testdata_proto_file_pattern, 1, carfac=FLAGS.\n use_carfac)\n', (3867, 3944), False, 'from data_processing import get_datasets, get_testdata\n'), ((3968, 4008), 'absl.logging.info', 'logging.info', (['"""Created testing datasets"""'], {}), "('Created testing datasets')\n", (3980, 4008), False, 'from absl import logging\n'), ((4021, 4075), 'tensorflow.compat.v2.keras.models.load_model', 'tf.keras.models.load_model', (['FLAGS.load_model_from_file'], {}), '(FLAGS.load_model_from_file)\n', (4047, 4075), True, 'import tensorflow.compat.v2 as tf\n'), ((4080, 4108), 'absl.logging.info', 'logging.info', (['"""Loaded model"""'], {}), "('Loaded model')\n", (4092, 4108), False, 'from absl import logging\n'), ((5652, 5701), 'os.path.join', 'os.path.join', (['log_dir', 'FLAGS.load_from_checkpoint'], {}), '(log_dir, FLAGS.load_from_checkpoint)\n', (5664, 5701), False, 'import os\n'), ((5706, 5768), 'absl.logging.info', 'logging.info', (['"""Attempting to load model from %s"""', 'path_to_load'], {}), "('Attempting to load model from %s', path_to_load)\n", (5718, 5768), False, 'from absl import logging\n'), ((7253, 7287), 'helpers.StepIncrementingCallback', 'helpers.StepIncrementingCallback', ([], {}), '()\n', (7285, 7287), False, 'import helpers\n'), ((7308, 7416), 'tensorflow.compat.v2.keras.callbacks.TensorBoard', 'tf.keras.callbacks.TensorBoard', ([], {'log_dir': 'log_dir', 'histogram_freq': '(1)', 'update_freq': '"""batch"""', 'write_graph': '(True)'}), "(log_dir=log_dir, histogram_freq=1,\n update_freq='batch', write_graph=True)\n", (7338, 7416), True, 'import tensorflow.compat.v2 as tf\n'), ((7940, 8044), 'tensorflow.compat.v2.keras.callbacks.ModelCheckpoint', 'tf.keras.callbacks.ModelCheckpoint', ([], {'filepath': 'save_ckpt', 'save_weights_only': '(True)', 'verbose': '(1)', 'period': '(5)'}), '(filepath=save_ckpt, save_weights_only=\n True, verbose=1, period=5)\n', (7974, 8044), True, 'import tensorflow.compat.v2 as tf\n'), ((8236, 8298), 'absl.logging.info', 'logging.info', (["('Starting training for %d epochs' % FLAGS.epochs)"], {}), "('Starting training for %d epochs' % FLAGS.epochs)\n", (8248, 8298), False, 'from absl import logging\n'), ((8475, 8588), 'train', 'train', (['model', "data['train']", "data['validate']", 'FLAGS.learning_rate', 'FLAGS.epochs', 'steps_per_epoch', 'callbacks'], {}), "(model, data['train'], data['validate'], FLAGS.learning_rate, FLAGS.\n epochs, steps_per_epoch, callbacks)\n", (8480, 8588), False, 'import train\n'), ((3581, 3607), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (3597, 3607), False, 'import os\n'), ((4150, 4329), 'data_processing.get_datasets', 'get_datasets', (['FLAGS.loudness_traindata_proto_file_pattern', 'FLAGS.batch_size'], {'carfac': 'FLAGS.use_carfac', 'extra_file_pattern': 'FLAGS.extra_loudness_traindata_proto_file_pattern'}), '(FLAGS.loudness_traindata_proto_file_pattern, FLAGS.batch_size,\n carfac=FLAGS.use_carfac, extra_file_pattern=FLAGS.\n extra_loudness_traindata_proto_file_pattern)\n', (4162, 4329), False, 'from data_processing import get_datasets, get_testdata\n'), ((4620, 4649), 'absl.logging.info', 'logging.info', (['"""Created model"""'], {}), "('Created model')\n", (4632, 4649), False, 'from absl import logging\n'), ((5862, 5890), 'absl.logging.info', 'logging.info', (['"""Loaded model"""'], {}), "('Loaded model')\n", (5874, 5890), False, 'from absl import logging\n'), ((6548, 6600), 'tensorflow.compat.v2.print', 'tf.print', (['"""(start train) input shape: """', 'input_shape'], {}), "('(start train) input shape: ', input_shape)\n", (6556, 6600), True, 'import tensorflow.compat.v2 as tf\n'), ((6607, 6667), 'tensorflow.compat.v2.print', 'tf.print', (['"""(start train) target phons shape: """', 'target.shape'], {}), "('(start train) target phons shape: ', target.shape)\n", (6615, 6667), True, 'import tensorflow.compat.v2 as tf\n'), ((6690, 6730), 'tensorflow.compat.v2.expand_dims', 'tf.expand_dims', (['input_example[0]'], {'axis': '(0)'}), '(input_example[0], axis=0)\n', (6704, 6730), True, 'import tensorflow.compat.v2 as tf\n'), ((8687, 8750), 'evaluate.evaluate', 'evaluate', (['model', "data['test']"], {'batch_size': 'FLAGS.eval_batch_size'}), "(model, data['test'], batch_size=FLAGS.eval_batch_size)\n", (8695, 8750), False, 'from evaluate import evaluate, write_predictions\n'), ((4695, 4781), 'data_processing.get_testdata', 'get_testdata', (['FLAGS.loudness_testdata_proto_file_pattern'], {'carfac': 'FLAGS.use_carfac'}), '(FLAGS.loudness_testdata_proto_file_pattern, carfac=FLAGS.\n use_carfac)\n', (4707, 4781), False, 'from data_processing import get_datasets, get_testdata\n'), ((5926, 6047), 'absl.logging.info', 'logging.info', (['"""Unable to load log dir checkpoint %s, trying \'load_from_checkpoint\' flag: %s"""', 'path_to_load', 'err'], {}), '(\n "Unable to load log dir checkpoint %s, trying \'load_from_checkpoint\' flag: %s"\n , path_to_load, err)\n', (5938, 6047), False, 'from absl import logging\n'), ((6987, 7038), 'tensorflow.compat.v2.print', 'tf.print', (['"""(start eval) input shape: """', 'input_shape'], {}), "('(start eval) input shape: ', input_shape)\n", (6995, 7038), True, 'import tensorflow.compat.v2 as tf\n'), ((7045, 7104), 'tensorflow.compat.v2.print', 'tf.print', (['"""(start eval) target phons shape: """', 'target.shape'], {}), "('(start eval) target phons shape: ', target.shape)\n", (7053, 7104), True, 'import tensorflow.compat.v2 as tf\n'), ((7127, 7167), 'tensorflow.compat.v2.expand_dims', 'tf.expand_dims', (['input_example[0]'], {'axis': '(0)'}), '(input_example[0], axis=0)\n', (7141, 7167), True, 'import tensorflow.compat.v2 as tf\n'), ((8975, 9096), 'evaluate.write_predictions', 'write_predictions', (['model', "data['test']"], {'batch_size': '(1)', 'save_directory': 'save_dir', 'save_file': 'FLAGS.save_predictions_file'}), "(model, data['test'], batch_size=1, save_directory=\n save_dir, save_file=FLAGS.save_predictions_file)\n", (8992, 9096), False, 'from evaluate import evaluate, write_predictions\n'), ((6221, 6293), 'absl.logging.info', 'logging.info', (['"""Unable to load flag checkpoint %s: %s"""', 'path_to_load', 'err'], {}), "('Unable to load flag checkpoint %s: %s', path_to_load, err)\n", (6233, 6293), False, 'from absl import logging\n'), ((8933, 8959), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (8949, 8959), False, 'import os\n')]
import keras.backend as K from sacred import Experiment from sacred.utils import apply_backspaces_and_linefeeds from sacred.observers import FileStorageObserver from utils.util import prepare_dataset, split_data from train import train from evaluate import evaluate import tensorflow as tf import GPy import GPyOpt import functools import json import os import importlib # reset tensorflow graph tf.reset_default_graph() # remove unnecessary tensorflow output os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # set dimension ordering to tensorflow K.set_image_dim_ordering('tf') # set bounds for hyperparameter optimization bounds = [ { 'name': 'learning_rate', 'type': 'continuous', 'domain': (0.0, 0.0006) }, { 'name': 'freeze_layers', 'type': 'discrete', 'domain': range(0, 594) } ] def optimize( config, config_path=None ): if config_path is not None: experiment.add_artifact( config_path ) # optimize hyperparameters op_function = functools.partial(run_model, config=config, experiment=experiment) hyperparameter_optimizer = GPyOpt.methods.BayesianOptimization( f=op_function, domain=bounds ) hyperparameter_optimizer.run_optimization( max_iter=10 ) # print best hyperparameters and achieved score for index, param in enumerate(bounds): print(f'{ bounds[index]["name"] }: { hyperparameter_optimizer.x_opt[index] }') print(f'optimized score: { hyperparameter_optimizer.fx_opt }') def run_model( params, config, experiment ): file_identifier = [] for index, param in enumerate(params[0]): print(f'{ bounds[index]["name"] } => { param }') file_identifier.extend((bounds[index]['name'], str(param))) file_identifier = '_'.join(file_identifier) # load dataset configuration if config['dataset'].get('link', True): dataset_config_path = f'../configs/datasets/{ config["dataset"]["link"] }' experiment.add_artifact(dataset_config_path) config['dataset'].update( json.load( open( dataset_config_path ) ) ) # split dataset into k split split_dirs = split_data(config['dataset']['split'], config['dataset']['path']) # build training and validation directory training_directory, validation_directory = prepare_dataset(split_dirs, 0, len(split_dirs)) # optionally load pre-trainied model if config['model'].get('load_model', False): model = load_model(config['model']['load_model']) else: model_builder = importlib.import_module(f'models.{ config["model"]["build_file"] }') model = model_builder.build(config) # modify config to use optimization parameters config['hyper_parameters']['learning_rate'] = float(params[:, 0]) config['hyper_parameters']['freeze_layers'] = int(params[:, 1]) # train model using optimized hyper parameters model = train(model, config, experiment, training_directory, validation_directory, file_identifier) # evalaute model using standard metrics evaluation = evaluate(model, config, experiment, validation_directory, file_identifier) return evaluation['f1'] if __name__ == '__main__': # list configs in active directory configs = os.listdir( '../configs/active' ) # iterate over each config and perform experiment for config_file in configs: # set config path config_path = f'../configs/active/{ config_file }' # load config file config = json.load( open( config_path ) ) # get experiment path experiment_name = config['experiment']['name'] experiment_path = f'../experiments/{ experiment_name }' # initialize experiment experiment = Experiment(experiment_name) experiment.captured_out_filter = apply_backspaces_and_linefeeds experiment.observers.append(FileStorageObserver.create(experiment_path)) def wrapper(): return optimize(config, config_path) # run experiment experiment.automain(wrapper)
[ "evaluate.evaluate" ]
[((402, 426), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (424, 426), True, 'import tensorflow as tf\n'), ((548, 578), 'keras.backend.set_image_dim_ordering', 'K.set_image_dim_ordering', (['"""tf"""'], {}), "('tf')\n", (572, 578), True, 'import keras.backend as K\n'), ((968, 1034), 'functools.partial', 'functools.partial', (['run_model'], {'config': 'config', 'experiment': 'experiment'}), '(run_model, config=config, experiment=experiment)\n', (985, 1034), False, 'import functools\n'), ((1066, 1131), 'GPyOpt.methods.BayesianOptimization', 'GPyOpt.methods.BayesianOptimization', ([], {'f': 'op_function', 'domain': 'bounds'}), '(f=op_function, domain=bounds)\n', (1101, 1131), False, 'import GPyOpt\n'), ((2089, 2154), 'utils.util.split_data', 'split_data', (["config['dataset']['split']", "config['dataset']['path']"], {}), "(config['dataset']['split'], config['dataset']['path'])\n", (2099, 2154), False, 'from utils.util import prepare_dataset, split_data\n'), ((2852, 2947), 'train.train', 'train', (['model', 'config', 'experiment', 'training_directory', 'validation_directory', 'file_identifier'], {}), '(model, config, experiment, training_directory, validation_directory,\n file_identifier)\n', (2857, 2947), False, 'from train import train\n'), ((3006, 3080), 'evaluate.evaluate', 'evaluate', (['model', 'config', 'experiment', 'validation_directory', 'file_identifier'], {}), '(model, config, experiment, validation_directory, file_identifier)\n', (3014, 3080), False, 'from evaluate import evaluate\n'), ((3192, 3223), 'os.listdir', 'os.listdir', (['"""../configs/active"""'], {}), "('../configs/active')\n", (3202, 3223), False, 'import os\n'), ((2485, 2551), 'importlib.import_module', 'importlib.import_module', (['f"""models.{config[\'model\'][\'build_file\']}"""'], {}), '(f"models.{config[\'model\'][\'build_file\']}")\n', (2508, 2551), False, 'import importlib\n'), ((3681, 3708), 'sacred.Experiment', 'Experiment', (['experiment_name'], {}), '(experiment_name)\n', (3691, 3708), False, 'from sacred import Experiment\n'), ((3817, 3860), 'sacred.observers.FileStorageObserver.create', 'FileStorageObserver.create', (['experiment_path'], {}), '(experiment_path)\n', (3843, 3860), False, 'from sacred.observers import FileStorageObserver\n')]
from __future__ import print_function import os import sys import importlib import mxnet as mx from dataset.iterator import DetRecordIter from config.config import cfg from evaluate.eval_metric import MApMetric, VOC07MApMetric import logging from symbol.symbol_factory import get_symbol def evaluate_net(net, path_imgrec, num_classes, mean_pixels, data_shape, model_prefix, epoch, ctx=mx.cpu(), batch_size=1, path_imglist="", nms_thresh=0.45, force_nms=False, ovp_thresh=0.5, use_difficult=False, class_names=None, voc07_metric=False): """ evalute network given validation record file Parameters: ---------- net : str or None Network name or use None to load from json without modifying path_imgrec : str path to the record validation file path_imglist : str path to the list file to replace labels in record file, optional num_classes : int number of classes, not including background mean_pixels : tuple (mean_r, mean_g, mean_b) data_shape : tuple or int (3, height, width) or height/width model_prefix : str model prefix of saved checkpoint epoch : int load model epoch ctx : mx.ctx mx.gpu() or mx.cpu() batch_size : int validation batch size nms_thresh : float non-maximum suppression threshold force_nms : boolean whether suppress different class objects ovp_thresh : float AP overlap threshold for true/false postives use_difficult : boolean whether to use difficult objects in evaluation if applicable class_names : comma separated str class names in string, must correspond to num_classes if set voc07_metric : boolean whether to use 11-point evluation as in VOC07 competition """ # set up logger logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.INFO) # args if isinstance(data_shape, int): data_shape = (3, data_shape, data_shape) assert len(data_shape) == 3 and data_shape[0] == 3 model_prefix += '_' + str(data_shape[1]) # iterator eval_iter = DetRecordIter(path_imgrec, batch_size, data_shape, path_imglist=path_imglist, **cfg.valid) # model params load_net, args, auxs = mx.model.load_checkpoint(model_prefix, epoch) # network if net is None: net = load_net else: net = get_symbol(net, data_shape[1], num_classes=num_classes, nms_thresh=nms_thresh, force_suppress=force_nms) if not 'label' in net.list_arguments(): label = mx.sym.Variable(name='label') net = mx.sym.Group([net, label]) # init module mod = mx.mod.Module(net, label_names=('label',), logger=logger, context=ctx, fixed_param_names=net.list_arguments()) mod.bind(data_shapes=eval_iter.provide_data, label_shapes=eval_iter.provide_label) mod.set_params(args, auxs, allow_missing=False, force_init=True) # run evaluation if voc07_metric: metric = VOC07MApMetric(ovp_thresh, use_difficult, class_names) else: metric = MApMetric(ovp_thresh, use_difficult, class_names) results = mod.score(eval_iter, metric, num_batch=None) for k, v in results: print("{}: {}".format(k, v))
[ "evaluate.eval_metric.VOC07MApMetric", "evaluate.eval_metric.MApMetric" ]
[((403, 411), 'mxnet.cpu', 'mx.cpu', ([], {}), '()\n', (409, 411), True, 'import mxnet as mx\n'), ((1895, 1916), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (1914, 1916), False, 'import logging\n'), ((1930, 1949), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (1947, 1949), False, 'import logging\n'), ((2213, 2308), 'dataset.iterator.DetRecordIter', 'DetRecordIter', (['path_imgrec', 'batch_size', 'data_shape'], {'path_imglist': 'path_imglist'}), '(path_imgrec, batch_size, data_shape, path_imglist=\n path_imglist, **cfg.valid)\n', (2226, 2308), False, 'from dataset.iterator import DetRecordIter\n'), ((2380, 2425), 'mxnet.model.load_checkpoint', 'mx.model.load_checkpoint', (['model_prefix', 'epoch'], {}), '(model_prefix, epoch)\n', (2404, 2425), True, 'import mxnet as mx\n'), ((2507, 2616), 'symbol.symbol_factory.get_symbol', 'get_symbol', (['net', 'data_shape[1]'], {'num_classes': 'num_classes', 'nms_thresh': 'nms_thresh', 'force_suppress': 'force_nms'}), '(net, data_shape[1], num_classes=num_classes, nms_thresh=\n nms_thresh, force_suppress=force_nms)\n', (2517, 2616), False, 'from symbol.symbol_factory import get_symbol\n'), ((2684, 2713), 'mxnet.sym.Variable', 'mx.sym.Variable', ([], {'name': '"""label"""'}), "(name='label')\n", (2699, 2713), True, 'import mxnet as mx\n'), ((2728, 2754), 'mxnet.sym.Group', 'mx.sym.Group', (['[net, label]'], {}), '([net, label])\n', (2740, 2754), True, 'import mxnet as mx\n'), ((3119, 3173), 'evaluate.eval_metric.VOC07MApMetric', 'VOC07MApMetric', (['ovp_thresh', 'use_difficult', 'class_names'], {}), '(ovp_thresh, use_difficult, class_names)\n', (3133, 3173), False, 'from evaluate.eval_metric import MApMetric, VOC07MApMetric\n'), ((3201, 3250), 'evaluate.eval_metric.MApMetric', 'MApMetric', (['ovp_thresh', 'use_difficult', 'class_names'], {}), '(ovp_thresh, use_difficult, class_names)\n', (3210, 3250), False, 'from evaluate.eval_metric import MApMetric, VOC07MApMetric\n')]
from evaluate import get_env, get_state_action_size, evaluate from policy import NeuroevoPolicy from evolutionary_methods import ga, ga_transfer_learning from argparse import ArgumentParser import numpy as np import logging import sys use_tqdm = False if "tqdm" in sys.modules: use_tqdm = True from tqdm import tqdm def fitness(x, s, a, env, params): policy = NeuroevoPolicy(s, a) policy.set_params(x) return evaluate(env, params, policy) if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('-e', '--env', help='environment', default='small', type=str) parser.add_argument('-g', '--gens', help='number of generations', default=100, type=int) parser.add_argument('-p', '--pop', help='population size (lambda for the 1+lambda ES)', default=10, type=int) parser.add_argument('-s', '--seed', help='seed for evolution', default=0, type=int) parser.add_argument('--log', help='log file', default='evolution.log', type=str) parser.add_argument('--weights', help='filename to save policy weights', default='weights', type=str) args = parser.parse_args() logging.basicConfig(filename=args.log, level=logging.DEBUG, format='%(asctime)s %(message)s') # starting point env, params = get_env(args.env) s, a = get_state_action_size(env) policy = NeuroevoPolicy(s, a) # evolution rng = np.random.default_rng(args.seed) #start = rng.normal(size=(len(policy.get_params(),))) start = policy.get_params() def fit(x): return fitness(x, s, a, env, params) def fit_inv(x): return -fitness(x, s, a, env, params) print(len(start)) # x_best = mu_lambda(start, fit, args.gens, args.pop, rng=rng)#cmaES_strategy(start, fit_inv)# oneplus_lambda(start, fit, args.gens, args.pop, rng=rng) # # x_best = ga(s,a, fit, std_init=0.5, n_elites=1, pop_size=10, gen=100, mutation_rate=0.1,scheduler=True, rng=rng)# 1/len(start),rng=rng)# x_best = ga_transfer_learning(s,a, fitness, std_init=0.5, n_elites=1, pop_size=10, gen=100, mutation_rate=0.1,scheduler=True, rng=rng) # Evaluation policy.set_params(x_best) policy.save(args.weights) best_eval = evaluate(env, params, policy) print('Best individual: ', x_best[:5]) print('Fitness: ', best_eval)
[ "evaluate.get_state_action_size", "evaluate.evaluate", "evaluate.get_env" ]
[((375, 395), 'policy.NeuroevoPolicy', 'NeuroevoPolicy', (['s', 'a'], {}), '(s, a)\n', (389, 395), False, 'from policy import NeuroevoPolicy\n'), ((432, 461), 'evaluate.evaluate', 'evaluate', (['env', 'params', 'policy'], {}), '(env, params, policy)\n', (440, 461), False, 'from evaluate import get_env, get_state_action_size, evaluate\n'), ((504, 520), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (518, 520), False, 'from argparse import ArgumentParser\n'), ((1128, 1226), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': 'args.log', 'level': 'logging.DEBUG', 'format': '"""%(asctime)s %(message)s"""'}), "(filename=args.log, level=logging.DEBUG, format=\n '%(asctime)s %(message)s')\n", (1147, 1226), False, 'import logging\n'), ((1286, 1303), 'evaluate.get_env', 'get_env', (['args.env'], {}), '(args.env)\n', (1293, 1303), False, 'from evaluate import get_env, get_state_action_size, evaluate\n'), ((1315, 1341), 'evaluate.get_state_action_size', 'get_state_action_size', (['env'], {}), '(env)\n', (1336, 1341), False, 'from evaluate import get_env, get_state_action_size, evaluate\n'), ((1355, 1375), 'policy.NeuroevoPolicy', 'NeuroevoPolicy', (['s', 'a'], {}), '(s, a)\n', (1369, 1375), False, 'from policy import NeuroevoPolicy\n'), ((1403, 1435), 'numpy.random.default_rng', 'np.random.default_rng', (['args.seed'], {}), '(args.seed)\n', (1424, 1435), True, 'import numpy as np\n'), ((1991, 2122), 'evolutionary_methods.ga_transfer_learning', 'ga_transfer_learning', (['s', 'a', 'fitness'], {'std_init': '(0.5)', 'n_elites': '(1)', 'pop_size': '(10)', 'gen': '(100)', 'mutation_rate': '(0.1)', 'scheduler': '(True)', 'rng': 'rng'}), '(s, a, fitness, std_init=0.5, n_elites=1, pop_size=10,\n gen=100, mutation_rate=0.1, scheduler=True, rng=rng)\n', (2011, 2122), False, 'from evolutionary_methods import ga, ga_transfer_learning\n'), ((2210, 2239), 'evaluate.evaluate', 'evaluate', (['env', 'params', 'policy'], {}), '(env, params, policy)\n', (2218, 2239), False, 'from evaluate import get_env, get_state_action_size, evaluate\n')]
#!/usr/bin/env python2 # Copyright (C) <2019> Intel Corporation # SPDX-License-Identifier: MIT # Author: <NAME> import sys import argparse import os import copy import math import pickle import matplotlib.pyplot as plt import evaluate def update_results(path, gt_dict, seqs): result_items = ['ate', 'ate_rmse', 'ate_num', 'c_ate_rmse', 'c_ate_num', 'reloc_time', 'reloc_correct', 'track_time', 'track_cr'] results = {} scenes = ['office'] algorithms = os.listdir(path) for alg in algorithms: try: files = os.listdir(path + '/' + alg) except OSError: continue auto_scale = alg == 'svo' or alg == 'dso' results[alg] = {} for file in files: if not file.endswith('.txt'): continue if not '1-%d-1-%d' % (seqs[0], seqs[1]) in file.replace('_', '-'): continue filename = path + '/' + alg + '/' + file print('-----------------------------------') print(filename + ':') try: info, sequences = evaluate.parse_input(filename, args.remove_repeat) scene = [s for s in scenes if s in info['scene']][0] gts = copy.deepcopy(gt_dict[scene]['gts']) gt_info = gt_dict[scene]['info'] evaluate.evaluate(sequences, info, gts, gt_info, args.ate_threshold, args.max_pose_interval, auto_scale) except Exception as ex: print('Invalid result file') print(ex) else: for seq in sequences: if scene in results[alg] and seq in results[alg][scene]: exit('Multiple results found for %s %s-%d' % (alg, scene, seq)) for item in result_items: results[alg].setdefault(scene, {}).setdefault(seq, {})[item] = sequences[seq][item] return results def evaluate_all_per_seq(path, print_per_seq, print_per_scene, print_mean, latex_format, plot): """ path can either be a folder with algorithm outputs or a pickle file with dumped results """ scenes = ['office'] seqs = [2, 7] scene = scenes[0] if path.endswith('pkl'): with open(path) as f: results = pickle.load(f) else: gt_dict = {} gt_file = 'data/gt_%s_1.txt' % scene gt_info, gts = evaluate.parse_input(gt_file) gt_dict.setdefault(scene, {})['gts'] = gts gt_dict[scene]['info'] = gt_info results = update_results(path, gt_dict, seqs) with open('office-%d-%d.pkl' % (seqs[0], seqs[1]), 'wb') as output: pickle.dump(results, output, pickle.HIGHEST_PROTOCOL) algorithms = sorted(results.keys()) algorithms = ['orbslam2_t265', 'maslam', 'ds-slam', \ 'vins_mono_color_imu_with_loop', 'vins_mono_fisheye_imu_with_loop', 'infinitam_aligned_depth',] alg_names = ['ORB-s', 'ORB-d', 'DS-SLAM',\ 'VINS-c', 'VINS-f', 'ITAM'] is_pose_correct = lambda ate: ate <= args.ate_threshold max_alg_len = max([len(alg) for alg in algorithms]) column1_fmt = '%%-%ds' % max_alg_len if latex_format: num_fmt = ' & %6.3f' str_fmt = ' & %6s' perc_fmt = ' &%5.1f\\%%' line_end = ' \\\\\n' else: num_fmt = ' %8f' str_fmt = ' %8s' perc_fmt = ' %8.3f%%' line_end = '\n' res_reloc = '%d-%d ' % (seqs[0], seqs[1]) res_score = res_reloc for alg in algorithms: if not (alg in results and 'office' in results[alg] and seqs[1] in results[alg]['office']): res_reloc += str_fmt % 'NO!' res_score += str_fmt % 'NO!' continue res = results[alg]['office'][seqs[1]] reloc_time = res['reloc_time'] if (len(res['ate'].keys()) > 0 and is_pose_correct(res['ate'][min(res['ate'].keys())])) else float('inf') res_reloc += num_fmt % reloc_time res_score += num_fmt % math.exp(reloc_time / (-60.)) continue print('==============================') print(' ' + ''.join([str_fmt % alg[:6] for alg in alg_names])) print(res_reloc) print(res_score) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-r', '--remove-repeated-pose', help='ignore repeated poses', dest='remove_repeat', action='store_true') parser.add_argument('-k', '--keep-repeated-pose', help='keep repeated poses', dest='remove_repeat', action='store_false') parser.add_argument('-t', '--ate-threshold', type=float, help='ATE threshold of correctness', default=0.3) parser.add_argument('-m', '--max-pose-interval', type=float, help='consider lost after no pose for such time (sec)', default=1.) parser.add_argument('--print-seq', help='print each seq', dest='print_seq', action='store_true') parser.add_argument('--no-print-seq', help='print each seq', dest='print_seq', action='store_false') parser.add_argument('--print-scene', help='print each scene', dest='print_scene', action='store_true') parser.add_argument('--no-print-scene', help='print each scene', dest='print_scene', action='store_false') parser.add_argument('--print-mean', help='print total mean', dest='print_mean', action='store_true') parser.add_argument('--no-print-mean', help='print total mean', dest='print_mean', action='store_false') parser.add_argument('-l', '--latex', help='print in latex table format', dest='latex', action='store_true') parser.add_argument('-p', '--plot', help='plot trajectories', dest='plot', action='store_true') parser.add_argument('-np', '--no-plot', help='not plot trajectories', dest='plot', action='store_false') parser.set_defaults(plot=True) parser.set_defaults(remove_repeat=True) parser.set_defaults(print_seq=True) parser.set_defaults(print_scene=True) parser.set_defaults(print_mean=True) parser.set_defaults(latex=False) args, left = parser.parse_known_args() evaluate_all_per_seq(left[0], args.print_seq, args.print_scene, args.print_mean, args.latex, args.plot)
[ "evaluate.evaluate", "evaluate.parse_input" ]
[((471, 487), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (481, 487), False, 'import os\n'), ((4206, 4231), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4229, 4231), False, 'import argparse\n'), ((2373, 2402), 'evaluate.parse_input', 'evaluate.parse_input', (['gt_file'], {}), '(gt_file)\n', (2393, 2402), False, 'import evaluate\n'), ((548, 576), 'os.listdir', 'os.listdir', (["(path + '/' + alg)"], {}), "(path + '/' + alg)\n", (558, 576), False, 'import os\n'), ((2259, 2273), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2270, 2273), False, 'import pickle\n'), ((2637, 2690), 'pickle.dump', 'pickle.dump', (['results', 'output', 'pickle.HIGHEST_PROTOCOL'], {}), '(results, output, pickle.HIGHEST_PROTOCOL)\n', (2648, 2690), False, 'import pickle\n'), ((3961, 3989), 'math.exp', 'math.exp', (['(reloc_time / -60.0)'], {}), '(reloc_time / -60.0)\n', (3969, 3989), False, 'import math\n'), ((1059, 1109), 'evaluate.parse_input', 'evaluate.parse_input', (['filename', 'args.remove_repeat'], {}), '(filename, args.remove_repeat)\n', (1079, 1109), False, 'import evaluate\n'), ((1201, 1237), 'copy.deepcopy', 'copy.deepcopy', (["gt_dict[scene]['gts']"], {}), "(gt_dict[scene]['gts'])\n", (1214, 1237), False, 'import copy\n'), ((1303, 1412), 'evaluate.evaluate', 'evaluate.evaluate', (['sequences', 'info', 'gts', 'gt_info', 'args.ate_threshold', 'args.max_pose_interval', 'auto_scale'], {}), '(sequences, info, gts, gt_info, args.ate_threshold, args.\n max_pose_interval, auto_scale)\n', (1320, 1412), False, 'import evaluate\n')]
import os import json from exp import ex from args import get_args from train import _train from utils import wait_for_key, count_parameters from evaluate import _evaluate from infer import _infer from vis_tsne import _tsne, _silhouette from distance import _distance from extract_keyword import extract_and_save_all from model import get_model_options from ckpt import get_model_ckpt from loss.loss import get_loss from optimizer import get_optimizer from data.dataloader import get_dataloaders from logger import get_logger from scripts import run_script @ex.capture def prepare_model(model_name): return get_model_ckpt(model_name) def prepare(no_logger=False): logger = get_logger(log_file=no_logger) model, tokenizer, ckpt, datasets, epoch = prepare_model() dataloaders = get_dataloaders(datasets, model.make_batch, tokenizer) ''' args.batch_per_epoch = {} for key in dataloaders.keys(): args.batch_per_epoch[key] = \ math.ceil(len(dataloaders[key]) / args.batch_sizes[key]) ''' loss_fn = get_loss(padding_idx=tokenizer.pad_id) optimizers = get_optimizer(model, dataloaders) model.ckpt_epoch = epoch return model, loss_fn, optimizers, tokenizer, dataloaders, logger @ex.command def train(): all_args = prepare() res = _train(*all_args) logger = all_args[-1] # hold process to keep tensorboard alive if 'tfboard' in logger.logger_dests: wait_for_key() return res @ex.command def evaluate(log_path): all_args = prepare(no_logger=True) stats, _, texts = _evaluate(*all_args, key='val', print_output=False) print(stats) model = all_args[0] assert hasattr(model, 'ckpt_path'), "no ckpt loaded" path = model.ckpt_path parent = path.parent.parent.parent dir_name = path.parent.stem parent = parent / "evals" / dir_name os.makedirs(parent, exist_ok=True) with open(parent / 'eval_stats.json', 'w') as f: json.dump(stats, f) with open(parent / 'eval_text.json', 'w') as f: json.dump(texts, f) @ex.command def tsne(log_path, test_path): # all_args = prepare({'use_data': 'val', 'sample': True}) all_args = prepare() _tsne(*all_args, key='test') @ex.command def silhouette(log_path): # all_args = prepare({'use_data': 'val', 'sample': True}) all_args = prepare() _silhouette(*all_args, key='test') @ex.command def distance(log_path): # all_args = prepare({'use_data': 'val', 'sample': True}) all_args = prepare() _distance(*all_args, key='val') @ex.command def infer(): #all_args = prepare({'use_data': 'val'}) all_args = prepare() texts = _infer(*all_args) @ex.command def model_stats(): #all_args = prepare({'use_data': 'val'}) all_args = prepare(no_logger=True) model = all_args[0] stats = {} stats['parameter_counts'] = count_parameters(model) print(stats) @ex.command def extract(): model, _, _, tokenizer, \ dataloaders, _ = prepare() for dataloader in dataloaders.values(): dataloader.training = False extract_and_save_all(model, tokenizer, dataloaders) @ex.command def scripts(script): run_script(script) @ex.command def print_models(): print(sorted(get_model_options())) @ex.option_hook def update_args(options): args = get_args(options) print(sorted(args.items())) ex.add_config(args) @ex.automain def run(): train()
[ "evaluate._evaluate" ]
[((615, 641), 'ckpt.get_model_ckpt', 'get_model_ckpt', (['model_name'], {}), '(model_name)\n', (629, 641), False, 'from ckpt import get_model_ckpt\n'), ((687, 717), 'logger.get_logger', 'get_logger', ([], {'log_file': 'no_logger'}), '(log_file=no_logger)\n', (697, 717), False, 'from logger import get_logger\n'), ((799, 853), 'data.dataloader.get_dataloaders', 'get_dataloaders', (['datasets', 'model.make_batch', 'tokenizer'], {}), '(datasets, model.make_batch, tokenizer)\n', (814, 853), False, 'from data.dataloader import get_dataloaders\n'), ((1056, 1094), 'loss.loss.get_loss', 'get_loss', ([], {'padding_idx': 'tokenizer.pad_id'}), '(padding_idx=tokenizer.pad_id)\n', (1064, 1094), False, 'from loss.loss import get_loss\n'), ((1112, 1145), 'optimizer.get_optimizer', 'get_optimizer', (['model', 'dataloaders'], {}), '(model, dataloaders)\n', (1125, 1145), False, 'from optimizer import get_optimizer\n'), ((1308, 1325), 'train._train', '_train', (['*all_args'], {}), '(*all_args)\n', (1314, 1325), False, 'from train import _train\n'), ((1577, 1628), 'evaluate._evaluate', '_evaluate', (['*all_args'], {'key': '"""val"""', 'print_output': '(False)'}), "(*all_args, key='val', print_output=False)\n", (1586, 1628), False, 'from evaluate import _evaluate\n'), ((1870, 1904), 'os.makedirs', 'os.makedirs', (['parent'], {'exist_ok': '(True)'}), '(parent, exist_ok=True)\n', (1881, 1904), False, 'import os\n'), ((2202, 2230), 'vis_tsne._tsne', '_tsne', (['*all_args'], {'key': '"""test"""'}), "(*all_args, key='test')\n", (2207, 2230), False, 'from vis_tsne import _tsne, _silhouette\n'), ((2362, 2396), 'vis_tsne._silhouette', '_silhouette', (['*all_args'], {'key': '"""test"""'}), "(*all_args, key='test')\n", (2373, 2396), False, 'from vis_tsne import _tsne, _silhouette\n'), ((2526, 2557), 'distance._distance', '_distance', (['*all_args'], {'key': '"""val"""'}), "(*all_args, key='val')\n", (2535, 2557), False, 'from distance import _distance\n'), ((2668, 2685), 'infer._infer', '_infer', (['*all_args'], {}), '(*all_args)\n', (2674, 2685), False, 'from infer import _infer\n'), ((2875, 2898), 'utils.count_parameters', 'count_parameters', (['model'], {}), '(model)\n', (2891, 2898), False, 'from utils import wait_for_key, count_parameters\n'), ((3096, 3147), 'extract_keyword.extract_and_save_all', 'extract_and_save_all', (['model', 'tokenizer', 'dataloaders'], {}), '(model, tokenizer, dataloaders)\n', (3116, 3147), False, 'from extract_keyword import extract_and_save_all\n'), ((3187, 3205), 'scripts.run_script', 'run_script', (['script'], {}), '(script)\n', (3197, 3205), False, 'from scripts import run_script\n'), ((3334, 3351), 'args.get_args', 'get_args', (['options'], {}), '(options)\n', (3342, 3351), False, 'from args import get_args\n'), ((3388, 3407), 'exp.ex.add_config', 'ex.add_config', (['args'], {}), '(args)\n', (3401, 3407), False, 'from exp import ex\n'), ((1447, 1461), 'utils.wait_for_key', 'wait_for_key', ([], {}), '()\n', (1459, 1461), False, 'from utils import wait_for_key, count_parameters\n'), ((1966, 1985), 'json.dump', 'json.dump', (['stats', 'f'], {}), '(stats, f)\n', (1975, 1985), False, 'import json\n'), ((2046, 2065), 'json.dump', 'json.dump', (['texts', 'f'], {}), '(texts, f)\n', (2055, 2065), False, 'import json\n'), ((3257, 3276), 'model.get_model_options', 'get_model_options', ([], {}), '()\n', (3274, 3276), False, 'from model import get_model_options\n')]
import torch import torch.nn as nn from tqdm import tqdm import numpy as np import logging from evaluate import eval_func, re_rank from evaluate import euclidean_dist from utils import AvgerageMeter import os.path as osp import os from model import convert_model from optim import make_optimizer, WarmupMultiStepLR try: from apex import amp from apex.parallel import DistributedDataParallel as DDP import apex except: pass class BaseTrainer(object): def __init__(self, cfg, model, train_dl, val_dl, loss_func, num_query, num_gpus): self.cfg = cfg self.model = model self.train_dl = train_dl self.val_dl = val_dl self.loss_func = loss_func self.num_query = num_query self.loss_avg = AvgerageMeter() self.acc_avg = AvgerageMeter() self.train_epoch = 1 self.batch_cnt = 0 self.logger = logging.getLogger('reid_baseline.train') self.log_period = cfg.SOLVER.LOG_PERIOD self.checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD self.eval_period = cfg.SOLVER.EVAL_PERIOD self.output_dir = cfg.OUTPUT_DIR self.device = cfg.MODEL.DEVICE self.epochs = cfg.SOLVER.MAX_EPOCHS if num_gpus > 1: # convert to use sync_bn self.logger.info('More than one gpu used, convert model to use SyncBN.') if cfg.SOLVER.FP16: # TODO: Multi-GPU model with FP16 raise NotImplementedError self.logger.info('Using apex to perform SyncBN and FP16 training') torch.distributed.init_process_group(backend='nccl', init_method='env://') self.model = apex.parallel.convert_syncbn_model(self.model) else: # Multi-GPU model without FP16 self.model = nn.DataParallel(self.model) self.model = convert_model(self.model) self.model.cuda() self.logger.info('Using pytorch SyncBN implementation') self.optim = make_optimizer(cfg, self.model, num_gpus) self.scheduler = WarmupMultiStepLR(self.optim, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD) self.scheduler.step() self.mix_precision = False self.logger.info('Trainer Built') return else: # Single GPU model self.model.cuda() self.optim = make_optimizer(cfg, self.model, num_gpus) self.scheduler = WarmupMultiStepLR(self.optim, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD) self.scheduler.step() self.mix_precision = False if cfg.SOLVER.FP16: # Single model using FP16 self.model, self.optim = amp.initialize(self.model, self.optim, opt_level='O1') self.mix_precision = True self.logger.info('Using fp16 training') self.logger.info('Trainer Built') return # TODO: Multi-GPU model with FP16 raise NotImplementedError self.model.to(self.device) self.optim = make_optimizer(cfg, self.model, num_gpus) self.scheduler = WarmupMultiStepLR(self.optim, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD) self.scheduler.step() self.model, self.optim = amp.initialize(self.model, self.optim, opt_level='O1') self.mix_precision = True self.logger.info('Using fp16 training') self.model = DDP(self.model, delay_allreduce=True) self.logger.info('Convert model using apex') self.logger.info('Trainer Built') def handle_new_batch(self): self.batch_cnt += 1 if self.batch_cnt % self.cfg.SOLVER.LOG_PERIOD == 0: self.logger.info('Epoch[{}] Iteration[{}/{}] Loss: {:.3f},' 'Acc: {:.3f}, Base Lr: {:.2e}' .format(self.train_epoch, self.batch_cnt, len(self.train_dl), self.loss_avg.avg, self.acc_avg.avg, self.scheduler.get_lr()[0])) def handle_new_epoch(self): self.batch_cnt = 1 self.scheduler.step() self.logger.info('Epoch {} done'.format(self.train_epoch)) self.logger.info('-' * 20) if self.train_epoch % self.checkpoint_period == 0: self.save() if self.train_epoch % self.eval_period == 0: self.evaluate() self.train_epoch += 1 def step(self, batch): self.model.train() self.optim.zero_grad() img, target = batch img, target = img.cuda(), target.cuda() score, feat = self.model(img) loss = self.loss_func(score, feat, target) if self.mix_precision: with amp.scale_loss(loss, self.optim) as scaled_loss: scaled_loss.backward() else: loss.backward() self.optim.step() acc = (score.max(1)[1] == target).float().mean() self.loss_avg.update(loss.cpu().item()) self.acc_avg.update(acc.cpu().item()) return self.loss_avg.avg, self.acc_avg.avg def evaluate(self): self.model.eval() num_query = self.num_query feats, pids, camids = [], [], [] with torch.no_grad(): for batch in tqdm(self.val_dl, total=len(self.val_dl), leave=False): data, pid, camid, _ = batch data = data.cuda() feat = self.model(data).detach().cpu() feats.append(feat) pids.append(pid) camids.append(camid) feats = torch.cat(feats, dim=0) pids = torch.cat(pids, dim=0) camids = torch.cat(camids, dim=0) query_feat = feats[:num_query] query_pid = pids[:num_query] query_camid = camids[:num_query] gallery_feat = feats[num_query:] gallery_pid = pids[num_query:] gallery_camid = camids[num_query:] distmat = euclidean_dist(query_feat, gallery_feat) cmc, mAP, _ = eval_func(distmat.numpy(), query_pid.numpy(), gallery_pid.numpy(), query_camid.numpy(), gallery_camid.numpy(), use_cython=self.cfg.SOLVER.CYTHON) self.logger.info('Validation Result:') for r in self.cfg.TEST.CMC: self.logger.info('CMC Rank-{}: {:.2%}'.format(r, cmc[r-1])) self.logger.info('mAP: {:.2%}'.format(mAP)) self.logger.info('-' * 20) def save(self): torch.save(self.model.state_dict(), osp.join(self.output_dir, self.cfg.MODEL.NAME + '_epoch' + str(self.train_epoch) + '.pth')) torch.save(self.optim.state_dict(), osp.join(self.output_dir, self.cfg.MODEL.NAME + '_epoch'+ str(self.train_epoch) + '_optim.pth')) class PCBTrainer(BaseTrainer): def __init__(self, cfg, model, train_dl, val_dl, loss_func, num_query, num_gpus): super().__init__(cfg, model, train_dl, val_dl, loss_func, num_query, num_gpus) def step(self, batch): self.model.train() self.optim.zero_grad() img, target = batch img, target = img.cuda(), target.cuda() feat_list, score_list = self.model(img) loss = torch.mean(torch.cat([ self.loss_func(score, feat, target).view(1) \ for score, feat in zip(score_list, feat_list)])) if self.mix_precision: with amp.scale_loss(loss, self.optim) as scaled_loss: scaled_loss.backward() else: loss.backward() self.optim.step() acc = torch.mean(torch.cat([ (score.max(1)[1] == target).float() \ for score in score_list])) self.loss_avg.update(loss.cpu().item()) self.acc_avg.update(acc.cpu().item()) return self.loss_avg.avg, self.acc_avg.avg def evaluate(self): self.model.eval() num_query = self.num_query feats, pids, camids = [], [], [] with torch.no_grad(): for batch in tqdm(self.val_dl, total=len(self.val_dl), leave=False): data, pid, camid, _ = batch data = data.cuda() local_feat_list = self.model(data) feat = torch.cat([lf.data.cpu() for lf in local_feat_list], dim=1) feats.append(feat) pids.append(pid) camids.append(camid) feats = torch.cat(feats, dim=0) pids = torch.cat(pids, dim=0) camids = torch.cat(camids, dim=0) query_feat = feats[:num_query] query_pid = pids[:num_query] query_camid = camids[:num_query] gallery_feat = feats[num_query:] gallery_pid = pids[num_query:] gallery_camid = camids[num_query:] distmat = euclidean_dist(query_feat, gallery_feat) cmc, mAP, _ = eval_func(distmat.numpy(), query_pid.numpy(), gallery_pid.numpy(), query_camid.numpy(), gallery_camid.numpy(), use_cython=self.cfg.SOLVER.CYTHON) self.logger.info('Validation Result:') for r in self.cfg.TEST.CMC: self.logger.info('CMC Rank-{}: {:.2%}'.format(r, cmc[r-1])) self.logger.info('mAP: {:.2%}'.format(mAP)) self.logger.info('-' * 20)
[ "evaluate.euclidean_dist" ]
[((782, 797), 'utils.AvgerageMeter', 'AvgerageMeter', ([], {}), '()\n', (795, 797), False, 'from utils import AvgerageMeter\n'), ((821, 836), 'utils.AvgerageMeter', 'AvgerageMeter', ([], {}), '()\n', (834, 836), False, 'from utils import AvgerageMeter\n'), ((916, 956), 'logging.getLogger', 'logging.getLogger', (['"""reid_baseline.train"""'], {}), "('reid_baseline.train')\n", (933, 956), False, 'import logging\n'), ((3726, 3767), 'optim.make_optimizer', 'make_optimizer', (['cfg', 'self.model', 'num_gpus'], {}), '(cfg, self.model, num_gpus)\n', (3740, 3767), False, 'from optim import make_optimizer, WarmupMultiStepLR\n'), ((3793, 3940), 'optim.WarmupMultiStepLR', 'WarmupMultiStepLR', (['self.optim', 'cfg.SOLVER.STEPS', 'cfg.SOLVER.GAMMA', 'cfg.SOLVER.WARMUP_FACTOR', 'cfg.SOLVER.WARMUP_ITERS', 'cfg.SOLVER.WARMUP_METHOD'], {}), '(self.optim, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.\n SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)\n', (3810, 3940), False, 'from optim import make_optimizer, WarmupMultiStepLR\n'), ((4076, 4130), 'apex.amp.initialize', 'amp.initialize', (['self.model', 'self.optim'], {'opt_level': '"""O1"""'}), "(self.model, self.optim, opt_level='O1')\n", (4090, 4130), False, 'from apex import amp\n'), ((4283, 4320), 'apex.parallel.DistributedDataParallel', 'DDP', (['self.model'], {'delay_allreduce': '(True)'}), '(self.model, delay_allreduce=True)\n', (4286, 4320), True, 'from apex.parallel import DistributedDataParallel as DDP\n'), ((6473, 6496), 'torch.cat', 'torch.cat', (['feats'], {'dim': '(0)'}), '(feats, dim=0)\n', (6482, 6496), False, 'import torch\n'), ((6512, 6534), 'torch.cat', 'torch.cat', (['pids'], {'dim': '(0)'}), '(pids, dim=0)\n', (6521, 6534), False, 'import torch\n'), ((6552, 6576), 'torch.cat', 'torch.cat', (['camids'], {'dim': '(0)'}), '(camids, dim=0)\n', (6561, 6576), False, 'import torch\n'), ((6846, 6886), 'evaluate.euclidean_dist', 'euclidean_dist', (['query_feat', 'gallery_feat'], {}), '(query_feat, gallery_feat)\n', (6860, 6886), False, 'from evaluate import euclidean_dist\n'), ((9393, 9416), 'torch.cat', 'torch.cat', (['feats'], {'dim': '(0)'}), '(feats, dim=0)\n', (9402, 9416), False, 'import torch\n'), ((9432, 9454), 'torch.cat', 'torch.cat', (['pids'], {'dim': '(0)'}), '(pids, dim=0)\n', (9441, 9454), False, 'import torch\n'), ((9472, 9496), 'torch.cat', 'torch.cat', (['camids'], {'dim': '(0)'}), '(camids, dim=0)\n', (9481, 9496), False, 'import torch\n'), ((9766, 9806), 'evaluate.euclidean_dist', 'euclidean_dist', (['query_feat', 'gallery_feat'], {}), '(query_feat, gallery_feat)\n', (9780, 9806), False, 'from evaluate import euclidean_dist\n'), ((2833, 2874), 'optim.make_optimizer', 'make_optimizer', (['cfg', 'self.model', 'num_gpus'], {}), '(cfg, self.model, num_gpus)\n', (2847, 2874), False, 'from optim import make_optimizer, WarmupMultiStepLR\n'), ((2904, 3051), 'optim.WarmupMultiStepLR', 'WarmupMultiStepLR', (['self.optim', 'cfg.SOLVER.STEPS', 'cfg.SOLVER.GAMMA', 'cfg.SOLVER.WARMUP_FACTOR', 'cfg.SOLVER.WARMUP_ITERS', 'cfg.SOLVER.WARMUP_METHOD'], {}), '(self.optim, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.\n SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)\n', (2921, 3051), False, 'from optim import make_optimizer, WarmupMultiStepLR\n'), ((6091, 6106), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6104, 6106), False, 'import torch\n'), ((8932, 8947), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8945, 8947), False, 'import torch\n'), ((1612, 1686), 'torch.distributed.init_process_group', 'torch.distributed.init_process_group', ([], {'backend': '"""nccl"""', 'init_method': '"""env://"""'}), "(backend='nccl', init_method='env://')\n", (1648, 1686), False, 'import torch\n'), ((1770, 1816), 'apex.parallel.convert_syncbn_model', 'apex.parallel.convert_syncbn_model', (['self.model'], {}), '(self.model)\n', (1804, 1816), False, 'import apex\n'), ((1911, 1938), 'torch.nn.DataParallel', 'nn.DataParallel', (['self.model'], {}), '(self.model)\n', (1926, 1938), True, 'import torch.nn as nn\n'), ((1968, 1993), 'model.convert_model', 'convert_model', (['self.model'], {}), '(self.model)\n', (1981, 1993), False, 'from model import convert_model\n'), ((2130, 2171), 'optim.make_optimizer', 'make_optimizer', (['cfg', 'self.model', 'num_gpus'], {}), '(cfg, self.model, num_gpus)\n', (2144, 2171), False, 'from optim import make_optimizer, WarmupMultiStepLR\n'), ((2205, 2352), 'optim.WarmupMultiStepLR', 'WarmupMultiStepLR', (['self.optim', 'cfg.SOLVER.STEPS', 'cfg.SOLVER.GAMMA', 'cfg.SOLVER.WARMUP_FACTOR', 'cfg.SOLVER.WARMUP_ITERS', 'cfg.SOLVER.WARMUP_METHOD'], {}), '(self.optim, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.\n SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)\n', (2222, 2352), False, 'from optim import make_optimizer, WarmupMultiStepLR\n'), ((3319, 3373), 'apex.amp.initialize', 'amp.initialize', (['self.model', 'self.optim'], {'opt_level': '"""O1"""'}), "(self.model, self.optim, opt_level='O1')\n", (3333, 3373), False, 'from apex import amp\n'), ((5582, 5614), 'apex.amp.scale_loss', 'amp.scale_loss', (['loss', 'self.optim'], {}), '(loss, self.optim)\n', (5596, 5614), False, 'from apex import amp\n'), ((8354, 8386), 'apex.amp.scale_loss', 'amp.scale_loss', (['loss', 'self.optim'], {}), '(loss, self.optim)\n', (8368, 8386), False, 'from apex import amp\n')]
#libraries for transformers training (text) import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from tqdm import tqdm, trange from transformers import AutoConfig, AutoTokenizer from arguments import args from dataset import TextDataset from evaluate import evaluate from modelling.text_modelling import (AlbertForSentimentClassification, BertForSentimentClassification, DistilBertForSentimentClassification, RobertaForSentimentClassification) #libraries for 2D CNN training (audio) import os import numpy as np import pandas as pd import pickle from dataset import AudioDataset from modelling.audio_modelling import get_2d_conv_model from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils import tensorflow as tf from dataset import prepare_data #libraries for wav2vec2 training (audio) from transformers import Wav2Vec2Processor import torchaudio from transformers import EvalPrediction from modelling.audio_modelling import Wav2Vec2ForSpeechClassification, DataCollatorCTCWithPadding, CTCTrainer from transformers import TrainingArguments from datasets import Dataset '''For training transformers (text)''' def train(model, criterion, optimizer, train_loader, val_loader, args): best_acc = 0 for epoch in trange(args.num_eps, desc="Epoch"): model.train() for i, (input_ids, attention_mask, labels, FileID) in enumerate(tqdm(iterable=train_loader, desc="Training")): optimizer.zero_grad() input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device) outputs = model(input_ids=input_ids, attention_mask=attention_mask) loss = criterion(input=outputs, target=labels) loss.backward() optimizer.step() val_acc, val_loss = evaluate(model=model, criterion=criterion, dataloader=val_loader, device=device) #CHECK THIS print("Epoch {} complete! Validation Accuracy : {}, Validation Loss : {}".format(epoch, val_acc, val_loss)) if val_acc > best_acc: print("Best validation accuracy improved from {} to {}, saving model...".format(best_acc, val_acc)) best_acc = val_acc model.save_pretrained(save_directory=f'models/{args.output_dir}/') config.save_pretrained(save_directory=f'models/{args.output_dir}/') tokenizer.save_pretrained(save_directory=f'models/{args.output_dir}/') '''preprocessing for wav2vec2 (audio)''' def speech_file_to_array_fn(path): speech_array, sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(sampling_rate, target_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def label_to_id(label, label_list): if len(label_list) > 0: return label_list.index(label) if label in label_list else -1 return label def preprocess_function(examples): speech_list = [speech_file_to_array_fn(path) for path in examples[input_column]] target_list = [label_to_id(label, label_list) for label in examples[output_column]] result = processor(speech_list, sampling_rate=target_sampling_rate) result["labels"] = list(target_list) return result def compute_metrics(p: EvalPrediction): preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) if is_regression: return {"mse": ((preds - p.label_ids) ** 2).mean().item()} else: return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} #remoing all audio files that are longer than 41 seconds def remove_long_common_voicedata(dataset, max_seconds=41): dftest= dataset.to_pandas() dftest['len']= dftest['input_values'].apply(len) maxLength = max_seconds*16000 dftest= dftest[dftest['len']<maxLength] dftest = dftest.drop('len', 1) dataset= dataset.from_pandas(dftest) del dftest return dataset if __name__ == "__main__": #training text if args.data_format == 'text': if args.model_name_or_path is None: args.model_name_or_path = 'roberta-base' #Configuration for the desired transformer model config = AutoConfig.from_pretrained(args.model_name_or_path) #Tokenizer for the desired transformer model tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) #Create the model with the desired transformer model if config.model_type == 'bert': model = BertForSentimentClassification.from_pretrained(args.model_name_or_path, config=config) elif config.model_type == 'albert': model = AlbertForSentimentClassification.from_pretrained(args.model_name_or_path, config=config) elif config.model_type == 'distilbert': model = DistilBertForSentimentClassification.from_pretrained(args.model_name_or_path, config=config) elif config.model_type == 'roberta': model = RobertaForSentimentClassification.from_pretrained(args.model_name_or_path, config=config) else: raise ValueError('This transformer model is not supported yet.') device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) #Takes as the input the logits of the positive class and computes the cross-entropy criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(params=model.parameters(), lr=args.lr) train_set = TextDataset(filename='data/text/train_meld.tsv', maxlen=args.maxlen_train, tokenizer=tokenizer) val_set = TextDataset(filename='data/text/dev_meld.tsv', maxlen=args.maxlen_val, tokenizer=tokenizer) train_loader = DataLoader(dataset=train_set, batch_size=args.batch_size, num_workers=args.num_threads) val_loader = DataLoader(dataset=val_set, batch_size=args.batch_size, num_workers=args.num_threads) train(model=model, criterion=criterion, optimizer=optimizer, train_loader=train_loader, val_loader=val_loader, args=args) #training audio elif args.data_format == 'audio_2dcnn': train_set = AudioDataset(filename='data/text/train_meld.tsv',filepath='data/audio/audio_meld/train', extension='wav') train_set2 = AudioDataset(filename='data/text/train_crema.tsv',filepath='data/audio/audio_crema', extension='wav') train_set3 = AudioDataset(filename='data/text/train_ravdess.tsv',filepath='data/audio/audio_ravdess', extension='wav') train_set4 = AudioDataset(filename='data/text/train_emo.tsv',filepath='data/audio/audio_emo', extension='wav') dev_set = AudioDataset(filename='data/text/dev_meld.tsv',filepath='data/audio/audio_meld/dev', extension='wav') #combining train and test as it feds into the model as one dataframe - train/test will occur automatically. train_set = train_set.__addpath__() train_set2 = train_set2.__addpath__() train_set3 = train_set3.__addpath__() train_set4 = train_set4.__addpath__() dev_set = dev_set.__addpath__() dfs = [train_set, train_set2, train_set3, train_set4, dev_set] #dfs = [train_set, dev_set] data = pd.concat(dfs, ignore_index = True) data = data print(data) if args.feature == 'mfcc': dirpath = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', '..', '..', 'models', 'my_model_audio', '2dcnn')) #mfcc extraction as denoted by "mfcc=1" mfcc = prepare_data(df=data, n=args.n_mfcc, mfcc=1, array_cols=args.array_cols, sampling_rate=args.sampling_rate, audio_duration=args.audio_duration, n_mfcc=args.n_mfcc, n_melspec=args.n_melspec) #split between train and test X_train, X_test, y_train, y_test = train_test_split(mfcc, data.Sentiment, train_size=args.train_size,test_size=args.test_size, shuffle=True) #one hot encode the target lb = LabelEncoder() y_train = np_utils.to_categorical(lb.fit_transform(y_train)) y_test = np_utils.to_categorical(lb.fit_transform(y_test)) #normalization as per the standard NN process mean = np.mean(X_train, axis=0) std = np.std(X_train, axis=0) X_train = (X_train - mean)/std X_test = (X_test - mean)/std #saving mean and std variables pickle.dump([mean, std], open(str(dirpath) + "/norm_vals.pkl", 'wb')) #run CNN model training with tf.device("/gpu:0"): model = get_2d_conv_model(n=args.n_mfcc, array_cols=args.array_cols) model_history = model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=args.batch_size, verbose = 2, epochs=args.num_eps) save_model_path = dirpath #saving model to path model.save(save_model_path) print("Model saved to: ", save_model_path) elif args.feature == 'melspec': dirpath = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', '..', '..', 'models', 'my_model_audio', '2dcnn')) #melspec extraction as denoted by "mfcc=0" specgram = prepare_data(df=data, n=args.n_melspec, mfcc=0, array_cols=args.array_cols, sampling_rate=args.sampling_rate, audio_duration=args.audio_duration, n_mfcc=args.n_mfcc, n_melspec=args.n_melspec) #split between train and test X_train, X_test, y_train, y_test = train_test_split(specgram, data.Sentiment, train_size=args.train_size,test_size=args.test_size, shuffle=False) #one hot encode the target lb = LabelEncoder() y_train = np_utils.to_categorical(lb.fit_transform(y_train)) y_test = np_utils.to_categorical(lb.fit_transform(y_test)) #normalization as per the standard NN process mean = np.mean(X_train, axis=0) std = np.std(X_train, axis=0) X_train = (X_train - mean)/std X_test = (X_test - mean)/std #saving mean and std variables pickle.dump([mean, std], open(str(dirpath) + "/norm_vals.pkl", 'wb')) #run CNN model training with tf.device("/gpu:0"): model = get_2d_conv_model(n=args.n_melspec, array_cols=args.array_cols) model_history = model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=args.batch_size, verbose = 2, epochs=args.num_eps) save_model_path = dirpath #save model to path model.save(save_model_path) print("Model saved to: ", save_model_path) else: raise ValueError("Please input the argument 'feature' and try again") elif args.data_format == 'wav2vec2': train_set = AudioDataset(filename='data/text/train_meld.tsv',filepath='data/audio/audio_meld/train', extension='wav') train_set2 = AudioDataset(filename='data/text/train_crema.tsv',filepath='data/audio/audio_crema', extension='wav') train_set3 = AudioDataset(filename='data/text/train_ravdess.tsv',filepath='data/audio/audio_ravdess', extension='wav') train_set4 = AudioDataset(filename='data/text/train_emo.tsv',filepath='data/audio/audio_emo', extension='wav') dev_set = AudioDataset(filename='data/text/dev_meld.tsv',filepath='data/audio/audio_meld/dev', extension='wav') #combining train and test as it feds into the model as one dataframe - train/test will occur automatically. train_set = train_set.__addpath__() dev_set = dev_set.__addpath__() train_set2 = train_set2.__addpath__() train_set3 = train_set3.__addpath__() train_set4 = train_set4.__addpath__() dfs = [train_set, train_set2, train_set3, train_set4] train_set = pd.concat(dfs, ignore_index = True) train_set = train_set #pd.set_option('display.max_colwidth', None) print(train_set) print(dev_set) encode_map = {0: 'negative', 1: 'neutral', 2: 'positive'} train_set['Sentiment'].replace(encode_map, inplace=True) dev_set['Sentiment'].replace(encode_map, inplace=True) train_set = Dataset.from_pandas(train_set[:args.train_size]) dev_set = Dataset.from_pandas(dev_set[:args.test_size]) #specifying the input and output column input_column = "path" output_column = "Sentiment" #distinguishing the unique labels in our SER dataset label_list = train_set.unique(output_column) label_list.sort() # Let's sort it for determinism num_labels = len(label_list) print(f"A classification problem with {num_labels} classes: {label_list}") #specifying model name, config and processor model_name_or_path = args.model_name_or_path if args.model_name_or_path is None: model_name_or_path = "facebook/wav2vec2-base-960h" pooling_mode = "mean" config = AutoConfig.from_pretrained( model_name_or_path, num_labels=num_labels, mask_time_prob=0.00, label2id={label: i for i, label in enumerate(label_list)}, id2label={i: label for i, label in enumerate(label_list)}, finetuning_task="wav2vec2_clf", ) setattr(config, 'pooling_mode', pooling_mode) processor = Wav2Vec2Processor.from_pretrained(model_name_or_path) target_sampling_rate = processor.feature_extractor.sampling_rate train_set = train_set.map(preprocess_function,batch_size=100,batched=True,num_proc=1) dev_set = dev_set.map(preprocess_function,batch_size=100,batched=True,num_proc=1) train_set = remove_long_common_voicedata(train_set, max_seconds=20) dev_set = remove_long_common_voicedata(dev_set, max_seconds=20) data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) is_regression = False device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path,config=config).to(device) model.freeze_feature_extractor() training_args = TrainingArguments( output_dir=os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', '..', 'models', 'my_model_audio', 'wav2vec2')), overwrite_output_dir=True, per_device_train_batch_size=args.per_device_train_batch_size, per_device_eval_batch_size=args.per_device_eval_batch_size, gradient_accumulation_steps=2, evaluation_strategy="steps", num_train_epochs=args.num_eps, gradient_checkpointing=True, save_steps=args.eval_steps, eval_steps=args.eval_steps, logging_steps=args.logging_steps, learning_rate=args.lr, weight_decay=0.005, warmup_steps=args.warmup_steps, save_total_limit=1, load_best_model_at_end= True ) trainer = CTCTrainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=train_set, eval_dataset=dev_set, tokenizer=processor.feature_extractor, ) trainer.train() else: raise ValueError("Please input the argument 'data_format' and try again")
[ "evaluate.evaluate" ]
[((1506, 1540), 'tqdm.trange', 'trange', (['args.num_eps'], {'desc': '"""Epoch"""'}), "(args.num_eps, desc='Epoch')\n", (1512, 1540), False, 'from tqdm import tqdm, trange\n'), ((2817, 2838), 'torchaudio.load', 'torchaudio.load', (['path'], {}), '(path)\n', (2832, 2838), False, 'import torchaudio\n'), ((2856, 2923), 'torchaudio.transforms.Resample', 'torchaudio.transforms.Resample', (['sampling_rate', 'target_sampling_rate'], {}), '(sampling_rate, target_sampling_rate)\n', (2886, 2923), False, 'import torchaudio\n'), ((2068, 2153), 'evaluate.evaluate', 'evaluate', ([], {'model': 'model', 'criterion': 'criterion', 'dataloader': 'val_loader', 'device': 'device'}), '(model=model, criterion=criterion, dataloader=val_loader, device=device\n )\n', (2076, 2153), False, 'from evaluate import evaluate\n'), ((3652, 3669), 'numpy.squeeze', 'np.squeeze', (['preds'], {}), '(preds)\n', (3662, 3669), True, 'import numpy as np\n'), ((3692, 3716), 'numpy.argmax', 'np.argmax', (['preds'], {'axis': '(1)'}), '(preds, axis=1)\n', (3701, 3716), True, 'import numpy as np\n'), ((4601, 4652), 'transformers.AutoConfig.from_pretrained', 'AutoConfig.from_pretrained', (['args.model_name_or_path'], {}), '(args.model_name_or_path)\n', (4627, 4652), False, 'from transformers import AutoConfig, AutoTokenizer\n'), ((4730, 4784), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['args.model_name_or_path'], {}), '(args.model_name_or_path)\n', (4759, 4784), False, 'from transformers import AutoConfig, AutoTokenizer\n'), ((5800, 5821), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (5819, 5821), True, 'import torch.nn as nn\n'), ((5918, 6017), 'dataset.TextDataset', 'TextDataset', ([], {'filename': '"""data/text/train_meld.tsv"""', 'maxlen': 'args.maxlen_train', 'tokenizer': 'tokenizer'}), "(filename='data/text/train_meld.tsv', maxlen=args.maxlen_train,\n tokenizer=tokenizer)\n", (5929, 6017), False, 'from dataset import TextDataset\n'), ((6033, 6128), 'dataset.TextDataset', 'TextDataset', ([], {'filename': '"""data/text/dev_meld.tsv"""', 'maxlen': 'args.maxlen_val', 'tokenizer': 'tokenizer'}), "(filename='data/text/dev_meld.tsv', maxlen=args.maxlen_val,\n tokenizer=tokenizer)\n", (6044, 6128), False, 'from dataset import TextDataset\n'), ((6151, 6243), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'train_set', 'batch_size': 'args.batch_size', 'num_workers': 'args.num_threads'}), '(dataset=train_set, batch_size=args.batch_size, num_workers=args.\n num_threads)\n', (6161, 6243), False, 'from torch.utils.data import DataLoader\n'), ((6261, 6351), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'val_set', 'batch_size': 'args.batch_size', 'num_workers': 'args.num_threads'}), '(dataset=val_set, batch_size=args.batch_size, num_workers=args.\n num_threads)\n', (6271, 6351), False, 'from torch.utils.data import DataLoader\n'), ((1638, 1682), 'tqdm.tqdm', 'tqdm', ([], {'iterable': 'train_loader', 'desc': '"""Training"""'}), "(iterable=train_loader, desc='Training')\n", (1642, 1682), False, 'from tqdm import tqdm, trange\n'), ((4911, 5001), 'modelling.text_modelling.BertForSentimentClassification.from_pretrained', 'BertForSentimentClassification.from_pretrained', (['args.model_name_or_path'], {'config': 'config'}), '(args.model_name_or_path,\n config=config)\n', (4957, 5001), False, 'from modelling.text_modelling import AlbertForSentimentClassification, BertForSentimentClassification, DistilBertForSentimentClassification, RobertaForSentimentClassification\n'), ((6587, 6698), 'dataset.AudioDataset', 'AudioDataset', ([], {'filename': '"""data/text/train_meld.tsv"""', 'filepath': '"""data/audio/audio_meld/train"""', 'extension': '"""wav"""'}), "(filename='data/text/train_meld.tsv', filepath=\n 'data/audio/audio_meld/train', extension='wav')\n", (6599, 6698), False, 'from dataset import AudioDataset\n'), ((6715, 6822), 'dataset.AudioDataset', 'AudioDataset', ([], {'filename': '"""data/text/train_crema.tsv"""', 'filepath': '"""data/audio/audio_crema"""', 'extension': '"""wav"""'}), "(filename='data/text/train_crema.tsv', filepath=\n 'data/audio/audio_crema', extension='wav')\n", (6727, 6822), False, 'from dataset import AudioDataset\n'), ((6839, 6950), 'dataset.AudioDataset', 'AudioDataset', ([], {'filename': '"""data/text/train_ravdess.tsv"""', 'filepath': '"""data/audio/audio_ravdess"""', 'extension': '"""wav"""'}), "(filename='data/text/train_ravdess.tsv', filepath=\n 'data/audio/audio_ravdess', extension='wav')\n", (6851, 6950), False, 'from dataset import AudioDataset\n'), ((6967, 7070), 'dataset.AudioDataset', 'AudioDataset', ([], {'filename': '"""data/text/train_emo.tsv"""', 'filepath': '"""data/audio/audio_emo"""', 'extension': '"""wav"""'}), "(filename='data/text/train_emo.tsv', filepath=\n 'data/audio/audio_emo', extension='wav')\n", (6979, 7070), False, 'from dataset import AudioDataset\n'), ((7084, 7191), 'dataset.AudioDataset', 'AudioDataset', ([], {'filename': '"""data/text/dev_meld.tsv"""', 'filepath': '"""data/audio/audio_meld/dev"""', 'extension': '"""wav"""'}), "(filename='data/text/dev_meld.tsv', filepath=\n 'data/audio/audio_meld/dev', extension='wav')\n", (7096, 7191), False, 'from dataset import AudioDataset\n'), ((7666, 7699), 'pandas.concat', 'pd.concat', (['dfs'], {'ignore_index': '(True)'}), '(dfs, ignore_index=True)\n', (7675, 7699), True, 'import pandas as pd\n'), ((5064, 5156), 'modelling.text_modelling.AlbertForSentimentClassification.from_pretrained', 'AlbertForSentimentClassification.from_pretrained', (['args.model_name_or_path'], {'config': 'config'}), '(args.model_name_or_path,\n config=config)\n', (5112, 5156), False, 'from modelling.text_modelling import AlbertForSentimentClassification, BertForSentimentClassification, DistilBertForSentimentClassification, RobertaForSentimentClassification\n'), ((5611, 5636), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (5634, 5636), False, 'import torch\n'), ((8003, 8199), 'dataset.prepare_data', 'prepare_data', ([], {'df': 'data', 'n': 'args.n_mfcc', 'mfcc': '(1)', 'array_cols': 'args.array_cols', 'sampling_rate': 'args.sampling_rate', 'audio_duration': 'args.audio_duration', 'n_mfcc': 'args.n_mfcc', 'n_melspec': 'args.n_melspec'}), '(df=data, n=args.n_mfcc, mfcc=1, array_cols=args.array_cols,\n sampling_rate=args.sampling_rate, audio_duration=args.audio_duration,\n n_mfcc=args.n_mfcc, n_melspec=args.n_melspec)\n', (8015, 8199), False, 'from dataset import prepare_data\n'), ((8298, 8408), 'sklearn.model_selection.train_test_split', 'train_test_split', (['mfcc', 'data.Sentiment'], {'train_size': 'args.train_size', 'test_size': 'args.test_size', 'shuffle': '(True)'}), '(mfcc, data.Sentiment, train_size=args.train_size,\n test_size=args.test_size, shuffle=True)\n', (8314, 8408), False, 'from sklearn.model_selection import train_test_split\n'), ((8463, 8477), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (8475, 8477), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((8703, 8727), 'numpy.mean', 'np.mean', (['X_train'], {'axis': '(0)'}), '(X_train, axis=0)\n', (8710, 8727), True, 'import numpy as np\n'), ((8747, 8770), 'numpy.std', 'np.std', (['X_train'], {'axis': '(0)'}), '(X_train, axis=0)\n', (8753, 8770), True, 'import numpy as np\n'), ((11449, 11560), 'dataset.AudioDataset', 'AudioDataset', ([], {'filename': '"""data/text/train_meld.tsv"""', 'filepath': '"""data/audio/audio_meld/train"""', 'extension': '"""wav"""'}), "(filename='data/text/train_meld.tsv', filepath=\n 'data/audio/audio_meld/train', extension='wav')\n", (11461, 11560), False, 'from dataset import AudioDataset\n'), ((11577, 11684), 'dataset.AudioDataset', 'AudioDataset', ([], {'filename': '"""data/text/train_crema.tsv"""', 'filepath': '"""data/audio/audio_crema"""', 'extension': '"""wav"""'}), "(filename='data/text/train_crema.tsv', filepath=\n 'data/audio/audio_crema', extension='wav')\n", (11589, 11684), False, 'from dataset import AudioDataset\n'), ((11701, 11812), 'dataset.AudioDataset', 'AudioDataset', ([], {'filename': '"""data/text/train_ravdess.tsv"""', 'filepath': '"""data/audio/audio_ravdess"""', 'extension': '"""wav"""'}), "(filename='data/text/train_ravdess.tsv', filepath=\n 'data/audio/audio_ravdess', extension='wav')\n", (11713, 11812), False, 'from dataset import AudioDataset\n'), ((11829, 11932), 'dataset.AudioDataset', 'AudioDataset', ([], {'filename': '"""data/text/train_emo.tsv"""', 'filepath': '"""data/audio/audio_emo"""', 'extension': '"""wav"""'}), "(filename='data/text/train_emo.tsv', filepath=\n 'data/audio/audio_emo', extension='wav')\n", (11841, 11932), False, 'from dataset import AudioDataset\n'), ((11946, 12053), 'dataset.AudioDataset', 'AudioDataset', ([], {'filename': '"""data/text/dev_meld.tsv"""', 'filepath': '"""data/audio/audio_meld/dev"""', 'extension': '"""wav"""'}), "(filename='data/text/dev_meld.tsv', filepath=\n 'data/audio/audio_meld/dev', extension='wav')\n", (11958, 12053), False, 'from dataset import AudioDataset\n'), ((12488, 12521), 'pandas.concat', 'pd.concat', (['dfs'], {'ignore_index': '(True)'}), '(dfs, ignore_index=True)\n', (12497, 12521), True, 'import pandas as pd\n'), ((12891, 12939), 'datasets.Dataset.from_pandas', 'Dataset.from_pandas', (['train_set[:args.train_size]'], {}), '(train_set[:args.train_size])\n', (12910, 12939), False, 'from datasets import Dataset\n'), ((12959, 13004), 'datasets.Dataset.from_pandas', 'Dataset.from_pandas', (['dev_set[:args.test_size]'], {}), '(dev_set[:args.test_size])\n', (12978, 13004), False, 'from datasets import Dataset\n'), ((14103, 14156), 'transformers.Wav2Vec2Processor.from_pretrained', 'Wav2Vec2Processor.from_pretrained', (['model_name_or_path'], {}), '(model_name_or_path)\n', (14136, 14156), False, 'from transformers import Wav2Vec2Processor\n'), ((14606, 14667), 'modelling.audio_modelling.DataCollatorCTCWithPadding', 'DataCollatorCTCWithPadding', ([], {'processor': 'processor', 'padding': '(True)'}), '(processor=processor, padding=True)\n', (14632, 14667), False, 'from modelling.audio_modelling import Wav2Vec2ForSpeechClassification, DataCollatorCTCWithPadding, CTCTrainer\n'), ((15841, 16041), 'modelling.audio_modelling.CTCTrainer', 'CTCTrainer', ([], {'model': 'model', 'data_collator': 'data_collator', 'args': 'training_args', 'compute_metrics': 'compute_metrics', 'train_dataset': 'train_set', 'eval_dataset': 'dev_set', 'tokenizer': 'processor.feature_extractor'}), '(model=model, data_collator=data_collator, args=training_args,\n compute_metrics=compute_metrics, train_dataset=train_set, eval_dataset=\n dev_set, tokenizer=processor.feature_extractor)\n', (15851, 16041), False, 'from modelling.audio_modelling import Wav2Vec2ForSpeechClassification, DataCollatorCTCWithPadding, CTCTrainer\n'), ((5223, 5320), 'modelling.text_modelling.DistilBertForSentimentClassification.from_pretrained', 'DistilBertForSentimentClassification.from_pretrained', (['args.model_name_or_path'], {'config': 'config'}), '(args.\n model_name_or_path, config=config)\n', (5275, 5320), False, 'from modelling.text_modelling import AlbertForSentimentClassification, BertForSentimentClassification, DistilBertForSentimentClassification, RobertaForSentimentClassification\n'), ((9039, 9058), 'tensorflow.device', 'tf.device', (['"""/gpu:0"""'], {}), "('/gpu:0')\n", (9048, 9058), True, 'import tensorflow as tf\n'), ((9085, 9145), 'modelling.audio_modelling.get_2d_conv_model', 'get_2d_conv_model', ([], {'n': 'args.n_mfcc', 'array_cols': 'args.array_cols'}), '(n=args.n_mfcc, array_cols=args.array_cols)\n', (9102, 9145), False, 'from modelling.audio_modelling import get_2d_conv_model\n'), ((9757, 9956), 'dataset.prepare_data', 'prepare_data', ([], {'df': 'data', 'n': 'args.n_melspec', 'mfcc': '(0)', 'array_cols': 'args.array_cols', 'sampling_rate': 'args.sampling_rate', 'audio_duration': 'args.audio_duration', 'n_mfcc': 'args.n_mfcc', 'n_melspec': 'args.n_melspec'}), '(df=data, n=args.n_melspec, mfcc=0, array_cols=args.array_cols,\n sampling_rate=args.sampling_rate, audio_duration=args.audio_duration,\n n_mfcc=args.n_mfcc, n_melspec=args.n_melspec)\n', (9769, 9956), False, 'from dataset import prepare_data\n'), ((10055, 10170), 'sklearn.model_selection.train_test_split', 'train_test_split', (['specgram', 'data.Sentiment'], {'train_size': 'args.train_size', 'test_size': 'args.test_size', 'shuffle': '(False)'}), '(specgram, data.Sentiment, train_size=args.train_size,\n test_size=args.test_size, shuffle=False)\n', (10071, 10170), False, 'from sklearn.model_selection import train_test_split\n'), ((10225, 10239), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (10237, 10239), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((10465, 10489), 'numpy.mean', 'np.mean', (['X_train'], {'axis': '(0)'}), '(X_train, axis=0)\n', (10472, 10489), True, 'import numpy as np\n'), ((10509, 10532), 'numpy.std', 'np.std', (['X_train'], {'axis': '(0)'}), '(X_train, axis=0)\n', (10515, 10532), True, 'import numpy as np\n'), ((5383, 5476), 'modelling.text_modelling.RobertaForSentimentClassification.from_pretrained', 'RobertaForSentimentClassification.from_pretrained', (['args.model_name_or_path'], {'config': 'config'}), '(args.model_name_or_path,\n config=config)\n', (5432, 5476), False, 'from modelling.text_modelling import AlbertForSentimentClassification, BertForSentimentClassification, DistilBertForSentimentClassification, RobertaForSentimentClassification\n'), ((7841, 7866), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (7856, 7866), False, 'import os\n'), ((10801, 10820), 'tensorflow.device', 'tf.device', (['"""/gpu:0"""'], {}), "('/gpu:0')\n", (10810, 10820), True, 'import tensorflow as tf\n'), ((10847, 10910), 'modelling.audio_modelling.get_2d_conv_model', 'get_2d_conv_model', ([], {'n': 'args.n_melspec', 'array_cols': 'args.array_cols'}), '(n=args.n_melspec, array_cols=args.array_cols)\n', (10864, 10910), False, 'from modelling.audio_modelling import get_2d_conv_model\n'), ((14750, 14775), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (14773, 14775), False, 'import torch\n'), ((14805, 14892), 'modelling.audio_modelling.Wav2Vec2ForSpeechClassification.from_pretrained', 'Wav2Vec2ForSpeechClassification.from_pretrained', (['model_name_or_path'], {'config': 'config'}), '(model_name_or_path, config=\n config)\n', (14852, 14892), False, 'from modelling.audio_modelling import Wav2Vec2ForSpeechClassification, DataCollatorCTCWithPadding, CTCTrainer\n'), ((9588, 9613), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (9603, 9613), False, 'import os\n'), ((15042, 15067), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (15057, 15067), False, 'import os\n')]
import unittest import torch from collections import OrderedDict from evaluate.coco_eval import run_eval from lib.network.rtpose_vgg import get_model, use_vgg from lib.network.openpose import OpenPose_Model, use_vgg from torch import load with torch.autograd.no_grad(): weight_name = './network/weight/best_pose.pth' state_dict = torch.load(weight_name) new_state_dict = OrderedDict() for k,v in state_dict.items(): name = k[7:] new_state_dict[name]=v model = get_model(trunk='vgg19') model.load_state_dict(new_state_dict) model.eval() model.float() model = model.cuda() run_eval(image_dir= 'E:/Deep_learning_Final/dataset/images/infant_val', anno_file = 'E:/Deep_learning_Final/dataset/annotations/annotation_val.json', vis_dir = 'E:/Deep_learning_Final/dataset/images/vis_data', model=model, preprocess='vgg')
[ "evaluate.coco_eval.run_eval" ]
[((245, 269), 'torch.autograd.no_grad', 'torch.autograd.no_grad', ([], {}), '()\n', (267, 269), False, 'import torch\n'), ((339, 362), 'torch.load', 'torch.load', (['weight_name'], {}), '(weight_name)\n', (349, 362), False, 'import torch\n'), ((389, 402), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (400, 402), False, 'from collections import OrderedDict\n'), ((511, 535), 'lib.network.rtpose_vgg.get_model', 'get_model', ([], {'trunk': '"""vgg19"""'}), "(trunk='vgg19')\n", (520, 535), False, 'from lib.network.rtpose_vgg import get_model, use_vgg\n'), ((648, 900), 'evaluate.coco_eval.run_eval', 'run_eval', ([], {'image_dir': '"""E:/Deep_learning_Final/dataset/images/infant_val"""', 'anno_file': '"""E:/Deep_learning_Final/dataset/annotations/annotation_val.json"""', 'vis_dir': '"""E:/Deep_learning_Final/dataset/images/vis_data"""', 'model': 'model', 'preprocess': '"""vgg"""'}), "(image_dir='E:/Deep_learning_Final/dataset/images/infant_val',\n anno_file=\n 'E:/Deep_learning_Final/dataset/annotations/annotation_val.json',\n vis_dir='E:/Deep_learning_Final/dataset/images/vis_data', model=model,\n preprocess='vgg')\n", (656, 900), False, 'from evaluate.coco_eval import run_eval\n')]
import argparse from args import init_parser, post_processing import numpy as np from envs import make_env # find the carla module import os import math import random import time import torch import shutil parser = argparse.ArgumentParser(description='SPC') init_parser(parser) # See `args.py` for default arguments args = parser.parse_args() args = post_processing(args) CARLA8_TIMEOUT = 100000 CARLA9_TIMEOUT = 20.0 def init_dirs(dir_list): for path in dir_list: if not os.path.isdir(path): os.makedirs(path, exist_ok=True) def setup_dirs(args): save_path = args.save_path model_path = os.path.join(save_path, 'model') optim_path = os.path.join(save_path, 'optimizer') init_dirs([model_path, optim_path]) def create_carla9_env(args): from envs.CARLA.carla9 import World import carla # here the carla is installed by pip/conda try: import glob import sys sys.path.append(glob.glob('**/*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass client = carla.Client("localhost", args.port) client.set_timeout(CARLA9_TIMEOUT) carla_world = client.get_world() settings = carla_world.get_settings() settings.synchronous_mode = True client.get_world().apply_settings(settings) env = World(args, carla_world) return env def main(): if not args.resume and os.path.isdir(args.save_path): print("the save path has already existed!") exit(0) setup_dirs(args) script_path = os.path.join(args.save_path, 'scripts') if not os.path.isdir(script_path): shutil.copytree('scripts', script_path) torch.manual_seed(args.seed) np.random.seed(args.seed) random.seed(args.seed) env = None # placeholder if 'carla9' in args.env: # select CARLA v0.9.x as the platform env = create_carla9_env(args) elif 'carla8' in args.env: # select CARLA v0.8.x as the platform from envs.CARLA.carla_lib.carla.client import make_carla_client from envs.CARLA.carla_env import CarlaEnv client = make_carla_client('localhost', args.port, CARLA8_TIMEOUT) env = CarlaEnv(client, args) else: # select PyTorcs or GTAV as the platform # which is basically inherited from SPC, not fully supported in IPC env = make_env(args) if args.eval: from evaluate import evaluate_policy evaluate_policy(args, env) else: from train import train_policy train_policy(args, env) if __name__ == '__main__': main()
[ "evaluate.evaluate_policy" ]
[((219, 261), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""SPC"""'}), "(description='SPC')\n", (242, 261), False, 'import argparse\n'), ((262, 281), 'args.init_parser', 'init_parser', (['parser'], {}), '(parser)\n', (273, 281), False, 'from args import init_parser, post_processing\n'), ((355, 376), 'args.post_processing', 'post_processing', (['args'], {}), '(args)\n', (370, 376), False, 'from args import init_parser, post_processing\n'), ((629, 661), 'os.path.join', 'os.path.join', (['save_path', '"""model"""'], {}), "(save_path, 'model')\n", (641, 661), False, 'import os\n'), ((679, 715), 'os.path.join', 'os.path.join', (['save_path', '"""optimizer"""'], {}), "(save_path, 'optimizer')\n", (691, 715), False, 'import os\n'), ((1183, 1219), 'carla.Client', 'carla.Client', (['"""localhost"""', 'args.port'], {}), "('localhost', args.port)\n", (1195, 1219), False, 'import carla\n'), ((1433, 1457), 'envs.CARLA.carla9.World', 'World', (['args', 'carla_world'], {}), '(args, carla_world)\n', (1438, 1457), False, 'from envs.CARLA.carla9 import World\n'), ((1658, 1697), 'os.path.join', 'os.path.join', (['args.save_path', '"""scripts"""'], {}), "(args.save_path, 'scripts')\n", (1670, 1697), False, 'import os\n'), ((1789, 1817), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (1806, 1817), False, 'import torch\n'), ((1822, 1847), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (1836, 1847), True, 'import numpy as np\n'), ((1852, 1874), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (1863, 1874), False, 'import random\n'), ((1514, 1543), 'os.path.isdir', 'os.path.isdir', (['args.save_path'], {}), '(args.save_path)\n', (1527, 1543), False, 'import os\n'), ((1709, 1735), 'os.path.isdir', 'os.path.isdir', (['script_path'], {}), '(script_path)\n', (1722, 1735), False, 'import os\n'), ((1745, 1784), 'shutil.copytree', 'shutil.copytree', (['"""scripts"""', 'script_path'], {}), "('scripts', script_path)\n", (1760, 1784), False, 'import shutil\n'), ((2564, 2590), 'evaluate.evaluate_policy', 'evaluate_policy', (['args', 'env'], {}), '(args, env)\n', (2579, 2590), False, 'from evaluate import evaluate_policy\n'), ((2648, 2671), 'train.train_policy', 'train_policy', (['args', 'env'], {}), '(args, env)\n', (2660, 2671), False, 'from train import train_policy\n'), ((491, 510), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (504, 510), False, 'import os\n'), ((524, 556), 'os.makedirs', 'os.makedirs', (['path'], {'exist_ok': '(True)'}), '(path, exist_ok=True)\n', (535, 556), False, 'import os\n'), ((2233, 2290), 'envs.CARLA.carla_lib.carla.client.make_carla_client', 'make_carla_client', (['"""localhost"""', 'args.port', 'CARLA8_TIMEOUT'], {}), "('localhost', args.port, CARLA8_TIMEOUT)\n", (2250, 2290), False, 'from envs.CARLA.carla_lib.carla.client import make_carla_client\n'), ((2305, 2327), 'envs.CARLA.carla_env.CarlaEnv', 'CarlaEnv', (['client', 'args'], {}), '(client, args)\n', (2313, 2327), False, 'from envs.CARLA.carla_env import CarlaEnv\n'), ((2477, 2491), 'envs.make_env', 'make_env', (['args'], {}), '(args)\n', (2485, 2491), False, 'from envs import make_env\n'), ((959, 1096), 'glob.glob', 'glob.glob', (["('**/*%d.%d-%s.egg' % (sys.version_info.major, sys.version_info.minor, \n 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))"], {}), "('**/*%d.%d-%s.egg' % (sys.version_info.major, sys.version_info.\n minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))\n", (968, 1096), False, 'import glob\n')]
from evaluate import Evaluation from collections import Counter import itertools #create a class with all the characteristics of the hand class PokerHand: def __init__( self, hand, first_card=None, second_card=None, third_card=None, fourth_card=None, fifth_card=None, ): self.hand = hand self.first_card = first_card self.second_card = second_card self.third_card = third_card self.fourth_card = fourth_card self.fifth_card = fifth_card #function that returns the list with all the cards def get_cards(self): cards = self.hand.split() self.first_card = cards[0] self.second_card = cards[1] self.third_card = cards[2] self.fourth_card = cards[3] self.fifth_card = cards[4] list_cards = [] list_cards.append(self.first_card) list_cards.append(self.second_card) list_cards.append(self.third_card) list_cards.append(self.fourth_card) list_cards.append(self.fifth_card) return list_cards # evaluate function that involves Evaluation.py def evaluate_hand(self,list_cards): evaluation = Evaluation(list_cards).evaluate_hand() return evaluation # Here we compare two hands def compare_with(self,poker_hand2): cards1 = self.get_cards() cards2 = poker_hand2.get_cards() score1 = self.evaluate_hand(cards1) score2 = self.evaluate_hand(cards2) if score1 > score2: ans = "WIN" elif score1 < score2: ans = "LOSS" else : aux = self.check_high_card(cards1,cards2) if aux == 1: ans = "WIN" elif aux == 2: ans = "LOSS" else : ans = "tie" return ans # If we have a tie we use this function to solve the problem @staticmethod def check_high_card(cards1,cards2): A = [card[0] for card in cards1] B = [card[0] for card in cards2] dic1 = {} dic2 = {} #detection of a lower hand if set(A) == set(["A", "2", "3", "4", "5"]): dic1 = {"T":'10',"J":'11',"Q":'12',"K":'13',"A":'1'} else: dic1 = {"T":'10',"J":'11',"Q":'12',"K":'13',"A":'14'} if set(B) == set(["A", "2", "3", "4", "5"]): dic2 = {"T":'10',"J":'11',"Q":'12',"K":'13',"A":'1'} else: dic2 = {"T":'10',"J":'11',"Q":'12',"K":'13',"A":'14'} values1 = [dic1.get(n, n) for n in A] values2 = [dic2.get(n, n) for n in B] # we get a list with the numbers of the cards and sort by the number of repetitions counts1 = Counter(values1) new_list1 = sorted(counts1, key=lambda x: (counts1[x]), reverse=True) counts2 = Counter(values2) new_list2 = sorted(counts2, key=lambda x: (counts2[x]), reverse=True) winner_hand = 0 for(a,b) in zip(new_list1,new_list2): if winner_hand == 0: if int(a) > int(b): winner_hand = 1 elif int(b) > int(a): winner_hand = 2 else: pass return winner_hand
[ "evaluate.Evaluation" ]
[((2339, 2355), 'collections.Counter', 'Counter', (['values1'], {}), '(values1)\n', (2346, 2355), False, 'from collections import Counter\n'), ((2441, 2457), 'collections.Counter', 'Counter', (['values2'], {}), '(values2)\n', (2448, 2457), False, 'from collections import Counter\n'), ((1053, 1075), 'evaluate.Evaluation', 'Evaluation', (['list_cards'], {}), '(list_cards)\n', (1063, 1075), False, 'from evaluate import Evaluation\n')]
import numpy as np import random import itertools as it import pygame as pg # Local import import env import agentsEnv as ag import reward import policyGradient as PG from model import GeneratePolicyNet from evaluate import Evaluate from visualize import draw def main(): # action space actionSpace = [[10, 0], [7, 7], [0, 10], [-7, 7], [-10, 0], [-7, -7], [0, -10], [7, -7]] numActionSpace = len(actionSpace) # state space numStateSpace = 4 xBoundary = [0, 360] yBoundary = [0, 360] checkBoundaryAndAdjust = ag.CheckBoundaryAndAdjust(xBoundary, yBoundary) initSheepPositionMean = np.array([180, 180]) initWolfPositionMean = np.array([180, 180]) initSheepPositionNoise = np.array([120, 120]) initWolfPositionNoise = np.array([60, 60]) sheepPositionReset = ag.SheepPositionReset(initSheepPositionMean, initSheepPositionNoise, checkBoundaryAndAdjust) wolfPositionReset = ag.WolfPositionReset(initWolfPositionMean, initWolfPositionNoise, checkBoundaryAndAdjust) numOneAgentState = 2 positionIndex = [0, 1] sheepPositionTransition = ag.SheepPositionTransition(numOneAgentState, positionIndex, checkBoundaryAndAdjust) wolfPositionTransition = ag.WolfPositionTransition(numOneAgentState, positionIndex, checkBoundaryAndAdjust) numAgent = 2 sheepId = 0 wolfId = 1 transitionFunction = env.TransitionFunction(sheepId, wolfId, sheepPositionReset, wolfPositionReset, sheepPositionTransition, wolfPositionTransition) minDistance = 15 isTerminal = env.IsTerminal(sheepId, wolfId, numOneAgentState, positionIndex, minDistance) screen = pg.display.set_mode([xBoundary[1], yBoundary[1]]) screenColor = [255, 255, 255] circleColorList = [[50, 255, 50], [50, 50, 50], [50, 50, 50], [50, 50, 50], [50, 50, 50], [50, 50, 50], [50, 50, 50], [50, 50, 50], [50, 50, 50]] circleSize = 8 saveImage = False saveImageFile = 'image' render = env.Render(numAgent, numOneAgentState, positionIndex, screen, screenColor, circleColorList, circleSize, saveImage, saveImageFile) aliveBouns = -1 deathPenalty = 20 rewardDecay = 0.99 rewardFunction = reward.TerminalPenalty(sheepId, wolfId, numOneAgentState, positionIndex, aliveBouns, deathPenalty, isTerminal) accumulateRewards = PG.AccumulateRewards(rewardDecay, rewardFunction) maxTimeStep = 150 sampleTrajectory = PG.SampleTrajectory(maxTimeStep, transitionFunction, isTerminal) approximatePolicy = PG.ApproximatePolicy(actionSpace) trainPG = PG.TrainTensorflow(actionSpace) numTrajectory = 20 maxEpisode = 1000 # Generate models. learningRate = 1e-4 hiddenNeuronNumbers = [128, 256, 512, 1024] hiddenDepths = [2, 4, 8] # hiddenNeuronNumbers = [128] # hiddenDepths = [2] generateModel = GeneratePolicyNet(numStateSpace, numActionSpace, learningRate) models = {(n, d): generateModel(d, round(n / d)) for n, d in it.product(hiddenNeuronNumbers, hiddenDepths)} print("Models generated") # Train. policyGradient = PG.PolicyGradient(numTrajectory, maxEpisode, render) trainModel = lambda model: policyGradient(model, approximatePolicy, sampleTrajectory, accumulateRewards, trainPG) trainedModels = {key: trainModel(model) for key, model in models.items()} print("Finished training") # Evaluate modelEvaluate = Evaluate(numTrajectory, approximatePolicy, sampleTrajectory, rewardFunction) meanEpisodeRewards = {key: modelEvaluate(model) for key, model in trainedModels.items()} print("Finished evaluating") # print(meanEpisodeRewards) # Visualize independentVariableNames = ['NeuroTotalNumber', 'layerNumber'] draw(meanEpisodeRewards, independentVariableNames) print("Finished visualizing", meanEpisodeRewards) if __name__ == "__main__": main()
[ "evaluate.Evaluate" ]
[((546, 593), 'agentsEnv.CheckBoundaryAndAdjust', 'ag.CheckBoundaryAndAdjust', (['xBoundary', 'yBoundary'], {}), '(xBoundary, yBoundary)\n', (571, 593), True, 'import agentsEnv as ag\n'), ((623, 643), 'numpy.array', 'np.array', (['[180, 180]'], {}), '([180, 180])\n', (631, 643), True, 'import numpy as np\n'), ((671, 691), 'numpy.array', 'np.array', (['[180, 180]'], {}), '([180, 180])\n', (679, 691), True, 'import numpy as np\n'), ((721, 741), 'numpy.array', 'np.array', (['[120, 120]'], {}), '([120, 120])\n', (729, 741), True, 'import numpy as np\n'), ((770, 788), 'numpy.array', 'np.array', (['[60, 60]'], {}), '([60, 60])\n', (778, 788), True, 'import numpy as np\n'), ((814, 910), 'agentsEnv.SheepPositionReset', 'ag.SheepPositionReset', (['initSheepPositionMean', 'initSheepPositionNoise', 'checkBoundaryAndAdjust'], {}), '(initSheepPositionMean, initSheepPositionNoise,\n checkBoundaryAndAdjust)\n', (835, 910), True, 'import agentsEnv as ag\n'), ((931, 1024), 'agentsEnv.WolfPositionReset', 'ag.WolfPositionReset', (['initWolfPositionMean', 'initWolfPositionNoise', 'checkBoundaryAndAdjust'], {}), '(initWolfPositionMean, initWolfPositionNoise,\n checkBoundaryAndAdjust)\n', (951, 1024), True, 'import agentsEnv as ag\n'), ((1105, 1192), 'agentsEnv.SheepPositionTransition', 'ag.SheepPositionTransition', (['numOneAgentState', 'positionIndex', 'checkBoundaryAndAdjust'], {}), '(numOneAgentState, positionIndex,\n checkBoundaryAndAdjust)\n', (1131, 1192), True, 'import agentsEnv as ag\n'), ((1218, 1304), 'agentsEnv.WolfPositionTransition', 'ag.WolfPositionTransition', (['numOneAgentState', 'positionIndex', 'checkBoundaryAndAdjust'], {}), '(numOneAgentState, positionIndex,\n checkBoundaryAndAdjust)\n', (1243, 1304), True, 'import agentsEnv as ag\n'), ((1375, 1506), 'env.TransitionFunction', 'env.TransitionFunction', (['sheepId', 'wolfId', 'sheepPositionReset', 'wolfPositionReset', 'sheepPositionTransition', 'wolfPositionTransition'], {}), '(sheepId, wolfId, sheepPositionReset,\n wolfPositionReset, sheepPositionTransition, wolfPositionTransition)\n', (1397, 1506), False, 'import env\n'), ((1589, 1666), 'env.IsTerminal', 'env.IsTerminal', (['sheepId', 'wolfId', 'numOneAgentState', 'positionIndex', 'minDistance'], {}), '(sheepId, wolfId, numOneAgentState, positionIndex, minDistance)\n', (1603, 1666), False, 'import env\n'), ((1681, 1730), 'pygame.display.set_mode', 'pg.display.set_mode', (['[xBoundary[1], yBoundary[1]]'], {}), '([xBoundary[1], yBoundary[1]])\n', (1700, 1730), True, 'import pygame as pg\n'), ((2020, 2153), 'env.Render', 'env.Render', (['numAgent', 'numOneAgentState', 'positionIndex', 'screen', 'screenColor', 'circleColorList', 'circleSize', 'saveImage', 'saveImageFile'], {}), '(numAgent, numOneAgentState, positionIndex, screen, screenColor,\n circleColorList, circleSize, saveImage, saveImageFile)\n', (2030, 2153), False, 'import env\n'), ((2261, 2375), 'reward.TerminalPenalty', 'reward.TerminalPenalty', (['sheepId', 'wolfId', 'numOneAgentState', 'positionIndex', 'aliveBouns', 'deathPenalty', 'isTerminal'], {}), '(sheepId, wolfId, numOneAgentState, positionIndex,\n aliveBouns, deathPenalty, isTerminal)\n', (2283, 2375), False, 'import reward\n'), ((2396, 2445), 'policyGradient.AccumulateRewards', 'PG.AccumulateRewards', (['rewardDecay', 'rewardFunction'], {}), '(rewardDecay, rewardFunction)\n', (2416, 2445), True, 'import policyGradient as PG\n'), ((2492, 2556), 'policyGradient.SampleTrajectory', 'PG.SampleTrajectory', (['maxTimeStep', 'transitionFunction', 'isTerminal'], {}), '(maxTimeStep, transitionFunction, isTerminal)\n', (2511, 2556), True, 'import policyGradient as PG\n'), ((2582, 2615), 'policyGradient.ApproximatePolicy', 'PG.ApproximatePolicy', (['actionSpace'], {}), '(actionSpace)\n', (2602, 2615), True, 'import policyGradient as PG\n'), ((2630, 2661), 'policyGradient.TrainTensorflow', 'PG.TrainTensorflow', (['actionSpace'], {}), '(actionSpace)\n', (2648, 2661), True, 'import policyGradient as PG\n'), ((2912, 2974), 'model.GeneratePolicyNet', 'GeneratePolicyNet', (['numStateSpace', 'numActionSpace', 'learningRate'], {}), '(numStateSpace, numActionSpace, learningRate)\n', (2929, 2974), False, 'from model import GeneratePolicyNet\n'), ((3152, 3204), 'policyGradient.PolicyGradient', 'PG.PolicyGradient', (['numTrajectory', 'maxEpisode', 'render'], {}), '(numTrajectory, maxEpisode, render)\n', (3169, 3204), True, 'import policyGradient as PG\n'), ((3651, 3727), 'evaluate.Evaluate', 'Evaluate', (['numTrajectory', 'approximatePolicy', 'sampleTrajectory', 'rewardFunction'], {}), '(numTrajectory, approximatePolicy, sampleTrajectory, rewardFunction)\n', (3659, 3727), False, 'from evaluate import Evaluate\n'), ((3974, 4024), 'visualize.draw', 'draw', (['meanEpisodeRewards', 'independentVariableNames'], {}), '(meanEpisodeRewards, independentVariableNames)\n', (3978, 4024), False, 'from visualize import draw\n'), ((3040, 3085), 'itertools.product', 'it.product', (['hiddenNeuronNumbers', 'hiddenDepths'], {}), '(hiddenNeuronNumbers, hiddenDepths)\n', (3050, 3085), True, 'import itertools as it\n')]
import os import logging import tempfile import argparse import numpy as np import torch import torchmodels import torch.optim as op import torch.utils.data as td import utils import models import models.jlu import dataset import evaluate import inference from . import embeds MODES = ["word", "label", "intent"] parser = argparse.ArgumentParser(fromfile_prefix_chars="@") parser.add_argument("--debug", action="store_true", default=False) group = parser.add_argument_group("Logging Options") utils.add_logging_arguments(group, "train") group.add_argument("--show-progress", action="store_true", default=False) group = parser.add_argument_group("Model Options") group.add_argument("--model-path", required=True) group.add_argument("--hidden-dim", type=int, default=300) group.add_argument("--word-dim", type=int, default=300) group = parser.add_argument_group("Data Options") for mode in MODES: group.add_argument(f"--{mode}-path", type=str, required=True) group.add_argument(f"--{mode}-vocab", type=str, default=None) group.add_argument("--vocab-limit", type=int, default=None) group.add_argument("--data-workers", type=int, default=8) group.add_argument("--pin-memory", action="store_true", default=False) group.add_argument("--shuffle", action="store_true", default=False) group.add_argument("--max-length", type=int, default=None) group.add_argument("--seed", type=int, default=None) group.add_argument("--unk", type=str, default="<unk>") group.add_argument("--eos", type=str, default="<eos>") group.add_argument("--bos", type=str, default="<bos>") group = parser.add_argument_group("Training Options") group.add_argument("--save-dir", type=str, required=True) group.add_argument("--save-period", type=int, default=None) group.add_argument("--batch-size", type=int, default=32) group.add_argument("--epochs", type=int, default=12) group.add_argument("--optimizer", type=str, default="adam", choices=["adam", "adamax", "adagrad", "adadelta", "sgd"]) group.add_argument("--loss-alpha", type=float, default=1.0) group.add_argument("--loss-beta", type=float, default=1.0) group.add_argument("--early-stop", action="store_true", default=False) group.add_argument("--early-stop-patience", type=int, default=5) group.add_argument("--early-stop-save", action="store_true", default=False) group.add_argument("--early-stop-criterion", default="acc-label") group.add_argument("--learning-rate", type=float, default=None) group.add_argument("--weight-decay", type=float, default=None) group.add_argument("--samples", type=int, default=None) group.add_argument("--log-stats", action="store_true", default=False) group.add_argument("--tensorboard", action="store_true", default=False) group.add_argument("--resume-from") group.add_argument("--gpu", type=int, action="append", default=[]) group = parser.add_argument_group("Validation Options") group.add_argument("--validate", action="store_true", default=False) for mode in MODES: group.add_argument(f"--val-{mode}-path") group = parser.add_argument_group("Word Embeddings Options") embeds.add_embed_arguments(group) def create_dataloader(args, vocabs=None, val=False): argvalpfx = "val_" if val else "" paths = [getattr(args, f"{argvalpfx}{mode}_path") for mode in MODES] if vocabs is None: vocabs = [getattr(args, f"{mode}_vocab") for mode in MODES] vocabs = [utils.load_pkl(v) if v is not None else None for v in vocabs] dset = dataset.TextSequenceDataset( paths=paths, feats=["string", "tensor"], vocabs=vocabs, vocab_limit=args.vocab_limit, pad_eos=args.eos, pad_bos=args.bos, unk=args.unk, ) if vocabs is None: vocabs = dset.vocabs collator = dataset.TextSequenceBatchCollator( pad_idxs=[len(v) for v in vocabs] ) return td.DataLoader( dataset=dset, batch_size=args.batch_size, shuffle=False if val else args.shuffle, num_workers=args.data_workers, collate_fn=collator, pin_memory=args.pin_memory ) def prepare_model(args, vocabs, resume_from=None): if resume_from is None: resume_from = dict() model_path = args.model_path if resume_from.get("model_args") is not None: temp_path = tempfile.mkstemp()[1] utils.dump_yaml(resume_from["model_args"], temp_path) torchmodels.register_packages(models) mdl_cls = torchmodels.create_model_cls(models.jlu, model_path) mdl = mdl_cls( hidden_dim=args.hidden_dim, word_dim=args.word_dim, num_words=len(vocabs[0]), num_slots=len(vocabs[1]), num_intents=len(vocabs[2]) ) mdl.reset_parameters() if resume_from.get("model") is not None: mdl.load_state_dict(resume_from["model"]) else: embeds.load_embeddings(args, vocabs[0], mdl.embeddings()) return mdl def get_optimizer_cls(args): kwargs = dict() if args.learning_rate is not None: kwargs["lr"] = args.learning_rate if args.weight_decay is not None: kwargs["weight_decay"] = args.weight_decay return utils.map_val(args.optimizer, { "sgd": lambda p: op.SGD(p, **kwargs), "adam": lambda p: op.Adam(p, **kwargs), "adamax": lambda p: op.Adamax(p, **kwargs), "adagrad": lambda p: op.Adagrad(p, **kwargs), "adadelta": lambda p: op.Adadelta(p, **kwargs) }, "optimizer") def normalize(x): return x / sum(x) def randidx(x, size): """x is either integer or array-like probability distribution""" if isinstance(x, int): return torch.randint(0, x, size) else: return np.random.choice(np.arange(len(x)), p=x, size=size) class Validator(inference.LoggableLossInferencer, inference.PredictingLossInferencer): def __init__(self, *args, **kwargs): super(Validator, self).__init__( *args, name="valid", tensorboard=False, persistant_steps=False, **kwargs ) def on_run_started(self, dataloader): super(Validator, self).on_run_started(dataloader) self.labels_gold, self.intents_gold = list(), list() def on_batch_started(self, batch): super(Validator, self).on_batch_started(batch) self.model.train(False) def on_loss_calculated(self, batch, data, model_outputs, losses, stats): super(Validator, self)\ .on_loss_calculated(batch, data, model_outputs, losses, stats) # dataset might produce bos/eos-padded strings labels_gold = [self.trim(x[1]) for x in batch["string"]] intents_gold = [self.trim(x[2]) for x in batch["string"]] self.labels_gold.extend(labels_gold) self.intents_gold.extend(intents_gold) def on_run_finished(self, stats): preds = super(Validator, self).on_run_finished(stats) assert preds is not None, "polymorphism gone wrong?" lpreds, ipreds = [x[0][0] for x in preds], [x[1][0] for x in preds] res = evaluate.evaluate( gold_labels=self.labels_gold, gold_intents=self.intents_gold, pred_labels=lpreds, pred_intents=ipreds ) tasks = ["slot-labeling", "intent-classification"] stats = { f"val-{measure}-{mode}": v for mode, task in zip(MODES[1:], tasks) for measure, v in res[task]["overall"].items() } stats["val-acc-sent"] = res["sentence-understanding"] msg = utils.join_dict( {k: f"{v:.4f}" for k, v in stats.items()}, item_dlm=", ", kvp_dlm="=" ) self.log(msg, tag="eval") return stats class Trainer(inference.LoggableLossInferencer): def __init__(self, *args, epochs=10, optimizer_cls=op.Adam, model_path=None, save_period=None, samples=None, validator=None, early_stop=False, early_stop_patience=5, early_stop_criterion="val-acc-sent", **kwargs): super(Trainer, self).__init__( *args, name="train", persistant_steps=True, **kwargs ) self.epochs = epochs self.optimizer_cls = optimizer_cls self.show_samples = samples is not None self.num_samples = samples self.should_validate = validator is not None self.validator = validator self.should_save_periodically = save_period is not None self.save_period = save_period self.model_path = model_path self.early_stop = early_stop self.early_stop_patience = early_stop_patience self.early_stop_criterion = early_stop_criterion self.global_step = 0 self.eidx = 0 self.optimizer = optimizer_cls(self.trainable_params()) self.early_stop_best = { "crit": None, "eidx": -1, "sd": None, "stats": None } def trainable_params(self): for p in self.model.parameters(): if p.requires_grad: yield p def save_snapshot(self, state_dict, tag=None): if tag is None: tag = "" else: tag = f"-{tag}" eidx = state_dict["eidx"] path = os.path.join(self.save_dir, f"checkpoint-e{eidx:02d}{tag}") torch.save(state_dict, path) logging.info(f"checkpoint saved to '{path}'.") def snapshot(self, stats=None): exp_state_dict = { "eidx": self.eidx, "model": { k: v.detach().cpu() for k, v in self.module.state_dict().items() }, "global_step": self.global_step, "optimizer": self.optimizer.state_dict(), } if self.model_path is not None: exp_state_dict["model_args"] = utils.load_yaml(self.model_path) if stats is not None: exp_state_dict["stats"] = stats return exp_state_dict def load_snapshot(self, state_dict): if self.optimizer is not None and "optimizer" in state_dict: self.optimizer.load_state_dict(state_dict["optimizer"]) if "global_step" in state_dict: self.global_step = state_dict["global_step"] if "eidx" in state_dict: self.eidx = state_dict["eidx"] def should_stop(self, eidx, stats): if not self.early_stop: return False assert self.early_stop_criterion in stats, \ f"early stop criterion not found in training stats: " \ f"{self.early_stop_criterion} not in {stats.keys()}" crit = stats.get(self.early_stop_criterion) if self.early_stop_best["crit"] is None or crit > self.early_stop_best["crit"]: self.early_stop_best["crit"] = crit self.early_stop_best["sd"] = self.snapshot(stats) return self.early_stop_best["sd"]["eidx"] is not None and \ eidx >= self.early_stop_best["sd"]["eidx"] + \ self.early_stop_patience def report_early_stop(self, eidx): stats_str = {k: f"{v:.4f}" for k, v in self.early_stop_best["sd"]["stats"].items()} logging.info(f"early stopping at {eidx} epoch as criterion " f"({self.early_stop_criterion}) remains unchallenged " f"for {self.early_stop_patience} epochs.") logging.info(f"best stats so far:") logging.info(f"[{eidx - self.early_stop_patience}] " f"{utils.join_dict(stats_str, ', ', '=')}") def on_batch_started(self, batch): super(Trainer, self).on_batch_started(batch) self.model.train(True) self.optimizer.zero_grad() def on_loss_calculated(self, batch, data, model_outputs, losses, stats): ret = super(Trainer, self)\ .on_loss_calculated(batch, data, model_outputs, losses, stats) loss = losses["loss-total"] loss.backward() self.optimizer.step() return ret def train(self, dataloader, val_dataloader=None): if self.should_validate: assert val_dataloader is not None, \ "must provide validation data if i need to validate" self.optimizer = self.optimizer_cls(self.trainable_params()) self.progress_global = utils.tqdm( total=self.epochs, desc=f"training {self.epochs} epochs", disable=not self.show_progress ) self.progress_global.update(self.eidx) for self.eidx in range(self.eidx + 1, self.epochs + 1): self.progress_global.update(1) self.progress_global.set_description(f"training e{self.eidx:02d}") stats = self.inference(dataloader) if self.should_validate: with torch.no_grad(): valstats = self.validator.inference(val_dataloader) stats.update(valstats) if self.should_save_periodically \ and self.eidx % self.save_period == 0: self.save_snapshot(self.snapshot()) if self.should_stop(self.eidx, stats): self.save_snapshot( state_dict=self.early_stop_best["sd"], tag=f"best-{self.early_stop_best['crit']:.4f}" ) self.report_early_stop(self.eidx) break self.progress_global.close() def report_model(trainer): params = sum(np.prod(p.size()) for p in trainer.trainable_params()) logging.info(f"Number of parameters: {params:,}") logging.info(f"{trainer.module}") def train(args): devices = utils.get_devices(args.gpu) if args.seed is not None: utils.manual_seed(args.seed) logging.info("Loading data...") dataloader = create_dataloader(args) vocabs = dataloader.dataset.vocabs if args.validate: val_dataloader = create_dataloader(args, vocabs, True) else: val_dataloader = None fnames = [f"{mode}.vocab" for mode in MODES] for vocab, fname in zip(vocabs, fnames): utils.save_pkl(vocab, os.path.join(args.save_dir, fname)) logging.info("Initializing training environment...") resume_from = dict() if args.resume_from is not None: resume_from = torch.load(args.resume_from) mdl = prepare_model(args, vocabs, resume_from) mdl = utils.to_device(mdl, devices) optimizer_cls = get_optimizer_cls(args) validator = None if args.validate: validator = Validator( model=mdl, device=devices[0], vocabs=vocabs, bos=args.bos, eos=args.eos, unk=args.unk, alpha=args.loss_alpha, beta=args.loss_beta, progress=args.show_progress, batch_stats=args.log_stats ) trainer = Trainer( model=mdl, model_path=args.model_path, alpha=args.loss_alpha, beta=args.loss_beta, device=devices[0], vocabs=vocabs, epochs=args.epochs, save_dir=args.save_dir, save_period=args.save_period, optimizer_cls=optimizer_cls, samples=args.samples, tensorboard=args.tensorboard, progress=args.show_progress, validator=validator, batch_stats=args.log_stats, early_stop=args.early_stop, early_stop_criterion=args.early_stop_criterion, early_stop_patience=args.early_stop_patience ) trainer.load_snapshot(resume_from) report_model(trainer) logging.info("Commencing training joint-lu...") trainer.train(dataloader, val_dataloader) logging.info("Done!") if __name__ == "__main__": train(utils.initialize_script(parser))
[ "evaluate.evaluate" ]
[((326, 376), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'fromfile_prefix_chars': '"""@"""'}), "(fromfile_prefix_chars='@')\n", (349, 376), False, 'import argparse\n'), ((498, 541), 'utils.add_logging_arguments', 'utils.add_logging_arguments', (['group', '"""train"""'], {}), "(group, 'train')\n", (525, 541), False, 'import utils\n'), ((3447, 3620), 'dataset.TextSequenceDataset', 'dataset.TextSequenceDataset', ([], {'paths': 'paths', 'feats': "['string', 'tensor']", 'vocabs': 'vocabs', 'vocab_limit': 'args.vocab_limit', 'pad_eos': 'args.eos', 'pad_bos': 'args.bos', 'unk': 'args.unk'}), "(paths=paths, feats=['string', 'tensor'], vocabs\n =vocabs, vocab_limit=args.vocab_limit, pad_eos=args.eos, pad_bos=args.\n bos, unk=args.unk)\n", (3474, 3620), False, 'import dataset\n'), ((3835, 4019), 'torch.utils.data.DataLoader', 'td.DataLoader', ([], {'dataset': 'dset', 'batch_size': 'args.batch_size', 'shuffle': '(False if val else args.shuffle)', 'num_workers': 'args.data_workers', 'collate_fn': 'collator', 'pin_memory': 'args.pin_memory'}), '(dataset=dset, batch_size=args.batch_size, shuffle=False if\n val else args.shuffle, num_workers=args.data_workers, collate_fn=\n collator, pin_memory=args.pin_memory)\n', (3848, 4019), True, 'import torch.utils.data as td\n'), ((4368, 4405), 'torchmodels.register_packages', 'torchmodels.register_packages', (['models'], {}), '(models)\n', (4397, 4405), False, 'import torchmodels\n'), ((4420, 4472), 'torchmodels.create_model_cls', 'torchmodels.create_model_cls', (['models.jlu', 'model_path'], {}), '(models.jlu, model_path)\n', (4448, 4472), False, 'import torchmodels\n'), ((13570, 13619), 'logging.info', 'logging.info', (['f"""Number of parameters: {params:,}"""'], {}), "(f'Number of parameters: {params:,}')\n", (13582, 13619), False, 'import logging\n'), ((13624, 13657), 'logging.info', 'logging.info', (['f"""{trainer.module}"""'], {}), "(f'{trainer.module}')\n", (13636, 13657), False, 'import logging\n'), ((13691, 13718), 'utils.get_devices', 'utils.get_devices', (['args.gpu'], {}), '(args.gpu)\n', (13708, 13718), False, 'import utils\n'), ((13791, 13822), 'logging.info', 'logging.info', (['"""Loading data..."""'], {}), "('Loading data...')\n", (13803, 13822), False, 'import logging\n'), ((14193, 14245), 'logging.info', 'logging.info', (['"""Initializing training environment..."""'], {}), "('Initializing training environment...')\n", (14205, 14245), False, 'import logging\n'), ((14420, 14449), 'utils.to_device', 'utils.to_device', (['mdl', 'devices'], {}), '(mdl, devices)\n', (14435, 14449), False, 'import utils\n'), ((15599, 15646), 'logging.info', 'logging.info', (['"""Commencing training joint-lu..."""'], {}), "('Commencing training joint-lu...')\n", (15611, 15646), False, 'import logging\n'), ((15698, 15719), 'logging.info', 'logging.info', (['"""Done!"""'], {}), "('Done!')\n", (15710, 15719), False, 'import logging\n'), ((4309, 4362), 'utils.dump_yaml', 'utils.dump_yaml', (["resume_from['model_args']", 'temp_path'], {}), "(resume_from['model_args'], temp_path)\n", (4324, 4362), False, 'import utils\n'), ((5598, 5623), 'torch.randint', 'torch.randint', (['(0)', 'x', 'size'], {}), '(0, x, size)\n', (5611, 5623), False, 'import torch\n'), ((7036, 7161), 'evaluate.evaluate', 'evaluate.evaluate', ([], {'gold_labels': 'self.labels_gold', 'gold_intents': 'self.intents_gold', 'pred_labels': 'lpreds', 'pred_intents': 'ipreds'}), '(gold_labels=self.labels_gold, gold_intents=self.\n intents_gold, pred_labels=lpreds, pred_intents=ipreds)\n', (7053, 7161), False, 'import evaluate\n'), ((9285, 9344), 'os.path.join', 'os.path.join', (['self.save_dir', 'f"""checkpoint-e{eidx:02d}{tag}"""'], {}), "(self.save_dir, f'checkpoint-e{eidx:02d}{tag}')\n", (9297, 9344), False, 'import os\n'), ((9353, 9381), 'torch.save', 'torch.save', (['state_dict', 'path'], {}), '(state_dict, path)\n', (9363, 9381), False, 'import torch\n'), ((9390, 9436), 'logging.info', 'logging.info', (['f"""checkpoint saved to \'{path}\'."""'], {}), '(f"checkpoint saved to \'{path}\'.")\n', (9402, 9436), False, 'import logging\n'), ((11221, 11381), 'logging.info', 'logging.info', (['f"""early stopping at {eidx} epoch as criterion ({self.early_stop_criterion}) remains unchallenged for {self.early_stop_patience} epochs."""'], {}), "(\n f'early stopping at {eidx} epoch as criterion ({self.early_stop_criterion}) remains unchallenged for {self.early_stop_patience} epochs.'\n )\n", (11233, 11381), False, 'import logging\n'), ((11430, 11465), 'logging.info', 'logging.info', (['f"""best stats so far:"""'], {}), "(f'best stats so far:')\n", (11442, 11465), False, 'import logging\n'), ((12355, 12459), 'utils.tqdm', 'utils.tqdm', ([], {'total': 'self.epochs', 'desc': 'f"""training {self.epochs} epochs"""', 'disable': '(not self.show_progress)'}), "(total=self.epochs, desc=f'training {self.epochs} epochs',\n disable=not self.show_progress)\n", (12365, 12459), False, 'import utils\n'), ((13757, 13785), 'utils.manual_seed', 'utils.manual_seed', (['args.seed'], {}), '(args.seed)\n', (13774, 13785), False, 'import utils\n'), ((14330, 14358), 'torch.load', 'torch.load', (['args.resume_from'], {}), '(args.resume_from)\n', (14340, 14358), False, 'import torch\n'), ((15759, 15790), 'utils.initialize_script', 'utils.initialize_script', (['parser'], {}), '(parser)\n', (15782, 15790), False, 'import utils\n'), ((4279, 4297), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {}), '()\n', (4295, 4297), False, 'import tempfile\n'), ((9859, 9891), 'utils.load_yaml', 'utils.load_yaml', (['self.model_path'], {}), '(self.model_path)\n', (9874, 9891), False, 'import utils\n'), ((14152, 14186), 'os.path.join', 'os.path.join', (['args.save_dir', 'fname'], {}), '(args.save_dir, fname)\n', (14164, 14186), False, 'import os\n'), ((3374, 3391), 'utils.load_pkl', 'utils.load_pkl', (['v'], {}), '(v)\n', (3388, 3391), False, 'import utils\n'), ((5171, 5190), 'torch.optim.SGD', 'op.SGD', (['p'], {}), '(p, **kwargs)\n', (5177, 5190), True, 'import torch.optim as op\n'), ((5218, 5238), 'torch.optim.Adam', 'op.Adam', (['p'], {}), '(p, **kwargs)\n', (5225, 5238), True, 'import torch.optim as op\n'), ((5268, 5290), 'torch.optim.Adamax', 'op.Adamax', (['p'], {}), '(p, **kwargs)\n', (5277, 5290), True, 'import torch.optim as op\n'), ((5321, 5344), 'torch.optim.Adagrad', 'op.Adagrad', (['p'], {}), '(p, **kwargs)\n', (5331, 5344), True, 'import torch.optim as op\n'), ((5376, 5400), 'torch.optim.Adadelta', 'op.Adadelta', (['p'], {}), '(p, **kwargs)\n', (5387, 5400), True, 'import torch.optim as op\n'), ((11551, 11588), 'utils.join_dict', 'utils.join_dict', (['stats_str', '""", """', '"""="""'], {}), "(stats_str, ', ', '=')\n", (11566, 11588), False, 'import utils\n'), ((12841, 12856), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (12854, 12856), False, 'import torch\n')]
import tensorflow as tf from PIL import Image import numpy as np import time from tqdm import tqdm from nltk.translate import bleu from nltk.translate.bleu_score import sentence_bleu from evaluate import evaluate, bleu_score from model import Attention, CNN_Encoder, RNN_Decoder #from loss import loss_function from preprocessing import datalimit, train_test_split from utils import load_image, standardize, map_func, plot_attention from data_download import data_download from train import train_step BATCH_SIZE = 64 BUFFER_SIZE = 1000 embedding_dim = 256 units = 512 features_shape = 2048 attention_features_shape = 64 limit = 1000 # number of images to use for training def main(start=True): annotation_file, PATH = data_download(data=True) # download data train_captions, img_name_vector = datalimit(limit, annotation_file, PATH) image_model = tf.keras.applications.InceptionV3(include_top=False, weights='imagenet') # download model new_input = image_model.input hidden_layer = image_model.layers[-1].output image_features_extract_model = tf.keras.Model(new_input, hidden_layer) encode_train = sorted(set(img_name_vector)) image_dataset = tf.data.Dataset.from_tensor_slices(encode_train) image_dataset = image_dataset.map(load_image, num_parallel_calls=tf.data.AUTOTUNE).batch(16) for img, path in tqdm(image_dataset): batch_features = image_features_extract_model(img) batch_features = tf.reshape(batch_features,(batch_features.shape[0], -1, batch_features.shape[3])) for bf, p in zip(batch_features, path): path_of_feature = p.numpy().decode("utf-8") np.save(path_of_feature, bf.numpy()) caption_dataset = tf.data.Dataset.from_tensor_slices(train_captions) max_length = 50 vocabulary_size = 5000 tokenizer = tf.keras.layers.TextVectorization(max_tokens=vocabulary_size,standardize=standardize,output_sequence_length=max_length) tokenizer.adapt(caption_dataset) cap_vector = caption_dataset.map(lambda x: tokenizer(x)) word_to_index = tf.keras.layers.StringLookup(mask_token="",vocabulary=tokenizer.get_vocabulary()) index_to_word = tf.keras.layers.StringLookup(mask_token="",vocabulary=tokenizer.get_vocabulary(),invert=True) img_name_train, cap_train, img_name_val, cap_val = train_test_split(img_name_vector, cap_vector) num_steps = len(img_name_train) // BATCH_SIZE dataset = tf.data.Dataset.from_tensor_slices((img_name_train, cap_train)) dataset = dataset.map(lambda item1, item2: tf.numpy_function(map_func, [item1, item2], [tf.float32, tf.int64]),num_parallel_calls=tf.data.AUTOTUNE) dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE) encoder = CNN_Encoder(embedding_dim) decoder = RNN_Decoder(embedding_dim, units, tokenizer.vocabulary_size()) optimizer = tf.keras.optimizers.Adam() #loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none') checkpoint_path = "./checkpoints/train" ckpt = tf.train.Checkpoint(encoder=encoder,decoder=decoder,optimizer=optimizer) ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5) start_epoch = 0 # start from epoch 0 or last checkpoint epoch if ckpt_manager.latest_checkpoint: start_epoch = int(ckpt_manager.latest_checkpoint.split('-')[-1]) ckpt.restore(ckpt_manager.latest_checkpoint) EPOCHS = 20 # number of epochs to train the model loss_plot=[] # list to store the loss value for each epoch for epoch in range(start_epoch, EPOCHS): start = time.time() total_loss = 0 for (batch, (img_tensor, target)) in enumerate(dataset): batch_loss, t_loss = train_step(img_tensor, target) total_loss += t_loss if batch % 100 == 0: average_batch_loss = batch_loss.numpy()/int(target.shape[1]) print(f'Epoch {epoch+1} Batch {batch} Loss {average_batch_loss:.4f}') loss_plot.append(total_loss / num_steps) if epoch % 5 == 0: ckpt_manager.save() print(f'Epoch {epoch+1} Loss {total_loss/num_steps:.6f}') print(f'Time taken for 1 epoch {time.time()-start:.2f} sec\n') # Validation Dataset testing rid = np.random.randint(0, len(img_name_val)) image = img_name_val[rid] real_caption = ' '.join([tf.compat.as_text(index_to_word(i).numpy()) for i in cap_val[rid] if i not in [0]]) result, attention_plot = evaluate(image,encoder,decoder,word_to_index,index_to_word,max_length, image_features_extract_model,attention_features_shape) print('Real Caption:', real_caption) print('Prediction Caption:', ' '.join(result)) plot_attention(image, result, attention_plot) # Unseen Data testing for i in range(1,3): image_path = 'data/unseen_image/'+i+'.jpg' # User path to image result, attention_plot = evaluate(image,encoder,decoder,word_to_index,index_to_word,max_length, image_features_extract_model,attention_features_shape) print('Prediction Caption:', ' '.join(result)) plot_attention(image_path, result, attention_plot) # opening the image Image.open(image_path) # Calculate the avergae bleu score bleu_score = 0 # initialize the bleu score image_limit=1000 # number of images to test for i in tqdm(range(image_limit)): rid1 = np.random.randint(0, len(img_name_val)) image1 = img_name_val[rid1] real_caption1 = ' '.join([tf.compat.as_text(index_to_word(i).numpy()) for i in cap_val[rid] if i not in [0]]) result1, attention_plot1 = evaluate(image1,encoder,decoder,word_to_index,index_to_word,max_length, image_features_extract_model,attention_features_shape) caption_bleu_score = 0 caption_bleu_score = sentence_bleu(list(real_caption1), list(result1)) # calculate the bleu score bleu_score+=caption_bleu_score print("The average bleu score : ", bleu_score/image_limit) if __name__ == "__main__": start=True main(start)
[ "evaluate.evaluate" ]
[((728, 752), 'data_download.data_download', 'data_download', ([], {'data': '(True)'}), '(data=True)\n', (741, 752), False, 'from data_download import data_download\n'), ((807, 846), 'preprocessing.datalimit', 'datalimit', (['limit', 'annotation_file', 'PATH'], {}), '(limit, annotation_file, PATH)\n', (816, 846), False, 'from preprocessing import datalimit, train_test_split\n'), ((871, 943), 'tensorflow.keras.applications.InceptionV3', 'tf.keras.applications.InceptionV3', ([], {'include_top': '(False)', 'weights': '"""imagenet"""'}), "(include_top=False, weights='imagenet')\n", (904, 943), True, 'import tensorflow as tf\n'), ((1080, 1119), 'tensorflow.keras.Model', 'tf.keras.Model', (['new_input', 'hidden_layer'], {}), '(new_input, hidden_layer)\n', (1094, 1119), True, 'import tensorflow as tf\n'), ((1190, 1238), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['encode_train'], {}), '(encode_train)\n', (1224, 1238), True, 'import tensorflow as tf\n'), ((1358, 1377), 'tqdm.tqdm', 'tqdm', (['image_dataset'], {}), '(image_dataset)\n', (1362, 1377), False, 'from tqdm import tqdm\n'), ((1710, 1760), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['train_captions'], {}), '(train_captions)\n', (1744, 1760), True, 'import tensorflow as tf\n'), ((1826, 1952), 'tensorflow.keras.layers.TextVectorization', 'tf.keras.layers.TextVectorization', ([], {'max_tokens': 'vocabulary_size', 'standardize': 'standardize', 'output_sequence_length': 'max_length'}), '(max_tokens=vocabulary_size, standardize=\n standardize, output_sequence_length=max_length)\n', (1859, 1952), True, 'import tensorflow as tf\n'), ((2317, 2362), 'preprocessing.train_test_split', 'train_test_split', (['img_name_vector', 'cap_vector'], {}), '(img_name_vector, cap_vector)\n', (2333, 2362), False, 'from preprocessing import datalimit, train_test_split\n'), ((2429, 2492), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(img_name_train, cap_train)'], {}), '((img_name_train, cap_train))\n', (2463, 2492), True, 'import tensorflow as tf\n'), ((2783, 2809), 'model.CNN_Encoder', 'CNN_Encoder', (['embedding_dim'], {}), '(embedding_dim)\n', (2794, 2809), False, 'from model import Attention, CNN_Encoder, RNN_Decoder\n'), ((2903, 2929), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {}), '()\n', (2927, 2929), True, 'import tensorflow as tf\n'), ((3087, 3161), 'tensorflow.train.Checkpoint', 'tf.train.Checkpoint', ([], {'encoder': 'encoder', 'decoder': 'decoder', 'optimizer': 'optimizer'}), '(encoder=encoder, decoder=decoder, optimizer=optimizer)\n', (3106, 3161), True, 'import tensorflow as tf\n'), ((3179, 3243), 'tensorflow.train.CheckpointManager', 'tf.train.CheckpointManager', (['ckpt', 'checkpoint_path'], {'max_to_keep': '(5)'}), '(ckpt, checkpoint_path, max_to_keep=5)\n', (3205, 3243), True, 'import tensorflow as tf\n'), ((4565, 4700), 'evaluate.evaluate', 'evaluate', (['image', 'encoder', 'decoder', 'word_to_index', 'index_to_word', 'max_length', 'image_features_extract_model', 'attention_features_shape'], {}), '(image, encoder, decoder, word_to_index, index_to_word, max_length,\n image_features_extract_model, attention_features_shape)\n', (4573, 4700), False, 'from evaluate import evaluate, bleu_score\n'), ((4787, 4832), 'utils.plot_attention', 'plot_attention', (['image', 'result', 'attention_plot'], {}), '(image, result, attention_plot)\n', (4801, 4832), False, 'from utils import load_image, standardize, map_func, plot_attention\n'), ((1463, 1550), 'tensorflow.reshape', 'tf.reshape', (['batch_features', '(batch_features.shape[0], -1, batch_features.shape[3])'], {}), '(batch_features, (batch_features.shape[0], -1, batch_features.\n shape[3]))\n', (1473, 1550), True, 'import tensorflow as tf\n'), ((3656, 3667), 'time.time', 'time.time', ([], {}), '()\n', (3665, 3667), False, 'import time\n'), ((4992, 5127), 'evaluate.evaluate', 'evaluate', (['image', 'encoder', 'decoder', 'word_to_index', 'index_to_word', 'max_length', 'image_features_extract_model', 'attention_features_shape'], {}), '(image, encoder, decoder, word_to_index, index_to_word, max_length,\n image_features_extract_model, attention_features_shape)\n', (5000, 5127), False, 'from evaluate import evaluate, bleu_score\n'), ((5181, 5231), 'utils.plot_attention', 'plot_attention', (['image_path', 'result', 'attention_plot'], {}), '(image_path, result, attention_plot)\n', (5195, 5231), False, 'from utils import load_image, standardize, map_func, plot_attention\n'), ((5268, 5290), 'PIL.Image.open', 'Image.open', (['image_path'], {}), '(image_path)\n', (5278, 5290), False, 'from PIL import Image\n'), ((5709, 5845), 'evaluate.evaluate', 'evaluate', (['image1', 'encoder', 'decoder', 'word_to_index', 'index_to_word', 'max_length', 'image_features_extract_model', 'attention_features_shape'], {}), '(image1, encoder, decoder, word_to_index, index_to_word, max_length,\n image_features_extract_model, attention_features_shape)\n', (5717, 5845), False, 'from evaluate import evaluate, bleu_score\n'), ((2540, 2607), 'tensorflow.numpy_function', 'tf.numpy_function', (['map_func', '[item1, item2]', '[tf.float32, tf.int64]'], {}), '(map_func, [item1, item2], [tf.float32, tf.int64])\n', (2557, 2607), True, 'import tensorflow as tf\n'), ((3789, 3819), 'train.train_step', 'train_step', (['img_tensor', 'target'], {}), '(img_tensor, target)\n', (3799, 3819), False, 'from train import train_step\n'), ((4274, 4285), 'time.time', 'time.time', ([], {}), '()\n', (4283, 4285), False, 'import time\n')]
'''train the model''' import argparse import logging import os import glob from model.data_loader import * from model.x2net import x2Net from model.x3net import x3Net from model.x4net import x4Net from model.loss_fn import loss_fn from model.metrics import metrics from evaluate import evaluate import utils import numpy as np import torch import torch.nn as nn import torch.optim as optim parser = argparse.ArgumentParser() parser.add_argument('--data_dir', default='data/x3/', help="Directory containing the dataset") parser.add_argument('--model', default='x3net', help='The model to train and test') parser.add_argument('--model_dir', default='experiments/x3net/', help="Directory containing params.json") parser.add_argument('--restore_file', default=None, help="Optional, name of the file in --model_dir containing weights to reload before \ training") def train(model, optimizer, loss_fn, dataloader, metrics, params): """Train the model on `num_steps` batches Args: model: (torch.nn.Module) the neural network optimizer: (torch.optim) optimizer for parameters of model loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch params: (Params) hyperparameters """ # set model to training mode model.train() # summary for current training loop and a running average object for loss summ = [] loss_avg = utils.RunningAverage() model = model.to(params.device) for i, (X_batch, y_batch) in enumerate(dataloader): # move to GPU if available # if params.cuda: X_batch, y_batch = X_batch.to(params.device), y_batch.to(params.device) # compute model output and loss y_pred = model(X_batch) loss = loss_fn(y_pred, y_batch) # clear previous gradients, compute gradients of all variables w.r.t. loss optimizer.zero_grad() loss.backward() # performs updates using calculated gradients optimizer.step() # Evaluate summaries only once in a while if i % params.save_summary_steps == 0: # move output and ground truth to cpu, convert to numpy arrays y_pred = y_pred.detach().cpu() y_batch = y_batch.detach().cpu() # compute all metrics on this batch summary_batch = {metric : metrics[metric](y_pred, y_batch) for metric in metrics} summary_batch['loss'] = loss.item() summ.append(summary_batch) # update the average loss loss_avg.update(loss.item()) # compute mean of all metrics in summary metrics_mean = {metric : np.mean([x[metric] for x in summ]) for metric in summ[0]} metrics_string = " ; ".join("{}: {:05.5f}".format(k, v) for k, v in metrics_mean.items()) logging.info("- Train metrics: " + metrics_string) def train_and_evaluate(model, train_dataloader, val_dataloader, optimizer, loss_fn, metrics, params, model_dir, restore_file=None, lr_scheduler=None): """Train the model and evaluate every epoch. Args: model: (torch.nn.Module) the neural network train_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data val_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches validation data optimizer: (torch.optim) optimizer for parameters of model loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch params: (Params) hyperparameters model_dir: (string) directory containing config, weights and log restore_file: (string) optional- name of file to restore from (without its extension .pth.tar) lr_scheduler: (optim.lr_scheduler) learning rate scheduler """ # reload weights from restore_file if specified if restore_file is not None: restore_path = os.path.join(args.model_dir, args.restore_file + '.pth.tar') logging.info("Restoring parameters from {}".format(restore_path)) utils.load_checkpoint(restore_path, model, optimizer) best_val_metric = 0 # we use mse for metric here, so need to set the initial to a large number for epoch in range(params.num_epochs): # Run one epoch logging.info("Epoch {}/{}".format(epoch + 1, params.num_epochs)) # learning rate scheduler if lr_scheduler: lr_scheduler.step() # compute number of batches in one epoch (one full pass over the training set) train(model, optimizer, loss_fn, train_dataloader, metrics, params) # Evaluate for one epoch on validation set val_metrics = evaluate(model, loss_fn, val_dataloader, metrics, params) val_metric = val_metrics['psnr'] is_best = val_metric >= best_val_metric # Save weights utils.save_checkpoint({'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optim_dict' : optimizer.state_dict()}, is_best=is_best, checkpoint=model_dir) # If best_eval, best_save_path if is_best: logging.info("- Found new best validation metric") best_val_metric = val_metric # Save best val metrics in a json file in the model directory best_json_path = os.path.join(model_dir, "metrics_val_best_weights.json") utils.save_dict_to_json(val_metrics, best_json_path) # Save latest val metrics in a json file in the model directory last_json_path = os.path.join(model_dir, "metrics_val_last_weights.json") utils.save_dict_to_json(val_metrics, last_json_path) if __name__ == '__main__': # set thread number to 1 torch.set_num_threads(1) # Load the parameters from json file args = parser.parse_args() json_path = os.path.join(args.model_dir, 'params.json') assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path) params = utils.Params(json_path) # use GPU if available params.cuda = torch.cuda.is_available() params.device = torch.device("cuda:2" if params.cuda else "cpu") # cudnn.benchmark = True # Set the random seed for reproducible experiments torch.manual_seed(590) if params.cuda: torch.cuda.manual_seed(590) # Set the logger utils.set_logger(os.path.join(args.model_dir, 'train.log')) # Create the input data pipeline logging.info("Loading the datasets...") # fetch dataloaders dataloaders = fetch_dataloaders(['training', 'validation', 'test'], args.data_dir, params) train_dl = dataloaders['training'] val_dl = dataloaders['validation'] logging.info("- done.") # Define the model and optimizer model_name = args.model if model_name == 'x2net': model = x2Net().to(params.device) elif model_name == 'x3net': model = x3Net().to(params.device) elif model_name == 'x4net': model = x4Net().to(params.device) else: print('not implemented') exit() # use 2 GPUs for training if params.cuda: model = nn.DataParallel(model, device_ids=[2,3]) # defin optimizer optimizer = optim.Adam(model.parameters(), lr=params.learning_rate) # learning rate scheduler scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 30, 60], gamma=0.1) # # fetch loss function and metrics # loss_fn = net.loss_fn # metrics = net.metrics # Train the model logging.info("Starting training for {} epoch(s)".format(params.num_epochs)) train_and_evaluate(model, train_dl, val_dl, optimizer, loss_fn, metrics, params, args.model_dir, args.restore_file, lr_scheduler=scheduler)
[ "evaluate.evaluate" ]
[((403, 428), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (426, 428), False, 'import argparse\n'), ((1673, 1695), 'utils.RunningAverage', 'utils.RunningAverage', ([], {}), '()\n', (1693, 1695), False, 'import utils\n'), ((3073, 3123), 'logging.info', 'logging.info', (["('- Train metrics: ' + metrics_string)"], {}), "('- Train metrics: ' + metrics_string)\n", (3085, 3123), False, 'import logging\n'), ((6205, 6229), 'torch.set_num_threads', 'torch.set_num_threads', (['(1)'], {}), '(1)\n', (6226, 6229), False, 'import torch\n'), ((6319, 6362), 'os.path.join', 'os.path.join', (['args.model_dir', '"""params.json"""'], {}), "(args.model_dir, 'params.json')\n", (6331, 6362), False, 'import os\n'), ((6374, 6399), 'os.path.isfile', 'os.path.isfile', (['json_path'], {}), '(json_path)\n', (6388, 6399), False, 'import os\n'), ((6473, 6496), 'utils.Params', 'utils.Params', (['json_path'], {}), '(json_path)\n', (6485, 6496), False, 'import utils\n'), ((6543, 6568), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (6566, 6568), False, 'import torch\n'), ((6589, 6637), 'torch.device', 'torch.device', (["('cuda:2' if params.cuda else 'cpu')"], {}), "('cuda:2' if params.cuda else 'cpu')\n", (6601, 6637), False, 'import torch\n'), ((6727, 6749), 'torch.manual_seed', 'torch.manual_seed', (['(590)'], {}), '(590)\n', (6744, 6749), False, 'import torch\n'), ((6926, 6965), 'logging.info', 'logging.info', (['"""Loading the datasets..."""'], {}), "('Loading the datasets...')\n", (6938, 6965), False, 'import logging\n'), ((7170, 7193), 'logging.info', 'logging.info', (['"""- done."""'], {}), "('- done.')\n", (7182, 7193), False, 'import logging\n'), ((7798, 7874), 'torch.optim.lr_scheduler.MultiStepLR', 'optim.lr_scheduler.MultiStepLR', (['optimizer'], {'milestones': '[5, 30, 60]', 'gamma': '(0.1)'}), '(optimizer, milestones=[5, 30, 60], gamma=0.1)\n', (7828, 7874), True, 'import torch.optim as optim\n'), ((2032, 2056), 'model.loss_fn.loss_fn', 'loss_fn', (['y_pred', 'y_batch'], {}), '(y_pred, y_batch)\n', (2039, 2056), False, 'from model.loss_fn import loss_fn\n'), ((2917, 2951), 'numpy.mean', 'np.mean', (['[x[metric] for x in summ]'], {}), '([x[metric] for x in summ])\n', (2924, 2951), True, 'import numpy as np\n'), ((4304, 4364), 'os.path.join', 'os.path.join', (['args.model_dir', "(args.restore_file + '.pth.tar')"], {}), "(args.model_dir, args.restore_file + '.pth.tar')\n", (4316, 4364), False, 'import os\n'), ((4447, 4500), 'utils.load_checkpoint', 'utils.load_checkpoint', (['restore_path', 'model', 'optimizer'], {}), '(restore_path, model, optimizer)\n', (4468, 4500), False, 'import utils\n'), ((5075, 5132), 'evaluate.evaluate', 'evaluate', (['model', 'loss_fn', 'val_dataloader', 'metrics', 'params'], {}), '(model, loss_fn, val_dataloader, metrics, params)\n', (5083, 5132), False, 'from evaluate import evaluate\n'), ((6023, 6079), 'os.path.join', 'os.path.join', (['model_dir', '"""metrics_val_last_weights.json"""'], {}), "(model_dir, 'metrics_val_last_weights.json')\n", (6035, 6079), False, 'import os\n'), ((6088, 6140), 'utils.save_dict_to_json', 'utils.save_dict_to_json', (['val_metrics', 'last_json_path'], {}), '(val_metrics, last_json_path)\n', (6111, 6140), False, 'import utils\n'), ((6770, 6797), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['(590)'], {}), '(590)\n', (6792, 6797), False, 'import torch\n'), ((6841, 6882), 'os.path.join', 'os.path.join', (['args.model_dir', '"""train.log"""'], {}), "(args.model_dir, 'train.log')\n", (6853, 6882), False, 'import os\n'), ((7609, 7650), 'torch.nn.DataParallel', 'nn.DataParallel', (['model'], {'device_ids': '[2, 3]'}), '(model, device_ids=[2, 3])\n', (7624, 7650), True, 'import torch.nn as nn\n'), ((5607, 5657), 'logging.info', 'logging.info', (['"""- Found new best validation metric"""'], {}), "('- Found new best validation metric')\n", (5619, 5657), False, 'import logging\n'), ((5803, 5859), 'os.path.join', 'os.path.join', (['model_dir', '"""metrics_val_best_weights.json"""'], {}), "(model_dir, 'metrics_val_best_weights.json')\n", (5815, 5859), False, 'import os\n'), ((5872, 5924), 'utils.save_dict_to_json', 'utils.save_dict_to_json', (['val_metrics', 'best_json_path'], {}), '(val_metrics, best_json_path)\n', (5895, 5924), False, 'import utils\n'), ((7306, 7313), 'model.x2net.x2Net', 'x2Net', ([], {}), '()\n', (7311, 7313), False, 'from model.x2net import x2Net\n'), ((7380, 7387), 'model.x3net.x3Net', 'x3Net', ([], {}), '()\n', (7385, 7387), False, 'from model.x3net import x3Net\n'), ((7454, 7461), 'model.x4net.x4Net', 'x4Net', ([], {}), '()\n', (7459, 7461), False, 'from model.x4net import x4Net\n')]
import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl import pandas as pd import sys sys.path.append("..") mpl.use('tkagg') # issues with Big Sur import matplotlib.pyplot as plt from strategy.williams_R import williamsR from backtest import Backtest from evaluate import SharpeRatio, MaxDrawdown, CAGR # load data df = pd.read_csv('../../database/microeconomic_data/hkex_ticks_day/hkex_0005.csv', header=0, index_col='Date', parse_dates=True) # select time range df = df.loc[pd.Timestamp('2017-01-01'):pd.Timestamp('2019-01-01')] ticker = "0005.HK" # William's R wr = williamsR(df) wr_fig = wr.plot_wr() wr_fig.suptitle('HK.0005 - Williams %R', fontsize=14) wr_fig.savefig('./figures/momentum/08-williamsR-plot') plt.show() signals = wr.gen_signals() signal_fig = wr.plot_signals(signals) signal_fig.suptitle('Williams %R - Signals', fontsize=14) signal_fig.savefig('./figures/momentum/08-williamsR_signals') plt.show() # Backtesting portfolio, backtest_fig = Backtest(ticker, signals, df) print("Final total value: {value:.4f} ".format(value = portfolio['total'][-1])) print("Total return: {value:.4f}%".format(value = (portfolio['total'][-1] - portfolio['total'][0])/portfolio['total'][-1]*100)) # for analysis print("No. of trade: {value}".format(value = len(signals[signals.positions == 1]))) backtest_fig.suptitle('Williams %R - Portfolio value', fontsize=14) backtest_fig.savefig('./figures/momentum/08-williamsR_portfolio-value') plt.show() # Evaluate strategy # 1. Sharpe ratio sharpe_ratio = SharpeRatio(portfolio) print("Sharpe ratio: {ratio:.4f} ".format(ratio = sharpe_ratio)) # 2. Maximum drawdown maxDrawdown_fig, max_daily_drawdown, daily_drawdown = MaxDrawdown(df) maxDrawdown_fig.suptitle('Williams %R - Maximum drawdown', fontsize=14) maxDrawdown_fig.savefig('./figures/momentum/08-williamsR_maximum-drawdown') plt.show() # 3. Compound Annual Growth Rate cagr = CAGR(portfolio) print("CAGR: {cagr:.4f} ".format(cagr = cagr))
[ "evaluate.MaxDrawdown", "evaluate.CAGR", "evaluate.SharpeRatio" ]
[((107, 128), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (122, 128), False, 'import sys\n'), ((129, 145), 'matplotlib.use', 'mpl.use', (['"""tkagg"""'], {}), "('tkagg')\n", (136, 145), True, 'import matplotlib as mpl\n'), ((344, 471), 'pandas.read_csv', 'pd.read_csv', (['"""../../database/microeconomic_data/hkex_ticks_day/hkex_0005.csv"""'], {'header': '(0)', 'index_col': '"""Date"""', 'parse_dates': '(True)'}), "('../../database/microeconomic_data/hkex_ticks_day/hkex_0005.csv',\n header=0, index_col='Date', parse_dates=True)\n", (355, 471), True, 'import pandas as pd\n'), ((597, 610), 'strategy.williams_R.williamsR', 'williamsR', (['df'], {}), '(df)\n', (606, 610), False, 'from strategy.williams_R import williamsR\n'), ((742, 752), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (750, 752), True, 'import matplotlib.pyplot as plt\n'), ((940, 950), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (948, 950), True, 'import matplotlib.pyplot as plt\n'), ((993, 1022), 'backtest.Backtest', 'Backtest', (['ticker', 'signals', 'df'], {}), '(ticker, signals, df)\n', (1001, 1022), False, 'from backtest import Backtest\n'), ((1471, 1481), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1479, 1481), True, 'import matplotlib.pyplot as plt\n'), ((1537, 1559), 'evaluate.SharpeRatio', 'SharpeRatio', (['portfolio'], {}), '(portfolio)\n', (1548, 1559), False, 'from evaluate import SharpeRatio, MaxDrawdown, CAGR\n'), ((1702, 1717), 'evaluate.MaxDrawdown', 'MaxDrawdown', (['df'], {}), '(df)\n', (1713, 1717), False, 'from evaluate import SharpeRatio, MaxDrawdown, CAGR\n'), ((1866, 1876), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1874, 1876), True, 'import matplotlib.pyplot as plt\n'), ((1918, 1933), 'evaluate.CAGR', 'CAGR', (['portfolio'], {}), '(portfolio)\n', (1922, 1933), False, 'from evaluate import SharpeRatio, MaxDrawdown, CAGR\n'), ((501, 527), 'pandas.Timestamp', 'pd.Timestamp', (['"""2017-01-01"""'], {}), "('2017-01-01')\n", (513, 527), True, 'import pandas as pd\n'), ((528, 554), 'pandas.Timestamp', 'pd.Timestamp', (['"""2019-01-01"""'], {}), "('2019-01-01')\n", (540, 554), True, 'import pandas as pd\n')]
import tensorflow as tf import utilities import visualize import evaluate if __name__ == '__main__': train_dataset, test_dataset, encoder = utilities.load_data() model = tf.keras.Sequential([ encoder, tf.keras.layers.Embedding( input_dim=len(encoder.get_vocabulary()), output_dim=64, mask_zero=True), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(1) ]) model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.Adam(1e-4), metrics=['accuracy']) history = model.fit(train_dataset, epochs=1, validation_data=test_dataset, validation_steps=30) test_loss, test_acc = model.evaluate(test_dataset) visualize.display_results(test_loss, test_acc, history) evaluate.predict(model)
[ "evaluate.predict" ]
[((146, 167), 'utilities.load_data', 'utilities.load_data', ([], {}), '()\n', (165, 167), False, 'import utilities\n'), ((911, 966), 'visualize.display_results', 'visualize.display_results', (['test_loss', 'test_acc', 'history'], {}), '(test_loss, test_acc, history)\n', (936, 966), False, 'import visualize\n'), ((972, 995), 'evaluate.predict', 'evaluate.predict', (['model'], {}), '(model)\n', (988, 995), False, 'import evaluate\n'), ((437, 481), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(64)'], {'activation': '"""relu"""'}), "(64, activation='relu')\n", (458, 481), True, 'import tensorflow as tf\n'), ((491, 515), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(1)'], {}), '(1)\n', (512, 515), True, 'import tensorflow as tf\n'), ((547, 599), 'tensorflow.keras.losses.BinaryCrossentropy', 'tf.keras.losses.BinaryCrossentropy', ([], {'from_logits': '(True)'}), '(from_logits=True)\n', (581, 599), True, 'import tensorflow as tf\n'), ((629, 661), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', (['(0.0001)'], {}), '(0.0001)\n', (653, 661), True, 'import tensorflow as tf\n'), ((402, 426), 'tensorflow.keras.layers.LSTM', 'tf.keras.layers.LSTM', (['(64)'], {}), '(64)\n', (422, 426), True, 'import tensorflow as tf\n')]
import os import sys sys.path.insert(1, os.path.join(sys.path[0], '../utils')) import numpy as np import argparse import h5py import math import time import logging import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from utilities import (create_folder, get_filename, create_logging, load_scalar, get_labels) from data_generator import DataGenerator from models import Cnn_5layers_AvgPooling, Cnn_9layers_MaxPooling, Cnn_9layers_AvgPooling, Cnn_13layers_AvgPooling from losses import binary_cross_entropy from evaluate import Evaluator, StatisticsContainer from pytorch_utils import move_data_to_gpu import config def train(args): '''Training. Model will be saved after several iterations. Args: dataset_dir: string, directory of dataset workspace: string, directory of workspace taxonomy_level: 'fine' | 'coarse' model_type: string, e.g. 'Cnn_9layers_MaxPooling' holdout_fold: '1' | 'None', where '1' indicates using validation and 'None' indicates using full data for training batch_size: int cuda: bool mini_data: bool, set True for debugging on a small part of data ''' # Arugments & parameters dataset_dir = args.dataset_dir workspace = args.workspace taxonomy_level = args.taxonomy_level model_type = args.model_type holdout_fold = args.holdout_fold batch_size = args.batch_size cuda = args.cuda and torch.cuda.is_available() mini_data = args.mini_data filename = args.filename mel_bins = config.mel_bins frames_per_second = config.frames_per_second max_iteration = 10 # Number of mini-batches to evaluate on training data reduce_lr = True labels = get_labels(taxonomy_level) classes_num = len(labels) # Paths if mini_data: prefix = 'minidata_' else: prefix = '' train_hdf5_path = os.path.join(workspace, 'features', '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'train.h5') validate_hdf5_path = os.path.join(workspace, 'features', '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'validate.h5') scalar_path = os.path.join(workspace, 'scalars', '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'train.h5') checkpoints_dir = os.path.join(workspace, 'checkpoints', filename, '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'taxonomy_level={}'.format(taxonomy_level), 'holdout_fold={}'.format(holdout_fold), model_type) create_folder(checkpoints_dir) _temp_submission_path = os.path.join(workspace, '_temp_submissions', filename, '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'taxonomy_level={}'.format(taxonomy_level), 'holdout_fold={}'.format(holdout_fold), model_type, '_submission.csv') create_folder(os.path.dirname(_temp_submission_path)) validate_statistics_path = os.path.join(workspace, 'statistics', filename, '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'taxonomy_level={}'.format(taxonomy_level), 'holdout_fold={}'.format(holdout_fold), model_type, 'validate_statistics.pickle') create_folder(os.path.dirname(validate_statistics_path)) annotation_path = os.path.join(dataset_dir, 'annotations.csv') yaml_path = os.path.join(dataset_dir, 'dcase-ust-taxonomy.yaml') logs_dir = os.path.join(workspace, 'logs', filename, args.mode, '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'taxonomy_level={}'.format(taxonomy_level), 'holdout_fold={}'.format(holdout_fold), model_type) create_logging(logs_dir, 'w') logging.info(args) if cuda: logging.info('Using GPU.') else: logging.info('Using CPU. Set --cuda flag to use GPU.') # Load scalar scalar = load_scalar(scalar_path) # Model Model = eval(model_type) model = Model(classes_num) if cuda: model.cuda() # Optimizer optimizer = optim.Adam(model.parameters(), lr=1e-3, betas=(0.9, 0.999), eps=1e-08, weight_decay=0., amsgrad=True) # Data generator data_generator = DataGenerator( train_hdf5_path=train_hdf5_path, validate_hdf5_path=validate_hdf5_path, holdout_fold=holdout_fold, scalar=scalar, batch_size=batch_size) # Evaluator evaluator = Evaluator( model=model, data_generator=data_generator, taxonomy_level=taxonomy_level, cuda=cuda, verbose=False) # Statistics validate_statistics_container = StatisticsContainer(validate_statistics_path) train_bgn_time = time.time() iteration = 0 # Train on mini batches for batch_data_dict in data_generator.generate_train(): # Evaluate if iteration % 200 == 0: logging.info('------------------------------------') logging.info('Iteration: {}, {} level statistics:'.format( iteration, taxonomy_level)) train_fin_time = time.time() # Evaluate on training data if mini_data: raise Exception('`mini_data` flag must be set to False to use ' 'the official evaluation tool!') train_statistics = evaluator.evaluate( data_type='train', max_iteration=None) # Evaluate on validation data if holdout_fold != 'none': validate_statistics = evaluator.evaluate( data_type='validate', submission_path=_temp_submission_path, annotation_path=annotation_path, yaml_path=yaml_path, max_iteration=None) validate_statistics_container.append_and_dump( iteration, validate_statistics) train_time = train_fin_time - train_bgn_time validate_time = time.time() - train_fin_time logging.info( 'Train time: {:.3f} s, validate time: {:.3f} s' ''.format(train_time, validate_time)) train_bgn_time = time.time() # Save model if iteration % 1000 == 0 and iteration > 0: checkpoint = { 'iteration': iteration, 'model': model.state_dict(), 'optimizer': optimizer.state_dict()} checkpoint_path = os.path.join( checkpoints_dir, '{}_iterations.pth'.format(iteration)) torch.save(checkpoint, checkpoint_path) logging.info('Model saved to {}'.format(checkpoint_path)) # Reduce learning rate if reduce_lr and iteration % 200 == 0 and iteration > 0: for param_group in optimizer.param_groups: param_group['lr'] *= 0.9 # Move data to GPU for key in batch_data_dict.keys(): if key in ['feature', 'fine_target', 'coarse_target']: batch_data_dict[key] = move_data_to_gpu( batch_data_dict[key], cuda) # Train model.train() batch_output = model(batch_data_dict['feature']) # loss batch_target = batch_data_dict['{}_target'.format(taxonomy_level)] loss = binary_cross_entropy(batch_output, batch_target) # Backward optimizer.zero_grad() loss.backward() optimizer.step() # Stop learning if iteration == 5000: break iteration += 1 def inference_validation(args): '''Inference and calculate metrics on validation data. Args: dataset_dir: string, directory of dataset workspace: string, directory of workspace taxonomy_level: 'fine' | 'coarse' model_type: string, e.g. 'Cnn_9layers_MaxPooling' iteration: int holdout_fold: '1', which means using validation data batch_size: int cuda: bool mini_data: bool, set True for debugging on a small part of data visualize: bool ''' # Arugments & parameters dataset_dir = args.dataset_dir workspace = args.workspace taxonomy_level = args.taxonomy_level model_type = args.model_type iteration = args.iteration holdout_fold = args.holdout_fold batch_size = args.batch_size cuda = args.cuda and torch.cuda.is_available() mini_data = args.mini_data visualize = args.visualize filename = args.filename mel_bins = config.mel_bins frames_per_second = config.frames_per_second labels = get_labels(taxonomy_level) classes_num = len(labels) # Paths if mini_data: prefix = 'minidata_' else: prefix = '' train_hdf5_path = os.path.join(workspace, 'features', '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'train.h5') validate_hdf5_path = os.path.join(workspace, 'features', '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'validate.h5') scalar_path = os.path.join(workspace, 'scalars', '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'train.h5') checkpoint_path = os.path.join(workspace, 'checkpoints', filename, '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'taxonomy_level={}'.format(taxonomy_level), 'holdout_fold={}'.format(holdout_fold), model_type, '{}_iterations.pth'.format(iteration)) submission_path = os.path.join(workspace, 'submissions', filename, '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'taxonomy_level={}'.format(taxonomy_level), 'holdout_fold={}'.format(holdout_fold), model_type, 'submission.csv') create_folder(os.path.dirname(submission_path)) annotation_path = os.path.join(dataset_dir, 'annotations.csv') yaml_path = os.path.join(dataset_dir, 'dcase-ust-taxonomy.yaml') logs_dir = os.path.join(workspace, 'logs', filename, args.mode, '{}logmel_{}frames_{}melbins'.format(prefix, frames_per_second, mel_bins), 'taxonomy_level={}'.format(taxonomy_level), 'holdout_fold={}'.format(holdout_fold), model_type) create_logging(logs_dir, 'w') logging.info(args) # Load scalar scalar = load_scalar(scalar_path) # Load model Model = eval(model_type) model = Model(classes_num) checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint['model']) if cuda: model.cuda() # Data generator data_generator = DataGenerator( train_hdf5_path=train_hdf5_path, validate_hdf5_path=validate_hdf5_path, holdout_fold=holdout_fold, scalar=scalar, batch_size=batch_size) # Evaluator evaluator = Evaluator( model=model, data_generator=data_generator, taxonomy_level=taxonomy_level, cuda=cuda, verbose=True) # Evaluate on validation data evaluator.evaluate( data_type='validate', submission_path=submission_path, annotation_path=annotation_path, yaml_path=yaml_path, max_iteration=None) # Visualize if visualize: evaluator.visualize(data_type='validate') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Example of parser. ') subparsers = parser.add_subparsers(dest='mode') parser_train = subparsers.add_parser('train') parser_train.add_argument('--dataset_dir', type=str, required=True, help='Directory of dataset.') parser_train.add_argument('--workspace', type=str, required=True, help='Directory of your workspace.') parser_train.add_argument('--taxonomy_level', type=str, choices=['fine', 'coarse'], required=True) parser_train.add_argument('--model_type', type=str, required=True, help='E.g., Cnn_9layers_AvgPooling.') parser_train.add_argument('--holdout_fold', type=str, choices=['1', 'none'], required=True) parser_train.add_argument('--batch_size', type=int, required=True) parser_train.add_argument('--cuda', action='store_true', default=False) parser_train.add_argument('--mini_data', action='store_true', default=False, help='Set True for debugging on a small part of data.') parser_inference_validation = subparsers.add_parser('inference_validation') parser_inference_validation.add_argument('--dataset_dir', type=str, required=True) parser_inference_validation.add_argument('--workspace', type=str, required=True) parser_inference_validation.add_argument('--taxonomy_level', type=str, choices=['fine', 'coarse'], required=True) parser_inference_validation.add_argument('--model_type', type=str, required=True, help='E.g., Cnn_9layers_AvgPooling.') parser_inference_validation.add_argument('--holdout_fold', type=str, choices=['1'], required=True) parser_inference_validation.add_argument('--iteration', type=int, required=True, help='Load model of this iteration.') parser_inference_validation.add_argument('--batch_size', type=int, required=True) parser_inference_validation.add_argument('--cuda', action='store_true', default=False) parser_inference_validation.add_argument('--visualize', action='store_true', default=False, help='Visualize log mel spectrogram of different sound classes.') parser_inference_validation.add_argument('--mini_data', action='store_true', default=False, help='Set True for debugging on a small part of data.') args = parser.parse_args() args.filename = get_filename(__file__) if args.mode == 'train': train(args) elif args.mode == 'inference_validation': inference_validation(args) else: raise Exception('Error argument!')
[ "evaluate.Evaluator", "evaluate.StatisticsContainer" ]
[((40, 77), 'os.path.join', 'os.path.join', (['sys.path[0]', '"""../utils"""'], {}), "(sys.path[0], '../utils')\n", (52, 77), False, 'import os\n'), ((1793, 1819), 'utilities.get_labels', 'get_labels', (['taxonomy_level'], {}), '(taxonomy_level)\n', (1803, 1819), False, 'from utilities import create_folder, get_filename, create_logging, load_scalar, get_labels\n'), ((2739, 2769), 'utilities.create_folder', 'create_folder', (['checkpoints_dir'], {}), '(checkpoints_dir)\n', (2752, 2769), False, 'from utilities import create_folder, get_filename, create_logging, load_scalar, get_labels\n'), ((3542, 3586), 'os.path.join', 'os.path.join', (['dataset_dir', '"""annotations.csv"""'], {}), "(dataset_dir, 'annotations.csv')\n", (3554, 3586), False, 'import os\n'), ((3608, 3660), 'os.path.join', 'os.path.join', (['dataset_dir', '"""dcase-ust-taxonomy.yaml"""'], {}), "(dataset_dir, 'dcase-ust-taxonomy.yaml')\n", (3620, 3660), False, 'import os\n'), ((3936, 3965), 'utilities.create_logging', 'create_logging', (['logs_dir', '"""w"""'], {}), "(logs_dir, 'w')\n", (3950, 3965), False, 'from utilities import create_folder, get_filename, create_logging, load_scalar, get_labels\n'), ((3970, 3988), 'logging.info', 'logging.info', (['args'], {}), '(args)\n', (3982, 3988), False, 'import logging\n'), ((4143, 4167), 'utilities.load_scalar', 'load_scalar', (['scalar_path'], {}), '(scalar_path)\n', (4154, 4167), False, 'from utilities import create_folder, get_filename, create_logging, load_scalar, get_labels\n'), ((4474, 4633), 'data_generator.DataGenerator', 'DataGenerator', ([], {'train_hdf5_path': 'train_hdf5_path', 'validate_hdf5_path': 'validate_hdf5_path', 'holdout_fold': 'holdout_fold', 'scalar': 'scalar', 'batch_size': 'batch_size'}), '(train_hdf5_path=train_hdf5_path, validate_hdf5_path=\n validate_hdf5_path, holdout_fold=holdout_fold, scalar=scalar,\n batch_size=batch_size)\n', (4487, 4633), False, 'from data_generator import DataGenerator\n'), ((4707, 4822), 'evaluate.Evaluator', 'Evaluator', ([], {'model': 'model', 'data_generator': 'data_generator', 'taxonomy_level': 'taxonomy_level', 'cuda': 'cuda', 'verbose': '(False)'}), '(model=model, data_generator=data_generator, taxonomy_level=\n taxonomy_level, cuda=cuda, verbose=False)\n', (4716, 4822), False, 'from evaluate import Evaluator, StatisticsContainer\n'), ((4925, 4970), 'evaluate.StatisticsContainer', 'StatisticsContainer', (['validate_statistics_path'], {}), '(validate_statistics_path)\n', (4944, 4970), False, 'from evaluate import Evaluator, StatisticsContainer\n'), ((4997, 5008), 'time.time', 'time.time', ([], {}), '()\n', (5006, 5008), False, 'import time\n'), ((9045, 9071), 'utilities.get_labels', 'get_labels', (['taxonomy_level'], {}), '(taxonomy_level)\n', (9055, 9071), False, 'from utilities import create_folder, get_filename, create_logging, load_scalar, get_labels\n'), ((10410, 10454), 'os.path.join', 'os.path.join', (['dataset_dir', '"""annotations.csv"""'], {}), "(dataset_dir, 'annotations.csv')\n", (10422, 10454), False, 'import os\n'), ((10476, 10528), 'os.path.join', 'os.path.join', (['dataset_dir', '"""dcase-ust-taxonomy.yaml"""'], {}), "(dataset_dir, 'dcase-ust-taxonomy.yaml')\n", (10488, 10528), False, 'import os\n'), ((10804, 10833), 'utilities.create_logging', 'create_logging', (['logs_dir', '"""w"""'], {}), "(logs_dir, 'w')\n", (10818, 10833), False, 'from utilities import create_folder, get_filename, create_logging, load_scalar, get_labels\n'), ((10838, 10856), 'logging.info', 'logging.info', (['args'], {}), '(args)\n', (10850, 10856), False, 'import logging\n'), ((10897, 10921), 'utilities.load_scalar', 'load_scalar', (['scalar_path'], {}), '(scalar_path)\n', (10908, 10921), False, 'from utilities import create_folder, get_filename, create_logging, load_scalar, get_labels\n'), ((11017, 11044), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (11027, 11044), False, 'import torch\n'), ((11182, 11341), 'data_generator.DataGenerator', 'DataGenerator', ([], {'train_hdf5_path': 'train_hdf5_path', 'validate_hdf5_path': 'validate_hdf5_path', 'holdout_fold': 'holdout_fold', 'scalar': 'scalar', 'batch_size': 'batch_size'}), '(train_hdf5_path=train_hdf5_path, validate_hdf5_path=\n validate_hdf5_path, holdout_fold=holdout_fold, scalar=scalar,\n batch_size=batch_size)\n', (11195, 11341), False, 'from data_generator import DataGenerator\n'), ((11415, 11529), 'evaluate.Evaluator', 'Evaluator', ([], {'model': 'model', 'data_generator': 'data_generator', 'taxonomy_level': 'taxonomy_level', 'cuda': 'cuda', 'verbose': '(True)'}), '(model=model, data_generator=data_generator, taxonomy_level=\n taxonomy_level, cuda=cuda, verbose=True)\n', (11424, 11529), False, 'from evaluate import Evaluator, StatisticsContainer\n'), ((11941, 11999), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Example of parser. """'}), "(description='Example of parser. ')\n", (11964, 11999), False, 'import argparse\n'), ((14176, 14198), 'utilities.get_filename', 'get_filename', (['__file__'], {}), '(__file__)\n', (14188, 14198), False, 'from utilities import create_folder, get_filename, create_logging, load_scalar, get_labels\n'), ((1501, 1526), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1524, 1526), False, 'import torch\n'), ((3093, 3131), 'os.path.dirname', 'os.path.dirname', (['_temp_submission_path'], {}), '(_temp_submission_path)\n', (3108, 3131), False, 'import os\n'), ((3472, 3513), 'os.path.dirname', 'os.path.dirname', (['validate_statistics_path'], {}), '(validate_statistics_path)\n', (3487, 3513), False, 'import os\n'), ((4011, 4037), 'logging.info', 'logging.info', (['"""Using GPU."""'], {}), "('Using GPU.')\n", (4023, 4037), False, 'import logging\n'), ((4056, 4110), 'logging.info', 'logging.info', (['"""Using CPU. Set --cuda flag to use GPU."""'], {}), "('Using CPU. Set --cuda flag to use GPU.')\n", (4068, 4110), False, 'import logging\n'), ((7739, 7787), 'losses.binary_cross_entropy', 'binary_cross_entropy', (['batch_output', 'batch_target'], {}), '(batch_output, batch_target)\n', (7759, 7787), False, 'from losses import binary_cross_entropy\n'), ((8825, 8850), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (8848, 8850), False, 'import torch\n'), ((10349, 10381), 'os.path.dirname', 'os.path.dirname', (['submission_path'], {}), '(submission_path)\n', (10364, 10381), False, 'import os\n'), ((5193, 5245), 'logging.info', 'logging.info', (['"""------------------------------------"""'], {}), "('------------------------------------')\n", (5205, 5245), False, 'import logging\n'), ((5391, 5402), 'time.time', 'time.time', ([], {}), '()\n', (5400, 5402), False, 'import time\n'), ((6556, 6567), 'time.time', 'time.time', ([], {}), '()\n', (6565, 6567), False, 'import time\n'), ((6955, 6994), 'torch.save', 'torch.save', (['checkpoint', 'checkpoint_path'], {}), '(checkpoint, checkpoint_path)\n', (6965, 6994), False, 'import torch\n'), ((6352, 6363), 'time.time', 'time.time', ([], {}), '()\n', (6361, 6363), False, 'import time\n'), ((7455, 7499), 'pytorch_utils.move_data_to_gpu', 'move_data_to_gpu', (['batch_data_dict[key]', 'cuda'], {}), '(batch_data_dict[key], cuda)\n', (7471, 7499), False, 'from pytorch_utils import move_data_to_gpu\n')]
#!/usr/bin/env python from __future__ import print_function, division from evaluate import Evaluation import math import heapq import logging def logger(): return logging.getLogger(__name__) def expectimax(game, placements, feature_weights, beam = 1, return_all = False): eval = Evaluation(game, feature_weights) if not placements: return None, eval.value() def _expectimax(game, placements): if not placements: return eval.value() value = 0 for p in placements[0]: best = float('-inf') moves = game.own.field.moves(p) if moves and game.own.skips: moves.append(None) for m in moves: eval.update(m, *game.own.move(m)) v = _expectimax(game, placements[1:]) eval.rollback(*game.own.undo()) if v > best: best = v value += best return value / len(placements[0]) best = None, float('-inf') all = [] if return_all else None moves = game.own.field.moves(placements[0][0]) if moves and game.own.skips: moves.append(None) if beam < 1 and len(placements) > 1: def _snap_eval(m): eval.update(m, *game.own.move(m)) v = eval.value() eval.rollback(*game.own.undo()) return v num_beam = int(math.ceil(beam * len(moves))) moves = heapq.nlargest(num_beam, moves, key=_snap_eval) for m in moves: eval.update(m, *game.own.move(m)) v = _expectimax(game, placements[1:]) eval.rollback(*game.own.undo()) if v > best[1]: best = m, v if all is not None: all.append((m, v)) return (best, all) if return_all else best
[ "evaluate.Evaluation" ]
[((178, 205), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (195, 205), False, 'import logging\n'), ((302, 335), 'evaluate.Evaluation', 'Evaluation', (['game', 'feature_weights'], {}), '(game, feature_weights)\n', (312, 335), False, 'from evaluate import Evaluation\n'), ((1336, 1383), 'heapq.nlargest', 'heapq.nlargest', (['num_beam', 'moves'], {'key': '_snap_eval'}), '(num_beam, moves, key=_snap_eval)\n', (1350, 1383), False, 'import heapq\n')]
import os import sys import time import json import torch from torch import nn, optim from torch.utils.data import DataLoader, sampler from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import cv2 import math from argument import get_args from backbone import darknet53 from dataset import BOP_Dataset, collate_fn from model import PoseModule from scheduler import WarmupScheduler import transform from evaluate import evaluate from distributed import ( get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather, ) from utils import ( load_bop_meshes, visualize_pred, print_accuracy_per_class, ) from tensorboardX import SummaryWriter # reproducibility: https://pytorch.org/docs/stable/notes/randomness.html torch.manual_seed(0) np.random.seed(0) # close shared memory of pytorch if True: # https://github.com/huaweicloud/dls-example/issues/26 from torch.utils.data import dataloader from torch.multiprocessing import reductions from multiprocessing.reduction import ForkingPickler default_collate_func = dataloader.default_collate def default_collate_override(batch): dataloader._use_shared_memory = False return default_collate_func(batch) setattr(dataloader, 'default_collate', default_collate_override) for t in torch._storage_classes: if sys.version_info[0] == 2: if t in ForkingPickler.dispatch: del ForkingPickler.dispatch[t] else: if t in ForkingPickler._extra_reducers: del ForkingPickler._extra_reducers[t] def accumulate_dicts(data): all_data = all_gather(data) if get_rank() != 0: return data = {} for d in all_data: data.update(d) return data @torch.no_grad() def valid(cfg, epoch, loader, model, device, logger=None): torch.cuda.empty_cache() model.eval() if get_rank() == 0: pbar = tqdm(enumerate(loader), total=len(loader), dynamic_ncols=True) else: pbar = enumerate(loader) preds = {} meshes, _ = load_bop_meshes(cfg['DATASETS']['MESH_DIR']) for idx, (images, targets, meta_infos) in pbar: model.zero_grad() images = images.to(device) targets = [target.to(device) for target in targets] pred, aux = model(images, targets=targets) if get_rank() == 0 and idx % 10 == 0: bIdx = 0 imgpath, imgname = os.path.split(meta_infos[bIdx]['path']) name_prefix = imgpath.replace(os.sep, '_').replace('.', '') + '_' + os.path.splitext(imgname)[0] rawImg, visImg, gtImg = visualize_pred(images.tensors[bIdx], targets[bIdx], pred[bIdx], cfg['INPUT']['PIXEL_MEAN'], cfg['INPUT']['PIXEL_STD'], meshes) # cv2.imwrite(cfg['RUNTIME']['WORKING_DIR'] + name_prefix + '.png', rawImg) cv2.imwrite(cfg['RUNTIME']['WORKING_DIR'] + name_prefix + '_pred.png', visImg) cv2.imwrite(cfg['RUNTIME']['WORKING_DIR'] + name_prefix + '_gt.png', gtImg) # pred = [p.to('cpu') for p in pred] for m, p in zip(meta_infos, pred): preds.update({m['path']: { 'meta': m, 'pred': p }}) preds = accumulate_dicts(preds) if get_rank() != 0: return accuracy_adi_per_class, accuracy_rep_per_class, accuracy_adi_per_depth, accuracy_rep_per_depth, depth_range \ = evaluate(cfg, preds) print_accuracy_per_class(accuracy_adi_per_class, accuracy_rep_per_class) # writing log to tensorboard if logger: classNum = cfg['DATASETS']['N_CLASS'] - 1 # get rid of background class assert (len(accuracy_adi_per_class) == classNum) assert (len(accuracy_rep_per_class) == classNum) all_adi = {} all_rep = {} validClassNum = 0 for i in range(classNum): className = ('class_%02d' % i) logger.add_scalars('ADI/' + className, accuracy_adi_per_class[i], epoch) logger.add_scalars('REP/' + className, accuracy_rep_per_class[i], epoch) # assert (len(accuracy_adi_per_class[i]) == len(accuracy_rep_per_class[i])) if len(accuracy_adi_per_class[i]) > 0: for key, val in accuracy_adi_per_class[i].items(): if key in all_adi: all_adi[key] += val else: all_adi[key] = val for key, val in accuracy_rep_per_class[i].items(): if key in all_rep: all_rep[key] += val else: all_rep[key] = val validClassNum += 1 # averaging for key, val in all_adi.items(): all_adi[key] = val / validClassNum for key, val in all_rep.items(): all_rep[key] = val / validClassNum logger.add_scalars('ADI/all_class', all_adi, epoch) logger.add_scalars('REP/all_class', all_rep, epoch) return accuracy_adi_per_class, accuracy_rep_per_class, accuracy_adi_per_depth, accuracy_rep_per_depth, depth_range def train(cfg, epoch, max_epoch, loader, model, optimizer, scheduler, device, logger=None): model.train() if get_rank() == 0: pbar = tqdm(enumerate(loader), total=len(loader), dynamic_ncols=True) else: pbar = enumerate(loader) for idx, (images, targets, _) in pbar: model.zero_grad() images = images.to(device) targets = [target.to(device) for target in targets] _, loss_dict = model(images, targets=targets) loss_cls = loss_dict['loss_cls'].mean() loss_reg = loss_dict['loss_reg'].mean() loss = loss_cls + loss_reg loss.backward() nn.utils.clip_grad_norm_(model.parameters(), 5.0) optimizer.step() scheduler.step() loss_reduced = reduce_loss_dict(loss_dict) loss_cls = loss_reduced['loss_cls'].mean().item() loss_reg = loss_reduced['loss_reg'].mean().item() if get_rank() == 0: current_lr = optimizer.param_groups[0]['lr'] pbar_str = (("epoch: %d/%d, lr:%.6f, cls:%.4f, reg:%.4f") % ( epoch + 1, max_epoch, current_lr, loss_cls, loss_reg)) pbar.set_description(pbar_str) # writing log to tensorboard if logger and idx % 10 == 0: # totalStep = (epoch * len(loader) + idx) * args.batch * args.n_gpu totalStep = (epoch * len(loader) + idx) * cfg['SOLVER']['IMS_PER_BATCH'] logger.add_scalar('training/learning_rate', current_lr, totalStep) logger.add_scalar('training/loss_cls', loss_cls, totalStep) logger.add_scalar('training/loss_reg', loss_reg, totalStep) logger.add_scalar('training/loss_all', (loss_cls + loss_reg), totalStep) def data_sampler(dataset, shuffle, distributed): if distributed: return DistributedSampler(dataset, shuffle=shuffle) if shuffle: return sampler.RandomSampler(dataset) else: return sampler.SequentialSampler(dataset) if __name__ == '__main__': cfg = get_args() n_gpu = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 cfg['RUNTIME']['N_GPU'] = n_gpu cfg['RUNTIME']['DISTRIBUTED'] = n_gpu > 1 if cfg['RUNTIME']['DISTRIBUTED']: torch.cuda.set_device(cfg['RUNTIME']['LOCAL_RANK']) torch.distributed.init_process_group(backend='gloo', init_method='env://') synchronize() # device = 'cuda' device = cfg['RUNTIME']['RUNNING_DEVICE'] internal_K = np.array(cfg['INPUT']['INTERNAL_K']).reshape(3, 3) train_trans = transform.Compose( [ transform.Resize( cfg['INPUT']['INTERNAL_WIDTH'], cfg['INPUT']['INTERNAL_HEIGHT'], internal_K), transform.RandomShiftScaleRotate( cfg['SOLVER']['AUGMENTATION_SHIFT'], cfg['SOLVER']['AUGMENTATION_SCALE'], cfg['SOLVER']['AUGMENTATION_ROTATION'], cfg['INPUT']['INTERNAL_WIDTH'], cfg['INPUT']['INTERNAL_HEIGHT'], internal_K), transform.Normalize( cfg['INPUT']['PIXEL_MEAN'], cfg['INPUT']['PIXEL_STD']), transform.ToTensor(), ] ) valid_trans = transform.Compose( [ transform.Resize( cfg['INPUT']['INTERNAL_WIDTH'], cfg['INPUT']['INTERNAL_HEIGHT'], internal_K), transform.Normalize( cfg['INPUT']['PIXEL_MEAN'], cfg['INPUT']['PIXEL_STD']), transform.ToTensor(), ] ) train_set = BOP_Dataset( cfg['DATASETS']['TRAIN'], cfg['DATASETS']['MESH_DIR'], cfg['DATASETS']['BBOX_FILE'], train_trans, cfg['SOLVER']['STEPS_PER_EPOCH'] * cfg['SOLVER']['IMS_PER_BATCH'], training=True) valid_set = BOP_Dataset( cfg['DATASETS']['VALID'], cfg['DATASETS']['MESH_DIR'], cfg['DATASETS']['BBOX_FILE'], valid_trans, training=False) if cfg['MODEL']['BACKBONE'] == 'darknet53': backbone = darknet53(pretrained=True) else: print("unsupported backbone!") assert 0 model = PoseModule(cfg, backbone) model = model.to(device) start_epoch = 0 # https://discuss.pytorch.org/t/is-average-the-correct-way-for-the-gradient-in-distributeddataparallel-with-multi-nodes/34260/13 base_lr = cfg['SOLVER']['BASE_LR'] / cfg['RUNTIME']['N_GPU'] optimizer = optim.SGD( model.parameters(), lr=0, # the learning rate will be taken care by scheduler momentum=0.9, weight_decay=0.0001, nesterov=True, ) batch_size_per_gpu = int(cfg['SOLVER']['IMS_PER_BATCH'] / cfg['RUNTIME']['N_GPU']) max_epoch = math.ceil(cfg['SOLVER']['MAX_ITER'] * cfg['SOLVER']['IMS_PER_BATCH'] / len(train_set)) scheduler_batch = WarmupScheduler( optimizer, base_lr, cfg['SOLVER']['MAX_ITER'], cfg['SOLVER']['SCHEDULER_POLICY'], cfg['SOLVER']['SCHEDULER_PARAMS']) if cfg['RUNTIME']['DISTRIBUTED']: model = nn.parallel.DistributedDataParallel( model, device_ids=[cfg['RUNTIME']['LOCAL_RANK']], output_device=cfg['RUNTIME']['LOCAL_RANK'], broadcast_buffers=False, ) model = model.module # load weight and create working_dir dynamically timestr = time.strftime('%Y%m%d_%H%M%S', time.localtime(time.time())) name_wo_ext = os.path.splitext(os.path.split(cfg['RUNTIME']['CONFIG_FILE'])[1])[0] working_dir = 'working_dirs' + '/' + name_wo_ext + '/' + timestr + '/' cfg['RUNTIME']['WORKING_DIR'] = working_dir if os.path.exists(cfg['RUNTIME']['WEIGHT_FILE']): try: chkpt = torch.load(cfg['RUNTIME']['WEIGHT_FILE'], map_location='cpu') # load checkpoint if 'model' in chkpt: assert ('steps' in chkpt and 'optim' in chkpt) scheduler_batch.step_multiple(chkpt['steps']) start_epoch = int(chkpt['steps'] * cfg['SOLVER']['IMS_PER_BATCH'] / len(train_set)) model.load_state_dict(chkpt['model']) optimizer.load_state_dict(chkpt['optim']) # update working dir cfg['RUNTIME']['WORKING_DIR'] = os.path.split(cfg['RUNTIME']['WEIGHT_FILE'])[0] + '/' print('Weights and optimzer are loaded from ' + cfg['RUNTIME']['WEIGHT_FILE']) else: model.load_state_dict(chkpt) print('Weights from are loaded from ' + cfg['RUNTIME']['WEIGHT_FILE']) except: pass else: pass # print("working directory: " + cfg['RUNTIME']['WORKING_DIR']) if get_rank() == 0: os.makedirs(cfg['RUNTIME']['WORKING_DIR'], exist_ok=True) logger = SummaryWriter(cfg['RUNTIME']['WORKING_DIR']) # compute model size total_params_count = sum(p.numel() for p in model.parameters()) print("Model size: %d parameters" % total_params_count) train_loader = DataLoader( train_set, batch_size=batch_size_per_gpu, sampler=data_sampler(train_set, shuffle=True, distributed=cfg['RUNTIME']['DISTRIBUTED']), num_workers=cfg['RUNTIME']['NUM_WORKERS'], collate_fn=collate_fn(cfg['INPUT']['SIZE_DIVISIBLE']), ) valid_loader = DataLoader( valid_set, batch_size=batch_size_per_gpu, sampler=data_sampler(valid_set, shuffle=False, distributed=cfg['RUNTIME']['DISTRIBUTED']), num_workers=cfg['RUNTIME']['NUM_WORKERS'], collate_fn=collate_fn(cfg['INPUT']['SIZE_DIVISIBLE']), ) # write cfg to working_dir with open(cfg['RUNTIME']['WORKING_DIR'] + 'cfg.json', 'w') as f: json.dump(cfg, f, indent=4, sort_keys=True) for epoch in range(start_epoch, max_epoch): train(cfg, epoch, max_epoch, train_loader, model, optimizer, scheduler_batch, device, logger=logger) valid(cfg, epoch, valid_loader, model, device, logger=logger) if get_rank() == 0: torch.save({ 'steps': (epoch + 1) * int(len(train_set) / cfg['SOLVER']['IMS_PER_BATCH']), 'model': model.state_dict(), 'optim': optimizer.state_dict(), }, cfg['RUNTIME']['WORKING_DIR'] + 'latest.pth', ) if epoch == (max_epoch - 1): torch.save(model.state_dict(), cfg['RUNTIME']['WORKING_DIR'] + 'final.pth') # output final info if get_rank() == 0: timestr = time.strftime('%Y%m%d_%H%M%S', time.localtime(time.time())) commandstr = ' '.join([str(elem) for elem in sys.argv]) final_msg = ("finished at: %s\nworking_dir: %s\ncommands:%s" % ( timestr, cfg['RUNTIME']['WORKING_DIR'], commandstr)) with open(cfg['RUNTIME']['WORKING_DIR'] + 'info.txt', 'w') as f: f.write(final_msg) print(final_msg)
[ "evaluate.evaluate" ]
[((781, 801), 'torch.manual_seed', 'torch.manual_seed', (['(0)'], {}), '(0)\n', (798, 801), False, 'import torch\n'), ((802, 819), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (816, 819), True, 'import numpy as np\n'), ((1800, 1815), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1813, 1815), False, 'import torch\n'), ((1661, 1677), 'distributed.all_gather', 'all_gather', (['data'], {}), '(data)\n', (1671, 1677), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((1879, 1903), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (1901, 1903), False, 'import torch\n'), ((2101, 2145), 'utils.load_bop_meshes', 'load_bop_meshes', (["cfg['DATASETS']['MESH_DIR']"], {}), "(cfg['DATASETS']['MESH_DIR'])\n", (2116, 2145), False, 'from utils import load_bop_meshes, visualize_pred, print_accuracy_per_class\n'), ((3502, 3522), 'evaluate.evaluate', 'evaluate', (['cfg', 'preds'], {}), '(cfg, preds)\n', (3510, 3522), False, 'from evaluate import evaluate\n'), ((3528, 3600), 'utils.print_accuracy_per_class', 'print_accuracy_per_class', (['accuracy_adi_per_class', 'accuracy_rep_per_class'], {}), '(accuracy_adi_per_class, accuracy_rep_per_class)\n', (3552, 3600), False, 'from utils import load_bop_meshes, visualize_pred, print_accuracy_per_class\n'), ((7280, 7290), 'argument.get_args', 'get_args', ([], {}), '()\n', (7288, 7290), False, 'from argument import get_args\n'), ((8880, 9080), 'dataset.BOP_Dataset', 'BOP_Dataset', (["cfg['DATASETS']['TRAIN']", "cfg['DATASETS']['MESH_DIR']", "cfg['DATASETS']['BBOX_FILE']", 'train_trans', "(cfg['SOLVER']['STEPS_PER_EPOCH'] * cfg['SOLVER']['IMS_PER_BATCH'])"], {'training': '(True)'}), "(cfg['DATASETS']['TRAIN'], cfg['DATASETS']['MESH_DIR'], cfg[\n 'DATASETS']['BBOX_FILE'], train_trans, cfg['SOLVER']['STEPS_PER_EPOCH'] *\n cfg['SOLVER']['IMS_PER_BATCH'], training=True)\n", (8891, 9080), False, 'from dataset import BOP_Dataset, collate_fn\n'), ((9137, 9267), 'dataset.BOP_Dataset', 'BOP_Dataset', (["cfg['DATASETS']['VALID']", "cfg['DATASETS']['MESH_DIR']", "cfg['DATASETS']['BBOX_FILE']", 'valid_trans'], {'training': '(False)'}), "(cfg['DATASETS']['VALID'], cfg['DATASETS']['MESH_DIR'], cfg[\n 'DATASETS']['BBOX_FILE'], valid_trans, training=False)\n", (9148, 9267), False, 'from dataset import BOP_Dataset, collate_fn\n'), ((9477, 9502), 'model.PoseModule', 'PoseModule', (['cfg', 'backbone'], {}), '(cfg, backbone)\n', (9487, 9502), False, 'from model import PoseModule\n'), ((10167, 10304), 'scheduler.WarmupScheduler', 'WarmupScheduler', (['optimizer', 'base_lr', "cfg['SOLVER']['MAX_ITER']", "cfg['SOLVER']['SCHEDULER_POLICY']", "cfg['SOLVER']['SCHEDULER_PARAMS']"], {}), "(optimizer, base_lr, cfg['SOLVER']['MAX_ITER'], cfg['SOLVER'\n ]['SCHEDULER_POLICY'], cfg['SOLVER']['SCHEDULER_PARAMS'])\n", (10182, 10304), False, 'from scheduler import WarmupScheduler\n'), ((10960, 11005), 'os.path.exists', 'os.path.exists', (["cfg['RUNTIME']['WEIGHT_FILE']"], {}), "(cfg['RUNTIME']['WEIGHT_FILE'])\n", (10974, 11005), False, 'import os\n'), ((1686, 1696), 'distributed.get_rank', 'get_rank', ([], {}), '()\n', (1694, 1696), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((1930, 1940), 'distributed.get_rank', 'get_rank', ([], {}), '()\n', (1938, 1940), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((3345, 3355), 'distributed.get_rank', 'get_rank', ([], {}), '()\n', (3353, 3355), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((5344, 5354), 'distributed.get_rank', 'get_rank', ([], {}), '()\n', (5352, 5354), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((5992, 6019), 'distributed.reduce_loss_dict', 'reduce_loss_dict', (['loss_dict'], {}), '(loss_dict)\n', (6008, 6019), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((7072, 7116), 'distributed.DistributedSampler', 'DistributedSampler', (['dataset'], {'shuffle': 'shuffle'}), '(dataset, shuffle=shuffle)\n', (7090, 7116), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((7149, 7179), 'torch.utils.data.sampler.RandomSampler', 'sampler.RandomSampler', (['dataset'], {}), '(dataset)\n', (7170, 7179), False, 'from torch.utils.data import DataLoader, sampler\n'), ((7206, 7240), 'torch.utils.data.sampler.SequentialSampler', 'sampler.SequentialSampler', (['dataset'], {}), '(dataset)\n', (7231, 7240), False, 'from torch.utils.data import DataLoader, sampler\n'), ((7500, 7551), 'torch.cuda.set_device', 'torch.cuda.set_device', (["cfg['RUNTIME']['LOCAL_RANK']"], {}), "(cfg['RUNTIME']['LOCAL_RANK'])\n", (7521, 7551), False, 'import torch\n'), ((7560, 7634), 'torch.distributed.init_process_group', 'torch.distributed.init_process_group', ([], {'backend': '"""gloo"""', 'init_method': '"""env://"""'}), "(backend='gloo', init_method='env://')\n", (7596, 7634), False, 'import torch\n'), ((7643, 7656), 'distributed.synchronize', 'synchronize', ([], {}), '()\n', (7654, 7656), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((9372, 9398), 'backbone.darknet53', 'darknet53', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (9381, 9398), False, 'from backbone import darknet53\n'), ((10372, 10535), 'torch.nn.parallel.DistributedDataParallel', 'nn.parallel.DistributedDataParallel', (['model'], {'device_ids': "[cfg['RUNTIME']['LOCAL_RANK']]", 'output_device': "cfg['RUNTIME']['LOCAL_RANK']", 'broadcast_buffers': '(False)'}), "(model, device_ids=[cfg['RUNTIME'][\n 'LOCAL_RANK']], output_device=cfg['RUNTIME']['LOCAL_RANK'],\n broadcast_buffers=False)\n", (10407, 10535), False, 'from torch import nn, optim\n'), ((12010, 12020), 'distributed.get_rank', 'get_rank', ([], {}), '()\n', (12018, 12020), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((12035, 12092), 'os.makedirs', 'os.makedirs', (["cfg['RUNTIME']['WORKING_DIR']"], {'exist_ok': '(True)'}), "(cfg['RUNTIME']['WORKING_DIR'], exist_ok=True)\n", (12046, 12092), False, 'import os\n'), ((12110, 12154), 'tensorboardX.SummaryWriter', 'SummaryWriter', (["cfg['RUNTIME']['WORKING_DIR']"], {}), "(cfg['RUNTIME']['WORKING_DIR'])\n", (12123, 12154), False, 'from tensorboardX import SummaryWriter\n'), ((13034, 13077), 'json.dump', 'json.dump', (['cfg', 'f'], {'indent': '(4)', 'sort_keys': '(True)'}), '(cfg, f, indent=4, sort_keys=True)\n', (13043, 13077), False, 'import json\n'), ((13804, 13814), 'distributed.get_rank', 'get_rank', ([], {}), '()\n', (13812, 13814), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((2472, 2511), 'os.path.split', 'os.path.split', (["meta_infos[bIdx]['path']"], {}), "(meta_infos[bIdx]['path'])\n", (2485, 2511), False, 'import os\n'), ((2658, 2789), 'utils.visualize_pred', 'visualize_pred', (['images.tensors[bIdx]', 'targets[bIdx]', 'pred[bIdx]', "cfg['INPUT']['PIXEL_MEAN']", "cfg['INPUT']['PIXEL_STD']", 'meshes'], {}), "(images.tensors[bIdx], targets[bIdx], pred[bIdx], cfg['INPUT'\n ]['PIXEL_MEAN'], cfg['INPUT']['PIXEL_STD'], meshes)\n", (2672, 2789), False, 'from utils import load_bop_meshes, visualize_pred, print_accuracy_per_class\n'), ((2936, 3014), 'cv2.imwrite', 'cv2.imwrite', (["(cfg['RUNTIME']['WORKING_DIR'] + name_prefix + '_pred.png')", 'visImg'], {}), "(cfg['RUNTIME']['WORKING_DIR'] + name_prefix + '_pred.png', visImg)\n", (2947, 3014), False, 'import cv2\n'), ((3027, 3102), 'cv2.imwrite', 'cv2.imwrite', (["(cfg['RUNTIME']['WORKING_DIR'] + name_prefix + '_gt.png')", 'gtImg'], {}), "(cfg['RUNTIME']['WORKING_DIR'] + name_prefix + '_gt.png', gtImg)\n", (3038, 3102), False, 'import cv2\n'), ((6148, 6158), 'distributed.get_rank', 'get_rank', ([], {}), '()\n', (6156, 6158), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((7744, 7780), 'numpy.array', 'np.array', (["cfg['INPUT']['INTERNAL_K']"], {}), "(cfg['INPUT']['INTERNAL_K'])\n", (7752, 7780), True, 'import numpy as np\n'), ((7855, 7953), 'transform.Resize', 'transform.Resize', (["cfg['INPUT']['INTERNAL_WIDTH']", "cfg['INPUT']['INTERNAL_HEIGHT']", 'internal_K'], {}), "(cfg['INPUT']['INTERNAL_WIDTH'], cfg['INPUT'][\n 'INTERNAL_HEIGHT'], internal_K)\n", (7871, 7953), False, 'import transform\n'), ((7995, 8232), 'transform.RandomShiftScaleRotate', 'transform.RandomShiftScaleRotate', (["cfg['SOLVER']['AUGMENTATION_SHIFT']", "cfg['SOLVER']['AUGMENTATION_SCALE']", "cfg['SOLVER']['AUGMENTATION_ROTATION']", "cfg['INPUT']['INTERNAL_WIDTH']", "cfg['INPUT']['INTERNAL_HEIGHT']", 'internal_K'], {}), "(cfg['SOLVER']['AUGMENTATION_SHIFT'], cfg[\n 'SOLVER']['AUGMENTATION_SCALE'], cfg['SOLVER']['AUGMENTATION_ROTATION'],\n cfg['INPUT']['INTERNAL_WIDTH'], cfg['INPUT']['INTERNAL_HEIGHT'], internal_K\n )\n", (8027, 8232), False, 'import transform\n'), ((8329, 8403), 'transform.Normalize', 'transform.Normalize', (["cfg['INPUT']['PIXEL_MEAN']", "cfg['INPUT']['PIXEL_STD']"], {}), "(cfg['INPUT']['PIXEL_MEAN'], cfg['INPUT']['PIXEL_STD'])\n", (8348, 8403), False, 'import transform\n'), ((8450, 8470), 'transform.ToTensor', 'transform.ToTensor', ([], {}), '()\n', (8468, 8470), False, 'import transform\n'), ((8548, 8646), 'transform.Resize', 'transform.Resize', (["cfg['INPUT']['INTERNAL_WIDTH']", "cfg['INPUT']['INTERNAL_HEIGHT']", 'internal_K'], {}), "(cfg['INPUT']['INTERNAL_WIDTH'], cfg['INPUT'][\n 'INTERNAL_HEIGHT'], internal_K)\n", (8564, 8646), False, 'import transform\n'), ((8704, 8778), 'transform.Normalize', 'transform.Normalize', (["cfg['INPUT']['PIXEL_MEAN']", "cfg['INPUT']['PIXEL_STD']"], {}), "(cfg['INPUT']['PIXEL_MEAN'], cfg['INPUT']['PIXEL_STD'])\n", (8723, 8778), False, 'import transform\n'), ((8825, 8845), 'transform.ToTensor', 'transform.ToTensor', ([], {}), '()\n', (8843, 8845), False, 'import transform\n'), ((10729, 10740), 'time.time', 'time.time', ([], {}), '()\n', (10738, 10740), False, 'import time\n'), ((11040, 11101), 'torch.load', 'torch.load', (["cfg['RUNTIME']['WEIGHT_FILE']"], {'map_location': '"""cpu"""'}), "(cfg['RUNTIME']['WEIGHT_FILE'], map_location='cpu')\n", (11050, 11101), False, 'import torch\n'), ((12567, 12609), 'dataset.collate_fn', 'collate_fn', (["cfg['INPUT']['SIZE_DIVISIBLE']"], {}), "(cfg['INPUT']['SIZE_DIVISIBLE'])\n", (12577, 12609), False, 'from dataset import BOP_Dataset, collate_fn\n'), ((12875, 12917), 'dataset.collate_fn', 'collate_fn', (["cfg['INPUT']['SIZE_DIVISIBLE']"], {}), "(cfg['INPUT']['SIZE_DIVISIBLE'])\n", (12885, 12917), False, 'from dataset import BOP_Dataset, collate_fn\n'), ((13319, 13329), 'distributed.get_rank', 'get_rank', ([], {}), '()\n', (13327, 13329), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((2385, 2395), 'distributed.get_rank', 'get_rank', ([], {}), '()\n', (2393, 2395), False, 'from distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather\n'), ((10778, 10822), 'os.path.split', 'os.path.split', (["cfg['RUNTIME']['CONFIG_FILE']"], {}), "(cfg['RUNTIME']['CONFIG_FILE'])\n", (10791, 10822), False, 'import os\n'), ((13885, 13896), 'time.time', 'time.time', ([], {}), '()\n', (13894, 13896), False, 'import time\n'), ((2592, 2617), 'os.path.splitext', 'os.path.splitext', (['imgname'], {}), '(imgname)\n', (2608, 2617), False, 'import os\n'), ((11576, 11620), 'os.path.split', 'os.path.split', (["cfg['RUNTIME']['WEIGHT_FILE']"], {}), "(cfg['RUNTIME']['WEIGHT_FILE'])\n", (11589, 11620), False, 'import os\n')]
from data import dev_data, sample_num from optimizer import * from feature import Features, FeatureVector from model import write_predictions from evaluate import evaluate def train( data, feature_names, tagset, epochs, optimizer, score_func=perceptron_score, step_size=1, ): """ Trains the model on the data and returns the parameters :param data: Array of dictionaries representing the data. One dictionary for each data point (as created by the make_data_point function). :param feature_names: Array of Strings. The list of feature names. :param tagset: Array of Strings. The list of tags. :param epochs: Int. The number of epochs to train :return: FeatureVector. The learned parameters. """ parameters = FeatureVector({}) # creates a zero vector gradient = get_gradient( data, feature_names, tagset, parameters, score_func ) def training_observer(epoch, parameters): """ Evaluates the parameters on the development data, and writes out the parameters to a 'model.iter'+epoch and the predictions to 'ner.dev.out'+epoch. :param epoch: int. The epoch :param parameters: Feature Vector. The current parameters :return: Double. F1 on the development data """ (_, _, f1) = evaluate( dev_data, parameters, feature_names, tagset, score_func ) return f1 # return the final parameters return optimizer( sample_num, epochs, gradient, parameters, training_observer, step_size=step_size, )
[ "evaluate.evaluate" ]
[((786, 803), 'feature.FeatureVector', 'FeatureVector', (['{}'], {}), '({})\n', (799, 803), False, 'from feature import Features, FeatureVector\n'), ((1337, 1402), 'evaluate.evaluate', 'evaluate', (['dev_data', 'parameters', 'feature_names', 'tagset', 'score_func'], {}), '(dev_data, parameters, feature_names, tagset, score_func)\n', (1345, 1402), False, 'from evaluate import evaluate\n')]
from typing import Iterable, List import pysam from evaluate.classification import ( Classification, RecallClassification, PrecisionClassification, ) class Classifier: def __init__(self, sam: Iterable[pysam.AlignedSegment] = None, name: str = ""): if sam is None: sam = [] self.sam = sam self.name = name def classify(self) -> List[Classification]: classifications = [] for record in self.sam: classification = self.make_classification(record=record) classifications.append(classification) return classifications def make_classification(self, record): return Classification(record) class RecallClassifier(Classifier): def make_classification(self, record): return RecallClassification(record) class PrecisionClassifier(Classifier): def make_classification(self, record): return PrecisionClassification(record)
[ "evaluate.classification.RecallClassification", "evaluate.classification.Classification", "evaluate.classification.PrecisionClassification" ]
[((682, 704), 'evaluate.classification.Classification', 'Classification', (['record'], {}), '(record)\n', (696, 704), False, 'from evaluate.classification import Classification, RecallClassification, PrecisionClassification\n'), ((801, 829), 'evaluate.classification.RecallClassification', 'RecallClassification', (['record'], {}), '(record)\n', (821, 829), False, 'from evaluate.classification import Classification, RecallClassification, PrecisionClassification\n'), ((929, 960), 'evaluate.classification.PrecisionClassification', 'PrecisionClassification', (['record'], {}), '(record)\n', (952, 960), False, 'from evaluate.classification import Classification, RecallClassification, PrecisionClassification\n')]
import torch import torch.optim as optim from torch.optim.lr_scheduler import StepLR import torch.nn.utils.prune as prune import numpy as np import gin import sys sys.path.append('../src') from models import LeNetFC, LeNetConv, Conv2 from train import train from evaluate import test from prepare_data import load_mnist, load_cifar10 from pruning import PruneModel @gin.configurable def main( model=LeNetFC, dataset='mnist', batch_size=64, train_size=None, test_batch_size=1000, epochs=3, lr=1.0, gamma=0.7, no_cuda=False, rand_seed=42, save_model=False, ): """ This is the main script which trains and tests the model Args: model (torch.nn.Module): which model to use for the experiment dataset (str): which dataset to use for the experiment batch_size (int): size of training mini-batch train_size (int): size of train set, not necessary to specify with 'mnist' test_batch_size (int): size of testing batch epochs (int): num epochs lr (float): learning rate gamma (float): rate at which to adjust lr with scheduler no_cuda (bool): cuda or not rand_seed (int): random seed save_model (bool): whether to save pytorch model conv_layers (bool): whether to include convolutional layers in LeNet architecture or not """ # view model print(model) if dataset == 'mnist': train_loader, val_loader, test_loader, use_cuda = load_mnist(batch_size, test_batch_size, no_cuda, rand_seed) elif dataset == 'cifar10': train_loader, val_loader, test_loader, use_cuda = load_cifar10( batch_size, train_size, test_batch_size, no_cuda, rand_seed ) print(len(train_loader.dataset)) # setup device, model, optimizer, and lr scheduler device = torch.device('cuda' if use_cuda else 'cpu') print('device:', device) model = model.to(device) optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = StepLR(optimizer, step_size=1, gamma=gamma) # run the training loop for epoch in range(1, epochs + 1): stop, stopping_iteration = train(model, device, train_loader, val_loader, test_loader, optimizer, epoch) scheduler.step() # test after each epoch test(model, device, test_loader) if stop: print('Stopped at overall iteration {}\n'.format(stopping_iteration + ((len(train_loader.dataset)/batch_size) * (epoch-1)))) break if save_model: torch.save(model.state_dict(), model.__class__.__name__ + '_' + dataset + ".pt") print('\nPruning...\n') prune_model = PruneModel( model, batch_size, train_loader, val_loader, test_loader, optimizer, epochs, scheduler, device, pruning_rounds=7 ) prune_model.prune() # # now predict w/ pruned network # test(model, device, test_loader) if __name__ == '__main__': gin.parse_config_file('../config/mnist_config.gin') main()
[ "evaluate.test" ]
[((164, 189), 'sys.path.append', 'sys.path.append', (['"""../src"""'], {}), "('../src')\n", (179, 189), False, 'import sys\n'), ((1900, 1943), 'torch.device', 'torch.device', (["('cuda' if use_cuda else 'cpu')"], {}), "('cuda' if use_cuda else 'cpu')\n", (1912, 1943), False, 'import torch\n'), ((2072, 2115), 'torch.optim.lr_scheduler.StepLR', 'StepLR', (['optimizer'], {'step_size': '(1)', 'gamma': 'gamma'}), '(optimizer, step_size=1, gamma=gamma)\n', (2078, 2115), False, 'from torch.optim.lr_scheduler import StepLR\n'), ((2727, 2855), 'pruning.PruneModel', 'PruneModel', (['model', 'batch_size', 'train_loader', 'val_loader', 'test_loader', 'optimizer', 'epochs', 'scheduler', 'device'], {'pruning_rounds': '(7)'}), '(model, batch_size, train_loader, val_loader, test_loader,\n optimizer, epochs, scheduler, device, pruning_rounds=7)\n', (2737, 2855), False, 'from pruning import PruneModel\n'), ((3001, 3052), 'gin.parse_config_file', 'gin.parse_config_file', (['"""../config/mnist_config.gin"""'], {}), "('../config/mnist_config.gin')\n", (3022, 3052), False, 'import gin\n'), ((1548, 1607), 'prepare_data.load_mnist', 'load_mnist', (['batch_size', 'test_batch_size', 'no_cuda', 'rand_seed'], {}), '(batch_size, test_batch_size, no_cuda, rand_seed)\n', (1558, 1607), False, 'from prepare_data import load_mnist, load_cifar10\n'), ((2219, 2296), 'train.train', 'train', (['model', 'device', 'train_loader', 'val_loader', 'test_loader', 'optimizer', 'epoch'], {}), '(model, device, train_loader, val_loader, test_loader, optimizer, epoch)\n', (2224, 2296), False, 'from train import train\n'), ((2364, 2396), 'evaluate.test', 'test', (['model', 'device', 'test_loader'], {}), '(model, device, test_loader)\n', (2368, 2396), False, 'from evaluate import test\n'), ((1697, 1770), 'prepare_data.load_cifar10', 'load_cifar10', (['batch_size', 'train_size', 'test_batch_size', 'no_cuda', 'rand_seed'], {}), '(batch_size, train_size, test_batch_size, no_cuda, rand_seed)\n', (1709, 1770), False, 'from prepare_data import load_mnist, load_cifar10\n')]
""" Evaluate the baselines on ROUGE""" import json import os from os.path import join, exists import argparse from evaluate import eval_rouge def main(dec_dir, ref_dir): dec_pattern = r'test-(\d+).txt' ref_pattern = 'test-#ID#.txt' output = eval_rouge(dec_pattern, dec_dir, ref_pattern, ref_dir) metric = 'rouge' print(output) with open(join(dec_dir, '{}.txt'.format(metric)), 'w') as f: f.write(output) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Evaluate summarization models') parser.add_argument('--decode_dir', action='store', required=True, help='directory of decoded summaries') parser.add_argument('--ref_dir', action='store', required=True, help='directory of reference summaries') args = parser.parse_args() dec_dir = args.decode_dir ref_dir = args.ref_dir main(dec_dir, ref_dir)
[ "evaluate.eval_rouge" ]
[((254, 308), 'evaluate.eval_rouge', 'eval_rouge', (['dec_pattern', 'dec_dir', 'ref_pattern', 'ref_dir'], {}), '(dec_pattern, dec_dir, ref_pattern, ref_dir)\n', (264, 308), False, 'from evaluate import eval_rouge\n'), ((479, 547), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Evaluate summarization models"""'}), "(description='Evaluate summarization models')\n", (502, 547), False, 'import argparse\n')]
import sys import numpy as np from os.path import join from copy import deepcopy import torch from torch.nn.functional import softmax from torch.nn.utils import clip_grad_norm_ from transformers import BertTokenizer, BertForQuestionAnswering from utils import AdamW from data import get_dataloader from evaluate import f1_score, exact_match_score, metric_max_over_ground_truths from datedur import DateDurationQA np.random.seed(42) torch.manual_seed(42) norm_tokenizer = BertTokenizer.from_pretrained('/home/M10815022/Models/bert-wwm-ext') def validate_dataset(model, split, tokenizer, device, topk=1, prefix=None): assert split in ('dev', 'test') dataloader = get_dataloader('bert', split, tokenizer, bwd=False, \ batch_size=1, num_workers=16, prefix=prefix) em, f1, count = 0, 0, 0 ddqa = DateDurationQA(tokenizer, model, device) for batch in dataloader: passage, question, answer = batch[0] preds, _ = ddqa.direct_predict(passage, question, topk=topk) count += 1 if len(preds) > 0: norm_preds_tokens = [norm_tokenizer.basic_tokenizer.tokenize(pred) for pred in preds] norm_preds = [norm_tokenizer.convert_tokens_to_string(norm_pred_tokens) for norm_pred_tokens in norm_preds_tokens] norm_answer_tokens = [norm_tokenizer.basic_tokenizer.tokenize(ans) for ans in answer] norm_answer = [norm_tokenizer.convert_tokens_to_string(ans_tokens) for ans_tokens in norm_answer_tokens] em += max(metric_max_over_ground_truths(exact_match_score, norm_pred, norm_answer) for norm_pred in norm_preds) f1 += max(metric_max_over_ground_truths(f1_score, norm_pred, norm_answer) for norm_pred in norm_preds) ddqa.tokenizer = None ddqa.model = None ddqa.device = None del ddqa, dataloader return em, f1, count def validate(model, tokenizer, device, topk=1, prefix=None): if prefix: print('---- Validation results on %s dataset ----' % prefix) # Valid set val_em, val_f1, val_count = validate_dataset(model, 'dev', tokenizer, device, topk, prefix) val_avg_em = 100 * val_em / val_count val_avg_f1 = 100 * val_f1 / val_count # Test set test_em, test_f1, test_count = validate_dataset(model, 'test', tokenizer, device, topk, prefix) test_avg_em = 100 * test_em / test_count test_avg_f1 = 100 * test_f1 / test_count print('%d-best | val_em=%.5f, val_f1=%.5f | test_em=%.5f, test_f1=%.5f' \ % (topk, val_avg_em, val_avg_f1, test_avg_em, test_avg_f1)) return val_avg_em if __name__ == '__main__': if len(sys.argv) != 4: print('Usage: python3 train_bert.py cuda:<n> <model_path> <save_path>') exit(1) # Config lr = 3e-5 batch_size = 4 accumulate_batch_size = 64 assert accumulate_batch_size % batch_size == 0 update_stepsize = accumulate_batch_size // batch_size model_path = sys.argv[2] tokenizer = BertTokenizer.from_pretrained(model_path) model = BertForQuestionAnswering.from_pretrained(model_path) device = torch.device(sys.argv[1]) model.to(device) optimizer = AdamW(model.parameters(), lr=lr) optimizer.zero_grad() step = 0 patience, best_val = 0, 0 best_state_dict = model.state_dict() dataloader = get_dataloader('bert', 'train', tokenizer, batch_size=batch_size, num_workers=16) n_step_per_epoch = len(dataloader) n_step_per_validation = n_step_per_epoch // 20 print('%d steps per epoch.' % n_step_per_epoch) print('%d steps per validation.' % n_step_per_validation) print('Start training...') while True: for batch in dataloader: input_ids, attention_mask, token_type_ids, start_positions, end_positions = batch input_ids = input_ids.cuda(device=device) attention_mask = attention_mask.cuda(device=device) token_type_ids = token_type_ids.cuda(device=device) start_positions = start_positions.cuda(device=device) end_positions = end_positions.cuda(device=device) model.train() loss = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, \ start_positions=start_positions, end_positions=end_positions)[0] loss.backward() step += 1 print('step %d | Training...\r' % step, end='') if step % update_stepsize == 0: optimizer.step() optimizer.zero_grad() if step % n_step_per_validation == 0: print("step %d | Validating..." % step) val_f1 = validate(model, tokenizer, device, topk=1) if val_f1 > best_val: patience = 0 best_val = val_f1 best_state_dict = deepcopy(model.state_dict()) save_path = join(sys.argv[3], 'state_dict.pt') torch.save(best_state_dict, save_path) else: patience += 1 if patience >= 40 or step >= 200000: print('Finish training. Scoring 1-5 best results...') save_path = join(sys.argv[3], 'state_dict.pt') torch.save(best_state_dict, save_path) model.load_state_dict(best_state_dict) for k in range(1, 6): validate(model, tokenizer, device, topk=k) del model, dataloader exit(0)
[ "evaluate.metric_max_over_ground_truths" ]
[((417, 435), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (431, 435), True, 'import numpy as np\n'), ((436, 457), 'torch.manual_seed', 'torch.manual_seed', (['(42)'], {}), '(42)\n', (453, 457), False, 'import torch\n'), ((476, 544), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['"""/home/M10815022/Models/bert-wwm-ext"""'], {}), "('/home/M10815022/Models/bert-wwm-ext')\n", (505, 544), False, 'from transformers import BertTokenizer, BertForQuestionAnswering\n'), ((676, 776), 'data.get_dataloader', 'get_dataloader', (['"""bert"""', 'split', 'tokenizer'], {'bwd': '(False)', 'batch_size': '(1)', 'num_workers': '(16)', 'prefix': 'prefix'}), "('bert', split, tokenizer, bwd=False, batch_size=1,\n num_workers=16, prefix=prefix)\n", (690, 776), False, 'from data import get_dataloader\n'), ((843, 883), 'datedur.DateDurationQA', 'DateDurationQA', (['tokenizer', 'model', 'device'], {}), '(tokenizer, model, device)\n', (857, 883), False, 'from datedur import DateDurationQA\n'), ((3010, 3051), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['model_path'], {}), '(model_path)\n', (3039, 3051), False, 'from transformers import BertTokenizer, BertForQuestionAnswering\n'), ((3064, 3116), 'transformers.BertForQuestionAnswering.from_pretrained', 'BertForQuestionAnswering.from_pretrained', (['model_path'], {}), '(model_path)\n', (3104, 3116), False, 'from transformers import BertTokenizer, BertForQuestionAnswering\n'), ((3131, 3156), 'torch.device', 'torch.device', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (3143, 3156), False, 'import torch\n'), ((3356, 3441), 'data.get_dataloader', 'get_dataloader', (['"""bert"""', '"""train"""', 'tokenizer'], {'batch_size': 'batch_size', 'num_workers': '(16)'}), "('bert', 'train', tokenizer, batch_size=batch_size,\n num_workers=16)\n", (3370, 3441), False, 'from data import get_dataloader\n'), ((5276, 5310), 'os.path.join', 'join', (['sys.argv[3]', '"""state_dict.pt"""'], {}), "(sys.argv[3], 'state_dict.pt')\n", (5280, 5310), False, 'from os.path import join\n'), ((5327, 5365), 'torch.save', 'torch.save', (['best_state_dict', 'save_path'], {}), '(best_state_dict, save_path)\n', (5337, 5365), False, 'import torch\n'), ((1537, 1609), 'evaluate.metric_max_over_ground_truths', 'metric_max_over_ground_truths', (['exact_match_score', 'norm_pred', 'norm_answer'], {}), '(exact_match_score, norm_pred, norm_answer)\n', (1566, 1609), False, 'from evaluate import f1_score, exact_match_score, metric_max_over_ground_truths\n'), ((1661, 1724), 'evaluate.metric_max_over_ground_truths', 'metric_max_over_ground_truths', (['f1_score', 'norm_pred', 'norm_answer'], {}), '(f1_score, norm_pred, norm_answer)\n', (1690, 1724), False, 'from evaluate import f1_score, exact_match_score, metric_max_over_ground_truths\n'), ((4978, 5012), 'os.path.join', 'join', (['sys.argv[3]', '"""state_dict.pt"""'], {}), "(sys.argv[3], 'state_dict.pt')\n", (4982, 5012), False, 'from os.path import join\n'), ((5033, 5071), 'torch.save', 'torch.save', (['best_state_dict', 'save_path'], {}), '(best_state_dict, save_path)\n', (5043, 5071), False, 'import torch\n')]
''' * @author Waileinsamkeit * @email <EMAIL> * @create date 2020-08-07 15:52:06 * @modify date 2020-08-07 15:52:06 ''' import random import pandas as pd import time import os from tabulate import tabulate from utils import extend_map,add_label_for_lstmcrf,save_model,flatten_lists,load_model from models.hmm import HMM from models.standard import HMM_standard from models.bilstm_crf import BiLSTM_CRF_Model from data import build_corpus from datetime import datetime from evaluate import Eval_unit,evaluate_entity_label,evaluate_single_label,evaluate_multiclass,unitstopd from config import ModelPathConfig,ResultPathConfig import torch from evaluating import bert_test,_bilstm_crf_test if torch.cuda.is_available(): torch.cuda.set_device(1) cwd=os.getcwd() def sample_print_test(word_list,tag_list,sample_num=5): indices=random.sample(range(len(word_list)),sample_num) print_word_list=[word_list[i] for i in indices] print_tag_list=[tag_list[i] for i in indices] for i in range(sample_num): s=' '.join(print_word_list[i]) s+='\n' s+=' '.join(print_tag_list[i]) print(s) def bilstm_crf_test(if_train=False): model_is_existed=os.path.exists(ModelPathConfig.bilstm_crf) print("upload data!") word_lists,tag_lists,word2id,tag2id=build_corpus("train") test_word_lists,test_tag_lists,_,_=build_corpus("test") labels=list(tag2id.keys()) dev_indices=random.sample(range(len(word_lists)),len(word_lists)//5) train_indices=[i for i in range(len(word_lists)) if i not in dev_indices] dev_word_lists=[ word_lists[ind] for ind in dev_indices] dev_tag_lists=[tag_lists[ind] for ind in dev_indices] train_word_lists=[word_lists[ind] for ind in train_indices] train_tag_lists=[tag_lists[ind] for ind in train_indices] test_word_lists,test_tag_lists=add_label_for_lstmcrf(test_word_lists,test_tag_lists,test=True) bilstm_crf_word2id,bilstm_crf_tag2id=extend_map(word2id,tag2id,crf=True) if if_train or not model_is_existed: print('start to training') train_word_lists,train_tag_lists=add_label_for_lstmcrf(train_word_lists,train_tag_lists,test=False) dev_word_lists,dev_tag_lists=add_label_for_lstmcrf(dev_word_lists,dev_tag_lists,test=False) # sample_print_test(train_word_lists,train_tag_lists) start=datetime.now() vocab_size=len(bilstm_crf_word2id) out_size=len(tag2id) bilstm_model=BiLSTM_CRF_Model(vocab_size,out_size,crf=True) bilstm_model.train(train_word_lists,train_tag_lists,\ bilstm_crf_word2id,bilstm_crf_tag2id,dev_word_lists,dev_tag_lists) deltatime=datetime.now()-start print("Training is finished, {} second".format(deltatime.seconds)) save_model(bilstm_model,ModelPathConfig.bilstm_crf) print("Save the model") else: print("load model") bilstm_model=load_model(ModelPathConfig.bilstm_crf) print("test the model") pred_tag_lists,label_tag_lists,=bilstm_model.test(test_word_lists,test_tag_lists,bilstm_crf_word2id,bilstm_crf_tag2id) units=evaluate_entity_label(pred_tag_lists,label_tag_lists,labels) df=unitstopd(units) df.to_csv(ResultPathConfig.bilstm_crf_entity) print(tabulate(df,headers='keys',tablefmt='psql')) units=evaluate_single_label(pred_tag_lists,label_tag_lists,labels) df=unitstopd(units) df.to_csv(ResultPathConfig.bilstm_crf_model) print(tabulate(df,headers='keys',tablefmt='psql')) def HMM_test(if_train=True): model_is_existed=os.path.exists(ModelPathConfig.hmm) print("upload data!") word_lists,tag_lists,word2id,tag2id=build_corpus("train") test_word_lists,test_tag_lists,_,_=build_corpus("test") # word_lists,tag_lists,word2id,tag2id=build_corpus("train",data_dir=os.path.join(os.getcwd(),"data",'ResumeNER')) # test_word_lists,test_tag_lists,_,_=build_corpus("test",data_dir=os.path.join(os.getcwd(),"data",'ResumeNER')) hmm_model=HMM(len(tag2id),len(word2id)) if if_train or not model_is_existed: print("start to training") hmm_model.train(word_lists,tag_lists,word2id,tag2id) print("save the model") save_model(hmm_model,ModelPathConfig.hmm) else: print("load model") hmm_model=load_model(ModelPathConfig.hmm) pred_tag_lists=hmm_model.test(test_word_lists,_,word2id,tag2id) label_tag_lists=test_tag_lists units=evaluate_entity_label(pred_tag_lists,label_tag_lists,list(tag2id.keys())) df=unitstopd(units) df.to_csv(ResultPathConfig.hmm_entity) print(tabulate(df,headers='keys',tablefmt='psql')) units=evaluate_single_label(pred_tag_lists,label_tag_lists,list(tag2id.keys())) df=unitstopd(units) df.to_csv(ResultPathConfig.hmm_model) print(tabulate(df,headers='keys',tablefmt='psql')) def HMM_test_standard(if_train=True): model_is_existed=os.path.exists(ModelPathConfig.hmm_standard) print("upload data!") word_lists,tag_lists,word2id,tag2id=build_corpus("train",data_dir=os.path.join(os.getcwd(),"data",'ResumeNER')) test_word_lists,test_tag_lists,_,_=build_corpus("test",data_dir=os.path.join(os.getcwd(),"data",'ResumeNER')) hmm_model=HMM_standard(len(tag2id),len(word2id)) if if_train or not model_is_existed: print("start to training") hmm_model.train(word_lists,tag_lists,word2id,tag2id) print("save the model") save_model(hmm_model,ModelPathConfig.hmm_standard) else: print("load model") hmm_model=load_model(ModelPathConfig.hmm_standard) pred_tag_lists=hmm_model.test(test_word_lists,word2id,tag2id) label_tag_lists=test_tag_lists units=evaluate_entity_label(pred_tag_lists,label_tag_lists,list(tag2id.keys())) df=unitstopd(units) df.to_csv(ResultPathConfig.hmm_entity_standard) print(tabulate(df,headers='keys',tablefmt='psql')) units=evaluate_single_label(pred_tag_lists,label_tag_lists,list(tag2id.keys())) df=unitstopd(units) df.to_csv(ResultPathConfig.hmm_model_standard) print(tabulate(df,headers='keys',tablefmt='psql')) if __name__=='__main__': bilstm_crf_test(if_train=True) # _bilstm_crf_test(if_train=True)
[ "evaluate.unitstopd", "evaluate.evaluate_single_label", "evaluate.evaluate_entity_label" ]
[((701, 726), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (724, 726), False, 'import torch\n'), ((767, 778), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (776, 778), False, 'import os\n'), ((732, 756), 'torch.cuda.set_device', 'torch.cuda.set_device', (['(1)'], {}), '(1)\n', (753, 756), False, 'import torch\n'), ((1202, 1244), 'os.path.exists', 'os.path.exists', (['ModelPathConfig.bilstm_crf'], {}), '(ModelPathConfig.bilstm_crf)\n', (1216, 1244), False, 'import os\n'), ((1312, 1333), 'data.build_corpus', 'build_corpus', (['"""train"""'], {}), "('train')\n", (1324, 1333), False, 'from data import build_corpus\n'), ((1373, 1393), 'data.build_corpus', 'build_corpus', (['"""test"""'], {}), "('test')\n", (1385, 1393), False, 'from data import build_corpus\n'), ((1857, 1922), 'utils.add_label_for_lstmcrf', 'add_label_for_lstmcrf', (['test_word_lists', 'test_tag_lists'], {'test': '(True)'}), '(test_word_lists, test_tag_lists, test=True)\n', (1878, 1922), False, 'from utils import extend_map, add_label_for_lstmcrf, save_model, flatten_lists, load_model\n'), ((1962, 1999), 'utils.extend_map', 'extend_map', (['word2id', 'tag2id'], {'crf': '(True)'}), '(word2id, tag2id, crf=True)\n', (1972, 1999), False, 'from utils import extend_map, add_label_for_lstmcrf, save_model, flatten_lists, load_model\n'), ((3132, 3194), 'evaluate.evaluate_entity_label', 'evaluate_entity_label', (['pred_tag_lists', 'label_tag_lists', 'labels'], {}), '(pred_tag_lists, label_tag_lists, labels)\n', (3153, 3194), False, 'from evaluate import Eval_unit, evaluate_entity_label, evaluate_single_label, evaluate_multiclass, unitstopd\n'), ((3200, 3216), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (3209, 3216), False, 'from evaluate import Eval_unit, evaluate_entity_label, evaluate_single_label, evaluate_multiclass, unitstopd\n'), ((3333, 3395), 'evaluate.evaluate_single_label', 'evaluate_single_label', (['pred_tag_lists', 'label_tag_lists', 'labels'], {}), '(pred_tag_lists, label_tag_lists, labels)\n', (3354, 3395), False, 'from evaluate import Eval_unit, evaluate_entity_label, evaluate_single_label, evaluate_multiclass, unitstopd\n'), ((3401, 3417), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (3410, 3417), False, 'from evaluate import Eval_unit, evaluate_entity_label, evaluate_single_label, evaluate_multiclass, unitstopd\n'), ((3574, 3609), 'os.path.exists', 'os.path.exists', (['ModelPathConfig.hmm'], {}), '(ModelPathConfig.hmm)\n', (3588, 3609), False, 'import os\n'), ((3677, 3698), 'data.build_corpus', 'build_corpus', (['"""train"""'], {}), "('train')\n", (3689, 3698), False, 'from data import build_corpus\n'), ((3738, 3758), 'data.build_corpus', 'build_corpus', (['"""test"""'], {}), "('test')\n", (3750, 3758), False, 'from data import build_corpus\n'), ((4541, 4557), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (4550, 4557), False, 'from evaluate import Eval_unit, evaluate_entity_label, evaluate_single_label, evaluate_multiclass, unitstopd\n'), ((4748, 4764), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (4757, 4764), False, 'from evaluate import Eval_unit, evaluate_entity_label, evaluate_single_label, evaluate_multiclass, unitstopd\n'), ((4923, 4967), 'os.path.exists', 'os.path.exists', (['ModelPathConfig.hmm_standard'], {}), '(ModelPathConfig.hmm_standard)\n', (4937, 4967), False, 'import os\n'), ((5799, 5815), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (5808, 5815), False, 'from evaluate import Eval_unit, evaluate_entity_label, evaluate_single_label, evaluate_multiclass, unitstopd\n'), ((6015, 6031), 'evaluate.unitstopd', 'unitstopd', (['units'], {}), '(units)\n', (6024, 6031), False, 'from evaluate import Eval_unit, evaluate_entity_label, evaluate_single_label, evaluate_multiclass, unitstopd\n'), ((2120, 2188), 'utils.add_label_for_lstmcrf', 'add_label_for_lstmcrf', (['train_word_lists', 'train_tag_lists'], {'test': '(False)'}), '(train_word_lists, train_tag_lists, test=False)\n', (2141, 2188), False, 'from utils import extend_map, add_label_for_lstmcrf, save_model, flatten_lists, load_model\n'), ((2224, 2288), 'utils.add_label_for_lstmcrf', 'add_label_for_lstmcrf', (['dev_word_lists', 'dev_tag_lists'], {'test': '(False)'}), '(dev_word_lists, dev_tag_lists, test=False)\n', (2245, 2288), False, 'from utils import extend_map, add_label_for_lstmcrf, save_model, flatten_lists, load_model\n'), ((2365, 2379), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2377, 2379), False, 'from datetime import datetime\n'), ((2474, 2522), 'models.bilstm_crf.BiLSTM_CRF_Model', 'BiLSTM_CRF_Model', (['vocab_size', 'out_size'], {'crf': '(True)'}), '(vocab_size, out_size, crf=True)\n', (2490, 2522), False, 'from models.bilstm_crf import BiLSTM_CRF_Model\n'), ((2785, 2837), 'utils.save_model', 'save_model', (['bilstm_model', 'ModelPathConfig.bilstm_crf'], {}), '(bilstm_model, ModelPathConfig.bilstm_crf)\n', (2795, 2837), False, 'from utils import extend_map, add_label_for_lstmcrf, save_model, flatten_lists, load_model\n'), ((2928, 2966), 'utils.load_model', 'load_model', (['ModelPathConfig.bilstm_crf'], {}), '(ModelPathConfig.bilstm_crf)\n', (2938, 2966), False, 'from utils import extend_map, add_label_for_lstmcrf, save_model, flatten_lists, load_model\n'), ((3277, 3322), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (3285, 3322), False, 'from tabulate import tabulate\n'), ((3477, 3522), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (3485, 3522), False, 'from tabulate import tabulate\n'), ((4216, 4258), 'utils.save_model', 'save_model', (['hmm_model', 'ModelPathConfig.hmm'], {}), '(hmm_model, ModelPathConfig.hmm)\n', (4226, 4258), False, 'from utils import extend_map, add_label_for_lstmcrf, save_model, flatten_lists, load_model\n'), ((4314, 4345), 'utils.load_model', 'load_model', (['ModelPathConfig.hmm'], {}), '(ModelPathConfig.hmm)\n', (4324, 4345), False, 'from utils import extend_map, add_label_for_lstmcrf, save_model, flatten_lists, load_model\n'), ((4611, 4656), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (4619, 4656), False, 'from tabulate import tabulate\n'), ((4817, 4862), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (4825, 4862), False, 'from tabulate import tabulate\n'), ((5457, 5508), 'utils.save_model', 'save_model', (['hmm_model', 'ModelPathConfig.hmm_standard'], {}), '(hmm_model, ModelPathConfig.hmm_standard)\n', (5467, 5508), False, 'from utils import extend_map, add_label_for_lstmcrf, save_model, flatten_lists, load_model\n'), ((5564, 5604), 'utils.load_model', 'load_model', (['ModelPathConfig.hmm_standard'], {}), '(ModelPathConfig.hmm_standard)\n', (5574, 5604), False, 'from utils import extend_map, add_label_for_lstmcrf, save_model, flatten_lists, load_model\n'), ((5878, 5923), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (5886, 5923), False, 'from tabulate import tabulate\n'), ((6093, 6138), 'tabulate.tabulate', 'tabulate', (['df'], {'headers': '"""keys"""', 'tablefmt': '"""psql"""'}), "(df, headers='keys', tablefmt='psql')\n", (6101, 6138), False, 'from tabulate import tabulate\n'), ((2680, 2694), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2692, 2694), False, 'from datetime import datetime\n'), ((5078, 5089), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (5087, 5089), False, 'import os\n'), ((5192, 5203), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (5201, 5203), False, 'import os\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ last mod 7/2/18 usage for new detector: first disable metrics check min_sensor_prob to <<0 use simple scoreToProb use the plots to figure out a good scoreToProb function then you can run metrics check current avg precisions: .5 iou -- .855, .783, .774 --> .863, .834, .837 .7 iou -- .538, .597, .619 n ground truths: 2608 easy, 6890 moderate, 8307 hard? monogrnet at .3 IoU:: .815, .72, .653 voxeljones at .3: .91, .79, .76 """ import numpy as np from sklearn.neighbors import KernelDensity from sklearn.linear_model import LinearRegression from config import grndstart, grndstep, grndlen min_sensor_prob_to_report = .03 dataformat = '/home/m2/Data/kitti/estimates/detectionsBT630/{:02d}f{:04d}.npy' #dataformat = '/home/m2/Data/kitti/estimates/detectionsMGR/{:02d}f{:04d}.npy' #def scoreToProb(score): return score+30 ### default before you've checked performance #def scoreToProb(score): # BT323 # score = 1/(1+np.exp(-.3*score+1)) # if score < .25: return 0 # return max(0, min(1, 0.10 - 1.05*score + 2.04*score*score))*.8 + .1 #def scoreToProb(score): # BT528 # return np.minimum(.2 + score*.09 - score*score*.003, 1) #def scoreToProb(score): # BT620 # return np.maximum(np.minimum(.2 + .11*score - .0025*score*score, .95), .05) #def scoreToProb(score): # BT630 pre 8/14/19 # out = np.where(score < -3, score*.0025 + .07, # .33 + .11*score - .01*score*score) # return np.maximum(np.minimum(out, .99), .01) def scoreToProb(score): # BT630 post 8/14/19 out = np.where(score < -3, score*.0025 + .07, 1/(1+np.exp(1.-score*.82))) return np.maximum(np.minimum(out, .99), .01) def getMsmts(sceneidx, fileidx): data = np.load(dataformat.format(sceneidx, fileidx)) if data.shape == (0,): data = np.zeros((0,6)) data[data[:,2]>np.pi, 2] -= 2*np.pi data[:,5] = scoreToProb(data[:,5]) data = data[data[:,5] > min_sensor_prob_to_report] return data def getMsmtsInTile(msmts, tilex, tiley): xlo = (tilex + grndstart[0])*grndstep[0] xhi = xlo + grndstep[0] ylo = (tiley + grndstart[1])*grndstep[1] yhi = ylo + grndstep[1] intile = ((msmts[:,0] >= xlo) & (msmts[:,0] < xhi) & (msmts[:,1] >= ylo) & (msmts[:,1] < yhi)) assert sum(intile) <= 2 # for this simulation return msmts[intile].copy() if __name__ == '__main__': # analyze score distribution for true and false detections from scipy.optimize import linear_sum_assignment import matplotlib.pyplot as plt from evaluate import MetricAvgPrec, soMetricIoU from analyzeGT import readGroundTruthFileTracking from trackinginfo import sceneranges gt_files = '/home/m2/Data/kitti/tracking_gt/{:04d}.txt' scene_idxs = list(range(10)) scoresmatch = [] scorescrop = [] scoresmiss = [] nmissed = 0 nmissedcrop = 0 metric = MetricAvgPrec() for scene_idx in scene_idxs: startfileidx, endfileidx = sceneranges[scene_idx] with open(gt_files.format(scene_idx), 'r') as fd: gtfilestr = fd.read() gt_all, gtdontcares = readGroundTruthFileTracking(gtfilestr, ('Car', 'Van')) selfposT = None # isn't actually used for fileidx in range(startfileidx, endfileidx): gt = gt_all[fileidx] gtscored = np.array([gtobj['scored'] for gtobj in gt]) gtboxes = np.array([gtobj['box'] for gtobj in gt]) gtdiff = np.array([gtobj['difficulty'] for gtobj in gt]) msmts = getMsmts(scene_idx, fileidx) ngt = gtscored.shape[0] nmsmts = msmts.shape[0] matches = np.zeros((ngt, nmsmts)) for gtidx, msmtidx in np.ndindex(ngt, nmsmts): gtbox = gtboxes[gtidx] msmt = msmts[msmtidx] #closeness = np.hypot(*(gtbox[:2]-msmt[:2])) * .4 #closeness += ((gtbox[2]-msmt[2]+np.pi)%(2*np.pi)-np.pi) * 1. #closeness += np.hypot(*(gtbox[3:]-msmt[3:5])) * .3 #closeness -= 1 #closeness = np.hypot(*(gtbox[:2]-msmt[:2])) - 1.5 closeness = soMetricIoU(gtbox, msmt, cutoff=.1) matches[gtidx, msmtidx] = min(closeness, 0) matchesnonmiss = matches < 0 rowpairs, colpairs = linear_sum_assignment(matches) msmtsmissed = np.ones(nmsmts, dtype=bool) for rowidx, colidx in zip(rowpairs, colpairs): nonmiss = matchesnonmiss[rowidx, colidx] noncrop = gtscored[rowidx] if nonmiss: msmtsmissed[colidx] = False if noncrop: scoresmatch.append(msmts[colidx,5]) else: scorescrop.append(msmts[colidx,5]) else: nmissed += 1 if noncrop: nmissedcrop += 1 for msmtidx in range(nmsmts): if msmtsmissed[msmtidx]: scoresmiss.append(msmts[msmtidx,5]) metric.add(gtboxes, gtscored, gtdiff, msmts[:,:5], msmts[:,5]) scoresmatch.sort() scorescrop.sort() scoresmiss.sort() nmatches = len(scoresmatch) nmisses = len(scoresmiss) relmatches = float(nmatches) / (nmatches + nmisses) allscores = scoresmatch + scorescrop + scoresmiss minscore = np.percentile(allscores, .5) maxscore = np.percentile(allscores, 99.5) scorearray = np.linspace(minscore, maxscore, 100) kd = KernelDensity(bandwidth = (maxscore-minscore)/50, kernel='gaussian') scoreT = kd.fit(np.array(scoresmatch)[:,None]).score_samples( scorearray[:,None]) scoreT = np.exp(scoreT) * relmatches scoreF = kd.fit(np.array(scoresmiss)[:,None]).score_samples( scorearray[:,None]) scoreF = np.exp(scoreF) * (1-relmatches) ratio = scoreT / np.maximum(scoreT + scoreF, 1e-8) # fit a quadratic model to the ratio of true to false X = np.column_stack((scorearray, scorearray**2)) lm = LinearRegression(fit_intercept=True, normalize=True).fit(X, ratio) coefs = (lm.intercept_, lm.coef_[0], lm.coef_[1]) print(coefs) ests = coefs[0] + coefs[1]*scorearray + coefs[2]*scorearray**2 plt.plot(scorearray, ratio, 'b', scorearray, ests, 'g--') avgprec = metric.calc()
[ "evaluate.soMetricIoU", "evaluate.MetricAvgPrec" ]
[((2937, 2952), 'evaluate.MetricAvgPrec', 'MetricAvgPrec', ([], {}), '()\n', (2950, 2952), False, 'from evaluate import MetricAvgPrec, soMetricIoU\n'), ((5510, 5539), 'numpy.percentile', 'np.percentile', (['allscores', '(0.5)'], {}), '(allscores, 0.5)\n', (5523, 5539), True, 'import numpy as np\n'), ((5554, 5584), 'numpy.percentile', 'np.percentile', (['allscores', '(99.5)'], {}), '(allscores, 99.5)\n', (5567, 5584), True, 'import numpy as np\n'), ((5602, 5638), 'numpy.linspace', 'np.linspace', (['minscore', 'maxscore', '(100)'], {}), '(minscore, maxscore, 100)\n', (5613, 5638), True, 'import numpy as np\n'), ((5648, 5718), 'sklearn.neighbors.KernelDensity', 'KernelDensity', ([], {'bandwidth': '((maxscore - minscore) / 50)', 'kernel': '"""gaussian"""'}), "(bandwidth=(maxscore - minscore) / 50, kernel='gaussian')\n", (5661, 5718), False, 'from sklearn.neighbors import KernelDensity\n'), ((6143, 6189), 'numpy.column_stack', 'np.column_stack', (['(scorearray, scorearray ** 2)'], {}), '((scorearray, scorearray ** 2))\n', (6158, 6189), True, 'import numpy as np\n'), ((6406, 6463), 'matplotlib.pyplot.plot', 'plt.plot', (['scorearray', 'ratio', '"""b"""', 'scorearray', 'ests', '"""g--"""'], {}), "(scorearray, ratio, 'b', scorearray, ests, 'g--')\n", (6414, 6463), True, 'import matplotlib.pyplot as plt\n'), ((1682, 1703), 'numpy.minimum', 'np.minimum', (['out', '(0.99)'], {}), '(out, 0.99)\n', (1692, 1703), True, 'import numpy as np\n'), ((1842, 1858), 'numpy.zeros', 'np.zeros', (['(0, 6)'], {}), '((0, 6))\n', (1850, 1858), True, 'import numpy as np\n'), ((3168, 3222), 'analyzeGT.readGroundTruthFileTracking', 'readGroundTruthFileTracking', (['gtfilestr', "('Car', 'Van')"], {}), "(gtfilestr, ('Car', 'Van'))\n", (3195, 3222), False, 'from analyzeGT import readGroundTruthFileTracking\n'), ((5840, 5854), 'numpy.exp', 'np.exp', (['scoreT'], {}), '(scoreT)\n', (5846, 5854), True, 'import numpy as np\n'), ((5990, 6004), 'numpy.exp', 'np.exp', (['scoreF'], {}), '(scoreF)\n', (5996, 6004), True, 'import numpy as np\n'), ((6043, 6077), 'numpy.maximum', 'np.maximum', (['(scoreT + scoreF)', '(1e-08)'], {}), '(scoreT + scoreF, 1e-08)\n', (6053, 6077), True, 'import numpy as np\n'), ((3390, 3433), 'numpy.array', 'np.array', (["[gtobj['scored'] for gtobj in gt]"], {}), "([gtobj['scored'] for gtobj in gt])\n", (3398, 3433), True, 'import numpy as np\n'), ((3456, 3496), 'numpy.array', 'np.array', (["[gtobj['box'] for gtobj in gt]"], {}), "([gtobj['box'] for gtobj in gt])\n", (3464, 3496), True, 'import numpy as np\n'), ((3518, 3565), 'numpy.array', 'np.array', (["[gtobj['difficulty'] for gtobj in gt]"], {}), "([gtobj['difficulty'] for gtobj in gt])\n", (3526, 3565), True, 'import numpy as np\n'), ((3722, 3745), 'numpy.zeros', 'np.zeros', (['(ngt, nmsmts)'], {}), '((ngt, nmsmts))\n', (3730, 3745), True, 'import numpy as np\n'), ((3780, 3803), 'numpy.ndindex', 'np.ndindex', (['ngt', 'nmsmts'], {}), '(ngt, nmsmts)\n', (3790, 3803), True, 'import numpy as np\n'), ((4391, 4421), 'scipy.optimize.linear_sum_assignment', 'linear_sum_assignment', (['matches'], {}), '(matches)\n', (4412, 4421), False, 'from scipy.optimize import linear_sum_assignment\n'), ((4448, 4475), 'numpy.ones', 'np.ones', (['nmsmts'], {'dtype': 'bool'}), '(nmsmts, dtype=bool)\n', (4455, 4475), True, 'import numpy as np\n'), ((6197, 6249), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'fit_intercept': '(True)', 'normalize': '(True)'}), '(fit_intercept=True, normalize=True)\n', (6213, 6249), False, 'from sklearn.linear_model import LinearRegression\n'), ((1637, 1663), 'numpy.exp', 'np.exp', (['(1.0 - score * 0.82)'], {}), '(1.0 - score * 0.82)\n', (1643, 1663), True, 'import numpy as np\n'), ((4221, 4257), 'evaluate.soMetricIoU', 'soMetricIoU', (['gtbox', 'msmt'], {'cutoff': '(0.1)'}), '(gtbox, msmt, cutoff=0.1)\n', (4232, 4257), False, 'from evaluate import MetricAvgPrec, soMetricIoU\n'), ((5737, 5758), 'numpy.array', 'np.array', (['scoresmatch'], {}), '(scoresmatch)\n', (5745, 5758), True, 'import numpy as np\n'), ((5888, 5908), 'numpy.array', 'np.array', (['scoresmiss'], {}), '(scoresmiss)\n', (5896, 5908), True, 'import numpy as np\n')]
import torch import time import numpy as np from torch import nn, optim import torch.utils.data as data import torch.nn.utils.rnn as rnn_utils from data_process import MyDataset from evaluate import valid_evaluate, test_evaluate def train_epoch(model, train_data, loss_weights, optimizer, epoch, config, padded_quotes, quote_lens, padded_exp, exp_lens): start = time.time() model.train() print('Train Epoch: %d start!' % epoch) avg_loss = 0.0 train_loader = data.DataLoader(train_data, collate_fn=train_data.my_collate, batch_size=config.batch_size, num_workers=0, shuffle=True) for batch_idx, batch in enumerate(train_loader): convs, conv_lens, conv_turn_lens, labels = batch[0], batch[1], batch[2], batch[3] if torch.cuda.is_available() and config.use_gpu: # run in GPU convs = convs.cuda() labels = labels.cuda() padded_quotes = padded_quotes.cuda() predictions = model(convs, conv_lens, conv_turn_lens, padded_quotes, quote_lens, padded_exp, exp_lens, labels=labels) if config.quote_query_loss_weight > 0 or config.hist_query_loss_weight > 0: preds, query_reps, quote_reps, hist_reps = predictions[0], predictions[1], predictions[2], predictions[3] loss = nn.CrossEntropyLoss()(preds, labels.long()) if batch_idx == 0: loss_print_1 = loss.data loss_print_2 = 0 loss_print_3 = 0 if config.quote_query_loss_weight > 0: loss += config.quote_query_loss_weight * nn.MSELoss(reduction='sum')(query_reps, quote_reps) / config.batch_size if batch_idx == 0: loss_print_2 = (nn.MSELoss(reduction='sum')(query_reps, quote_reps) / config.batch_size).data if batch_idx == 0: print('loss, quote_query, hist_query', loss_print_1, loss_print_2, loss_print_3) else: loss = nn.CrossEntropyLoss()(predictions, labels.long()) avg_loss += loss.item() optimizer.zero_grad() loss.backward() optimizer.step() avg_loss /= len(train_data) end = time.time() print('Train Epoch: %d done! Train avg_loss: %g! Using time: %.2f minutes!' % (epoch, avg_loss, (end - start) / 60)) return avg_loss def define_att_weight(model, train_data, config): model.eval() print('Begin to find objective attention weights!') train_loader = data.DataLoader(train_data, collate_fn=train_data.my_collate, batch_size=config.batch_size, num_workers=0) for batch_idx, batch in enumerate(train_loader): convs, conv_lens, conv_turn_lens, users, user_lens, user_turn_lens, labels = batch[0], batch[1], batch[2], batch[3], batch[4], batch[5], batch[6] if torch.cuda.is_available() and config.use_gpu: # run in GPU convs = convs.cuda() users = users.cuda() labels = labels.cuda() important_turn = torch.zeros_like(convs[:, :, 0]).float() predictions, _ = model(convs, conv_lens, conv_turn_lens, users, user_lens, user_turn_lens) for t in range(max(conv_lens)-1): have_masked = [] for c in range(len(convs)): if conv_lens[c] - 1 > t: convs[c, t] = torch.ones_like(convs[c, t]) have_masked.append(c) new_predictions, _ = model(convs, conv_lens, conv_turn_lens, users, user_lens, user_turn_lens) current_importance = torch.ge(torch.abs(new_predictions-labels), torch.abs(predictions-labels)).long() for c in have_masked: important_turn[c, t] = current_importance[c] for turn_weight in important_turn: if torch.sum(turn_weight) == 0: turn_weight = 1 - turn_weight turn_weight /= torch.sum(turn_weight) train_data.att_labels.append(turn_weight) train_data.att = True train_data.att_labels = rnn_utils.pad_sequence(train_data.att_labels, batch_first=True) print('Finish finding objective attention weights!') return train_data def define_att_weight_idf(corp, config): print('Begin to find objective attention weights based on IDF!') global_idf = np.zeros(corp.wordNum) for w in range(corp.wordNum): global_idf[w] = float(corp.convNum) / (len(corp.global_word_record[w]) + 1) global_idf = np.log10(global_idf) for c in range(len(corp.convs)): local_idf = np.ones(corp.wordNum) current_turn_num = len(corp.convs[c]) for w in corp.local_word_record[c]: local_idf[w] = float(current_turn_num) / (len(corp.local_word_record[c][w]) + 1) local_idf = np.log10(local_idf) current_att_weights = [] for turn in corp.convs[c]: word_idf = [global_idf[w]+config.idf_tradeoff*local_idf[w] for w in turn[1]] current_att_weights.append(sum(word_idf) / np.log(len(turn[1])+1)) current_att_weights = torch.Tensor(current_att_weights) if torch.cuda.is_available() and config.use_gpu: # run in GPU current_att_weights = current_att_weights.cuda() current_att_weights /= torch.sum(current_att_weights) corp.train_data.att_labels.append(current_att_weights) corp.train_data.att = True corp.train_data.att_labels = rnn_utils.pad_sequence(corp.train_data.att_labels, batch_first=True) print('Finish finding objective attention weights!') return corp.train_data def train(corp, model, config): train_optimizer = optim.Adam(model.parameters(), lr=config.lr, weight_decay=config.l2_weight) # train_data: conv_vecs, conv_lens, conv_turn_lens, my_labels train_data = corp.train_data padded_quotes = corp.padded_quotes quote_lens = corp.quote_lens padded_exp = corp.padded_exp exp_lens = corp.exp_lens corp.test_corpus(config.valid_file, mode='VALID') valid_data = MyDataset(corp, config, 'VALID') valid_loader = data.DataLoader(valid_data, collate_fn=valid_data.my_collate, batch_size=config.batch_size, num_workers=0) best_state = None best_valid_thr = 0.0 best_valid_map = -1.0 best_valid_loss = 999999.99 no_improve = 0 for epoch in range(config.max_epoch): train_epoch(model, train_data, config.loss_weights, train_optimizer, epoch, config, padded_quotes, quote_lens, padded_exp, exp_lens) valid_map, valid_loss = valid_evaluate(model, valid_loader, config, padded_quotes, quote_lens, padded_exp, exp_lens) if best_valid_map < valid_map or best_valid_loss > valid_loss: no_improve = 0 best_state = model.state_dict() if best_valid_map < valid_map: best_valid_map = valid_map print('New Best MAP Valid Result!!! Valid MAP: %g, Valid Loss: %g' % (valid_map, valid_loss)) if best_valid_loss > valid_loss: best_valid_loss = valid_loss print('New Best Loss Valid Result!!! Valid MAP: %g, Valid Loss: %g' % (valid_map, valid_loss)) else: no_improve += 1 print( 'No improve! Current Valid MAP: %g, Best Valid AUC: %g; Current Valid Loss: %g, Best Valid Loss: %g' % ( valid_map, best_valid_map, valid_loss, best_valid_loss)) if no_improve == 5: break model.load_state_dict(best_state) # Final step: Evaluate the model corp.test_corpus(config.test_file, mode='TEST') test_data = MyDataset(corp, config, 'TEST') test_loader = data.DataLoader(test_data, collate_fn=test_data.my_collate, batch_size=config.batch_size, num_workers=0) res = test_evaluate(model, test_loader, config, padded_quotes, quote_lens, padded_exp, exp_lens) print('Result in test set: MAP %g, P@1 %g, P@3 %g, nDCG@5 %g,nDCG@10 %g' % (res[0], res[1], res[2], res[3], res[4])) torch.save(model.state_dict(), config.path + 'map%.4f_p@1%.4f_best_seed%d.model' % (res[0], res[1], config.random_seed)) with open(config.path + 'map%.4f_p@1%.4f_best_seed%d.res' % (res[0], res[1], config.random_seed), 'w') as f: f.write('MAP %g \t P@1 %g \t P@3 %g \t nDCG@5 %g\t nDCG@10 %g\n'% (res[0], res[1], res[2], res[3], res[4])) f.write('\n\nParameters:\n') for key in config.__dict__: f.write('%s : %s\n' % (key, config.__dict__[key]))
[ "evaluate.test_evaluate", "evaluate.valid_evaluate" ]
[((368, 379), 'time.time', 'time.time', ([], {}), '()\n', (377, 379), False, 'import time\n'), ((480, 605), 'torch.utils.data.DataLoader', 'data.DataLoader', (['train_data'], {'collate_fn': 'train_data.my_collate', 'batch_size': 'config.batch_size', 'num_workers': '(0)', 'shuffle': '(True)'}), '(train_data, collate_fn=train_data.my_collate, batch_size=\n config.batch_size, num_workers=0, shuffle=True)\n', (495, 605), True, 'import torch.utils.data as data\n'), ((2154, 2165), 'time.time', 'time.time', ([], {}), '()\n', (2163, 2165), False, 'import time\n'), ((2451, 2562), 'torch.utils.data.DataLoader', 'data.DataLoader', (['train_data'], {'collate_fn': 'train_data.my_collate', 'batch_size': 'config.batch_size', 'num_workers': '(0)'}), '(train_data, collate_fn=train_data.my_collate, batch_size=\n config.batch_size, num_workers=0)\n', (2466, 2562), True, 'import torch.utils.data as data\n'), ((3967, 4030), 'torch.nn.utils.rnn.pad_sequence', 'rnn_utils.pad_sequence', (['train_data.att_labels'], {'batch_first': '(True)'}), '(train_data.att_labels, batch_first=True)\n', (3989, 4030), True, 'import torch.nn.utils.rnn as rnn_utils\n'), ((4239, 4261), 'numpy.zeros', 'np.zeros', (['corp.wordNum'], {}), '(corp.wordNum)\n', (4247, 4261), True, 'import numpy as np\n'), ((4397, 4417), 'numpy.log10', 'np.log10', (['global_idf'], {}), '(global_idf)\n', (4405, 4417), True, 'import numpy as np\n'), ((5341, 5409), 'torch.nn.utils.rnn.pad_sequence', 'rnn_utils.pad_sequence', (['corp.train_data.att_labels'], {'batch_first': '(True)'}), '(corp.train_data.att_labels, batch_first=True)\n', (5363, 5409), True, 'import torch.nn.utils.rnn as rnn_utils\n'), ((5930, 5962), 'data_process.MyDataset', 'MyDataset', (['corp', 'config', '"""VALID"""'], {}), "(corp, config, 'VALID')\n", (5939, 5962), False, 'from data_process import MyDataset\n'), ((5982, 6093), 'torch.utils.data.DataLoader', 'data.DataLoader', (['valid_data'], {'collate_fn': 'valid_data.my_collate', 'batch_size': 'config.batch_size', 'num_workers': '(0)'}), '(valid_data, collate_fn=valid_data.my_collate, batch_size=\n config.batch_size, num_workers=0)\n', (5997, 6093), True, 'import torch.utils.data as data\n'), ((7551, 7582), 'data_process.MyDataset', 'MyDataset', (['corp', 'config', '"""TEST"""'], {}), "(corp, config, 'TEST')\n", (7560, 7582), False, 'from data_process import MyDataset\n'), ((7601, 7710), 'torch.utils.data.DataLoader', 'data.DataLoader', (['test_data'], {'collate_fn': 'test_data.my_collate', 'batch_size': 'config.batch_size', 'num_workers': '(0)'}), '(test_data, collate_fn=test_data.my_collate, batch_size=\n config.batch_size, num_workers=0)\n', (7616, 7710), True, 'import torch.utils.data as data\n'), ((7716, 7810), 'evaluate.test_evaluate', 'test_evaluate', (['model', 'test_loader', 'config', 'padded_quotes', 'quote_lens', 'padded_exp', 'exp_lens'], {}), '(model, test_loader, config, padded_quotes, quote_lens,\n padded_exp, exp_lens)\n', (7729, 7810), False, 'from evaluate import valid_evaluate, test_evaluate\n'), ((4475, 4496), 'numpy.ones', 'np.ones', (['corp.wordNum'], {}), '(corp.wordNum)\n', (4482, 4496), True, 'import numpy as np\n'), ((4700, 4719), 'numpy.log10', 'np.log10', (['local_idf'], {}), '(local_idf)\n', (4708, 4719), True, 'import numpy as np\n'), ((4986, 5019), 'torch.Tensor', 'torch.Tensor', (['current_att_weights'], {}), '(current_att_weights)\n', (4998, 5019), False, 'import torch\n'), ((5183, 5213), 'torch.sum', 'torch.sum', (['current_att_weights'], {}), '(current_att_weights)\n', (5192, 5213), False, 'import torch\n'), ((6464, 6560), 'evaluate.valid_evaluate', 'valid_evaluate', (['model', 'valid_loader', 'config', 'padded_quotes', 'quote_lens', 'padded_exp', 'exp_lens'], {}), '(model, valid_loader, config, padded_quotes, quote_lens,\n padded_exp, exp_lens)\n', (6478, 6560), False, 'from evaluate import valid_evaluate, test_evaluate\n'), ((755, 780), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (778, 780), False, 'import torch\n'), ((2776, 2801), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2799, 2801), False, 'import torch\n'), ((3836, 3858), 'torch.sum', 'torch.sum', (['turn_weight'], {}), '(turn_weight)\n', (3845, 3858), False, 'import torch\n'), ((5031, 5056), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (5054, 5056), False, 'import torch\n'), ((1279, 1300), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1298, 1300), False, 'from torch import nn, optim\n'), ((1951, 1972), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1970, 1972), False, 'from torch import nn, optim\n'), ((2962, 2994), 'torch.zeros_like', 'torch.zeros_like', (['convs[:, :, 0]'], {}), '(convs[:, :, 0])\n', (2978, 2994), False, 'import torch\n'), ((3734, 3756), 'torch.sum', 'torch.sum', (['turn_weight'], {}), '(turn_weight)\n', (3743, 3756), False, 'import torch\n'), ((3288, 3316), 'torch.ones_like', 'torch.ones_like', (['convs[c, t]'], {}), '(convs[c, t])\n', (3303, 3316), False, 'import torch\n'), ((3508, 3543), 'torch.abs', 'torch.abs', (['(new_predictions - labels)'], {}), '(new_predictions - labels)\n', (3517, 3543), False, 'import torch\n'), ((3543, 3574), 'torch.abs', 'torch.abs', (['(predictions - labels)'], {}), '(predictions - labels)\n', (3552, 3574), False, 'import torch\n'), ((1569, 1596), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {'reduction': '"""sum"""'}), "(reduction='sum')\n", (1579, 1596), False, 'from torch import nn, optim\n'), ((1712, 1739), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {'reduction': '"""sum"""'}), "(reduction='sum')\n", (1722, 1739), False, 'from torch import nn, optim\n')]
import torch from torch.utils import data from utils import config from network.model import Model from network import dataset from evaluate import evaluate from sklearn.metrics import recall_score from focal_loss.focal_loss import FocalLoss from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm def train(model, train_dataloader, val_dataloader, epochs): device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = model.to(device) writer = SummaryWriter(comment=f"LR_{config.LR}_BATCH_{config.BATCH_SIZE}") # criterion = nn.BCELoss() criterion = FocalLoss(alpha=2, gamma=5) optimizer = torch.optim.Adam(model.parameters(), lr=config.LR) train_loss_history = [] train_accuracy_history = [] recall_history = [] val_loss_history = [] val_accuracy_history = [] val_recall_history = [] val_max_score = 0.0 for epoch in range(1, epochs + 1): train_loss = 0.0 train_accuracy = 0.0 y_preds = [] y_labels = [] for field, candidate, words, positions, masks, labels in tqdm(train_dataloader, desc="Epoch %s" % epoch): field = field.to(device) candidate = candidate.to(device) words = words.to(device) positions = positions.to(device) masks = masks.to(device) labels = labels.to(device) outputs = model(field, candidate, words, positions, masks) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() preds = outputs.round() y_preds.extend(list(preds.cpu().detach().numpy().reshape(1, -1)[0])) y_labels.extend(list(labels.cpu().detach().numpy().reshape(1, -1)[0])) train_accuracy += torch.sum(preds == labels).item() train_loss += loss.item() else: val_accuracy, val_loss, val_recall = evaluate(model, val_dataloader, criterion) train_loss = train_loss / train_dataloader.sampler.num_samples train_accuracy = train_accuracy / train_dataloader.sampler.num_samples recall = recall_score(y_labels, y_preds) train_loss_history.append(train_loss) train_accuracy_history.append(train_accuracy) recall_history.append(recall) val_loss_history.append(val_loss) val_accuracy_history.append(val_accuracy) val_recall_history.append(val_recall) writer.add_scalar('Recall/train', recall, epoch) writer.add_scalar('Loss/train', train_loss, epoch) writer.add_scalar('Accuracy/train', train_accuracy, epoch) writer.add_scalar('Recall/validation', val_recall, epoch) writer.add_scalar('Loss/validation', val_loss, epoch) writer.add_scalar('Accuracy/validation', val_accuracy, epoch) if val_recall > val_max_score: # Saving the best model print('saving model....') val_max_score = val_recall torch.save(model, 'output/model.pth') print(f"Metrics for Epoch {epoch}: Loss:{round(train_loss, 4)} \ Recall: {round(recall, 4)} \ Validation Loss: {round(val_loss, 4)} \ Validation Recall: {round(val_recall, 4)}") writer.flush() writer.close() return { 'training_loss': train_loss_history, 'training_accuracy': train_accuracy_history, 'training_recall': recall_history, 'validation_loss': val_loss_history, 'validation_accuracy': val_accuracy_history, 'validation_recall': recall_history } if __name__ == '__main__': # split name must equal to split filename eg: for train.txt -> train train_data = dataset.DocumentsDataset(split_name='train') val_data = dataset.DocumentsDataset(split_name='val') VOCAB_SIZE = len(train_data.vocab) training_data = data.DataLoader(train_data, batch_size=config.BATCH_SIZE, shuffle=True) validation_data = data.DataLoader(val_data, batch_size=config.BATCH_SIZE, shuffle=True) relie = Model(VOCAB_SIZE, config.EMBEDDING_SIZE, config.NEIGHBOURS, config.HEADS) # relie = torch.load('output/model.pth') history = train(relie, training_data, validation_data, config.EPOCHS) print(history)
[ "evaluate.evaluate" ]
[((495, 561), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {'comment': 'f"""LR_{config.LR}_BATCH_{config.BATCH_SIZE}"""'}), "(comment=f'LR_{config.LR}_BATCH_{config.BATCH_SIZE}')\n", (508, 561), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((609, 636), 'focal_loss.focal_loss.FocalLoss', 'FocalLoss', ([], {'alpha': '(2)', 'gamma': '(5)'}), '(alpha=2, gamma=5)\n', (618, 636), False, 'from focal_loss.focal_loss import FocalLoss\n'), ((3848, 3892), 'network.dataset.DocumentsDataset', 'dataset.DocumentsDataset', ([], {'split_name': '"""train"""'}), "(split_name='train')\n", (3872, 3892), False, 'from network import dataset\n'), ((3908, 3950), 'network.dataset.DocumentsDataset', 'dataset.DocumentsDataset', ([], {'split_name': '"""val"""'}), "(split_name='val')\n", (3932, 3950), False, 'from network import dataset\n'), ((4012, 4083), 'torch.utils.data.DataLoader', 'data.DataLoader', (['train_data'], {'batch_size': 'config.BATCH_SIZE', 'shuffle': '(True)'}), '(train_data, batch_size=config.BATCH_SIZE, shuffle=True)\n', (4027, 4083), False, 'from torch.utils import data\n'), ((4106, 4175), 'torch.utils.data.DataLoader', 'data.DataLoader', (['val_data'], {'batch_size': 'config.BATCH_SIZE', 'shuffle': '(True)'}), '(val_data, batch_size=config.BATCH_SIZE, shuffle=True)\n', (4121, 4175), False, 'from torch.utils import data\n'), ((4189, 4262), 'network.model.Model', 'Model', (['VOCAB_SIZE', 'config.EMBEDDING_SIZE', 'config.NEIGHBOURS', 'config.HEADS'], {}), '(VOCAB_SIZE, config.EMBEDDING_SIZE, config.NEIGHBOURS, config.HEADS)\n', (4194, 4262), False, 'from network.model import Model\n'), ((1100, 1147), 'tqdm.tqdm', 'tqdm', (['train_dataloader'], {'desc': "('Epoch %s' % epoch)"}), "(train_dataloader, desc='Epoch %s' % epoch)\n", (1104, 1147), False, 'from tqdm import tqdm\n'), ((415, 440), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (438, 440), False, 'import torch\n'), ((1968, 2010), 'evaluate.evaluate', 'evaluate', (['model', 'val_dataloader', 'criterion'], {}), '(model, val_dataloader, criterion)\n', (1976, 2010), False, 'from evaluate import evaluate\n'), ((2191, 2222), 'sklearn.metrics.recall_score', 'recall_score', (['y_labels', 'y_preds'], {}), '(y_labels, y_preds)\n', (2203, 2222), False, 'from sklearn.metrics import recall_score\n'), ((3098, 3135), 'torch.save', 'torch.save', (['model', '"""output/model.pth"""'], {}), "(model, 'output/model.pth')\n", (3108, 3135), False, 'import torch\n'), ((1832, 1858), 'torch.sum', 'torch.sum', (['(preds == labels)'], {}), '(preds == labels)\n', (1841, 1858), False, 'import torch\n')]
import utils import logging import torch import torch.nn as nn from optimization import BertAdam from tqdm import trange from evaluate import evaluate from dataloader import get_dataloader from utils.logger import save_result_to_csv_and_json def train(model, config): # Prepare optimizer 看不懂的东西,先不管 param_optimizer = list(model.named_parameters()) param_pre = [(n, p) for n, p in param_optimizer if 'bert' in n] param_downstream = [(n, p) for n, p in param_optimizer if 'bert' not in n] no_decay = ['bias', 'LayerNorm', 'layer_norm'] optimizer_grouped_parameters = [ # pretrain model param {'params': [p for n, p in param_pre if not any(nd in n for nd in no_decay)], 'weight_decay': config.weight_decay_rate, 'lr': config.fin_tuning_lr }, {'params': [p for n, p in param_pre if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, 'lr': config.fin_tuning_lr }, # downstream model {'params': [p for n, p in param_downstream if not any(nd in n for nd in no_decay)], 'weight_decay': config.weight_decay_rate, 'lr': config.downs_en_lr }, {'params': [p for n, p in param_downstream if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, 'lr': config.downs_en_lr } ] model.to(config.device) # dataset train_data = get_dataloader(config, 'train') # 5019 test_data = get_dataloader(config, 'test') # 703 val_data = get_dataloader(config, 'val') # 500 # optimizer num_steps = len(train_data) * config.args.epoch_num optimizer = BertAdam(optimizer_grouped_parameters, warmup=config.warmup_prop, schedule="warmup_cosine", t_total=num_steps) best_f1 = 0.0 early_stop = 0 for epoch in range(1, config.args.epoch_num+1): logging.info("Epoch {}/{}".format(epoch, config.args.epoch_num)) loss, tab, rel, ent, cor = _train_model(model, train_data, optimizer, config) logging.info("Training Avg Loss: {:.6f}, tab({:.6f})*{}, rel({:.6f})*{}, ent({:.6f})*{}, cor({:.6f})*{}".format( loss, tab, config.args.tab_loss, rel, config.args.rel_loss, ent, config.args.ent_loss, cor, config.args.cor_loss)) f1, p, r = evaluate(model, val_data, config, eval_type='val') if f1 > best_f1: best_f1 = f1 early_stop = 0 logging.warning("Find new best F1 >>> ({:.4f})".format(best_f1)) else: early_stop += 1 if early_stop >= config.early_stop: logging.warning("Early stoping in epoch {} and the best F1 is ({:.6f})!!!!".format(epoch, best_f1)) break logging.info("Final evaluate in 'test set':") f1, p, r, items = evaluate(model, test_data, config, eval_type='test') logging.warning("\n\n\nFinal Result: \nVal Best F1 Score is ({:.6f}), Test F1 Score is ({:.6f})".format(best_f1, f1)) save_result_to_csv_and_json(items, config.log_dir, "{}".format(int(f1*1e4))) def _train_model(model, dataloader, optimizer, config): """ Training model in one epoch.""" model.train() loss_avg = utils.RunningAverage() tab_loss_avg = utils.RunningAverage() rel_loss_avg = utils.RunningAverage() ent_loss_avg = utils.RunningAverage() cor_loss_avg = utils.RunningAverage() loss_func = nn.BCELoss(reduction='mean') t = trange(len(dataloader), ascii=True) for step, _ in enumerate(t): batch = next(iter(dataloader)) batch = tuple(t.to(config.device) for t in batch) ids, masks, table_tags, neg_masks, cor_tags, rel_tags, ent_tags = batch table, cors, rels, ents = model(ids, masks) # bsz, L, L, |R| if config.args.use_negative_mask: table = table * neg_masks tab_loss = loss_func(table, table_tags) rel_loss = loss_func(rels, rel_tags) ent_loss = loss_func(ents, ent_tags) cor_loss = loss_func(cors, cor_tags) loss = config.args.tab_loss * tab_loss \ + config.args.rel_loss * rel_loss \ + config.args.ent_loss * ent_loss \ + config.args.cor_loss * cor_loss loss.backward() optimizer.step() model.zero_grad() loss_avg.update(loss.item()) tab_loss_avg.update(tab_loss.item()) rel_loss_avg.update(rel_loss.item()) ent_loss_avg.update(ent_loss.item()) cor_loss_avg.update(cor_loss.item()) t.set_postfix(loss='{:.6f}/{:.6f}'.format(loss_avg(), loss.item())) return loss_avg(), tab_loss_avg(), rel_loss_avg(), ent_loss_avg(), cor_loss_avg()
[ "evaluate.evaluate" ]
[((1377, 1408), 'dataloader.get_dataloader', 'get_dataloader', (['config', '"""train"""'], {}), "(config, 'train')\n", (1391, 1408), False, 'from dataloader import get_dataloader\n'), ((1435, 1465), 'dataloader.get_dataloader', 'get_dataloader', (['config', '"""test"""'], {}), "(config, 'test')\n", (1449, 1465), False, 'from dataloader import get_dataloader\n'), ((1492, 1521), 'dataloader.get_dataloader', 'get_dataloader', (['config', '"""val"""'], {}), "(config, 'val')\n", (1506, 1521), False, 'from dataloader import get_dataloader\n'), ((1624, 1739), 'optimization.BertAdam', 'BertAdam', (['optimizer_grouped_parameters'], {'warmup': 'config.warmup_prop', 'schedule': '"""warmup_cosine"""', 't_total': 'num_steps'}), "(optimizer_grouped_parameters, warmup=config.warmup_prop, schedule=\n 'warmup_cosine', t_total=num_steps)\n", (1632, 1739), False, 'from optimization import BertAdam\n'), ((2746, 2791), 'logging.info', 'logging.info', (['"""Final evaluate in \'test set\':"""'], {}), '("Final evaluate in \'test set\':")\n', (2758, 2791), False, 'import logging\n'), ((2814, 2866), 'evaluate.evaluate', 'evaluate', (['model', 'test_data', 'config'], {'eval_type': '"""test"""'}), "(model, test_data, config, eval_type='test')\n", (2822, 2866), False, 'from evaluate import evaluate\n'), ((3203, 3225), 'utils.RunningAverage', 'utils.RunningAverage', ([], {}), '()\n', (3223, 3225), False, 'import utils\n'), ((3245, 3267), 'utils.RunningAverage', 'utils.RunningAverage', ([], {}), '()\n', (3265, 3267), False, 'import utils\n'), ((3287, 3309), 'utils.RunningAverage', 'utils.RunningAverage', ([], {}), '()\n', (3307, 3309), False, 'import utils\n'), ((3329, 3351), 'utils.RunningAverage', 'utils.RunningAverage', ([], {}), '()\n', (3349, 3351), False, 'import utils\n'), ((3371, 3393), 'utils.RunningAverage', 'utils.RunningAverage', ([], {}), '()\n', (3391, 3393), False, 'import utils\n'), ((3410, 3438), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {'reduction': '"""mean"""'}), "(reduction='mean')\n", (3420, 3438), True, 'import torch.nn as nn\n'), ((2318, 2368), 'evaluate.evaluate', 'evaluate', (['model', 'val_data', 'config'], {'eval_type': '"""val"""'}), "(model, val_data, config, eval_type='val')\n", (2326, 2368), False, 'from evaluate import evaluate\n')]
#!/usr/bin/env python # -*- encoding: utf-8 -*- # @Version : Python 3.6 import os import torch import torch.nn as nn import torch.optim as optim from tqdm import tqdm from transformers import AdamW from transformers import get_linear_schedule_with_warmup from transformers import WEIGHTS_NAME, CONFIG_NAME from config import Config from utils import RelationLoader, SemEvalDataLoader from model import R_BERT from evaluate import Eval class Runner(object): def __init__(self, id2rel, loader, user_config): self.class_num = len(id2rel) self.id2rel = id2rel self.loader = loader self.user_config = user_config self.model = R_BERT(self.class_num, user_config) self.model = self.model.to(user_config.device) self.eval_tool = Eval(user_config) def train(self): train_loader, dev_loader, _ = self.loader num_training_steps = len(train_loader) // self.user_config.\ gradient_accumulation_steps * self.user_config.epoch num_warmup_steps = int(num_training_steps * self.user_config.warmup_proportion) bert_params = list(map(id, self.model.bert.parameters())) rest_params = filter(lambda p: id( p) not in bert_params, self.model.parameters()) optimizer_grouped_parameters = [ {'params': self.model.bert.parameters()}, {'params': rest_params, 'lr': self.user_config.other_lr}, ] optimizer = AdamW( optimizer_grouped_parameters, lr=self.user_config.lr, eps=self.user_config.adam_epsilon ) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, ) print('--------------------------------------') print('traning model parameters (except PLM layers):') for name, param in self.model.named_parameters(): if id(param) in bert_params: continue if param.requires_grad: print('%s : %s' % (name, str(param.data.shape))) print('--------------------------------------') print('start to train the model ...') max_f1 = -float('inf') for epoch in range(1, 1+self.user_config.epoch): train_loss = 0.0 data_iterator = tqdm(train_loader, desc='Train') for _, (data, label) in enumerate(data_iterator): self.model.train() data = data.to(self.user_config.device) label = label.to(self.user_config.device) optimizer.zero_grad() loss, _ = self.model(data, label) train_loss += loss.item() loss.backward() nn.utils.clip_grad_norm_( self.model.parameters(), max_norm=self.user_config.max_grad_norm ) optimizer.step() scheduler.step() train_loss = train_loss / len(train_loader) f1, dev_loss, _ = self.eval_tool.evaluate(self.model, dev_loader) print('[%03d] train_loss: %.3f | dev_loss: %.3f | micro f1 on dev: %.4f' % (epoch, train_loss, dev_loss, f1), end=' ') if f1 > max_f1: max_f1 = f1 model_to_save = self.model.module if hasattr( self.model, 'module') else self.model output_model_file = os.path.join( self.user_config.model_dir, WEIGHTS_NAME) output_config_file = os.path.join( self.user_config.model_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.bert.config.to_json_file(output_config_file) print('>>> save models!') else: print() def test(self): print('--------------------------------------') print('start load model ...') if not os.path.exists(self.user_config.model_dir): raise Exception('no pre-trained model exists!') state_dict = torch.load( os.path.join(self.user_config.model_dir, WEIGHTS_NAME), map_location=self.user_config.device ) self.model.load_state_dict(state_dict) print('--------------------------------------') print('start test ...') _, _, test_loader = self.loader f1, test_loss, predict_label = self.eval_tool.evaluate(self.model, test_loader) print('test_loss: %.3f | micro f1 on test: %.4f' % (test_loss, f1)) return predict_label def print_result(predict_label, id2rel, start_idx=8001): des_file = './eval/predicted_result.txt' with open(des_file, 'w', encoding='utf-8') as fw: for i in range(0, predict_label.shape[0]): fw.write('{}\t{}\n'.format( start_idx+i, id2rel[int(predict_label[i])])) if __name__ == '__main__': user_config = Config() print('--------------------------------------') print('some config:') user_config.print_config() print('--------------------------------------') print('start to load data ...') rel2id, id2rel, class_num = RelationLoader(user_config).get_relation() loader = SemEvalDataLoader(rel2id, user_config) train_loader, dev_loader, test_loader = None, None, None if user_config.mode == 0: # train mode train_loader = loader.get_train() dev_loader = loader.get_dev() test_loader = loader.get_test() elif user_config.mode == 1: test_loader = loader.get_test() loader = [train_loader, dev_loader, test_loader] print('finish!') runner = Runner(id2rel, loader, user_config) if user_config.mode == 0: # train mode runner.train() predict_label = runner.test() elif user_config.mode == 1: predict_label = runner.test() else: raise ValueError('invalid train mode!') print_result(predict_label, id2rel)
[ "evaluate.Eval" ]
[((5095, 5103), 'config.Config', 'Config', ([], {}), '()\n', (5101, 5103), False, 'from config import Config\n'), ((5390, 5428), 'utils.SemEvalDataLoader', 'SemEvalDataLoader', (['rel2id', 'user_config'], {}), '(rel2id, user_config)\n', (5407, 5428), False, 'from utils import RelationLoader, SemEvalDataLoader\n'), ((671, 706), 'model.R_BERT', 'R_BERT', (['self.class_num', 'user_config'], {}), '(self.class_num, user_config)\n', (677, 706), False, 'from model import R_BERT\n'), ((787, 804), 'evaluate.Eval', 'Eval', (['user_config'], {}), '(user_config)\n', (791, 804), False, 'from evaluate import Eval\n'), ((1497, 1596), 'transformers.AdamW', 'AdamW', (['optimizer_grouped_parameters'], {'lr': 'self.user_config.lr', 'eps': 'self.user_config.adam_epsilon'}), '(optimizer_grouped_parameters, lr=self.user_config.lr, eps=self.\n user_config.adam_epsilon)\n', (1502, 1596), False, 'from transformers import AdamW\n'), ((1658, 1779), 'transformers.get_linear_schedule_with_warmup', 'get_linear_schedule_with_warmup', (['optimizer'], {'num_warmup_steps': 'num_warmup_steps', 'num_training_steps': 'num_training_steps'}), '(optimizer, num_warmup_steps=\n num_warmup_steps, num_training_steps=num_training_steps)\n', (1689, 1779), False, 'from transformers import get_linear_schedule_with_warmup\n'), ((2416, 2448), 'tqdm.tqdm', 'tqdm', (['train_loader'], {'desc': '"""Train"""'}), "(train_loader, desc='Train')\n", (2420, 2448), False, 'from tqdm import tqdm\n'), ((4103, 4145), 'os.path.exists', 'os.path.exists', (['self.user_config.model_dir'], {}), '(self.user_config.model_dir)\n', (4117, 4145), False, 'import os\n'), ((4253, 4307), 'os.path.join', 'os.path.join', (['self.user_config.model_dir', 'WEIGHTS_NAME'], {}), '(self.user_config.model_dir, WEIGHTS_NAME)\n', (4265, 4307), False, 'import os\n'), ((5334, 5361), 'utils.RelationLoader', 'RelationLoader', (['user_config'], {}), '(user_config)\n', (5348, 5361), False, 'from utils import RelationLoader, SemEvalDataLoader\n'), ((3552, 3606), 'os.path.join', 'os.path.join', (['self.user_config.model_dir', 'WEIGHTS_NAME'], {}), '(self.user_config.model_dir, WEIGHTS_NAME)\n', (3564, 3606), False, 'import os\n'), ((3665, 3718), 'os.path.join', 'os.path.join', (['self.user_config.model_dir', 'CONFIG_NAME'], {}), '(self.user_config.model_dir, CONFIG_NAME)\n', (3677, 3718), False, 'import os\n')]
from __future__ import print_function from __future__ import division import threading import os import argparse import time import tensorflow as tf import itertools from atari_env import make_env, S_DIM, A_DIM from net import Net from worker import Worker from utils import print_params_nums from evaluate import Evaluate def main(args): if args.save_path is not None and not os.path.exists(args.save_path): os.makedirs(args.save_path) summary_writer = tf.summary.FileWriter(os.path.join(args.save_path, 'log')) global_steps_counter = itertools.count() # thread-safe global_net = Net(S_DIM, A_DIM, 'global', args) num_workers = args.threads workers = [] # create workers for i in range(1, num_workers + 1): worker_summary_writer = summary_writer if i == 0 else None worker = Worker(i, make_env(args), global_steps_counter, worker_summary_writer, args) workers.append(worker) saver = tf.train.Saver(max_to_keep=5) with tf.Session() as sess: coord = tf.train.Coordinator() if args.model_path is not None: print('Loading model...\n') ckpt = tf.train.get_checkpoint_state(args.model_path) saver.restore(sess, ckpt.model_checkpoint_path) else: print('Initializing a new model...\n') sess.run(tf.global_variables_initializer()) print_params_nums() # Start work process for each worker in a seperated thread worker_threads = [] for worker in workers: t = threading.Thread(target=lambda: worker.run(sess, coord, saver)) t.start() time.sleep(0.5) worker_threads.append(t) if args.eval_every > 0: evaluator = Evaluate( global_net, summary_writer, global_steps_counter, args) evaluate_thread = threading.Thread( target=lambda: evaluator.run(sess, coord)) evaluate_thread.start() coord.join(worker_threads) def args_parse(): parser = argparse.ArgumentParser() parser.add_argument( '--model_path', default=None, type=str, help='Whether to use a saved model. (*None|model path)') parser.add_argument( '--save_path', default='/tmp/a3c', type=str, help='Path to save a model during training.') parser.add_argument( '--max_steps', default=int(1e8), type=int, help='Max training steps') parser.add_argument( '--start_time', default=None, type=str, help='Time to start training') parser.add_argument( '--threads', default=16, type=int, help='Numbers of parallel threads. [num_cpu_cores] by default') # evaluate parser.add_argument( '--eval_every', default=500, type=int, help='Evaluate the global policy every N seconds') parser.add_argument( '--record_video', default=True, type=bool, help='Whether to save videos when evaluating') parser.add_argument( '--eval_episodes', default=5, type=int, help='Numbers of episodes per evaluation') # hyperparameters parser.add_argument( '--init_learning_rate', default=7e-4, type=float, help='Learning rate of the optimizer') parser.add_argument( '--decay', default=0.99, type=float, help='decay factor of the RMSProp optimizer') parser.add_argument( '--smooth', default=1e-7, type=float, help='epsilon of the RMSProp optimizer') parser.add_argument( '--gamma', default=0.99, type=float, help='Discout factor of reward and advantages') parser.add_argument('--tmax', default=5, type=int, help='Rollout size') parser.add_argument( '--entropy_ratio', default=0.01, type=float, help='Initial weight of entropy loss') parser.add_argument( '--clip_grads', default=40, type=float, help='global norm gradients clipping') parser.add_argument( '--epsilon', default=1e-5, type=float, help='epsilon of rmsprop optimizer') return parser.parse_args() if __name__ == '__main__': # ignore warnings by tensorflow os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # make GPU invisible os.environ['CUDA_VISIBLE_DEVICES'] = '' args = args_parse() main(args)
[ "evaluate.Evaluate" ]
[((561, 578), 'itertools.count', 'itertools.count', ([], {}), '()\n', (576, 578), False, 'import itertools\n'), ((612, 645), 'net.Net', 'Net', (['S_DIM', 'A_DIM', '"""global"""', 'args'], {}), "(S_DIM, A_DIM, 'global', args)\n", (615, 645), False, 'from net import Net\n'), ((985, 1014), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': '(5)'}), '(max_to_keep=5)\n', (999, 1014), True, 'import tensorflow as tf\n'), ((2085, 2110), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2108, 2110), False, 'import argparse\n'), ((425, 452), 'os.makedirs', 'os.makedirs', (['args.save_path'], {}), '(args.save_path)\n', (436, 452), False, 'import os\n'), ((497, 532), 'os.path.join', 'os.path.join', (['args.save_path', '"""log"""'], {}), "(args.save_path, 'log')\n", (509, 532), False, 'import os\n'), ((1025, 1037), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1035, 1037), True, 'import tensorflow as tf\n'), ((1063, 1085), 'tensorflow.train.Coordinator', 'tf.train.Coordinator', ([], {}), '()\n', (1083, 1085), True, 'import tensorflow as tf\n'), ((1421, 1440), 'utils.print_params_nums', 'print_params_nums', ([], {}), '()\n', (1438, 1440), False, 'from utils import print_params_nums\n'), ((385, 415), 'os.path.exists', 'os.path.exists', (['args.save_path'], {}), '(args.save_path)\n', (399, 415), False, 'import os\n'), ((850, 864), 'atari_env.make_env', 'make_env', (['args'], {}), '(args)\n', (858, 864), False, 'from atari_env import make_env, S_DIM, A_DIM\n'), ((1185, 1231), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['args.model_path'], {}), '(args.model_path)\n', (1214, 1231), True, 'import tensorflow as tf\n'), ((1681, 1696), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (1691, 1696), False, 'import time\n'), ((1791, 1855), 'evaluate.Evaluate', 'Evaluate', (['global_net', 'summary_writer', 'global_steps_counter', 'args'], {}), '(global_net, summary_writer, global_steps_counter, args)\n', (1799, 1855), False, 'from evaluate import Evaluate\n'), ((1378, 1411), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1409, 1411), True, 'import tensorflow as tf\n')]
import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as data import copy import argparse import logging import gc import datetime import pprint from collections import OrderedDict, defaultdict from functools import partial from torch.optim import Adam try: from torch.utils.tensorboard import SummaryWriter except BaseException as e: from tensorboardX import SummaryWriter from model import BMGFModel from dataset import Dataset, Sampler from evaluate import evaluate_accuracy, evaluate_precision_recall_f1 from util import * INF = 1e30 _INF = -1e30 def eval_epoch(args, logger, writer, model, data_type, data_loader, device, epoch): model.eval() epoch_step = len(data_loader) total_step = args.epochs * epoch_step total_cnt = 0 total_ce = 0.0 total_mlce = 0.0 total_loss = 0.0 results = {"data": {"id": list(), "relation": list(), "prefered_relation": list()}, "prediction": {"prob": list(), "pred": list()}, "error": {"ce": list(), "mlce": list(), "mean_ce": INF, "mean_mlce": INF}, "evaluation": {"accuracy": dict(), "precision_recall_f1": dict()}} with torch.no_grad(): for batch_id, batch in enumerate(data_loader): step = epoch*epoch_step+batch_id _id, arg1, arg1_mask, arg2, arg2_mask, relation, prefered_relation = batch prefered_relation = (relation[:, 1] >= 0.5).long() bsz = len(_id) total_cnt += bsz results["data"]["id"].extend(_id) results["data"]["relation"].extend(relation) results["data"]["prefered_relation"].extend(prefered_relation) arg1 = arg1.to(device) arg2 = arg2.to(device) if arg1_mask is not None: arg1_mask = arg1_mask.to(device) if arg2_mask is not None: arg2_mask = arg2_mask.to(device) relation = relation.to(device) prefered_relation = prefered_relation.to(device) output = model(arg1, arg2, arg1_mask, arg2_mask) logp = F.log_softmax(output, dim=-1) prob = logp.exp() results["prediction"]["prob"].extend(prob.cpu().detach()) results["prediction"]["pred"].extend(prob.cpu().argmax(dim=1).detach()) ce = F.nll_loss(logp, prefered_relation, reduction="none") mlce = F.multilabel_soft_margin_loss(output, relation, reduction="none") results["error"]["ce"].extend(ce.cpu().detach()) results["error"]["mlce"].extend(mlce.cpu().detach()) if args.loss == "ce": loss = ce elif args.loss == "mlce": loss = mlce else: raise NotImplementedError("Error: loss=%s is not supported now." % (args.loss)) avg_ce = ce.mean() avg_mlce = mlce.mean() avg_loss = loss.mean() total_ce += avg_ce.item() * bsz total_mlce += avg_mlce.item() * bsz total_loss += avg_loss.item() * bsz if writer: writer.add_scalar("%s/pdtb-loss" % (data_type), avg_loss.item(), step) writer.add_scalar("%s/pdtb-ce" % (data_type), avg_ce.item(), step) writer.add_scalar("%s/pdtb-mlce" % (data_type), avg_mlce.item(), step) if logger and batch_id == epoch_step-1: logger.info( "epoch: {:0>3d}/{:0>3d}\tdata_type: {:<5s}\tbatch: {:0>5d}/{:0>5d}".format( epoch, args.epochs, data_type, batch_id, epoch_step) + "\n" + "\tpdtb-loss: {:10.4f}\tpdtb-ce: {:10.4f}\tpdtb-mlce: {:10.4f}".format( avg_loss.item(), avg_ce.item(), avg_mlce.item()) + "\n" + "\tpdtb-gold: {}".format(results["data"]["relation"][-1]) + "\n" + "\tpdtb-pred: {}".format(results["prediction"]["prob"][-1])) mean_ce = total_ce / (total_cnt + 1e-6) mean_mlce = total_mlce / (total_cnt + 1e-6) mean_loss = total_loss / (total_cnt + 1e-6) pred = np.array(results["prediction"]["pred"]) target = torch.cat(results["data"]["relation"], dim=0).view(total_cnt, -1).int().numpy() prefered_target = np.array(results["data"]["prefered_relation"]) results["error"]["mean_ce"] = mean_ce results["error"]["mean_mlce"] = mean_mlce results["evaluation"]["accuracy"] = evaluate_accuracy(pred, target, prefered_target) results["evaluation"]["precision_recall_f1"] = evaluate_precision_recall_f1(pred, target, prefered_target, "binary") if writer: writer.add_scalar("%s/pdtb-loss-epoch" % (data_type), mean_loss, epoch) writer.add_scalar("%s/pdtb-ce-epoch" % (data_type), mean_ce, epoch) writer.add_scalar("%s/pdtb-mlce-epoch" % (data_type), mean_mlce, epoch) if logger: logger.info( "epoch: {:0>3d}/{:0>3d}\tdata_type: {:<5s}".format( epoch, args.epochs, data_type) + "\n" + "\tpdtb-loss-epoch: {:10.4f}\tpdtb-ce-epoch: {:10.4f}\tpdtb-mlce-epoch: {:10.4f}".format( mean_loss, mean_ce, mean_mlce) + "\n" + "\tpdtb-accuray: {}".format( pprint.pformat(results["evaluation"]["accuracy"]).replace("\n", "\n\t\t")) + "\n" + "\tpdtb-precision_recall_f1: {}".format( pprint.pformat(results["evaluation"]["precision_recall_f1"]).replace("\n", "\n\t\t"))) gc.collect() return mean_loss, results def train_epoch(args, logger, writer, model, optimizer, data_type, data_loader, device, epoch): model.train() epoch_step = len(data_loader) total_step = args.epochs * epoch_step total_cnt = 0 total_ce = 0.0 total_mlce = 0.0 total_loss = 0.0 results = {"data": {"id": list(), "relation": list(), "prefered_relation": list()}, "prediction": {"prob": list(), "pred": list()}, "error": {"ce": list(), "mlce": list(), "mean_ce": INF, "mean_mlce": INF}, "evaluation": {"accuracy": dict(), "precision_recall_f1": dict()}} for batch_id, batch in enumerate(data_loader): step = epoch*epoch_step+batch_id _id, arg1, arg1_mask, arg2, arg2_mask, relation, prefered_relation = batch prefered_relation = (relation[:, 1] >= 0.5).long() bsz = len(_id) total_cnt += bsz results["data"]["id"].extend(_id) results["data"]["relation"].extend(relation) results["data"]["prefered_relation"].extend(prefered_relation) arg1 = arg1.to(device) arg2 = arg2.to(device) if arg1_mask is not None: arg1_mask = arg1_mask.to(device) if arg2_mask is not None: arg2_mask = arg2_mask.to(device) relation = relation.to(device) prefered_relation = prefered_relation.to(device) output = model(arg1, arg2, arg1_mask, arg2_mask) logp = F.log_softmax(output, dim=1) prob = logp.exp() results["prediction"]["prob"].extend(prob.cpu().detach()) results["prediction"]["pred"].extend(prob.cpu().argmax(dim=1).detach()) ce = F.nll_loss(logp, prefered_relation, reduction="none") mlce = F.multilabel_soft_margin_loss(output, relation, reduction="none") results["error"]["ce"].extend(ce.cpu().detach()) results["error"]["mlce"].extend(mlce.cpu().detach()) if args.loss == "ce": loss = ce elif args.loss == "mlce": loss = mlce else: raise NotImplementedError("Error: loss=%s is not supported now." % (args.loss)) avg_ce = ce.mean() avg_mlce = mlce.mean() avg_loss = loss.mean() total_ce += avg_ce.item() * bsz total_mlce += avg_mlce.item() * bsz total_loss += avg_loss.item() * bsz avg_loss.backward() if args.max_grad_norm > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() optimizer.zero_grad() if writer: writer.add_scalar("%s/pdtb-loss" % (data_type), avg_loss.item(), step) writer.add_scalar("%s/pdtb-ce" % (data_type), avg_ce.item(), step) writer.add_scalar("%s/pdtb-mlce" % (data_type), avg_mlce.item(), step) if logger and (batch_id%args.print_every == 0 or batch_id == epoch_step-1): logger.info( "epoch: {:0>3d}/{:0>3d}\tdata_type: {:<5s}\tbatch: {:0>5d}/{:0>5d}".format( epoch, args.epochs, data_type, batch_id, epoch_step) + "\n" + "\tpdtb-loss: {:10.4f}\tpdtb-ce: {:10.4f}\tpdtb-mlce: {:10.4f}".format( avg_loss.item(), avg_ce.item(), avg_mlce.item()) + "\n" + "\tpdtb-gold: {}".format(results["data"]["relation"][-1]) + "\n" + "\tpdtb-pred: {}".format(results["prediction"]["prob"][-1])) mean_ce = total_ce / (total_cnt + 1e-6) mean_mlce = total_mlce / (total_cnt + 1e-6) mean_loss = total_loss / (total_cnt + 1e-6) pred = np.array(results["prediction"]["pred"]) target = torch.cat(results["data"]["relation"], dim=0).view(total_cnt, -1).int().numpy() prefered_relation = np.array(results["data"]["prefered_relation"]) results["error"]["mean_ce"] = mean_ce results["error"]["mean_mlce"] = mean_mlce results["evaluation"]["accuracy"] = evaluate_accuracy(pred, target, prefered_relation) results["evaluation"]["precision_recall_f1"] = evaluate_precision_recall_f1(pred, target, prefered_relation, "binary") if writer: writer.add_scalar("%s/pdtb-loss-epoch" % (data_type), mean_loss, epoch) writer.add_scalar("%s/pdtb-ce-epoch" % (data_type), mean_ce, epoch) writer.add_scalar("%s/pdtb-mlce-epoch" % (data_type), mean_mlce, epoch) if logger: logger.info( "epoch: {:0>3d}/{:0>3d}\tdata_type: {:<5s}".format( epoch, args.epochs, data_type) + "\n" + "\tpdtb-loss-epoch: {:10.4f}\tpdtb-ce-epoch: {:10.4f}\tpdtb-mlce-epoch: {:10.4f}".format( mean_loss, mean_ce, mean_mlce) + "\n" + "\tpdtb-accuray: {}".format( pprint.pformat(results["evaluation"]["accuracy"]).replace("\n", "\n\t\t")) + "\n" + "\tpdtb-precision_recall_f1: {}".format( pprint.pformat(results["evaluation"]["precision_recall_f1"]).replace("\n", "\n\t\t"))) gc.collect() return mean_loss, results def train(args, logger, writer): # set device if args.gpu_ids is None: device = torch.device("cpu") else: if isinstance(args.gpu_ids, int): args.gpu_ids = [args.gpu_ids] device = torch.device("cuda:%d" % args.gpu_ids[0]) torch.cuda.set_device(device) args.num_rels = 2 # for binary classification if args.pretrained_model_path: # load pretrained model config = load_config(os.path.join(args.pretrained_model_path, "BMGFModel.config")) for by in ["accf1", "f1", "accuracy", "loss"]: best_epochs = get_best_epochs(os.path.join(args.pretrained_model_path, "BMGFModel.log"), by=by) if len(best_epochs) > 0: break logger.info("retrieve the best epochs for BMGFModel: %s" % (best_epochs)) if len(best_epochs) > 0: model = BMGFModel(**(config._asdict())) if "test" in best_epochs: model.load_state_dict(torch.load( os.path.join(args.pretrained_model_path, "epoch%d.pt" % (best_epochs["test"])), map_location=device)) elif "valid" in best_epochs: model.load_state_dict(torch.load( os.path.join(args.pretrained_model_path, "epoch%d.pt" % (best_epochs["valid"])), map_location=device)) else: model.load_state_dict(torch.load( os.path.join(args.pretrained_model_path, "epoch%d.pt" % (best_epochs["train"])), map_location=device)) if config.dropout != args.dropout: change_dropout_rate(model, args.dropout) else: raise ValueError("Error: cannot load BMGFModel from %s." % (args.pretrained_model_path)) else: # build model model = BMGFModel(**vars(args)) model.set_finetune(args.finetune) if args.gpu_ids and len(args.gpu_ids) > 1: model = nn.DataParallel(model, device_ids=args.gpu_ids) model = model.to(device) logger.info(model) logger.info("num of trainable parameters: %d" % ( sum(p.numel() for p in model.parameters() if p.requires_grad))) # load data datasets = OrderedDict({ "train": Dataset().load_pt(args.train_dataset_path), "valid": Dataset().load_pt(args.valid_dataset_path), "test": Dataset().load_pt(args.test_dataset_path)}) if args.explicit_dataset_path != "": explicit_dataset = Dataset().load_pt(args.explicit_dataset_path) datasets["train"].data.extend(explicit_dataset.data) del explicit_dataset logger.info("train:valid:test = %d:%d:%d" % (len(datasets["train"]), len(datasets["valid"]), len(datasets["test"]))) rel_map = defaultdict(int) for r in args.relations: for k in Dataset.rel_map_4.keys(): if k.startswith(r): rel_map[k] = 1 assert len(rel_map) > 0 if args.encoder == "roberta": pad_id = 1 else: pad_id = 0 data_loaders = OrderedDict() batchify = partial(Dataset.batchify, rel_map=rel_map, min_arg=args.min_arg, max_arg=args.max_arg, pad_id=pad_id) for data_type in datasets: sampler = Sampler(datasets[data_type], group_by=["arg1", "arg2"], batch_size=args.batch_size, shuffle=data_type=="train", drop_last=False) data_loaders[data_type] = data.DataLoader(datasets[data_type], batch_sampler=sampler, collate_fn=batchify, pin_memory=data_type=="train") # optimizer and losses optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) optimizer.zero_grad() best_losses = {dataset: INF for dataset in datasets} best_loss_epochs = {dataset: -1 for dataset in datasets} best_accs = {dataset: _INF for dataset in datasets} best_acc_epochs = {dataset: -1 for dataset in datasets} best_f1s = {dataset: _INF for dataset in datasets} best_f1_epochs = {dataset: -1 for dataset in datasets} best_accf1s = {dataset: _INF for dataset in datasets} best_accf1_epochs = {dataset: -1 for dataset in datasets} for epoch in range(args.epochs): for data_type, data_loader in data_loaders.items(): if data_type == "train": mean_loss, results = train_epoch(args, logger, writer, model, optimizer, data_type, data_loader, device, epoch) else: mean_loss, results = eval_epoch(args, logger, writer, model, data_type, data_loader, device, epoch) save_results(results, os.path.join(args.save_model_dir, "%s_results%d.json" % (data_type, epoch))) if mean_loss <= best_losses[data_type]: best_losses[data_type] = mean_loss best_loss_epochs[data_type] = epoch logger.info("data_type: {:<5s}\tbest pdtb-loss: {:.4f} (epoch: {:0>3d})".format( data_type, best_losses[data_type], best_loss_epochs[data_type])) if args.save_best == "loss": if args.gpu_ids and len(args.gpu_ids) > 1: torch.save(model.module.state_dict(), os.path.join(args.save_model_dir, "%s_best.pt" % (data_type)), _use_new_zipfile_serialization=False) else: torch.save(model.state_dict(), os.path.join(args.save_model_dir, "%s_best.pt" % (data_type)), _use_new_zipfile_serialization=False) if results["evaluation"]["accuracy"]["overall"] >= best_accs[data_type]: best_accs[data_type] = results["evaluation"]["accuracy"]["overall"] best_acc_epochs[data_type] = epoch logger.info("data_type: {:<5s}\tbest pdtb-accuracy: {:.4f} (epoch: {:0>3d})".format( data_type, best_accs[data_type], best_acc_epochs[data_type])) if args.save_best == "acc": if args.gpu_ids and len(args.gpu_ids) > 1: torch.save(model.module.state_dict(), os.path.join(args.save_model_dir, "%s_best.pt" % (data_type)), _use_new_zipfile_serialization=False) else: torch.save(model.state_dict(), os.path.join(args.save_model_dir, "%s_best.pt" % (data_type)), _use_new_zipfile_serialization=False) if results["evaluation"]["precision_recall_f1"]["overall"][-1] >= best_f1s[data_type]: best_f1s[data_type] = results["evaluation"]["precision_recall_f1"]["overall"][-1] best_f1_epochs[data_type] = epoch logger.info("data_type: {:<5s}\tbest pdtb-f1: {:.4f} (epoch: {:0>3d})".format( data_type, best_f1s[data_type], best_f1_epochs[data_type])) if args.save_best == "f1": if args.gpu_ids and len(args.gpu_ids) > 1: torch.save(model.module.state_dict(), os.path.join(args.save_model_dir, "%s_best.pt" % (data_type)), _use_new_zipfile_serialization=False) else: torch.save(model.state_dict(), os.path.join(args.save_model_dir, "%s_best.pt" % (data_type)), _use_new_zipfile_serialization=False) if results["evaluation"]["accuracy"]["overall"]+results["evaluation"]["precision_recall_f1"]["overall"][-1] >= best_accf1s[data_type]: best_accf1s[data_type] = results["evaluation"]["accuracy"]["overall"]+results["evaluation"]["precision_recall_f1"]["overall"][-1] best_accf1_epochs[data_type] = epoch logger.info("data_type: {:<5s}\tbest pdtb-accf1: {:.4f} (epoch: {:0>3d})".format( data_type, best_accf1s[data_type], best_accf1_epochs[data_type])) if args.save_best == "accf1": if args.gpu_ids and len(args.gpu_ids) > 1: torch.save(model.module.state_dict(), os.path.join(args.save_model_dir, "%s_best.pt" % (data_type)), _use_new_zipfile_serialization=False) else: torch.save(model.state_dict(), os.path.join(args.save_model_dir, "%s_best.pt" % (data_type)), _use_new_zipfile_serialization=False) for data_type in data_loaders: logger.info("data_type: {:<5s}\tbest pdtb-loss: {:.4f} (epoch: {:0>3d})".format( data_type, best_losses[data_type], best_loss_epochs[data_type])) logger.info("data_type: {:<5s}\tbest pdtb-accuracy: {:.4f} (epoch: {:0>3d})".format( data_type, best_accs[data_type], best_acc_epochs[data_type])) logger.info("data_type: {:<5s}\tbest pdtb-f1: {:.4f} (epoch: {:0>3d})".format( data_type, best_f1s[data_type], best_f1_epochs[data_type])) logger.info("data_type: {:<5s}\tbest pdtb-accf1: {:.4f} (epoch: {:0>3d})".format( data_type, best_accf1s[data_type], best_accf1_epochs[data_type])) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=0, help="random seed") parser.add_argument("--n_workers", type=int, default=1, help="numer of processors") # data config parser.add_argument("--explicit_dataset_path", type=str, default="", help="explicit Dataset path") parser.add_argument("--train_dataset_path", type=str, help="training Dataset path") parser.add_argument("--valid_dataset_path", type=str, help="validation Dataset path") parser.add_argument("--test_dataset_path", type=str, help="test Dataset path") parser.add_argument("--pretrained_model_path", type=str, default="", help="model path of pretrained BMGFModel") parser.add_argument("--save_model_dir", type=str, help="model dir to save models") parser.add_argument("--relations", type=str2list, default="", help="which relations are computed") parser.add_argument("--min_arg", type=int, default=3, help="the minimum length of arguments") parser.add_argument("--max_arg", type=int, default=512, help="the maximum length of arguments") # training config parser.add_argument("--gpu_ids", type=str2list, default=None, help="gpu ids") parser.add_argument("--epochs", type=int, default=50, help="epochs of training") parser.add_argument("--batch_size", type=int, default=32, help="batch size of training") parser.add_argument("--print_every", type=int, default=100, help="printing log every K batchs") parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer") parser.add_argument("--weight_decay", type=float, default=0.0005, help="weight decay") parser.add_argument("--max_grad_norm", type=float, default=2.0, help="max grad norm for gradient clipping") parser.add_argument("--save_best", type=str, default="f1", choices=["loss", "acc", "f1", "accf1"], help="the criteria to save best models") parser.add_argument("--loss", type=str, default="ce", choices=["ce", "mlce"], help="loss function") # BMGFModel config parser.add_argument("--encoder", type=str, default="roberta", choices=["lstm", "bert", "roberta"], help="the encoder") parser.add_argument("--finetune", type=str, default="type", choices=["none", "type", "last", "full"], help="how to finetune the encoder") parser.add_argument("--hidden_dim", type=int, default=128, help="hidden dimension") parser.add_argument("--num_lstm_layers", type=int, default=1, help="number of lstm layers") parser.add_argument("--num_perspectives", type=int, default=16, help="number of perspectives for bimpm") parser.add_argument("--num_filters", type=int, default=64, help="number of filters for convolutional layers") parser.add_argument("--activation", type=str, default="leaky_relu", choices=["relu", "tanh", "softmax", "sigmoid", "leaky_relu", "prelu", "gelu"], help="activation function type") parser.add_argument("--dropout", type=float, default=0.2, help="dropout for neural networks") args = parser.parse_args() torch.manual_seed(args.seed) np.random.seed(args.seed) assert len(args.relations) > 0 ts = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S') args.save_model_dir = os.path.join(args.save_model_dir, ts) os.makedirs(args.save_model_dir, exist_ok=True) # save config save_config(args, os.path.join(args.save_model_dir, "BMGFModel.config")) # build logger logger = logging.getLogger() logger.setLevel(logging.INFO) fmt = logging.Formatter('%(asctime)s: [ %(message)s ]', '%Y/%m/%d %H:%M:%S') console = logging.StreamHandler() console.setFormatter(fmt) logger.addHandler(console) logfile = logging.FileHandler(os.path.join(args.save_model_dir, "BMGFModel.log"), 'w') logfile.setFormatter(fmt) logger.addHandler(logfile) # build writer writer = SummaryWriter(args.save_model_dir) # train train(args, logger, writer)
[ "evaluate.evaluate_precision_recall_f1", "evaluate.evaluate_accuracy" ]
[((5760, 5772), 'gc.collect', 'gc.collect', ([], {}), '()\n', (5770, 5772), False, 'import gc\n'), ((9457, 9496), 'numpy.array', 'np.array', (["results['prediction']['pred']"], {}), "(results['prediction']['pred'])\n", (9465, 9496), True, 'import numpy as np\n'), ((9616, 9662), 'numpy.array', 'np.array', (["results['data']['prefered_relation']"], {}), "(results['data']['prefered_relation'])\n", (9624, 9662), True, 'import numpy as np\n'), ((9796, 9846), 'evaluate.evaluate_accuracy', 'evaluate_accuracy', (['pred', 'target', 'prefered_relation'], {}), '(pred, target, prefered_relation)\n', (9813, 9846), False, 'from evaluate import evaluate_accuracy, evaluate_precision_recall_f1\n'), ((9899, 9970), 'evaluate.evaluate_precision_recall_f1', 'evaluate_precision_recall_f1', (['pred', 'target', 'prefered_relation', '"""binary"""'], {}), "(pred, target, prefered_relation, 'binary')\n", (9927, 9970), False, 'from evaluate import evaluate_accuracy, evaluate_precision_recall_f1\n'), ((10874, 10886), 'gc.collect', 'gc.collect', ([], {}), '()\n', (10884, 10886), False, 'import gc\n'), ((13750, 13766), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (13761, 13766), False, 'from collections import OrderedDict, defaultdict\n'), ((14041, 14054), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (14052, 14054), False, 'from collections import OrderedDict, defaultdict\n'), ((14071, 14177), 'functools.partial', 'partial', (['Dataset.batchify'], {'rel_map': 'rel_map', 'min_arg': 'args.min_arg', 'max_arg': 'args.max_arg', 'pad_id': 'pad_id'}), '(Dataset.batchify, rel_map=rel_map, min_arg=args.min_arg, max_arg=\n args.max_arg, pad_id=pad_id)\n', (14078, 14177), False, 'from functools import partial\n'), ((20525, 20550), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (20548, 20550), False, 'import argparse\n'), ((24432, 24460), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (24449, 24460), False, 'import torch\n'), ((24466, 24491), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (24480, 24491), True, 'import numpy as np\n'), ((24623, 24660), 'os.path.join', 'os.path.join', (['args.save_model_dir', 'ts'], {}), '(args.save_model_dir, ts)\n', (24635, 24660), False, 'import os\n'), ((24666, 24713), 'os.makedirs', 'os.makedirs', (['args.save_model_dir'], {'exist_ok': '(True)'}), '(args.save_model_dir, exist_ok=True)\n', (24677, 24713), False, 'import os\n'), ((24849, 24868), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (24866, 24868), False, 'import logging\n'), ((24915, 24985), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s: [ %(message)s ]"""', '"""%Y/%m/%d %H:%M:%S"""'], {}), "('%(asctime)s: [ %(message)s ]', '%Y/%m/%d %H:%M:%S')\n", (24932, 24985), False, 'import logging\n'), ((25001, 25024), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (25022, 25024), False, 'import logging\n'), ((25279, 25313), 'tensorboardX.SummaryWriter', 'SummaryWriter', (['args.save_model_dir'], {}), '(args.save_model_dir)\n', (25292, 25313), False, 'from tensorboardX import SummaryWriter\n'), ((1238, 1253), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1251, 1253), False, 'import torch\n'), ((4287, 4326), 'numpy.array', 'np.array', (["results['prediction']['pred']"], {}), "(results['prediction']['pred'])\n", (4295, 4326), True, 'import numpy as np\n'), ((4452, 4498), 'numpy.array', 'np.array', (["results['data']['prefered_relation']"], {}), "(results['data']['prefered_relation'])\n", (4460, 4498), True, 'import numpy as np\n'), ((4644, 4692), 'evaluate.evaluate_accuracy', 'evaluate_accuracy', (['pred', 'target', 'prefered_target'], {}), '(pred, target, prefered_target)\n', (4661, 4692), False, 'from evaluate import evaluate_accuracy, evaluate_precision_recall_f1\n'), ((4749, 4818), 'evaluate.evaluate_precision_recall_f1', 'evaluate_precision_recall_f1', (['pred', 'target', 'prefered_target', '"""binary"""'], {}), "(pred, target, prefered_target, 'binary')\n", (4777, 4818), False, 'from evaluate import evaluate_accuracy, evaluate_precision_recall_f1\n'), ((7255, 7283), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['output'], {'dim': '(1)'}), '(output, dim=1)\n', (7268, 7283), True, 'import torch.nn.functional as F\n'), ((7485, 7538), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['logp', 'prefered_relation'], {'reduction': '"""none"""'}), "(logp, prefered_relation, reduction='none')\n", (7495, 7538), True, 'import torch.nn.functional as F\n'), ((7555, 7620), 'torch.nn.functional.multilabel_soft_margin_loss', 'F.multilabel_soft_margin_loss', (['output', 'relation'], {'reduction': '"""none"""'}), "(output, relation, reduction='none')\n", (7584, 7620), True, 'import torch.nn.functional as F\n'), ((11020, 11039), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (11032, 11039), False, 'import torch\n'), ((11155, 11196), 'torch.device', 'torch.device', (["('cuda:%d' % args.gpu_ids[0])"], {}), "('cuda:%d' % args.gpu_ids[0])\n", (11167, 11196), False, 'import torch\n'), ((11206, 11235), 'torch.cuda.set_device', 'torch.cuda.set_device', (['device'], {}), '(device)\n', (11227, 11235), False, 'import torch\n'), ((12935, 12982), 'torch.nn.DataParallel', 'nn.DataParallel', (['model'], {'device_ids': 'args.gpu_ids'}), '(model, device_ids=args.gpu_ids)\n', (12950, 12982), True, 'import torch.nn as nn\n'), ((13815, 13839), 'dataset.Dataset.rel_map_4.keys', 'Dataset.rel_map_4.keys', ([], {}), '()\n', (13837, 13839), False, 'from dataset import Dataset, Sampler\n'), ((14233, 14368), 'dataset.Sampler', 'Sampler', (['datasets[data_type]'], {'group_by': "['arg1', 'arg2']", 'batch_size': 'args.batch_size', 'shuffle': "(data_type == 'train')", 'drop_last': '(False)'}), "(datasets[data_type], group_by=['arg1', 'arg2'], batch_size=args.\n batch_size, shuffle=data_type == 'train', drop_last=False)\n", (14240, 14368), False, 'from dataset import Dataset, Sampler\n'), ((14425, 14543), 'torch.utils.data.DataLoader', 'data.DataLoader', (['datasets[data_type]'], {'batch_sampler': 'sampler', 'collate_fn': 'batchify', 'pin_memory': "(data_type == 'train')"}), "(datasets[data_type], batch_sampler=sampler, collate_fn=\n batchify, pin_memory=data_type == 'train')\n", (14440, 14543), True, 'import torch.utils.data as data\n'), ((24758, 24811), 'os.path.join', 'os.path.join', (['args.save_model_dir', '"""BMGFModel.config"""'], {}), "(args.save_model_dir, 'BMGFModel.config')\n", (24770, 24811), False, 'import os\n'), ((25123, 25173), 'os.path.join', 'os.path.join', (['args.save_model_dir', '"""BMGFModel.log"""'], {}), "(args.save_model_dir, 'BMGFModel.log')\n", (25135, 25173), False, 'import os\n'), ((2192, 2221), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['output'], {'dim': '(-1)'}), '(output, dim=-1)\n', (2205, 2221), True, 'import torch.nn.functional as F\n'), ((2443, 2496), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['logp', 'prefered_relation'], {'reduction': '"""none"""'}), "(logp, prefered_relation, reduction='none')\n", (2453, 2496), True, 'import torch.nn.functional as F\n'), ((2517, 2582), 'torch.nn.functional.multilabel_soft_margin_loss', 'F.multilabel_soft_margin_loss', (['output', 'relation'], {'reduction': '"""none"""'}), "(output, relation, reduction='none')\n", (2546, 2582), True, 'import torch.nn.functional as F\n'), ((11388, 11448), 'os.path.join', 'os.path.join', (['args.pretrained_model_path', '"""BMGFModel.config"""'], {}), "(args.pretrained_model_path, 'BMGFModel.config')\n", (11400, 11448), False, 'import os\n'), ((24542, 24565), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (24563, 24565), False, 'import datetime\n'), ((11549, 11606), 'os.path.join', 'os.path.join', (['args.pretrained_model_path', '"""BMGFModel.log"""'], {}), "(args.pretrained_model_path, 'BMGFModel.log')\n", (11561, 11606), False, 'import os\n'), ((13473, 13482), 'dataset.Dataset', 'Dataset', ([], {}), '()\n', (13480, 13482), False, 'from dataset import Dataset, Sampler\n'), ((13232, 13241), 'dataset.Dataset', 'Dataset', ([], {}), '()\n', (13239, 13241), False, 'from dataset import Dataset, Sampler\n'), ((13295, 13304), 'dataset.Dataset', 'Dataset', ([], {}), '()\n', (13302, 13304), False, 'from dataset import Dataset, Sampler\n'), ((13357, 13366), 'dataset.Dataset', 'Dataset', ([], {}), '()\n', (13364, 13366), False, 'from dataset import Dataset, Sampler\n'), ((15683, 15758), 'os.path.join', 'os.path.join', (['args.save_model_dir', "('%s_results%d.json' % (data_type, epoch))"], {}), "(args.save_model_dir, '%s_results%d.json' % (data_type, epoch))\n", (15695, 15758), False, 'import os\n'), ((11957, 12033), 'os.path.join', 'os.path.join', (['args.pretrained_model_path', "('epoch%d.pt' % best_epochs['test'])"], {}), "(args.pretrained_model_path, 'epoch%d.pt' % best_epochs['test'])\n", (11969, 12033), False, 'import os\n'), ((9511, 9556), 'torch.cat', 'torch.cat', (["results['data']['relation']"], {'dim': '(0)'}), "(results['data']['relation'], dim=0)\n", (9520, 9556), False, 'import torch\n'), ((10764, 10824), 'pprint.pformat', 'pprint.pformat', (["results['evaluation']['precision_recall_f1']"], {}), "(results['evaluation']['precision_recall_f1'])\n", (10778, 10824), False, 'import pprint\n'), ((12194, 12271), 'os.path.join', 'os.path.join', (['args.pretrained_model_path', "('epoch%d.pt' % best_epochs['valid'])"], {}), "(args.pretrained_model_path, 'epoch%d.pt' % best_epochs['valid'])\n", (12206, 12271), False, 'import os\n'), ((12409, 12486), 'os.path.join', 'os.path.join', (['args.pretrained_model_path', "('epoch%d.pt' % best_epochs['train'])"], {}), "(args.pretrained_model_path, 'epoch%d.pt' % best_epochs['train'])\n", (12421, 12486), False, 'import os\n'), ((16307, 16366), 'os.path.join', 'os.path.join', (['args.save_model_dir', "('%s_best.pt' % data_type)"], {}), "(args.save_model_dir, '%s_best.pt' % data_type)\n", (16319, 16366), False, 'import os\n'), ((16550, 16609), 'os.path.join', 'os.path.join', (['args.save_model_dir', "('%s_best.pt' % data_type)"], {}), "(args.save_model_dir, '%s_best.pt' % data_type)\n", (16562, 16609), False, 'import os\n'), ((17291, 17350), 'os.path.join', 'os.path.join', (['args.save_model_dir', "('%s_best.pt' % data_type)"], {}), "(args.save_model_dir, '%s_best.pt' % data_type)\n", (17303, 17350), False, 'import os\n'), ((17534, 17593), 'os.path.join', 'os.path.join', (['args.save_model_dir', "('%s_best.pt' % data_type)"], {}), "(args.save_model_dir, '%s_best.pt' % data_type)\n", (17546, 17593), False, 'import os\n'), ((18292, 18351), 'os.path.join', 'os.path.join', (['args.save_model_dir', "('%s_best.pt' % data_type)"], {}), "(args.save_model_dir, '%s_best.pt' % data_type)\n", (18304, 18351), False, 'import os\n'), ((18535, 18594), 'os.path.join', 'os.path.join', (['args.save_model_dir', "('%s_best.pt' % data_type)"], {}), "(args.save_model_dir, '%s_best.pt' % data_type)\n", (18547, 18594), False, 'import os\n'), ((19404, 19463), 'os.path.join', 'os.path.join', (['args.save_model_dir', "('%s_best.pt' % data_type)"], {}), "(args.save_model_dir, '%s_best.pt' % data_type)\n", (19416, 19463), False, 'import os\n'), ((19647, 19706), 'os.path.join', 'os.path.join', (['args.save_model_dir', "('%s_best.pt' % data_type)"], {}), "(args.save_model_dir, '%s_best.pt' % data_type)\n", (19659, 19706), False, 'import os\n'), ((4345, 4390), 'torch.cat', 'torch.cat', (["results['data']['relation']"], {'dim': '(0)'}), "(results['data']['relation'], dim=0)\n", (4354, 4390), False, 'import torch\n'), ((5668, 5728), 'pprint.pformat', 'pprint.pformat', (["results['evaluation']['precision_recall_f1']"], {}), "(results['evaluation']['precision_recall_f1'])\n", (5682, 5728), False, 'import pprint\n'), ((10609, 10658), 'pprint.pformat', 'pprint.pformat', (["results['evaluation']['accuracy']"], {}), "(results['evaluation']['accuracy'])\n", (10623, 10658), False, 'import pprint\n'), ((5505, 5554), 'pprint.pformat', 'pprint.pformat', (["results['evaluation']['accuracy']"], {}), "(results['evaluation']['accuracy'])\n", (5519, 5554), False, 'import pprint\n')]
#!/usr/bin/python import sys,os import argparse import glob from generate_windows import Generate_windows from evaluate import Evaluate from scanTranscriptome_forward import Scan_Forward from scanTranscriptome_reverse import Scan_Backward from postprocess import Postprocess # from multiprocessing import Pool import datetime # def args(): parser = argparse.ArgumentParser() parser.add_argument('--out_dir', default='out_dir', help='out dir') parser.add_argument('--input_file', default=None, help='unstranded wig file') parser.add_argument('--input_plus', default=None, help='plus strand wig file') parser.add_argument('--input_minus', default=None, help='minus strand wig file') parser.add_argument('--fa_file',default=None,help='path to one line fa file') parser.add_argument('--keep_temp',default=None,help='if you want to keep temporary file, set to "yes"') parser.add_argument('--window', default=201, type=int, help='input length') parser.add_argument('--name', default='sample',help='sample name') parser.add_argument("--model", help="the model weights file", required=True) parser.add_argument("--RNASeqRCThreshold",default=0.05,type=float,help="RNA-Seq Coverage Threshold") parser.add_argument('--threshold', default=0,type=int,help='peak length lower than threshold will be fiter out') parser.add_argument('--penality', default=1,type=int,help='penality for prediction score lower than 0.5') parser.add_argument('--DB_file', default=None, help='polyA database file') parser.add_argument('--depth', default=1, type=float,help='total number of mapped reads( in millions)') parser.add_argument('--t', default = 30, type = int, help='number of thread') argv = parser.parse_args() out_dir = argv.out_dir input_file = argv.input_file input_plus = argv.input_plus input_minus = argv.input_minus fa_file = argv.fa_file keep_temp = argv.keep_temp window = argv.window name = argv.name model = argv.model rst = argv.RNASeqRCThreshold threshold = argv.threshold penality = argv.penality DB_file = argv.DB_file depth = argv.depth thread = argv.t return out_dir,input_file,input_plus,input_minus,fa_file,keep_temp,window,name,model,rst,threshold,penality,DB_file,depth,thread def run_single_block(input_list): data = input_list[0] model = input_list[1] out_dir = input_list[2] rst = input_list[3] window = input_list[4] keep_temp = input_list[5] threshold = input_list[6] penality = input_list[7] DB_file = input_list[8] if 'wig' not in data: baseName = data.split('/')[-1] Evaluate(model,out_dir,rst,window,baseName,keep_temp) Scan_Forward(baseName,threshold,penality,out_dir) Scan_Backward(baseName,threshold,penality,out_dir) if(keep_temp != 'yes'): predict_file = out_dir+'/predict/'+baseName+'.txt' os.system('rm %s'%predict_file) Postprocess(DB_file,baseName,threshold,penality,out_dir) if(keep_temp != 'yes'): forward_file=out_dir+"/maxSum/%s.forward.%d.%d.txt"%(baseName,threshold,penality) backward_file=out_dir+"/maxSum/%s.backward.%d.%d.txt"%(baseName,threshold,penality) os.system('rm %s %s'%(forward_file,backward_file)) print('Finished postprocessing...\n') def main(out_dir,input_file,input_plus,input_minus,fa_file,keep_temp,window,name,model,rst,threshold,penality,DB_file,depth,thread): if(out_dir[-1] == '/'): out_dir = out_dir[0:-1] if not os.path.exists(out_dir): os.makedirs(out_dir) out_dir = out_dir+'/'+name ####Generate sliding windlows print("Generating blocks ...") gw_start_time = datetime.datetime.now() #Generate_windows(out_dir,input_file,input_plus,input_minus,fa_file,keep_temp,window,name,depth) gw_end_time = datetime.datetime.now() print("Gerate blocks used time: {}".format(gw_end_time - gw_start_time)) data_dir = out_dir+'/data' data_files = glob.glob(data_dir+"/*") block_input_list = [] for data in data_files: block_input_list.append([data,model,out_dir,rst,window,keep_temp,threshold,penality,DB_file]) print("Predicting results ...") pred_start_time = datetime.datetime.now() with Pool(thread) as p: p.map(run_single_block,block_input_list) pred_end_time = datetime.datetime.now() print("Prediction used time: {}".format(pred_end_time - pred_start_time)) out_file = '%s/%s.predicted.txt' %(out_dir,name) ww = open(out_file,'w') if(DB_file is not None): ww.write('predicted_pasid\tdb_pasid\tdb_diff\tscore\n') else: ww.write('predicted_pasid\tscore\n') ww.close() os.system('cat %s/maxSum/*bidirection* >>%s'%(out_dir,out_file)) if(keep_temp != 'yes'): os.system('rm -rf %s/data %s/predict %s/maxSum'%(out_dir,out_dir,out_dir)) print("Job Done!") if __name__ == '__main__': main(*args())
[ "evaluate.Evaluate" ]
[((354, 379), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (377, 379), False, 'import argparse\n'), ((3810, 3833), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3831, 3833), False, 'import datetime\n'), ((3953, 3976), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3974, 3976), False, 'import datetime\n'), ((4102, 4128), 'glob.glob', 'glob.glob', (["(data_dir + '/*')"], {}), "(data_dir + '/*')\n", (4111, 4128), False, 'import glob\n'), ((4341, 4364), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4362, 4364), False, 'import datetime\n'), ((4462, 4485), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4483, 4485), False, 'import datetime\n'), ((4813, 4880), 'os.system', 'os.system', (["('cat %s/maxSum/*bidirection* >>%s' % (out_dir, out_file))"], {}), "('cat %s/maxSum/*bidirection* >>%s' % (out_dir, out_file))\n", (4822, 4880), False, 'import sys, os\n'), ((2689, 2747), 'evaluate.Evaluate', 'Evaluate', (['model', 'out_dir', 'rst', 'window', 'baseName', 'keep_temp'], {}), '(model, out_dir, rst, window, baseName, keep_temp)\n', (2697, 2747), False, 'from evaluate import Evaluate\n'), ((2751, 2803), 'scanTranscriptome_forward.Scan_Forward', 'Scan_Forward', (['baseName', 'threshold', 'penality', 'out_dir'], {}), '(baseName, threshold, penality, out_dir)\n', (2763, 2803), False, 'from scanTranscriptome_forward import Scan_Forward\n'), ((2809, 2862), 'scanTranscriptome_reverse.Scan_Backward', 'Scan_Backward', (['baseName', 'threshold', 'penality', 'out_dir'], {}), '(baseName, threshold, penality, out_dir)\n', (2822, 2862), False, 'from scanTranscriptome_reverse import Scan_Backward\n'), ((3007, 3067), 'postprocess.Postprocess', 'Postprocess', (['DB_file', 'baseName', 'threshold', 'penality', 'out_dir'], {}), '(DB_file, baseName, threshold, penality, out_dir)\n', (3018, 3067), False, 'from postprocess import Postprocess\n'), ((3639, 3662), 'os.path.exists', 'os.path.exists', (['out_dir'], {}), '(out_dir)\n', (3653, 3662), False, 'import sys, os\n'), ((3672, 3692), 'os.makedirs', 'os.makedirs', (['out_dir'], {}), '(out_dir)\n', (3683, 3692), False, 'import sys, os\n'), ((4374, 4386), 'multiprocessing.Pool', 'Pool', (['thread'], {}), '(thread)\n', (4378, 4386), False, 'from multiprocessing import Pool\n'), ((4914, 4992), 'os.system', 'os.system', (["('rm -rf %s/data %s/predict %s/maxSum' % (out_dir, out_dir, out_dir))"], {}), "('rm -rf %s/data %s/predict %s/maxSum' % (out_dir, out_dir, out_dir))\n", (4923, 4992), False, 'import sys, os\n'), ((2967, 3000), 'os.system', 'os.system', (["('rm %s' % predict_file)"], {}), "('rm %s' % predict_file)\n", (2976, 3000), False, 'import sys, os\n'), ((3298, 3351), 'os.system', 'os.system', (["('rm %s %s' % (forward_file, backward_file))"], {}), "('rm %s %s' % (forward_file, backward_file))\n", (3307, 3351), False, 'import sys, os\n')]
#!/usr/bin/env python2 from __future__ import print_function import math import os import random import sys from joblib import Parallel, delayed import numpy as np from tqdm import tqdm import evaluate import bo_target as bo_target_module import gflags FLAGS = gflags.FLAGS gflags.DEFINE_string('prog_file', '', 'the prog file') gflags.DEFINE_string('gold_prog_file', '', 'the file for list of gold progs as reference.') gflags.DEFINE_integer('n_jobs', -1, 'nubmer of jobs. -1 for all.') def do_many(bo_target, prog_list): result = [bo_target(prog) for prog in prog_list] return result def main(): FLAGS(sys.argv) random.seed(19260817) cfg_grammar_file = ( os.path.dirname(os.path.realpath(__file__)) + '/../../dropbox/context_free_grammars/prog_leftskew.grammar' ) prog_file = FLAGS.prog_file n_jobs = FLAGS.n_jobs # 1. reading print('reading progs...') prog_list = [_.strip() for _ in open(prog_file).readlines()] # 2. compute gold_prog_list = [_.strip() for _ in open(FLAGS.gold_prog_file).readlines() if _.strip() != ''] for gold_prog in gold_prog_list: print('producing bo_target for [%s]...' % gold_prog) target_file = FLAGS.prog_file + '.target_for_[%s].txt' % gold_prog # simple_target_file = FLAGS.prog_file + '.simple_target_for_[%s].txt' % gold_prog parser = evaluate.get_parser(cfg_grammar_file) bo_target = bo_target_module.BOTarget(parser, gold_prog) block_size = 1000 block_result = Parallel( n_jobs=n_jobs, verbose=50 )( delayed(do_many)(bo_target, prog_list[start:start + block_size]) for start in range(0, len(prog_list), block_size) ) result = [_2 for _1 in block_result for _2 in _1] # 3. saving print('saving...') with open(target_file, 'w') as fout: for v in result: print(v, file=fout) #with open(simple_target_file, 'w') as fout: # for prog in prog_list: # print(len(prog.split(';')), file=fout) import pdb, traceback, sys, code if __name__ == '__main__': try: main() except: type, value, tb = sys.exc_info() traceback.print_exc() pdb.post_mortem(tb)
[ "evaluate.get_parser" ]
[((280, 334), 'gflags.DEFINE_string', 'gflags.DEFINE_string', (['"""prog_file"""', '""""""', '"""the prog file"""'], {}), "('prog_file', '', 'the prog file')\n", (300, 334), False, 'import gflags\n'), ((335, 430), 'gflags.DEFINE_string', 'gflags.DEFINE_string', (['"""gold_prog_file"""', '""""""', '"""the file for list of gold progs as reference."""'], {}), "('gold_prog_file', '',\n 'the file for list of gold progs as reference.')\n", (355, 430), False, 'import gflags\n'), ((427, 493), 'gflags.DEFINE_integer', 'gflags.DEFINE_integer', (['"""n_jobs"""', '(-1)', '"""nubmer of jobs. -1 for all."""'], {}), "('n_jobs', -1, 'nubmer of jobs. -1 for all.')\n", (448, 493), False, 'import gflags\n'), ((641, 662), 'random.seed', 'random.seed', (['(19260817)'], {}), '(19260817)\n', (652, 662), False, 'import random\n'), ((1383, 1420), 'evaluate.get_parser', 'evaluate.get_parser', (['cfg_grammar_file'], {}), '(cfg_grammar_file)\n', (1402, 1420), False, 'import evaluate\n'), ((1441, 1485), 'bo_target.BOTarget', 'bo_target_module.BOTarget', (['parser', 'gold_prog'], {}), '(parser, gold_prog)\n', (1466, 1485), True, 'import bo_target as bo_target_module\n'), ((712, 738), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (728, 738), False, 'import os\n'), ((1536, 1571), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'n_jobs', 'verbose': '(50)'}), '(n_jobs=n_jobs, verbose=50)\n', (1544, 1571), False, 'from joblib import Parallel, delayed\n'), ((2233, 2247), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (2245, 2247), False, 'import pdb, traceback, sys, code\n'), ((2256, 2277), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (2275, 2277), False, 'import pdb, traceback, sys, code\n'), ((2286, 2305), 'pdb.post_mortem', 'pdb.post_mortem', (['tb'], {}), '(tb)\n', (2301, 2305), False, 'import pdb, traceback, sys, code\n'), ((1607, 1623), 'joblib.delayed', 'delayed', (['do_many'], {}), '(do_many)\n', (1614, 1623), False, 'from joblib import Parallel, delayed\n')]
# Project hiatus # main script with a parser for the model # 12/10/2020 # <NAME> # loading required packages import os import argparse from sklearn.model_selection import train_test_split from torch.utils.data import Subset # for manual visualisation from rasterio.plot import show # putting the right work directory os.chdir("/home/adminlocal/Bureau/GIT/hiatus_change_detection") # importing our functions import utils as fun import train as train import evaluate as eval_model import warnings warnings.filterwarnings('ignore') def main(): # create the parser with all arguments parser = argparse.ArgumentParser(description='Auto-encoder Time Adversarial Model') # Optimization arguments parser.add_argument('--lr', default=0.01, type=float, help='Initial learning rate') parser.add_argument('--lr_decay', default=0.1, type=float, help='Multiplicative factor used on learning rate at `lr_steps`') parser.add_argument('--lr_steps', default=[50, 100, 1000, 1500], help='List of epochs where the learning rate is decreased by `lr_decay`') parser.add_argument('--epochs', default=1, type=int, help='Number of epochs to train. If <=0, only testing will be done.') parser.add_argument('--batch_size', default=64, type=int, help='Batch size') parser.add_argument('--optim', default='adam', help='Optimizer: sgd|adam') parser.add_argument('--grad_clip', default=0, type=float, help='Element-wise clipping of gradient. If 0, does not clip') # Learning process arguments parser.add_argument('--cuda', default=1, type=int, help='Bool, use cuda') parser.add_argument('--test_auc', default=1, type=int, help='Test each n-th epoch during training') parser.add_argument('--load_best_model', default=1, type=int, help='Load the model with the best result') # Dataset parser.add_argument('--dataset', default='frejus_dataset', help='Dataset name: frejus_dataset') # Model parser.add_argument('--seed', default=1, type=int, help='Seed for random initialisation') parser.add_argument('--save', default=0, type=int, help='Seed for random initialisation') parser.add_argument('--data_fusion', default=1, help='Including data fusion') parser.add_argument('--rad_input', default=1, help='In case of no data_fusion, we indicate which input we want') parser.add_argument('--adversarial', default=0, help='Making the model adversarial') parser.add_argument('--defiance', default=0, help='Including defiance') parser.add_argument('--split', default=0, help='Making a split on the code') parser.add_argument('--auto_encod', default=1, help='Activating the auto-encoder') parser.add_argument('--name_model', default="AE_Mmodal", help='Name of the file to save the model') parser.add_argument('--output_dir', default="evaluation_models/", help='Name of the dir to save the model') # Encoder parser.add_argument('--conv_width', default=[8,8,16,16,16], help='Layers size') # Decoder parser.add_argument('--dconv_width', default=[16,16,8,8,8], help='Layers size') # Defiance parser.add_argument('--def_width', default=[16,16,16,16,16], help='Layers size') # Discriminator parser.add_argument('--nb_channels_split', default=16, type=int, help='Number of channels for the input to the discriminator') parser.add_argument('--disc_width', default=[16,16,16,16,16,16,16,16,16], help='Layers size') parser.add_argument('--disc_loss_weight', default=0.1, type=float, help='Weight applied on the adversarial loss with full model') parser.add_argument('--opti_adversarial_encoder', default=0, help='Trains the encoder weights') args = parser.parse_args() args.start_epoch = 0 # setting the seed fun.set_seed(args.seed, args.cuda) # Decide on the dataset if args.dataset=='frejus_dataset': # loading the dataset, getting a raster for later data visualisation # after every epoch import frejus_dataset # loading the data train_data, gt_change, numpy_rasters = frejus_dataset.get_datasets(["1954","1966","1970", "1978", "1989"]) ## we take a test set of the gt_change for evaluation (20%) # creating a new dict for gt test gt_change_test = {} # getting a single subset list throughout the years train_idx, val_idx = train_test_split(list(range(len(gt_change["1970"]))), test_size=0.20, random_state=1) # we load the train and test sets for GT for year in gt_change: gt_change_test[year] = Subset(gt_change[year], val_idx) for year in gt_change: gt_change[year] = Subset(gt_change[year], train_idx) # training the model trained_model = train.train_full(args, train_data, gt_change_test) return args, gt_change, numpy_rasters, trained_model, train_data ############################################################################### ############################################################################### ############################################################################### if __name__ == "__main__": print( """ Training the model """) # running the model args, gt_change, numpy_rasters, trained_model, datasets = main() print( """ We now test the results for several models """) # boolean to allow evaluation or not evaluation = False # performing evaluation on the different models if evaluation: print("AE_rad") eval_model.evaluate_model("AE_rad", gt_change) print("AE_rad+DAN") eval_model.evaluate_model("AE_rad+DAN", gt_change) print("AE_Mmodal") eval_model.evaluate_model("AE_Mmodal", gt_change) print("AE_Mmodal+DAN") eval_model.evaluate_model("AE_Mmodal+DAN", gt_change) print("AE_Mmodal+DAN+split") eval_model.evaluate_model("AE_Mmodal+DAN+split", gt_change) print("AE_alt+DAN") eval_model.evaluate_model("AE_alt+DAN", gt_change) print("bayesian_model") eval_model.evaluate_model("bayesian_model", gt_change)
[ "evaluate.evaluate_model" ]
[((320, 383), 'os.chdir', 'os.chdir', (['"""/home/adminlocal/Bureau/GIT/hiatus_change_detection"""'], {}), "('/home/adminlocal/Bureau/GIT/hiatus_change_detection')\n", (328, 383), False, 'import os\n'), ((502, 535), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (525, 535), False, 'import warnings\n'), ((610, 684), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Auto-encoder Time Adversarial Model"""'}), "(description='Auto-encoder Time Adversarial Model')\n", (633, 684), False, 'import argparse\n'), ((3785, 3819), 'utils.set_seed', 'fun.set_seed', (['args.seed', 'args.cuda'], {}), '(args.seed, args.cuda)\n', (3797, 3819), True, 'import utils as fun\n'), ((4768, 4818), 'train.train_full', 'train.train_full', (['args', 'train_data', 'gt_change_test'], {}), '(args, train_data, gt_change_test)\n', (4784, 4818), True, 'import train as train\n'), ((4110, 4179), 'frejus_dataset.get_datasets', 'frejus_dataset.get_datasets', (["['1954', '1966', '1970', '1978', '1989']"], {}), "(['1954', '1966', '1970', '1978', '1989'])\n", (4137, 4179), False, 'import frejus_dataset\n'), ((4584, 4616), 'torch.utils.data.Subset', 'Subset', (['gt_change[year]', 'val_idx'], {}), '(gt_change[year], val_idx)\n', (4590, 4616), False, 'from torch.utils.data import Subset\n'), ((4679, 4713), 'torch.utils.data.Subset', 'Subset', (['gt_change[year]', 'train_idx'], {}), '(gt_change[year], train_idx)\n', (4685, 4713), False, 'from torch.utils.data import Subset\n'), ((5582, 5628), 'evaluate.evaluate_model', 'eval_model.evaluate_model', (['"""AE_rad"""', 'gt_change'], {}), "('AE_rad', gt_change)\n", (5607, 5628), True, 'import evaluate as eval_model\n'), ((5665, 5715), 'evaluate.evaluate_model', 'eval_model.evaluate_model', (['"""AE_rad+DAN"""', 'gt_change'], {}), "('AE_rad+DAN', gt_change)\n", (5690, 5715), True, 'import evaluate as eval_model\n'), ((5751, 5800), 'evaluate.evaluate_model', 'eval_model.evaluate_model', (['"""AE_Mmodal"""', 'gt_change'], {}), "('AE_Mmodal', gt_change)\n", (5776, 5800), True, 'import evaluate as eval_model\n'), ((5840, 5893), 'evaluate.evaluate_model', 'eval_model.evaluate_model', (['"""AE_Mmodal+DAN"""', 'gt_change'], {}), "('AE_Mmodal+DAN', gt_change)\n", (5865, 5893), True, 'import evaluate as eval_model\n'), ((5939, 5998), 'evaluate.evaluate_model', 'eval_model.evaluate_model', (['"""AE_Mmodal+DAN+split"""', 'gt_change'], {}), "('AE_Mmodal+DAN+split', gt_change)\n", (5964, 5998), True, 'import evaluate as eval_model\n'), ((6035, 6085), 'evaluate.evaluate_model', 'eval_model.evaluate_model', (['"""AE_alt+DAN"""', 'gt_change'], {}), "('AE_alt+DAN', gt_change)\n", (6060, 6085), True, 'import evaluate as eval_model\n'), ((6126, 6180), 'evaluate.evaluate_model', 'eval_model.evaluate_model', (['"""bayesian_model"""', 'gt_change'], {}), "('bayesian_model', gt_change)\n", (6151, 6180), True, 'import evaluate as eval_model\n')]
from pathlib import Path import random from fire import Fire from munch import Munch import torch import numpy as np from config import config, debug_options from dataloader.dataset_multichoice import get_iterator from utils import wait_for_key, suppress_stdout from train import train from evaluate import evaluate, qa_similarity from infer import prepare_model, infer from blackbox_infer import blackbox_infer class Cli: def __init__(self): self.defaults = config self.debug = debug_options def _default_args(self, **kwargs): args = self.defaults if 'debug' in kwargs: args.update(self.debug) args.update(kwargs) args.update(resolve_paths(config)) args.update(fix_seed(args)) args.update(get_device(args)) return Munch(args) def check_dataloader(self, **kwargs): from dataloader.dataset_multichoice import modes from utils import prepare_batch from tqdm import tqdm args = self._default_args(**kwargs) iters, vocab = get_iterator(args) train_iter_test = next(iter(iters['train'])) for key, value in train_iter_test.items(): if isinstance(value, torch.Tensor): print(key, value.shape) else: print(key, value) for mode in modes: print('Test loading %s data' % mode) for batch in tqdm(iters[mode]): # import ipdb; ipdb.set_trace() # XXX DEBUG batch = prepare_batch(args, batch, vocab) def train(self, **kwargs): args = self._default_args(**kwargs) args.update({'mode': 'train'}) train(args) wait_for_key() def evaluate(self, **kwargs): args = self._default_args(**kwargs) args.update({'mode': 'evaluate'}) evaluate(args) wait_for_key() def infer(self, **kwargs): import time start = time.time() args = self._default_args(**kwargs) args.update({'mode' : 'infer'}) if args.input is not None: if type(args.input) is str: import json args.input = json.loads(args.input) args, cache = prepare_model(args) load_time = time.time() print("load time ", load_time - start) infer(args, cache) else: infer(args) print("infer time ",time.time() - load_time) def blackbox_infer(self, **kwargs): args = self._default_args(**kwargs) blackbox_infer(args) # added def qa_similarity(self, **kwargs): args = self._default_args(**kwargs) qa_similarity(args) def resolve_paths(config): paths = [k for k in config.keys() if k.endswith('_path')] res = {} root = Path('../').resolve() for path in paths: res[path] = root / config[path] return res def fix_seed(args): if 'random_seed' not in args: args['random_seed'] = 0 random.seed(args['random_seed']) np.random.seed(args['random_seed']) torch.manual_seed(args['random_seed']) torch.cuda.manual_seed_all(args['random_seed']) return args def get_device(args): if 'device' in args: device = args['device'] else: device = "cuda" if torch.cuda.is_available() else "cpu" return {'device': device} if __name__ == "__main__": Fire(Cli)
[ "evaluate.qa_similarity", "evaluate.evaluate" ]
[((3035, 3067), 'random.seed', 'random.seed', (["args['random_seed']"], {}), "(args['random_seed'])\n", (3046, 3067), False, 'import random\n'), ((3072, 3107), 'numpy.random.seed', 'np.random.seed', (["args['random_seed']"], {}), "(args['random_seed'])\n", (3086, 3107), True, 'import numpy as np\n'), ((3112, 3150), 'torch.manual_seed', 'torch.manual_seed', (["args['random_seed']"], {}), "(args['random_seed'])\n", (3129, 3150), False, 'import torch\n'), ((3155, 3202), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (["args['random_seed']"], {}), "(args['random_seed'])\n", (3181, 3202), False, 'import torch\n'), ((3438, 3447), 'fire.Fire', 'Fire', (['Cli'], {}), '(Cli)\n', (3442, 3447), False, 'from fire import Fire\n'), ((813, 824), 'munch.Munch', 'Munch', (['args'], {}), '(args)\n', (818, 824), False, 'from munch import Munch\n'), ((1071, 1089), 'dataloader.dataset_multichoice.get_iterator', 'get_iterator', (['args'], {}), '(args)\n', (1083, 1089), False, 'from dataloader.dataset_multichoice import get_iterator\n'), ((1698, 1709), 'train.train', 'train', (['args'], {}), '(args)\n', (1703, 1709), False, 'from train import train\n'), ((1719, 1733), 'utils.wait_for_key', 'wait_for_key', ([], {}), '()\n', (1731, 1733), False, 'from utils import wait_for_key, suppress_stdout\n'), ((1863, 1877), 'evaluate.evaluate', 'evaluate', (['args'], {}), '(args)\n', (1871, 1877), False, 'from evaluate import evaluate, qa_similarity\n'), ((1887, 1901), 'utils.wait_for_key', 'wait_for_key', ([], {}), '()\n', (1899, 1901), False, 'from utils import wait_for_key, suppress_stdout\n'), ((1970, 1981), 'time.time', 'time.time', ([], {}), '()\n', (1979, 1981), False, 'import time\n'), ((2572, 2592), 'blackbox_infer.blackbox_infer', 'blackbox_infer', (['args'], {}), '(args)\n', (2586, 2592), False, 'from blackbox_infer import blackbox_infer\n'), ((2707, 2726), 'evaluate.qa_similarity', 'qa_similarity', (['args'], {}), '(args)\n', (2720, 2726), False, 'from evaluate import evaluate, qa_similarity\n'), ((1437, 1454), 'tqdm.tqdm', 'tqdm', (['iters[mode]'], {}), '(iters[mode])\n', (1441, 1454), False, 'from tqdm import tqdm\n'), ((2249, 2268), 'infer.prepare_model', 'prepare_model', (['args'], {}), '(args)\n', (2262, 2268), False, 'from infer import prepare_model, infer\n'), ((2293, 2304), 'time.time', 'time.time', ([], {}), '()\n', (2302, 2304), False, 'import time\n'), ((2368, 2386), 'infer.infer', 'infer', (['args', 'cache'], {}), '(args, cache)\n', (2373, 2386), False, 'from infer import prepare_model, infer\n'), ((2413, 2424), 'infer.infer', 'infer', (['args'], {}), '(args)\n', (2418, 2424), False, 'from infer import prepare_model, infer\n'), ((2780, 2793), 'config.config.keys', 'config.keys', ([], {}), '()\n', (2791, 2793), False, 'from config import config, debug_options\n'), ((2842, 2853), 'pathlib.Path', 'Path', (['"""../"""'], {}), "('../')\n", (2846, 2853), False, 'from pathlib import Path\n'), ((3337, 3362), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3360, 3362), False, 'import torch\n'), ((1541, 1574), 'utils.prepare_batch', 'prepare_batch', (['args', 'batch', 'vocab'], {}), '(args, batch, vocab)\n', (1554, 1574), False, 'from utils import prepare_batch\n'), ((2200, 2222), 'json.loads', 'json.loads', (['args.input'], {}), '(args.input)\n', (2210, 2222), False, 'import json\n'), ((2454, 2465), 'time.time', 'time.time', ([], {}), '()\n', (2463, 2465), False, 'import time\n')]
import torch import torch.nn as nn from helper import * from rnn import VanillaRNN from gru import GruRNN from evaluate import evaluate def train(model, model_optimizer, inp, target): hidden = model.init_hidden() model.zero_grad() loss = 0 for c in range(chunk_len): output, hidden = model(inp[c], hidden) loss += criterion(output, target[c].unsqueeze(0)) loss.backward() model_optimizer.step() return loss.data.item() / chunk_len if __name__ == '__main__': current_file, n_characters = import_and_sanitize("../../data/shakespeare.txt") input_size = output_size = n_characters n_epochs = 2000 print_every = 100 plot_every = 10 hidden_size = 100 n_layers = 1 # not used for VanillaRNN lr = 0.005 chunk_len = 200 model_vanilla = VanillaRNN(input_size, hidden_size, output_size) model_gru = GruRNN(input_size, hidden_size, output_size) model = model_vanilla # choose a model model_optimizer = torch.optim.Adam(model.parameters(), lr=lr) criterion = nn.CrossEntropyLoss() start = time.time() all_losses = [] loss_avg = 0 for epoch in range(1, n_epochs + 1): (inp, target) = random_training_set(current_file, chunk_len) loss = train(model, model_optimizer, inp, target) loss_avg += loss if epoch % print_every == 0: print('[%s (%d %d%%) %.4f]' % (time_since(start), epoch, epoch / n_epochs * 100, loss)) print(evaluate(model, 'Wh', 100), '\n') if epoch % plot_every == 0: all_losses.append(loss_avg / plot_every) loss_avg = 0
[ "evaluate.evaluate" ]
[((821, 869), 'rnn.VanillaRNN', 'VanillaRNN', (['input_size', 'hidden_size', 'output_size'], {}), '(input_size, hidden_size, output_size)\n', (831, 869), False, 'from rnn import VanillaRNN\n'), ((886, 930), 'gru.GruRNN', 'GruRNN', (['input_size', 'hidden_size', 'output_size'], {}), '(input_size, hidden_size, output_size)\n', (892, 930), False, 'from gru import GruRNN\n'), ((1056, 1077), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1075, 1077), True, 'import torch.nn as nn\n'), ((1497, 1523), 'evaluate.evaluate', 'evaluate', (['model', '"""Wh"""', '(100)'], {}), "(model, 'Wh', 100)\n", (1505, 1523), False, 'from evaluate import evaluate\n')]
import os import torch import shutil import numpy as np from utils import get_yaml_value, get_id, get_model_list from evaluate import evaluate from Preprocessing import Create_Testing_Datasets from torchvision import models from NetVLAD.netvlad import NetVLAD, EmbedNet encoder = models.resnet18(pretrained=True) base_model = torch.nn.Sequential( encoder.conv1, encoder.bn1, encoder.relu, encoder.maxpool, encoder.layer1, encoder.layer2, encoder.layer3, encoder.layer4, ) dim = list(base_model.parameters())[-1].shape[0] netVLAD = NetVLAD(num_clusters=89, dim=dim, alpha=1.0) model = EmbedNet(base_model, netVLAD).cuda() name = get_yaml_value("name") save_dirname = os.path.join("./save_model_weight", name) last_model_name = os.path.basename(get_model_list(save_dirname, 'net', -1)) print(last_model_name) model.load_state_dict(torch.load(os.path.join(save_dirname, last_model_name))) query_name = 'query_drone' gallery_name = 'gallery_satellite' image_datasets, data_loader = Create_Testing_Datasets() query_path = image_datasets[query_name].imgs gallery_path = image_datasets[gallery_name].imgs gallery_label, gallery_path = get_id(gallery_path) query_label, query_path = get_id(query_path) query_label = np.array(query_label) gallery_label = np.array(gallery_label) query_feature = torch.FloatTensor() gallery_feature = torch.FloatTensor() print("<<<<<<<<<Testing Start>>>>>>>>>>>>") with torch.no_grad(): for img, label in data_loader[gallery_name]: n, c, h, w = img.size() output = model(img.cuda()) gallery_feature = torch.cat((gallery_feature, output.data.cpu())) print(gallery_feature.size()) for img, label in data_loader[query_name]: n, c, h, w = img.size() output = model(img.cuda()) query_feature = torch.cat((query_feature, output.data.cpu())) print(query_feature.size()) print("<<<<<<<<<Evaluating Start>>>>>>>>>>>>") CMC = torch.IntTensor(len(gallery_label)).zero_() # ap = average precision ap = 0.0 query_feature = query_feature.cuda() gallery_feature = gallery_feature.cuda() for i in range(len(query_label)): # print(query_label[]) ap_tmp, CMC_tmp = evaluate(query_feature[i], query_label[i], gallery_feature, gallery_label) # print(CMC_tmp.shape) if CMC_tmp[0] == -1: continue CMC += CMC_tmp ap += ap_tmp CMC = CMC.float() CMC = CMC / len(query_label) result = 'Recall@1:%.2f Recall@5:%.2f Recall@10:%.2f Recall@top10:%.2f AP:%.2f' % ( CMC[0] * 100, CMC[4] * 100, CMC[9] * 100, CMC[round(len(gallery_label) * 0.1)] * 100, ap / len(query_label) * 100) save_path = os.path.join('save_model_weight', get_yaml_value('name')) save_txt_path = os.path.join(save_path, '%s_to_%s_%s_%.2f_%.2f.txt' % (query_name[6:], gallery_name[8:], last_model_name[:7], CMC[0] * 100, ap / len(query_label)*100)) with open(save_txt_path, "w") as f: f.write(result) f.close() shutil.copy("settings.yaml", os.path.join(save_path, "settings_saved.yaml")) print(result)
[ "evaluate.evaluate" ]
[((282, 314), 'torchvision.models.resnet18', 'models.resnet18', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (297, 314), False, 'from torchvision import models\n'), ((328, 475), 'torch.nn.Sequential', 'torch.nn.Sequential', (['encoder.conv1', 'encoder.bn1', 'encoder.relu', 'encoder.maxpool', 'encoder.layer1', 'encoder.layer2', 'encoder.layer3', 'encoder.layer4'], {}), '(encoder.conv1, encoder.bn1, encoder.relu, encoder.\n maxpool, encoder.layer1, encoder.layer2, encoder.layer3, encoder.layer4)\n', (347, 475), False, 'import torch\n'), ((566, 610), 'NetVLAD.netvlad.NetVLAD', 'NetVLAD', ([], {'num_clusters': '(89)', 'dim': 'dim', 'alpha': '(1.0)'}), '(num_clusters=89, dim=dim, alpha=1.0)\n', (573, 610), False, 'from NetVLAD.netvlad import NetVLAD, EmbedNet\n'), ((664, 686), 'utils.get_yaml_value', 'get_yaml_value', (['"""name"""'], {}), "('name')\n", (678, 686), False, 'from utils import get_yaml_value, get_id, get_model_list\n'), ((702, 743), 'os.path.join', 'os.path.join', (['"""./save_model_weight"""', 'name'], {}), "('./save_model_weight', name)\n", (714, 743), False, 'import os\n'), ((1016, 1041), 'Preprocessing.Create_Testing_Datasets', 'Create_Testing_Datasets', ([], {}), '()\n', (1039, 1041), False, 'from Preprocessing import Create_Testing_Datasets\n'), ((1167, 1187), 'utils.get_id', 'get_id', (['gallery_path'], {}), '(gallery_path)\n', (1173, 1187), False, 'from utils import get_yaml_value, get_id, get_model_list\n'), ((1214, 1232), 'utils.get_id', 'get_id', (['query_path'], {}), '(query_path)\n', (1220, 1232), False, 'from utils import get_yaml_value, get_id, get_model_list\n'), ((1248, 1269), 'numpy.array', 'np.array', (['query_label'], {}), '(query_label)\n', (1256, 1269), True, 'import numpy as np\n'), ((1286, 1309), 'numpy.array', 'np.array', (['gallery_label'], {}), '(gallery_label)\n', (1294, 1309), True, 'import numpy as np\n'), ((1327, 1346), 'torch.FloatTensor', 'torch.FloatTensor', ([], {}), '()\n', (1344, 1346), False, 'import torch\n'), ((1365, 1384), 'torch.FloatTensor', 'torch.FloatTensor', ([], {}), '()\n', (1382, 1384), False, 'import torch\n'), ((779, 818), 'utils.get_model_list', 'get_model_list', (['save_dirname', '"""net"""', '(-1)'], {}), "(save_dirname, 'net', -1)\n", (793, 818), False, 'from utils import get_yaml_value, get_id, get_model_list\n'), ((1436, 1451), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1449, 1451), False, 'import torch\n'), ((2189, 2263), 'evaluate.evaluate', 'evaluate', (['query_feature[i]', 'query_label[i]', 'gallery_feature', 'gallery_label'], {}), '(query_feature[i], query_label[i], gallery_feature, gallery_label)\n', (2197, 2263), False, 'from evaluate import evaluate\n'), ((2671, 2693), 'utils.get_yaml_value', 'get_yaml_value', (['"""name"""'], {}), "('name')\n", (2685, 2693), False, 'from utils import get_yaml_value, get_id, get_model_list\n'), ((3053, 3099), 'os.path.join', 'os.path.join', (['save_path', '"""settings_saved.yaml"""'], {}), "(save_path, 'settings_saved.yaml')\n", (3065, 3099), False, 'import os\n'), ((619, 648), 'NetVLAD.netvlad.EmbedNet', 'EmbedNet', (['base_model', 'netVLAD'], {}), '(base_model, netVLAD)\n', (627, 648), False, 'from NetVLAD.netvlad import NetVLAD, EmbedNet\n'), ((876, 919), 'os.path.join', 'os.path.join', (['save_dirname', 'last_model_name'], {}), '(save_dirname, last_model_name)\n', (888, 919), False, 'import os\n')]
import pickle import random import pyro import torch from pyro.contrib.examples.util import print_and_log from pyro.infer import SVI, JitTrace_ELBO, JitTraceEnum_ELBO, Trace_ELBO, TraceEnum_ELBO, config_enumerate from pyro.optim import ClippedAdam from tqdm import tqdm from torch.utils.data import DataLoader, Dataset from data_prep import setup_data_loaders, load_vocab, Vocab, Utterance, WordConversionDataSet from evaluate import evaluate from models import Generator from train import train_epoch from util import Config, get_args def main_train(args, vocab): # random seed setup if args.seed is not None: pyro.set_rng_seed(args.seed) # CUDA for PyTorch cuda_available = torch.cuda.is_available() if cuda_available and args.cuda: device = torch.device("cuda") torch.cuda.set_device(0) print("using gpu acceleration") # generate config for model initialization print("Generating Config") config = Config( word_embeddings=torch.FloatTensor(vocab.embedding), decoder_hidden_dim=args.decoder_hidden_dim, num_relations=args.num_relations, encoder_hidden_dim=args.encoder_hidden_dim, aux_loss_multiplier=args.aux_loss_multiplier ) # initialize the generator model generator = Generator(config) # setup the optimizer adam_params = {"lr": args.learning_rate, "betas": (args.beta_1, 0.999)} optimizer = ClippedAdam(adam_params) # set up the loss(es) for inference. wrapping the guide in config_enumerate builds the loss as a sum # by enumerating each class label for the sampled discrete categorical distribution in the model if args.enumerate: guide = config_enumerate(generator.guide, args.enum_discrete, expand=True) else: guide = generator.guide elbo = (JitTraceEnum_ELBO if args.jit else TraceEnum_ELBO)(max_plate_nesting=1) loss_basic = SVI(generator.model, guide, optimizer, loss=elbo) # build a list of all losses considered losses = [loss_basic] # aux_loss: whether to use the auxiliary loss from NIPS 14 paper (Kingma et al) if args.aux_loss: elbo = JitTrace_ELBO() if args.jit else Trace_ELBO() loss_aux = SVI(generator.model_identify, generator.guide_identify, optimizer, loss=elbo) losses.append(loss_aux) # setup data loaders if args.experiment_type == 'clark': novel_utterances = pickle.load(open("./data/clark/novel_utterances.p", "rb")) established_utterances = pickle.load(open("./data/clark/established_utterances.p", "rb")) # def setup_data_loaders(sup_train_set, unsup_train_set, eval_set, test_set, batch_size): random.shuffle(novel_utterances) random.shuffle(established_utterances) num_train = len(established_utterances) num_eval_test = len(novel_utterances) num_sup = int(num_train * args.sup_train_ratio) # sup_train_ratio: num_sup_train / num_train num_unsup = num_train - num_sup num_eval = int(num_eval_test * args.eval_ratio) # eval_ratio: num_eval / (num_eval + num_test) sup_train_set = established_utterances[:num_sup] unsup_train_set = established_utterances[num_sup:] eval_set = novel_utterances[:num_eval] test_set = novel_utterances[num_eval:] data_loaders = setup_data_loaders(sup_train_set, unsup_train_set, eval_set, test_set, batch_size=args.batch_size) else: raise NotImplementedError("Have not implemented this experiment yet.") # how often would a supervised batch be encountered during inference # e.g. if sup_num is 3000, we would have every 16th = int(50000/3000) batch supervised # until we have traversed through the all supervised batches periodic_interval_batches = int(1.0 / (1.0 * args.sup_train_ratio)) # setup the logger if a filename is provided log_fn = "./logs/" + args.experiment_type + '/' + args.experiment_name + '.log' logger = open(log_fn, "w") # run inference for a certain number of epochs for i in tqdm(range(0, args.num_epochs)): # get the losses for an epoch epoch_losses_sup, epoch_losses_unsup = \ train_epoch(data_loaders=data_loaders, models=losses, periodic_interval_batches=periodic_interval_batches, vocab=vocab) # compute average epoch losses i.e. losses per example avg_epoch_losses_sup = map(lambda v: v / len(sup_train_set), epoch_losses_sup) avg_epoch_losses_unsup = map(lambda v: v / len(unsup_train_set), epoch_losses_unsup) # store the loss in the logfile str_loss_sup = " ".join(map(str, avg_epoch_losses_sup)) str_loss_unsup = " ".join(map(str, avg_epoch_losses_unsup)) str_print = "{} epoch: avg losses {}".format(i, "{} {}".format(str_loss_sup, str_loss_unsup)) print_and_log(logger, str_print) # save trained models # torch.save(generator.state_dict(), './models/test_generator_state_dict.pth') # do evaluation if needed if args.evaluate: predict_df = evaluate(generator, eval_data_loader=data_loaders['eval'], vocab=vocab, sample_size=args.eval_sample_size, batch_size=args.batch_size) # save the df with predictions (a dictionary, see evaluate.evaluate) eval_df_fn = './data/' + args.experiment_type + '/eval_df_' + args.experiment_name + '.p' pickle.dump(predict_df, open(eval_df_fn, 'wb')) return generator def main_evaluate(vocab, args): # generate config for model initialization print("Generating Config") generator_config = Config( word_embeddings=torch.FloatTensor(vocab.embedding), decoder_hidden_dim=args.decoder_hidden_dim, num_relations=args.num_relations, encoder_hidden_dim=args.encoder_hidden_dim, aux_loss_multiplier=args.aux_loss_multiplier ) # initialize the generator model generator = Generator(generator_config) # load models generator.load_state_dict(torch.load('./models/test_generator_state_dict.pth')) # load evaluation data set novel_utterances = pickle.load(open("./data/clark/novel_utterances.p", "rb")) random.shuffle(novel_utterances) num_eval_test = len(novel_utterances) num_eval = int(num_eval_test * args.eval_ratio) # eval_ratio: num_eval / (num_eval + num_test) eval_set = novel_utterances[:num_eval] eval_data_loader = DataLoader(WordConversionDataSet(eval_set), batch_size=args.batch_size, shuffle=True) # model evaluations eval_stats = evaluate(generator=generator, eval_data_loader=eval_data_loader, vocab=vocab, sample_size=args.eval_sample_size, batch_size=args.batch_size) if __name__ == '__main__': args = get_args() vocab = load_vocab(args.experiment_type, vocab_dim=args.vocab_dim) # main_train(args, vocab) main_evaluate(vocab, args)
[ "evaluate.evaluate" ]
[((704, 729), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (727, 729), False, 'import torch\n'), ((1298, 1315), 'models.Generator', 'Generator', (['config'], {}), '(config)\n', (1307, 1315), False, 'from models import Generator\n'), ((1435, 1459), 'pyro.optim.ClippedAdam', 'ClippedAdam', (['adam_params'], {}), '(adam_params)\n', (1446, 1459), False, 'from pyro.optim import ClippedAdam\n'), ((1916, 1965), 'pyro.infer.SVI', 'SVI', (['generator.model', 'guide', 'optimizer'], {'loss': 'elbo'}), '(generator.model, guide, optimizer, loss=elbo)\n', (1919, 1965), False, 'from pyro.infer import SVI, JitTrace_ELBO, JitTraceEnum_ELBO, Trace_ELBO, TraceEnum_ELBO, config_enumerate\n'), ((6275, 6302), 'models.Generator', 'Generator', (['generator_config'], {}), '(generator_config)\n', (6284, 6302), False, 'from models import Generator\n'), ((6524, 6556), 'random.shuffle', 'random.shuffle', (['novel_utterances'], {}), '(novel_utterances)\n', (6538, 6556), False, 'import random\n'), ((6894, 7039), 'evaluate.evaluate', 'evaluate', ([], {'generator': 'generator', 'eval_data_loader': 'eval_data_loader', 'vocab': 'vocab', 'sample_size': 'args.eval_sample_size', 'batch_size': 'args.batch_size'}), '(generator=generator, eval_data_loader=eval_data_loader, vocab=\n vocab, sample_size=args.eval_sample_size, batch_size=args.batch_size)\n', (6902, 7039), False, 'from evaluate import evaluate\n'), ((7182, 7192), 'util.get_args', 'get_args', ([], {}), '()\n', (7190, 7192), False, 'from util import Config, get_args\n'), ((7205, 7263), 'data_prep.load_vocab', 'load_vocab', (['args.experiment_type'], {'vocab_dim': 'args.vocab_dim'}), '(args.experiment_type, vocab_dim=args.vocab_dim)\n', (7215, 7263), False, 'from data_prep import setup_data_loaders, load_vocab, Vocab, Utterance, WordConversionDataSet\n'), ((630, 658), 'pyro.set_rng_seed', 'pyro.set_rng_seed', (['args.seed'], {}), '(args.seed)\n', (647, 658), False, 'import pyro\n'), ((784, 804), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (796, 804), False, 'import torch\n'), ((813, 837), 'torch.cuda.set_device', 'torch.cuda.set_device', (['(0)'], {}), '(0)\n', (834, 837), False, 'import torch\n'), ((1706, 1772), 'pyro.infer.config_enumerate', 'config_enumerate', (['generator.guide', 'args.enum_discrete'], {'expand': '(True)'}), '(generator.guide, args.enum_discrete, expand=True)\n', (1722, 1772), False, 'from pyro.infer import SVI, JitTrace_ELBO, JitTraceEnum_ELBO, Trace_ELBO, TraceEnum_ELBO, config_enumerate\n'), ((2224, 2301), 'pyro.infer.SVI', 'SVI', (['generator.model_identify', 'generator.guide_identify', 'optimizer'], {'loss': 'elbo'}), '(generator.model_identify, generator.guide_identify, optimizer, loss=elbo)\n', (2227, 2301), False, 'from pyro.infer import SVI, JitTrace_ELBO, JitTraceEnum_ELBO, Trace_ELBO, TraceEnum_ELBO, config_enumerate\n'), ((2691, 2723), 'random.shuffle', 'random.shuffle', (['novel_utterances'], {}), '(novel_utterances)\n', (2705, 2723), False, 'import random\n'), ((2732, 2770), 'random.shuffle', 'random.shuffle', (['established_utterances'], {}), '(established_utterances)\n', (2746, 2770), False, 'import random\n'), ((3347, 3449), 'data_prep.setup_data_loaders', 'setup_data_loaders', (['sup_train_set', 'unsup_train_set', 'eval_set', 'test_set'], {'batch_size': 'args.batch_size'}), '(sup_train_set, unsup_train_set, eval_set, test_set,\n batch_size=args.batch_size)\n', (3365, 3449), False, 'from data_prep import setup_data_loaders, load_vocab, Vocab, Utterance, WordConversionDataSet\n'), ((4367, 4490), 'train.train_epoch', 'train_epoch', ([], {'data_loaders': 'data_loaders', 'models': 'losses', 'periodic_interval_batches': 'periodic_interval_batches', 'vocab': 'vocab'}), '(data_loaders=data_loaders, models=losses,\n periodic_interval_batches=periodic_interval_batches, vocab=vocab)\n', (4378, 4490), False, 'from train import train_epoch\n'), ((5086, 5118), 'pyro.contrib.examples.util.print_and_log', 'print_and_log', (['logger', 'str_print'], {}), '(logger, str_print)\n', (5099, 5118), False, 'from pyro.contrib.examples.util import print_and_log\n'), ((5303, 5441), 'evaluate.evaluate', 'evaluate', (['generator'], {'eval_data_loader': "data_loaders['eval']", 'vocab': 'vocab', 'sample_size': 'args.eval_sample_size', 'batch_size': 'args.batch_size'}), "(generator, eval_data_loader=data_loaders['eval'], vocab=vocab,\n sample_size=args.eval_sample_size, batch_size=args.batch_size)\n", (5311, 5441), False, 'from evaluate import evaluate\n'), ((6352, 6404), 'torch.load', 'torch.load', (['"""./models/test_generator_state_dict.pth"""'], {}), "('./models/test_generator_state_dict.pth')\n", (6362, 6404), False, 'import torch\n'), ((6776, 6807), 'data_prep.WordConversionDataSet', 'WordConversionDataSet', (['eval_set'], {}), '(eval_set)\n', (6797, 6807), False, 'from data_prep import setup_data_loaders, load_vocab, Vocab, Utterance, WordConversionDataSet\n'), ((1003, 1037), 'torch.FloatTensor', 'torch.FloatTensor', (['vocab.embedding'], {}), '(vocab.embedding)\n', (1020, 1037), False, 'import torch\n'), ((2159, 2174), 'pyro.infer.JitTrace_ELBO', 'JitTrace_ELBO', ([], {}), '()\n', (2172, 2174), False, 'from pyro.infer import SVI, JitTrace_ELBO, JitTraceEnum_ELBO, Trace_ELBO, TraceEnum_ELBO, config_enumerate\n'), ((2192, 2204), 'pyro.infer.Trace_ELBO', 'Trace_ELBO', ([], {}), '()\n', (2202, 2204), False, 'from pyro.infer import SVI, JitTrace_ELBO, JitTraceEnum_ELBO, Trace_ELBO, TraceEnum_ELBO, config_enumerate\n'), ((5980, 6014), 'torch.FloatTensor', 'torch.FloatTensor', (['vocab.embedding'], {}), '(vocab.embedding)\n', (5997, 6014), False, 'import torch\n')]
from intervaltree import IntervalTree, Interval import math from evaluate.classification import Classification from typing import TextIO, Type, Optional import pysam from evaluate.filter import Filter class Masker(Filter): def __init__(self, tree: IntervalTree = None): if tree is None: tree = IntervalTree() self.tree = tree def __eq__(self, other: "Masker") -> bool: return self.tree == other.tree @classmethod def from_bed(cls: Type, bed: TextIO) -> "Type[Masker]": tree = IntervalTree() for region in bed: chrom, start, end = region.strip().split("\t") tree.addi(int(start), int(end), chrom) return cls(tree=tree) def record_should_be_filtered_out(self, record: pysam.AlignedSegment) -> bool: return self.record_overlaps_mask(record) def record_overlaps_mask(self, record: pysam.AlignedSegment) -> bool: classification = Classification(record) interval = self.get_interval_where_probe_aligns_to_truth(classification) if interval is None: return False overlaps = self.tree.overlap(interval) return any(interval.data == iv.data for iv in overlaps) @staticmethod def get_interval_where_probe_aligns_to_truth( record: Classification ) -> Optional[Interval]: raise NotImplementedError() class PrecisionMasker(Masker): @staticmethod def get_interval_where_probe_aligns_to_truth( record: Classification ) -> Optional[Interval]: if record.is_unmapped: return None aligned_pairs = record.get_aligned_pairs(with_seq=True) query_interval = aligned_pairs.get_index_of_query_interval( Interval(*record.query_probe.get_interval_or_default_interval_if_none()) ) ref_positions = aligned_pairs.get_ref_positions( transform_Nones_into_halfway_positions=True ) ref_positions_query_aligns_to = ref_positions[slice(*query_interval)] if len(ref_positions_query_aligns_to)==0: return None ref_start, ref_end = ( math.floor(ref_positions_query_aligns_to[0]), math.ceil(ref_positions_query_aligns_to[-1]), ) chromosome = record.ref_probe.chrom return Interval(max(0, ref_start), ref_end + 1, chromosome) class RecallMasker(Masker): @staticmethod def get_interval_where_probe_aligns_to_truth(record: Classification) -> Interval: begin = record.query_probe.pos end = begin + len(record.query_probe.get_interval(False)) chrom = record.query_probe.chrom return Interval(begin, end, data=chrom)
[ "evaluate.classification.Classification" ]
[((540, 554), 'intervaltree.IntervalTree', 'IntervalTree', ([], {}), '()\n', (552, 554), False, 'from intervaltree import IntervalTree, Interval\n'), ((955, 977), 'evaluate.classification.Classification', 'Classification', (['record'], {}), '(record)\n', (969, 977), False, 'from evaluate.classification import Classification\n'), ((2675, 2707), 'intervaltree.Interval', 'Interval', (['begin', 'end'], {'data': 'chrom'}), '(begin, end, data=chrom)\n', (2683, 2707), False, 'from intervaltree import IntervalTree, Interval\n'), ((320, 334), 'intervaltree.IntervalTree', 'IntervalTree', ([], {}), '()\n', (332, 334), False, 'from intervaltree import IntervalTree, Interval\n'), ((2153, 2197), 'math.floor', 'math.floor', (['ref_positions_query_aligns_to[0]'], {}), '(ref_positions_query_aligns_to[0])\n', (2163, 2197), False, 'import math\n'), ((2211, 2255), 'math.ceil', 'math.ceil', (['ref_positions_query_aligns_to[-1]'], {}), '(ref_positions_query_aligns_to[-1])\n', (2220, 2255), False, 'import math\n')]
import h5py from keras.models import load_model from plot_history import plot_history from evaluate import evaluate import click @click.command() @click.argument('name') def main(name): print('Plotting statistics for Architecture:', name) print('Loading history...') h = h5py.File('history_{}.h5'.format(name)) print('Loading weights and validation data...') v = h5py.File('val_weights_{}.h5'.format(name)) print('Loading model...') m = load_model('model_{}.hdf5'.format(name)) print('plot loss and accuracy history') plot_history(h['loss'], h['val_loss'], h['accuracy'], h['val_accuracy'], name) print('plot confusion matrix, ill or not plot') evaluate(v['X_val'], v['Y_val'], m, v['w_val'], name) if __name__ == '__main__': main()
[ "evaluate.evaluate" ]
[((132, 147), 'click.command', 'click.command', ([], {}), '()\n', (145, 147), False, 'import click\n'), ((149, 171), 'click.argument', 'click.argument', (['"""name"""'], {}), "('name')\n", (163, 171), False, 'import click\n'), ((557, 635), 'plot_history.plot_history', 'plot_history', (["h['loss']", "h['val_loss']", "h['accuracy']", "h['val_accuracy']", 'name'], {}), "(h['loss'], h['val_loss'], h['accuracy'], h['val_accuracy'], name)\n", (569, 635), False, 'from plot_history import plot_history\n'), ((693, 746), 'evaluate.evaluate', 'evaluate', (["v['X_val']", "v['Y_val']", 'm', "v['w_val']", 'name'], {}), "(v['X_val'], v['Y_val'], m, v['w_val'], name)\n", (701, 746), False, 'from evaluate import evaluate\n')]
import tensorflow as tf from .util import get_next_batch, get_batches import numpy as np import sys sys.path.append('../') from evaluate import Metrics class BiLSTM(object): def __init__(self, vocab_size, tag_size, batch_size = 64, lr = 0.001, iteration = 20, hidden_size = 128, embedding_size = 128): self.vocab_size = vocab_size self.tag_size = tag_size self.batch_size = batch_size self.lr = lr self.iteration = iteration self.hidden_size = hidden_size #self.seq_len = 100 self.embedding_size = embedding_size self.word_embedding = tf.Variable(initial_value = tf.random_normal(shape=[vocab_size, embedding_size]), trainable = True) def add_placeholder(self): self.input_x = tf.placeholder(dtype = tf.int32, shape = [None, None], name = 'input_x') self.input_y = tf.placeholder(dtype = tf.int32, shape = [None, None], name = 'input_y') self.seq_lengths = tf.placeholder(dtype = tf.int32, shape = [None], name = 'seq_lengths') self.dropout = tf.placeholder(dtype = tf.float32, shape = [], name = 'dropout') def operation(self): with tf.name_scope('embedding'): chars_vector = tf.nn.embedding_lookup(self.word_embedding, ids = self.input_x, name = 'chars_vector') chars_vector = tf.nn.dropout(chars_vector, self.dropout) with tf.name_scope('Bi-LSTM'): fw_lstm_cell = tf.nn.rnn_cell.LSTMCell(self.hidden_size, name = 'fw_lstm') bw_lstm_cell = tf.nn.rnn_cell.LSTMCell(self.hidden_size, name = 'bw_lstm') output, _ = tf.nn.bidirectional_dynamic_rnn(fw_lstm_cell, bw_lstm_cell, inputs = chars_vector, sequence_length = self.seq_lengths, dtype = tf.float32) fw_output = output[0] bw_output = output[1] concat = tf.concat([fw_output, bw_output], -1, name = 'Bi-LSTM-concat') concat = tf.nn.dropout(concat, self.dropout) s = tf.shape(concat) concat = tf.reshape(concat, shape = [-1, 2 * self.hidden_size]) with tf.name_scope('projection'): W = tf.get_variable('W', dtype = tf.float32, shape = [2 * self.hidden_size, self.tag_size]) b = tf.get_variable('b', dtype = tf.float32, shape = [self.tag_size]) pred = tf.nn.dropout(tf.matmul(concat, W) + b, self.dropout) self.logit = tf.reshape(pred, shape = [-1, s[1], self.tag_size]) def loss_op(self): with tf.name_scope('loss'): losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = self.logit, labels = self.input_y) mask = tf.sequence_mask(self.seq_lengths) losses = tf.boolean_mask(losses, mask) self.loss = tf.reduce_mean(losses) def optimize(self): with tf.name_scope('optimize'): self.optimizer = tf.train.AdamOptimizer(self.lr).minimize(self.loss) def pred_batch(self): self.pred = tf.cast(tf.argmax(self.logit, axis = -1), dtype = tf.int32) def train(self, train_x, train_y, dev_x, dev_y, word2id, tag2id, dropout): self.add_placeholder() self.operation() self.loss_op() self.pred_batch() self.optimize() self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) x, y, seq = get_batches(train_x, train_y, word2id, tag2id, self.batch_size) for i in range(self.iteration): for j in range(len(x)): _, loss, pred_labels = self.sess.run([self.optimizer, self.loss, self.pred], feed_dict = {self.input_x:x[j], self.input_y:y[j], self.seq_lengths:seq[j], self.dropout:dropout}) #self.dev_test(dev_x, dev_y, word2id, tag2id) def dev_test(self, dev_x, dev_y, word2id, tag2id): batches_x, batches_y, batches_seq_len = get_batches(dev_x, dev_y, word2id, tag2id, self.batch_size) pred_lists = [] labels = [] id2tag = dict((id_, tag) for tag, id_ in tag2id.items()) for i in range(len(batches_x)): pred_labels, loss = self.sess.run([self.pred, self.loss], feed_dict = {self.input_x:batches_x[i], self.input_y:batches_y[i], self.seq_lengths:batches_seq_len[i], self.dropout:1.0}) for j in range(len(pred_labels)): for k in range(batches_seq_len[i][j]): pred_lists.append(id2tag[pred_labels[j][k]]) labels.append(id2tag[batches_y[i][j][k]]) metrics = Metrics(labels, pred_lists) metrics.report_scores() def close_sess(self): self.sess.close()
[ "evaluate.Metrics" ]
[((104, 126), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (119, 126), False, 'import sys\n'), ((787, 853), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None, None]', 'name': '"""input_x"""'}), "(dtype=tf.int32, shape=[None, None], name='input_x')\n", (801, 853), True, 'import tensorflow as tf\n'), ((884, 950), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None, None]', 'name': '"""input_y"""'}), "(dtype=tf.int32, shape=[None, None], name='input_y')\n", (898, 950), True, 'import tensorflow as tf\n'), ((985, 1049), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""seq_lengths"""'}), "(dtype=tf.int32, shape=[None], name='seq_lengths')\n", (999, 1049), True, 'import tensorflow as tf\n'), ((1080, 1138), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[]', 'name': '"""dropout"""'}), "(dtype=tf.float32, shape=[], name='dropout')\n", (1094, 1138), True, 'import tensorflow as tf\n'), ((3321, 3333), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (3331, 3333), True, 'import tensorflow as tf\n'), ((4574, 4601), 'evaluate.Metrics', 'Metrics', (['labels', 'pred_lists'], {}), '(labels, pred_lists)\n', (4581, 4601), False, 'from evaluate import Metrics\n'), ((1189, 1215), 'tensorflow.name_scope', 'tf.name_scope', (['"""embedding"""'], {}), "('embedding')\n", (1202, 1215), True, 'import tensorflow as tf\n'), ((1245, 1332), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['self.word_embedding'], {'ids': 'self.input_x', 'name': '"""chars_vector"""'}), "(self.word_embedding, ids=self.input_x, name=\n 'chars_vector')\n", (1267, 1332), True, 'import tensorflow as tf\n'), ((1360, 1401), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['chars_vector', 'self.dropout'], {}), '(chars_vector, self.dropout)\n', (1373, 1401), True, 'import tensorflow as tf\n'), ((1416, 1440), 'tensorflow.name_scope', 'tf.name_scope', (['"""Bi-LSTM"""'], {}), "('Bi-LSTM')\n", (1429, 1440), True, 'import tensorflow as tf\n'), ((1470, 1527), 'tensorflow.nn.rnn_cell.LSTMCell', 'tf.nn.rnn_cell.LSTMCell', (['self.hidden_size'], {'name': '"""fw_lstm"""'}), "(self.hidden_size, name='fw_lstm')\n", (1493, 1527), True, 'import tensorflow as tf\n'), ((1558, 1615), 'tensorflow.nn.rnn_cell.LSTMCell', 'tf.nn.rnn_cell.LSTMCell', (['self.hidden_size'], {'name': '"""bw_lstm"""'}), "(self.hidden_size, name='bw_lstm')\n", (1581, 1615), True, 'import tensorflow as tf\n'), ((1643, 1780), 'tensorflow.nn.bidirectional_dynamic_rnn', 'tf.nn.bidirectional_dynamic_rnn', (['fw_lstm_cell', 'bw_lstm_cell'], {'inputs': 'chars_vector', 'sequence_length': 'self.seq_lengths', 'dtype': 'tf.float32'}), '(fw_lstm_cell, bw_lstm_cell, inputs=\n chars_vector, sequence_length=self.seq_lengths, dtype=tf.float32)\n', (1674, 1780), True, 'import tensorflow as tf\n'), ((1874, 1934), 'tensorflow.concat', 'tf.concat', (['[fw_output, bw_output]', '(-1)'], {'name': '"""Bi-LSTM-concat"""'}), "([fw_output, bw_output], -1, name='Bi-LSTM-concat')\n", (1883, 1934), True, 'import tensorflow as tf\n'), ((1959, 1994), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['concat', 'self.dropout'], {}), '(concat, self.dropout)\n', (1972, 1994), True, 'import tensorflow as tf\n'), ((2012, 2028), 'tensorflow.shape', 'tf.shape', (['concat'], {}), '(concat)\n', (2020, 2028), True, 'import tensorflow as tf\n'), ((2051, 2103), 'tensorflow.reshape', 'tf.reshape', (['concat'], {'shape': '[-1, 2 * self.hidden_size]'}), '(concat, shape=[-1, 2 * self.hidden_size])\n', (2061, 2103), True, 'import tensorflow as tf\n'), ((2122, 2149), 'tensorflow.name_scope', 'tf.name_scope', (['"""projection"""'], {}), "('projection')\n", (2135, 2149), True, 'import tensorflow as tf\n'), ((2168, 2256), 'tensorflow.get_variable', 'tf.get_variable', (['"""W"""'], {'dtype': 'tf.float32', 'shape': '[2 * self.hidden_size, self.tag_size]'}), "('W', dtype=tf.float32, shape=[2 * self.hidden_size, self.\n tag_size])\n", (2183, 2256), True, 'import tensorflow as tf\n'), ((2273, 2334), 'tensorflow.get_variable', 'tf.get_variable', (['"""b"""'], {'dtype': 'tf.float32', 'shape': '[self.tag_size]'}), "('b', dtype=tf.float32, shape=[self.tag_size])\n", (2288, 2334), True, 'import tensorflow as tf\n'), ((2439, 2488), 'tensorflow.reshape', 'tf.reshape', (['pred'], {'shape': '[-1, s[1], self.tag_size]'}), '(pred, shape=[-1, s[1], self.tag_size])\n', (2449, 2488), True, 'import tensorflow as tf\n'), ((2531, 2552), 'tensorflow.name_scope', 'tf.name_scope', (['"""loss"""'], {}), "('loss')\n", (2544, 2552), True, 'import tensorflow as tf\n'), ((2576, 2667), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'logits': 'self.logit', 'labels': 'self.input_y'}), '(logits=self.logit, labels=\n self.input_y)\n', (2622, 2667), True, 'import tensorflow as tf\n'), ((2687, 2721), 'tensorflow.sequence_mask', 'tf.sequence_mask', (['self.seq_lengths'], {}), '(self.seq_lengths)\n', (2703, 2721), True, 'import tensorflow as tf\n'), ((2744, 2773), 'tensorflow.boolean_mask', 'tf.boolean_mask', (['losses', 'mask'], {}), '(losses, mask)\n', (2759, 2773), True, 'import tensorflow as tf\n'), ((2799, 2821), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['losses'], {}), '(losses)\n', (2813, 2821), True, 'import tensorflow as tf\n'), ((2863, 2888), 'tensorflow.name_scope', 'tf.name_scope', (['"""optimize"""'], {}), "('optimize')\n", (2876, 2888), True, 'import tensorflow as tf\n'), ((3030, 3060), 'tensorflow.argmax', 'tf.argmax', (['self.logit'], {'axis': '(-1)'}), '(self.logit, axis=-1)\n', (3039, 3060), True, 'import tensorflow as tf\n'), ((3357, 3390), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (3388, 3390), True, 'import tensorflow as tf\n'), ((657, 709), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': '[vocab_size, embedding_size]'}), '(shape=[vocab_size, embedding_size])\n', (673, 709), True, 'import tensorflow as tf\n'), ((2373, 2393), 'tensorflow.matmul', 'tf.matmul', (['concat', 'W'], {}), '(concat, W)\n', (2382, 2393), True, 'import tensorflow as tf\n'), ((2920, 2951), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['self.lr'], {}), '(self.lr)\n', (2942, 2951), True, 'import tensorflow as tf\n')]
import logging import os import sys from datetime import datetime import torch import torch.nn.functional as F from torch.cuda.amp import GradScaler, autocast from utils import save_config_file, accuracy, save_checkpoint from evaluate import Evaluator root = logging.getLogger() handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) root.addHandler(handler) logging.getLogger('matplotlib.font_manager').disabled = True NORMALIZE_B4_COMPACTNESS = False class SimCLR(object): def __init__(self, *args, **kwargs): self.args = kwargs['args'] self.neptune_run = kwargs['neptune_run'] self.model = kwargs['model'].to(self.args.device) self.optimizer = kwargs['optimizer'] self.scheduler = kwargs['scheduler'] self.positive_indices = torch.as_tensor(kwargs['positive_indices']) self.params = kwargs['params'] self.criterion = torch.nn.CrossEntropyLoss().to(self.args.device) self.compactness_criterion = torch.nn.MSELoss().to(self.args.device) self.evaluator = Evaluator(self.neptune_run, self.args, self.model, logging, params=self.params) self.train_labeled_mean = None def info_nce_loss(self, features): labels = torch.cat([torch.arange(self.params['batch_size']) for i in range(self.args.n_views)], dim=0) labels = (labels.unsqueeze(0) == labels.unsqueeze(1)).float() labels = labels.to(self.args.device) features = F.normalize(features, dim=1) similarity_matrix = torch.matmul(features, features.T) # discard the main diagonal from both: labels and similarities matrix mask = torch.eye(labels.shape[0], dtype=torch.bool).to(self.args.device) labels = labels[~mask].view(labels.shape[0], -1) similarity_matrix = similarity_matrix[~mask].view(similarity_matrix.shape[0], -1) # select and combine multiple positives positives = similarity_matrix[labels.bool()].view(labels.shape[0], -1) # select only the negatives the negatives negatives = similarity_matrix[~labels.bool()].view(similarity_matrix.shape[0], -1) logits = torch.cat([positives, negatives], dim=1) labels = torch.zeros(logits.shape[0], dtype=torch.long).to(self.args.device) logits = logits / self.params['temperature'] return logits, labels def compactness_loss_info(self, features, indices): if NORMALIZE_B4_COMPACTNESS: features = F.normalize(features, dim=1) rel_indices = (indices[:, None] == self.positive_indices[None,:]).any(-1) rel_features: torch.Tensor = features[torch.cat([rel_indices, rel_indices])].to(self.args.device) meaned_rel_features = rel_features - self.train_labeled_mean.to(self.args.device) return meaned_rel_features def train(self, train_loader, test_loader, train_labeled_loader): scaler = GradScaler(enabled=self.args.fp16_precision) n_iter = 0 self.train_labeled_mean = torch.tensor(self.evaluator.evaluate(test_loader, train_labeled_loader)) logging.info(f"Start SimCLR training for {self.params['epochs']} epochs.") logging.info(f"Training with gpu: {not self.args.disable_cuda}.") for epoch_counter in range(self.params['epochs']): print(f"epoch {epoch_counter}") self.neptune_run['cur_epoch'].log(epoch_counter) for images, classes, indices in train_loader: images = torch.cat(images, dim=0) images = images.to(self.args.device) with autocast(enabled=self.args.fp16_precision): features = self.model(images) logits, labels = self.info_nce_loss(features) constructive_loss = self.criterion(logits, labels) zero_mean_labeled = self.compactness_loss_info(features, indices) compactness_loss = self.params['lambda'] * self.compactness_criterion(zero_mean_labeled, torch.zeros_like(zero_mean_labeled)) # convert nan loss to 0, when there are no samples to make compact compactness_loss[compactness_loss != compactness_loss] = 0 self.optimizer.zero_grad() scaler.scale(constructive_loss + compactness_loss).backward() scaler.step(self.optimizer) scaler.update() if n_iter % self.args.log_every_n_steps == 0: top1, top5 = accuracy(logits, labels, topk=(1, 5)) self.neptune_run['losses/constructive_loss'].log(constructive_loss) self.neptune_run['losses/compactness_loss'].log(compactness_loss) self.neptune_run['losses/total_loss'].log(constructive_loss + compactness_loss) self.neptune_run['acc/top1'].log(top1[0]) self.neptune_run['acc/top5'].log(top5[0]) self.neptune_run['losses/learning_rate'].log(self.scheduler.get_last_lr()[0]) n_iter += 1 logging.info(f"evaluating on epoch {epoch_counter + 1}") self.train_labeled_mean = torch.tensor(self.evaluator.evaluate(test_loader, train_labeled_loader)) # warmup for the first 10 epochs if epoch_counter >= 10: self.scheduler.step() if (epoch_counter + 1) % 20 == 0: # todo: save checkpoint logging.info("saving checkpoint - to be implemented") # save_checkpoint({ # 'epoch': self.params['epochs'], # 'arch': self.args.arch, # 'state_dict': self.model.state_dict(), # 'optimizer': self.optimizer.state_dict(), # }, is_best=False, filename=os.path.join(self.neptune_run.log_dir, checkpoint_name)) logging.debug(f"Epoch: {epoch_counter}\tLoss: {constructive_loss}\tTop1 accuracy: {top1[0]}") logging.info("Training has finished.") # save model checkpoints
[ "evaluate.Evaluator" ]
[((260, 279), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (277, 279), False, 'import logging\n'), ((290, 323), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (311, 323), False, 'import logging\n'), ((336, 409), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'], {}), "('%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n", (353, 409), False, 'import logging\n'), ((467, 511), 'logging.getLogger', 'logging.getLogger', (['"""matplotlib.font_manager"""'], {}), "('matplotlib.font_manager')\n", (484, 511), False, 'import logging\n'), ((890, 933), 'torch.as_tensor', 'torch.as_tensor', (["kwargs['positive_indices']"], {}), "(kwargs['positive_indices'])\n", (905, 933), False, 'import torch\n'), ((1149, 1228), 'evaluate.Evaluator', 'Evaluator', (['self.neptune_run', 'self.args', 'self.model', 'logging'], {'params': 'self.params'}), '(self.neptune_run, self.args, self.model, logging, params=self.params)\n', (1158, 1228), False, 'from evaluate import Evaluator\n'), ((1553, 1581), 'torch.nn.functional.normalize', 'F.normalize', (['features'], {'dim': '(1)'}), '(features, dim=1)\n', (1564, 1581), True, 'import torch.nn.functional as F\n'), ((1610, 1644), 'torch.matmul', 'torch.matmul', (['features', 'features.T'], {}), '(features, features.T)\n', (1622, 1644), False, 'import torch\n'), ((2236, 2276), 'torch.cat', 'torch.cat', (['[positives, negatives]'], {'dim': '(1)'}), '([positives, negatives], dim=1)\n', (2245, 2276), False, 'import torch\n'), ((2993, 3037), 'torch.cuda.amp.GradScaler', 'GradScaler', ([], {'enabled': 'self.args.fp16_precision'}), '(enabled=self.args.fp16_precision)\n', (3003, 3037), False, 'from torch.cuda.amp import GradScaler, autocast\n'), ((3172, 3246), 'logging.info', 'logging.info', (['f"""Start SimCLR training for {self.params[\'epochs\']} epochs."""'], {}), '(f"Start SimCLR training for {self.params[\'epochs\']} epochs.")\n', (3184, 3246), False, 'import logging\n'), ((3255, 3320), 'logging.info', 'logging.info', (['f"""Training with gpu: {not self.args.disable_cuda}."""'], {}), "(f'Training with gpu: {not self.args.disable_cuda}.')\n", (3267, 3320), False, 'import logging\n'), ((6168, 6206), 'logging.info', 'logging.info', (['"""Training has finished."""'], {}), "('Training has finished.')\n", (6180, 6206), False, 'import logging\n'), ((2562, 2590), 'torch.nn.functional.normalize', 'F.normalize', (['features'], {'dim': '(1)'}), '(features, dim=1)\n', (2573, 2590), True, 'import torch.nn.functional as F\n'), ((5246, 5302), 'logging.info', 'logging.info', (['f"""evaluating on epoch {epoch_counter + 1}"""'], {}), "(f'evaluating on epoch {epoch_counter + 1}')\n", (5258, 5302), False, 'import logging\n'), ((6065, 6168), 'logging.debug', 'logging.debug', (['f"""Epoch: {epoch_counter}\tLoss: {constructive_loss}\tTop1 accuracy: {top1[0]}"""'], {}), "(\n f'Epoch: {epoch_counter}\\tLoss: {constructive_loss}\\tTop1 accuracy: {top1[0]}'\n )\n", (6078, 6168), False, 'import logging\n'), ((998, 1025), 'torch.nn.CrossEntropyLoss', 'torch.nn.CrossEntropyLoss', ([], {}), '()\n', (1023, 1025), False, 'import torch\n'), ((1084, 1102), 'torch.nn.MSELoss', 'torch.nn.MSELoss', ([], {}), '()\n', (1100, 1102), False, 'import torch\n'), ((1336, 1375), 'torch.arange', 'torch.arange', (["self.params['batch_size']"], {}), "(self.params['batch_size'])\n", (1348, 1375), False, 'import torch\n'), ((1738, 1782), 'torch.eye', 'torch.eye', (['labels.shape[0]'], {'dtype': 'torch.bool'}), '(labels.shape[0], dtype=torch.bool)\n', (1747, 1782), False, 'import torch\n'), ((2294, 2340), 'torch.zeros', 'torch.zeros', (['logits.shape[0]'], {'dtype': 'torch.long'}), '(logits.shape[0], dtype=torch.long)\n', (2305, 2340), False, 'import torch\n'), ((3568, 3592), 'torch.cat', 'torch.cat', (['images'], {'dim': '(0)'}), '(images, dim=0)\n', (3577, 3592), False, 'import torch\n'), ((5636, 5689), 'logging.info', 'logging.info', (['"""saving checkpoint - to be implemented"""'], {}), "('saving checkpoint - to be implemented')\n", (5648, 5689), False, 'import logging\n'), ((2719, 2756), 'torch.cat', 'torch.cat', (['[rel_indices, rel_indices]'], {}), '([rel_indices, rel_indices])\n', (2728, 2756), False, 'import torch\n'), ((3667, 3709), 'torch.cuda.amp.autocast', 'autocast', ([], {'enabled': 'self.args.fp16_precision'}), '(enabled=self.args.fp16_precision)\n', (3675, 3709), False, 'from torch.cuda.amp import GradScaler, autocast\n'), ((4672, 4709), 'utils.accuracy', 'accuracy', (['logits', 'labels'], {'topk': '(1, 5)'}), '(logits, labels, topk=(1, 5))\n', (4680, 4709), False, 'from utils import save_config_file, accuracy, save_checkpoint\n'), ((4176, 4211), 'torch.zeros_like', 'torch.zeros_like', (['zero_mean_labeled'], {}), '(zero_mean_labeled)\n', (4192, 4211), False, 'import torch\n')]
from torch.utils.data import DataLoader, random_split from torch.utils.tensorboard import SummaryWriter from dataset import HANDataset import torch import torch.nn as nn import time import numpy as np from config import Config from tqdm import tqdm import os from pathlib import Path from evaluate import evaluate import datetime from model.HAN import HAN device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class EarlyStopping: def __init__(self, patience=4): self.patience = patience self.counter = 0 self.best_loss = np.Inf def __call__(self, val_loss): if val_loss < self.best_loss: early_stop = False get_better = True self.counter = 0 self.best_loss = val_loss else: get_better = False self.counter += 1 if self.counter >= self.patience: early_stop = True else: early_stop = False return early_stop, get_better def latest_checkpoint(directory): if not os.path.exists(directory): return None all_checkpoints = { int(x.split('.')[-2].split('-')[-1]): x for x in os.listdir(directory) } if not all_checkpoints: return None return os.path.join(directory, all_checkpoints[max(all_checkpoints.keys())]) def train(): writer = SummaryWriter( log_dir=f"./runs/{datetime.datetime.now().replace(microsecond=0).isoformat()}{'-' + os.environ['REMARK'] if 'REMARK' in os.environ else ''}") if not os.path.exists('checkpoint'): os.makedirs('checkpoint') try: pretrained_word_embedding = torch.from_numpy( np.load('./data/train/pretrained_word_embedding.npy')).float() except FileNotFoundError: pretrained_word_embedding = None model = HAN(Config, pretrained_word_embedding).to(device) print(model) dataset = HANDataset('data/train/news_parsed.tsv') validation_size = int(Config.validation_proportion * len(dataset)) train_size = len(dataset) - validation_size train_dataset, val_dataset = random_split(dataset, (train_size, validation_size)) print( f"Load training dataset with train size {len(train_dataset)} and validation size {len(val_dataset)}." ) train_dataloader = iter( DataLoader(train_dataset, batch_size=Config.batch_size, shuffle=True, num_workers=Config.num_workers, drop_last=True)) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=Config.learning_rate) start_time = time.time() loss_full = [] exhaustion_count = 0 step = 0 Path('./checkpoint').mkdir(exist_ok=True) if Config.load_checkpoint: checkpoint_path = latest_checkpoint('./checkpoint') if checkpoint_path is not None: print(f"Load saved parameters in {checkpoint_path}") checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) step = checkpoint['step'] model.train() early_stopping = EarlyStopping() with tqdm(total=Config.num_batches, desc="Training") as pbar: for i in range(1, Config.num_batches + 1): try: minibatch = next(train_dataloader) except StopIteration: exhaustion_count += 1 tqdm.write( f"Training data exhausted for {exhaustion_count} times after {i} batches, reuse the dataset." ) train_dataloader = iter( DataLoader(train_dataset, batch_size=Config.batch_size, shuffle=True, num_workers=Config.num_workers, drop_last=True)) minibatch = next(train_dataloader) step += 1 # batch_size, num_(sub)categories y_pred = model(minibatch) # batch_size y = minibatch[Config.target] loss = criterion(y_pred, y.to(device)) loss_full.append(loss.item()) optimizer.zero_grad() loss.backward() optimizer.step() writer.add_scalar('Train/Loss', loss.item(), step) if i % Config.num_batches_show_loss == 0: tqdm.write( f"Time {time_since(start_time)}, batches {i}, current loss {loss.item():.4f}, average loss: {np.mean(loss_full):.4f}" ) if i % Config.num_batches_validate == 0: model.eval() val_loss, val_report = evaluate(model, val_dataset) model.train() precision = val_report['weighted avg']['precision'] recall = val_report['weighted avg']['recall'] f1 = val_report['weighted avg']['f1-score'] writer.add_scalar('Validation/loss', val_loss, step) writer.add_scalar('Validation/precision', precision, step) writer.add_scalar('Validation/recall', recall, step) writer.add_scalar('Validation/F1', f1, step) tqdm.write( f"Time {time_since(start_time)}, batches {i}, validation loss: {val_loss:.4f}, validation precision: {precision:.4f}, validation recall: {recall:.4f}, validation F1: {f1:.4f}" ) early_stop, get_better = early_stopping(val_loss) if early_stop: tqdm.write('Early stop.') break elif get_better: torch.save( { 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'step': step }, f"./checkpoint/ckpt-{step}.pth") pbar.update(1) def time_since(since): """ Format elapsed time string. """ now = time.time() elapsed_time = now - since return time.strftime("%H:%M:%S", time.gmtime(elapsed_time)) if __name__ == '__main__': print('Using device:', device) # torch.manual_seed(0) train()
[ "evaluate.evaluate" ]
[((1965, 2005), 'dataset.HANDataset', 'HANDataset', (['"""data/train/news_parsed.tsv"""'], {}), "('data/train/news_parsed.tsv')\n", (1975, 2005), False, 'from dataset import HANDataset\n'), ((2159, 2211), 'torch.utils.data.random_split', 'random_split', (['dataset', '(train_size, validation_size)'], {}), '(dataset, (train_size, validation_size))\n', (2171, 2211), False, 'from torch.utils.data import DataLoader, random_split\n'), ((2635, 2656), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (2654, 2656), True, 'import torch.nn as nn\n'), ((2752, 2763), 'time.time', 'time.time', ([], {}), '()\n', (2761, 2763), False, 'import time\n'), ((6296, 6307), 'time.time', 'time.time', ([], {}), '()\n', (6305, 6307), False, 'import time\n'), ((391, 416), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (414, 416), False, 'import torch\n'), ((1073, 1098), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (1087, 1098), False, 'import os\n'), ((1595, 1623), 'os.path.exists', 'os.path.exists', (['"""checkpoint"""'], {}), "('checkpoint')\n", (1609, 1623), False, 'import os\n'), ((1633, 1658), 'os.makedirs', 'os.makedirs', (['"""checkpoint"""'], {}), "('checkpoint')\n", (1644, 1658), False, 'import os\n'), ((2423, 2544), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': 'Config.batch_size', 'shuffle': '(True)', 'num_workers': 'Config.num_workers', 'drop_last': '(True)'}), '(train_dataset, batch_size=Config.batch_size, shuffle=True,\n num_workers=Config.num_workers, drop_last=True)\n', (2433, 2544), False, 'from torch.utils.data import DataLoader, random_split\n'), ((3369, 3416), 'tqdm.tqdm', 'tqdm', ([], {'total': 'Config.num_batches', 'desc': '"""Training"""'}), "(total=Config.num_batches, desc='Training')\n", (3373, 3416), False, 'from tqdm import tqdm\n'), ((6376, 6401), 'time.gmtime', 'time.gmtime', (['elapsed_time'], {}), '(elapsed_time)\n', (6387, 6401), False, 'import time\n'), ((1209, 1230), 'os.listdir', 'os.listdir', (['directory'], {}), '(directory)\n', (1219, 1230), False, 'import os\n'), ((1882, 1920), 'model.HAN.HAN', 'HAN', (['Config', 'pretrained_word_embedding'], {}), '(Config, pretrained_word_embedding)\n', (1885, 1920), False, 'from model.HAN import HAN\n'), ((2826, 2846), 'pathlib.Path', 'Path', (['"""./checkpoint"""'], {}), "('./checkpoint')\n", (2830, 2846), False, 'from pathlib import Path\n'), ((3089, 3116), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (3099, 3116), False, 'import torch\n'), ((4914, 4942), 'evaluate.evaluate', 'evaluate', (['model', 'val_dataset'], {}), '(model, val_dataset)\n', (4922, 4942), False, 'from evaluate import evaluate\n'), ((1735, 1788), 'numpy.load', 'np.load', (['"""./data/train/pretrained_word_embedding.npy"""'], {}), "('./data/train/pretrained_word_embedding.npy')\n", (1742, 1788), True, 'import numpy as np\n'), ((3633, 3748), 'tqdm.tqdm.write', 'tqdm.write', (['f"""Training data exhausted for {exhaustion_count} times after {i} batches, reuse the dataset."""'], {}), "(\n f'Training data exhausted for {exhaustion_count} times after {i} batches, reuse the dataset.'\n )\n", (3643, 3748), False, 'from tqdm import tqdm\n'), ((5797, 5822), 'tqdm.tqdm.write', 'tqdm.write', (['"""Early stop."""'], {}), "('Early stop.')\n", (5807, 5822), False, 'from tqdm import tqdm\n'), ((3838, 3959), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': 'Config.batch_size', 'shuffle': '(True)', 'num_workers': 'Config.num_workers', 'drop_last': '(True)'}), '(train_dataset, batch_size=Config.batch_size, shuffle=True,\n num_workers=Config.num_workers, drop_last=True)\n', (3848, 3959), False, 'from torch.utils.data import DataLoader, random_split\n'), ((4749, 4767), 'numpy.mean', 'np.mean', (['loss_full'], {}), '(loss_full)\n', (4756, 4767), True, 'import numpy as np\n'), ((1459, 1482), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1480, 1482), False, 'import datetime\n')]
import numpy as np import tensorflow as tf from keras import initializers from keras.models import Model from keras.layers import Embedding, Input, Dense, Flatten, concatenate, Dot, Lambda, multiply, Reshape, merge from keras.optimizers import Adagrad, Adam, SGD, RMSprop from keras import backend as K from evaluate import evaluate_model from Dataset import Dataset from time import time import argparse def parse_args(): parser = argparse.ArgumentParser(description="Run DMF.") parser.add_argument('--path', nargs='?', default='Data/', help='Input data path.') parser.add_argument('--dataset', nargs='?', default='ml-1m', help='Choose a dataset.') parser.add_argument('--epochs', type=int, default=20, help='Number of epochs.') parser.add_argument('--batch_size', type=int, default=256, help='Batch size.') parser.add_argument('--userlayers', nargs='?', default='[512, 64]', help="Size of each user layer") parser.add_argument('--itemlayers', nargs='?', default='[1024, 64]', help="Size of each item layer") parser.add_argument('--num_neg', type=int, default=4, help='Number of negative instances to pair with a positive instance.') parser.add_argument('--lr', type=float, default=0.0001, help='Learning rate.') parser.add_argument('--learner', nargs='?', default='adam', help='Specify an optimizer: adagrad, adam, rmsprop, sgd') parser.add_argument('--verbose', type=int, default=1, help='Show performance per X iterations') parser.add_argument('--out', type=int, default=1, help='Whether to save the trained model.') return parser.parse_args() def get_model(train, num_users, num_items, userlayers=[512, 64], itemlayers=[1024, 64]): num_layer = len(userlayers) # Number of layers in the MLP user_matrix = K.constant(getTrainMatrix(train)) item_matrix = K.constant(getTrainMatrix(train).T) # Input variables user = Input(shape=(1,), dtype='int32', name='user_input') item = Input(shape=(1,), dtype='int32', name='item_input') # Multi-hot User representation and Item representation user_input = Lambda(lambda x: tf.gather(user_matrix, tf.to_int32(x)))(user) item_input = Lambda(lambda x: tf.gather(item_matrix, tf.to_int32(x)))(item) user_input = Reshape((num_items, ))(user_input) item_input = Reshape((num_users, ))(item_input) print(user_input.shape, item_input.shape) # DMF part userlayer = Dense(userlayers[0], activation="linear" , name='user_layer0') itemlayer = Dense(itemlayers[0], activation="linear" , name='item_layer0') user_latent_vector = userlayer(user_input) item_latent_vector = itemlayer(item_input) print(user_latent_vector.shape, item_latent_vector.shape) for idx in range(1, num_layer): userlayer = Dense(userlayers[idx], activation='relu', name='user_layer%d' % idx) itemlayer = Dense(itemlayers[idx], activation='relu', name='item_layer%d' % idx) user_latent_vector = userlayer(user_latent_vector) item_latent_vector = itemlayer(item_latent_vector) print(user_latent_vector.shape, item_latent_vector.shape) predict_vector = multiply([user_latent_vector, item_latent_vector]) prediction = Dense(1, activation='sigmoid', kernel_initializer=initializers.lecun_normal(), name='prediction')(predict_vector) print(prediction.shape) model_ = Model(inputs=[user, item], outputs=prediction) return model_ def getTrainMatrix(train): num_users, num_items = train.shape train_matrix = np.zeros([num_users, num_items], dtype=np.int32) for (u, i) in train.keys(): train_matrix[u][i] = 1 return train_matrix def get_train_instances(train, num_negatives): user_input, item_input, labels = [], [], [] num_users = train.shape[0] for (u, i) in train.keys(): # positive instance user_input.append(u) item_input.append(i) labels.append(1) # negative instances for t in range(num_negatives): j = np.random.randint(num_items) while (u, j) in train.keys(): j = np.random.randint(num_items) user_input.append(u) item_input.append(j) labels.append(0) return user_input, item_input, labels if __name__ == '__main__': args = parse_args() path = args.path dataset = args.dataset userlayers = eval(args.userlayers) itemlayers = eval(args.itemlayers) num_negatives = args.num_neg learner = args.learner learning_rate = args.lr batch_size = args.batch_size epochs = args.epochs verbose = args.verbose topK = 10 evaluation_threads = 1 # mp.cpu_count() print("DMF arguments: %s " %(args)) model_out_file = 'Pretrain/%s_DMF_%d.h5' %(args.dataset, time()) # Loading data t1 = time() dataset = Dataset(args.path + args.dataset) train, testRatings, testNegatives = dataset.trainMatrix, dataset.testRatings, dataset.testNegatives num_users, num_items = train.shape print("Load data done [%.1f s]. #user=%d, #item=%d, #train=%d, #test=%d" % (time()-t1, num_users, num_items, train.nnz, len(testRatings))) # Build model model = get_model(train, num_users, num_items, userlayers, itemlayers) if learner.lower() == "adagrad": model.compile(optimizer=Adagrad(lr=learning_rate), loss='binary_crossentropy') elif learner.lower() == "rmsprop": model.compile(optimizer=RMSprop(lr=learning_rate), loss='binary_crossentropy') elif learner.lower() == "adam": model.compile(optimizer=Adam(lr=learning_rate), loss='binary_crossentropy') else: model.compile(optimizer=SGD(lr=learning_rate), loss='binary_crossentropy') # Check Init performance t1 = time() (hits, ndcgs) = evaluate_model(model, testRatings, testNegatives, topK, evaluation_threads) hr, ndcg = np.array(hits).mean(), np.array(ndcgs).mean() print('Init: HR = %.4f, NDCG = %.4f [%.1f]' % (hr, ndcg, time()-t1)) best_hr, best_ndcg, best_iter = hr, ndcg, -1 # Train model for epoch in range(epochs): t1 = time() # Generate training instances user_input, item_input, labels = get_train_instances(train, num_negatives) hist = model.fit([np.array(user_input), np.array(item_input)], # input np.array(labels), # labels batch_size=batch_size, epochs=1, verbose=0, shuffle=True) t2 = time() # Evaluation if epoch % verbose == 0: (hits, ndcgs) = evaluate_model(model, testRatings, testNegatives, topK, evaluation_threads) hr, ndcg, loss = np.array(hits).mean(), np.array(ndcgs).mean(), hist.history['loss'][0] print('Iteration %d [%.1f s]: HR = %.4f, NDCG = %.4f, loss = %.4f [%.1f s]' % (epoch, t2-t1, hr, ndcg, loss, time()-t2)) if hr > best_hr: best_hr, best_ndcg, best_iter = hr, ndcg, epoch if args.out > 0: model.save_weights(model_out_file, overwrite=True) print("End. Best Iteration %d: HR = %.4f, NDCG = %.4f. " %(best_iter, best_hr, best_ndcg)) if args.out > 0: print("The best DMF model is saved to %s" % model_out_file)
[ "evaluate.evaluate_model" ]
[((437, 484), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Run DMF."""'}), "(description='Run DMF.')\n", (460, 484), False, 'import argparse\n'), ((2159, 2210), 'keras.layers.Input', 'Input', ([], {'shape': '(1,)', 'dtype': '"""int32"""', 'name': '"""user_input"""'}), "(shape=(1,), dtype='int32', name='user_input')\n", (2164, 2210), False, 'from keras.layers import Embedding, Input, Dense, Flatten, concatenate, Dot, Lambda, multiply, Reshape, merge\n'), ((2222, 2273), 'keras.layers.Input', 'Input', ([], {'shape': '(1,)', 'dtype': '"""int32"""', 'name': '"""item_input"""'}), "(shape=(1,), dtype='int32', name='item_input')\n", (2227, 2273), False, 'from keras.layers import Embedding, Input, Dense, Flatten, concatenate, Dot, Lambda, multiply, Reshape, merge\n'), ((2681, 2742), 'keras.layers.Dense', 'Dense', (['userlayers[0]'], {'activation': '"""linear"""', 'name': '"""user_layer0"""'}), "(userlayers[0], activation='linear', name='user_layer0')\n", (2686, 2742), False, 'from keras.layers import Embedding, Input, Dense, Flatten, concatenate, Dot, Lambda, multiply, Reshape, merge\n'), ((2760, 2821), 'keras.layers.Dense', 'Dense', (['itemlayers[0]'], {'activation': '"""linear"""', 'name': '"""item_layer0"""'}), "(itemlayers[0], activation='linear', name='item_layer0')\n", (2765, 2821), False, 'from keras.layers import Embedding, Input, Dense, Flatten, concatenate, Dot, Lambda, multiply, Reshape, merge\n'), ((3399, 3449), 'keras.layers.multiply', 'multiply', (['[user_latent_vector, item_latent_vector]'], {}), '([user_latent_vector, item_latent_vector])\n', (3407, 3449), False, 'from keras.layers import Embedding, Input, Dense, Flatten, concatenate, Dot, Lambda, multiply, Reshape, merge\n'), ((3647, 3693), 'keras.models.Model', 'Model', ([], {'inputs': '[user, item]', 'outputs': 'prediction'}), '(inputs=[user, item], outputs=prediction)\n', (3652, 3693), False, 'from keras.models import Model\n'), ((3822, 3870), 'numpy.zeros', 'np.zeros', (['[num_users, num_items]'], {'dtype': 'np.int32'}), '([num_users, num_items], dtype=np.int32)\n', (3830, 3870), True, 'import numpy as np\n'), ((5127, 5133), 'time.time', 'time', ([], {}), '()\n', (5131, 5133), False, 'from time import time\n'), ((5148, 5181), 'Dataset.Dataset', 'Dataset', (['(args.path + args.dataset)'], {}), '(args.path + args.dataset)\n', (5155, 5181), False, 'from Dataset import Dataset\n'), ((6089, 6095), 'time.time', 'time', ([], {}), '()\n', (6093, 6095), False, 'from time import time\n'), ((6116, 6191), 'evaluate.evaluate_model', 'evaluate_model', (['model', 'testRatings', 'testNegatives', 'topK', 'evaluation_threads'], {}), '(model, testRatings, testNegatives, topK, evaluation_threads)\n', (6130, 6191), False, 'from evaluate import evaluate_model\n'), ((2512, 2533), 'keras.layers.Reshape', 'Reshape', (['(num_items,)'], {}), '((num_items,))\n', (2519, 2533), False, 'from keras.layers import Embedding, Input, Dense, Flatten, concatenate, Dot, Lambda, multiply, Reshape, merge\n'), ((2564, 2585), 'keras.layers.Reshape', 'Reshape', (['(num_users,)'], {}), '((num_users,))\n', (2571, 2585), False, 'from keras.layers import Embedding, Input, Dense, Flatten, concatenate, Dot, Lambda, multiply, Reshape, merge\n'), ((3035, 3103), 'keras.layers.Dense', 'Dense', (['userlayers[idx]'], {'activation': '"""relu"""', 'name': "('user_layer%d' % idx)"}), "(userlayers[idx], activation='relu', name='user_layer%d' % idx)\n", (3040, 3103), False, 'from keras.layers import Embedding, Input, Dense, Flatten, concatenate, Dot, Lambda, multiply, Reshape, merge\n'), ((3124, 3192), 'keras.layers.Dense', 'Dense', (['itemlayers[idx]'], {'activation': '"""relu"""', 'name': "('item_layer%d' % idx)"}), "(itemlayers[idx], activation='relu', name='item_layer%d' % idx)\n", (3129, 3192), False, 'from keras.layers import Embedding, Input, Dense, Flatten, concatenate, Dot, Lambda, multiply, Reshape, merge\n'), ((6443, 6449), 'time.time', 'time', ([], {}), '()\n', (6447, 6449), False, 'from time import time\n'), ((6801, 6807), 'time.time', 'time', ([], {}), '()\n', (6805, 6807), False, 'from time import time\n'), ((4312, 4340), 'numpy.random.randint', 'np.random.randint', (['num_items'], {}), '(num_items)\n', (4329, 4340), True, 'import numpy as np\n'), ((5086, 5092), 'time.time', 'time', ([], {}), '()\n', (5090, 5092), False, 'from time import time\n'), ((6677, 6693), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (6685, 6693), True, 'import numpy as np\n'), ((6891, 6966), 'evaluate.evaluate_model', 'evaluate_model', (['model', 'testRatings', 'testNegatives', 'topK', 'evaluation_threads'], {}), '(model, testRatings, testNegatives, topK, evaluation_threads)\n', (6905, 6966), False, 'from evaluate import evaluate_model\n'), ((3540, 3567), 'keras.initializers.lecun_normal', 'initializers.lecun_normal', ([], {}), '()\n', (3565, 3567), False, 'from keras import initializers\n'), ((4403, 4431), 'numpy.random.randint', 'np.random.randint', (['num_items'], {}), '(num_items)\n', (4420, 4431), True, 'import numpy as np\n'), ((5648, 5673), 'keras.optimizers.Adagrad', 'Adagrad', ([], {'lr': 'learning_rate'}), '(lr=learning_rate)\n', (5655, 5673), False, 'from keras.optimizers import Adagrad, Adam, SGD, RMSprop\n'), ((6207, 6221), 'numpy.array', 'np.array', (['hits'], {}), '(hits)\n', (6215, 6221), True, 'import numpy as np\n'), ((6230, 6245), 'numpy.array', 'np.array', (['ndcgs'], {}), '(ndcgs)\n', (6238, 6245), True, 'import numpy as np\n'), ((6598, 6618), 'numpy.array', 'np.array', (['user_input'], {}), '(user_input)\n', (6606, 6618), True, 'import numpy as np\n'), ((6620, 6640), 'numpy.array', 'np.array', (['item_input'], {}), '(item_input)\n', (6628, 6640), True, 'import numpy as np\n'), ((2392, 2406), 'tensorflow.to_int32', 'tf.to_int32', (['x'], {}), '(x)\n', (2403, 2406), True, 'import tensorflow as tf\n'), ((2472, 2486), 'tensorflow.to_int32', 'tf.to_int32', (['x'], {}), '(x)\n', (2483, 2486), True, 'import tensorflow as tf\n'), ((5417, 5423), 'time.time', 'time', ([], {}), '()\n', (5421, 5423), False, 'from time import time\n'), ((5774, 5799), 'keras.optimizers.RMSprop', 'RMSprop', ([], {'lr': 'learning_rate'}), '(lr=learning_rate)\n', (5781, 5799), False, 'from keras.optimizers import Adagrad, Adam, SGD, RMSprop\n'), ((6314, 6320), 'time.time', 'time', ([], {}), '()\n', (6318, 6320), False, 'from time import time\n'), ((5897, 5919), 'keras.optimizers.Adam', 'Adam', ([], {'lr': 'learning_rate'}), '(lr=learning_rate)\n', (5901, 5919), False, 'from keras.optimizers import Adagrad, Adam, SGD, RMSprop\n'), ((5991, 6012), 'keras.optimizers.SGD', 'SGD', ([], {'lr': 'learning_rate'}), '(lr=learning_rate)\n', (5994, 6012), False, 'from keras.optimizers import Adagrad, Adam, SGD, RMSprop\n'), ((6996, 7010), 'numpy.array', 'np.array', (['hits'], {}), '(hits)\n', (7004, 7010), True, 'import numpy as np\n'), ((7019, 7034), 'numpy.array', 'np.array', (['ndcgs'], {}), '(ndcgs)\n', (7027, 7034), True, 'import numpy as np\n'), ((7208, 7214), 'time.time', 'time', ([], {}), '()\n', (7212, 7214), False, 'from time import time\n')]
from i3Deep import utils import os from evaluate import evaluate import numpy as np # from imcut.pycut import ImageGraphCut from imcut.pycut import ImageGraphCut from tqdm import tqdm import copy def compute_predictions(image_path, mask_path, gt_path, save_path, version, nr_modalities, class_labels, resize=True): image_filenames = utils.load_filenames(image_path)[::nr_modalities] mask_filenames = utils.load_filenames(mask_path) target_shape = (512, 512, 200) # (256, 256, 100) # for i in tqdm(range(len(image_filenames))): # multi_label_mask, _, _, _ = utils.load_nifty(mask_filenames[i]) # print("shape: ", multi_label_mask.shape) segparams = { 'use_boundary_penalties': False, 'boundary_dilatation_distance': 1, 'boundary_penalties_weight': 1, 'block_size': 8, # 8 'tile_zoom_constant': 1 } is_resized = False for i in tqdm(range(len(image_filenames))): image, affine, spacing, header = utils.load_nifty(image_filenames[i]) multi_label_mask, _, _, _ = utils.load_nifty(mask_filenames[i]) if resize and image.size > np.prod(target_shape): print("Resized: ", os.path.basename(image_filenames[i])) is_resized = True original_shape = image.shape image = utils.interpolate(image, (target_shape[0], target_shape[1], original_shape[2])) multi_label_mask = utils.interpolate(multi_label_mask, (target_shape[0], target_shape[1], original_shape[2]), mask=True) target_multi_label_mask = np.zeros_like(multi_label_mask) labels = np.unique(multi_label_mask) labels = labels[labels > 0].astype(int) # print("labels: ", labels) for label in labels: # print("label: ", label) mask = copy.deepcopy(multi_label_mask) mask[mask == label] = -2 # Save foreground mask[mask >= 0] = 2 # Background mask[mask == -2] = 1 # Restore foreground mask[mask == -1] = 0 # Unknown # utils.save_nifty(save_path + os.path.basename(mask_filenames[i][:-12] + "_tmp1.nii.gz"), mask, affine, spacing, header, is_mask=True) mask = mask.astype(np.uint8) if version == "GraphCut1": segparams.update({"method": "graphcut"}) gc = ImageGraphCut(image, segparams=segparams) elif version == "GraphCut2": segparams.update({"method": "lo2hi"}) gc = ImageGraphCut(image, segparams=segparams) elif version == "GraphCut3": segparams.update({"method": "hi2lo"}) gc = ImageGraphCut(image, segparams=segparams) gc.set_seeds(mask) gc.run() mask = gc.segmentation.squeeze() # mask[mask == 0] = -1 # Save foreground # mask[mask == 1] = 0 # Background # mask[mask == -1] = label # Restore foreground # print(save_path + os.path.basename(mask_filenames[i][:-12] + "_tmp2.nii.gz")) # utils.save_nifty(save_path + os.path.basename(mask_filenames[i][:-12] + "_tmp2.nii.gz"), mask, affine, spacing, header, is_mask=True) target_multi_label_mask[mask == 0] = label # 0 is foreground if is_resized: is_resized = False target_multi_label_mask = utils.interpolate(target_multi_label_mask, original_shape, mask=True) utils.save_nifty(save_path + os.path.basename(mask_filenames[i][:-12] + ".nii.gz"), target_multi_label_mask, affine, spacing, header, is_mask=True) results = evaluate(gt_path, save_path, class_labels) return results
[ "evaluate.evaluate" ]
[((420, 451), 'i3Deep.utils.load_filenames', 'utils.load_filenames', (['mask_path'], {}), '(mask_path)\n', (440, 451), False, 'from i3Deep import utils\n'), ((3690, 3732), 'evaluate.evaluate', 'evaluate', (['gt_path', 'save_path', 'class_labels'], {}), '(gt_path, save_path, class_labels)\n', (3698, 3732), False, 'from evaluate import evaluate\n'), ((348, 380), 'i3Deep.utils.load_filenames', 'utils.load_filenames', (['image_path'], {}), '(image_path)\n', (368, 380), False, 'from i3Deep import utils\n'), ((1023, 1059), 'i3Deep.utils.load_nifty', 'utils.load_nifty', (['image_filenames[i]'], {}), '(image_filenames[i])\n', (1039, 1059), False, 'from i3Deep import utils\n'), ((1097, 1132), 'i3Deep.utils.load_nifty', 'utils.load_nifty', (['mask_filenames[i]'], {}), '(mask_filenames[i])\n', (1113, 1132), False, 'from i3Deep import utils\n'), ((1605, 1636), 'numpy.zeros_like', 'np.zeros_like', (['multi_label_mask'], {}), '(multi_label_mask)\n', (1618, 1636), True, 'import numpy as np\n'), ((1655, 1682), 'numpy.unique', 'np.unique', (['multi_label_mask'], {}), '(multi_label_mask)\n', (1664, 1682), True, 'import numpy as np\n'), ((1356, 1435), 'i3Deep.utils.interpolate', 'utils.interpolate', (['image', '(target_shape[0], target_shape[1], original_shape[2])'], {}), '(image, (target_shape[0], target_shape[1], original_shape[2]))\n', (1373, 1435), False, 'from i3Deep import utils\n'), ((1468, 1573), 'i3Deep.utils.interpolate', 'utils.interpolate', (['multi_label_mask', '(target_shape[0], target_shape[1], original_shape[2])'], {'mask': '(True)'}), '(multi_label_mask, (target_shape[0], target_shape[1],\n original_shape[2]), mask=True)\n', (1485, 1573), False, 'from i3Deep import utils\n'), ((1858, 1889), 'copy.deepcopy', 'copy.deepcopy', (['multi_label_mask'], {}), '(multi_label_mask)\n', (1871, 1889), False, 'import copy\n'), ((3448, 3517), 'i3Deep.utils.interpolate', 'utils.interpolate', (['target_multi_label_mask', 'original_shape'], {'mask': '(True)'}), '(target_multi_label_mask, original_shape, mask=True)\n', (3465, 3517), False, 'from i3Deep import utils\n'), ((1169, 1190), 'numpy.prod', 'np.prod', (['target_shape'], {}), '(target_shape)\n', (1176, 1190), True, 'import numpy as np\n'), ((1224, 1260), 'os.path.basename', 'os.path.basename', (['image_filenames[i]'], {}), '(image_filenames[i])\n', (1240, 1260), False, 'import os\n'), ((2406, 2447), 'imcut.pycut.ImageGraphCut', 'ImageGraphCut', (['image'], {'segparams': 'segparams'}), '(image, segparams=segparams)\n', (2419, 2447), False, 'from imcut.pycut import ImageGraphCut\n'), ((3556, 3609), 'os.path.basename', 'os.path.basename', (["(mask_filenames[i][:-12] + '.nii.gz')"], {}), "(mask_filenames[i][:-12] + '.nii.gz')\n", (3572, 3609), False, 'import os\n'), ((2567, 2608), 'imcut.pycut.ImageGraphCut', 'ImageGraphCut', (['image'], {'segparams': 'segparams'}), '(image, segparams=segparams)\n', (2580, 2608), False, 'from imcut.pycut import ImageGraphCut\n'), ((2728, 2769), 'imcut.pycut.ImageGraphCut', 'ImageGraphCut', (['image'], {'segparams': 'segparams'}), '(image, segparams=segparams)\n', (2741, 2769), False, 'from imcut.pycut import ImageGraphCut\n')]
from .lstm import BiLSTM import tensorflow as tf from tensorflow.contrib import crf from .util import get_batches import sys sys.path.append('../') from evaluate import Metrics class BiLSTM_CRF(object): def __init__(self, vocab_size, tag_size, batch_size = 64, lr = 0.001, iteration = 30, hidden_size = 128, embedding_size = 128): tf.reset_default_graph() self.bilstm = BiLSTM(vocab_size, tag_size, batch_size, lr, iteration, hidden_size, embedding_size) def CRF_layer(self): self.logit = self.bilstm.logit with tf.name_scope('crf'): log_likelihood_, self.transition = crf.crf_log_likelihood(self.logit, self.bilstm.input_y, self.bilstm.seq_lengths) self.cost = -tf.reduce_mean(log_likelihood_) def optimize(self): with tf.name_scope('crf_optimize'): self.optimizer = tf.train.AdamOptimizer(self.bilstm.lr).minimize(self.cost) def train(self, train_x, train_y, dev_x, dev_y, word2id, tag2id, dropout): self.bilstm.add_placeholder() self.bilstm.operation() self.CRF_layer() self.optimize() self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) x, y, seqs = get_batches(train_x, train_y, word2id, tag2id, self.bilstm.batch_size) for i in range(self.bilstm.iteration): for j in range(len(x)): _, loss = self.sess.run([self.optimizer, self.cost], feed_dict = {self.bilstm.input_x:x[j], self.bilstm.input_y:y[j], self.bilstm.seq_lengths:seqs[j], self.bilstm.dropout:dropout}) #self.dev_test(dev_x, dev_y, word2id, tag2id) def pred_labels(self, x, y, seqs): scores, transition_matrix = self.sess.run([self.logit, self.transition], feed_dict = {self.bilstm.input_x:x, self.bilstm.input_y:y, self.bilstm.seq_lengths:seqs, self.bilstm.dropout:1.0}) labels = [] for i in range(scores.shape[0]): label, _ = crf.viterbi_decode(scores[i], transition_params = transition_matrix) labels.append(label) return labels def dev_test(self, dev_x, dev_y, word2id, tag2id): batches_x, batches_y, batches_seq_len = get_batches(dev_x, dev_y, word2id, tag2id, self.bilstm.batch_size) pred_lists = [] labels = [] id2tag = dict((id_, tag) for tag, id_ in tag2id.items()) for i in range(len(batches_x)): pred_labels = self.pred_labels(batches_x[i], batches_y[i], batches_seq_len[i]) for j in range(len(pred_labels)): for k in range(batches_seq_len[i][j]): pred_lists.append(id2tag[pred_labels[j][k]]) labels.append(id2tag[batches_y[i][j][k]]) metrics = Metrics(labels, pred_lists) metrics.report_scores() def close_sess(self): self.sess.close()
[ "evaluate.Metrics" ]
[((130, 152), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (145, 152), False, 'import sys\n'), ((356, 380), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (378, 380), True, 'import tensorflow as tf\n'), ((1171, 1183), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1181, 1183), True, 'import tensorflow as tf\n'), ((2822, 2849), 'evaluate.Metrics', 'Metrics', (['labels', 'pred_lists'], {}), '(labels, pred_lists)\n', (2829, 2849), False, 'from evaluate import Metrics\n'), ((573, 593), 'tensorflow.name_scope', 'tf.name_scope', (['"""crf"""'], {}), "('crf')\n", (586, 593), True, 'import tensorflow as tf\n'), ((643, 728), 'tensorflow.contrib.crf.crf_log_likelihood', 'crf.crf_log_likelihood', (['self.logit', 'self.bilstm.input_y', 'self.bilstm.seq_lengths'], {}), '(self.logit, self.bilstm.input_y, self.bilstm.seq_lengths\n )\n', (665, 728), False, 'from tensorflow.contrib import crf\n'), ((823, 852), 'tensorflow.name_scope', 'tf.name_scope', (['"""crf_optimize"""'], {}), "('crf_optimize')\n", (836, 852), True, 'import tensorflow as tf\n'), ((1207, 1240), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1238, 1240), True, 'import tensorflow as tf\n'), ((2022, 2088), 'tensorflow.contrib.crf.viterbi_decode', 'crf.viterbi_decode', (['scores[i]'], {'transition_params': 'transition_matrix'}), '(scores[i], transition_params=transition_matrix)\n', (2040, 2088), False, 'from tensorflow.contrib import crf\n'), ((750, 781), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['log_likelihood_'], {}), '(log_likelihood_)\n', (764, 781), True, 'import tensorflow as tf\n'), ((884, 922), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['self.bilstm.lr'], {}), '(self.bilstm.lr)\n', (906, 922), True, 'import tensorflow as tf\n')]
import cv2 import torch from network.rtpose_vgg import get_model, use_vgg from evaluate.coco_eval import get_multiplier, get_outputs, handle_paf_and_heat from openpose_utils import get_pose from network.post import decode_pose import argparse import os from pathlib import Path parser = argparse.ArgumentParser(description='Generate Poses') parser.add_argument('--train_path', help="path to train set frames") parser.add_argument('--test_path', help="path to test set frames") args = parser.parse_args() train = Path(args.train_path) test = Path(args.test_path) if not os.path.exists(train.joinpath('train_label')): os.makedirs(train.joinpath('train_label')) if not os.path.exists(test.joinpath('test_label')): os.makedirs(test.joinpath('test_label')) if __name__ == '__main__': train_pose_dir = train.joinpath('train_label') test_pose_dir = test.joinpath('test_label') model = get_model(trunk='vgg19') model_path = 'pose_model_scratch.pth' model = torch.nn.DataParallel(model).cuda() model.load_state_dict(torch.load(model_path)) model.eval() for idx in range(200, 210): train_img_path = train.joinpath('train_set') train_img_name = "image%0d.jpg" % idx train_img_path = train_img_path.joinpath(train_img_name) train_image = cv2.resize( cv2.imread(str(train_img_path)), (512, 512)) train_multiplier = get_multiplier(train_image) test_img_path = test.joinpath('test_set') test_img_name = "image%0d.jpg" % idx test_img_path = test_img_path.joinpath(test_img_name) test_image = cv2.resize( cv2.imread(str(test_img_path)), (512, 512)) test_multiplier = get_multiplier(test_image) with torch.no_grad(): train_paf, train_heatmap = get_outputs(train_multiplier, train_image, model, 'rtpose') test_paf, test_heatmap = get_outputs(test_multiplier, test_image, model, 'rtpose') # use [::-1] to reverse! train_swapped_img = train_image[:, ::-1, :] test_swapped_img = test_image[:, ::-1, :] train_flipped_paf, train_flipped_heat = get_outputs(train_multiplier, train_swapped_img, model, 'rtpose') test_flipped_paf, test_flipped_heat = get_outputs(test_multiplier, test_swapped_img, model, 'rtpose') train_paf, train_heatmap = handle_paf_and_heat(train_heatmap, train_flipped_heat, train_paf, train_flipped_paf) test_paf, test_heatmap = handle_paf_and_heat(test_heatmap, test_flipped_heat, test_paf, test_flipped_paf) param = {'thre1': 0.1, 'thre2': 0.05, 'thre3': 0.5} train_pose = get_pose(param, train_heatmap, train_paf) test_pose = get_pose(param, test_heatmap, test_paf) pose_name = "pose%0d.jpg" % idx cv2.imwrite(str(test_pose_dir.joinpath(pose_name)), test_pose) cv2.imwrite(str(train_pose_dir.joinpath(pose_name)), train_pose)
[ "evaluate.coco_eval.handle_paf_and_heat", "evaluate.coco_eval.get_outputs", "evaluate.coco_eval.get_multiplier" ]
[((288, 341), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Generate Poses"""'}), "(description='Generate Poses')\n", (311, 341), False, 'import argparse\n'), ((514, 535), 'pathlib.Path', 'Path', (['args.train_path'], {}), '(args.train_path)\n', (518, 535), False, 'from pathlib import Path\n'), ((543, 563), 'pathlib.Path', 'Path', (['args.test_path'], {}), '(args.test_path)\n', (547, 563), False, 'from pathlib import Path\n'), ((904, 928), 'network.rtpose_vgg.get_model', 'get_model', ([], {'trunk': '"""vgg19"""'}), "(trunk='vgg19')\n", (913, 928), False, 'from network.rtpose_vgg import get_model, use_vgg\n'), ((1045, 1067), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (1055, 1067), False, 'import torch\n'), ((1389, 1416), 'evaluate.coco_eval.get_multiplier', 'get_multiplier', (['train_image'], {}), '(train_image)\n', (1403, 1416), False, 'from evaluate.coco_eval import get_multiplier, get_outputs, handle_paf_and_heat\n'), ((1678, 1704), 'evaluate.coco_eval.get_multiplier', 'get_multiplier', (['test_image'], {}), '(test_image)\n', (1692, 1704), False, 'from evaluate.coco_eval import get_multiplier, get_outputs, handle_paf_and_heat\n'), ((2638, 2679), 'openpose_utils.get_pose', 'get_pose', (['param', 'train_heatmap', 'train_paf'], {}), '(param, train_heatmap, train_paf)\n', (2646, 2679), False, 'from openpose_utils import get_pose\n'), ((2700, 2739), 'openpose_utils.get_pose', 'get_pose', (['param', 'test_heatmap', 'test_paf'], {}), '(param, test_heatmap, test_paf)\n', (2708, 2739), False, 'from openpose_utils import get_pose\n'), ((983, 1011), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {}), '(model)\n', (1004, 1011), False, 'import torch\n'), ((1719, 1734), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1732, 1734), False, 'import torch\n'), ((1775, 1834), 'evaluate.coco_eval.get_outputs', 'get_outputs', (['train_multiplier', 'train_image', 'model', '"""rtpose"""'], {}), "(train_multiplier, train_image, model, 'rtpose')\n", (1786, 1834), False, 'from evaluate.coco_eval import get_multiplier, get_outputs, handle_paf_and_heat\n'), ((1872, 1929), 'evaluate.coco_eval.get_outputs', 'get_outputs', (['test_multiplier', 'test_image', 'model', '"""rtpose"""'], {}), "(test_multiplier, test_image, model, 'rtpose')\n", (1883, 1929), False, 'from evaluate.coco_eval import get_multiplier, get_outputs, handle_paf_and_heat\n'), ((2132, 2197), 'evaluate.coco_eval.get_outputs', 'get_outputs', (['train_multiplier', 'train_swapped_img', 'model', '"""rtpose"""'], {}), "(train_multiplier, train_swapped_img, model, 'rtpose')\n", (2143, 2197), False, 'from evaluate.coco_eval import get_multiplier, get_outputs, handle_paf_and_heat\n'), ((2248, 2311), 'evaluate.coco_eval.get_outputs', 'get_outputs', (['test_multiplier', 'test_swapped_img', 'model', '"""rtpose"""'], {}), "(test_multiplier, test_swapped_img, model, 'rtpose')\n", (2259, 2311), False, 'from evaluate.coco_eval import get_multiplier, get_outputs, handle_paf_and_heat\n'), ((2352, 2440), 'evaluate.coco_eval.handle_paf_and_heat', 'handle_paf_and_heat', (['train_heatmap', 'train_flipped_heat', 'train_paf', 'train_flipped_paf'], {}), '(train_heatmap, train_flipped_heat, train_paf,\n train_flipped_paf)\n', (2371, 2440), False, 'from evaluate.coco_eval import get_multiplier, get_outputs, handle_paf_and_heat\n'), ((2474, 2559), 'evaluate.coco_eval.handle_paf_and_heat', 'handle_paf_and_heat', (['test_heatmap', 'test_flipped_heat', 'test_paf', 'test_flipped_paf'], {}), '(test_heatmap, test_flipped_heat, test_paf, test_flipped_paf\n )\n', (2493, 2559), False, 'from evaluate.coco_eval import get_multiplier, get_outputs, handle_paf_and_heat\n')]
import torch import torch.optim as optim import torch.nn as nn import numpy as np from evaluate import evaluate from utils.utils import * def train(model, train_data_loader, dev_data_loader, saver, total_epoch, lr, log_path, start_epoch=0): f_log = open(log_path, 'w') criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=lr) max_dev_acc = 0 for epoch in range(start_epoch, start_epoch+total_epoch): model.train() total_loss = 0. total_correct = 0 total_count = 0 for i, data in enumerate(train_data_loader): context, question, option, _, answer, useful_feat = data context, question, option, answer, useful_feat = put_to_cuda([context, question, option, answer, useful_feat]) optimizer.zero_grad() output = model(context, question, option, useful_feat) loss = criterion(output, answer) loss.backward() optimizer.step() total_loss = total_loss + loss.detach().cpu().numpy() _, predict = torch.max(output, 1) total_correct += (predict == answer).sum().detach().cpu().numpy() total_count += context.size()[0] average_loss = total_loss/total_count average_accuracy = total_correct/total_count log = f'batch: {i}/{len(train_data_loader)}, train average loss: {average_loss}, train average accuracy: {average_accuracy}' print_and_logging(f_log, log) #evaluate on dev data print('start evalating') dev_acc = evaluate(model, dev_data_loader) log = f'dev accuracy: {dev_acc}' print_and_logging(f_log, log) if max_dev_acc <= dev_acc: max_dev_acc = dev_acc log = f'save model' print_and_logging(f_log, log) #save model state = { 'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'train_average_loss': average_loss, 'train_average_accuracy': average_accuracy, 'dev_acc': dev_acc } name = f'epoch_{epoch}_dev_accuracy_{dev_acc}' saver.save(state, name) else: log = f'higher loss!!!!!!' print_and_logging(f_log, log) log = 'training end, max dev acc: ' + str(max_dev_acc) print_and_logging(f_log, log) ''' #save model if min_loss > average_loss: min_loss = average_loss log = f'average loss: {average_loss}, save model' print_and_logging(f_log, log) #save model state = { 'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'average_loss': average_loss, 'average_accuracy': average_accuracy } name = f'epoch_{epoch}_average_accuracy_{average_accuracy}' saver.save(state, name) else: log = f'average loss: {average_loss}, higher loss!!!!!!' print_and_logging(f_log, log) '''
[ "evaluate.evaluate" ]
[((292, 313), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (311, 313), True, 'import torch.nn as nn\n'), ((1605, 1637), 'evaluate.evaluate', 'evaluate', (['model', 'dev_data_loader'], {}), '(model, dev_data_loader)\n', (1613, 1637), False, 'from evaluate import evaluate\n'), ((1091, 1111), 'torch.max', 'torch.max', (['output', '(1)'], {}), '(output, 1)\n', (1100, 1111), False, 'import torch\n')]
from __future__ import print_function, division import sys sys.path.append('core') import argparse import os import cv2 import time import numpy as np import matplotlib.pyplot as plt from pathlib import Path import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import transforms from torch.utils.data import DataLoader from raft import (RAFT, ThingsClassifier, CentroidRegressor, MotionClassifier, BoundaryClassifier, SpatialAffinityDecoder) from eisen import EISEN import teachers import core.utils.utils as utils import evaluate import datasets from torch.utils.tensorboard import SummaryWriter try: from torch.cuda.amp import GradScaler except: # dummy GradScaler for PyTorch < 1.6 class GradScaler: def __init__(self): pass def scale(self, loss): return loss def unscale_(self, optimizer): pass def step(self, optimizer): optimizer.step() def update(self): pass # exclude extremly large displacements MAX_FLOW = 400 SUM_FREQ = 10 VAL_FREQ = 5000 # datasets without supervision SELFSUP_DATASETS = ['robonet', 'dsr'] def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, max_flow=MAX_FLOW, min_flow=0.5, pos_weight=1.0, pixel_thresh=None): """ Loss function defined over sequence of flow predictions """ n_predictions = len(flow_preds) flow_loss = 0.0 # exlude invalid pixels and extremely large diplacements mag = torch.sum(flow_gt**2, dim=1).sqrt() if valid is None: valid = (mag < max_flow) else: valid = (valid >= 0.5) & (mag < max_flow) valid = valid.float() num_px = valid.sum((-2,-1)).clamp(min=1) if list(flow_gt.shape[-2:]) != list(flow_preds[-1].shape[-2:]): _ds = lambda x: F.avg_pool2d( x, args.downsample_factor * args.teacher_downsample_factor, stride=args.downsample_factor * args.teacher_downsample_factor) else: _ds = lambda x: x if flow_preds[-1].shape[-3] == 1: flow_gt = (mag[:,None] > min_flow).float() pos_weight = torch.tensor([pos_weight], device=flow_gt.device) loss_cls = nn.BCEWithLogitsLoss(pos_weight=pos_weight, reduction='none') loss_fn = lambda logits, labels: loss_cls(_ds(logits), labels) else: loss_fn = lambda logits, labels: (_ds(logits) - labels).abs() assert flow_preds[-1].shape[-3] == 2, flow_preds[-1].shape if pixel_thresh is not None: print("pos px", flow_gt.sum((1,2,3))) gt_weight = (flow_gt.sum((1,2,3), True) > pixel_thresh).float() print("gt weight", gt_weight[:,0,0,0]) else: gt_weight = 1.0 for i in range(n_predictions): i_weight = gamma**(n_predictions - i - 1) i_loss = loss_fn(flow_preds[i], flow_gt) * gt_weight flow_loss += ((i_weight * valid[:,None] * i_loss).sum((-2,-1)) / num_px).mean() metrics = { 'loss': flow_loss, } return flow_loss, metrics def boundary_loss(boundary_preds, boundary_target, valid, gamma=0.8, boundary_scale=1.0, orientation_scale=1.0, pixel_thresh=None, **kwargs): n_predictions = len(boundary_preds) b_loss = c_loss = loss = 0.0 # break up boundary_target if boundary_target.shape[1] == 3: b_target, c_target = boundary_target.split([1,2], 1) else: b_target, c_target, c_target_discrete = boundary_target.split([1,2,8], 1) num_px = b_target.sum(dim=(-3,-2,-1)).clamp(min=1.) if pixel_thresh is not None: print("pos px", b_target.sum((1,2,3))) gt_weight = (b_target.sum((1,2,3), True) > pixel_thresh).float() print("gt weight", gt_weight[:,0,0,0]) else: gt_weight = 1.0 def _split_preds(x): dim = x.shape[-3] if dim == 3: return x.split([1,2], -3) elif dim == 9: c1, b, c2 = x.split([4,1,4], -3) return b, torch.cat([c1, c2], -3) b_loss_fn = nn.BCEWithLogitsLoss(reduction='none') if boundary_preds[-1].shape[1] == 3: c_loss_fn = lambda logits, labels: (logits - labels).abs().sum(1) else: c_loss_fn = nn.CrossEntropyLoss(reduction='none') c_target = c_target_discrete.argmax(1) ds = args.downsample_factor * args.teacher_downsample_factor if list(b_target.shape[-2:]) != list(boundary_preds[-1].shape[-2:]): _ds = lambda x: F.avg_pool2d(x, ds, stride=ds) else: _ds = lambda x:x for i in range(n_predictions): i_weight = gamma ** (n_predictions - i - 1) b_pred, c_pred = _split_preds(_ds(boundary_preds[i])) i_b_loss = (b_loss_fn(b_pred, b_target) * gt_weight).mean() i_c_loss = (c_loss_fn(c_pred, c_target)[:,None] * b_target * gt_weight).sum((-3,-2,-1)) i_c_loss = (i_c_loss / num_px).mean() b_loss += i_b_loss * i_weight c_loss += i_c_loss * i_weight i_loss = i_b_loss * boundary_scale +\ i_c_loss * orientation_scale loss += i_loss * i_weight metrics = { 'loss': loss, 'b_loss': b_loss, 'c_loss': c_loss } return loss, metrics def motion_loss(motion_preds, errors, valid, gamma=0.8, loss_scale=1.0): n_predictions = len(motion_preds) loss = 0.0 errors_s, errors_m = errors.split([1,1], -3) def loss_fn(preds): p_motion = torch.sigmoid(preds) return (p_motion*errors_m + (1-p_motion)*errors_s).mean() for i in range(n_predictions): i_weight = gamma**(n_predictions - i - 1) i_loss = loss_fn(motion_preds[i]) loss += i_weight * i_loss * loss_scale metrics = {'loss': loss.item()} return loss, metrics def centroids_loss(centroid_preds, target, valid, gamma=0.8): """ target is a [B,2,H,W] centroid offsets target, measured in pixels valid is a [B,1,H,W] thingness mask that the model should also fit """ n_predictions = len(centroid_preds) thing_loss = cent_loss = loss = 0.0 thingness = valid num_px = thingness.sum((-2,-1)).clamp(min=1) if list(target.shape[-2:]) != list(centroid_preds[-1].shape[-2:]): _ds = lambda x: F.avg_pool2d( x, args.downsample_factor * args.teacher_downsample_factor, stride=args.downsample_factor * args.teacher_downsample_factor) else: _ds = lambda x: x thing_loss_cls = nn.BCEWithLogitsLoss(reduction='none') thing_loss_fn = lambda logits, labels: thing_loss_cls(_ds(logits), labels) cent_loss_fn = lambda logits, labels: (_ds(logits) - labels).abs() for i in range(n_predictions): i_weight = gamma**(n_predictions - i - 1) cent_pred = centroid_preds[i] if cent_pred.shape[1] == 3: thing_pred, cent_pred = cent_pred.split([1,2], 1) else: thing_pred = None i_cent_loss = (cent_loss_fn(cent_pred, target) * valid).sum((-2,-1)) / num_px i_cent_loss = i_cent_loss.sum(1).mean() cent_loss += i_cent_loss * i_weight if thing_pred is None: loss += i_cent_loss * i_weight continue i_thing_loss = thing_loss_fn(thing_pred, thingness).mean() thing_loss += i_thing_loss * i_weight loss += (i_cent_loss + i_thing_loss) * i_weight metrics = { 'loss': loss, 'thing_loss': thing_loss, 'centroid_loss': cent_loss } return loss, metrics def affinities_loss(affinity_preds, target, valid, gamma=0.8, loss_type='kl_div'): B,K,H,W = affinity_preds[0].shape assert target.shape[1] == K, target.shape n_predictions = len(affinity_preds) loss = 0.0 if list(target.shape[-2:]) != [H,W]: _ds = lambda x: F.avg_pool2d( x, args.downsample_factor * args.teacher_downsample_factor, stride=args.downsample_factor * args.teacher_downsample_factor) else: _ds = lambda x: x if loss_type == 'binary_cross_entropy': loss_cls = nn.BCEWithLogitsLoss(reduction='none') loss_fn = lambda logits, labels: loss_cls(_ds(logits), labels) radius = (int(np.sqrt(K)) - 1) // 2 loss_mask = utils.get_local_neighbors( valid, radius=radius, invalid=0, to_image=True)[:,0] loss_mask = torch.maximum(valid, loss_mask) num_px = loss_mask.sum((-3,-2,-1)).clamp(min=1) elif loss_type == 'kl_div': raise NotImplementedError() for i in range(n_predictions): i_weight = gamma**(n_predictions - i - 1) aff_pred = affinity_preds[i] if loss_type == 'binary_cross_entropy': i_loss = loss_fn(aff_pred, target) * loss_mask i_loss = i_loss.sum((1,2,3)) / num_px i_loss = i_loss.mean() else: raise NotImplementedError() loss += i_loss * i_weight metrics = { 'loss': loss } return loss, metrics def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def fetch_optimizer(args, model): """ Create the optimizer and learning rate scheduler """ optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon) scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100, pct_start=0.05, cycle_momentum=False, anneal_strategy='linear') return optimizer, scheduler class Logger: def __init__(self, model, scheduler): self.model = model self.scheduler = scheduler self.total_steps = args.restore_step self.running_loss = {} self.writer = None def _print_training_status(self): metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())] training_str = "[{:6d}, {:6d}, {:6d}, {:10.7f}] ".format( self.total_steps+1, self.epoch, self.step+1, self.scheduler.get_last_lr()[0]) metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data) # print the training status print(training_str + metrics_str) if self.writer is None: self.writer = SummaryWriter() for k in self.running_loss: self.writer.add_scalar(k, self.running_loss[k]/SUM_FREQ, self.total_steps) self.running_loss[k] = 0.0 def push(self, epoch, step, metrics): self.epoch = epoch self.step = step self.total_steps += 1 for key in metrics: if key not in self.running_loss: self.running_loss[key] = 0.0 self.running_loss[key] += metrics[key] if self.total_steps % SUM_FREQ == SUM_FREQ-1: self._print_training_status() self.running_loss = {} def write_dict(self, results): if self.writer is None: self.writer = SummaryWriter() for key in results: self.writer.add_scalar(key, results[key], self.total_steps) def close(self): self.writer.close() def train(args): if args.model.lower() == 'bootraft': model_cls = BootRaft print("used BootRaft") elif args.model.lower() == 'thingness' or args.model.lower() == 'occlusion': model_cls = ThingsClassifier print("used ThingnessClassifier") elif args.model.lower() in ['centroids']: model_cls = CentroidRegressor print("used CentroidRegressor") elif args.model.lower() == 'motion': model_cls = MotionClassifier print("used MotionClassifier") elif args.model.lower() == 'boundary': model_cls = BoundaryClassifier print("used BoundaryClassifier") elif args.model.lower() in ['flow', 'flow_centroids']: model_cls = RAFT print("used RAFT for %s" % args.model.lower()) elif args.model.lower() in ['affinities']: model_cls = SpatialAffinityDecoder print("used SpatialAffinityDecoder") model = nn.DataParallel(model_cls(args), device_ids=args.gpus) print("Parameter Count: %d" % count_parameters(model)) if args.restore_ckpt is not None: did_load = model.load_state_dict(torch.load(args.restore_ckpt), strict=False) print(did_load, type(model.module).__name__, args.restore_ckpt) model.cuda() model.train() ## load a teacher model stride = args.teacher_downsample_factor * args.downsample_factor inp_size = { 'tdw': 512, 'movi_d': 256, 'movi_e': 256 }[args.stage] target_net = nn.DataParallel( teachers.BipartiteBootNet( student_model_type=args.model.lower(), static_path=args.static_ckpt, static_params={ 'stem_pool': (stride > 2), 'affinity_res': [inp_size // stride]*2 }, boot_paths={ 'motion_path': args.motion_ckpt, 'boundary_path': args.boundary_ckpt, 'flow_path': args.flow_ckpt }, downsample_factor=stride, grouping_window=2, static_resolution=args.static_resolution, dynamic_resolution=args.dynamic_resolution ), device_ids=args.gpus ).cuda().eval() train_loader, epoch_size = datasets.fetch_dataloader(args) optimizer, scheduler = fetch_optimizer(args, model) total_steps = args.restore_step scaler = GradScaler(enabled=args.mixed_precision) logger = Logger(model, scheduler) VAL_FREQ = args.val_freq add_noise = True should_keep_training = True epoch = 0 while should_keep_training: epoch += 1 for i_batch in range(epoch_size // args.batch_size): import time t1 = time.time() try: data_blob = iter(train_loader).next() except StopIteration: train_loader.dataset.reset_iterator() data_blob = iter(train_loader).next() except Exception as e: print("skipping step %d due to %s" % (total_steps, e)) total_steps += 1 continue optimizer.zero_grad() image1, image2 = [x.cuda() for x in data_blob[:2]] valid = None flow_predictions = model(image1, image2, iters=args.iters) ## get the self-supervision teacher_inp = torch.stack([ image1, image2], 1) targets = target_net( video=teacher_inp, boot_params={ 'motion_iters': args.motion_iters, 'boundary_iters': args.boundary_iters, 'flow_iters': args.flow_iters, 'bootstrap': args.bootstrap }, static_params={ 'local_window_size': args.affinity_kernel_size, 'to_image': True }, mask_with_motion=args.motion_mask_target ) if args.model.lower() in ['flow', 'flow_centroids']: target = targets elif args.model.lower() in ['centroids']: target, valid = targets elif args.model.lower() in ['affinities', 'eisen']: target, valid = targets print("TARGET SHAPE", target.shape, args.model.lower()) print("VALID SHAPE", (valid.shape if valid is not None else None)) if len(target.shape) == 5: target = target.squeeze(1) ## compute loss if args.model.lower() in ['flow', 'flow_centroids']: loss, metrics = sequence_loss(flow_predictions, target, valid, args.gamma, pos_weight=args.pos_weight, pixel_thresh=args.pixel_thresh) elif args.model.lower() in ['thingness', 'centroids']: loss, metrics = centroids_loss(flow_predictions, target, valid, args.gamma) elif args.model.lower() in ['affinities', 'eisen']: loss, metrics = affinities_loss(flow_predictions, target, valid, args.gamma, loss_type=args.affinity_loss_type) scaler.scale(loss).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) scaler.step(optimizer) scheduler.step() scaler.update() logger.push(epoch, i_batch + 1, metrics) if total_steps % VAL_FREQ == VAL_FREQ - 1: PATH = 'checkpoints/%d_%s.pth' % (total_steps+1, args.name) torch.save(model.state_dict(), PATH) results = {} for val_dataset in args.validation: if val_dataset == 'chairs': results.update(evaluate.validate_chairs(model.module)) elif val_dataset == 'sintel': results.update(evaluate.validate_sintel(model.module)) elif val_dataset == 'kitti': results.update(evaluate.validate_kitti(model.module)) logger.write_dict(results) model.train() if args.stage in ['sintel']: model.module.freeze_bn() total_steps += 1 t2 = time.time() print("step time", i_batch, t2-t1) if total_steps > args.num_steps: should_keep_training = False break logger.close() PATH = 'checkpoints/%s.pth' % args.name torch.save(model.state_dict(), PATH) return PATH def get_args(cmd=None): parser = argparse.ArgumentParser() parser.add_argument('--name', default='raft', help="name your experiment") parser.add_argument('--stage', default="chairs", help="determines which dataset to use for training") parser.add_argument('--split', type=str, default='train') parser.add_argument('--dataset_dir', type=str, default='/data2/honglinc/') parser.add_argument('--dataset_names', type=str, nargs='+') parser.add_argument('--train_split', type=str, default='all') parser.add_argument('--flow_gap', type=int, default=1) parser.add_argument('--filepattern', type=str, default="*", help="which files to train on tdw") parser.add_argument('--test_filepattern', type=str, default="*9", help="which files to val on tdw") parser.add_argument('--restore_ckpt', help="restore checkpoint") parser.add_argument('--small', action='store_true', help='use small model') parser.add_argument('--validation', type=str, nargs='+') parser.add_argument('--val_freq', type=int, default=5000, help='validation and checkpoint frequency') parser.add_argument('--lr', type=float, default=0.00002) parser.add_argument('--num_steps', type=int, default=100000) parser.add_argument('--restore_step', type=int, default=0) parser.add_argument('--batch_size', type=int, default=6) parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512]) parser.add_argument('--gpus', type=int, nargs='+', default=[0]) parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') parser.add_argument('--iters', type=int, default=12) parser.add_argument('--corr_levels', type=int, default=4) parser.add_argument('--corr_radius', type=int, default=4) parser.add_argument('--gate_stride', type=int, default=2) parser.add_argument('--wdecay', type=float, default=.00005) parser.add_argument('--epsilon', type=float, default=1e-8) parser.add_argument('--clip', type=float, default=1.0) parser.add_argument('--dropout', type=float, default=0.0) parser.add_argument('--gamma', type=float, default=0.8, help='exponential weighting') parser.add_argument('--pos_weight', type=float, default=1.0, help='weight for positive bce samples') parser.add_argument('--add_noise', action='store_true') parser.add_argument('--no_aug', action='store_true') parser.add_argument('--full_playroom', action='store_true') parser.add_argument('--static_coords', action='store_true') parser.add_argument('--max_frame', type=int, default=5) ## model class parser.add_argument('--model', type=str, default='RAFT', help='Model class') parser.add_argument('--predict_mask', action='store_true', help='Whether to predict a thingness mask') parser.add_argument('--bootstrap', action='store_true', help='whether to bootstrap') parser.add_argument('--teacher_ckpt', help='checkpoint for a pretrained RAFT. If None, use GT') parser.add_argument('--teacher_iters', type=int, default=24) parser.add_argument('--motion_iters', type=int, default=12) parser.add_argument('--boundary_iters', type=int, default=12) parser.add_argument('--flow_iters', type=int, default=12) parser.add_argument('--motion_ckpt', help='checkpoint for a pretrained motion model') parser.add_argument('--boundary_ckpt', help='checkpoint for a pretrained boundary model') parser.add_argument('--flow_ckpt', help='checkpoint for a pretrained boundary model') parser.add_argument('--static_ckpt', help='checkpoint for a pretrained eisen model') # BBNet teacher params parser.add_argument('--static_resolution', type=int, default=4) parser.add_argument('--dynamic_resolution', type=int, default=3) parser.add_argument('--affinity_kernel_size', type=int, default=None) parser.add_argument('--motion_mask_target', action='store_true') # motion propagation parser.add_argument('--diffusion_target', action='store_true') parser.add_argument('--orientation_type', default='classification') parser.add_argument('--rgb_flow', action='store_true') parser.add_argument('--boundary_flow', action='store_true') parser.add_argument('--separate_boundary_models', action='store_true') parser.add_argument('--zscore_target', action='store_true') parser.add_argument('--downsample_factor', type=int, default=2) parser.add_argument('--teacher_downsample_factor', type=int, default=1) parser.add_argument('--patch_radius', type=int, default=0) parser.add_argument('--motion_thresh', type=float, default=None) parser.add_argument('--boundary_thresh', type=float, default=None) parser.add_argument('--target_thresh', type=float, default=0.75) parser.add_argument('--pixel_thresh', type=int, default=None) parser.add_argument('--positive_thresh', type=float, default=0.4) parser.add_argument('--negative_thresh', type=float, default=0.1) parser.add_argument('--affinity_radius', type=int, default=12) parser.add_argument('--affinity_loss_type', type=str, default='kl_div') parser.add_argument('--static_input', action='store_true') parser.add_argument('--affinity_nonlinearity', type=str, default='sigmoid') parser.add_argument('--num_propagation_iters', type=int, default=200) parser.add_argument('--num_samples', type=int, default=8) parser.add_argument('--num_sample_points', type=int, default=2**14) parser.add_argument('--predict_every', type=int, default=5) parser.add_argument('--binarize_motion', action='store_true') parser.add_argument('--use_motion_loss', action='store_true') parser.add_argument('--loss_scale', type=float, default=1.0) parser.add_argument('--scale_centroids', action='store_true') parser.add_argument('--training_frames', help="a JSON file of frames to train from") if cmd is None: args = parser.parse_args() print(args) else: args = parser.parse_args(cmd) return args def load_model(load_path, model_class=None, small=False, cuda=False, train=False, freeze_bn=False, **kwargs): path = Path(load_path) if load_path else None def _get_model_class(name): cls = None if 'bootraft' in name: cls = BootRaft elif 'raft' in name: cls = RAFT elif ('thing' in name) or ('occlusion' in name): cls = ThingsClassifier elif 'centroid' in name: cls = CentroidRegressor elif 'motion' in name: cls = MotionClassifier elif 'prop' in name: cls = MotionPropagator elif 'boundary' in name: cls = BoundaryClassifier else: raise ValueError("Couldn't identify a model class associated with %s" % name) return cls if model_class is None: cls = _get_model_class(path.name) else: cls = _get_model_class(model_class) assert cls is not None, "Wasn't able to infer model class" ## get the args args = get_args("") if small: args.small = True for k,v in kwargs.items(): args.__setattr__(k,v) # build model model = nn.DataParallel(cls(args), device_ids=args.gpus) if load_path is not None: did_load = model.load_state_dict(torch.load(load_path), strict=False) print(did_load, type(model.module).__name__) if cuda: model.cuda() model.train(train) if freeze_bn: model.module.freeze_bn() return model if __name__ == '__main__': args = get_args() torch.manual_seed(1234) np.random.seed(1234) if not os.path.isdir('checkpoints'): os.mkdir('checkpoints') train(args)
[ "evaluate.validate_chairs", "evaluate.validate_kitti", "evaluate.validate_sintel" ]
[((59, 82), 'sys.path.append', 'sys.path.append', (['"""core"""'], {}), "('core')\n", (74, 82), False, 'import sys\n'), ((4252, 4290), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {'reduction': '"""none"""'}), "(reduction='none')\n", (4272, 4290), True, 'import torch.nn as nn\n'), ((6681, 6719), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {'reduction': '"""none"""'}), "(reduction='none')\n", (6701, 6719), True, 'import torch.nn as nn\n'), ((9535, 9674), 'torch.optim.lr_scheduler.OneCycleLR', 'optim.lr_scheduler.OneCycleLR', (['optimizer', 'args.lr', '(args.num_steps + 100)'], {'pct_start': '(0.05)', 'cycle_momentum': '(False)', 'anneal_strategy': '"""linear"""'}), "(optimizer, args.lr, args.num_steps + 100,\n pct_start=0.05, cycle_momentum=False, anneal_strategy='linear')\n", (9564, 9674), True, 'import torch.optim as optim\n'), ((13551, 13582), 'datasets.fetch_dataloader', 'datasets.fetch_dataloader', (['args'], {}), '(args)\n', (13576, 13582), False, 'import datasets\n'), ((13689, 13729), 'torch.cuda.amp.GradScaler', 'GradScaler', ([], {'enabled': 'args.mixed_precision'}), '(enabled=args.mixed_precision)\n', (13699, 13729), False, 'from torch.cuda.amp import GradScaler\n'), ((17896, 17921), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (17919, 17921), False, 'import argparse\n'), ((25522, 25545), 'torch.manual_seed', 'torch.manual_seed', (['(1234)'], {}), '(1234)\n', (25539, 25545), False, 'import torch\n'), ((25550, 25570), 'numpy.random.seed', 'np.random.seed', (['(1234)'], {}), '(1234)\n', (25564, 25570), True, 'import numpy as np\n'), ((2254, 2303), 'torch.tensor', 'torch.tensor', (['[pos_weight]'], {'device': 'flow_gt.device'}), '([pos_weight], device=flow_gt.device)\n', (2266, 2303), False, 'import torch\n'), ((2323, 2384), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {'pos_weight': 'pos_weight', 'reduction': '"""none"""'}), "(pos_weight=pos_weight, reduction='none')\n", (2343, 2384), True, 'import torch.nn as nn\n'), ((4436, 4473), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'reduction': '"""none"""'}), "(reduction='none')\n", (4455, 4473), True, 'import torch.nn as nn\n'), ((5657, 5677), 'torch.sigmoid', 'torch.sigmoid', (['preds'], {}), '(preds)\n', (5670, 5677), False, 'import torch\n'), ((8286, 8324), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {'reduction': '"""none"""'}), "(reduction='none')\n", (8306, 8324), True, 'import torch.nn as nn\n'), ((8572, 8603), 'torch.maximum', 'torch.maximum', (['valid', 'loss_mask'], {}), '(valid, loss_mask)\n', (8585, 8603), False, 'import torch\n'), ((24081, 24096), 'pathlib.Path', 'Path', (['load_path'], {}), '(load_path)\n', (24085, 24096), False, 'from pathlib import Path\n'), ((25583, 25611), 'os.path.isdir', 'os.path.isdir', (['"""checkpoints"""'], {}), "('checkpoints')\n", (25596, 25611), False, 'import os\n'), ((25621, 25644), 'os.mkdir', 'os.mkdir', (['"""checkpoints"""'], {}), "('checkpoints')\n", (25629, 25644), False, 'import os\n'), ((1613, 1643), 'torch.sum', 'torch.sum', (['(flow_gt ** 2)'], {'dim': '(1)'}), '(flow_gt ** 2, dim=1)\n', (1622, 1643), False, 'import torch\n'), ((1932, 2072), 'torch.nn.functional.avg_pool2d', 'F.avg_pool2d', (['x', '(args.downsample_factor * args.teacher_downsample_factor)'], {'stride': '(args.downsample_factor * args.teacher_downsample_factor)'}), '(x, args.downsample_factor * args.teacher_downsample_factor,\n stride=args.downsample_factor * args.teacher_downsample_factor)\n', (1944, 2072), True, 'import torch.nn.functional as F\n'), ((4684, 4714), 'torch.nn.functional.avg_pool2d', 'F.avg_pool2d', (['x', 'ds'], {'stride': 'ds'}), '(x, ds, stride=ds)\n', (4696, 4714), True, 'import torch.nn.functional as F\n'), ((6449, 6589), 'torch.nn.functional.avg_pool2d', 'F.avg_pool2d', (['x', '(args.downsample_factor * args.teacher_downsample_factor)'], {'stride': '(args.downsample_factor * args.teacher_downsample_factor)'}), '(x, args.downsample_factor * args.teacher_downsample_factor,\n stride=args.downsample_factor * args.teacher_downsample_factor)\n', (6461, 6589), True, 'import torch.nn.functional as F\n'), ((8012, 8152), 'torch.nn.functional.avg_pool2d', 'F.avg_pool2d', (['x', '(args.downsample_factor * args.teacher_downsample_factor)'], {'stride': '(args.downsample_factor * args.teacher_downsample_factor)'}), '(x, args.downsample_factor * args.teacher_downsample_factor,\n stride=args.downsample_factor * args.teacher_downsample_factor)\n', (8024, 8152), True, 'import torch.nn.functional as F\n'), ((8460, 8533), 'core.utils.utils.get_local_neighbors', 'utils.get_local_neighbors', (['valid'], {'radius': 'radius', 'invalid': '(0)', 'to_image': '(True)'}), '(valid, radius=radius, invalid=0, to_image=True)\n', (8485, 8533), True, 'import core.utils.utils as utils\n'), ((10440, 10455), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (10453, 10455), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((11141, 11156), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (11154, 11156), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((12441, 12470), 'torch.load', 'torch.load', (['args.restore_ckpt'], {}), '(args.restore_ckpt)\n', (12451, 12470), False, 'import torch\n'), ((14019, 14030), 'time.time', 'time.time', ([], {}), '()\n', (14028, 14030), False, 'import time\n'), ((14670, 14702), 'torch.stack', 'torch.stack', (['[image1, image2]', '(1)'], {}), '([image1, image2], 1)\n', (14681, 14702), False, 'import torch\n'), ((17564, 17575), 'time.time', 'time.time', ([], {}), '()\n', (17573, 17575), False, 'import time\n'), ((25251, 25272), 'torch.load', 'torch.load', (['load_path'], {}), '(load_path)\n', (25261, 25272), False, 'import torch\n'), ((4211, 4234), 'torch.cat', 'torch.cat', (['[c1, c2]', '(-3)'], {}), '([c1, c2], -3)\n', (4220, 4234), False, 'import torch\n'), ((8418, 8428), 'numpy.sqrt', 'np.sqrt', (['K'], {}), '(K)\n', (8425, 8428), True, 'import numpy as np\n'), ((17056, 17094), 'evaluate.validate_chairs', 'evaluate.validate_chairs', (['model.module'], {}), '(model.module)\n', (17080, 17094), False, 'import evaluate\n'), ((17185, 17223), 'evaluate.validate_sintel', 'evaluate.validate_sintel', (['model.module'], {}), '(model.module)\n', (17209, 17223), False, 'import evaluate\n'), ((17313, 17350), 'evaluate.validate_kitti', 'evaluate.validate_kitti', (['model.module'], {}), '(model.module)\n', (17336, 17350), False, 'import evaluate\n')]
import torch import os import numpy as np import tqdm import matplotlib.pyplot as plt from PIL import Image from dataset.NAIC_dataset import get_loaders, get_baseline_loader from config import get_config from models.model import build_model, get_model from models.sync_bn.batchnorm import convert_model from evaluate import euclidean_dist, re_rank, cos_dist from solver import Solver class Demo(object): def __init__(self, config, num_classes, pth_path, valid_dataloader, num_query): """ :param config: 配置参数 :param num_classes: 类别数;类型为int :param pth_path: 权重文件路径;类型为str :param valid_dataloader: 验证数据集的Dataloader :param num_query: 查询集数量;类型为int """ self.num_classes = num_classes self.model_name = config.model_name self.last_stride = config.last_stride self.dist = config.dist self.num_gpus = torch.cuda.device_count() print('Using {} GPUS'.format(self.num_gpus)) # 加载模型,只要有GPU,则使用DataParallel函数,当GPU有多个GPU时,调用sync_bn函数 self.model = get_model(self.model_name, self.num_classes, self.last_stride) if torch.cuda.is_available(): self.model = torch.nn.DataParallel(self.model) if self.num_gpus > 1: self.model = convert_model(self.model) self.model = self.model.cuda() # 实例化实现各种子函数的 solver 类 self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.solver = Solver(self.model, self.device) # 加载权重矩阵 self.model = self.solver.load_checkpoint(pth_path) self.model.eval() # 每一个查询样本从数据库中取出最近的200个样本 self.num_choose = 10 self.num_query = num_query self.valid_dataloader = valid_dataloader self.demo_results_path = './results/valid' if not os.path.exists(self.demo_results_path): os.makedirs(self.demo_results_path) def get_result(self, show): """ :param show: 是否显示查询出的结果 :return None """ tbar = tqdm.tqdm(self.valid_dataloader) features_all, labels_all, paths_all = [], [], [] with torch.no_grad(): for i, (images, labels, paths) in enumerate(tbar): # 完成网络的前向传播 # features = self.solver.forward(images)[-1] features = self.solver.tta(images) features_all.append(features.detach().cpu()) labels_all.extend(labels) paths_all.extend(paths) features_all = torch.cat(features_all, dim=0) query_features = features_all[:self.num_query] gallery_features = features_all[self.num_query:] query_lables = np.array(labels_all[:self.num_query]) gallery_labels = np.array(labels_all[self.num_query:]) query_paths = np.array(paths_all[:self.num_query]) gallery_paths = np.array(paths_all[self.num_query:]) if self.dist == 're_rank': distmat = re_rank(query_features, gallery_features) elif self.dist == 'cos_dist': distmat = cos_dist(query_features, gallery_features) elif self.dist == 'euclidean_dist': distmat = euclidean_dist(query_features, gallery_features) else: assert "Not implemented :{}".format(self.dist) for query_index, query_dist in enumerate(distmat): choose_index = np.argsort(query_dist)[:self.num_choose] query_path = query_paths[query_index] gallery_path = gallery_paths[choose_index] query_label = query_lables[query_index] gallery_label = gallery_labels[choose_index] self.show_result(query_path, gallery_path, query_label, gallery_label, 5, show) def show_result(self, query_path, gallery_paths, query_label, gallery_labels, top_rank, show): """ :param query_path: 待查询样本的路径;类型为str :param gallery_paths: 检索到的样本路径;类型为list :param query_label: 待检索样本的类标;类型为int :param gallery_labels: 检索到的样本类标;类型为list :param top_rank: 显示检索到的前多少张图片;类型为int :param show: 是否显示结果;类型为bool :return None """ # 将索引转换为样本名称 query_image = Image.open(query_path) plt.figure(figsize=(14, 10)) plt.subplot(1, top_rank + 1, 1) plt.imshow(query_image) plt.text(30, -10.0, query_path.split('/')[-1]) plt.text(30, -20.0, query_label) for i, (gallery_path, gallery_label) in enumerate(zip(gallery_paths, gallery_labels)): if i == top_rank: break gallery_image = Image.open(gallery_path) plt.subplot(1, top_rank + 1, i + 1 + 1) plt.imshow(gallery_image) plt.text(30, -20.0, gallery_label) plt.text(30, -10.0, gallery_path.split('/')[-1]) plt.savefig(os.path.join(self.demo_results_path, query_path.split('/')[-1])) if show: figManager = plt.get_current_fig_manager() figManager.window.showMaximized() plt.show() plt.close() if __name__ == "__main__": demo_on_baseline = False config = get_config() mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) train_dataset_root = os.path.join(config.dataset_root, '初赛训练集') _, valid_dataloader_folds, num_query_folds, num_classes_folds = get_loaders( train_dataset_root, config.n_splits, config.batch_size, config.num_instances, config.num_workers, config.augmentation_flag, config.erase_prob, config.gray_prob, mean, std ) for fold_index, [valid_loader, num_query, num_classes] in enumerate(zip(valid_dataloader_folds, num_query_folds, num_classes_folds)): if fold_index not in config.selected_fold: continue num_train_classes = num_classes[0] pth_path = os.path.join(config.save_path, config.model_name, '{}_fold{}_best.pth'.format(config.model_name, fold_index)) # 注意fold之间的因为类别数不同所以模型也不同,所以均要实例化TrainVal if demo_on_baseline: _, num_train_classes = get_baseline_loader(train_dataset_root, config.batch_size, config.num_workers, True, mean, std) pth_path = os.path.join(config.save_path, config.model_name, '{}.pth'.format(config.model_name)) create_submission = Demo(config, num_train_classes, pth_path, valid_loader, num_query) create_submission.get_result(show=True)
[ "evaluate.euclidean_dist", "evaluate.cos_dist", "evaluate.re_rank" ]
[((5154, 5166), 'config.get_config', 'get_config', ([], {}), '()\n', (5164, 5166), False, 'from config import get_config\n'), ((5257, 5299), 'os.path.join', 'os.path.join', (['config.dataset_root', '"""初赛训练集"""'], {}), "(config.dataset_root, '初赛训练集')\n", (5269, 5299), False, 'import os\n'), ((5369, 5562), 'dataset.NAIC_dataset.get_loaders', 'get_loaders', (['train_dataset_root', 'config.n_splits', 'config.batch_size', 'config.num_instances', 'config.num_workers', 'config.augmentation_flag', 'config.erase_prob', 'config.gray_prob', 'mean', 'std'], {}), '(train_dataset_root, config.n_splits, config.batch_size, config.\n num_instances, config.num_workers, config.augmentation_flag, config.\n erase_prob, config.gray_prob, mean, std)\n', (5380, 5562), False, 'from dataset.NAIC_dataset import get_loaders, get_baseline_loader\n'), ((896, 921), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (919, 921), False, 'import torch\n'), ((1061, 1123), 'models.model.get_model', 'get_model', (['self.model_name', 'self.num_classes', 'self.last_stride'], {}), '(self.model_name, self.num_classes, self.last_stride)\n', (1070, 1123), False, 'from models.model import build_model, get_model\n'), ((1135, 1160), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1158, 1160), False, 'import torch\n'), ((1490, 1521), 'solver.Solver', 'Solver', (['self.model', 'self.device'], {}), '(self.model, self.device)\n', (1496, 1521), False, 'from solver import Solver\n'), ((2054, 2086), 'tqdm.tqdm', 'tqdm.tqdm', (['self.valid_dataloader'], {}), '(self.valid_dataloader)\n', (2063, 2086), False, 'import tqdm\n'), ((2545, 2575), 'torch.cat', 'torch.cat', (['features_all'], {'dim': '(0)'}), '(features_all, dim=0)\n', (2554, 2575), False, 'import torch\n'), ((2712, 2749), 'numpy.array', 'np.array', (['labels_all[:self.num_query]'], {}), '(labels_all[:self.num_query])\n', (2720, 2749), True, 'import numpy as np\n'), ((2775, 2812), 'numpy.array', 'np.array', (['labels_all[self.num_query:]'], {}), '(labels_all[self.num_query:])\n', (2783, 2812), True, 'import numpy as np\n'), ((2836, 2872), 'numpy.array', 'np.array', (['paths_all[:self.num_query]'], {}), '(paths_all[:self.num_query])\n', (2844, 2872), True, 'import numpy as np\n'), ((2897, 2933), 'numpy.array', 'np.array', (['paths_all[self.num_query:]'], {}), '(paths_all[self.num_query:])\n', (2905, 2933), True, 'import numpy as np\n'), ((4211, 4233), 'PIL.Image.open', 'Image.open', (['query_path'], {}), '(query_path)\n', (4221, 4233), False, 'from PIL import Image\n'), ((4242, 4270), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 10)'}), '(figsize=(14, 10))\n', (4252, 4270), True, 'import matplotlib.pyplot as plt\n'), ((4279, 4310), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(top_rank + 1)', '(1)'], {}), '(1, top_rank + 1, 1)\n', (4290, 4310), True, 'import matplotlib.pyplot as plt\n'), ((4319, 4342), 'matplotlib.pyplot.imshow', 'plt.imshow', (['query_image'], {}), '(query_image)\n', (4329, 4342), True, 'import matplotlib.pyplot as plt\n'), ((4406, 4438), 'matplotlib.pyplot.text', 'plt.text', (['(30)', '(-20.0)', 'query_label'], {}), '(30, -20.0, query_label)\n', (4414, 4438), True, 'import matplotlib.pyplot as plt\n'), ((5071, 5082), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (5080, 5082), True, 'import matplotlib.pyplot as plt\n'), ((1187, 1220), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['self.model'], {}), '(self.model)\n', (1208, 1220), False, 'import torch\n'), ((1840, 1878), 'os.path.exists', 'os.path.exists', (['self.demo_results_path'], {}), '(self.demo_results_path)\n', (1854, 1878), False, 'import os\n'), ((1892, 1927), 'os.makedirs', 'os.makedirs', (['self.demo_results_path'], {}), '(self.demo_results_path)\n', (1903, 1927), False, 'import os\n'), ((2157, 2172), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2170, 2172), False, 'import torch\n'), ((2992, 3033), 'evaluate.re_rank', 're_rank', (['query_features', 'gallery_features'], {}), '(query_features, gallery_features)\n', (2999, 3033), False, 'from evaluate import euclidean_dist, re_rank, cos_dist\n'), ((4614, 4638), 'PIL.Image.open', 'Image.open', (['gallery_path'], {}), '(gallery_path)\n', (4624, 4638), False, 'from PIL import Image\n'), ((4651, 4690), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(top_rank + 1)', '(i + 1 + 1)'], {}), '(1, top_rank + 1, i + 1 + 1)\n', (4662, 4690), True, 'import matplotlib.pyplot as plt\n'), ((4703, 4728), 'matplotlib.pyplot.imshow', 'plt.imshow', (['gallery_image'], {}), '(gallery_image)\n', (4713, 4728), True, 'import matplotlib.pyplot as plt\n'), ((4741, 4775), 'matplotlib.pyplot.text', 'plt.text', (['(30)', '(-20.0)', 'gallery_label'], {}), '(30, -20.0, gallery_label)\n', (4749, 4775), True, 'import matplotlib.pyplot as plt\n'), ((4964, 4993), 'matplotlib.pyplot.get_current_fig_manager', 'plt.get_current_fig_manager', ([], {}), '()\n', (4991, 4993), True, 'import matplotlib.pyplot as plt\n'), ((5052, 5062), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5060, 5062), True, 'import matplotlib.pyplot as plt\n'), ((6128, 6228), 'dataset.NAIC_dataset.get_baseline_loader', 'get_baseline_loader', (['train_dataset_root', 'config.batch_size', 'config.num_workers', '(True)', 'mean', 'std'], {}), '(train_dataset_root, config.batch_size, config.\n num_workers, True, mean, std)\n', (6147, 6228), False, 'from dataset.NAIC_dataset import get_loaders, get_baseline_loader\n'), ((1284, 1309), 'models.sync_bn.batchnorm.convert_model', 'convert_model', (['self.model'], {}), '(self.model)\n', (1297, 1309), False, 'from models.sync_bn.batchnorm import convert_model\n'), ((1430, 1455), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1453, 1455), False, 'import torch\n'), ((3094, 3136), 'evaluate.cos_dist', 'cos_dist', (['query_features', 'gallery_features'], {}), '(query_features, gallery_features)\n', (3102, 3136), False, 'from evaluate import euclidean_dist, re_rank, cos_dist\n'), ((3412, 3434), 'numpy.argsort', 'np.argsort', (['query_dist'], {}), '(query_dist)\n', (3422, 3434), True, 'import numpy as np\n'), ((3203, 3251), 'evaluate.euclidean_dist', 'euclidean_dist', (['query_features', 'gallery_features'], {}), '(query_features, gallery_features)\n', (3217, 3251), False, 'from evaluate import euclidean_dist, re_rank, cos_dist\n')]
#pipenv run import argparse import os import math import json from datetime import datetime from models import models from db import db, Result from uuid import uuid4, UUID from keras import backend as K import numpy as np import evaluate from data_gen import data from config import config def test_model(model, train, validation, test, label_form): loss, accuracy = model.evaluate_generator(validation, steps=math.ceil(len(validation)/config.BATCH_SIZE)) train_loss, train_accuracy = model.evaluate_generator(train, steps=math.ceil(len(train)/config.BATCH_SIZE)) test_loss, test_accuracy = model.evaluate_generator(test, steps=math.ceil(len(test)/config.BATCH_SIZE)) train.reset() validation.reset() test.reset() results = evaluate.get_results(model, validation) labels = list(evaluate.get_labels(validation)) test_results = evaluate.get_results(model, test) test_labels = list(evaluate.get_labels(test)) if label_form == "outcome_3": probabilities = list(results) test_probabilities = list(test_results) else: probabilities = list(evaluate.transform_binary_probabilities(results)) test_probabilities = list(evaluate.transform_binary_probabilities(test_results)) train.reset() validation.reset() test.reset() return { "train_accuracy": float(train_accuracy), "train_loss": float(train_loss), "accuracy": float(accuracy), "loss": float(loss), "test_accuracy": float(test_accuracy), "test_loss": float(test_loss), "probabilities": probabilities, "labels": labels, "test_probabilities": test_probabilities, "test_labels":test_labels, } def characterize_data(data): unique, counts = np.unique(data.classes, return_counts=True) index_to_count = dict(zip(unique, counts)) characterization = { str(c): index_to_count[data.class_indices[c]] for c in data.class_indices } return characterization def run(model, description, input_form, label_form="outcome", split_id=None, loaded_data=None, hyperparameters=dict()): run_id = uuid4() if split_id is None: split_id = run_id history = model.run(run_id, mode='normal', input_form=input_form, loaded_data=loaded_data, label_form=label_form, hyperparameters=hyperparameters) #K.clear_session() model_instance = evaluate.load(os.path.join( config.MODEL_DIR, "{}-{}.h5".format(str(run_id), model.MODEL_NAME), )) if loaded_data is None: train, validation, test = data(split_id, input_form=input_form, label_form=label_form) else: train, validation, test = loaded_data train.reset() validation.reset() test.reset() train_data_stats = characterize_data(train) validation_data_stats = characterize_data(validation) test_data_stats = characterize_data(test) results = test_model(model_instance, train, validation, test, label_form) training.reset() validation.reset() test.reset() result = Result( model.MODEL_NAME, str(run_id), str(split_id), train_data_stats, validation_data_stats, test_data_stats, description, input_form, label=label_form, hyperparameters=hyperparameters, history=history, **results ) db.session.add(result) db.session.commit() def explode_parameters(parameters): all_parameters = [] for p in parameters.keys(): if type(parameters[p]) is list: for value in parameters[p]: new_parameters = dict(parameters) new_parameters[p] = value all_parameters += explode_parameters(new_parameters) break if all_parameters: return all_parameters return [parameters] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--model', type=str, required=True, help='which model to run (see models.py)') parser.add_argument( '--description', type=str, help='brief description of the run and its differences') parser.add_argument( '--form', type=str, help='input form (see data.py for more information)', default=config.INPUT_FORM, ) parser.add_argument( '--label', type=str, help='label form (see data.py for more information)', default="outcome", ) parser.add_argument( '--split', type=str, help='UUID for split', default=None, ) parser.add_argument( '--hyperparameters', type=str, help='hyperparameters file', required=True, ) parser.add_argument( '--trials', type=int, default=config.TRIALS, help='how many times to run') FLAGS, unparsed = parser.parse_known_args() with open(FLAGS.hyperparameters) as f: parameters = json.load(f) parameters = explode_parameters(parameters) model = models[FLAGS.model] split = FLAGS.split if split is None: split = uuid4() else: split = UUID(split) training, validation, test = data(split, input_form=FLAGS.form, label_form=FLAGS.label) for _ in range(FLAGS.trials): for hyperparameters in parameters: run(model, FLAGS.description, FLAGS.form, FLAGS.label, split, loaded_data=(training, validation, test), hyperparameters=hyperparameters) K.clear_session() print('The split id for this run ' + FLAGS.description + ' is ' + str(split))
[ "evaluate.get_labels", "evaluate.get_results", "evaluate.transform_binary_probabilities" ]
[((765, 804), 'evaluate.get_results', 'evaluate.get_results', (['model', 'validation'], {}), '(model, validation)\n', (785, 804), False, 'import evaluate\n'), ((876, 909), 'evaluate.get_results', 'evaluate.get_results', (['model', 'test'], {}), '(model, test)\n', (896, 909), False, 'import evaluate\n'), ((1786, 1829), 'numpy.unique', 'np.unique', (['data.classes'], {'return_counts': '(True)'}), '(data.classes, return_counts=True)\n', (1795, 1829), True, 'import numpy as np\n'), ((2140, 2147), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (2145, 2147), False, 'from uuid import uuid4, UUID\n'), ((3400, 3422), 'db.db.session.add', 'db.session.add', (['result'], {}), '(result)\n', (3414, 3422), False, 'from db import db, Result\n'), ((3427, 3446), 'db.db.session.commit', 'db.session.commit', ([], {}), '()\n', (3444, 3446), False, 'from db import db, Result\n'), ((3917, 3942), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3940, 3942), False, 'import argparse\n'), ((5290, 5348), 'data_gen.data', 'data', (['split'], {'input_form': 'FLAGS.form', 'label_form': 'FLAGS.label'}), '(split, input_form=FLAGS.form, label_form=FLAGS.label)\n', (5294, 5348), False, 'from data_gen import data\n'), ((823, 854), 'evaluate.get_labels', 'evaluate.get_labels', (['validation'], {}), '(validation)\n', (842, 854), False, 'import evaluate\n'), ((933, 958), 'evaluate.get_labels', 'evaluate.get_labels', (['test'], {}), '(test)\n', (952, 958), False, 'import evaluate\n'), ((2582, 2642), 'data_gen.data', 'data', (['split_id'], {'input_form': 'input_form', 'label_form': 'label_form'}), '(split_id, input_form=input_form, label_form=label_form)\n', (2586, 2642), False, 'from data_gen import data\n'), ((5052, 5064), 'json.load', 'json.load', (['f'], {}), '(f)\n', (5061, 5064), False, 'import json\n'), ((5211, 5218), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (5216, 5218), False, 'from uuid import uuid4, UUID\n'), ((5245, 5256), 'uuid.UUID', 'UUID', (['split'], {}), '(split)\n', (5249, 5256), False, 'from uuid import uuid4, UUID\n'), ((1124, 1172), 'evaluate.transform_binary_probabilities', 'evaluate.transform_binary_probabilities', (['results'], {}), '(results)\n', (1163, 1172), False, 'import evaluate\n'), ((1208, 1261), 'evaluate.transform_binary_probabilities', 'evaluate.transform_binary_probabilities', (['test_results'], {}), '(test_results)\n', (1247, 1261), False, 'import evaluate\n'), ((5587, 5604), 'keras.backend.clear_session', 'K.clear_session', ([], {}), '()\n', (5602, 5604), True, 'from keras import backend as K\n')]
"""Train the model""" import argparse import datetime import os import megengine as mge # mge.core.set_option("async_level", 0) from megengine.optimizer import Adam, MultiStepLR, LRScheduler from megengine.autodiff import GradManager import megengine.distributed as dist from tqdm import tqdm import dataset.data_loader as data_loader import model.net as net from common import utils from common.manager import Manager from evaluate import evaluate from loss.losses import compute_losses from tensorboardX import SummaryWriter parser = argparse.ArgumentParser() parser.add_argument("--model_dir", default="experiments/experiment_omnet", help="Directory containing params.json") parser.add_argument("--restore_file", default=None, help="Optional, name of the file in model_dir containing weights to reload before training") parser.add_argument("-ow", "--only_weights", action="store_true", help="Only load model weights or load all train status.") def train(model, manager: Manager, gm): rank = dist.get_rank() # loss status and val/test status initial manager.reset_loss_status() # set model to training mode model.train() # Use tqdm for progress bar if rank == 0: t = tqdm(total=len(manager.dataloaders["train"])) for i, data_batch in enumerate(manager.dataloaders["train"]): # move to GPU if available data_batch = utils.tensor_mge(data_batch) # infor print print_str = manager.print_train_info() with gm: # compute model output and loss output_batch = model(data_batch) loss = compute_losses(output_batch, manager.params) # update loss status and print current loss and average loss manager.update_loss_status(loss=loss, split="train") gm.backward(loss["total"]) # performs updates using calculated gradients manager.optimizer.step().clear_grad() manager.update_step() if rank == 0: manager.writer.add_scalar("Loss/train", manager.loss_status["total"].val, manager.step) t.set_description(desc=print_str) t.update() if rank == 0: t.close() manager.scheduler.step() manager.update_epoch() def train_and_evaluate(model, manager: Manager): rank = dist.get_rank() # reload weights from restore_file if specified if args.restore_file is not None: manager.load_checkpoints() world_size = dist.get_world_size() if world_size > 1: dist.bcast_list_(model.parameters()) dist.bcast_list_(model.buffers()) gm = GradManager().attach( model.parameters(), callbacks=dist.make_allreduce_cb("SUM") if world_size > 1 else None, ) for epoch in range(manager.params.num_epochs): # compute number of batches in one epoch (one full pass over the training set) train(model, manager, gm) # Evaluate for one epoch on validation set evaluate(model, manager) # Save best model weights accroding to the params.major_metric if rank == 0: manager.check_best_save_last_checkpoints(save_latest_freq=100, save_best_after=200) def main(params): # DTR support # mge.dtr.eviction_threshold = "5GB" # mge.dtr.enable() # Set the logger logger = utils.set_logger(os.path.join(params.model_dir, "train.log")) # Set the tensorboard writer tb_dir = os.path.join(params.model_dir, "summary") os.makedirs(tb_dir, exist_ok=True) writter = SummaryWriter(log_dir=tb_dir) # fetch dataloaders dataloaders = data_loader.fetch_dataloader(params) # Define the model and optimizer model = net.fetch_net(params) optimizer = Adam(model.parameters(), lr=params.learning_rate) scheduler = MultiStepLR(optimizer, milestones=[]) # initial status for checkpoint manager manager = Manager(model=model, optimizer=optimizer, scheduler=scheduler, params=params, dataloaders=dataloaders, writer=writter, logger=logger) # Train the model utils.master_logger(logger, "Starting training for {} epoch(s)".format(params.num_epochs)) train_and_evaluate(model, manager) if __name__ == "__main__": # Load the parameters from json file args = parser.parse_args() json_path = os.path.join(args.model_dir, "params.json") assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path) params = utils.Params(json_path) params.update(vars(args)) train_proc = dist.launcher(main) if mge.device.get_device_count("gpu") > 1 else main train_proc(params)
[ "evaluate.evaluate" ]
[((542, 567), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (565, 567), False, 'import argparse\n'), ((1046, 1061), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1059, 1061), True, 'import megengine.distributed as dist\n'), ((2349, 2364), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2362, 2364), True, 'import megengine.distributed as dist\n'), ((2508, 2529), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (2527, 2529), True, 'import megengine.distributed as dist\n'), ((3477, 3518), 'os.path.join', 'os.path.join', (['params.model_dir', '"""summary"""'], {}), "(params.model_dir, 'summary')\n", (3489, 3518), False, 'import os\n'), ((3523, 3557), 'os.makedirs', 'os.makedirs', (['tb_dir'], {'exist_ok': '(True)'}), '(tb_dir, exist_ok=True)\n', (3534, 3557), False, 'import os\n'), ((3572, 3601), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {'log_dir': 'tb_dir'}), '(log_dir=tb_dir)\n', (3585, 3601), False, 'from tensorboardX import SummaryWriter\n'), ((3645, 3681), 'dataset.data_loader.fetch_dataloader', 'data_loader.fetch_dataloader', (['params'], {}), '(params)\n', (3673, 3681), True, 'import dataset.data_loader as data_loader\n'), ((3732, 3753), 'model.net.fetch_net', 'net.fetch_net', (['params'], {}), '(params)\n', (3745, 3753), True, 'import model.net as net\n'), ((3837, 3874), 'megengine.optimizer.MultiStepLR', 'MultiStepLR', (['optimizer'], {'milestones': '[]'}), '(optimizer, milestones=[])\n', (3848, 3874), False, 'from megengine.optimizer import Adam, MultiStepLR, LRScheduler\n'), ((3934, 4072), 'common.manager.Manager', 'Manager', ([], {'model': 'model', 'optimizer': 'optimizer', 'scheduler': 'scheduler', 'params': 'params', 'dataloaders': 'dataloaders', 'writer': 'writter', 'logger': 'logger'}), '(model=model, optimizer=optimizer, scheduler=scheduler, params=\n params, dataloaders=dataloaders, writer=writter, logger=logger)\n', (3941, 4072), False, 'from common.manager import Manager\n'), ((4475, 4518), 'os.path.join', 'os.path.join', (['args.model_dir', '"""params.json"""'], {}), "(args.model_dir, 'params.json')\n", (4487, 4518), False, 'import os\n'), ((4530, 4555), 'os.path.isfile', 'os.path.isfile', (['json_path'], {}), '(json_path)\n', (4544, 4555), False, 'import os\n'), ((4629, 4652), 'common.utils.Params', 'utils.Params', (['json_path'], {}), '(json_path)\n', (4641, 4652), False, 'from common import utils\n'), ((1422, 1450), 'common.utils.tensor_mge', 'utils.tensor_mge', (['data_batch'], {}), '(data_batch)\n', (1438, 1450), False, 'from common import utils\n'), ((3016, 3040), 'evaluate.evaluate', 'evaluate', (['model', 'manager'], {}), '(model, manager)\n', (3024, 3040), False, 'from evaluate import evaluate\n'), ((3385, 3428), 'os.path.join', 'os.path.join', (['params.model_dir', '"""train.log"""'], {}), "(params.model_dir, 'train.log')\n", (3397, 3428), False, 'import os\n'), ((4701, 4720), 'megengine.distributed.launcher', 'dist.launcher', (['main'], {}), '(main)\n', (4714, 4720), True, 'import megengine.distributed as dist\n'), ((1647, 1691), 'loss.losses.compute_losses', 'compute_losses', (['output_batch', 'manager.params'], {}), '(output_batch, manager.params)\n', (1661, 1691), False, 'from loss.losses import compute_losses\n'), ((2650, 2663), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (2661, 2663), False, 'from megengine.autodiff import GradManager\n'), ((4724, 4758), 'megengine.device.get_device_count', 'mge.device.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (4751, 4758), True, 'import megengine as mge\n'), ((2718, 2747), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""SUM"""'], {}), "('SUM')\n", (2740, 2747), True, 'import megengine.distributed as dist\n')]
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # Copyright 2020 The HuggingFace Team. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # Uses some code from # https://github.com/huggingface/transformers/blob/master/examples/seq2seq/finetune_trainer.py import argparse import configparser import itertools import json import logging import os from collections import defaultdict import torch from torch.utils.data import DataLoader from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, AutoModelForSeq2SeqLM, Trainer from arguments import ModelArguments, DataTrainingArguments, TrainingArguments from datasets import load_dataset from evaluate import evaluate, get_avg_results, print_results from utils import get_episode_indices def main(): assert torch.cuda.is_available(), 'CUDA not available' # parse arguments parser = argparse.ArgumentParser() parser.add_argument('job') parser.add_argument('-c', '--config_file', type=str, default='config.ini', help='configuration file') parser.add_argument('-e', '--eval', action='store_true', default=False, help='run evaluation only') parser.add_argument('--evaluate_checkpoints', action='store_true', default=False, help='evaluate intermediate checkpoints instead of the final model') parser.add_argument('--evaluate_last_checkpoint', action='store_true', default=False, help='evaluate the last intermediate checkpoint instead of the final model') parser.add_argument('--evaluate_checkpoint_in_dir', type=str, default=None, help='evaluate the checkpoint in the given directory') parser.add_argument('-a', '--evaluate_all', action='store_true', default=False, help='evaluate intermediate checkpoints together with the final model') parser.add_argument('-g', '--gpu', type=int, default=0, help='which GPU to use for evaluation') parser.add_argument('-v', '--verbose_results', action='store_true', default=False, help='print results for each evaluation run') args, remaining_args = parser.parse_known_args() # read config file config = configparser.ConfigParser(allow_no_value=False) config.read(args.config_file) job = args.job assert job in config # set defaults for other arguments defaults = { 'overwrite_output_dir': True, 'overwrite_cache': True, 'per_device_eval_batch_size': 4, 'learning_rate': 5e-4, 'logging_steps': 0, # do not log by default 'save_steps': 0, # do not save checkpoints by default } # the config file gives default values for the command line arguments defaults.update(dict(config.items(job))) for key in defaults: if defaults[key] in ['True', 'False']: # interpret True/False as boolean defaults[key] = config.getboolean(job, key) if defaults[key] == 'None': # interpret as None defaults[key] = None if args.eval: # run evaluation only defaults['do_train'] = False # parse remaining arguments and divide them into three categories second_parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) second_parser.set_defaults(**defaults) model_args, data_args, training_args = second_parser.parse_args_into_dataclasses(remaining_args) try: os.mkdir(training_args.output_dir) except FileExistsError: pass # process arguments related to max length if data_args.max_output_seq_length_eval is None: # defaults first to max_output_seq_length, then max_seq_length_eval, then max_seq_length data_args.max_output_seq_length_eval = data_args.max_output_seq_length \ or data_args.max_seq_length_eval \ or data_args.max_seq_length if data_args.max_output_seq_length is None: # defaults to max_seq_length data_args.max_output_seq_length = data_args.max_seq_length if data_args.max_seq_length_eval is None: # defaults to max_seq_length data_args.max_seq_length_eval = data_args.max_seq_length if data_args.chunk_size_eval is None: # defaults to chunk_size data_args.chunk_size_eval = data_args.chunk_size if data_args.chunk_overlap_eval is None: # defaults to chunk overlap data_args.chunk_overlap_eval = data_args.chunk_overlap # construct name for the output directory # for example: conll04-t5-base-ep200-len256-ratio0-b4-train output_dir = os.path.join( training_args.output_dir, f'{args.job}' f'-{model_args.model_name_or_path.split("/")[-1]}' f'-ep{round(training_args.num_train_epochs)}' f'-len{data_args.max_seq_length}' ) if data_args.max_output_seq_length != data_args.max_seq_length: output_dir += f'-{data_args.max_output_seq_length}' if training_args.learning_rate != 5e-4: output_dir += f'-lr{training_args.learning_rate}' output_dir += f'-b{training_args.per_device_train_batch_size}' \ f'-{data_args.train_split}' if data_args.chunk_size != 128: output_dir += f'-chunk{data_args.chunk_size}' if data_args.chunk_overlap != 64: output_dir += f'-overlap{data_args.chunk_overlap}' if data_args.output_format is not None: output_dir += f'-{data_args.output_format}' if data_args.input_format is not None: output_dir += f'-{data_args.input_format}' if data_args.train_subset < 1: output_dir += f'-size{data_args.train_subset:.2f}' try: os.mkdir(output_dir) except FileExistsError: pass # setup logging logging.basicConfig( filename=os.path.join(output_dir, 'logs.log'), format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, ) logging.getLogger().addHandler(logging.StreamHandler()) # construct file name for the evaluation results evaluation_output_filename = f'results' if data_args.num_beams is not None: evaluation_output_filename += f'-{data_args.num_beams}beams' if data_args.max_seq_length_eval is not None: evaluation_output_filename += f'-len{data_args.max_seq_length_eval}' # create model config config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) # create tokenizer tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, ) # get list of dataset names dataset_names = data_args.datasets.split(',') # construct list of episode indices episode_indices = get_episode_indices(data_args.episodes) # episode loop # (note that the episode index is used as the random seed, so that each episode is reproducible) evaluation_results = defaultdict(list) for ep_idx in episode_indices: print() logging.info(f'Episode {ep_idx} ({len(episode_indices)} episodes total)') episode_output_dir = os.path.join(output_dir, f'episode{ep_idx}') try: os.mkdir(episode_output_dir) except FileExistsError: pass logging.info(f'Output directory: {episode_output_dir}') training_args.output_dir = episode_output_dir # checkpoints are saved in episode-specific directory # load pretrained model model = None if training_args.zero_shot or training_args.do_train: logging.info(f"Using model {model_args.model_name_or_path}") model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, ) # fine-tune the model if training_args.do_train: # load train dataset datasets = [] for dataset_name in dataset_names: logging.info(f'Process dataset {dataset_name} (train)') dataset = load_dataset( dataset_name, data_args, split=data_args.train_split, max_input_length=data_args.max_seq_length, max_output_length=data_args.max_output_seq_length, tokenizer=tokenizer, seed=ep_idx, train_subset=data_args.train_subset, ) datasets.append(dataset) train_dataset = torch.utils.data.ConcatDataset(datasets) if training_args.do_train else None # construct trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, ) # start trainer logging.info('Start training') trainer.train( model_path=model_args.model_name_or_path ) # save model parameters trainer.save_model(episode_output_dir) # run evaluation if training_args.local_rank in [-1, 0] and (training_args.do_eval or training_args.do_predict): # should we evaluate on dev, test, or both? evaluation_splits = [] if training_args.do_eval: evaluation_splits.append('dev') if training_args.do_predict: evaluation_splits.append('test') # should we evaluate on the final model and/or on all intermediate checkpoints? evaluation_dirs = [] if args.evaluate_checkpoints or args.evaluate_last_checkpoint or \ args.evaluate_checkpoint_in_dir or args.evaluate_all: # all intermediate checkpoints evaluation_dirs = list(sorted([ checkpoint_dir for checkpoint_dir in os.listdir(episode_output_dir) if checkpoint_dir.startswith('checkpoint-') ], key=lambda x: int(x[len('checkpoint-'):]))) if args.evaluate_last_checkpoint: # only evaluate on the last checkpoint evaluation_dirs = [evaluation_dirs[-1]] elif args.evaluate_checkpoint_in_dir: assert args.evaluate_checkpoint_in_dir in evaluation_dirs, \ "checkpoint {} does not exist".format(args.evaluate_checkpoint_in_dir) evaluation_dirs = [args.evaluate_checkpoint_in_dir] if args.evaluate_all or (not args.evaluate_checkpoints and not args.evaluate_last_checkpoint): # evaluate on the final model evaluation_dirs += [''] # datasets to evaluate on if data_args.eval_datasets is None: eval_dataset_names = dataset_names else: eval_dataset_names = data_args.eval_datasets.split(',') # evaluate all possible combinations of dev/test, model, and datasets for comb in itertools.product(evaluation_splits, evaluation_dirs, eval_dataset_names): split, evaluation_dir, dataset_name = comb model_dir = os.path.join(episode_output_dir, evaluation_dir) if args.evaluate_checkpoints or args.evaluate_last_checkpoint or args.evaluate_all or model is None: # we need to load the model model = AutoModelForSeq2SeqLM.from_pretrained( model_dir, config=config, ) if len(evaluation_dir) > 0: logging.info(f'Evaluate {evaluation_dir} on {dataset_name} {split}') else: logging.info(f'Evaluate on {dataset_name} {split}') res = evaluate( model=model, dataset_name=dataset_name, data_args=data_args, tokenizer=tokenizer, split=split, seed=ep_idx, batch_size=training_args.per_device_eval_batch_size, gpu=args.gpu ) # store results evaluation_results[comb].append(res) # print results if args.verbose_results: print_results(res) # save results to file with open( os.path.join(model_dir, evaluation_output_filename + f'-{dataset_name}-{split}.json'), 'w' ) as f: json.dump(res, f, indent=0) # print average results and save them to file for comb, results in evaluation_results.items(): split, evaluation_dir, dataset_name = comb print() logging.info( f'Average of {split} results over {len(results)} episodes ({dataset_name} {evaluation_dir}):' ) res = get_avg_results(results) # print average results print_results(res) # save average results to file filename = evaluation_output_filename + f'-{dataset_name}-{split}' if len(evaluation_dir) > 0: filename += '-' filename += f'{evaluation_dir}.json' with open(os.path.join(output_dir, filename), 'w') as f: json.dump(res, f, indent=0) print() logging.info(f'Model weights and intermediate checkpoints saved in {output_dir}') if __name__ == "__main__": main()
[ "evaluate.get_avg_results", "evaluate.evaluate", "evaluate.print_results" ]
[((806, 831), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (829, 831), False, 'import torch\n'), ((890, 915), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (913, 915), False, 'import argparse\n'), ((2213, 2260), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {'allow_no_value': '(False)'}), '(allow_no_value=False)\n', (2238, 2260), False, 'import configparser\n'), ((3242, 3318), 'transformers.HfArgumentParser', 'HfArgumentParser', (['(ModelArguments, DataTrainingArguments, TrainingArguments)'], {}), '((ModelArguments, DataTrainingArguments, TrainingArguments))\n', (3258, 3318), False, 'from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, AutoModelForSeq2SeqLM, Trainer\n'), ((6503, 6651), 'transformers.AutoConfig.from_pretrained', 'AutoConfig.from_pretrained', (['(model_args.config_name if model_args.config_name else model_args.\n model_name_or_path)'], {'cache_dir': 'model_args.cache_dir'}), '(model_args.config_name if model_args.config_name\n else model_args.model_name_or_path, cache_dir=model_args.cache_dir)\n', (6529, 6651), False, 'from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, AutoModelForSeq2SeqLM, Trainer\n'), ((6710, 6835), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['(model_args.tokenizer_name if model_args.tokenizer_name else model_args.\n model_name_or_path)'], {}), '(model_args.tokenizer_name if model_args.\n tokenizer_name else model_args.model_name_or_path)\n', (6739, 6835), False, 'from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, AutoModelForSeq2SeqLM, Trainer\n'), ((6992, 7031), 'utils.get_episode_indices', 'get_episode_indices', (['data_args.episodes'], {}), '(data_args.episodes)\n', (7011, 7031), False, 'from utils import get_episode_indices\n'), ((7178, 7195), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (7189, 7195), False, 'from collections import defaultdict\n'), ((13501, 13587), 'logging.info', 'logging.info', (['f"""Model weights and intermediate checkpoints saved in {output_dir}"""'], {}), "(\n f'Model weights and intermediate checkpoints saved in {output_dir}')\n", (13513, 13587), False, 'import logging\n'), ((3481, 3515), 'os.mkdir', 'os.mkdir', (['training_args.output_dir'], {}), '(training_args.output_dir)\n', (3489, 3515), False, 'import os\n'), ((5770, 5790), 'os.mkdir', 'os.mkdir', (['output_dir'], {}), '(output_dir)\n', (5778, 5790), False, 'import os\n'), ((6104, 6127), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (6125, 6127), False, 'import logging\n'), ((7358, 7402), 'os.path.join', 'os.path.join', (['output_dir', 'f"""episode{ep_idx}"""'], {}), "(output_dir, f'episode{ep_idx}')\n", (7370, 7402), False, 'import os\n'), ((7516, 7571), 'logging.info', 'logging.info', (['f"""Output directory: {episode_output_dir}"""'], {}), "(f'Output directory: {episode_output_dir}')\n", (7528, 7571), False, 'import logging\n'), ((13069, 13093), 'evaluate.get_avg_results', 'get_avg_results', (['results'], {}), '(results)\n', (13084, 13093), False, 'from evaluate import evaluate, get_avg_results, print_results\n'), ((13135, 13153), 'evaluate.print_results', 'print_results', (['res'], {}), '(res)\n', (13148, 13153), False, 'from evaluate import evaluate, get_avg_results, print_results\n'), ((5893, 5929), 'os.path.join', 'os.path.join', (['output_dir', '"""logs.log"""'], {}), "(output_dir, 'logs.log')\n", (5905, 5929), False, 'import os\n'), ((6073, 6092), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (6090, 6092), False, 'import logging\n'), ((7429, 7457), 'os.mkdir', 'os.mkdir', (['episode_output_dir'], {}), '(episode_output_dir)\n', (7437, 7457), False, 'import os\n'), ((7811, 7871), 'logging.info', 'logging.info', (['f"""Using model {model_args.model_name_or_path}"""'], {}), "(f'Using model {model_args.model_name_or_path}')\n", (7823, 7871), False, 'import logging\n'), ((7892, 8012), 'transformers.AutoModelForSeq2SeqLM.from_pretrained', 'AutoModelForSeq2SeqLM.from_pretrained', (['model_args.model_name_or_path'], {'config': 'config', 'cache_dir': 'model_args.cache_dir'}), '(model_args.model_name_or_path, config\n =config, cache_dir=model_args.cache_dir)\n', (7929, 8012), False, 'from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, AutoModelForSeq2SeqLM, Trainer\n'), ((8854, 8923), 'transformers.Trainer', 'Trainer', ([], {'model': 'model', 'args': 'training_args', 'train_dataset': 'train_dataset'}), '(model=model, args=training_args, train_dataset=train_dataset)\n', (8861, 8923), False, 'from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, AutoModelForSeq2SeqLM, Trainer\n'), ((9028, 9058), 'logging.info', 'logging.info', (['"""Start training"""'], {}), "('Start training')\n", (9040, 9058), False, 'import logging\n'), ((11260, 11333), 'itertools.product', 'itertools.product', (['evaluation_splits', 'evaluation_dirs', 'eval_dataset_names'], {}), '(evaluation_splits, evaluation_dirs, eval_dataset_names)\n', (11277, 11333), False, 'import itertools\n'), ((13456, 13483), 'json.dump', 'json.dump', (['res', 'f'], {'indent': '(0)'}), '(res, f, indent=0)\n', (13465, 13483), False, 'import json\n'), ((8259, 8314), 'logging.info', 'logging.info', (['f"""Process dataset {dataset_name} (train)"""'], {}), "(f'Process dataset {dataset_name} (train)')\n", (8271, 8314), False, 'import logging\n'), ((8341, 8586), 'datasets.load_dataset', 'load_dataset', (['dataset_name', 'data_args'], {'split': 'data_args.train_split', 'max_input_length': 'data_args.max_seq_length', 'max_output_length': 'data_args.max_output_seq_length', 'tokenizer': 'tokenizer', 'seed': 'ep_idx', 'train_subset': 'data_args.train_subset'}), '(dataset_name, data_args, split=data_args.train_split,\n max_input_length=data_args.max_seq_length, max_output_length=data_args.\n max_output_seq_length, tokenizer=tokenizer, seed=ep_idx, train_subset=\n data_args.train_subset)\n', (8353, 8586), False, 'from datasets import load_dataset\n'), ((8722, 8762), 'torch.utils.data.ConcatDataset', 'torch.utils.data.ConcatDataset', (['datasets'], {}), '(datasets)\n', (8752, 8762), False, 'import torch\n'), ((11422, 11470), 'os.path.join', 'os.path.join', (['episode_output_dir', 'evaluation_dir'], {}), '(episode_output_dir, evaluation_dir)\n', (11434, 11470), False, 'import os\n'), ((12051, 12243), 'evaluate.evaluate', 'evaluate', ([], {'model': 'model', 'dataset_name': 'dataset_name', 'data_args': 'data_args', 'tokenizer': 'tokenizer', 'split': 'split', 'seed': 'ep_idx', 'batch_size': 'training_args.per_device_eval_batch_size', 'gpu': 'args.gpu'}), '(model=model, dataset_name=dataset_name, data_args=data_args,\n tokenizer=tokenizer, split=split, seed=ep_idx, batch_size=training_args\n .per_device_eval_batch_size, gpu=args.gpu)\n', (12059, 12243), False, 'from evaluate import evaluate, get_avg_results, print_results\n'), ((13397, 13431), 'os.path.join', 'os.path.join', (['output_dir', 'filename'], {}), '(output_dir, filename)\n', (13409, 13431), False, 'import os\n'), ((11665, 11728), 'transformers.AutoModelForSeq2SeqLM.from_pretrained', 'AutoModelForSeq2SeqLM.from_pretrained', (['model_dir'], {'config': 'config'}), '(model_dir, config=config)\n', (11702, 11728), False, 'from transformers import AutoConfig, AutoTokenizer, HfArgumentParser, AutoModelForSeq2SeqLM, Trainer\n'), ((11865, 11933), 'logging.info', 'logging.info', (['f"""Evaluate {evaluation_dir} on {dataset_name} {split}"""'], {}), "(f'Evaluate {evaluation_dir} on {dataset_name} {split}')\n", (11877, 11933), False, 'import logging\n'), ((11976, 12027), 'logging.info', 'logging.info', (['f"""Evaluate on {dataset_name} {split}"""'], {}), "(f'Evaluate on {dataset_name} {split}')\n", (11988, 12027), False, 'import logging\n'), ((12472, 12490), 'evaluate.print_results', 'print_results', (['res'], {}), '(res)\n', (12485, 12490), False, 'from evaluate import evaluate, get_avg_results, print_results\n'), ((12717, 12744), 'json.dump', 'json.dump', (['res', 'f'], {'indent': '(0)'}), '(res, f, indent=0)\n', (12726, 12744), False, 'import json\n'), ((12582, 12671), 'os.path.join', 'os.path.join', (['model_dir', "(evaluation_output_filename + f'-{dataset_name}-{split}.json')"], {}), "(model_dir, evaluation_output_filename +\n f'-{dataset_name}-{split}.json')\n", (12594, 12671), False, 'import os\n'), ((10102, 10132), 'os.listdir', 'os.listdir', (['episode_output_dir'], {}), '(episode_output_dir)\n', (10112, 10132), False, 'import os\n')]
import numpy as np import cv2 import matplotlib.pyplot as plt from matplotlib.animation import FFMpegWriter from PIL import Image import torch from tqdm import tqdm import os from pathlib import Path openpose_dir = Path('../pytorch_Realtime_Multi-Person_Pose_Estimation/') import sys sys.path.append(str(openpose_dir)) from save_img import * # openpose from network.rtpose_vgg import get_model from evaluate.coco_eval import get_multiplier, get_outputs # utils from openpose_utils import remove_noise, get_pose # Match fps whit fps of source video. def make_video_animation(num_frames , animation_function, output_name,fps = 30): """ fps: int frames per second for output video. animation_function: function that returs a frame given an index j. """ metadata = dict(title='Movie Test', artist='IA', comment='<NAME>') writer = FFMpegWriter(fps=fps, metadata=metadata) with writer.saving(fig, output_name +'.mp4', dpi=100): for j in tqdm(range(num_frames)): animation_function(j) writer.grab_frame() torch.cuda.empty_cache() def skeleton_frame(idx): img_path = img_dir.joinpath('{:05d}.png'.format(idx)) img = cv2.imread(str(img_path)) shape_dst = np.min(img.shape[:2]) oh = (img.shape[0] - shape_dst) // 2 ow = (img.shape[1] - shape_dst) // 2 img = img[oh:oh+shape_dst, ow:ow+shape_dst] img = cv2.resize(img, (512, 512)) multiplier = get_multiplier(img) with torch.no_grad(): paf, heatmap = get_outputs(multiplier, img, model, 'rtpose') r_heatmap = np.array([remove_noise(ht) for ht in heatmap.transpose(2, 0, 1)[:-1]])\ .transpose(1, 2, 0) heatmap[:, :, :-1] = r_heatmap param = {'thre1': 0.1, 'thre2': 0.05, 'thre3': 0.5} label, cord = get_pose(param, heatmap, paf) mask = label[:,:] > 0 intensity = .80 img[mask,:] = int(255*intensity) fig.clear() plt.axis('off') plt.imshow(img) def remove_transparency(im, bg_colour=(255, 255, 255)): # Only process if image has transparency if im.mode in ('RGBA', 'LA') or (im.mode == 'P' and 'transparency' in im.info): # Need to convert to RGBA if LA format due to a bug in PIL alpha = im.convert('RGBA').split()[-1] # Create a new background image of our matt color. # Must be RGBA because paste requires both images have the same format bg = Image.new("RGBA", im.size, bg_colour + (255,)) bg.paste(im, mask=alpha) return bg else: return im if __name__ == '__main__': #NETWORK CREATION weight_name = openpose_dir.joinpath('network/weight/pose_model.pth') model = get_model('vgg19') model.load_state_dict(torch.load(weight_name)) model = torch.nn.DataParallel(model).cuda() model.float() model.eval() img_dir = Path('../../data/source/images') NUM_FRAMES = len(os.listdir(str(img_dir))) FPS = 30 plt.close() plt.axis('off') fig = plt.figure(figsize=(5.12, 5.12)) make_video_animation(num_frames = NUM_FRAMES, animation_function = skeleton_frame, output_name = "test_labels", fps = FPS)
[ "evaluate.coco_eval.get_outputs", "evaluate.coco_eval.get_multiplier" ]
[((230, 287), 'pathlib.Path', 'Path', (['"""../pytorch_Realtime_Multi-Person_Pose_Estimation/"""'], {}), "('../pytorch_Realtime_Multi-Person_Pose_Estimation/')\n", (234, 287), False, 'from pathlib import Path\n'), ((897, 937), 'matplotlib.animation.FFMpegWriter', 'FFMpegWriter', ([], {'fps': 'fps', 'metadata': 'metadata'}), '(fps=fps, metadata=metadata)\n', (909, 937), False, 'from matplotlib.animation import FFMpegWriter\n'), ((1092, 1116), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (1114, 1116), False, 'import torch\n'), ((1260, 1281), 'numpy.min', 'np.min', (['img.shape[:2]'], {}), '(img.shape[:2])\n', (1266, 1281), True, 'import numpy as np\n'), ((1421, 1448), 'cv2.resize', 'cv2.resize', (['img', '(512, 512)'], {}), '(img, (512, 512))\n', (1431, 1448), False, 'import cv2\n'), ((1465, 1484), 'evaluate.coco_eval.get_multiplier', 'get_multiplier', (['img'], {}), '(img)\n', (1479, 1484), False, 'from evaluate.coco_eval import get_multiplier, get_outputs\n'), ((1805, 1834), 'openpose_utils.get_pose', 'get_pose', (['param', 'heatmap', 'paf'], {}), '(param, heatmap, paf)\n', (1813, 1834), False, 'from openpose_utils import remove_noise, get_pose\n'), ((1947, 1962), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1955, 1962), True, 'import matplotlib.pyplot as plt\n'), ((1969, 1984), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (1979, 1984), True, 'import matplotlib.pyplot as plt\n'), ((2746, 2764), 'network.rtpose_vgg.get_model', 'get_model', (['"""vgg19"""'], {}), "('vgg19')\n", (2755, 2764), False, 'from network.rtpose_vgg import get_model\n'), ((2910, 2942), 'pathlib.Path', 'Path', (['"""../../data/source/images"""'], {}), "('../../data/source/images')\n", (2914, 2942), False, 'from pathlib import Path\n'), ((3003, 3014), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3012, 3014), True, 'import matplotlib.pyplot as plt\n'), ((3017, 3032), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3025, 3032), True, 'import matplotlib.pyplot as plt\n'), ((3041, 3073), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5.12, 5.12)'}), '(figsize=(5.12, 5.12))\n', (3051, 3073), True, 'import matplotlib.pyplot as plt\n'), ((1493, 1508), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1506, 1508), False, 'import torch\n'), ((1529, 1574), 'evaluate.coco_eval.get_outputs', 'get_outputs', (['multiplier', 'img', 'model', '"""rtpose"""'], {}), "(multiplier, img, model, 'rtpose')\n", (1540, 1574), False, 'from evaluate.coco_eval import get_multiplier, get_outputs\n'), ((2471, 2517), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', 'im.size', '(bg_colour + (255,))'], {}), "('RGBA', im.size, bg_colour + (255,))\n", (2480, 2517), False, 'from PIL import Image\n'), ((2794, 2817), 'torch.load', 'torch.load', (['weight_name'], {}), '(weight_name)\n', (2804, 2817), False, 'import torch\n'), ((2829, 2857), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {}), '(model)\n', (2850, 2857), False, 'import torch\n'), ((1600, 1616), 'openpose_utils.remove_noise', 'remove_noise', (['ht'], {}), '(ht)\n', (1612, 1616), False, 'from openpose_utils import remove_noise, get_pose\n')]
"""Trains off-policy algorithms, such as QMIX and IQL.""" import json import os import random import sys import time sys.path.append('../env/') import numpy as np import tensorflow as tf import alg_iql import alg_qmix import env_wrapper import evaluate import replay_buffer def train_function(config): config_env = config['env'] config_main = config['main'] config_alg = config['alg'] seed = config_main['seed'] np.random.seed(seed) random.seed(seed) tf.set_random_seed(seed) dir_name = config_main['dir_name'] model_name = config_main['model_name'] summarize = config_main['summarize'] save_period = config_main['save_period'] os.makedirs('../results/%s'%dir_name, exist_ok=True) with open('../results/%s/%s' % (dir_name, 'config.json'), 'w') as f: json.dump(config, f, indent=4) N_train = config_alg['N_train'] N_eval = config_alg['N_eval'] period = config_alg['period'] buffer_size = config_alg['buffer_size'] batch_size = config_alg['batch_size'] pretrain_episodes = config_alg['pretrain_episodes'] steps_per_train = config_alg['steps_per_train'] epsilon_start = config_alg['epsilon_start'] epsilon_end = config_alg['epsilon_end'] epsilon_div = config_alg['epsilon_div'] epsilon_step = (epsilon_start - epsilon_end)/float(epsilon_div) epsilon = epsilon_start env = env_wrapper.Env(config_env, config_main) config_env_mod = config_env.copy() config_env_mod['self_play'] = False # test against stock AI during evaluation episodes config_env_mod['num_away_ai_players'] = config_env_mod['num_away_players'] # set number of stock AI env_eval = env_wrapper.Env(config_env_mod, config_main) self_play = config_env['self_play'] if self_play: assert(config_env['num_away_ai_players'] == 0) l_state = env.state_dim l_action = env.action_dim l_obs = env.obs_dim N_home = config_env['num_home_players'] if config_main['alg_name'] == 'qmix': alg = alg_qmix.Alg(config_alg, N_home, l_state, l_obs, l_action, config['nn_qmix']) elif config_main['alg_name'] == 'iql': alg = alg_iql.Alg(config_alg, N_home, l_state, l_obs, l_action, config['nn_iql']) config_proto = tf.ConfigProto() config_proto.gpu_options.allow_growth = True sess = tf.Session(config=config_proto) sess.run(tf.global_variables_initializer()) sess.run(alg.list_initialize_target_ops) if summarize: writer = tf.summary.FileWriter('../results/%s' % dir_name, sess.graph) saver = tf.train.Saver(max_to_keep=config_main['max_to_keep']) buf = replay_buffer.Replay_Buffer(size=buffer_size) # Logging header = "Episode,Step,Step_train,R_avg,R_eval,Steps_per_eps,Opp_win_rate,Win_rate,T_env,T_alg\n" with open("../results/%s/log.csv" % dir_name, 'w') as f: f.write(header) t_start = time.time() t_env = 0 t_alg = 0 reward_period = 0 step = 0 step_train = 0 for idx_episode in range(1, N_train+1): state_home, state_away, list_obs_home, list_obs_away, done = env.reset() reward_episode = 0 summarized = 0 while not done: if idx_episode < pretrain_episodes: if self_play: actions_int_h, actions_int_a = env.random_actions() actions_int = (actions_int_h, actions_int_a) else: actions_int = env.random_actions() else: t_alg_start = time.time() if self_play: actions_int_h = alg.run_actor(list_obs_home, epsilon, sess) actions_int_a = alg.run_actor(list_obs_away, epsilon, sess) actions_int = (actions_int_h, actions_int_a) else: actions_int = alg.run_actor(list_obs_home, epsilon, sess) t_alg += time.time() - t_alg_start t_env_start = time.time() state_home_next, state_away_next, list_obs_home_next, list_obs_away_next, reward, local_rewards, done, info = env.step(actions_int) t_env += time.time() - t_env_start step += 1 if self_play: buf.add( np.array([ state_home, np.array(list_obs_home), actions_int_h, reward[0], state_home_next, np.array(list_obs_home_next), done] ) ) buf.add( np.array([ state_away, np.array(list_obs_away), actions_int_a, reward[1], state_away_next, np.array(list_obs_away_next), done] ) ) else: buf.add( np.array([ state_home, np.array(list_obs_home), actions_int, reward, state_home_next, np.array(list_obs_home_next), done] ) ) if (idx_episode >= pretrain_episodes) and (step % steps_per_train == 0): batch = buf.sample_batch(batch_size) t_alg_start = time.time() if summarize and idx_episode % period == 0 and not summarized: alg.train_step(sess, batch, step_train, summarize=True, writer=writer) summarized = True else: alg.train_step(sess, batch, step_train, summarize=False, writer=None) step_train += 1 t_alg += time.time() - t_alg_start state_home = state_home_next list_obs_home = list_obs_home_next state_away = state_away_next list_obs_away = list_obs_away_next if self_play: reward_episode += reward[0] else: reward_episode += reward if idx_episode >= pretrain_episodes and epsilon > epsilon_end: epsilon -= epsilon_step reward_period += reward_episode if idx_episode == 1 or idx_episode % (5*period) == 0: print('{:>10s}{:>10s}{:>12s}{:>8s}{:>8s}{:>15s}{:>15s}{:>10s}{:>12s}{:>12s}'.format(*(header.strip().split(',')))) if idx_episode % period == 0: # Evaluation episodes r_avg_eval, steps_per_episode, win_rate, win_rate_opponent = evaluate.test(N_eval, env_eval, sess, alg) if win_rate >= config_main['save_threshold']: saver.save(sess, '../results/%s/%s-%d' % (dir_name, "model_good.ckpt", idx_episode)) s = '%d,%d,%d,%.2f,%.2f,%d,%.2f,%.2f,%.5e,%.5e\n' % (idx_episode, step, step_train, reward_period/float(period), r_avg_eval, steps_per_episode, win_rate_opponent, win_rate, t_env, t_alg) with open('../results/%s/log.csv' % dir_name, 'a') as f: f.write(s) print('{:10d}{:10d}{:12d}{:8.2f}{:8.2f}{:15d}{:15.2f}{:10.2f}{:12.5e}{:12.5e}\n'.format(idx_episode, step, step_train, reward_period/float(period), r_avg_eval, int(steps_per_episode), win_rate_opponent, win_rate, t_env, t_alg)) reward_period = 0 if idx_episode % save_period == 0: saver.save(sess, '../results/%s/%s-%d' % (dir_name, "model.ckpt", idx_episode)) saver.save(sess, '../results/%s/%s' % (dir_name, model_name)) with open('../results/%s/time.txt' % dir_name, 'a') as f: f.write('t_env_total,t_env_per_step,t_alg_total,t_alg_per_step\n') f.write('%.5e,%.5e,%.5e,%.5e' % (t_env, t_env/step, t_alg, t_alg/step)) if __name__ == "__main__": with open('config.json', 'r') as f: config = json.load(f) train_function(config)
[ "evaluate.test" ]
[((119, 145), 'sys.path.append', 'sys.path.append', (['"""../env/"""'], {}), "('../env/')\n", (134, 145), False, 'import sys\n'), ((444, 464), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (458, 464), True, 'import numpy as np\n'), ((469, 486), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (480, 486), False, 'import random\n'), ((491, 515), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['seed'], {}), '(seed)\n', (509, 515), True, 'import tensorflow as tf\n'), ((698, 752), 'os.makedirs', 'os.makedirs', (["('../results/%s' % dir_name)"], {'exist_ok': '(True)'}), "('../results/%s' % dir_name, exist_ok=True)\n", (709, 752), False, 'import os\n'), ((1432, 1472), 'env_wrapper.Env', 'env_wrapper.Env', (['config_env', 'config_main'], {}), '(config_env, config_main)\n', (1447, 1472), False, 'import env_wrapper\n'), ((1722, 1766), 'env_wrapper.Env', 'env_wrapper.Env', (['config_env_mod', 'config_main'], {}), '(config_env_mod, config_main)\n', (1737, 1766), False, 'import env_wrapper\n'), ((2307, 2323), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (2321, 2323), True, 'import tensorflow as tf\n'), ((2384, 2415), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config_proto'}), '(config=config_proto)\n', (2394, 2415), True, 'import tensorflow as tf\n'), ((2628, 2682), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': "config_main['max_to_keep']"}), "(max_to_keep=config_main['max_to_keep'])\n", (2642, 2682), True, 'import tensorflow as tf\n'), ((2698, 2743), 'replay_buffer.Replay_Buffer', 'replay_buffer.Replay_Buffer', ([], {'size': 'buffer_size'}), '(size=buffer_size)\n', (2725, 2743), False, 'import replay_buffer\n'), ((2969, 2980), 'time.time', 'time.time', ([], {}), '()\n', (2978, 2980), False, 'import time\n'), ((846, 876), 'json.dump', 'json.dump', (['config', 'f'], {'indent': '(4)'}), '(config, f, indent=4)\n', (855, 876), False, 'import json\n'), ((2072, 2149), 'alg_qmix.Alg', 'alg_qmix.Alg', (['config_alg', 'N_home', 'l_state', 'l_obs', 'l_action', "config['nn_qmix']"], {}), "(config_alg, N_home, l_state, l_obs, l_action, config['nn_qmix'])\n", (2084, 2149), False, 'import alg_qmix\n'), ((2429, 2462), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2460, 2462), True, 'import tensorflow as tf\n'), ((2554, 2615), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["('../results/%s' % dir_name)", 'sess.graph'], {}), "('../results/%s' % dir_name, sess.graph)\n", (2575, 2615), True, 'import tensorflow as tf\n'), ((7545, 7557), 'json.load', 'json.load', (['f'], {}), '(f)\n', (7554, 7557), False, 'import json\n'), ((2207, 2282), 'alg_iql.Alg', 'alg_iql.Alg', (['config_alg', 'N_home', 'l_state', 'l_obs', 'l_action', "config['nn_iql']"], {}), "(config_alg, N_home, l_state, l_obs, l_action, config['nn_iql'])\n", (2218, 2282), False, 'import alg_iql\n'), ((4096, 4107), 'time.time', 'time.time', ([], {}), '()\n', (4105, 4107), False, 'import time\n'), ((6241, 6283), 'evaluate.test', 'evaluate.test', (['N_eval', 'env_eval', 'sess', 'alg'], {}), '(N_eval, env_eval, sess, alg)\n', (6254, 6283), False, 'import evaluate\n'), ((3635, 3646), 'time.time', 'time.time', ([], {}), '()\n', (3644, 3646), False, 'import time\n'), ((4273, 4284), 'time.time', 'time.time', ([], {}), '()\n', (4282, 4284), False, 'import time\n'), ((5015, 5026), 'time.time', 'time.time', ([], {}), '()\n', (5024, 5026), False, 'import time\n'), ((4027, 4038), 'time.time', 'time.time', ([], {}), '()\n', (4036, 4038), False, 'import time\n'), ((5404, 5415), 'time.time', 'time.time', ([], {}), '()\n', (5413, 5415), False, 'import time\n'), ((4409, 4432), 'numpy.array', 'np.array', (['list_obs_home'], {}), '(list_obs_home)\n', (4417, 4432), True, 'import numpy as np\n'), ((4477, 4505), 'numpy.array', 'np.array', (['list_obs_home_next'], {}), '(list_obs_home_next)\n', (4485, 4505), True, 'import numpy as np\n'), ((4565, 4588), 'numpy.array', 'np.array', (['list_obs_away'], {}), '(list_obs_away)\n', (4573, 4588), True, 'import numpy as np\n'), ((4633, 4661), 'numpy.array', 'np.array', (['list_obs_away_next'], {}), '(list_obs_away_next)\n', (4641, 4661), True, 'import numpy as np\n'), ((4739, 4762), 'numpy.array', 'np.array', (['list_obs_home'], {}), '(list_obs_home)\n', (4747, 4762), True, 'import numpy as np\n'), ((4802, 4830), 'numpy.array', 'np.array', (['list_obs_home_next'], {}), '(list_obs_home_next)\n', (4810, 4830), True, 'import numpy as np\n')]
'''Module for boilerplate code around the training loop. Defines an abstract base class `Model` for Bayesian word embedding models, a function `train()` that runs the training loop, and a function `add_cli_args()` that adds command line arguments to control the training loop (e.g., the number of training steps and the log frequency). ''' import pickle from time import time import abc import traceback import datetime import socket import subprocess import os import sys import pprint import argparse import re import numpy as np import tensorflow as tf from dataset import Dataset import abstract_model import optimizer import distmult_model import complex_model import evaluate def train(arg_parser): '''Create an instance of model with the command line arguments and train it. Arguments: arg_parser -- An `argparse.ArgumentParser`. ''' args = arg_parser.parse_args() if not args.em: args.num_samples = 1 if args.model == 'DistMult': Model = distmult_model.DistMultModel elif args.model == 'ComplEx': Model = complex_model.ComplExModel # Get random seed from system if the user did not specify a random seed. if args.rng_seed is None: args.rng_seed = int.from_bytes(os.urandom(4), byteorder='little') rng = np.random.RandomState(seed=args.rng_seed) tf.set_random_seed(rng.randint(2**31)) # Create the output directory. try: os.mkdir(args.output) except OSError: if not args.force: sys.stderr.write( 'ERROR: Cannot create output directory %s\n' % args.output) sys.stderr.write( 'HINT: Does the directory already exist? To prevent accidental data loss this\n' ' script, by default, does not write to an existing output directory.\n' ' Specify a non-existing output directory or use the `--force`.\n') exit(1) else: print('Writing output into directory `%s`.' % args.output) try: with open(os.path.join(args.output, 'log'), 'w') as log_file: # We write log files in the form of python scripts. This way, log files are both human # readable and very easy to parse by different python scripts. We begin log files with # a shebang (`#!/usr/bin/python`) so that text editors turn on syntax highlighting. log_file.write('#!/usr/bin/python\n') log_file.write('\n') # Log information about the executing environment to make experiments reproducible. log_file.write('program = "%s"\n' % arg_parser.prog) log_file.write( 'args = {\n %s\n}\n\n' % pprint.pformat(vars(args), indent=4)[1:-1]) log_file.write('git_revision = "%s"\n' % subprocess.check_output( ['git', 'rev-parse', 'HEAD']).decode('utf-8').strip()) log_file.write('host_name = "%s"\n' % socket.gethostname()) log_file.write('start_time = "%s"\n' % str(datetime.datetime.now())) log_file.write('\n') dat = Dataset(args.input, log_file=log_file) model = Model(args, dat, rng, log_file=log_file) session = tf.Session() session.run(tf.initializers.global_variables()) if args.initialize_from is not None: load_checkpoint(model, session, args.initialize_from, log_file=log_file) evaluator = evaluate.Evaluator(model, dat, args, log_file=log_file) training_loop(args, model, session, dat, rng, evaluator, log_file=log_file) log_file.write('\n') log_file.write('end_time = "%s"\n' % str(datetime.datetime.now())) except: with open(os.path.join(args.output, 'err'), 'w') as err_file: traceback.print_exc(file=err_file) exit(2) def training_loop(args, model, session, dat, rng, evaluator, log_file=sys.stdout): log_file.write('\n# Starting training loop.\n') step, = session.run( [var for var in tf.global_variables() if var.name == 'training_step:0']) initial_summaries = args.initial_summaries + step log_file.write('pretrained_steps = %d\n' % step) log_file.write('\n') log_file.write('progress = [\n') log_file.flush() summary_writer = tf.summary.FileWriter(args.output, session.graph) saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=2) # Implement early stopping using the filtered MRR on the validation set. We don't actually stop # training when the MRR starts going down, but we keep a checkpoint from peak MRR. max_mrr_so_far = 0.0 opt_step = model.e_step for epoch in range(args.epochs): if args.em and epoch == args.initial_e_epochs: log_file.write('# Starting hyperparameter optimization.\n') log_file.flush() opt_step = model.em_step if epoch % args.epochs_per_eval == 0: valid_mrr = evaluator.run(session, summary_writer, step, epoch, log_file=log_file) if valid_mrr is not None and valid_mrr > max_mrr_so_far: max_mrr_so_far = valid_mrr save_checkpoint(args.output, session, step, saver, log_file) for minibatch in dat.iterate_in_minibatches('train', args.minibatch_size, rng): step += 1 if step % args.steps_per_summary == 0 or step <= initial_summaries: _, summary = session.run([opt_step, model.summary_op], feed_dict={model.minibatch_htr: minibatch}) summary_writer.add_summary(summary, global_step=step) else: session.run(opt_step, feed_dict={ model.minibatch_htr: minibatch}) save_checkpoint(args.output, session, step, saver, log_file) evaluator.run(session, summary_writer, step, args.epochs, log_file=log_file) log_file.write(']\n') def save_checkpoint(directory, session, step, saver, log_file=sys.stdout): '''Save the current state of the model to a tensorflow checkpoint. Arguments: directory -- Output directory. Must exist. Any files with clashing names in the output directory will be overwritten. session -- A `tf.Session` that contains the state. step -- Integer number of concluded training steps. saver -- A `tf.train.Saver`. log_file -- File handle to the log file. ''' start_time = time() log_file.write('# Saving checkpoint after step %d... ' % step) log_file.flush() saver.save(session, os.path.join(directory, 'checkpoint'), global_step=step) log_file.write('done. (%.2g seconds)\n' % (time() - start_time)) log_file.flush() def load_checkpoint(model, session, path, log_file=sys.stdout): log_file.write('# Loading model from checkpoint %s\n' % path) log_file.flush() reader = tf.train.NewCheckpointReader(path) checkpoint_variables = set(reader.get_variable_to_shape_map().keys()) # Map "scope/var_name:0" to "scope/var_name". trimmer = re.compile(r'(.+):\d+$') def trim(s): return trimmer.match(s).group(1) model_variables = set(trim(var.name) for var in tf.global_variables()) try: model_variables.remove('training_step') except: pass restored_variables = sorted(list( model_variables.intersection(checkpoint_variables))) ignored_in_checkpoint = sorted(list( checkpoint_variables - model_variables)) not_in_checkpoint = sorted(list( model_variables - checkpoint_variables)) log_file.write('restored_variables = [\n %s\n]\n\n' % pprint.pformat(restored_variables, indent=4)[1:-1]) log_file.write('not_found_in_checkpoint = [\n %s\n]\n\n' % pprint.pformat(not_in_checkpoint, indent=4)[1:-1]) log_file.write('found_in_checkpoint_but_not_restored = [\n %s\n]\n\n' % pprint.pformat(ignored_in_checkpoint, indent=4)[1:-1]) log_file.flush() loader = tf.train.Saver( var_list=[var for var in tf.global_variables() if trim(var.name) in restored_variables]) loader.restore(session, path) log_file.write('# Done loading model from checkpoint.\n') log_file.flush() def add_cli_args(parser): '''Add generic command line arguments. This function defines command line arguments that are required for all models in this project. Arguments: parser -- An `argparse.ArgumentParser`. Returns: A tuple of two command line argument groups that were added to the parser. ''' positional_args = parser.add_argument_group( 'Required positional arguments') positional_args.add_argument('input', metavar='IN_PATH', help=''' Path to a directory containing the training, validation, and test data sets.''') positional_args.add_argument('output', metavar='OUT_PATH', help=''' Path to the output directory. Must not already exist (unless --force is used).''') train_args = parser.add_argument_group( 'Parameters of the training environment') train_args.add_argument('-f', '--force', action='store_true', help=''' Allow writing into existing output directory, possibly overwriting existing files.''') train_args.add_argument('-E', '--epochs', metavar='N', type=int, default=500, help=''' Set the number of training epochs.''') train_args.add_argument('--initial_e_epochs', metavar='N', type=int, default=50, help=''' Set the number of initial epochs in which the hyperparameters are kept constant (i.e., only the "E-step" but not the "M-step" is performed during these initial epochs). Only used if `--em` is set.''') train_args.add_argument('-B', '--minibatch_size', metavar='N', type=int, default=100, help=''' Set the minibatch size.''') train_args.add_argument('--rng_seed', metavar='N', type=int, help=''' Set the seed of the pseudo random number generator. If not provided, a seed will automatically be generated from a system random source. In order to make experiments reproducible, the seed is always written to the output file, along with the git commit hash and all command line arguments.''') train_args.add_argument('--steps_per_summary', metavar='N', type=int, default=100, help=''' Set the number of training steps to run between generating a Tensorboard summary.''') train_args.add_argument('--initial_summaries', metavar='N', type=int, default=100, help=''' Set the number of initial training steps for which a Tensorboard summary will be generated after every step.''') train_args.add_argument('--epochs_per_eval', metavar='N', type=int, default=1, help=''' Set the number of training epochs to run between model evaluations.''') train_args.add_argument('--initialize_from', metavar='PATH', help=''' Provide a path to a tensorflow checkpoint file from which to load initial model parameters, initial hyperparameters, and the number of already concluded training steps. The provided PATH will likely have the form `directory/checkpoint-NNN` where `NNN` is the step number. Note that any internal state of optimizers, such as momentum or other accumulators, is not restored. Values stored in the checkpoint file take precedence over any initializations provided by command line arguments. This operation can be used both to initialize EM with a point estimated model, as well as to initialize point estimation with the means and hyperparametersfrom EM. The operation restores the intersection between parameters in the checkpoint and parmeters of the new model, and reports the names of the restored parameters to the log file.''') return positional_args, train_args if __name__ == '__main__': parser = argparse.ArgumentParser(description=''' Train a probabilistic knowledge graph embedding model.''') add_cli_args(parser) abstract_model.add_cli_args(parser) optimizer.add_cli_args(parser) evaluate.add_cli_args(parser) train(parser)
[ "evaluate.Evaluator", "evaluate.add_cli_args" ]
[((1296, 1337), 'numpy.random.RandomState', 'np.random.RandomState', ([], {'seed': 'args.rng_seed'}), '(seed=args.rng_seed)\n', (1317, 1337), True, 'import numpy as np\n'), ((4431, 4480), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['args.output', 'session.graph'], {}), '(args.output, session.graph)\n', (4452, 4480), True, 'import tensorflow as tf\n'), ((6637, 6643), 'time.time', 'time', ([], {}), '()\n', (6641, 6643), False, 'from time import time\n'), ((7087, 7121), 'tensorflow.train.NewCheckpointReader', 'tf.train.NewCheckpointReader', (['path'], {}), '(path)\n', (7115, 7121), True, 'import tensorflow as tf\n'), ((7261, 7285), 're.compile', 're.compile', (['"""(.+):\\\\d+$"""'], {}), "('(.+):\\\\d+$')\n", (7271, 7285), False, 'import re\n'), ((12116, 12227), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""\n Train a probabilistic knowledge graph embedding model."""'}), '(description=\n """\n Train a probabilistic knowledge graph embedding model.""")\n', (12139, 12227), False, 'import argparse\n'), ((12252, 12287), 'abstract_model.add_cli_args', 'abstract_model.add_cli_args', (['parser'], {}), '(parser)\n', (12279, 12287), False, 'import abstract_model\n'), ((12292, 12322), 'optimizer.add_cli_args', 'optimizer.add_cli_args', (['parser'], {}), '(parser)\n', (12314, 12322), False, 'import optimizer\n'), ((12327, 12356), 'evaluate.add_cli_args', 'evaluate.add_cli_args', (['parser'], {}), '(parser)\n', (12348, 12356), False, 'import evaluate\n'), ((1434, 1455), 'os.mkdir', 'os.mkdir', (['args.output'], {}), '(args.output)\n', (1442, 1455), False, 'import os\n'), ((4508, 4532), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (4530, 4532), True, 'import tensorflow as tf\n'), ((6757, 6794), 'os.path.join', 'os.path.join', (['directory', '"""checkpoint"""'], {}), "(directory, 'checkpoint')\n", (6769, 6794), False, 'import os\n'), ((1251, 1264), 'os.urandom', 'os.urandom', (['(4)'], {}), '(4)\n', (1261, 1264), False, 'import os\n'), ((3129, 3167), 'dataset.Dataset', 'Dataset', (['args.input'], {'log_file': 'log_file'}), '(args.input, log_file=log_file)\n', (3136, 3167), False, 'from dataset import Dataset\n'), ((3251, 3263), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (3261, 3263), True, 'import tensorflow as tf\n'), ((3519, 3574), 'evaluate.Evaluator', 'evaluate.Evaluator', (['model', 'dat', 'args'], {'log_file': 'log_file'}), '(model, dat, args, log_file=log_file)\n', (3537, 3574), False, 'import evaluate\n'), ((1515, 1591), 'sys.stderr.write', 'sys.stderr.write', (["('ERROR: Cannot create output directory %s\\n' % args.output)"], {}), "('ERROR: Cannot create output directory %s\\n' % args.output)\n", (1531, 1591), False, 'import sys\n'), ((1621, 1874), 'sys.stderr.write', 'sys.stderr.write', (['"""HINT: Does the directory already exist? To prevent accidental data loss this\n script, by default, does not write to an existing output directory.\n Specify a non-existing output directory or use the `--force`.\n"""'], {}), '(\n """HINT: Does the directory already exist? To prevent accidental data loss this\n script, by default, does not write to an existing output directory.\n Specify a non-existing output directory or use the `--force`.\n"""\n )\n', (1637, 1874), False, 'import sys\n'), ((2044, 2076), 'os.path.join', 'os.path.join', (['args.output', '"""log"""'], {}), "(args.output, 'log')\n", (2056, 2076), False, 'import os\n'), ((3288, 3322), 'tensorflow.initializers.global_variables', 'tf.initializers.global_variables', ([], {}), '()\n', (3320, 3322), True, 'import tensorflow as tf\n'), ((3924, 3958), 'traceback.print_exc', 'traceback.print_exc', ([], {'file': 'err_file'}), '(file=err_file)\n', (3943, 3958), False, 'import traceback\n'), ((4162, 4183), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (4181, 4183), True, 'import tensorflow as tf\n'), ((6877, 6883), 'time.time', 'time', ([], {}), '()\n', (6881, 6883), False, 'from time import time\n'), ((7398, 7419), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (7417, 7419), True, 'import tensorflow as tf\n'), ((7857, 7901), 'pprint.pformat', 'pprint.pformat', (['restored_variables'], {'indent': '(4)'}), '(restored_variables, indent=4)\n', (7871, 7901), False, 'import pprint\n'), ((7991, 8034), 'pprint.pformat', 'pprint.pformat', (['not_in_checkpoint'], {'indent': '(4)'}), '(not_in_checkpoint, indent=4)\n', (8005, 8034), False, 'import pprint\n'), ((8137, 8184), 'pprint.pformat', 'pprint.pformat', (['ignored_in_checkpoint'], {'indent': '(4)'}), '(ignored_in_checkpoint, indent=4)\n', (8151, 8184), False, 'import pprint\n'), ((2947, 2967), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (2965, 2967), False, 'import socket\n'), ((3860, 3892), 'os.path.join', 'os.path.join', (['args.output', '"""err"""'], {}), "(args.output, 'err')\n", (3872, 3892), False, 'import os\n'), ((8276, 8297), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (8295, 8297), True, 'import tensorflow as tf\n'), ((3051, 3074), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3072, 3074), False, 'import datetime\n'), ((3804, 3827), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3825, 3827), False, 'import datetime\n'), ((2801, 2854), 'subprocess.check_output', 'subprocess.check_output', (["['git', 'rev-parse', 'HEAD']"], {}), "(['git', 'rev-parse', 'HEAD'])\n", (2824, 2854), False, 'import subprocess\n')]
import argparse import json import numpy as np import os import torch from datetime import datetime from pathlib import Path from sklearn import metrics from evaluate import run_model from loader import load_data from model import TripleMRNet def train(rundir, task, backbone, epochs, learning_rate, use_gpu, abnormal_model_path=None): train_loader, valid_loader = load_data(task, use_gpu) model = TripleMRNet(backbone=backbone) for dirpath, dirnames, files in os.walk(args.rundir): if not files: break max_epoch = 0 model_path = None for fname in files: if fname.endswith(".json"): continue ep = int(fname[27:]) if ep >= max_epoch: max_epoch = ep model_path = os.path.join(dirpath, fname) if model_path: state_dict = torch.load(model_path, map_location=(None if use_gpu else 'cpu')) model.load_state_dict(state_dict) if use_gpu: model = model.cuda() optimizer = torch.optim.Adam(model.parameters(), learning_rate, weight_decay=.01) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5, factor=.3, threshold=1e-4) best_val_loss = float('inf') start_time = datetime.now() epoch = 0 if max_epoch: epoch += max_epoch while epoch < epochs: change = datetime.now() - start_time print('starting epoch {}. time passed: {}'.format(epoch+1, str(change))) train_loss, train_auc, _, _ = run_model( model, train_loader, train=True, optimizer=optimizer, abnormal_model_path=abnormal_model_path) print(f'train loss: {train_loss:0.4f}') print(f'train AUC: {train_auc:0.4f}') val_loss, val_auc, _, _ = run_model(model, valid_loader, abnormal_model_path=abnormal_model_path) print(f'valid loss: {val_loss:0.4f}') print(f'valid AUC: {val_auc:0.4f}') scheduler.step(val_loss) # save every epoch file_name = f'model_val{val_auc:0.4f}_train{train_auc:0.4f}_epoch{epoch+1}' save_path = Path(rundir) / file_name torch.save(model.state_dict(), save_path) if val_loss < best_val_loss: best_val_loss = val_loss file_name = f'val{val_auc:0.4f}_train{train_auc:0.4f}_epoch{epoch+1}' save_path = Path(rundir) / file_name torch.save(model.state_dict(), save_path) epoch += 1 def get_parser(): parser = argparse.ArgumentParser() parser.add_argument('--rundir', type=str, required=True) parser.add_argument('--task', type=str, required=True) parser.add_argument('--seed', default=42, type=int) parser.add_argument('--gpu', action='store_true') parser.add_argument('--learning_rate', default=1e-05, type=float) parser.add_argument('--weight_decay', default=0.01, type=float) parser.add_argument('--epochs', default=100, type=int) parser.add_argument('--max_patience', default=5, type=int) parser.add_argument('--factor', default=0.3, type=float) parser.add_argument('--backbone', default="alexnet", type=str) parser.add_argument('--abnormal_model', default=None, type=str) return parser if __name__ == '__main__': args = get_parser().parse_args() np.random.seed(args.seed) torch.manual_seed(args.seed) if args.gpu: torch.cuda.manual_seed_all(args.seed) # if args.task != "abnormal": # if args.abnormal_model is None: # raise ValueError("Enter abnormal model path for `acl` or `meniscus` task") os.makedirs(args.rundir, exist_ok=True) with open(Path(args.rundir) / 'args.json', 'w') as out: json.dump(vars(args), out, indent=4) train(args.rundir, args.task, args.backbone, args.epochs, args.learning_rate, args.gpu, abnormal_model_path=args.abnormal_model)
[ "evaluate.run_model" ]
[((380, 404), 'loader.load_data', 'load_data', (['task', 'use_gpu'], {}), '(task, use_gpu)\n', (389, 404), False, 'from loader import load_data\n'), ((422, 452), 'model.TripleMRNet', 'TripleMRNet', ([], {'backbone': 'backbone'}), '(backbone=backbone)\n', (433, 452), False, 'from model import TripleMRNet\n'), ((489, 509), 'os.walk', 'os.walk', (['args.rundir'], {}), '(args.rundir)\n', (496, 509), False, 'import os\n'), ((1164, 1264), 'torch.optim.lr_scheduler.ReduceLROnPlateau', 'torch.optim.lr_scheduler.ReduceLROnPlateau', (['optimizer'], {'patience': '(5)', 'factor': '(0.3)', 'threshold': '(0.0001)'}), '(optimizer, patience=5, factor=\n 0.3, threshold=0.0001)\n', (1206, 1264), False, 'import torch\n'), ((1309, 1323), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1321, 1323), False, 'from datetime import datetime\n'), ((2584, 2609), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2607, 2609), False, 'import argparse\n'), ((3388, 3413), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (3402, 3413), True, 'import numpy as np\n'), ((3418, 3446), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (3435, 3446), False, 'import torch\n'), ((3681, 3720), 'os.makedirs', 'os.makedirs', (['args.rundir'], {'exist_ok': '(True)'}), '(args.rundir, exist_ok=True)\n', (3692, 3720), False, 'import os\n'), ((1575, 1683), 'evaluate.run_model', 'run_model', (['model', 'train_loader'], {'train': '(True)', 'optimizer': 'optimizer', 'abnormal_model_path': 'abnormal_model_path'}), '(model, train_loader, train=True, optimizer=optimizer,\n abnormal_model_path=abnormal_model_path)\n', (1584, 1683), False, 'from evaluate import run_model\n'), ((1843, 1914), 'evaluate.run_model', 'run_model', (['model', 'valid_loader'], {'abnormal_model_path': 'abnormal_model_path'}), '(model, valid_loader, abnormal_model_path=abnormal_model_path)\n', (1852, 1914), False, 'from evaluate import run_model\n'), ((3472, 3509), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['args.seed'], {}), '(args.seed)\n', (3498, 3509), False, 'import torch\n'), ((903, 966), 'torch.load', 'torch.load', (['model_path'], {'map_location': "(None if use_gpu else 'cpu')"}), "(model_path, map_location=None if use_gpu else 'cpu')\n", (913, 966), False, 'import torch\n'), ((1419, 1433), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1431, 1433), False, 'from datetime import datetime\n'), ((2196, 2208), 'pathlib.Path', 'Path', (['rundir'], {}), '(rundir)\n', (2200, 2208), False, 'from pathlib import Path\n'), ((817, 845), 'os.path.join', 'os.path.join', (['dirpath', 'fname'], {}), '(dirpath, fname)\n', (829, 845), False, 'import os\n'), ((2453, 2465), 'pathlib.Path', 'Path', (['rundir'], {}), '(rundir)\n', (2457, 2465), False, 'from pathlib import Path\n'), ((3740, 3757), 'pathlib.Path', 'Path', (['args.rundir'], {}), '(args.rundir)\n', (3744, 3757), False, 'from pathlib import Path\n')]
"""Runner for flow/utils/leaderboard/evaluate.py/evaluate_policy.""" from solution import BENCHMARK, get_actions, get_states from evaluate import evaluate_policy # Evaluate the solution mean, stdev = evaluate_policy( benchmark=BENCHMARK, _get_actions=get_actions, _get_states=get_states) # Print results print(mean, stdev)
[ "evaluate.evaluate_policy" ]
[((202, 293), 'evaluate.evaluate_policy', 'evaluate_policy', ([], {'benchmark': 'BENCHMARK', '_get_actions': 'get_actions', '_get_states': 'get_states'}), '(benchmark=BENCHMARK, _get_actions=get_actions, _get_states=\n get_states)\n', (217, 293), False, 'from evaluate import evaluate_policy\n')]
from pathlib import Path import numpy as np import scipy from sklearn.base import TransformerMixin, BaseEstimator from sklearn.feature_extraction.text import TfidfTransformer from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from evaluate import evaluate from lda import logger from logistic_regression import LogisticRegressionVal from utils import loadClean, writeResults, preprocessClfParser INPUT_DIR = Path(r'../data/clean') class TruncatedSVD(BaseEstimator, TransformerMixin): def __init__(self, k): self.k = k self.U = None self.Sigma = None self.VT = None def fit(self, X_train): if scipy.sparse.issparse(X_train): X_train = X_train.toarray() if self.VT is None: self.U, self.Sigma, self.VT = np.linalg.svd(X_train) return self def transform(self, X_test): if scipy.sparse.issparse(X_test): X_test = X_test.toarray() proj = self.VT[:self.k, :] return (X_test @ proj.T) def LSI(train_size, random_state): subset = 'subset_%s' % train_size input_dir = INPUT_DIR / subset K = set((np.linspace(100, train_size - 1, 10) / 100).astype(int) * 100) X_train, X_test, y_train, y_test = loadClean(input_dir) X_train_sub, X_val, y_train_sub, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=random_state) tf_idf = TfidfTransformer() X_train_sub = tf_idf.fit_transform(X_train_sub) X_val = tf_idf.transform(X_val) scaler = StandardScaler() best_params = [] best_k, best_auc, best_acc = None, 0, 0 lsi = TruncatedSVD(k=0) lsi.fit(X_train_sub) for k in K: lsi.k = k print(k) X_train_ = scaler.fit_transform(lsi.transform(X_train_sub)) X_val_ = scaler.transform(lsi.transform(X_val)) clf_val = LogisticRegressionVal(X_train_, y_train_sub, X_val_, y_val, k, random_state=random_state) best_k, best_auc, best_acc, best_params = clf_val.tune(best_k, best_auc, best_acc, best_params) clf, file_name, header = clf_val.bestClassifier(best_params) lsi = TruncatedSVD(k=best_k) # Create a new one for the whole training set preprocess = make_pipeline(tf_idf, lsi, scaler) tr_time, tr_metrics, test_time, test_metrics = evaluate(preprocess, clf, X_train, y_train, X_test, y_test) writeResults(file_name, header, 'lsi', train_size, best_k, best_params, tr_time, tr_metrics, test_time, test_metrics) logger.info(("\tFor training size = %s, best column dimension k = %s " "best parameter grid: %s (train AUC: {:.3f}, train acc: {:.3f};" " test AUC: {:.3f}, test acc: {:.3f})"). format(tr_metrics[0], tr_metrics[1], test_metrics[0], test_metrics[1]) % (train_size, best_k, best_params)) if __name__ == '__main__': desc = ("Apply LSI as a preprocessing step, grid search for the best " "sub-dimension and hyperparameters.") parser = preprocessClfParser(desc) args = parser.parse_args() if args.all: for train_size in np.linspace(1250, 25000, 20): LSI(int(train_size), args.random_state) else: LSI(int(args.train_size), args.random_state)
[ "evaluate.evaluate" ]
[((505, 526), 'pathlib.Path', 'Path', (['"""../data/clean"""'], {}), "('../data/clean')\n", (509, 526), False, 'from pathlib import Path\n'), ((1334, 1354), 'utils.loadClean', 'loadClean', (['input_dir'], {}), '(input_dir)\n', (1343, 1354), False, 'from utils import loadClean, writeResults, preprocessClfParser\n'), ((1400, 1476), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X_train', 'y_train'], {'test_size': '(0.2)', 'random_state': 'random_state'}), '(X_train, y_train, test_size=0.2, random_state=random_state)\n', (1416, 1476), False, 'from sklearn.model_selection import train_test_split\n'), ((1615, 1633), 'sklearn.feature_extraction.text.TfidfTransformer', 'TfidfTransformer', ([], {}), '()\n', (1631, 1633), False, 'from sklearn.feature_extraction.text import TfidfTransformer\n'), ((1736, 1752), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1750, 1752), False, 'from sklearn.preprocessing import StandardScaler\n'), ((2527, 2561), 'sklearn.pipeline.make_pipeline', 'make_pipeline', (['tf_idf', 'lsi', 'scaler'], {}), '(tf_idf, lsi, scaler)\n', (2540, 2561), False, 'from sklearn.pipeline import make_pipeline\n'), ((2613, 2672), 'evaluate.evaluate', 'evaluate', (['preprocess', 'clf', 'X_train', 'y_train', 'X_test', 'y_test'], {}), '(preprocess, clf, X_train, y_train, X_test, y_test)\n', (2621, 2672), False, 'from evaluate import evaluate\n'), ((2798, 2919), 'utils.writeResults', 'writeResults', (['file_name', 'header', '"""lsi"""', 'train_size', 'best_k', 'best_params', 'tr_time', 'tr_metrics', 'test_time', 'test_metrics'], {}), "(file_name, header, 'lsi', train_size, best_k, best_params,\n tr_time, tr_metrics, test_time, test_metrics)\n", (2810, 2919), False, 'from utils import loadClean, writeResults, preprocessClfParser\n'), ((3496, 3521), 'utils.preprocessClfParser', 'preprocessClfParser', (['desc'], {}), '(desc)\n', (3515, 3521), False, 'from utils import loadClean, writeResults, preprocessClfParser\n'), ((741, 771), 'scipy.sparse.issparse', 'scipy.sparse.issparse', (['X_train'], {}), '(X_train)\n', (762, 771), False, 'import scipy\n'), ((971, 1000), 'scipy.sparse.issparse', 'scipy.sparse.issparse', (['X_test'], {}), '(X_test)\n', (992, 1000), False, 'import scipy\n'), ((2067, 2161), 'logistic_regression.LogisticRegressionVal', 'LogisticRegressionVal', (['X_train_', 'y_train_sub', 'X_val_', 'y_val', 'k'], {'random_state': 'random_state'}), '(X_train_, y_train_sub, X_val_, y_val, k, random_state\n =random_state)\n', (2088, 2161), False, 'from logistic_regression import LogisticRegressionVal\n'), ((3597, 3625), 'numpy.linspace', 'np.linspace', (['(1250)', '(25000)', '(20)'], {}), '(1250, 25000, 20)\n', (3608, 3625), True, 'import numpy as np\n'), ((883, 905), 'numpy.linalg.svd', 'np.linalg.svd', (['X_train'], {}), '(X_train)\n', (896, 905), True, 'import numpy as np\n'), ((1231, 1267), 'numpy.linspace', 'np.linspace', (['(100)', '(train_size - 1)', '(10)'], {}), '(100, train_size - 1, 10)\n', (1242, 1267), True, 'import numpy as np\n')]
import os import os.path as osp import argparse import numpy as np import json import time import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim import lr_scheduler import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.autograd import Variable from torch.utils.data import DataLoader from tqdm import tqdm from coco_loader import coco_loader from torchvision import models from convcap import convcap #from vggfeats import Vgg16Feats #from resnet101 import Resnet101Feats from resnet152 import Resnet152Feats from evaluate import language_eval def save_test_json(preds, resFile): print('Writing %d predictions' % (len(preds))) json.dump(preds, open(resFile, 'w')) def test(args, split, modelfn=None, model_convcap=None, model_imgcnn=None): """Runs test on split=val/test with checkpoint file modelfn or loaded model_*""" t_start = time.time() data = coco_loader(args.coco_root, split=split, ncap_per_img=1) print('[DEBUG] Loading %s data ... %f secs' % (split, time.time() - t_start)) data_loader = DataLoader(dataset=data, num_workers=args.nthreads,\ batch_size=args.batchsize, shuffle=False, drop_last=True) batchsize = args.batchsize max_tokens = data.max_tokens num_batches = np.int_(np.floor((len(data.ids)*1.)/batchsize)) print('[DEBUG] Running inference on %s with %d batches' % (split, num_batches)) if(modelfn is not None): #model_imgcnn = Vgg16Feats() #model_imgcnn = Resnet101Feats() model_imgcnn = Resnet152Feats() model_imgcnn.cuda() model_convcap = convcap(data.numwords, args.num_layers, is_attention=args.attention) model_convcap.cuda() print('[DEBUG] Loading checkpoint %s' % modelfn) checkpoint = torch.load(modelfn) model_convcap.load_state_dict(checkpoint['state_dict']) model_imgcnn.load_state_dict(checkpoint['img_state_dict']) else: model_imgcnn = model_imgcnn model_convcap = model_convcap model_imgcnn.train(False) model_convcap.train(False) pred_captions = [] #Test epoch for batch_idx, (imgs, _, _, _, img_ids) in \ tqdm(enumerate(data_loader), total=num_batches): imgs = imgs.view(batchsize, 3, 224, 224) imgs_v = Variable(imgs.cuda()) imgsfeats, imgsfc7 = model_imgcnn(imgs_v) _, featdim, feat_h, feat_w = imgsfeats.size() wordclass_feed = np.zeros((batchsize, max_tokens), dtype='int64') wordclass_feed[:,0] = data.wordlist.index('<S>') outcaps = np.empty((batchsize, 0)).tolist() for j in range(max_tokens-1): wordclass = Variable(torch.from_numpy(wordclass_feed)).cuda() wordact, _ = model_convcap(imgsfeats, imgsfc7, wordclass) wordact = wordact[:,:,:-1] wordact_t = wordact.permute(0, 2, 1).contiguous().view(batchsize*(max_tokens-1), -1) wordprobs = F.softmax(wordact_t).cpu().data.numpy() wordids = np.argmax(wordprobs, axis=1) for k in range(batchsize): word = data.wordlist[wordids[j+k*(max_tokens-1)]] outcaps[k].append(word) if(j < max_tokens-1): wordclass_feed[k, j+1] = wordids[j+k*(max_tokens-1)] for j in range(batchsize): num_words = len(outcaps[j]) if 'EOS' in outcaps[j]: num_words = outcaps[j].index('EOS') outcap = ' '.join(outcaps[j][:num_words]) pred_captions.append({'image_id': img_ids[j], 'caption': outcap}) scores = language_eval(pred_captions, args.model_dir, split) model_imgcnn.train(True) model_convcap.train(True) return scores
[ "evaluate.language_eval" ]
[((1018, 1029), 'time.time', 'time.time', ([], {}), '()\n', (1027, 1029), False, 'import time\n'), ((1039, 1095), 'coco_loader.coco_loader', 'coco_loader', (['args.coco_root'], {'split': 'split', 'ncap_per_img': '(1)'}), '(args.coco_root, split=split, ncap_per_img=1)\n', (1050, 1095), False, 'from coco_loader import coco_loader\n'), ((1193, 1307), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'data', 'num_workers': 'args.nthreads', 'batch_size': 'args.batchsize', 'shuffle': '(False)', 'drop_last': '(True)'}), '(dataset=data, num_workers=args.nthreads, batch_size=args.\n batchsize, shuffle=False, drop_last=True)\n', (1203, 1307), False, 'from torch.utils.data import DataLoader\n'), ((3517, 3568), 'evaluate.language_eval', 'language_eval', (['pred_captions', 'args.model_dir', 'split'], {}), '(pred_captions, args.model_dir, split)\n', (3530, 3568), False, 'from evaluate import language_eval\n'), ((1632, 1648), 'resnet152.Resnet152Feats', 'Resnet152Feats', ([], {}), '()\n', (1646, 1648), False, 'from resnet152 import Resnet152Feats\n'), ((1695, 1763), 'convcap.convcap', 'convcap', (['data.numwords', 'args.num_layers'], {'is_attention': 'args.attention'}), '(data.numwords, args.num_layers, is_attention=args.attention)\n', (1702, 1763), False, 'from convcap import convcap\n'), ((1860, 1879), 'torch.load', 'torch.load', (['modelfn'], {}), '(modelfn)\n', (1870, 1879), False, 'import torch\n'), ((2478, 2526), 'numpy.zeros', 'np.zeros', (['(batchsize, max_tokens)'], {'dtype': '"""int64"""'}), "((batchsize, max_tokens), dtype='int64')\n", (2486, 2526), True, 'import numpy as np\n'), ((2998, 3026), 'numpy.argmax', 'np.argmax', (['wordprobs'], {'axis': '(1)'}), '(wordprobs, axis=1)\n', (3007, 3026), True, 'import numpy as np\n'), ((2596, 2620), 'numpy.empty', 'np.empty', (['(batchsize, 0)'], {}), '((batchsize, 0))\n', (2604, 2620), True, 'import numpy as np\n'), ((1152, 1163), 'time.time', 'time.time', ([], {}), '()\n', (1161, 1163), False, 'import time\n'), ((2692, 2724), 'torch.from_numpy', 'torch.from_numpy', (['wordclass_feed'], {}), '(wordclass_feed)\n', (2708, 2724), False, 'import torch\n'), ((2942, 2962), 'torch.nn.functional.softmax', 'F.softmax', (['wordact_t'], {}), '(wordact_t)\n', (2951, 2962), True, 'import torch.nn.functional as F\n')]
import tensorflow as tf from train import train from evaluate import evaluate if __name__ == '__main__': # Parameters # Data loading parameters tf.app.flags.DEFINE_float("dev_sample_rate", .05, "Percentage of the training data to use for validation(default:0.05)") tf.app.flags.DEFINE_string("train_data_path", "../dataset/San_Francisco_Crime/train.csv.zip", "Data source for the train data.") # Model Hyperparameters tf.app.flags.DEFINE_float("learning_rate", 5e-3, "learning rate (default:0.001)") tf.app.flags.DEFINE_integer("embedding_size", 128, "Dimensionality of character embedding (default: 128)") tf.app.flags.DEFINE_list("filters_size_list", [3, 4, 5], "list type filter sizes (default: [3, 4, 5])") tf.app.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)") tf.app.flags.DEFINE_float("dropout_keep_prob", .5, "Dropout keep probability (default: 0.5)") tf.app.flags.DEFINE_integer("num_classes", 39, "number of classes (default: 39)") # Training schemes tf.app.flags.DEFINE_boolean("is_training", True, "if True , the mode is training, False is eval(default:True") tf.app.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)") tf.app.flags.DEFINE_integer("max_to_keep", 5, "tf.train.Saver(max_to_keep) (default:5)") tf.app.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)") # Misc Parameters tf.app.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") tf.app.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = tf.app.flags.FLAGS if FLAGS.is_training: train(FLAGS) elif not FLAGS.is_training: evaluate(FLAGS)
[ "evaluate.evaluate" ]
[((157, 282), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""dev_sample_rate"""', '(0.05)', '"""Percentage of the training data to use for validation(default:0.05)"""'], {}), "('dev_sample_rate', 0.05,\n 'Percentage of the training data to use for validation(default:0.05)')\n", (182, 282), True, 'import tensorflow as tf\n'), ((312, 448), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""train_data_path"""', '"""../dataset/San_Francisco_Crime/train.csv.zip"""', '"""Data source for the train data."""'], {}), "('train_data_path',\n '../dataset/San_Francisco_Crime/train.csv.zip',\n 'Data source for the train data.')\n", (338, 448), True, 'import tensorflow as tf\n'), ((536, 622), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""learning_rate"""', '(0.005)', '"""learning rate (default:0.001)"""'], {}), "('learning_rate', 0.005,\n 'learning rate (default:0.001)')\n", (561, 622), True, 'import tensorflow as tf\n'), ((652, 762), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""embedding_size"""', '(128)', '"""Dimensionality of character embedding (default: 128)"""'], {}), "('embedding_size', 128,\n 'Dimensionality of character embedding (default: 128)')\n", (679, 762), True, 'import tensorflow as tf\n'), ((795, 902), 'tensorflow.app.flags.DEFINE_list', 'tf.app.flags.DEFINE_list', (['"""filters_size_list"""', '[3, 4, 5]', '"""list type filter sizes (default: [3, 4, 5])"""'], {}), "('filters_size_list', [3, 4, 5],\n 'list type filter sizes (default: [3, 4, 5])')\n", (819, 902), True, 'import tensorflow as tf\n'), ((932, 1035), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_filters"""', '(128)', '"""Number of filters per filter size (default: 128)"""'], {}), "('num_filters', 128,\n 'Number of filters per filter size (default: 128)')\n", (959, 1035), True, 'import tensorflow as tf\n'), ((1068, 1166), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""dropout_keep_prob"""', '(0.5)', '"""Dropout keep probability (default: 0.5)"""'], {}), "('dropout_keep_prob', 0.5,\n 'Dropout keep probability (default: 0.5)')\n", (1093, 1166), True, 'import tensorflow as tf\n'), ((1196, 1281), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_classes"""', '(39)', '"""number of classes (default: 39)"""'], {}), "('num_classes', 39,\n 'number of classes (default: 39)')\n", (1223, 1281), True, 'import tensorflow as tf\n'), ((1338, 1452), 'tensorflow.app.flags.DEFINE_boolean', 'tf.app.flags.DEFINE_boolean', (['"""is_training"""', '(True)', '"""if True , the mode is training, False is eval(default:True"""'], {}), "('is_training', True,\n 'if True , the mode is training, False is eval(default:True')\n", (1365, 1452), True, 'import tensorflow as tf\n'), ((1486, 1559), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""batch_size"""', '(64)', '"""Batch Size (default: 64)"""'], {}), "('batch_size', 64, 'Batch Size (default: 64)')\n", (1513, 1559), True, 'import tensorflow as tf\n'), ((1597, 1687), 'tensorflow.flags.DEFINE_integer', 'tf.flags.DEFINE_integer', (['"""num_epochs"""', '(200)', '"""Number of training epochs (default: 200)"""'], {}), "('num_epochs', 200,\n 'Number of training epochs (default: 200)')\n", (1620, 1687), True, 'import tensorflow as tf\n'), ((1717, 1809), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""max_to_keep"""', '(5)', '"""tf.train.Saver(max_to_keep) (default:5)"""'], {}), "('max_to_keep', 5,\n 'tf.train.Saver(max_to_keep) (default:5)')\n", (1744, 1809), True, 'import tensorflow as tf\n'), ((1842, 1962), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""evaluate_every"""', '(100)', '"""Evaluate model on dev set after this many steps (default: 100)"""'], {}), "('evaluate_every', 100,\n 'Evaluate model on dev set after this many steps (default: 100)')\n", (1869, 1962), True, 'import tensorflow as tf\n'), ((2018, 2117), 'tensorflow.app.flags.DEFINE_boolean', 'tf.app.flags.DEFINE_boolean', (['"""allow_soft_placement"""', '(True)', '"""Allow device soft device placement"""'], {}), "('allow_soft_placement', True,\n 'Allow device soft device placement')\n", (2045, 2117), True, 'import tensorflow as tf\n'), ((2150, 2247), 'tensorflow.app.flags.DEFINE_boolean', 'tf.app.flags.DEFINE_boolean', (['"""log_device_placement"""', '(False)', '"""Log placement of ops on devices"""'], {}), "('log_device_placement', False,\n 'Log placement of ops on devices')\n", (2177, 2247), True, 'import tensorflow as tf\n'), ((2343, 2355), 'train.train', 'train', (['FLAGS'], {}), '(FLAGS)\n', (2348, 2355), False, 'from train import train\n'), ((2396, 2411), 'evaluate.evaluate', 'evaluate', (['FLAGS'], {}), '(FLAGS)\n', (2404, 2411), False, 'from evaluate import evaluate\n')]
''' @Author: dzy @Date: 2021-09-13 11:07:48 @LastEditTime: 2021-09-26 20:25:17 @LastEditors: dzy @Description: Helper functions or classes used for the model. @FilePath: /JDProductSummaryGeneration/src/train.py ''' import pickle import os import sys import pathlib import numpy as np from torch import optim from torch.utils.data import DataLoader import torch from torch.nn.utils import clip_grad_norm_ from tqdm import tqdm from tensorboardX import SummaryWriter abs_path = pathlib.Path(__file__).parent.absolute() sys.path.append(sys.path.append(abs_path)) from dataset import PairDataset from model import PGN import config from evaluate import evaluate from dataset import collate_fn, SampleDataset from utils import ScheduledSampler, config_info def train(dataset, val_dataset, vocab, start_epoch=0): """Train the model, evaluate it and store it. Args: dataset (dataset.PairDataset): The training dataset. val_dataset (dataset.PairDataset): The evaluation dataset. v (vocab.Vocab): The vocabulary built from the training dataset. start_epoch (int, optional): The starting epoch number. Defaults to 0. """ DEVICE = torch.device("cuda" if config.is_cuda else "cpu") model = PGN(vocab) model.load_model() model.to(DEVICE) if config.fine_tune: # fine-tuning模式时除了attention.wc的参数外 # 其他所有模型的参数都不更新梯度 print('Fine-tuning mode.') for name, params in model.named_parameters(): if name != 'attention.wc.weight': params.requires_grad=False print("loading data") train_data = SampleDataset(dataset.pairs, vocab) val_data = SampleDataset(val_dataset.pairs, vocab) print("initializing optimizer") # 使用Adam优化器 optimizer = optim.Adam(model.parameters(), lr=config.learning_rate, ) train_dataloader = DataLoader(dataset=train_data, batch_size=config.batch_size, shuffle=True, collate_fn=collate_fn) # 验证损失初始化为正无穷大 val_losses = np.inf # 如果之前有保存损失则加载 if (os.path.exists(config.losses_path)): with open(config.losses_path, 'rb') as f: val_losses = pickle.load(f) # SummaryWriter保存日志作为TensorboardX可视化 writer = SummaryWriter(config.log_path) # scheduled_sampler : A tool for choosing teacher_forcing or not num_epochs = len(range(start_epoch, config.epochs)) scheduled_sampler = ScheduledSampler(num_epochs) if config.scheduled_sampling: print('scheduled_sampling mode.') # 用tqdm显示训练进度 with tqdm(total=config.epochs) as epoch_progress: for epoch in range(start_epoch, config.epochs): # 设置为训练模式 model.train() # epoch中所有batch的损失 batch_losses = [] # train_dataloader中的batch数量 num_batches = len(train_dataloader) # set a teacher_forcing signal if config.scheduled_sampling: teacher_forcing = scheduled_sampler.teacher_forcing(epoch - start_epoch) else: teacher_forcing = True print('teacher_forcing = {}'.format(teacher_forcing)) with tqdm(total = num_batches // config.update_loss_batch) as batch_progress: for batch, data in enumerate(tqdm(train_dataloader)): x, y, x_len, y_len, oov, len_oovs = data assert not np.any(np.isnan(x.numpy())) # 在GPU上进行 if config.is_cuda: x = x.to(DEVICE) y = y.to(DEVICE) x_len = x_len.to(DEVICE) len_oovs = len_oovs.to(DEVICE) # 梯度清零 optimizer.zero_grad() # 输出模型损失 loss = model(x, x_len, y, len_oovs, batch=batch, num_batches=num_batches, teacher_forcing=teacher_forcing) # 添加到batch的损失列表 batch_losses.append(loss.item()) loss.backward() # 进行梯度裁剪防止梯度爆炸 clip_grad_norm_(model.encoder.parameters(), config.max_grad_norm) clip_grad_norm_(model.decoder.parameters(), config.max_grad_norm) clip_grad_norm_(model.attention.parameters(), config.max_grad_norm) # 更新参数 optimizer.step() # 每隔多少个batch更新loss显示 if (batch % config.update_loss_batch) == 0: batch_progress.set_description(f'Epoch {epoch}') batch_progress.set_postfix(Batch=batch, Loss=loss.item()) batch_progress.update() # Write loss for tensorboard. writer.add_scalar(f'Average loss for epoch {epoch}', np.mean(batch_losses), global_step=batch) # 计算每个epoch中所有batch的平均损失 epoch_loss = np.mean(batch_losses) epoch_progress.set_description(f'Epoch {epoch}') epoch_progress.set_postfix(Loss=epoch_loss) epoch_progress.update() # 用验证数据集进行验证,返回平均验证损失 avg_val_loss = evaluate(model, val_data, epoch) print('training loss:{}'.format(epoch_loss), 'validation loss:{}'.format(avg_val_loss)) # 更新并保存最小验证集损失 if (avg_val_loss < val_losses): # 保存验证损失小的模型 torch.save(model.encoder, config.encoder_save_name) torch.save(model.decoder, config.decoder_save_name) torch.save(model.attention, config.attention_save_name) torch.save(model.reduce_state, config.reduce_state_save_name) # 更新验证损失 val_losses = avg_val_loss # 保存验证集损失 with open(config.losses_path, 'wb') as f: pickle.dump(val_losses, f) writer.close() if __name__ == "__main__": DEVICE = torch.device('cuda') if config.is_cuda else torch.device('cpu') dataset = PairDataset(config.data_path, max_src_len=config.max_src_len, max_tgt_len=config.max_tgt_len, truncate_src=config.truncate_src, truncate_tgt=config.truncate_tgt) val_dataset = PairDataset(config.val_data_path, max_src_len=config.max_src_len, max_tgt_len=config.max_tgt_len, truncate_src=config.truncate_src, truncate_tgt=config.truncate_tgt) vocab = dataset.build_vocab(embed_file=config.embed_file) train(dataset, val_dataset, vocab, start_epoch=0)
[ "evaluate.evaluate" ]
[((536, 561), 'sys.path.append', 'sys.path.append', (['abs_path'], {}), '(abs_path)\n', (551, 561), False, 'import sys\n'), ((1173, 1222), 'torch.device', 'torch.device', (["('cuda' if config.is_cuda else 'cpu')"], {}), "('cuda' if config.is_cuda else 'cpu')\n", (1185, 1222), False, 'import torch\n'), ((1236, 1246), 'model.PGN', 'PGN', (['vocab'], {}), '(vocab)\n', (1239, 1246), False, 'from model import PGN\n'), ((1612, 1647), 'dataset.SampleDataset', 'SampleDataset', (['dataset.pairs', 'vocab'], {}), '(dataset.pairs, vocab)\n', (1625, 1647), False, 'from dataset import collate_fn, SampleDataset\n'), ((1663, 1702), 'dataset.SampleDataset', 'SampleDataset', (['val_dataset.pairs', 'vocab'], {}), '(val_dataset.pairs, vocab)\n', (1676, 1702), False, 'from dataset import collate_fn, SampleDataset\n'), ((1914, 2015), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'train_data', 'batch_size': 'config.batch_size', 'shuffle': '(True)', 'collate_fn': 'collate_fn'}), '(dataset=train_data, batch_size=config.batch_size, shuffle=True,\n collate_fn=collate_fn)\n', (1924, 2015), False, 'from torch.utils.data import DataLoader\n'), ((2186, 2220), 'os.path.exists', 'os.path.exists', (['config.losses_path'], {}), '(config.losses_path)\n', (2200, 2220), False, 'import os\n'), ((2368, 2398), 'tensorboardX.SummaryWriter', 'SummaryWriter', (['config.log_path'], {}), '(config.log_path)\n', (2381, 2398), False, 'from tensorboardX import SummaryWriter\n'), ((2550, 2578), 'utils.ScheduledSampler', 'ScheduledSampler', (['num_epochs'], {}), '(num_epochs)\n', (2566, 2578), False, 'from utils import ScheduledSampler, config_info\n'), ((6496, 6667), 'dataset.PairDataset', 'PairDataset', (['config.data_path'], {'max_src_len': 'config.max_src_len', 'max_tgt_len': 'config.max_tgt_len', 'truncate_src': 'config.truncate_src', 'truncate_tgt': 'config.truncate_tgt'}), '(config.data_path, max_src_len=config.max_src_len, max_tgt_len=\n config.max_tgt_len, truncate_src=config.truncate_src, truncate_tgt=\n config.truncate_tgt)\n', (6507, 6667), False, 'from dataset import PairDataset\n'), ((6781, 6954), 'dataset.PairDataset', 'PairDataset', (['config.val_data_path'], {'max_src_len': 'config.max_src_len', 'max_tgt_len': 'config.max_tgt_len', 'truncate_src': 'config.truncate_src', 'truncate_tgt': 'config.truncate_tgt'}), '(config.val_data_path, max_src_len=config.max_src_len,\n max_tgt_len=config.max_tgt_len, truncate_src=config.truncate_src,\n truncate_tgt=config.truncate_tgt)\n', (6792, 6954), False, 'from dataset import PairDataset\n'), ((2688, 2713), 'tqdm.tqdm', 'tqdm', ([], {'total': 'config.epochs'}), '(total=config.epochs)\n', (2692, 2713), False, 'from tqdm import tqdm\n'), ((6417, 6437), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (6429, 6437), False, 'import torch\n'), ((6461, 6480), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (6473, 6480), False, 'import torch\n'), ((479, 501), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (491, 501), False, 'import pathlib\n'), ((2298, 2312), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2309, 2312), False, 'import pickle\n'), ((5374, 5395), 'numpy.mean', 'np.mean', (['batch_losses'], {}), '(batch_losses)\n', (5381, 5395), True, 'import numpy as np\n'), ((5612, 5644), 'evaluate.evaluate', 'evaluate', (['model', 'val_data', 'epoch'], {}), '(model, val_data, epoch)\n', (5620, 5644), False, 'from evaluate import evaluate\n'), ((3320, 3371), 'tqdm.tqdm', 'tqdm', ([], {'total': '(num_batches // config.update_loss_batch)'}), '(total=num_batches // config.update_loss_batch)\n', (3324, 3371), False, 'from tqdm import tqdm\n'), ((5897, 5948), 'torch.save', 'torch.save', (['model.encoder', 'config.encoder_save_name'], {}), '(model.encoder, config.encoder_save_name)\n', (5907, 5948), False, 'import torch\n'), ((5965, 6016), 'torch.save', 'torch.save', (['model.decoder', 'config.decoder_save_name'], {}), '(model.decoder, config.decoder_save_name)\n', (5975, 6016), False, 'import torch\n'), ((6033, 6088), 'torch.save', 'torch.save', (['model.attention', 'config.attention_save_name'], {}), '(model.attention, config.attention_save_name)\n', (6043, 6088), False, 'import torch\n'), ((6105, 6166), 'torch.save', 'torch.save', (['model.reduce_state', 'config.reduce_state_save_name'], {}), '(model.reduce_state, config.reduce_state_save_name)\n', (6115, 6166), False, 'import torch\n'), ((6328, 6354), 'pickle.dump', 'pickle.dump', (['val_losses', 'f'], {}), '(val_losses, f)\n', (6339, 6354), False, 'import pickle\n'), ((3438, 3460), 'tqdm.tqdm', 'tqdm', (['train_dataloader'], {}), '(train_dataloader)\n', (3442, 3460), False, 'from tqdm import tqdm\n'), ((5227, 5248), 'numpy.mean', 'np.mean', (['batch_losses'], {}), '(batch_losses)\n', (5234, 5248), True, 'import numpy as np\n')]
import os import re import sys sys.path.append('.') import cv2 import math import time import scipy import argparse import matplotlib import numpy as np import pylab as plt import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from collections import OrderedDict from scipy.ndimage.morphology import generate_binary_structure from scipy.ndimage.filters import gaussian_filter, maximum_filter from lib.network.rtpose_vgg import get_model from lib.network import im_transform from lib.config import update_config, cfg from evaluate.coco_eval import get_outputs, handle_paf_and_heat from lib.utils.common import Human, BodyPart, CocoPart, CocoColors, CocoPairsRender, draw_humans from lib.utils.paf_to_pose import paf_to_pose_cpp def compare(pose1,pose2): diff = np.mean(abs(pose1-pose2)) return diff def homography(P,Q,R,S,b): A= np.zeros((8,8)) A[0,0:3]=P A[1,3:6]=P A[2,0:3]=Q A[3,3:6]=Q A[4,0:3]=R A[5,3:6]=R A[6,0:3]=S A[7,3:6]=S for j in range(0,4): A[2*j,6:8]= -b[2*j] * A[2*j,0:2] A[2*j+1,6:8]= -b[2*j+1] * A[2*j+1,3:5] #print(A) #Calculate the homography h= np.dot(np.linalg.inv(A),np.transpose(b)) H= np.zeros((3,3)) H[0,:]= h[0:3] H[1,:]= h[3:6] H[2,0:2]= h[6:9] H[2,2]=1 print(H) return H def map_figs(imgfill,img, paint, H): #map the points for col in range(0,imgfill.shape[1]): for row in range(0,imgfill.shape[0]): x= np.transpose(np.array([col,row,1])) if (imgfill[row,col,1]>0): Hinv = np.linalg.inv(H) xproj = np.dot(Hinv, x) xproj = xproj/xproj[2] rowint =int(xproj[1]) colint =int(xproj[0]) img[row,col,:]= paint[rowint,colint,:] return img def map_keypoints(keypoints, H=None): #map the points if H is not None: Hinv = np.linalg.inv(H) mapped_keypoints= np.zeros((17,2)) cnt=0 for i in keypoints.keys(): col= keypoints[i].x #x row= keypoints[i].y #y x= np.transpose(np.array([col,row,1])) if H is not None: xproj = np.dot(Hinv, x) xproj = xproj/xproj[2] rowint =int(xproj[1]) colint =int(xproj[0]) else: rowint = int(x[1]) colint = int(x[0]) if cnt<17: mapped_keypoints[cnt,0]= colint mapped_keypoints[cnt,1]= rowint cnt+=1 return mapped_keypoints parser = argparse.ArgumentParser() parser.add_argument('--cfg', help='experiment configure file name', default='./experiments/vgg19_368x368_sgd.yaml', type=str) parser.add_argument('--weight', type=str, default='pose_model.pth') parser.add_argument('opts', help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) args = parser.parse_args() # update config file update_config(cfg, args) model = get_model('vgg19') model.load_state_dict(torch.load(args.weight)) model.float() model.eval() if __name__ == "__main__": video_path = "/content/drive/MyDrive/pytorch_Realtime_Multi-Person_Pose_Estimation/student.mp4" video_capture = cv2.VideoCapture(video_path) frame_width = int(video_capture.get(3)) frame_height = int(video_capture.get(4)) out_video = cv2.VideoWriter('outpy.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 10, (frame_width,frame_height)) video_test_path = "/content/drive/MyDrive/pytorch_Realtime_Multi-Person_Pose_Estimation/teacher.mp4" video_capture2 = cv2.VideoCapture(video_test_path) frame_width_2 = int(video_capture2.get(3)) frame_height_2 = int(video_capture2.get(4)) count = 0 # print(cv2.CAP_PROP_FRAME_HEIGHT) while True: # Capture frame-by-frame # video_capture.set(cv2.CAP_PROP_POS_MSEC,(count * 10000)) count +=1 ret, oriImg = video_capture.read() ret2, oriImg2 = video_capture2.read() if ret == True and ret2 == True: shape_dst = np.min(oriImg.shape[0:2]) shape_dst_2 = np.min(oriImg2.shape[0:2]) if count % 50 == 0: with torch.no_grad(): paf, heatmap, imscale = get_outputs( oriImg, model, 'rtpose') paf2, heatmap2, imscale2 = get_outputs( oriImg2, model, 'rtpose') humans = paf_to_pose_cpp(heatmap, paf, cfg) humans2 = paf_to_pose_cpp(heatmap2, paf2, cfg) out = draw_humans(oriImg, humans) image_h, image_w = oriImg.shape[:2] bounding_boxes = [] bounding_boxes_2 = [] for human in humans: bounding_box = human.get_upper_body_box(image_w, image_h) # if bounding_box != None: bounding_boxes.append(bounding_box) for human in humans2: bounding_box = human.get_upper_body_box(image_w, image_h) # if bounding_boxes_2!= None: bounding_boxes_2.append(bounding_box) # for i in human.body_parts.keys(): # print (i, " : " , "x: ", human.body_parts[i].x, "y: ", human.body_parts[i].y) 0-17 if bounding_boxes == None or len(bounding_boxes) == 0: out_video.write(oriImg) continue pbox_x= bounding_boxes[0]["x"] pbox_y= bounding_boxes[0]["y"] pbox_w= bounding_boxes[0]["w"] pbox_h= bounding_boxes[0]["h"] P= np.array([max(0,pbox_x- pbox_w/2), max(0,pbox_y- pbox_h/2),1]) Q= np.array([min(image_w,pbox_x+ pbox_w/2), max(0,pbox_y- pbox_h/2),1]) R= np.array([max(0,pbox_x- pbox_w/2),min(image_h, pbox_y+pbox_h/2),1]) S= np.array([min(image_w,pbox_x+ pbox_w/2),min(image_h, pbox_y+pbox_h/2),1]) #Teacher's bbox location b= np.zeros((8)) tbox_x= bounding_boxes_2[0]["x"] tbox_y= bounding_boxes_2[0]["y"] tbox_w= bounding_boxes_2[0]["w"] tbox_h= bounding_boxes_2[0]["h"] b= np.array([max(0,tbox_x- tbox_w/2), max(0,tbox_y- tbox_h/2),min(image_w,tbox_x+ tbox_w/2), max(0,tbox_y- tbox_h/2),max(0,tbox_x- tbox_w/2),min(image_h, tbox_y+tbox_h/2),min(image_w,tbox_x+ tbox_w/2),min(image_h, tbox_y+tbox_h/2)]) H= homography(P,Q,R,S, b) mapped_keypoints1 = map_keypoints(humans[0].body_parts) mapped_keypoints2 = map_keypoints(humans[0].body_parts,H) score= compare(mapped_keypoints1, mapped_keypoints2) print('frame ', count, ', distance=',score) if score > 80: cv2.imwrite("student_l.png",oriImg) cv2.imwrite("teacher_l.png",oriImg2) if score < 10: cv2.imwrite("student_s.png",oriImg) cv2.imwrite("teacher_s.png",oriImg2) out_video.write(out) out_video.write(out) else: out_video.write(oriImg) # Display the resulting frame #cv2.imwrite('Video', out) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break # When everything is done, release the capture video_capture.release() cv2.destroyAllWindows()
[ "evaluate.coco_eval.get_outputs" ]
[((31, 51), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (46, 51), False, 'import sys\n'), ((2565, 2590), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2588, 2590), False, 'import argparse\n'), ((3055, 3079), 'lib.config.update_config', 'update_config', (['cfg', 'args'], {}), '(cfg, args)\n', (3068, 3079), False, 'from lib.config import update_config, cfg\n'), ((3092, 3110), 'lib.network.rtpose_vgg.get_model', 'get_model', (['"""vgg19"""'], {}), "('vgg19')\n", (3101, 3110), False, 'from lib.network.rtpose_vgg import get_model\n'), ((893, 909), 'numpy.zeros', 'np.zeros', (['(8, 8)'], {}), '((8, 8))\n', (901, 909), True, 'import numpy as np\n'), ((1250, 1266), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (1258, 1266), True, 'import numpy as np\n'), ((2003, 2020), 'numpy.zeros', 'np.zeros', (['(17, 2)'], {}), '((17, 2))\n', (2011, 2020), True, 'import numpy as np\n'), ((3138, 3161), 'torch.load', 'torch.load', (['args.weight'], {}), '(args.weight)\n', (3148, 3161), False, 'import torch\n'), ((3340, 3368), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video_path'], {}), '(video_path)\n', (3356, 3368), False, 'import cv2\n'), ((3703, 3736), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video_test_path'], {}), '(video_test_path)\n', (3719, 3736), False, 'import cv2\n'), ((7402, 7425), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (7423, 7425), False, 'import cv2\n'), ((1208, 1224), 'numpy.linalg.inv', 'np.linalg.inv', (['A'], {}), '(A)\n', (1221, 1224), True, 'import numpy as np\n'), ((1225, 1240), 'numpy.transpose', 'np.transpose', (['b'], {}), '(b)\n', (1237, 1240), True, 'import numpy as np\n'), ((1964, 1980), 'numpy.linalg.inv', 'np.linalg.inv', (['H'], {}), '(H)\n', (1977, 1980), True, 'import numpy as np\n'), ((3502, 3544), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (['"""M"""', '"""J"""', '"""P"""', '"""G"""'], {}), "('M', 'J', 'P', 'G')\n", (3524, 3544), False, 'import cv2\n'), ((2147, 2170), 'numpy.array', 'np.array', (['[col, row, 1]'], {}), '([col, row, 1])\n', (2155, 2170), True, 'import numpy as np\n'), ((2214, 2229), 'numpy.dot', 'np.dot', (['Hinv', 'x'], {}), '(Hinv, x)\n', (2220, 2229), True, 'import numpy as np\n'), ((4172, 4197), 'numpy.min', 'np.min', (['oriImg.shape[0:2]'], {}), '(oriImg.shape[0:2])\n', (4178, 4197), True, 'import numpy as np\n'), ((4222, 4248), 'numpy.min', 'np.min', (['oriImg2.shape[0:2]'], {}), '(oriImg2.shape[0:2])\n', (4228, 4248), True, 'import numpy as np\n'), ((1542, 1565), 'numpy.array', 'np.array', (['[col, row, 1]'], {}), '([col, row, 1])\n', (1550, 1565), True, 'import numpy as np\n'), ((1627, 1643), 'numpy.linalg.inv', 'np.linalg.inv', (['H'], {}), '(H)\n', (1640, 1643), True, 'import numpy as np\n'), ((1668, 1683), 'numpy.dot', 'np.dot', (['Hinv', 'x'], {}), '(Hinv, x)\n', (1674, 1683), True, 'import numpy as np\n'), ((4537, 4571), 'lib.utils.paf_to_pose.paf_to_pose_cpp', 'paf_to_pose_cpp', (['heatmap', 'paf', 'cfg'], {}), '(heatmap, paf, cfg)\n', (4552, 4571), False, 'from lib.utils.paf_to_pose import paf_to_pose_cpp\n'), ((4594, 4630), 'lib.utils.paf_to_pose.paf_to_pose_cpp', 'paf_to_pose_cpp', (['heatmap2', 'paf2', 'cfg'], {}), '(heatmap2, paf2, cfg)\n', (4609, 4630), False, 'from lib.utils.paf_to_pose import paf_to_pose_cpp\n'), ((4649, 4676), 'lib.utils.common.draw_humans', 'draw_humans', (['oriImg', 'humans'], {}), '(oriImg, humans)\n', (4660, 4676), False, 'from lib.utils.common import Human, BodyPart, CocoPart, CocoColors, CocoPairsRender, draw_humans\n'), ((6030, 6041), 'numpy.zeros', 'np.zeros', (['(8)'], {}), '(8)\n', (6038, 6041), True, 'import numpy as np\n'), ((4296, 4311), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4309, 4311), False, 'import torch\n'), ((4353, 4389), 'evaluate.coco_eval.get_outputs', 'get_outputs', (['oriImg', 'model', '"""rtpose"""'], {}), "(oriImg, model, 'rtpose')\n", (4364, 4389), False, 'from evaluate.coco_eval import get_outputs, handle_paf_and_heat\n'), ((4454, 4491), 'evaluate.coco_eval.get_outputs', 'get_outputs', (['oriImg2', 'model', '"""rtpose"""'], {}), "(oriImg2, model, 'rtpose')\n", (4465, 4491), False, 'from evaluate.coco_eval import get_outputs, handle_paf_and_heat\n'), ((6809, 6845), 'cv2.imwrite', 'cv2.imwrite', (['"""student_l.png"""', 'oriImg'], {}), "('student_l.png', oriImg)\n", (6820, 6845), False, 'import cv2\n'), ((6859, 6896), 'cv2.imwrite', 'cv2.imwrite', (['"""teacher_l.png"""', 'oriImg2'], {}), "('teacher_l.png', oriImg2)\n", (6870, 6896), False, 'import cv2\n'), ((6937, 6973), 'cv2.imwrite', 'cv2.imwrite', (['"""student_s.png"""', 'oriImg'], {}), "('student_s.png', oriImg)\n", (6948, 6973), False, 'import cv2\n'), ((6987, 7024), 'cv2.imwrite', 'cv2.imwrite', (['"""teacher_s.png"""', 'oriImg2'], {}), "('teacher_s.png', oriImg2)\n", (6998, 7024), False, 'import cv2\n'), ((7233, 7247), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (7244, 7247), False, 'import cv2\n')]
""" Model training and evaluation. The model is evaluated when (1) loss < 0.001 or (2) the number of epochs is reached. The best model is saved in the experiment folder. """ from evaluate import evaluate from time import time import utils as ut import numpy as np import csv import os #from tqdm import tqdm def train(model, optimizer, loss_fn, data_iter_tr): model.train() encoded_list = [] encoded_avg_list = [] loss_list = [] mrn_list = [] for idx, (list_mrn, list_batch_ehr, list_batch_prs) in enumerate(data_iter_tr): loss_batch = [] for batch, mrn in zip(zip(list_batch_ehr,list_batch_prs), list_mrn): # print(batch[0]) batch_ehr, batch_prs = batch[0], batch[1] batch_ehr = batch_ehr.cuda() batch_prs = batch_prs.cuda() #print('batch_ehr: ', batch_ehr) #print('batch_prs: ', batch_prs) optimizer.zero_grad() out_ehr, out_prs, encoded_vect = model(batch_ehr, batch_prs) loss_1 = loss_fn(out_ehr, batch_ehr) loss_2 = loss_fn(out_prs, batch_prs) loss = loss_1 + loss_2 loss.backward() optimizer.step() loss_batch.append(loss.item()) encoded_avg_list.append( np.mean(encoded_vect.tolist(), axis=0).tolist()) encoded_list.append(encoded_vect.tolist()) mrn_list.append(mrn) loss_list.append(np.mean(loss_batch)) # print progress bar if idx % 10 == 0: print('Training in progress: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'. format(idx * len(list_mrn), len(data_iter_tr.dataset), 100. * idx / len(data_iter_tr), loss)) loss_mean = np.mean(loss_list) return mrn_list, encoded_list, encoded_avg_list, loss_mean def train_and_evaluate(model, data_iter_tr, data_iter_ts, loss_fn, optimizer, metrics, exp_dir): loss_vect = [] n_epoch = ut.model_param['num_epochs'] for epoch in range(1, n_epoch + 1): print('Epoch {0} of {1}'.format(epoch, n_epoch)) start = time() mrn, encoded, encoded_avg, loss_mean = train( model, optimizer, loss_fn, data_iter_tr) print('-- time = ', round(time() - start, 3)) print('-- mean loss: {0}'.format(round(loss_mean, 3))) loss_vect.append(loss_mean) is_best_1 = loss_mean < 0.1 is_best_2 = epoch == n_epoch if is_best_1 or is_best_2: outfile = os.path.join(exp_dir, 'TRconvae-avg_vect.csv') with open(outfile, 'w') as f: wr = csv.writer(f) for m, e in zip(mrn, encoded_avg): wr.writerow([m] + list(e)) outfile = os.path.join(exp_dir, 'TRconvae_vect.csv') with open(outfile, 'w') as f: wr = csv.writer(f) for m, evs in zip(mrn, encoded): for e in evs: wr.writerow([m] + e) outfile = os.path.join(exp_dir, 'TRmetrics.txt') with open(outfile, 'w') as f: f.write('Mean Loss: %.3f\n' % loss_mean) outfile = os.path.join(exp_dir, 'TRlosses.csv') with open(outfile, 'w') as f: wr = csv.writer(f) wr.writerow(['Epoch', 'Loss']) for idx, l in enumerate(loss_vect): wr.writerow([idx, l]) print('\nFound new best model at epoch {0}'.format(epoch)) ut.save_best_model(epoch, model, optimizer, loss_mean, exp_dir) print('\nEvaluating the model') mrn, encoded, encoded_avg, test_metrics = evaluate( model, loss_fn, data_iter_ts, metrics, best_eval=True) return mrn, encoded, encoded_avg, test_metrics
[ "evaluate.evaluate" ]
[((1764, 1782), 'numpy.mean', 'np.mean', (['loss_list'], {}), '(loss_list)\n', (1771, 1782), True, 'import numpy as np\n'), ((2145, 2151), 'time.time', 'time', ([], {}), '()\n', (2149, 2151), False, 'from time import time\n'), ((1464, 1483), 'numpy.mean', 'np.mean', (['loss_batch'], {}), '(loss_batch)\n', (1471, 1483), True, 'import numpy as np\n'), ((2544, 2590), 'os.path.join', 'os.path.join', (['exp_dir', '"""TRconvae-avg_vect.csv"""'], {}), "(exp_dir, 'TRconvae-avg_vect.csv')\n", (2556, 2590), False, 'import os\n'), ((2789, 2831), 'os.path.join', 'os.path.join', (['exp_dir', '"""TRconvae_vect.csv"""'], {}), "(exp_dir, 'TRconvae_vect.csv')\n", (2801, 2831), False, 'import os\n'), ((3060, 3098), 'os.path.join', 'os.path.join', (['exp_dir', '"""TRmetrics.txt"""'], {}), "(exp_dir, 'TRmetrics.txt')\n", (3072, 3098), False, 'import os\n'), ((3221, 3258), 'os.path.join', 'os.path.join', (['exp_dir', '"""TRlosses.csv"""'], {}), "(exp_dir, 'TRlosses.csv')\n", (3233, 3258), False, 'import os\n'), ((3561, 3624), 'utils.save_best_model', 'ut.save_best_model', (['epoch', 'model', 'optimizer', 'loss_mean', 'exp_dir'], {}), '(epoch, model, optimizer, loss_mean, exp_dir)\n', (3579, 3624), True, 'import utils as ut\n'), ((3724, 3787), 'evaluate.evaluate', 'evaluate', (['model', 'loss_fn', 'data_iter_ts', 'metrics'], {'best_eval': '(True)'}), '(model, loss_fn, data_iter_ts, metrics, best_eval=True)\n', (3732, 3787), False, 'from evaluate import evaluate\n'), ((2654, 2667), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (2664, 2667), False, 'import csv\n'), ((2895, 2908), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (2905, 2908), False, 'import csv\n'), ((3322, 3335), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (3332, 3335), False, 'import csv\n'), ((2293, 2299), 'time.time', 'time', ([], {}), '()\n', (2297, 2299), False, 'from time import time\n')]
"""Train Neural Network Adapted from CS230 code examples for computer vision. Source: https://github.com/cs230-stanford/cs230-code-examples/tree/master/pytorch """ import argparse import logging import os import numpy as np import torch import torch.optim as optim from torch.autograd import Variable from tqdm import tqdm import deep_net_utils import model.data_loader as data_loader from evaluate import evaluate import loss_and_metrics import model.cnn as cnn import model.regular_neural_net as nn import model.cnnv2 as cnnv2 parser = argparse.ArgumentParser() parser.add_argument('--data_dir', default='data/example', help="Directory containing the dataset") parser.add_argument('--model_dir', default='experiments/example_trans_learning', help="Directory containing params.json") parser.add_argument('--net', default='resnet', help="The name of the neural network") parser.add_argument('--restore_file', default=None, help="Optional, name of the file in --model_dir containing weights to reload before \ training") # 'best' or 'train' def get_desired_model(args, params): if args.net == 'fcnn': return nn.Net(params).cuda() if params.cuda else nn.Net(params) return cnn.Net(args, params).cuda() if params.cuda else cnn.Net(args, params) def train(model, optimizer, loss_fn, dataloader, metrics, params): """Train the model on `num_steps` batches Args: model: (torch.nn.Module) the neural network optimizer: (torch.optim) optimizer for parameters of model loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch params: (Params) hyperparameters num_steps: (int) number of batches to train on, each of size params.batch_size """ # set model to training mode model.train() # summary for current training loop and a running average object for loss summ = [] loss_avg = deep_net_utils.RunningAverage() # Use tqdm for progress bar with tqdm(total=len(dataloader)) as t: for i, (train_batch, labels_batch) in enumerate(dataloader): # move to GPU if available if params.cuda: train_batch, labels_batch = train_batch.cuda( non_blocking=True), labels_batch.cuda(non_blocking=True) # convert to torch Variables train_batch, labels_batch = Variable( train_batch), Variable(labels_batch) # compute model output and loss output_batch = model(train_batch) loss = loss_fn(output_batch, labels_batch) # clear previous gradients, compute gradients of all variables wrt loss optimizer.zero_grad() loss.backward() # performs updates using calculated gradients optimizer.step() # Evaluate summaries only once in a while if i % params.save_summary_steps == 0: # extract data from torch Variable, move to cpu, convert to numpy arrays output_batch = output_batch.data.cpu().numpy() labels_batch = labels_batch.data.cpu().numpy() # compute all metrics on this batch summary_batch = {metric: metrics[metric](output_batch, labels_batch) for metric in metrics} summary_batch['loss'] = loss.item() summ.append(summary_batch) # update the average loss loss_avg.update(loss.item()) t.set_postfix(loss='{:05.3f}'.format(loss_avg())) t.update() # compute mean of all metrics in summary metrics_mean = {metric: np.mean([x[metric] for x in summ]) for metric in summ[0]} metrics_string = " ; ".join("{}: {:05.3f}".format(k, v) for k, v in metrics_mean.items()) logging.info("- Train metrics: " + metrics_string) def train_and_evaluate(model, train_dataloader, val_dataloader, optimizer, loss_fn, metrics, params, model_dir, restore_file=None): """Train the model and evaluate every epoch. Args: model: (torch.nn.Module) the neural network train_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data val_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches validation data optimizer: (torch.optim) optimizer for parameters of model loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch params: (Params) hyperparameters model_dir: (string) directory containing config, weights and log restore_file: (string) optional- name of file to restore from (without its extension .pth.tar) """ # reload weights from restore_file if specified if restore_file is not None: restore_path = os.path.join( args.model_dir, args.restore_file + '.pth.tar') logging.info("Restoring parameters from {}".format(restore_path)) deep_net_utils.load_checkpoint(restore_path, model, optimizer) best_val_macro_f1 = 0.0 for epoch in range(params.num_epochs): # Run one epoch logging.info("Epoch {}/{}".format(epoch + 1, params.num_epochs)) # compute number of batches in one epoch (one full pass over the training set) train(model, optimizer, loss_fn, train_dataloader, metrics, params) # Evaluate for one epoch on validation set val_metrics = evaluate(model, loss_fn, val_dataloader, metrics, params) val_macro_f1 = val_metrics['macro f1'] is_best = val_macro_f1 >= best_val_macro_f1 # Save weights deep_net_utils.save_checkpoint({'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optim_dict': optimizer.state_dict()}, is_best=is_best, checkpoint=model_dir) # If best_eval, best_save_path if is_best: logging.info("- Found new best macro f1") best_val_macro_f1 = val_macro_f1 # Save best val metrics in a json file in the model directory best_json_path = os.path.join( model_dir, "metrics_val_best_weights.json") deep_net_utils.save_dict_to_json(val_metrics, best_json_path) # Save latest val metrics in a json file in the model directory last_json_path = os.path.join( model_dir, "metrics_val_last_weights.json") deep_net_utils.save_dict_to_json(val_metrics, last_json_path) if __name__ == '__main__': # Load the parameters from json file args = parser.parse_args() json_path = os.path.join(args.model_dir, "params.json") assert os.path.isfile( json_path), "No json configuration file found at {}".format(json_path) params = deep_net_utils.Params(json_path) # use GPU if available params.cuda = torch.cuda.is_available() # Set the random seed for reproducible experiments torch.manual_seed(229) if params.cuda: torch.cuda.manual_seed(229) # Set the logger deep_net_utils.set_logger(os.path.join(args.model_dir, 'train.log')) # Create the input data pipeline logging.info("Loading the datasets...") # fetch dataloaders dataloaders = data_loader.fetch_dataloader( ['train', 'val'], args.data_dir, params) train_dl = dataloaders['train'] val_dl = dataloaders['val'] logging.info("- done.") # model selected is based on args.net #model = get_desired_model(args, params) #print(model) model = cnnv2.initialize_model(model_name=args.net, num_classes=3, feature_extract=False, use_pretrained=True) if params.cuda : model = model.cuda() print(model) optimizer = optim.Adam(model.parameters(), lr=params.learning_rate) # fetch loss function and metrics #loss_fn = loss_and_metrics.loss_fn #metrics = loss_and_metrics.metrics loss_fn = torch.nn.CrossEntropyLoss() metrics = cnnv2.metrics # Train the model logging.info("Starting training for {} epoch(s)".format(params.num_epochs)) train_and_evaluate(model, train_dl, val_dl, optimizer, loss_fn, metrics, params, args.model_dir, args.restore_file)
[ "evaluate.evaluate" ]
[((544, 569), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (567, 569), False, 'import argparse\n'), ((2222, 2253), 'deep_net_utils.RunningAverage', 'deep_net_utils.RunningAverage', ([], {}), '()\n', (2251, 2253), False, 'import deep_net_utils\n'), ((4205, 4255), 'logging.info', 'logging.info', (["('- Train metrics: ' + metrics_string)"], {}), "('- Train metrics: ' + metrics_string)\n", (4217, 4255), False, 'import logging\n'), ((7219, 7262), 'os.path.join', 'os.path.join', (['args.model_dir', '"""params.json"""'], {}), "(args.model_dir, 'params.json')\n", (7231, 7262), False, 'import os\n'), ((7274, 7299), 'os.path.isfile', 'os.path.isfile', (['json_path'], {}), '(json_path)\n', (7288, 7299), False, 'import os\n'), ((7382, 7414), 'deep_net_utils.Params', 'deep_net_utils.Params', (['json_path'], {}), '(json_path)\n', (7403, 7414), False, 'import deep_net_utils\n'), ((7461, 7486), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (7484, 7486), False, 'import torch\n'), ((7547, 7569), 'torch.manual_seed', 'torch.manual_seed', (['(229)'], {}), '(229)\n', (7564, 7569), False, 'import torch\n'), ((7763, 7802), 'logging.info', 'logging.info', (['"""Loading the datasets..."""'], {}), "('Loading the datasets...')\n", (7775, 7802), False, 'import logging\n'), ((7846, 7915), 'model.data_loader.fetch_dataloader', 'data_loader.fetch_dataloader', (["['train', 'val']", 'args.data_dir', 'params'], {}), "(['train', 'val'], args.data_dir, params)\n", (7874, 7915), True, 'import model.data_loader as data_loader\n'), ((7998, 8021), 'logging.info', 'logging.info', (['"""- done."""'], {}), "('- done.')\n", (8010, 8021), False, 'import logging\n'), ((8141, 8248), 'model.cnnv2.initialize_model', 'cnnv2.initialize_model', ([], {'model_name': 'args.net', 'num_classes': '(3)', 'feature_extract': '(False)', 'use_pretrained': '(True)'}), '(model_name=args.net, num_classes=3, feature_extract=\n False, use_pretrained=True)\n', (8163, 8248), True, 'import model.cnnv2 as cnnv2\n'), ((8509, 8536), 'torch.nn.CrossEntropyLoss', 'torch.nn.CrossEntropyLoss', ([], {}), '()\n', (8534, 8536), False, 'import torch\n'), ((1344, 1365), 'model.cnn.Net', 'cnn.Net', (['args', 'params'], {}), '(args, params)\n', (1351, 1365), True, 'import model.cnn as cnn\n'), ((3980, 4014), 'numpy.mean', 'np.mean', (['[x[metric] for x in summ]'], {}), '([x[metric] for x in summ])\n', (3987, 4014), True, 'import numpy as np\n'), ((5350, 5410), 'os.path.join', 'os.path.join', (['args.model_dir', "(args.restore_file + '.pth.tar')"], {}), "(args.model_dir, args.restore_file + '.pth.tar')\n", (5362, 5410), False, 'import os\n'), ((5506, 5568), 'deep_net_utils.load_checkpoint', 'deep_net_utils.load_checkpoint', (['restore_path', 'model', 'optimizer'], {}), '(restore_path, model, optimizer)\n', (5536, 5568), False, 'import deep_net_utils\n'), ((5977, 6034), 'evaluate.evaluate', 'evaluate', (['model', 'loss_fn', 'val_dataloader', 'metrics', 'params'], {}), '(model, loss_fn, val_dataloader, metrics, params)\n', (5985, 6034), False, 'from evaluate import evaluate\n'), ((6962, 7018), 'os.path.join', 'os.path.join', (['model_dir', '"""metrics_val_last_weights.json"""'], {}), "(model_dir, 'metrics_val_last_weights.json')\n", (6974, 7018), False, 'import os\n'), ((7040, 7101), 'deep_net_utils.save_dict_to_json', 'deep_net_utils.save_dict_to_json', (['val_metrics', 'last_json_path'], {}), '(val_metrics, last_json_path)\n', (7072, 7101), False, 'import deep_net_utils\n'), ((7598, 7625), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['(229)'], {}), '(229)\n', (7620, 7625), False, 'import torch\n'), ((7678, 7719), 'os.path.join', 'os.path.join', (['args.model_dir', '"""train.log"""'], {}), "(args.model_dir, 'train.log')\n", (7690, 7719), False, 'import os\n'), ((1269, 1283), 'model.regular_neural_net.Net', 'nn.Net', (['params'], {}), '(params)\n', (1275, 1283), True, 'import model.regular_neural_net as nn\n'), ((6525, 6566), 'logging.info', 'logging.info', (['"""- Found new best macro f1"""'], {}), "('- Found new best macro f1')\n", (6537, 6566), False, 'import logging\n'), ((6716, 6772), 'os.path.join', 'os.path.join', (['model_dir', '"""metrics_val_best_weights.json"""'], {}), "(model_dir, 'metrics_val_best_weights.json')\n", (6728, 6772), False, 'import os\n'), ((6802, 6863), 'deep_net_utils.save_dict_to_json', 'deep_net_utils.save_dict_to_json', (['val_metrics', 'best_json_path'], {}), '(val_metrics, best_json_path)\n', (6834, 6863), False, 'import deep_net_utils\n'), ((1295, 1316), 'model.cnn.Net', 'cnn.Net', (['args', 'params'], {}), '(args, params)\n', (1302, 1316), True, 'import model.cnn as cnn\n'), ((2686, 2707), 'torch.autograd.Variable', 'Variable', (['train_batch'], {}), '(train_batch)\n', (2694, 2707), False, 'from torch.autograd import Variable\n'), ((2726, 2748), 'torch.autograd.Variable', 'Variable', (['labels_batch'], {}), '(labels_batch)\n', (2734, 2748), False, 'from torch.autograd import Variable\n'), ((1227, 1241), 'model.regular_neural_net.Net', 'nn.Net', (['params'], {}), '(params)\n', (1233, 1241), True, 'import model.regular_neural_net as nn\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: penghuailiang # @Date : 2019-09-20 import utils import ops import logging import torch import align import cv2 import os import util.logit as log import numpy as np from dataset import FaceDataset from imitator import Imitator from extractor import Extractor from evaluate import Evaluate from parse import parser import torchvision.transforms as transforms def init_device(arguments): """ 检查配置和硬件是否支持gpu :param arguments: 配置 :return: 返回True 则支持gpu """ support_gpu = torch.cuda.is_available() log.info("neural face network use gpu: %s", support_gpu and arguments.use_gpu) if support_gpu and arguments.use_gpu: if not arguments.gpuid: arguments.gpuid = 0 dev = torch.device("cuda:%d" % arguments.gpuid) return True, dev else: dev = torch.device("cpu") return False, dev if __name__ == '__main__': """ 程序入口函数 """ args = parser.parse_args() log.init("FaceNeural", logging.INFO, log_path="./output/neural_log.txt") cuda, device = init_device(args) if args.phase == "train_imitator": log.info('imitator train mode') imitator = Imitator("neural imitator", args) if cuda: imitator.cuda() imitator.batch_train(cuda) elif args.phase == "train_extractor": log.info('feature extractor train mode') extractor = Extractor("neural extractor", args) if cuda: extractor.cuda() extractor.batch_train(cuda) elif args.phase == "inference_imitator": log.info("inference imitator") imitator = Imitator("neural imitator", args, clean=False) if cuda: imitator.cuda() imitator.load_checkpoint(args.imitator_model, True, cuda=cuda) elif args.phase == "prev_imitator": log.info("preview imitator") imitator = Imitator("neural imitator", args, clean=False) imitator.load_checkpoint(args.imitator_model, False, cuda=False) dataset = FaceDataset(args) name, param, img = dataset.get_picture() param = np.array(param, dtype=np.float32) b_param = param[np.newaxis, :] log.info(b_param.shape) t_param = torch.from_numpy(b_param) output = imitator(t_param) output = output.cpu().detach().numpy() output = np.squeeze(output, axis=0) output = output.swapaxes(0, 2) * 255 cv2.imwrite('./output/{0}.jpg'.format(name), output) elif args.phase == "inference_extractor": log.info("inference extractor") extractor = Extractor("neural extractor", args) if cuda: extractor.cuda() extractor.load_checkpoint("model_extractor_845000.pth", True, cuda) elif args.phase == "lightcnn": log.info("light cnn test") lightcnn_inst = utils.load_lightcnn(args.lightcnn, cuda) transform = transforms.Compose([transforms.ToTensor()]) im1 = cv2.imread('../export/star/a-rb1.jpg', cv2.IMREAD_GRAYSCALE) im2 = cv2.imread('../export/star/a-lyf.jpg', cv2.IMREAD_GRAYSCALE) im1 = cv2.resize(im1, dsize=(128, 128), interpolation=cv2.INTER_LINEAR) im2 = cv2.resize(im2, dsize=(128, 128), interpolation=cv2.INTER_LINEAR) im1 = np.reshape(im1, (128, 128, 1)) im2 = np.reshape(im2, (128, 128, 1)) img = transform(im1).view(1, 1, 128, 128) img2 = transform(im2).view(1, 1, 128, 128) features = utils.discriminative_loss(img, img2, lightcnn_inst) log.info("loss feature:{0}".format(features)) elif args.phase == "faceparsing": log.info("faceparsing") im = utils.evalute_face("./output/face/db_0000_3.jpg", args.parsing_checkpoint, cuda) cv2.imwrite("./output/eval.jpg", im) elif args.phase == "align": path = '../export/star' for file in os.listdir(path): p = os.path.join(path, file) log.info(p) p2 = os.path.join(path, "a_" + file) al = align.face_features(p, p2) ev = utils.faceparsing_ndarray(al, args.parsing_checkpoint, cuda=cuda) elif args.phase == "dataset": dataset = FaceDataset(args, "test") dataset.pre_process(cuda) elif args.phase == "preview": log.info("preview picture") path = "../export/regular/model.jpg" img = cv2.imread(path) img2 = utils.faceparsing_ndarray(img, args.parsing_checkpoint, cuda) img3 = utils.img_edge(img2) img3_ = ops.fill_gray(img3) img4 = align.face_features(path) log.info("{0} {1} {2} {3}".format(img.shape, img2.shape, img3_.shape, img4.shape)) ops.merge_4image(img, img2, img3_, img4, show=True) elif args.phase == "evaluate": log.info("evaluation mode start") evl = Evaluate(args, cuda=cuda) img = cv2.imread(args.eval_image).astype(np.float32) x_ = evl.itr_train(img) evl.output(x_, img) else: log.error("not known phase %s", args.phase)
[ "evaluate.Evaluate" ]
[((552, 577), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (575, 577), False, 'import torch\n'), ((582, 660), 'util.logit.info', 'log.info', (['"""neural face network use gpu: %s"""', '(support_gpu and arguments.use_gpu)'], {}), "('neural face network use gpu: %s', support_gpu and arguments.use_gpu)\n", (590, 660), True, 'import util.logit as log\n'), ((985, 1004), 'parse.parser.parse_args', 'parser.parse_args', ([], {}), '()\n', (1002, 1004), False, 'from parse import parser\n'), ((1009, 1081), 'util.logit.init', 'log.init', (['"""FaceNeural"""', 'logging.INFO'], {'log_path': '"""./output/neural_log.txt"""'}), "('FaceNeural', logging.INFO, log_path='./output/neural_log.txt')\n", (1017, 1081), True, 'import util.logit as log\n'), ((781, 822), 'torch.device', 'torch.device', (["('cuda:%d' % arguments.gpuid)"], {}), "('cuda:%d' % arguments.gpuid)\n", (793, 822), False, 'import torch\n'), ((872, 891), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (884, 891), False, 'import torch\n'), ((1167, 1198), 'util.logit.info', 'log.info', (['"""imitator train mode"""'], {}), "('imitator train mode')\n", (1175, 1198), True, 'import util.logit as log\n'), ((1218, 1251), 'imitator.Imitator', 'Imitator', (['"""neural imitator"""', 'args'], {}), "('neural imitator', args)\n", (1226, 1251), False, 'from imitator import Imitator\n'), ((1382, 1422), 'util.logit.info', 'log.info', (['"""feature extractor train mode"""'], {}), "('feature extractor train mode')\n", (1390, 1422), True, 'import util.logit as log\n'), ((1443, 1478), 'extractor.Extractor', 'Extractor', (['"""neural extractor"""', 'args'], {}), "('neural extractor', args)\n", (1452, 1478), False, 'from extractor import Extractor\n'), ((1614, 1644), 'util.logit.info', 'log.info', (['"""inference imitator"""'], {}), "('inference imitator')\n", (1622, 1644), True, 'import util.logit as log\n'), ((1664, 1710), 'imitator.Imitator', 'Imitator', (['"""neural imitator"""', 'args'], {'clean': '(False)'}), "('neural imitator', args, clean=False)\n", (1672, 1710), False, 'from imitator import Imitator\n'), ((1875, 1903), 'util.logit.info', 'log.info', (['"""preview imitator"""'], {}), "('preview imitator')\n", (1883, 1903), True, 'import util.logit as log\n'), ((1923, 1969), 'imitator.Imitator', 'Imitator', (['"""neural imitator"""', 'args'], {'clean': '(False)'}), "('neural imitator', args, clean=False)\n", (1931, 1969), False, 'from imitator import Imitator\n'), ((2061, 2078), 'dataset.FaceDataset', 'FaceDataset', (['args'], {}), '(args)\n', (2072, 2078), False, 'from dataset import FaceDataset\n'), ((2144, 2177), 'numpy.array', 'np.array', (['param'], {'dtype': 'np.float32'}), '(param, dtype=np.float32)\n', (2152, 2177), True, 'import numpy as np\n'), ((2225, 2248), 'util.logit.info', 'log.info', (['b_param.shape'], {}), '(b_param.shape)\n', (2233, 2248), True, 'import util.logit as log\n'), ((2267, 2292), 'torch.from_numpy', 'torch.from_numpy', (['b_param'], {}), '(b_param)\n', (2283, 2292), False, 'import torch\n'), ((2392, 2418), 'numpy.squeeze', 'np.squeeze', (['output'], {'axis': '(0)'}), '(output, axis=0)\n', (2402, 2418), True, 'import numpy as np\n'), ((2579, 2610), 'util.logit.info', 'log.info', (['"""inference extractor"""'], {}), "('inference extractor')\n", (2587, 2610), True, 'import util.logit as log\n'), ((2631, 2666), 'extractor.Extractor', 'Extractor', (['"""neural extractor"""', 'args'], {}), "('neural extractor', args)\n", (2640, 2666), False, 'from extractor import Extractor\n'), ((2832, 2858), 'util.logit.info', 'log.info', (['"""light cnn test"""'], {}), "('light cnn test')\n", (2840, 2858), True, 'import util.logit as log\n'), ((2883, 2923), 'utils.load_lightcnn', 'utils.load_lightcnn', (['args.lightcnn', 'cuda'], {}), '(args.lightcnn, cuda)\n', (2902, 2923), False, 'import utils\n'), ((3002, 3062), 'cv2.imread', 'cv2.imread', (['"""../export/star/a-rb1.jpg"""', 'cv2.IMREAD_GRAYSCALE'], {}), "('../export/star/a-rb1.jpg', cv2.IMREAD_GRAYSCALE)\n", (3012, 3062), False, 'import cv2\n'), ((3077, 3137), 'cv2.imread', 'cv2.imread', (['"""../export/star/a-lyf.jpg"""', 'cv2.IMREAD_GRAYSCALE'], {}), "('../export/star/a-lyf.jpg', cv2.IMREAD_GRAYSCALE)\n", (3087, 3137), False, 'import cv2\n'), ((3152, 3217), 'cv2.resize', 'cv2.resize', (['im1'], {'dsize': '(128, 128)', 'interpolation': 'cv2.INTER_LINEAR'}), '(im1, dsize=(128, 128), interpolation=cv2.INTER_LINEAR)\n', (3162, 3217), False, 'import cv2\n'), ((3232, 3297), 'cv2.resize', 'cv2.resize', (['im2'], {'dsize': '(128, 128)', 'interpolation': 'cv2.INTER_LINEAR'}), '(im2, dsize=(128, 128), interpolation=cv2.INTER_LINEAR)\n', (3242, 3297), False, 'import cv2\n'), ((3312, 3342), 'numpy.reshape', 'np.reshape', (['im1', '(128, 128, 1)'], {}), '(im1, (128, 128, 1))\n', (3322, 3342), True, 'import numpy as np\n'), ((3357, 3387), 'numpy.reshape', 'np.reshape', (['im2', '(128, 128, 1)'], {}), '(im2, (128, 128, 1))\n', (3367, 3387), True, 'import numpy as np\n'), ((3508, 3559), 'utils.discriminative_loss', 'utils.discriminative_loss', (['img', 'img2', 'lightcnn_inst'], {}), '(img, img2, lightcnn_inst)\n', (3533, 3559), False, 'import utils\n'), ((3660, 3683), 'util.logit.info', 'log.info', (['"""faceparsing"""'], {}), "('faceparsing')\n", (3668, 3683), True, 'import util.logit as log\n'), ((3697, 3782), 'utils.evalute_face', 'utils.evalute_face', (['"""./output/face/db_0000_3.jpg"""', 'args.parsing_checkpoint', 'cuda'], {}), "('./output/face/db_0000_3.jpg', args.parsing_checkpoint, cuda\n )\n", (3715, 3782), False, 'import utils\n'), ((3786, 3822), 'cv2.imwrite', 'cv2.imwrite', (['"""./output/eval.jpg"""', 'im'], {}), "('./output/eval.jpg', im)\n", (3797, 3822), False, 'import cv2\n'), ((2964, 2985), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2983, 2985), True, 'import torchvision.transforms as transforms\n'), ((3907, 3923), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (3917, 3923), False, 'import os\n'), ((3941, 3965), 'os.path.join', 'os.path.join', (['path', 'file'], {}), '(path, file)\n', (3953, 3965), False, 'import os\n'), ((3978, 3989), 'util.logit.info', 'log.info', (['p'], {}), '(p)\n', (3986, 3989), True, 'import util.logit as log\n'), ((4007, 4038), 'os.path.join', 'os.path.join', (['path', "('a_' + file)"], {}), "(path, 'a_' + file)\n", (4019, 4038), False, 'import os\n'), ((4056, 4082), 'align.face_features', 'align.face_features', (['p', 'p2'], {}), '(p, p2)\n', (4075, 4082), False, 'import align\n'), ((4100, 4165), 'utils.faceparsing_ndarray', 'utils.faceparsing_ndarray', (['al', 'args.parsing_checkpoint'], {'cuda': 'cuda'}), '(al, args.parsing_checkpoint, cuda=cuda)\n', (4125, 4165), False, 'import utils\n'), ((4218, 4243), 'dataset.FaceDataset', 'FaceDataset', (['args', '"""test"""'], {}), "(args, 'test')\n", (4229, 4243), False, 'from dataset import FaceDataset\n'), ((4320, 4347), 'util.logit.info', 'log.info', (['"""preview picture"""'], {}), "('preview picture')\n", (4328, 4347), True, 'import util.logit as log\n'), ((4407, 4423), 'cv2.imread', 'cv2.imread', (['path'], {}), '(path)\n', (4417, 4423), False, 'import cv2\n'), ((4439, 4500), 'utils.faceparsing_ndarray', 'utils.faceparsing_ndarray', (['img', 'args.parsing_checkpoint', 'cuda'], {}), '(img, args.parsing_checkpoint, cuda)\n', (4464, 4500), False, 'import utils\n'), ((4516, 4536), 'utils.img_edge', 'utils.img_edge', (['img2'], {}), '(img2)\n', (4530, 4536), False, 'import utils\n'), ((4553, 4572), 'ops.fill_gray', 'ops.fill_gray', (['img3'], {}), '(img3)\n', (4566, 4572), False, 'import ops\n'), ((4588, 4613), 'align.face_features', 'align.face_features', (['path'], {}), '(path)\n', (4607, 4613), False, 'import align\n'), ((4713, 4764), 'ops.merge_4image', 'ops.merge_4image', (['img', 'img2', 'img3_', 'img4'], {'show': '(True)'}), '(img, img2, img3_, img4, show=True)\n', (4729, 4764), False, 'import ops\n'), ((4808, 4841), 'util.logit.info', 'log.info', (['"""evaluation mode start"""'], {}), "('evaluation mode start')\n", (4816, 4841), True, 'import util.logit as log\n'), ((4856, 4881), 'evaluate.Evaluate', 'Evaluate', (['args'], {'cuda': 'cuda'}), '(args, cuda=cuda)\n', (4864, 4881), False, 'from evaluate import Evaluate\n'), ((5021, 5064), 'util.logit.error', 'log.error', (['"""not known phase %s"""', 'args.phase'], {}), "('not known phase %s', args.phase)\n", (5030, 5064), True, 'import util.logit as log\n'), ((4896, 4923), 'cv2.imread', 'cv2.imread', (['args.eval_image'], {}), '(args.eval_image)\n', (4906, 4923), False, 'import cv2\n')]
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("../") import os import argparse import warnings from functools import partial import paddle import paddle.nn.functional as F from paddlenlp.metrics.glue import AccuracyAndF1 from paddlenlp.datasets import load_dataset from paddlenlp.data import Pad, Stack, Tuple from paddlenlp.transformers import PPMiniLMForSequenceClassification, PPMiniLMTokenizer, LinearDecayWithWarmup from evaluate import evaluate from utils import set_seed from data import read, load_dict, convert_example_to_feature warnings.filterwarnings("ignore") def train(): # set running envir paddle.set_device(args.device) set_seed(args.seed) if not os.path.exists(args.checkpoints): os.mkdir(args.checkpoints) # load and process data label2id, id2label = load_dict(args.label_path) train_ds = load_dataset(read, data_path=args.train_path, lazy=False) dev_ds = load_dataset(read, data_path=args.dev_path, lazy=False) tokenizer = PPMiniLMTokenizer.from_pretrained(args.base_model_name) trans_func = partial(convert_example_to_feature, tokenizer=tokenizer, label2id=label2id, max_seq_len=args.max_seq_len) train_ds = train_ds.map(trans_func, lazy=False) dev_ds = dev_ds.map(trans_func, lazy=False) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), Stack(dtype="int64"), Stack(dtype="int64")): fn(samples) train_batch_sampler = paddle.io.BatchSampler(train_ds, batch_size=args.batch_size, shuffle=True) dev_batch_sampler = paddle.io.BatchSampler(dev_ds, batch_size=args.batch_size, shuffle=False) train_loader = paddle.io.DataLoader(train_ds, batch_sampler=train_batch_sampler, collate_fn=batchify_fn) dev_loader = paddle.io.DataLoader(dev_ds, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn) # configure model training model = PPMiniLMForSequenceClassification.from_pretrained( args.base_model_name, num_classes=len(label2id)) num_training_steps = len(train_loader) * args.num_epochs lr_scheduler = LinearDecayWithWarmup(learning_rate=args.learning_rate, total_steps=num_training_steps, warmup=args.warmup_proportion) decay_params = [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ] grad_clip = paddle.nn.ClipGradByGlobalNorm(args.max_grad_norm) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in decay_params, grad_clip=grad_clip) metric = AccuracyAndF1() # start to train model global_step, best_f1 = 1, 0. model.train() for epoch in range(1, args.num_epochs + 1): for batch_data in train_loader(): input_ids, token_type_ids, _, labels = batch_data # logits: batch_size, seql_len, num_tags logits = model(input_ids, token_type_ids=token_type_ids) loss = F.cross_entropy(logits, labels) loss.backward() lr_scheduler.step() optimizer.step() optimizer.clear_grad() if global_step > 0 and global_step % args.log_steps == 0: print( f"epoch: {epoch} - global_step: {global_step}/{num_training_steps} - loss:{loss.numpy().item():.6f}" ) if (global_step > 0 and global_step % args.eval_steps == 0) or global_step == num_training_steps: accuracy, precision, recall, f1 = evaluate( model, dev_loader, metric) model.train() if f1 > best_f1: print( f"best F1 performence has been updated: {best_f1:.5f} --> {f1:.5f}" ) best_f1 = f1 paddle.save(model.state_dict(), f"{args.checkpoints}/best.pdparams") print( f'evalution result: accuracy:{accuracy:.5f} precision: {precision:.5f}, recall: {recall:.5f}, F1: {f1:.5f}' ) global_step += 1 paddle.save(model.state_dict(), f"{args.checkpoints}/final.pdparams") if __name__ == "__main__": # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--base_model_name", type=str, default=None, help="The name of base model.") parser.add_argument("--train_path", type=str, default=None, help="The path of train set.") parser.add_argument("--dev_path", type=str, default=None, help="The path of dev set.") parser.add_argument("--label_path", type=str, default=None, help="The path of label dict.") parser.add_argument("--num_epochs", type=int, default=3, help="Number of epoches for fine-tuning.") parser.add_argument("--batch_size", type=int, default=32, help="Batch size per GPU/CPU for training.") parser.add_argument("--max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization.") parser.add_argument("--learning_rate", type=float, default=5e-5, help="The initial learning rate for optimizer.") parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay rate for L2 regularizer.") parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max grad norm to clip gradient.") parser.add_argument("--warmup_proportion", type=float, default=0.1, help="Warmup proportion params for warmup strategy") parser.add_argument("--log_steps", type=int, default=50, help="Frequency of printing log.") parser.add_argument("--eval_steps", type=int, default=500, help="Frequency of performing evaluation.") parser.add_argument("--seed", type=int, default=1000, help="Random seed for initialization.") parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.") parser.add_argument("--checkpoints", type=str, default=None, help="Directory to save checkpoint.") args = parser.parse_args() # yapf: enable train()
[ "evaluate.evaluate" ]
[((623, 645), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (638, 645), False, 'import sys\n'), ((1134, 1167), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1157, 1167), False, 'import warnings\n'), ((1211, 1241), 'paddle.set_device', 'paddle.set_device', (['args.device'], {}), '(args.device)\n', (1228, 1241), False, 'import paddle\n'), ((1246, 1265), 'utils.set_seed', 'set_seed', (['args.seed'], {}), '(args.seed)\n', (1254, 1265), False, 'from utils import set_seed\n'), ((1401, 1427), 'data.load_dict', 'load_dict', (['args.label_path'], {}), '(args.label_path)\n', (1410, 1427), False, 'from data import read, load_dict, convert_example_to_feature\n'), ((1443, 1500), 'paddlenlp.datasets.load_dataset', 'load_dataset', (['read'], {'data_path': 'args.train_path', 'lazy': '(False)'}), '(read, data_path=args.train_path, lazy=False)\n', (1455, 1500), False, 'from paddlenlp.datasets import load_dataset\n'), ((1514, 1569), 'paddlenlp.datasets.load_dataset', 'load_dataset', (['read'], {'data_path': 'args.dev_path', 'lazy': '(False)'}), '(read, data_path=args.dev_path, lazy=False)\n', (1526, 1569), False, 'from paddlenlp.datasets import load_dataset\n'), ((1587, 1642), 'paddlenlp.transformers.PPMiniLMTokenizer.from_pretrained', 'PPMiniLMTokenizer.from_pretrained', (['args.base_model_name'], {}), '(args.base_model_name)\n', (1620, 1642), False, 'from paddlenlp.transformers import PPMiniLMForSequenceClassification, PPMiniLMTokenizer, LinearDecayWithWarmup\n'), ((1660, 1769), 'functools.partial', 'partial', (['convert_example_to_feature'], {'tokenizer': 'tokenizer', 'label2id': 'label2id', 'max_seq_len': 'args.max_seq_len'}), '(convert_example_to_feature, tokenizer=tokenizer, label2id=label2id,\n max_seq_len=args.max_seq_len)\n', (1667, 1769), False, 'from functools import partial\n'), ((2219, 2293), 'paddle.io.BatchSampler', 'paddle.io.BatchSampler', (['train_ds'], {'batch_size': 'args.batch_size', 'shuffle': '(True)'}), '(train_ds, batch_size=args.batch_size, shuffle=True)\n', (2241, 2293), False, 'import paddle\n'), ((2416, 2489), 'paddle.io.BatchSampler', 'paddle.io.BatchSampler', (['dev_ds'], {'batch_size': 'args.batch_size', 'shuffle': '(False)'}), '(dev_ds, batch_size=args.batch_size, shuffle=False)\n', (2438, 2489), False, 'import paddle\n'), ((2603, 2696), 'paddle.io.DataLoader', 'paddle.io.DataLoader', (['train_ds'], {'batch_sampler': 'train_batch_sampler', 'collate_fn': 'batchify_fn'}), '(train_ds, batch_sampler=train_batch_sampler,\n collate_fn=batchify_fn)\n', (2623, 2696), False, 'import paddle\n'), ((2790, 2880), 'paddle.io.DataLoader', 'paddle.io.DataLoader', (['dev_ds'], {'batch_sampler': 'dev_batch_sampler', 'collate_fn': 'batchify_fn'}), '(dev_ds, batch_sampler=dev_batch_sampler, collate_fn=\n batchify_fn)\n', (2810, 2880), False, 'import paddle\n'), ((3185, 3308), 'paddlenlp.transformers.LinearDecayWithWarmup', 'LinearDecayWithWarmup', ([], {'learning_rate': 'args.learning_rate', 'total_steps': 'num_training_steps', 'warmup': 'args.warmup_proportion'}), '(learning_rate=args.learning_rate, total_steps=\n num_training_steps, warmup=args.warmup_proportion)\n', (3206, 3308), False, 'from paddlenlp.transformers import PPMiniLMForSequenceClassification, PPMiniLMTokenizer, LinearDecayWithWarmup\n'), ((3536, 3586), 'paddle.nn.ClipGradByGlobalNorm', 'paddle.nn.ClipGradByGlobalNorm', (['args.max_grad_norm'], {}), '(args.max_grad_norm)\n', (3566, 3586), False, 'import paddle\n'), ((3844, 3859), 'paddlenlp.metrics.glue.AccuracyAndF1', 'AccuracyAndF1', ([], {}), '()\n', (3857, 3859), False, 'from paddlenlp.metrics.glue import AccuracyAndF1\n'), ((5554, 5586), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['__doc__'], {}), '(__doc__)\n', (5577, 5586), False, 'import argparse\n'), ((1278, 1310), 'os.path.exists', 'os.path.exists', (['args.checkpoints'], {}), '(args.checkpoints)\n', (1292, 1310), False, 'import os\n'), ((1320, 1346), 'os.mkdir', 'os.mkdir', (['args.checkpoints'], {}), '(args.checkpoints)\n', (1328, 1346), False, 'import os\n'), ((4232, 4263), 'paddle.nn.functional.cross_entropy', 'F.cross_entropy', (['logits', 'labels'], {}), '(logits, labels)\n', (4247, 4263), True, 'import paddle.nn.functional as F\n'), ((1994, 2052), 'paddlenlp.data.Pad', 'Pad', ([], {'axis': '(0)', 'pad_val': 'tokenizer.pad_token_id', 'dtype': '"""int64"""'}), "(axis=0, pad_val=tokenizer.pad_token_id, dtype='int64')\n", (1997, 2052), False, 'from paddlenlp.data import Pad, Stack, Tuple\n'), ((2062, 2125), 'paddlenlp.data.Pad', 'Pad', ([], {'axis': '(0)', 'pad_val': 'tokenizer.pad_token_type_id', 'dtype': '"""int64"""'}), "(axis=0, pad_val=tokenizer.pad_token_type_id, dtype='int64')\n", (2065, 2125), False, 'from paddlenlp.data import Pad, Stack, Tuple\n'), ((2135, 2155), 'paddlenlp.data.Stack', 'Stack', ([], {'dtype': '"""int64"""'}), "(dtype='int64')\n", (2140, 2155), False, 'from paddlenlp.data import Pad, Stack, Tuple\n'), ((2157, 2177), 'paddlenlp.data.Stack', 'Stack', ([], {'dtype': '"""int64"""'}), "(dtype='int64')\n", (2162, 2177), False, 'from paddlenlp.data import Pad, Stack, Tuple\n'), ((4802, 4837), 'evaluate.evaluate', 'evaluate', (['model', 'dev_loader', 'metric'], {}), '(model, dev_loader, metric)\n', (4810, 4837), False, 'from evaluate import evaluate\n')]
import numpy as np from rebuild import rebuild from render import render from depth import depth from evaluate import evaluate from PIL import Image def rendering(dir): #z的尺度与x和y相同,大小等同于测试图像大小,位置与测试图像像素点一一对应 #imgs为渲染结果,大小等同于测试图像大小,位置与测试图像像素点一一对应 train_lvectors = np.zeros([7,3])# the direction of light for line in open(dir+'/train.txt'): i,ang1,ang2 = line.strip().split(",") i = int(i) ang1 = int(ang1) ang2 = int(ang2) train_lvectors[i-1] = (np.sin(np.pi*ang1/180)*np.cos(np.pi*ang2/180),np.sin(np.pi*ang2/180),np.cos(np.pi*ang1/180)*np.cos(np.pi*ang2/180)) train_lvectors = -train_lvectors test_lvectors = np.zeros([10,3])# the direction of light for line in open(dir+'/test.txt'): i,ang1,ang2 = line.strip().split(",") i = int(i) ang1 = int(ang1) ang2 = int(ang2) test_lvectors[i-1] = (np.sin(np.pi*ang1/180)*np.cos(np.pi*ang2/180),np.sin(np.pi*ang2/180),np.cos(np.pi*ang1/180)*np.cos(np.pi*ang2/180)) test_lvectors = -test_lvectors train_images = np.zeros([7, 168, 168]) for num in range(7): image = Image.open(dir+'/train/'+str(num+1)+'.bmp') train_images[num] = np.asarray(image) n_s=3 alpha,beta,s,X,Y,Z,vector = rebuild(train_images,train_lvectors,n_s) evaluate(alpha,beta,s,X,Y,Z,n_s,train_lvectors,train_images) imgs = render(alpha,beta,s,X,Y,Z,n_s,test_lvectors) z = depth(vector) return z, imgs
[ "evaluate.evaluate" ]
[((277, 293), 'numpy.zeros', 'np.zeros', (['[7, 3]'], {}), '([7, 3])\n', (285, 293), True, 'import numpy as np\n'), ((677, 694), 'numpy.zeros', 'np.zeros', (['[10, 3]'], {}), '([10, 3])\n', (685, 694), True, 'import numpy as np\n'), ((1073, 1096), 'numpy.zeros', 'np.zeros', (['[7, 168, 168]'], {}), '([7, 168, 168])\n', (1081, 1096), True, 'import numpy as np\n'), ((1271, 1313), 'rebuild.rebuild', 'rebuild', (['train_images', 'train_lvectors', 'n_s'], {}), '(train_images, train_lvectors, n_s)\n', (1278, 1313), False, 'from rebuild import rebuild\n'), ((1316, 1384), 'evaluate.evaluate', 'evaluate', (['alpha', 'beta', 's', 'X', 'Y', 'Z', 'n_s', 'train_lvectors', 'train_images'], {}), '(alpha, beta, s, X, Y, Z, n_s, train_lvectors, train_images)\n', (1324, 1384), False, 'from evaluate import evaluate\n'), ((1389, 1440), 'render.render', 'render', (['alpha', 'beta', 's', 'X', 'Y', 'Z', 'n_s', 'test_lvectors'], {}), '(alpha, beta, s, X, Y, Z, n_s, test_lvectors)\n', (1395, 1440), False, 'from render import render\n'), ((1442, 1455), 'depth.depth', 'depth', (['vector'], {}), '(vector)\n', (1447, 1455), False, 'from depth import depth\n'), ((1210, 1227), 'numpy.asarray', 'np.asarray', (['image'], {}), '(image)\n', (1220, 1227), True, 'import numpy as np\n'), ((549, 575), 'numpy.sin', 'np.sin', (['(np.pi * ang2 / 180)'], {}), '(np.pi * ang2 / 180)\n', (555, 575), True, 'import numpy as np\n'), ((948, 974), 'numpy.sin', 'np.sin', (['(np.pi * ang2 / 180)'], {}), '(np.pi * ang2 / 180)\n', (954, 974), True, 'import numpy as np\n'), ((503, 529), 'numpy.sin', 'np.sin', (['(np.pi * ang1 / 180)'], {}), '(np.pi * ang1 / 180)\n', (509, 529), True, 'import numpy as np\n'), ((526, 552), 'numpy.cos', 'np.cos', (['(np.pi * ang2 / 180)'], {}), '(np.pi * ang2 / 180)\n', (532, 552), True, 'import numpy as np\n'), ((572, 598), 'numpy.cos', 'np.cos', (['(np.pi * ang1 / 180)'], {}), '(np.pi * ang1 / 180)\n', (578, 598), True, 'import numpy as np\n'), ((595, 621), 'numpy.cos', 'np.cos', (['(np.pi * ang2 / 180)'], {}), '(np.pi * ang2 / 180)\n', (601, 621), True, 'import numpy as np\n'), ((902, 928), 'numpy.sin', 'np.sin', (['(np.pi * ang1 / 180)'], {}), '(np.pi * ang1 / 180)\n', (908, 928), True, 'import numpy as np\n'), ((925, 951), 'numpy.cos', 'np.cos', (['(np.pi * ang2 / 180)'], {}), '(np.pi * ang2 / 180)\n', (931, 951), True, 'import numpy as np\n'), ((971, 997), 'numpy.cos', 'np.cos', (['(np.pi * ang1 / 180)'], {}), '(np.pi * ang1 / 180)\n', (977, 997), True, 'import numpy as np\n'), ((994, 1020), 'numpy.cos', 'np.cos', (['(np.pi * ang2 / 180)'], {}), '(np.pi * ang2 / 180)\n', (1000, 1020), True, 'import numpy as np\n')]
import numpy as np import os import pickle import copy import json import warnings warnings.filterwarnings("ignore") os.environ["CUDA_VISIBLE_DEVICES"]="6,7" from load_img import Load_from_Folder, Load_Images from evaluate import Time, MSE, PSNR from MBMBVQ import MBMBVQ from EntropyCoding import EntropyCoding class GIC(): def __init__(self, par): self.MBMBVQ = MBMBVQ(par) self.EC = EntropyCoding(par) def change_n_img(self, n_img): for i in range(1, self.EC.par['n_hop']+1): for j in range(len(self.EC.par['shape']['hop'+str(i)])): self.EC.par['shape']['hop'+str(i)][j][0] = n_img @Time def fit(self, Y): self.change_n_img(Y.shape[0]) self.MBMBVQ.fit(copy.deepcopy(Y)) save = self.MBMBVQ.encode(copy.deepcopy(Y)) self.EC.fit(save) return self @Time def refit(self, Y, par): self.change_n_img(Y.shape[0]) self.MBMBVQ.refit(copy.deepcopy(Y), par) save = self.MBMBVQ.encode(copy.deepcopy(Y)) self.EC.refit(save, par) return self @Time def encode(self, Y): self.change_n_img(Y.shape[0]) save = self.MBMBVQ.encode(Y) stream = self.EC.encode(save, S=Y.shape[1]) return stream, save['DC'], save @Time def decode(self, stream, DC): save = self.EC.decode(stream) save['DC'] = DC iY = self.MBMBVQ.decode(save) return iY # return pickleable obj def save(self): for k in self.MBMBVQ.km.keys(): km = self.MBMBVQ.km[k] for i in km.KM: i.KM.KM = None i.KM.saveObj=False return self if __name__ == "__main__": with open('./test_data/test_par1.json', 'r') as f: par = json.load(f) gic = GIC_Y(par) Y_list = Load_from_Folder(folder='./test_data/', color='YUV', ct=-1) Y = np.array(Y_list)[:,:,:,:1] gic.fit(Y) stream, dc = gic.encode(Y) iY = gic.decode(stream, dc) print('MSE=%5.3f, PSNR=%3.5f'%(MSE(Y, iY), PSNR(Y, iY))) print('------------------') print(" * Ref result: "+'MSE=129.342, PSNR=27.01340')
[ "evaluate.PSNR", "evaluate.MSE" ]
[((84, 117), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (107, 117), False, 'import warnings\n'), ((1844, 1903), 'load_img.Load_from_Folder', 'Load_from_Folder', ([], {'folder': '"""./test_data/"""', 'color': '"""YUV"""', 'ct': '(-1)'}), "(folder='./test_data/', color='YUV', ct=-1)\n", (1860, 1903), False, 'from load_img import Load_from_Folder, Load_Images\n'), ((378, 389), 'MBMBVQ.MBMBVQ', 'MBMBVQ', (['par'], {}), '(par)\n', (384, 389), False, 'from MBMBVQ import MBMBVQ\n'), ((408, 426), 'EntropyCoding.EntropyCoding', 'EntropyCoding', (['par'], {}), '(par)\n', (421, 426), False, 'from EntropyCoding import EntropyCoding\n'), ((1796, 1808), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1805, 1808), False, 'import json\n'), ((1912, 1928), 'numpy.array', 'np.array', (['Y_list'], {}), '(Y_list)\n', (1920, 1928), True, 'import numpy as np\n'), ((741, 757), 'copy.deepcopy', 'copy.deepcopy', (['Y'], {}), '(Y)\n', (754, 757), False, 'import copy\n'), ((793, 809), 'copy.deepcopy', 'copy.deepcopy', (['Y'], {}), '(Y)\n', (806, 809), False, 'import copy\n'), ((960, 976), 'copy.deepcopy', 'copy.deepcopy', (['Y'], {}), '(Y)\n', (973, 976), False, 'import copy\n'), ((1017, 1033), 'copy.deepcopy', 'copy.deepcopy', (['Y'], {}), '(Y)\n', (1030, 1033), False, 'import copy\n'), ((2055, 2065), 'evaluate.MSE', 'MSE', (['Y', 'iY'], {}), '(Y, iY)\n', (2058, 2065), False, 'from evaluate import Time, MSE, PSNR\n'), ((2067, 2078), 'evaluate.PSNR', 'PSNR', (['Y', 'iY'], {}), '(Y, iY)\n', (2071, 2078), False, 'from evaluate import Time, MSE, PSNR\n')]