code
stringlengths
110
64.5k
apis
list
extract_api
stringlengths
123
69.9k
from datetime import datetime from typing import Optional from fastapi import APIRouter from sqlmodel import Field, SQLModel router = APIRouter() class Right(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class Province(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class Amphoe(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) province_id: int name: str class Tambon(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) amphoe_id: int name: str class Religion(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class National(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class Occupation(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class MaritalStatus(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class AcademicDegree(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class Allergy(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class Vehicle(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class Language(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class Relationship(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class IdType(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class FeedbackType(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class VisibilityLevel(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class Module(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str detail: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class ModuleFunction(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str detail: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None
[ "sqlmodel.Field" ]
[((136, 147), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (145, 147), False, 'from fastapi import APIRouter\n'), ((209, 246), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (214, 246), False, 'from sqlmodel import Field, SQLModel\n'), ((325, 362), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (330, 362), False, 'from sqlmodel import Field, SQLModel\n'), ((439, 476), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (444, 476), False, 'from sqlmodel import Field, SQLModel\n'), ((574, 611), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (579, 611), False, 'from sqlmodel import Field, SQLModel\n'), ((709, 746), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (714, 746), False, 'from sqlmodel import Field, SQLModel\n'), ((825, 862), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (830, 862), False, 'from sqlmodel import Field, SQLModel\n'), ((943, 980), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (948, 980), False, 'from sqlmodel import Field, SQLModel\n'), ((1064, 1101), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1069, 1101), False, 'from sqlmodel import Field, SQLModel\n'), ((1186, 1223), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1191, 1223), False, 'from sqlmodel import Field, SQLModel\n'), ((1301, 1338), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1306, 1338), False, 'from sqlmodel import Field, SQLModel\n'), ((1416, 1453), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1421, 1453), False, 'from sqlmodel import Field, SQLModel\n'), ((1532, 1569), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1537, 1569), False, 'from sqlmodel import Field, SQLModel\n'), ((1652, 1689), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1657, 1689), False, 'from sqlmodel import Field, SQLModel\n'), ((1766, 1803), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1771, 1803), False, 'from sqlmodel import Field, SQLModel\n'), ((1886, 1923), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1891, 1923), False, 'from sqlmodel import Field, SQLModel\n'), ((2009, 2046), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (2014, 2046), False, 'from sqlmodel import Field, SQLModel\n'), ((2123, 2160), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (2128, 2160), False, 'from sqlmodel import Field, SQLModel\n'), ((2368, 2405), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (2373, 2405), False, 'from sqlmodel import Field, SQLModel\n')]
from typing import Optional from sqlmodel import Field, SQLModel, create_engine class Team(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str headquarters: str class Hero(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str secret_name: str age: Optional[int] = None team_id: Optional[int] = Field(default=None, foreign_key="team.id") sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def main(): create_db_and_tables() if __name__ == "__main__": main()
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.create_engine", "sqlmodel.Field" ]
[((541, 577), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (554, 577), False, 'from sqlmodel import Field, SQLModel, create_engine\n'), ((141, 178), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (146, 178), False, 'from sqlmodel import Field, SQLModel, create_engine\n'), ((275, 312), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (280, 312), False, 'from sqlmodel import Field, SQLModel, create_engine\n'), ((408, 450), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""team.id"""'}), "(default=None, foreign_key='team.id')\n", (413, 450), False, 'from sqlmodel import Field, SQLModel, create_engine\n'), ((612, 648), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (640, 648), False, 'from sqlmodel import Field, SQLModel, create_engine\n')]
"""initial2 Revision ID: 9d9a<PASSWORD>dbfd7 Revises: <PASSWORD> Create Date: 2021-11-01 04:28:38.426261 """ from alembic import op import sqlalchemy as sa import sqlmodel # revision identifiers, used by Alembic. revision = '9d9a746db<PASSWORD>' down_revision = 'a<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('images', sa.Column('id', sa.Integer(), nullable=False), sa.Column('url', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_images_id'), 'images', ['id'], unique=False) op.create_index(op.f('ix_images_url'), 'images', ['url'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_images_url'), table_name='images') op.drop_index(op.f('ix_images_id'), table_name='images') op.drop_table('images') # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((994, 1017), 'alembic.op.drop_table', 'op.drop_table', (['"""images"""'], {}), "('images')\n", (1007, 1017), False, 'from alembic import op\n'), ((561, 590), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (584, 590), True, 'import sqlalchemy as sa\n'), ((617, 637), 'alembic.op.f', 'op.f', (['"""ix_images_id"""'], {}), "('ix_images_id')\n", (621, 637), False, 'from alembic import op\n'), ((691, 712), 'alembic.op.f', 'op.f', (['"""ix_images_url"""'], {}), "('ix_images_url')\n", (695, 712), False, 'from alembic import op\n'), ((885, 906), 'alembic.op.f', 'op.f', (['"""ix_images_url"""'], {}), "('ix_images_url')\n", (889, 906), False, 'from alembic import op\n'), ((947, 967), 'alembic.op.f', 'op.f', (['"""ix_images_id"""'], {}), "('ix_images_id')\n", (951, 967), False, 'from alembic import op\n'), ((452, 464), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (462, 464), True, 'import sqlalchemy as sa\n'), ((504, 538), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (536, 538), False, 'import sqlmodel\n')]
# Copyright 2021 Modelyst LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import AbstractSet, Any, Dict, Mapping, Optional, Sequence, Union from pydantic.fields import Undefined, UndefinedType from sqlalchemy import Column from sqlmodel import Field from dbgen.utils.typing import NoArgAnyCallable def Attribute( default: Any = Undefined, *, default_factory: Optional[NoArgAnyCallable] = None, alias: str = None, title: str = None, description: str = None, exclude: Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any] = None, include: Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any] = None, const: bool = None, gt: float = None, ge: float = None, lt: float = None, le: float = None, multiple_of: float = None, min_items: int = None, max_items: int = None, min_length: int = None, max_length: int = None, allow_mutation: bool = True, regex: str = None, primary_key: bool = False, foreign_key: Optional[Any] = None, nullable: Union[bool, UndefinedType] = Undefined, index: Union[bool, UndefinedType] = Undefined, sa_column: Union[Column, UndefinedType] = Undefined, sa_column_args: Union[Sequence[Any], UndefinedType] = Undefined, sa_column_kwargs: Union[Mapping[str, Any], UndefinedType] = Undefined, schema_extra: Optional[Dict[str, Any]] = None, ) -> Any: field = Field( default, default_factory=default_factory, alias=alias, title=title, description=description, exclude=exclude, include=include, const=const, gt=gt, ge=ge, lt=lt, le=le, multiple_of=multiple_of, min_items=min_items, max_items=max_items, min_length=min_length, max_length=max_length, allow_mutation=allow_mutation, regex=regex, primary_key=primary_key, foreign_key=foreign_key, nullable=nullable, index=index, sa_column=sa_column, sa_column_args=sa_column_args, sa_column_kwargs=sa_column_kwargs, schema_extra=schema_extra, ) return field
[ "sqlmodel.Field" ]
[((1965, 2523), 'sqlmodel.Field', 'Field', (['default'], {'default_factory': 'default_factory', 'alias': 'alias', 'title': 'title', 'description': 'description', 'exclude': 'exclude', 'include': 'include', 'const': 'const', 'gt': 'gt', 'ge': 'ge', 'lt': 'lt', 'le': 'le', 'multiple_of': 'multiple_of', 'min_items': 'min_items', 'max_items': 'max_items', 'min_length': 'min_length', 'max_length': 'max_length', 'allow_mutation': 'allow_mutation', 'regex': 'regex', 'primary_key': 'primary_key', 'foreign_key': 'foreign_key', 'nullable': 'nullable', 'index': 'index', 'sa_column': 'sa_column', 'sa_column_args': 'sa_column_args', 'sa_column_kwargs': 'sa_column_kwargs', 'schema_extra': 'schema_extra'}), '(default, default_factory=default_factory, alias=alias, title=title,\n description=description, exclude=exclude, include=include, const=const,\n gt=gt, ge=ge, lt=lt, le=le, multiple_of=multiple_of, min_items=\n min_items, max_items=max_items, min_length=min_length, max_length=\n max_length, allow_mutation=allow_mutation, regex=regex, primary_key=\n primary_key, foreign_key=foreign_key, nullable=nullable, index=index,\n sa_column=sa_column, sa_column_args=sa_column_args, sa_column_kwargs=\n sa_column_kwargs, schema_extra=schema_extra)\n', (1970, 2523), False, 'from sqlmodel import Field\n')]
import numpy as nm import six from sfepy import data_dir from sfepy.base.base import Struct, output from sfepy.terms.terms_hyperelastic_ul import HyperElasticULFamilyData from sfepy.homogenization.micmac import get_homog_coefs_nonlinear import sfepy.linalg as la hyperelastic_data = {} def post_process(out, pb, state, extend=False): if isinstance(state, dict): pass else: pb.update_materials_flag = 2 stress = pb.evaluate('ev_integrate_mat.1.Omega(solid.S, u)', mode='el_avg') out['cauchy_stress'] = Struct(name='output_data', mode='cell', data=stress, dofs=None) strain = pb.evaluate('ev_integrate_mat.1.Omega(solid.E, u)', mode='el_avg') out['green_strain'] = Struct(name='output_data', mode='cell', data=strain, dofs=None) pb.update_materials_flag = 0 if pb.conf.options.get('recover_micro', False): happ = pb.homogen_app if pb.ts.step == 0: rname = pb.conf.options.recovery_region rcells = pb.domain.regions[rname].get_cells() sh = hyperelastic_data['homog_mat_shape'] happ.app_options.store_micro_idxs = sh[1] * rcells else: hpb = happ.problem recovery_hook = hpb.conf.options.get('recovery_hook', None) if recovery_hook is not None: recovery_hook = hpb.conf.get_function(recovery_hook) rname = pb.conf.options.recovery_region rcoors = [] for ii in happ.app_options.store_micro_idxs: key = happ.get_micro_cache_key('coors', ii, pb.ts.step) if key in happ.micro_state_cache: rcoors.append(happ.micro_state_cache[key]) recovery_hook(hpb, rcoors, pb.domain.regions[rname], pb.ts) return out def get_homog_mat(ts, coors, mode, term=None, problem=None, **kwargs): if problem.update_materials_flag == 2 and mode == 'qp': out = hyperelastic_data['homog_mat'] return {k: nm.array(v) for k, v in six.iteritems(out)} elif problem.update_materials_flag == 0 or not mode == 'qp': return output('get_homog_mat') dim = problem.domain.mesh.dim update_var = problem.conf.options.mesh_update_variables[0] state_u = problem.equations.variables[update_var] state_u.field.clear_mappings() family_data = problem.family_data(state_u, term.region, term.integral, term.integration) mtx_f = family_data.mtx_f.reshape((coors.shape[0],) + family_data.mtx_f.shape[-2:]) out = get_homog_coefs_nonlinear(ts, coors, mode, mtx_f, term=term, problem=problem, iteration=problem.iiter, **kwargs) out['E'] = 0.5 * (la.dot_sequences(mtx_f, mtx_f, 'ATB') - nm.eye(dim)) hyperelastic_data['time'] = ts.step hyperelastic_data['homog_mat_shape'] = family_data.det_f.shape[:2] hyperelastic_data['homog_mat'] = \ {k: nm.array(v) for k, v in six.iteritems(out)} return out def ulf_iteration_hook(pb, nls, vec, it, err, err0): vec = pb.equations.make_full_vec(vec) pb.equations.set_variables_from_state(vec) update_var = pb.conf.options.mesh_update_variables[0] state_u = pb.equations.variables[update_var] nods = state_u.field.get_dofs_in_region(state_u.field.region, merge=True) coors = pb.domain.get_mesh_coors().copy() coors[nods, :] += state_u().reshape(len(nods), state_u.n_components) if len(state_u.field.mappings0) == 0: state_u.field.save_mappings() state_u.field.clear_mappings() pb.set_mesh_coors(coors, update_fields=False, actual=True, clear_all=False) pb.iiter = it pb.update_materials_flag = True pb.update_materials() pb.update_materials_flag = False class MyEvalResidual(object): def __init__(self, problem, matrix_hook=None): self.problem = problem self.matrix_hook = problem.matrix_hook def eval_residual(self, vec, is_full=False): if not is_full: vec = self.problem.equations.make_full_vec(vec) vec_r = self.problem.equations.eval_residuals(vec * 0) return vec_r def ulf_init(pb): pb.family_data = HyperElasticULFamilyData() pb.init_solvers() pb.nls.fun = MyEvalResidual(pb).eval_residual pb.nls_iter_hook = ulf_iteration_hook pb.domain.mesh.coors_act = pb.domain.mesh.coors.copy() pb_vars = pb.get_variables() pb_vars['u'].init_data() pb.update_materials_flag = True pb.iiter = 0 options = { 'output_dir': 'output', 'mesh_update_variables': ['u'], 'nls_iter_hook': ulf_iteration_hook, 'pre_process_hook': ulf_init, 'micro_filename': 'examples/homogenization/nonlinear_homogenization.py', 'recover_micro': True, 'recovery_region': 'Recovery', 'post_process_hook': post_process, } materials = { 'solid': 'get_homog', } fields = { 'displacement': ('real', 'vector', 'Omega', 1), } variables = { 'u': ('unknown field', 'displacement'), 'v': ('test field', 'displacement', 'u'), } filename_mesh = data_dir + '/meshes/2d/its2D.mesh' regions = { 'Omega': 'all', 'Left': ('vertices in (x < 0.001)', 'facet'), 'Bottom': ('vertices in (y < 0.001 )', 'facet'), 'Recovery': ('cell 49, 81', 'cell'), } ebcs = { 'l': ('Left', {'u.all': 0.0}), 'b': ('Bottom', {'u.all': 'move_bottom'}), } centre = nm.array([0, 0], dtype=nm.float64) def move_bottom(ts, coor, **kwargs): from sfepy.linalg import rotation_matrix2d vec = coor[:, 0:2] - centre angle = 3 * ts.step print('angle:', angle) mtx = rotation_matrix2d(angle) out = nm.dot(vec, mtx) - vec return out functions = { 'move_bottom': (move_bottom,), 'get_homog': (get_homog_mat,), } equations = { 'balance_of_forces': """dw_nonsym_elastic.1.Omega(solid.A, v, u) = - dw_lin_prestress.1.Omega(solid.S, v)""", } solvers = { 'ls': ('ls.scipy_direct', {}), 'newton': ('nls.newton', { 'eps_a': 1e-3, 'eps_r': 1e-3, 'i_max': 20, }), 'ts': ('ts.simple', { 't0': 0, 't1': 1, 'n_step': 3 + 1, }) }
[ "sfepy.base.base.Struct", "sfepy.linalg.rotation_matrix2d", "sfepy.homogenization.micmac.get_homog_coefs_nonlinear", "sfepy.linalg.dot_sequences", "sfepy.base.base.output", "sfepy.terms.terms_hyperelastic_ul.HyperElasticULFamilyData" ]
[((5887, 5921), 'numpy.array', 'nm.array', (['[0, 0]'], {'dtype': 'nm.float64'}), '([0, 0], dtype=nm.float64)\n', (5895, 5921), True, 'import numpy as nm\n'), ((2515, 2538), 'sfepy.base.base.output', 'output', (['"""get_homog_mat"""'], {}), "('get_homog_mat')\n", (2521, 2538), False, 'from sfepy.base.base import Struct, output\n'), ((2994, 3111), 'sfepy.homogenization.micmac.get_homog_coefs_nonlinear', 'get_homog_coefs_nonlinear', (['ts', 'coors', 'mode', 'mtx_f'], {'term': 'term', 'problem': 'problem', 'iteration': 'problem.iiter'}), '(ts, coors, mode, mtx_f, term=term, problem=\n problem, iteration=problem.iiter, **kwargs)\n', (3019, 3111), False, 'from sfepy.homogenization.micmac import get_homog_coefs_nonlinear\n'), ((4686, 4712), 'sfepy.terms.terms_hyperelastic_ul.HyperElasticULFamilyData', 'HyperElasticULFamilyData', ([], {}), '()\n', (4710, 4712), False, 'from sfepy.terms.terms_hyperelastic_ul import HyperElasticULFamilyData\n'), ((6102, 6126), 'sfepy.linalg.rotation_matrix2d', 'rotation_matrix2d', (['angle'], {}), '(angle)\n', (6119, 6126), False, 'from sfepy.linalg import rotation_matrix2d\n'), ((575, 638), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'stress', 'dofs': 'None'}), "(name='output_data', mode='cell', data=stress, dofs=None)\n", (581, 638), False, 'from sfepy.base.base import Struct, output\n'), ((898, 961), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'strain', 'dofs': 'None'}), "(name='output_data', mode='cell', data=strain, dofs=None)\n", (904, 961), False, 'from sfepy.base.base import Struct, output\n'), ((3418, 3429), 'numpy.array', 'nm.array', (['v'], {}), '(v)\n', (3426, 3429), True, 'import numpy as nm\n'), ((6137, 6153), 'numpy.dot', 'nm.dot', (['vec', 'mtx'], {}), '(vec, mtx)\n', (6143, 6153), True, 'import numpy as nm\n'), ((2386, 2397), 'numpy.array', 'nm.array', (['v'], {}), '(v)\n', (2394, 2397), True, 'import numpy as nm\n'), ((3202, 3239), 'sfepy.linalg.dot_sequences', 'la.dot_sequences', (['mtx_f', 'mtx_f', '"""ATB"""'], {}), "(mtx_f, mtx_f, 'ATB')\n", (3218, 3239), True, 'import sfepy.linalg as la\n'), ((3242, 3253), 'numpy.eye', 'nm.eye', (['dim'], {}), '(dim)\n', (3248, 3253), True, 'import numpy as nm\n'), ((3442, 3460), 'six.iteritems', 'six.iteritems', (['out'], {}), '(out)\n', (3455, 3460), False, 'import six\n'), ((2410, 2428), 'six.iteritems', 'six.iteritems', (['out'], {}), '(out)\n', (2423, 2428), False, 'import six\n')]
import uuid from logging import getLogger from typing import Optional from fastapi import UploadFile from sqlmodel import select, Session from .models import User logger = getLogger("uvicorn.error") def get_user(username: str, session: Session) -> Optional[User]: statement = select(User).where(User.username == username) user = session.exec(statement).first() if user: return user return None def save_file(file: UploadFile) -> str: filename = uuid.uuid4() path = f"static/{filename}" with open(path, "wb") as f: content = file.file.read() f.write(content) return path
[ "sqlmodel.select" ]
[((175, 201), 'logging.getLogger', 'getLogger', (['"""uvicorn.error"""'], {}), "('uvicorn.error')\n", (184, 201), False, 'from logging import getLogger\n'), ((480, 492), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (490, 492), False, 'import uuid\n'), ((285, 297), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (291, 297), False, 'from sqlmodel import select, Session\n')]
from unittest.mock import patch from sqlmodel import create_engine from ...conftest import get_testing_print_function def test_tutorial(clear_sqlmodel): from docs_src.tutorial.where import tutorial010 as mod mod.sqlite_url = "sqlite://" mod.engine = create_engine(mod.sqlite_url) calls = [] new_print = get_testing_print_function(calls) with patch("builtins.print", new=new_print): mod.main() assert calls == [ [{"name": "Tarantula", "secret_name": "<NAME>", "age": 32, "id": 4}], [{"name": "<NAME>", "secret_name": "<NAME>", "age": 35, "id": 5}], [ { "name": "<NAME>", "secret_name": "<NAME>", "age": 93, "id": 7, } ], ]
[ "sqlmodel.create_engine" ]
[((267, 296), 'sqlmodel.create_engine', 'create_engine', (['mod.sqlite_url'], {}), '(mod.sqlite_url)\n', (280, 296), False, 'from sqlmodel import create_engine\n'), ((373, 411), 'unittest.mock.patch', 'patch', (['"""builtins.print"""'], {'new': 'new_print'}), "('builtins.print', new=new_print)\n", (378, 411), False, 'from unittest.mock import patch\n'), ((421, 431), 'docs_src.tutorial.where.tutorial010.main', 'mod.main', ([], {}), '()\n', (429, 431), True, 'from docs_src.tutorial.where import tutorial010 as mod\n')]
#!/usr/bin/env python """ Plot quadrature points for the given geometry and integration order. """ from optparse import OptionParser import sfepy.postprocess.plot_quadrature as pq usage = '%prog [options]\n' + __doc__.rstrip() helps = { 'geometry' : 'reference element geometry, one of "2_3", "2_4", "3_4", "3_8"' ' [default: %default]', 'order' : 'quadrature order [default: %default]', 'min_radius' : 'min. radius of points corresponding to the min. weight' ' [default: %default]', 'max_radius' : 'max. radius of points corresponding to the max. weight' ' [default: %default]', 'show_colorbar' : 'show colorbar for quadrature weights' } def main(): parser = OptionParser(usage=usage, version='%prog') parser.add_option('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=helps['geometry']) parser.add_option('-n', '--order', metavar='order', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_option('-r', '--min-radius', metavar='float', type=float, action='store', dest='min_radius', default=10, help=helps['min_radius']) parser.add_option('-R', '--max-radius', metavar='float', type=float, action='store', dest='max_radius', default=50, help=helps['max_radius']) parser.add_option('-c', '--show-colorbar', action='store_true', dest='show_colorbar', default=False, help=helps['show_colorbar']) options, args = parser.parse_args() if len(args) != 0: parser.print_help(), return pq.plot_quadrature(None, options.geometry, options.order, options.min_radius, options.max_radius, options.show_colorbar) pq.plt.show() if __name__ == '__main__': main()
[ "sfepy.postprocess.plot_quadrature.plt.show", "sfepy.postprocess.plot_quadrature.plot_quadrature" ]
[((722, 764), 'optparse.OptionParser', 'OptionParser', ([], {'usage': 'usage', 'version': '"""%prog"""'}), "(usage=usage, version='%prog')\n", (734, 764), False, 'from optparse import OptionParser\n'), ((1782, 1907), 'sfepy.postprocess.plot_quadrature.plot_quadrature', 'pq.plot_quadrature', (['None', 'options.geometry', 'options.order', 'options.min_radius', 'options.max_radius', 'options.show_colorbar'], {}), '(None, options.geometry, options.order, options.\n min_radius, options.max_radius, options.show_colorbar)\n', (1800, 1907), True, 'import sfepy.postprocess.plot_quadrature as pq\n'), ((1953, 1966), 'sfepy.postprocess.plot_quadrature.plt.show', 'pq.plt.show', ([], {}), '()\n', (1964, 1966), True, 'import sfepy.postprocess.plot_quadrature as pq\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from tempfile import TemporaryFile import numpy as np from megengine.core import Buffer, Parameter, tensor from megengine.test import assertTensorClose def test_tensor_serialization(): def tensor_eq(a, b): assert a.dtype == b.dtype assert a.device == b.device assert a.requires_grad == b.requires_grad assertTensorClose(a, b) with TemporaryFile() as f: data = np.random.randint(low=0, high=7, size=[233]) a = tensor(data, device="xpux", dtype=np.int32) pickle.dump(a, f) f.seek(0) b = pickle.load(f) tensor_eq(a, b) with TemporaryFile() as f: a = Parameter(np.random.random(size=(233, 2)).astype(np.float32)) pickle.dump(a, f) f.seek(0) b = pickle.load(f) assert isinstance(b, Parameter) tensor_eq(a, b) with TemporaryFile() as f: a = Buffer(np.random.random(size=(2, 233)).astype(np.float32)) pickle.dump(a, f) f.seek(0) b = pickle.load(f) assert isinstance(b, Buffer) tensor_eq(a, b)
[ "megengine.core.tensor", "megengine.test.assertTensorClose" ]
[((733, 756), 'megengine.test.assertTensorClose', 'assertTensorClose', (['a', 'b'], {}), '(a, b)\n', (750, 756), False, 'from megengine.test import assertTensorClose\n'), ((767, 782), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (780, 782), False, 'from tempfile import TemporaryFile\n'), ((804, 848), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(0)', 'high': '(7)', 'size': '[233]'}), '(low=0, high=7, size=[233])\n', (821, 848), True, 'import numpy as np\n'), ((861, 904), 'megengine.core.tensor', 'tensor', (['data'], {'device': '"""xpux"""', 'dtype': 'np.int32'}), "(data, device='xpux', dtype=np.int32)\n", (867, 904), False, 'from megengine.core import Buffer, Parameter, tensor\n'), ((913, 930), 'pickle.dump', 'pickle.dump', (['a', 'f'], {}), '(a, f)\n', (924, 930), False, 'import pickle\n'), ((961, 975), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (972, 975), False, 'import pickle\n'), ((1010, 1025), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (1023, 1025), False, 'from tempfile import TemporaryFile\n'), ((1114, 1131), 'pickle.dump', 'pickle.dump', (['a', 'f'], {}), '(a, f)\n', (1125, 1131), False, 'import pickle\n'), ((1162, 1176), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1173, 1176), False, 'import pickle\n'), ((1251, 1266), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (1264, 1266), False, 'from tempfile import TemporaryFile\n'), ((1352, 1369), 'pickle.dump', 'pickle.dump', (['a', 'f'], {}), '(a, f)\n', (1363, 1369), False, 'import pickle\n'), ((1400, 1414), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1411, 1414), False, 'import pickle\n'), ((1054, 1085), 'numpy.random.random', 'np.random.random', ([], {'size': '(233, 2)'}), '(size=(233, 2))\n', (1070, 1085), True, 'import numpy as np\n'), ((1292, 1323), 'numpy.random.random', 'np.random.random', ([], {'size': '(2, 233)'}), '(size=(2, 233))\n', (1308, 1323), True, 'import numpy as np\n')]
import typing as t from sqlmodel import SQLModel, Field, Relationship from datetime import datetime from .discussions import DB_Discussion class DB_Post(SQLModel, table=True): __tablename__ = 'posts' id: t.Optional[int] = Field(default=None, primary_key=True) """The ID of the post. This is handled by the database.""" discussion_id: int = Field(foreign_key='discussions.id') discussion: t.Optional[DB_Discussion] = Relationship(back_populates='posts') """Discussion that this post belongs to.""" number: int = Field(default=1) """The number/order of the post in the discussion.""" created_at: datetime = Field(default=datetime.utcnow()) """When was this post created. Default is now.""" type: str = Field(max_length=100, default='comment') """The type of the post. Can be `'comment'` for standard post.""" content: t.Text """The post's content, in HTML.""" edited_at: t.Optional[datetime] """When was the post edited at?""" hidden_at: t.Optional[datetime] """When was the post hidden at?""" ip_address: t.Optional[str] = Field(max_length=45) """The IP address of the user that created the post.""" is_private: bool = Field(default=False) """Whether or not the post is private.""" is_approved: bool = Field(default=True) """Whether or not the post is approved."""
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((235, 272), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (240, 272), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((362, 397), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""discussions.id"""'}), "(foreign_key='discussions.id')\n", (367, 397), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((442, 478), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""posts"""'}), "(back_populates='posts')\n", (454, 478), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((546, 562), 'sqlmodel.Field', 'Field', ([], {'default': '(1)'}), '(default=1)\n', (551, 562), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((751, 791), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)', 'default': '"""comment"""'}), "(max_length=100, default='comment')\n", (756, 791), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1108, 1128), 'sqlmodel.Field', 'Field', ([], {'max_length': '(45)'}), '(max_length=45)\n', (1113, 1128), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1213, 1233), 'sqlmodel.Field', 'Field', ([], {'default': '(False)'}), '(default=False)\n', (1218, 1233), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1304, 1323), 'sqlmodel.Field', 'Field', ([], {'default': '(True)'}), '(default=True)\n', (1309, 1323), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((662, 679), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (677, 679), False, 'from datetime import datetime\n')]
import megengine as mge import megengine.functional as F import numpy as np def bilinear_sampler(img, coords, mode="bilinear", mask=False): """Wrapper for grid_sample, uses pixel coordinates""" H, W = img.shape[-2:] img = F.remap(img, coords, border_mode="constant") if mask: mask = ( (coords[:, :, :, 0:1] < 0) | (coords[:, :, :, 0:1] > W - 1) | (coords[:, :, :, 1:2] < 0) | (coords[:, :, :, 1:2] > H - 1) ) mask = F.logical_not(mask) return img, mask.astype("float32") return img def coords_grid(batch, ht, wd): x_grid, y_grid = np.meshgrid(np.arange(wd), np.arange(ht)) y_grid, x_grid = mge.tensor(y_grid, dtype="float32"), mge.tensor( x_grid, dtype="float32" ) coords = F.stack([x_grid, y_grid], axis=0) coords = F.repeat(F.expand_dims(coords, axis=0), batch, axis=0) return coords def manual_pad(x, pady, padx): if pady > 0: u = F.repeat(x[:, :, 0:1, :], pady, axis=2) d = F.repeat(x[:, :, -1:, :], pady, axis=2) x = F.concat([u, x, d], axis=2) if padx > 0: l = F.repeat(x[:, :, :, 0:1], padx, axis=3) r = F.repeat(x[:, :, :, -1:], padx, axis=3) x = F.concat([l, x, r], axis=3) return x
[ "megengine.functional.remap", "megengine.functional.stack", "megengine.tensor", "megengine.functional.expand_dims", "megengine.functional.concat", "megengine.functional.repeat", "megengine.functional.logical_not" ]
[((237, 281), 'megengine.functional.remap', 'F.remap', (['img', 'coords'], {'border_mode': '"""constant"""'}), "(img, coords, border_mode='constant')\n", (244, 281), True, 'import megengine.functional as F\n'), ((805, 838), 'megengine.functional.stack', 'F.stack', (['[x_grid, y_grid]'], {'axis': '(0)'}), '([x_grid, y_grid], axis=0)\n', (812, 838), True, 'import megengine.functional as F\n'), ((508, 527), 'megengine.functional.logical_not', 'F.logical_not', (['mask'], {}), '(mask)\n', (521, 527), True, 'import megengine.functional as F\n'), ((654, 667), 'numpy.arange', 'np.arange', (['wd'], {}), '(wd)\n', (663, 667), True, 'import numpy as np\n'), ((669, 682), 'numpy.arange', 'np.arange', (['ht'], {}), '(ht)\n', (678, 682), True, 'import numpy as np\n'), ((705, 740), 'megengine.tensor', 'mge.tensor', (['y_grid'], {'dtype': '"""float32"""'}), "(y_grid, dtype='float32')\n", (715, 740), True, 'import megengine as mge\n'), ((742, 777), 'megengine.tensor', 'mge.tensor', (['x_grid'], {'dtype': '"""float32"""'}), "(x_grid, dtype='float32')\n", (752, 777), True, 'import megengine as mge\n'), ((861, 890), 'megengine.functional.expand_dims', 'F.expand_dims', (['coords'], {'axis': '(0)'}), '(coords, axis=0)\n', (874, 890), True, 'import megengine.functional as F\n'), ((987, 1026), 'megengine.functional.repeat', 'F.repeat', (['x[:, :, 0:1, :]', 'pady'], {'axis': '(2)'}), '(x[:, :, 0:1, :], pady, axis=2)\n', (995, 1026), True, 'import megengine.functional as F\n'), ((1039, 1078), 'megengine.functional.repeat', 'F.repeat', (['x[:, :, -1:, :]', 'pady'], {'axis': '(2)'}), '(x[:, :, -1:, :], pady, axis=2)\n', (1047, 1078), True, 'import megengine.functional as F\n'), ((1091, 1118), 'megengine.functional.concat', 'F.concat', (['[u, x, d]'], {'axis': '(2)'}), '([u, x, d], axis=2)\n', (1099, 1118), True, 'import megengine.functional as F\n'), ((1148, 1187), 'megengine.functional.repeat', 'F.repeat', (['x[:, :, :, 0:1]', 'padx'], {'axis': '(3)'}), '(x[:, :, :, 0:1], padx, axis=3)\n', (1156, 1187), True, 'import megengine.functional as F\n'), ((1200, 1239), 'megengine.functional.repeat', 'F.repeat', (['x[:, :, :, -1:]', 'padx'], {'axis': '(3)'}), '(x[:, :, :, -1:], padx, axis=3)\n', (1208, 1239), True, 'import megengine.functional as F\n'), ((1252, 1279), 'megengine.functional.concat', 'F.concat', (['[l, x, r]'], {'axis': '(3)'}), '([l, x, r], axis=3)\n', (1260, 1279), True, 'import megengine.functional as F\n')]
# Copyright 2021 Modelyst LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import pytest from psycopg import connect as pg3_connect from sqlalchemy import MetaData from sqlmodel import Session, create_engine, text from dbgen.configuration import config from dbgen.core.entity import BaseEntity from dbgen.core.metadata import meta_registry @pytest.fixture() def clear_registry(): # Clear the tables in the metadata for the default base model BaseEntity.metadata.clear() # Clear the Models associated with the registry, to avoid warnings BaseEntity._sa_registry.dispose() yield BaseEntity.metadata.clear() BaseEntity._sa_registry.dispose() @pytest.fixture(scope="module") def sql_engine(): dsn = os.environ.get('TEST_DSN', config.main_dsn) engine = create_engine(dsn) return engine @pytest.fixture(scope="function") def connection(sql_engine): """sql_engine connection""" metadata = MetaData() metadata.reflect(sql_engine) metadata.drop_all(sql_engine) connection = sql_engine.connect() yield connection connection.close() @pytest.fixture(scope="function") def session(connection): transaction = connection.begin() session = Session(bind=connection, autocommit=False, autoflush=True) yield session transaction.rollback() transaction.close() session.close() @pytest.fixture(scope="function") def seed_db(connection): connection.execute(text("CREATE table users (id serial primary key, name text);")) for user in range(100): connection.execute(text(f"INSERT into users(name) values ('user_{user}');")) connection.commit() yield connection.execute(text("drop table users;")) connection.commit() @pytest.fixture(scope="function") def make_db(connection): pass metadata = MetaData() metadata.reflect(connection) metadata.drop_all(connection) BaseEntity.metadata.create_all(connection) connection.commit() yield BaseEntity.metadata.drop_all(connection) connection.commit() @pytest.fixture(scope="function") def raw_connection(make_db, sql_engine): raw = sql_engine.raw_connection() yield raw raw.close() @pytest.fixture(scope="function") def raw_pg3_connection(make_db, sql_engine): connection = pg3_connect(str(sql_engine.url)) yield connection connection.close() @pytest.fixture def debug_logger(): custom_logger = logging.getLogger("dbgen") custom_logger.propagate = True custom_logger.setLevel(logging.DEBUG) log_format = "%(asctime)s - %(name)s - %(levelname)s - %(message)s Test" formatter = logging.Formatter(log_format) console_handler = logging.StreamHandler(stream=sys.stdout) console_handler.setFormatter(formatter) custom_logger.addHandler(console_handler) return custom_logger @pytest.fixture(scope='function') def recreate_meta(connection): connection.execute(text(f'create schema if not exists {config.meta_schema}')) meta_registry.metadata.drop_all(connection) meta_registry.metadata.create_all(connection) yield
[ "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.text" ]
[((903, 919), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (917, 919), False, 'import pytest\n'), ((1232, 1262), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (1246, 1262), False, 'import pytest\n'), ((1388, 1420), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (1402, 1420), False, 'import pytest\n'), ((1659, 1691), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (1673, 1691), False, 'import pytest\n'), ((1919, 1951), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (1933, 1951), False, 'import pytest\n'), ((2288, 2320), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (2302, 2320), False, 'import pytest\n'), ((2602, 2634), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (2616, 2634), False, 'import pytest\n'), ((2747, 2779), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (2761, 2779), False, 'import pytest\n'), ((3386, 3418), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (3400, 3418), False, 'import pytest\n'), ((1012, 1039), 'dbgen.core.entity.BaseEntity.metadata.clear', 'BaseEntity.metadata.clear', ([], {}), '()\n', (1037, 1039), False, 'from dbgen.core.entity import BaseEntity\n'), ((1115, 1148), 'dbgen.core.entity.BaseEntity._sa_registry.dispose', 'BaseEntity._sa_registry.dispose', ([], {}), '()\n', (1146, 1148), False, 'from dbgen.core.entity import BaseEntity\n'), ((1163, 1190), 'dbgen.core.entity.BaseEntity.metadata.clear', 'BaseEntity.metadata.clear', ([], {}), '()\n', (1188, 1190), False, 'from dbgen.core.entity import BaseEntity\n'), ((1195, 1228), 'dbgen.core.entity.BaseEntity._sa_registry.dispose', 'BaseEntity._sa_registry.dispose', ([], {}), '()\n', (1226, 1228), False, 'from dbgen.core.entity import BaseEntity\n'), ((1291, 1334), 'os.environ.get', 'os.environ.get', (['"""TEST_DSN"""', 'config.main_dsn'], {}), "('TEST_DSN', config.main_dsn)\n", (1305, 1334), False, 'import os\n'), ((1348, 1366), 'sqlmodel.create_engine', 'create_engine', (['dsn'], {}), '(dsn)\n', (1361, 1366), False, 'from sqlmodel import Session, create_engine, text\n'), ((1496, 1506), 'sqlalchemy.MetaData', 'MetaData', ([], {}), '()\n', (1504, 1506), False, 'from sqlalchemy import MetaData\n'), ((1768, 1826), 'sqlmodel.Session', 'Session', ([], {'bind': 'connection', 'autocommit': '(False)', 'autoflush': '(True)'}), '(bind=connection, autocommit=False, autoflush=True)\n', (1775, 1826), False, 'from sqlmodel import Session, create_engine, text\n'), ((2371, 2381), 'sqlalchemy.MetaData', 'MetaData', ([], {}), '()\n', (2379, 2381), False, 'from sqlalchemy import MetaData\n'), ((2453, 2495), 'dbgen.core.entity.BaseEntity.metadata.create_all', 'BaseEntity.metadata.create_all', (['connection'], {}), '(connection)\n', (2483, 2495), False, 'from dbgen.core.entity import BaseEntity\n'), ((2534, 2574), 'dbgen.core.entity.BaseEntity.metadata.drop_all', 'BaseEntity.metadata.drop_all', (['connection'], {}), '(connection)\n', (2562, 2574), False, 'from dbgen.core.entity import BaseEntity\n'), ((2977, 3003), 'logging.getLogger', 'logging.getLogger', (['"""dbgen"""'], {}), "('dbgen')\n", (2994, 3003), False, 'import logging\n'), ((3175, 3204), 'logging.Formatter', 'logging.Formatter', (['log_format'], {}), '(log_format)\n', (3192, 3204), False, 'import logging\n'), ((3227, 3267), 'logging.StreamHandler', 'logging.StreamHandler', ([], {'stream': 'sys.stdout'}), '(stream=sys.stdout)\n', (3248, 3267), False, 'import logging\n'), ((3536, 3579), 'dbgen.core.metadata.meta_registry.metadata.drop_all', 'meta_registry.metadata.drop_all', (['connection'], {}), '(connection)\n', (3567, 3579), False, 'from dbgen.core.metadata import meta_registry\n'), ((3584, 3629), 'dbgen.core.metadata.meta_registry.metadata.create_all', 'meta_registry.metadata.create_all', (['connection'], {}), '(connection)\n', (3617, 3629), False, 'from dbgen.core.metadata import meta_registry\n'), ((2000, 2062), 'sqlmodel.text', 'text', (['"""CREATE table users (id serial primary key, name text);"""'], {}), "('CREATE table users (id serial primary key, name text);')\n", (2004, 2062), False, 'from sqlmodel import Session, create_engine, text\n'), ((2234, 2259), 'sqlmodel.text', 'text', (['"""drop table users;"""'], {}), "('drop table users;')\n", (2238, 2259), False, 'from sqlmodel import Session, create_engine, text\n'), ((3473, 3530), 'sqlmodel.text', 'text', (['f"""create schema if not exists {config.meta_schema}"""'], {}), "(f'create schema if not exists {config.meta_schema}')\n", (3477, 3530), False, 'from sqlmodel import Session, create_engine, text\n'), ((2119, 2175), 'sqlmodel.text', 'text', (['f"""INSERT into users(name) values (\'user_{user}\');"""'], {}), '(f"INSERT into users(name) values (\'user_{user}\');")\n', (2123, 2175), False, 'from sqlmodel import Session, create_engine, text\n')]
from unittest.mock import patch from sqlmodel import create_engine from ...conftest import get_testing_print_function expected_calls = [ [ [ { "id": 7, "name": "Captain North America", "secret_name": "<NAME>", "age": 93, } ] ] ] def test_tutorial(clear_sqlmodel): from docs_src.tutorial.offset_and_limit import tutorial003 as mod mod.sqlite_url = "sqlite://" mod.engine = create_engine(mod.sqlite_url) calls = [] new_print = get_testing_print_function(calls) with patch("builtins.print", new=new_print): mod.main() assert calls == expected_calls
[ "sqlmodel.create_engine" ]
[((502, 531), 'sqlmodel.create_engine', 'create_engine', (['mod.sqlite_url'], {}), '(mod.sqlite_url)\n', (515, 531), False, 'from sqlmodel import create_engine\n'), ((608, 646), 'unittest.mock.patch', 'patch', (['"""builtins.print"""'], {'new': 'new_print'}), "('builtins.print', new=new_print)\n", (613, 646), False, 'from unittest.mock import patch\n'), ((656, 666), 'docs_src.tutorial.offset_and_limit.tutorial003.main', 'mod.main', ([], {}), '()\n', (664, 666), True, 'from docs_src.tutorial.offset_and_limit import tutorial003 as mod\n')]
from time import sleep from sqlmodel import select from icon_governance.config import settings from icon_governance.log import logger from icon_governance.metrics import prom_metrics from icon_governance.models.preps import Prep from icon_governance.utils.rpc import convert_hex_int, getStake, post_rpc_json def get_prep_stake(session): result = session.execute(select(Prep)) preps = result.scalars().all() for prep in preps: prep.stake = convert_hex_int(post_rpc_json(getStake(prep.address))["stake"]) / 1e18 session.merge(prep) session.commit() def prep_stake_cron(session): while True: logger.info("Starting stake cron") get_prep_stake(session) logger.info("Prep stake ran.") prom_metrics.preps_stake_cron_ran.inc() sleep(settings.CRON_SLEEP_SEC) if __name__ == "__main__": from icon_governance.db import session_factory get_prep_stake(session_factory())
[ "sqlmodel.select" ]
[((370, 382), 'sqlmodel.select', 'select', (['Prep'], {}), '(Prep)\n', (376, 382), False, 'from sqlmodel import select\n'), ((645, 679), 'icon_governance.log.logger.info', 'logger.info', (['"""Starting stake cron"""'], {}), "('Starting stake cron')\n", (656, 679), False, 'from icon_governance.log import logger\n'), ((720, 750), 'icon_governance.log.logger.info', 'logger.info', (['"""Prep stake ran."""'], {}), "('Prep stake ran.')\n", (731, 750), False, 'from icon_governance.log import logger\n'), ((759, 798), 'icon_governance.metrics.prom_metrics.preps_stake_cron_ran.inc', 'prom_metrics.preps_stake_cron_ran.inc', ([], {}), '()\n', (796, 798), False, 'from icon_governance.metrics import prom_metrics\n'), ((807, 837), 'time.sleep', 'sleep', (['settings.CRON_SLEEP_SEC'], {}), '(settings.CRON_SLEEP_SEC)\n', (812, 837), False, 'from time import sleep\n'), ((938, 955), 'icon_governance.db.session_factory', 'session_factory', ([], {}), '()\n', (953, 955), False, 'from icon_governance.db import session_factory\n'), ((494, 516), 'icon_governance.utils.rpc.getStake', 'getStake', (['prep.address'], {}), '(prep.address)\n', (502, 516), False, 'from icon_governance.utils.rpc import convert_hex_int, getStake, post_rpc_json\n')]
from typing import Optional from sqlmodel import Field, SQLModel, Field from pydantic import validator from datetime import datetime, date from fastapi import HTTPException import re class AppUser(SQLModel, table=True): """Create an SQLModel for users""" id: Optional[int] = Field(default=None, primary_key=True) username: str first_name: str last_name: str email: str role_id: int team_id: Optional[int] = None start_date: date created_at: datetime updated_at: datetime is_active: bool __table_args__ = {"schema": "app_db"} @validator("first_name", always=True) def valid_first_name(cls, first_name): assert first_name.replace( " ", "" ).isalpha(), "only alphabet letters allowed in first name" if first_name[0].isupper() == False: raise HTTPException( status_code=400, detail="first name should start with a capital letter" ) return first_name @validator("last_name", always=True) def valid_last_name(cls, ln_input): assert ln_input.replace( " ", "" ).isalpha(), "only alphabet letters allowed in last name" return ln_input @validator("email", always=True) def valid_email(cls, email_input): regex = r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b" assert re.fullmatch(regex, email_input), "email format incorrect" return email_input
[ "sqlmodel.Field" ]
[((286, 323), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (291, 323), False, 'from sqlmodel import Field, SQLModel, Field\n'), ((587, 623), 'pydantic.validator', 'validator', (['"""first_name"""'], {'always': '(True)'}), "('first_name', always=True)\n", (596, 623), False, 'from pydantic import validator\n'), ((1001, 1036), 'pydantic.validator', 'validator', (['"""last_name"""'], {'always': '(True)'}), "('last_name', always=True)\n", (1010, 1036), False, 'from pydantic import validator\n'), ((1226, 1257), 'pydantic.validator', 'validator', (['"""email"""'], {'always': '(True)'}), "('email', always=True)\n", (1235, 1257), False, 'from pydantic import validator\n'), ((1383, 1415), 're.fullmatch', 're.fullmatch', (['regex', 'email_input'], {}), '(regex, email_input)\n', (1395, 1415), False, 'import re\n'), ((852, 943), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""first name should start with a capital letter"""'}), "(status_code=400, detail=\n 'first name should start with a capital letter')\n", (865, 943), False, 'from fastapi import HTTPException\n')]
from select import select from app.schemas.common import ( IGetResponseBase, IPostResponseBase, IDeleteResponseBase, ) from app.utils.text_nlp import analyze_text from app.schemas.text_inference import ( TextInferenceCreate, TextInferenceRead, ) from fastapi_pagination import Page, Params from sqlmodel.ext.asyncio.session import AsyncSession from fastapi import APIRouter, Depends, HTTPException, Query from app.api import deps from app import crud from app.models import TextInference from app.models import TextInferenceBase from app.models.user import User from sqlmodel import select router = APIRouter() @router.get( "/text-classification-inferences/", response_model=IGetResponseBase[Page[TextInferenceRead]], ) async def get_text_classification_inferences( params: Params = Depends(), db_session: AsyncSession = Depends(deps.get_db), current_user: User = Depends(deps.get_current_active_user), ): inferences = await crud.text_inference.get_multi_paginated( db_session, params=params ) return IGetResponseBase[Page[TextInferenceRead]](data=inferences) @router.get( "/text-classification-inferences/order_by_created_at/", response_model=IGetResponseBase[Page[TextInferenceRead]], ) async def text_classification_inferences_order_by_created_at( params: Params = Depends(), db_session: AsyncSession = Depends(deps.get_db), current_user: User = Depends(deps.get_current_active_user), ): query = select(TextInference).order_by(TextInference.created_at) inferences = await crud.text_inference.get_multi_paginated( db_session, query=query, params=params ) return IGetResponseBase[Page[TextInferenceRead]](data=inferences) @router.post( "/text-classification-predict/", response_model=IPostResponseBase[TextInferenceRead] ) async def predict( request: TextInferenceBase, db_session: AsyncSession = Depends(deps.get_db), current_user: User = Depends(deps.get_current_active_user), ): text = request.text result = await analyze_text(text) text = result[0] res = result[1] inference = TextInferenceCreate(text=text, result=res) my_inference = await crud.text_inference.create_inference( db_session, obj_in=inference, user_id=current_user.id ) return IPostResponseBase(data=TextInferenceRead.from_orm(my_inference))
[ "sqlmodel.select" ]
[((620, 631), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (629, 631), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((818, 827), 'fastapi.Depends', 'Depends', ([], {}), '()\n', (825, 827), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((860, 880), 'fastapi.Depends', 'Depends', (['deps.get_db'], {}), '(deps.get_db)\n', (867, 880), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((907, 944), 'fastapi.Depends', 'Depends', (['deps.get_current_active_user'], {}), '(deps.get_current_active_user)\n', (914, 944), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((1345, 1354), 'fastapi.Depends', 'Depends', ([], {}), '()\n', (1352, 1354), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((1387, 1407), 'fastapi.Depends', 'Depends', (['deps.get_db'], {}), '(deps.get_db)\n', (1394, 1407), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((1434, 1471), 'fastapi.Depends', 'Depends', (['deps.get_current_active_user'], {}), '(deps.get_current_active_user)\n', (1441, 1471), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((1921, 1941), 'fastapi.Depends', 'Depends', (['deps.get_db'], {}), '(deps.get_db)\n', (1928, 1941), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((1968, 2005), 'fastapi.Depends', 'Depends', (['deps.get_current_active_user'], {}), '(deps.get_current_active_user)\n', (1975, 2005), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((2131, 2173), 'app.schemas.text_inference.TextInferenceCreate', 'TextInferenceCreate', ([], {'text': 'text', 'result': 'res'}), '(text=text, result=res)\n', (2150, 2173), False, 'from app.schemas.text_inference import TextInferenceCreate, TextInferenceRead\n'), ((972, 1038), 'app.crud.text_inference.get_multi_paginated', 'crud.text_inference.get_multi_paginated', (['db_session'], {'params': 'params'}), '(db_session, params=params)\n', (1011, 1038), False, 'from app import crud\n'), ((1568, 1647), 'app.crud.text_inference.get_multi_paginated', 'crud.text_inference.get_multi_paginated', (['db_session'], {'query': 'query', 'params': 'params'}), '(db_session, query=query, params=params)\n', (1607, 1647), False, 'from app import crud\n'), ((2054, 2072), 'app.utils.text_nlp.analyze_text', 'analyze_text', (['text'], {}), '(text)\n', (2066, 2072), False, 'from app.utils.text_nlp import analyze_text\n'), ((2200, 2296), 'app.crud.text_inference.create_inference', 'crud.text_inference.create_inference', (['db_session'], {'obj_in': 'inference', 'user_id': 'current_user.id'}), '(db_session, obj_in=inference, user_id=\n current_user.id)\n', (2236, 2296), False, 'from app import crud\n'), ((1488, 1509), 'sqlmodel.select', 'select', (['TextInference'], {}), '(TextInference)\n', (1494, 1509), False, 'from sqlmodel import select\n'), ((2341, 2381), 'app.schemas.text_inference.TextInferenceRead.from_orm', 'TextInferenceRead.from_orm', (['my_inference'], {}), '(my_inference)\n', (2367, 2381), False, 'from app.schemas.text_inference import TextInferenceCreate, TextInferenceRead\n')]
import os from fastapi import FastAPI from sqlmodel import create_engine, SQLModel from .configurations import env from .models import * # init models package class AppFactory(object): def __init__(self): self._app = None @staticmethod def _get_all_router(): from pigeon.blog.services.routers import __all_routers__ return __all_routers__ def _apply_router(self): if not isinstance(self._app, FastAPI): raise RuntimeError("self._app isn't initialized.") routers = AppFactory._get_all_router() for r in routers: self._app.include_router(r) def _ensure_sql(self): if not isinstance(self._app, FastAPI): return @self._app.on_event("startup") def sql_startup(): engine = get_engine() SQLModel.metadata.create_all(engine) @self._app.on_event("shutdown") def sql_shutdown(): pass def __call__(self, *args, **kwargs): self._app = FastAPI( title="Pigeon Blog", ) self._apply_router() self._ensure_sql() return self._app
[ "sqlmodel.SQLModel.metadata.create_all" ]
[((1026, 1054), 'fastapi.FastAPI', 'FastAPI', ([], {'title': '"""Pigeon Blog"""'}), "(title='Pigeon Blog')\n", (1033, 1054), False, 'from fastapi import FastAPI\n'), ((841, 877), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (869, 877), False, 'from sqlmodel import create_engine, SQLModel\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. from typing import Callable, Union import megengine as mge import megengine.functional as F import megengine.module as M from .activations import activation __all__ = ["conv2d", "norm2d", "pool2d", "gap2d", "linear", "SE", "DropPath"] def conv2d( w_in: int, w_out: int, k: int, *, stride: int = 1, dilation: int = 1, groups: int = 1, bias: bool = False, ) -> M.Conv2d: """Helper for building a conv2d layer. It will calculate padding automatically. Args: w_in: input width. w_out: output width. k: kernel size. stride: stride. Default: ``1`` dilation: dilation. Default: ``1`` groups: groups. Default: ``1`` bias: enable bias or not. Default: ``False`` Returns: A conv2d module. """ assert k % 2 == 1, "Only odd size kernels supported to avoid padding issues." s, p, d, g, b = stride, (k - 1) * dilation // 2, dilation, groups, bias return M.Conv2d(w_in, w_out, k, stride=s, padding=p, dilation=d, groups=g, bias=b) def norm2d(name: Union[str, Callable], w_in: int, **kwargs) -> M.Module: """Helper for building a norm2d layer. Args: norm_name: normalization name, supports ``None``, ``"BN"``, ``"GN"``, ``"IN"``, ``"LN"`` and ``"SyncBN"``. w_in: input width. Returns: A norm2d module. """ if name is None: return M.Identity() if callable(name): return name(w_in, **kwargs) if isinstance(name, str): norm_funcs = { "BN": M.BatchNorm2d, "GN": M.GroupNorm, "IN": M.InstanceNorm, "LN": M.LayerNorm, "SyncBN": M.SyncBatchNorm, } if name in norm_funcs.keys(): return norm_funcs[name](w_in, **kwargs) raise ValueError(f"Norm name '{name}' not supported") def pool2d(k: int, *, stride: int = 1, name: str = "max") -> M.Module: """Helper for building a pool2d layer. Args: k: kernel size. stride: stride. Default: ``1`` name: pooling name, supports ``"avg"`` and ``"max"``. Returns: A pool2d module. """ assert k % 2 == 1, "Only odd size kernels supported to avoid padding issues." pool_funcs = { "avg": M.AvgPool2d, "max": M.MaxPool2d, } if name not in pool_funcs.keys(): raise ValueError(f"Pool name '{name}' not supported") return pool_funcs[name](k, stride=stride, padding=(k - 1) // 2) def gap2d(shape=1) -> M.AdaptiveAvgPool2d: """Helper for building a gap2d layer. Args: shape: output shape. Default: ``1`` Returns: A gap2d module. """ return M.AdaptiveAvgPool2d(shape) def linear(w_in: int, w_out: int, *, bias: bool = False) -> M.Linear: """Helper for building a linear layer. Args: w_in: input width. w_out: output width. bias: enable bias or not. Default: ``False`` Returns: A linear module. """ return M.Linear(w_in, w_out, bias=bias) class SE(M.Module): """Squeeze-and-Excitation (SE) block: AvgPool, FC, Act, FC, Sigmoid. Args: w_in: input width. w_se: se width. act_name: activation name. approx_sigmoid: approximated sigmoid function. Attributes: avg_pool: gad2d layer. f_ex: sequantial which conbines conv2d -> act -> conv2d -> sigmoid. """ def __init__(self, w_in: int, w_se: int, act_name: str, approx_sigmoid: bool = False): super().__init__() self.avg_pool = gap2d() self.f_ex = M.Sequential( conv2d(w_in, w_se, 1, bias=True), activation(act_name), conv2d(w_se, w_in, 1, bias=True), activation("hsigmoid") if approx_sigmoid else M.Sigmoid(), ) def forward(self, x: mge.Tensor) -> mge.Tensor: return x * self.f_ex(self.avg_pool(x)) class DropPath(M.Dropout): """DropPath block. Args: drop_prob: the probability to drop (set to zero) each path. """ def forward(self, x: mge.Tensor): if not self.training or self.drop_prob == 0.0: return x shape = (x.shape[0],) + (1,) * (x.ndim - 1) mask = F.ones(shape) mask = F.dropout(mask, self.drop_prob, training=self.training) return x * mask
[ "megengine.module.AdaptiveAvgPool2d", "megengine.module.Identity", "megengine.module.Sigmoid", "megengine.module.Linear", "megengine.functional.dropout", "megengine.functional.ones", "megengine.module.Conv2d" ]
[((1058, 1133), 'megengine.module.Conv2d', 'M.Conv2d', (['w_in', 'w_out', 'k'], {'stride': 's', 'padding': 'p', 'dilation': 'd', 'groups': 'g', 'bias': 'b'}), '(w_in, w_out, k, stride=s, padding=p, dilation=d, groups=g, bias=b)\n', (1066, 1133), True, 'import megengine.module as M\n'), ((2780, 2806), 'megengine.module.AdaptiveAvgPool2d', 'M.AdaptiveAvgPool2d', (['shape'], {}), '(shape)\n', (2799, 2806), True, 'import megengine.module as M\n'), ((3100, 3132), 'megengine.module.Linear', 'M.Linear', (['w_in', 'w_out'], {'bias': 'bias'}), '(w_in, w_out, bias=bias)\n', (3108, 3132), True, 'import megengine.module as M\n'), ((1500, 1512), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (1510, 1512), True, 'import megengine.module as M\n'), ((4325, 4338), 'megengine.functional.ones', 'F.ones', (['shape'], {}), '(shape)\n', (4331, 4338), True, 'import megengine.functional as F\n'), ((4354, 4409), 'megengine.functional.dropout', 'F.dropout', (['mask', 'self.drop_prob'], {'training': 'self.training'}), '(mask, self.drop_prob, training=self.training)\n', (4363, 4409), True, 'import megengine.functional as F\n'), ((3881, 3892), 'megengine.module.Sigmoid', 'M.Sigmoid', ([], {}), '()\n', (3890, 3892), True, 'import megengine.module as M\n')]
import uuid from datetime import datetime from typing import Optional from sqlalchemy import Column from sqlalchemy.dialects.postgresql import JSON from sqlmodel import Field, Relationship from api.db.models.base import BaseModel, BaseTable class OutOfBandBase(BaseModel): msg_type: str = Field(nullable=False) msg: dict = Field(default={}, sa_column=Column(JSON)) sender_id: uuid.UUID = None recipient_id: uuid.UUID = None sandbox_id: uuid.UUID = None action: Optional[str] = Field(nullable=True) class OutOfBand(OutOfBandBase, BaseTable, table=True): __tablename__ = "out_of_band" # optional else, required on save sender_id: uuid.UUID = Field(foreign_key="line_of_business.id") recipient_id: uuid.UUID = Field(foreign_key="line_of_business.id") sandbox_id: uuid.UUID = Field(foreign_key="sandbox.id") # relationships sender: Optional["Lob"] = Relationship( # noqa: F821 sa_relationship_kwargs={ "primaryjoin": "OutOfBand.sender_id==Lob.id", "lazy": "joined", } ) recipient: Optional["Lob"] = Relationship( # noqa: F821 sa_relationship_kwargs={ "primaryjoin": "OutOfBand.recipient_id==Lob.id", "lazy": "joined", } ) class Config: arbitrary_types_allowed = True class OutOfBandCreate(OutOfBandBase): pass class OutOfBandRead(OutOfBandBase): id: uuid.UUID created_at: datetime updated_at: datetime class OutOfBandUpdate(BaseModel): id: uuid.UUID name: Optional[str] = None action: Optional[str] = None
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((297, 318), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)'}), '(nullable=False)\n', (302, 318), False, 'from sqlmodel import Field, Relationship\n'), ((505, 525), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)'}), '(nullable=True)\n', (510, 525), False, 'from sqlmodel import Field, Relationship\n'), ((683, 723), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""line_of_business.id"""'}), "(foreign_key='line_of_business.id')\n", (688, 723), False, 'from sqlmodel import Field, Relationship\n'), ((754, 794), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""line_of_business.id"""'}), "(foreign_key='line_of_business.id')\n", (759, 794), False, 'from sqlmodel import Field, Relationship\n'), ((823, 854), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""sandbox.id"""'}), "(foreign_key='sandbox.id')\n", (828, 854), False, 'from sqlmodel import Field, Relationship\n'), ((906, 1011), 'sqlmodel.Relationship', 'Relationship', ([], {'sa_relationship_kwargs': "{'primaryjoin': 'OutOfBand.sender_id==Lob.id', 'lazy': 'joined'}"}), "(sa_relationship_kwargs={'primaryjoin':\n 'OutOfBand.sender_id==Lob.id', 'lazy': 'joined'})\n", (918, 1011), False, 'from sqlmodel import Field, Relationship\n'), ((1104, 1212), 'sqlmodel.Relationship', 'Relationship', ([], {'sa_relationship_kwargs': "{'primaryjoin': 'OutOfBand.recipient_id==Lob.id', 'lazy': 'joined'}"}), "(sa_relationship_kwargs={'primaryjoin':\n 'OutOfBand.recipient_id==Lob.id', 'lazy': 'joined'})\n", (1116, 1212), False, 'from sqlmodel import Field, Relationship\n'), ((363, 375), 'sqlalchemy.Column', 'Column', (['JSON'], {}), '(JSON)\n', (369, 375), False, 'from sqlalchemy import Column\n')]
from typing import Optional from sqlmodel import Field, Session, SQLModel, create_engine, select class Hero(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str secret_name: str age: Optional[int] = None sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def create_heroes(): hero_1 = Hero(name="Deadpond", secret_name="<NAME>") hero_2 = Hero(name="Spider-Boy", secret_name="<NAME>") hero_3 = Hero(name="Rusty-Man", secret_name="<NAME>", age=48) hero_4 = Hero(name="Tarantula", secret_name="<NAME>", age=32) hero_5 = Hero(name="<NAME>", secret_name="<NAME>", age=35) hero_6 = Hero(name="<NAME>", secret_name="<NAME>", age=36) hero_7 = Hero(name="Captain North America", secret_name="<NAME>", age=93) with Session(engine) as session: session.add(hero_1) session.add(hero_2) session.add(hero_3) session.add(hero_4) session.add(hero_5) session.add(hero_6) session.add(hero_7) session.commit() def select_heroes(): with Session(engine) as session: statement = select(Hero).where(Hero.id == 1) results = session.exec(statement) hero = results.first() print("Hero:", hero) def main(): create_db_and_tables() create_heroes() select_heroes() if __name__ == "__main__": main()
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.Field", "sqlmodel.select", "sqlmodel.create_engine" ]
[((351, 387), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (364, 387), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((158, 195), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (163, 195), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((422, 458), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (450, 458), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((944, 959), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (951, 959), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1226, 1241), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1233, 1241), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1274, 1286), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (1280, 1286), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n')]
"""Add schools Revision ID: 423e059e8b64 Revises: 58d2280520b8 Create Date: 2022-02-12 07:44:42.189067+00:00 """ import sqlalchemy as sa import sqlmodel from alembic import op # revision identifiers, used by Alembic. revision = "423e059e8b64" down_revision = "58d2280520b8" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "schools", sa.Column("id", sa.Integer(), nullable=False), sa.Column("name", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.PrimaryKeyConstraint("id"), ) op.add_column("applications", sa.Column("school_id", sa.Integer(), nullable=False)) op.create_foreign_key(None, "applications", "schools", ["school_id"], ["id"]) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, "applications", type_="foreignkey") op.drop_column("applications", "school_id") op.drop_table("schools") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((710, 787), 'alembic.op.create_foreign_key', 'op.create_foreign_key', (['None', '"""applications"""', '"""schools"""', "['school_id']", "['id']"], {}), "(None, 'applications', 'schools', ['school_id'], ['id'])\n", (731, 787), False, 'from alembic import op\n'), ((912, 972), 'alembic.op.drop_constraint', 'op.drop_constraint', (['None', '"""applications"""'], {'type_': '"""foreignkey"""'}), "(None, 'applications', type_='foreignkey')\n", (930, 972), False, 'from alembic import op\n'), ((977, 1020), 'alembic.op.drop_column', 'op.drop_column', (['"""applications"""', '"""school_id"""'], {}), "('applications', 'school_id')\n", (991, 1020), False, 'from alembic import op\n'), ((1025, 1049), 'alembic.op.drop_table', 'op.drop_table', (['"""schools"""'], {}), "('schools')\n", (1038, 1049), False, 'from alembic import op\n'), ((581, 610), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (604, 610), True, 'import sqlalchemy as sa\n'), ((463, 475), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (473, 475), True, 'import sqlalchemy as sa\n'), ((520, 554), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (552, 554), False, 'import sqlmodel\n'), ((675, 687), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (685, 687), True, 'import sqlalchemy as sa\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 / sqrt(bn_var + eps) # type: ignore[attr-defined] # w_fold = gamma / bn_std * W scale_factor = gamma * bn_istd if conv_groups == 1: w_fold = conv_weight * scale_factor.reshape(-1, 1, 1, 1) else: w_fold = conv_weight * scale_factor.reshape(conv_groups, -1, 1, 1, 1) # b_fold = gamma * (b - bn_mean) / bn_std + beta b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd return w_fold, b_fold @_register_tranformation_rule(TransformerRule.FUSE_CONV_BN) def _fuse_conv_bn(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "BatchNormalization" and len(net.find_inp_oprs(opr)) == 1 and net.find_inp_oprs(opr)[0].name == "Conv2d" and len(net.find_out_oprs(net.find_inp_oprs(opr)[0])) == 1 and net.find_out_oprs(net.find_inp_oprs(opr)[0])[0] == opr ): gamma = ( Tensor(opr.weight) # type: ignore[attr-defined] if opr.weight is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[1].np_data) ) beta = ( Tensor(opr.bias) # type: ignore[attr-defined] if opr.bias is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[2].np_data) ) bn_mean = ( Tensor(opr.mean) # type: ignore[attr-defined] if opr.mean is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[3].np_data) ) bn_var = ( Tensor(opr.var) # type: ignore[attr-defined] if opr.var is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[4].np_data) ) conv_op = net.find_inp_oprs(opr)[0] conv_weight = conv_op.inp_tensors[1].np_data if len(conv_op.inp_tensors) == 2: # add conv bias tensor weight_shape = conv_op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) conv_bias = IRTensor( name=conv_op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=np.zeros(bias_shape, dtype=np.float32), owner_opr=conv_op, ) if conv_op.inp_tensors[0].scale and conv_op.inp_tensors[1].scale: conv_bias.set_qparams( conv_op.inp_tensors[0].scale * conv_op.inp_tensors[1].scale, 0 ) conv_bias.q_dtype = "int32" conv_op.inp_tensors.append(conv_bias) conv_bias = conv_op.inp_tensors[2].np_data.reshape(1, -1, 1, 1) w_fold, b_fold = fold_conv_bn( conv_weight, conv_bias, conv_op.groups, gamma, beta, bn_mean, bn_var, opr.eps, # type: ignore[attr-defined] ) conv_op.inp_tensors[1].np_data = w_fold.numpy() conv_op.inp_tensors[2].np_data = b_fold.numpy() # delete bn opr conv_op.out_tensors[0] = opr.out_tensors[-1] conv_op.out_tensors[0].owner_opr = conv_op index = net._opr_ids.index(id(opr)) net.delete_ops(index) @_register_tranformation_rule(TransformerRule.REMOVE_IDENTITY) def _remove_identity(net: IRGraph): delete_intended = [] for op_id, opr in zip(net._opr_ids, net.all_oprs): if not isinstance(opr, IdentityOpr): continue user_ops = net.find_out_oprs(opr) for user in user_ops: idx = user.inp_tensors.index(opr.out_tensors[0]) user.inp_tensors[idx] = opr.inp_tensors[0] idx = opr.inp_tensors[0].user_opr.index(opr) opr.inp_tensors[0].user_opr[idx] = user delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.EXPAND_CONVRELU) def _expand_conv_relu(net: IRGraph): for opr in net.all_oprs: if not isinstance(opr, ConvRelu2dOpr): continue conv_op = Conv2dOpr( stride=opr.stride, padding=opr.padding, dilation=opr.dilation, groups=opr.groups, ) conv_op.inp_tensors = opr.inp_tensors for t in conv_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = conv_op conv_out_tensor = IRTensor( name=opr.inp_tensors[0].name + "_conv_out", shape=opr.out_tensors[0].shape, dtype=opr.out_tensors[0].dtype, scale=opr.out_tensors[0].scale, zero_point=opr.out_tensors[0].zero_point, q_type=opr.out_tensors[0].q_dtype, owner_opr=conv_op, ) conv_op.out_tensors = [conv_out_tensor] conv_out_tensor.owner_opr = conv_op idx = net.all_oprs.index(opr) net.add_op(conv_op, idx) relu_op = ReluOpr() relu_op.inp_tensors = conv_op.out_tensors conv_out_tensor.user_opr.append(relu_op) relu_op.out_tensors = opr.out_tensors for t in relu_op.out_tensors: t.owner_opr = relu_op net.replace_op(opr, relu_op)
[ "megengine.Tensor", "megengine.functional.sqrt" ]
[((5519, 5532), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (5530, 5532), False, 'from collections import OrderedDict\n'), ((18529, 18542), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (18540, 18542), False, 'from collections import OrderedDict\n'), ((8433, 8532), 'numpy.array', 'np.array', (['[result_shape[0], result_shape[2], result_shape[3], result_shape[1]]'], {'dtype': 'np.int32'}), '([result_shape[0], result_shape[2], result_shape[3], result_shape[1\n ]], dtype=np.int32)\n', (8441, 8532), True, 'import numpy as np\n'), ((10396, 10434), 'numpy.zeros', 'np.zeros', (['bias_shape'], {'dtype': 'np.float32'}), '(bias_shape, dtype=np.float32)\n', (10404, 10434), True, 'import numpy as np\n'), ((11433, 11471), 'numpy.zeros', 'np.zeros', (['bias_shape'], {'dtype': 'np.float32'}), '(bias_shape, dtype=np.float32)\n', (11441, 11471), True, 'import numpy as np\n'), ((33030, 33048), 'megengine.functional.sqrt', 'sqrt', (['(bn_var + eps)'], {}), '(bn_var + eps)\n', (33034, 33048), False, 'from megengine.functional import sqrt\n'), ((5791, 5893), 'numpy.array', 'np.array', (['[0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0]'], {'dtype': 'np.int32'}), '([0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1],\n 0, 0], dtype=np.int32)\n', (5799, 5893), True, 'import numpy as np\n'), ((3220, 3241), 'functools.cmp_to_key', 'cmp_to_key', (['cmp_rules'], {}), '(cmp_rules)\n', (3230, 3241), False, 'from functools import cmp_to_key\n'), ((4441, 4477), 'numpy.array', 'np.array', (['op.pattern'], {'dtype': 'np.int32'}), '(op.pattern, dtype=np.int32)\n', (4449, 4477), True, 'import numpy as np\n'), ((4955, 4988), 'numpy.array', 'np.array', (['op.axis'], {'dtype': 'np.int32'}), '(op.axis, dtype=np.int32)\n', (4963, 4988), True, 'import numpy as np\n'), ((9740, 9777), 'numpy.array', 'np.array', (['op.out_size'], {'dtype': 'np.int32'}), '(op.out_size, dtype=np.int32)\n', (9748, 9777), True, 'import numpy as np\n'), ((14872, 14890), 'numpy.iinfo', 'np.iinfo', (['np.int32'], {}), '(np.int32)\n', (14880, 14890), True, 'import numpy as np\n'), ((33947, 33965), 'megengine.Tensor', 'Tensor', (['opr.weight'], {}), '(opr.weight)\n', (33953, 33965), False, 'from megengine import Tensor\n'), ((34089, 34123), 'megengine.Tensor', 'Tensor', (['opr.inp_tensors[1].np_data'], {}), '(opr.inp_tensors[1].np_data)\n', (34095, 34123), False, 'from megengine import Tensor\n'), ((34175, 34191), 'megengine.Tensor', 'Tensor', (['opr.bias'], {}), '(opr.bias)\n', (34181, 34191), False, 'from megengine import Tensor\n'), ((34313, 34347), 'megengine.Tensor', 'Tensor', (['opr.inp_tensors[2].np_data'], {}), '(opr.inp_tensors[2].np_data)\n', (34319, 34347), False, 'from megengine import Tensor\n'), ((34402, 34418), 'megengine.Tensor', 'Tensor', (['opr.mean'], {}), '(opr.mean)\n', (34408, 34418), False, 'from megengine import Tensor\n'), ((34540, 34574), 'megengine.Tensor', 'Tensor', (['opr.inp_tensors[3].np_data'], {}), '(opr.inp_tensors[3].np_data)\n', (34546, 34574), False, 'from megengine import Tensor\n'), ((34628, 34643), 'megengine.Tensor', 'Tensor', (['opr.var'], {}), '(opr.var)\n', (34634, 34643), False, 'from megengine import Tensor\n'), ((34764, 34798), 'megengine.Tensor', 'Tensor', (['opr.inp_tensors[4].np_data'], {}), '(opr.inp_tensors[4].np_data)\n', (34770, 34798), False, 'from megengine import Tensor\n'), ((4365, 4385), 'numpy.array', 'np.array', (['op.pattern'], {}), '(op.pattern)\n', (4373, 4385), True, 'import numpy as np\n'), ((14582, 14611), 'numpy.array', 'np.array', (['ret'], {'dtype': 'np.int32'}), '(ret, dtype=np.int32)\n', (14590, 14611), True, 'import numpy as np\n'), ((16601, 16628), 'numpy.array_equal', 'np.array_equal', (['const[1]', 'v'], {}), '(const[1], v)\n', (16615, 16628), True, 'import numpy as np\n'), ((16826, 16868), 'numpy.array_equal', 'np.array_equal', (['const[1]', 'inp_tensors[idx]'], {}), '(const[1], inp_tensors[idx])\n', (16840, 16868), True, 'import numpy as np\n'), ((35512, 35550), 'numpy.zeros', 'np.zeros', (['bias_shape'], {'dtype': 'np.float32'}), '(bias_shape, dtype=np.float32)\n', (35520, 35550), True, 'import numpy as np\n')]
"""Initial model generation Revision ID: a2ced875a244 Revises: Create Date: 2021-10-28 09:24:53.225445 """ from alembic import op import sqlalchemy as sa import sqlmodel # revision identifiers, used by Alembic. revision = 'a2ced875a244' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('category', sa.Column('name', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('playlists', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('id', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_category_id'), 'category', ['id'], unique=False) op.create_index(op.f('ix_category_name'), 'category', ['name'], unique=False) op.create_index(op.f('ix_category_playlists'), 'category', ['playlists'], unique=False) op.create_table('user', sa.Column('entity_id', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('name', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('created_at', sa.DateTime(), nullable=False), sa.Column('last_login', sa.DateTime(), nullable=True), sa.Column('admin', sa.Boolean(), nullable=False), sa.Column('id', sa.Integer(), nullable=True), sa.Column('password', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_user_admin'), 'user', ['admin'], unique=False) op.create_index(op.f('ix_user_created_at'), 'user', ['created_at'], unique=False) op.create_index(op.f('ix_user_entity_id'), 'user', ['entity_id'], unique=False) op.create_index(op.f('ix_user_id'), 'user', ['id'], unique=False) op.create_index(op.f('ix_user_last_login'), 'user', ['last_login'], unique=False) op.create_index(op.f('ix_user_name'), 'user', ['name'], unique=False) op.create_index(op.f('ix_user_password'), 'user', ['password'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_user_password'), table_name='user') op.drop_index(op.f('ix_user_name'), table_name='user') op.drop_index(op.f('ix_user_last_login'), table_name='user') op.drop_index(op.f('ix_user_id'), table_name='user') op.drop_index(op.f('ix_user_entity_id'), table_name='user') op.drop_index(op.f('ix_user_created_at'), table_name='user') op.drop_index(op.f('ix_user_admin'), table_name='user') op.drop_table('user') op.drop_index(op.f('ix_category_playlists'), table_name='category') op.drop_index(op.f('ix_category_name'), table_name='category') op.drop_index(op.f('ix_category_id'), table_name='category') op.drop_table('category') # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((2554, 2575), 'alembic.op.drop_table', 'op.drop_table', (['"""user"""'], {}), "('user')\n", (2567, 2575), False, 'from alembic import op\n'), ((2784, 2809), 'alembic.op.drop_table', 'op.drop_table', (['"""category"""'], {}), "('category')\n", (2797, 2809), False, 'from alembic import op\n'), ((626, 655), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (649, 655), True, 'import sqlalchemy as sa\n'), ((682, 704), 'alembic.op.f', 'op.f', (['"""ix_category_id"""'], {}), "('ix_category_id')\n", (686, 704), False, 'from alembic import op\n'), ((760, 784), 'alembic.op.f', 'op.f', (['"""ix_category_name"""'], {}), "('ix_category_name')\n", (764, 784), False, 'from alembic import op\n'), ((842, 871), 'alembic.op.f', 'op.f', (['"""ix_category_playlists"""'], {}), "('ix_category_playlists')\n", (846, 871), False, 'from alembic import op\n'), ((1403, 1432), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1426, 1432), True, 'import sqlalchemy as sa\n'), ((1459, 1480), 'alembic.op.f', 'op.f', (['"""ix_user_admin"""'], {}), "('ix_user_admin')\n", (1463, 1480), False, 'from alembic import op\n'), ((1535, 1561), 'alembic.op.f', 'op.f', (['"""ix_user_created_at"""'], {}), "('ix_user_created_at')\n", (1539, 1561), False, 'from alembic import op\n'), ((1621, 1646), 'alembic.op.f', 'op.f', (['"""ix_user_entity_id"""'], {}), "('ix_user_entity_id')\n", (1625, 1646), False, 'from alembic import op\n'), ((1705, 1723), 'alembic.op.f', 'op.f', (['"""ix_user_id"""'], {}), "('ix_user_id')\n", (1709, 1723), False, 'from alembic import op\n'), ((1775, 1801), 'alembic.op.f', 'op.f', (['"""ix_user_last_login"""'], {}), "('ix_user_last_login')\n", (1779, 1801), False, 'from alembic import op\n'), ((1861, 1881), 'alembic.op.f', 'op.f', (['"""ix_user_name"""'], {}), "('ix_user_name')\n", (1865, 1881), False, 'from alembic import op\n'), ((1935, 1959), 'alembic.op.f', 'op.f', (['"""ix_user_password"""'], {}), "('ix_user_password')\n", (1939, 1959), False, 'from alembic import op\n'), ((2135, 2159), 'alembic.op.f', 'op.f', (['"""ix_user_password"""'], {}), "('ix_user_password')\n", (2139, 2159), False, 'from alembic import op\n'), ((2198, 2218), 'alembic.op.f', 'op.f', (['"""ix_user_name"""'], {}), "('ix_user_name')\n", (2202, 2218), False, 'from alembic import op\n'), ((2257, 2283), 'alembic.op.f', 'op.f', (['"""ix_user_last_login"""'], {}), "('ix_user_last_login')\n", (2261, 2283), False, 'from alembic import op\n'), ((2322, 2340), 'alembic.op.f', 'op.f', (['"""ix_user_id"""'], {}), "('ix_user_id')\n", (2326, 2340), False, 'from alembic import op\n'), ((2379, 2404), 'alembic.op.f', 'op.f', (['"""ix_user_entity_id"""'], {}), "('ix_user_entity_id')\n", (2383, 2404), False, 'from alembic import op\n'), ((2443, 2469), 'alembic.op.f', 'op.f', (['"""ix_user_created_at"""'], {}), "('ix_user_created_at')\n", (2447, 2469), False, 'from alembic import op\n'), ((2508, 2529), 'alembic.op.f', 'op.f', (['"""ix_user_admin"""'], {}), "('ix_user_admin')\n", (2512, 2529), False, 'from alembic import op\n'), ((2594, 2623), 'alembic.op.f', 'op.f', (['"""ix_category_playlists"""'], {}), "('ix_category_playlists')\n", (2598, 2623), False, 'from alembic import op\n'), ((2666, 2690), 'alembic.op.f', 'op.f', (['"""ix_category_name"""'], {}), "('ix_category_name')\n", (2670, 2690), False, 'from alembic import op\n'), ((2733, 2755), 'alembic.op.f', 'op.f', (['"""ix_category_id"""'], {}), "('ix_category_id')\n", (2737, 2755), False, 'from alembic import op\n'), ((439, 473), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (471, 473), False, 'import sqlmodel\n'), ((519, 553), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (551, 553), False, 'import sqlmodel\n'), ((592, 604), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (602, 604), True, 'import sqlalchemy as sa\n'), ((969, 1003), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1001, 1003), False, 'import sqlmodel\n'), ((1044, 1078), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1076, 1078), False, 'import sqlmodel\n'), ((1125, 1138), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1136, 1138), True, 'import sqlalchemy as sa\n'), ((1185, 1198), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1196, 1198), True, 'import sqlalchemy as sa\n'), ((1239, 1251), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (1249, 1251), True, 'import sqlalchemy as sa\n'), ((1290, 1302), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1300, 1302), True, 'import sqlalchemy as sa\n'), ((1346, 1380), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1378, 1380), False, 'import sqlmodel\n')]
import uuid from datetime import datetime from typing import Optional from sqlalchemy import UniqueConstraint from sqlmodel import Field, Relationship from pydantic_factories import ModelFactory, Use from faker import Faker from api.db.models.base import BaseModel, BaseTable class StudentBase(BaseModel): name: str = Field(index=True, nullable=False) sandbox_id: uuid.UUID = None # faber line of business data for student degree credentials degree: Optional[str] = Field(default=None, nullable=True) age: Optional[int] = Field(default=None, nullable=True) student_id: Optional[str] = Field(default=None, nullable=True) date: Optional[datetime] = Field(default=None, nullable=True) # track invitation information # this is for this LOB to track this entity in Traction invitation_state: Optional[str] = Field(default=None, nullable=True) connection_id: Optional[uuid.UUID] = Field(default=None) # for matching this student with their traction tenant # this would not be in this LOB data at all!!! # the entity/person/business that this record represents # would be tracking this in their system/data wallet_id: Optional[uuid.UUID] = None alias: Optional[str] = Field(default=None, nullable=True) class Student(StudentBase, BaseTable, table=True): __table_args__ = (UniqueConstraint("name", "sandbox_id"),) sandbox: Optional["Sandbox"] = Relationship(back_populates="students") # noqa: F821 sandbox_id: uuid.UUID = Field(foreign_key="sandbox.id") wallet_id: uuid.UUID = Field(default=None, nullable=True) class StudentCreate(StudentBase): pass class StudentRead(StudentBase): id: uuid.UUID created_at: datetime updated_at: datetime degree: Optional[str] = None age: Optional[int] = None student_id: Optional[str] = None date: Optional[datetime] = None class StudentUpdate(StudentBase): name: Optional[str] = None # FACTORIES class StudentCreateFactory(ModelFactory): __model__ = StudentCreate name = Use(Faker().name) degree = None age = None student_id = None date = None wallet_id = None alias = None invitation_state = None connection_id = None
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((325, 358), 'sqlmodel.Field', 'Field', ([], {'index': '(True)', 'nullable': '(False)'}), '(index=True, nullable=False)\n', (330, 358), False, 'from sqlmodel import Field, Relationship\n'), ((486, 520), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'nullable': '(True)'}), '(default=None, nullable=True)\n', (491, 520), False, 'from sqlmodel import Field, Relationship\n'), ((546, 580), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'nullable': '(True)'}), '(default=None, nullable=True)\n', (551, 580), False, 'from sqlmodel import Field, Relationship\n'), ((613, 647), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'nullable': '(True)'}), '(default=None, nullable=True)\n', (618, 647), False, 'from sqlmodel import Field, Relationship\n'), ((679, 713), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'nullable': '(True)'}), '(default=None, nullable=True)\n', (684, 713), False, 'from sqlmodel import Field, Relationship\n'), ((848, 882), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'nullable': '(True)'}), '(default=None, nullable=True)\n', (853, 882), False, 'from sqlmodel import Field, Relationship\n'), ((924, 943), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (929, 943), False, 'from sqlmodel import Field, Relationship\n'), ((1235, 1269), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'nullable': '(True)'}), '(default=None, nullable=True)\n', (1240, 1269), False, 'from sqlmodel import Field, Relationship\n'), ((1422, 1461), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""students"""'}), "(back_populates='students')\n", (1434, 1461), False, 'from sqlmodel import Field, Relationship\n'), ((1505, 1536), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""sandbox.id"""'}), "(foreign_key='sandbox.id')\n", (1510, 1536), False, 'from sqlmodel import Field, Relationship\n'), ((1564, 1598), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'nullable': '(True)'}), '(default=None, nullable=True)\n', (1569, 1598), False, 'from sqlmodel import Field, Relationship\n'), ((1345, 1383), 'sqlalchemy.UniqueConstraint', 'UniqueConstraint', (['"""name"""', '"""sandbox_id"""'], {}), "('name', 'sandbox_id')\n", (1361, 1383), False, 'from sqlalchemy import UniqueConstraint\n'), ((2053, 2060), 'faker.Faker', 'Faker', ([], {}), '()\n', (2058, 2060), False, 'from faker import Faker\n')]
from typing import Optional, List from sqlalchemy import String from sqlalchemy.sql.schema import Column from sqlmodel import SQLModel, Field, Relationship class CustomerProductLink(SQLModel, table=True): customer_id: Optional[int] = Field( default=None, foreign_key='customer.id', primary_key=True ) product_id: Optional[int] = Field( default=None, foreign_key='product.id', primary_key=True ) class AddressBase(SQLModel): street_name: str house_number: str city: str zip_code: str class Address(AddressBase, table=True): id: int = Field(default=None, primary_key=True) customers: List['Customer'] = Relationship(back_populates='address') class AddressOut(AddressBase): pass class AddressIn(AddressBase): pass class CustomerBase(SQLModel): first_name: str last_name: str birth_date: str gender: str mobile_number: str email: str class Customer(CustomerBase, table=True): id: int = Field(default=None, primary_key=True) address_id: Optional[int] = Field(default=None, foreign_key='address.id') address: Optional[Address] = Relationship(back_populates='customers', sa_relationship_kwargs={'lazy': 'selectin'}) mobile_number: str = Field(sa_column=Column('mobile_number', String, unique=True)) email: str = Field(sa_column=Column('email', String, unique=True)) products: List['Product'] = Relationship(back_populates='customers', link_model=CustomerProductLink, sa_relationship_kwargs={'lazy': 'selectin'}) class CustomerOut(CustomerBase): id: int address: Optional[AddressOut] class CustomerIn(CustomerBase): address: Optional[AddressIn] class ProductBase(SQLModel): name: Optional[str] = None class Product(ProductBase, table=True): id: int = Field(default=None, primary_key=True) name: str = Field(sa_column=Column('name', String, unique=True)) customers: List[Customer] = Relationship(back_populates='products', link_model=CustomerProductLink) class ProductOut(ProductBase): id: int name: str class ProductIn(ProductBase): name: str class ProductUpdate(ProductBase): product_id: int
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((241, 305), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""customer.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='customer.id', primary_key=True)\n", (246, 305), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((352, 415), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""product.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='product.id', primary_key=True)\n", (357, 415), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((592, 629), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (597, 629), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((664, 702), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""address"""'}), "(back_populates='address')\n", (676, 702), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((989, 1026), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (994, 1026), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1059, 1104), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""address.id"""'}), "(default=None, foreign_key='address.id')\n", (1064, 1104), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1138, 1227), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""customers"""', 'sa_relationship_kwargs': "{'lazy': 'selectin'}"}), "(back_populates='customers', sa_relationship_kwargs={'lazy':\n 'selectin'})\n", (1150, 1227), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1461, 1582), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""customers"""', 'link_model': 'CustomerProductLink', 'sa_relationship_kwargs': "{'lazy': 'selectin'}"}), "(back_populates='customers', link_model=CustomerProductLink,\n sa_relationship_kwargs={'lazy': 'selectin'})\n", (1473, 1582), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1890, 1927), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1895, 1927), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2030, 2101), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""products"""', 'link_model': 'CustomerProductLink'}), "(back_populates='products', link_model=CustomerProductLink)\n", (2042, 2101), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1311, 1355), 'sqlalchemy.sql.schema.Column', 'Column', (['"""mobile_number"""', 'String'], {'unique': '(True)'}), "('mobile_number', String, unique=True)\n", (1317, 1355), False, 'from sqlalchemy.sql.schema import Column\n'), ((1390, 1426), 'sqlalchemy.sql.schema.Column', 'Column', (['"""email"""', 'String'], {'unique': '(True)'}), "('email', String, unique=True)\n", (1396, 1426), False, 'from sqlalchemy.sql.schema import Column\n'), ((1960, 1995), 'sqlalchemy.sql.schema.Column', 'Column', (['"""name"""', 'String'], {'unique': '(True)'}), "('name', String, unique=True)\n", (1966, 1995), False, 'from sqlalchemy.sql.schema import Column\n')]
r""" Biot problem - deformable porous medium with the no-penetration boundary condition on a boundary region enforced using Lagrange multipliers. The non-penetration condition is enforced weakly using the Lagrange multiplier :math:`\lambda`. There is also a rigid body movement constraint imposed on the :math:`\Gamma_{outlet}` region using the linear combination boundary conditions. Find :math:`\ul{u}`, :math:`p` and :math:`\lambda` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) + \int_{\Gamma_{walls}} \lambda \ul{n} \cdot \ul{v} = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, \int_{\Gamma_{walls}} \hat\lambda \ul{n} \cdot \ul{u} = 0 \;, \quad \forall \hat\lambda \;, \ul{u} \cdot \ul{n} = 0 \mbox{ on } \Gamma_{walls} \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. """ from __future__ import absolute_import from examples.multi_physics.biot_npbc import (cinc_simple, define_regions, get_pars) def define(): from sfepy import data_dir filename = data_dir + '/meshes/3d/cylinder.mesh' output_dir = 'output' return define_input(filename, output_dir) def post_process(out, pb, state, extend=False): from sfepy.base.base import Struct dvel = pb.evaluate('ev_diffusion_velocity.2.Omega( m.K, p )', mode='el_avg') out['dvel'] = Struct(name='output_data', var_name='p', mode='cell', data=dvel, dofs=None) stress = pb.evaluate('ev_cauchy_stress.2.Omega( m.D, u )', mode='el_avg') out['cauchy_stress'] = Struct(name='output_data', var_name='u', mode='cell', data=stress, dofs=None) return out def define_input(filename, output_dir): filename_mesh = filename options = { 'output_dir' : output_dir, 'output_format' : 'vtk', 'post_process_hook' : 'post_process', ## 'file_per_var' : True, 'ls' : 'ls', 'nls' : 'newton', } functions = { 'cinc_simple0' : (lambda coors, domain: cinc_simple(coors, 0),), 'cinc_simple1' : (lambda coors, domain: cinc_simple(coors, 1),), 'cinc_simple2' : (lambda coors, domain: cinc_simple(coors, 2),), 'get_pars' : (lambda ts, coors, mode=None, **kwargs: get_pars(ts, coors, mode, output_dir=output_dir, **kwargs),), } regions, dim = define_regions(filename_mesh) fields = { 'displacement': ('real', 'vector', 'Omega', 1), 'pressure': ('real', 'scalar', 'Omega', 1), 'multiplier': ('real', 'scalar', 'Walls', 1), } variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), 'p' : ('unknown field', 'pressure', 1), 'q' : ('test field', 'pressure', 'p'), 'ul' : ('unknown field', 'multiplier', 2), 'vl' : ('test field', 'multiplier', 'ul'), } ebcs = { 'inlet' : ('Inlet', {'p.0' : 1.0, 'u.all' : 0.0}), 'outlet' : ('Outlet', {'p.0' : -1.0}), } lcbcs = { 'rigid' : ('Outlet', {'u.all' : None}, None, 'rigid'), } materials = { 'm' : 'get_pars', } equations = { 'eq_1' : """dw_lin_elastic.2.Omega( m.D, v, u ) - dw_biot.2.Omega( m.alpha, v, p ) + dw_non_penetration.2.Walls( v, ul ) = 0""", 'eq_2' : """dw_biot.2.Omega( m.alpha, u, q ) + dw_diffusion.2.Omega( m.K, q, p ) = 0""", 'eq_3' : """dw_non_penetration.2.Walls( u, vl ) = 0""", } solvers = { 'ls' : ('ls.scipy_direct', {}), 'newton' : ('nls.newton', {}), } return locals()
[ "sfepy.base.base.Struct" ]
[((1657, 1732), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'var_name': '"""p"""', 'mode': '"""cell"""', 'data': 'dvel', 'dofs': 'None'}), "(name='output_data', var_name='p', mode='cell', data=dvel, dofs=None)\n", (1663, 1732), False, 'from sfepy.base.base import Struct\n'), ((1889, 1966), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'var_name': '"""u"""', 'mode': '"""cell"""', 'data': 'stress', 'dofs': 'None'}), "(name='output_data', var_name='u', mode='cell', data=stress, dofs=None)\n", (1895, 1966), False, 'from sfepy.base.base import Struct\n'), ((2822, 2851), 'examples.multi_physics.biot_npbc.define_regions', 'define_regions', (['filename_mesh'], {}), '(filename_mesh)\n', (2836, 2851), False, 'from examples.multi_physics.biot_npbc import cinc_simple, define_regions, get_pars\n'), ((2398, 2419), 'examples.multi_physics.biot_npbc.cinc_simple', 'cinc_simple', (['coors', '(0)'], {}), '(coors, 0)\n', (2409, 2419), False, 'from examples.multi_physics.biot_npbc import cinc_simple, define_regions, get_pars\n'), ((2497, 2518), 'examples.multi_physics.biot_npbc.cinc_simple', 'cinc_simple', (['coors', '(1)'], {}), '(coors, 1)\n', (2508, 2518), False, 'from examples.multi_physics.biot_npbc import cinc_simple, define_regions, get_pars\n'), ((2596, 2617), 'examples.multi_physics.biot_npbc.cinc_simple', 'cinc_simple', (['coors', '(2)'], {}), '(coors, 2)\n', (2607, 2617), False, 'from examples.multi_physics.biot_npbc import cinc_simple, define_regions, get_pars\n'), ((2704, 2762), 'examples.multi_physics.biot_npbc.get_pars', 'get_pars', (['ts', 'coors', 'mode'], {'output_dir': 'output_dir'}), '(ts, coors, mode, output_dir=output_dir, **kwargs)\n', (2712, 2762), False, 'from examples.multi_physics.biot_npbc import cinc_simple, define_regions, get_pars\n')]
from sqlmodel import Session from sfm.database import engine from sfm.config import get_settings from sfm.utils import verify_api_auth_token from fastapi import Depends, HTTPException from fastapi.security import HTTPBearer, HTTPBasicCredentials from passlib.context import CryptContext pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") app_settings = get_settings() security = HTTPBearer() def get_db(): # pragma: no cover db = Session(engine) try: yield db finally: db.close() def has_access( credentials: HTTPBasicCredentials = Depends(security), ): # pragma: no cover token = credentials.credentials verified = verify_api_auth_token(token) if verified: return True else: raise HTTPException(status_code=403, detail="Incorrect Credentials")
[ "sqlmodel.Session" ]
[((302, 353), 'passlib.context.CryptContext', 'CryptContext', ([], {'schemes': "['bcrypt']", 'deprecated': '"""auto"""'}), "(schemes=['bcrypt'], deprecated='auto')\n", (314, 353), False, 'from passlib.context import CryptContext\n'), ((369, 383), 'sfm.config.get_settings', 'get_settings', ([], {}), '()\n', (381, 383), False, 'from sfm.config import get_settings\n'), ((395, 407), 'fastapi.security.HTTPBearer', 'HTTPBearer', ([], {}), '()\n', (405, 407), False, 'from fastapi.security import HTTPBearer, HTTPBasicCredentials\n'), ((453, 468), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (460, 468), False, 'from sqlmodel import Session\n'), ((585, 602), 'fastapi.Depends', 'Depends', (['security'], {}), '(security)\n', (592, 602), False, 'from fastapi import Depends, HTTPException\n'), ((678, 706), 'sfm.utils.verify_api_auth_token', 'verify_api_auth_token', (['token'], {}), '(token)\n', (699, 706), False, 'from sfm.utils import verify_api_auth_token\n'), ((768, 830), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(403)', 'detail': '"""Incorrect Credentials"""'}), "(status_code=403, detail='Incorrect Credentials')\n", (781, 830), False, 'from fastapi import Depends, HTTPException\n')]
import os from dotenv import load_dotenv from dateutil.parser import parse from sqlmodel import Session, select, SQLModel, create_engine import requests from youtube.models import YouTube load_dotenv() YT_CHANNEL = os.environ["YT_CHANNEL"] YOUTUBE_API_KEY = os.environ["YOUTUBE_API_KEY"] DATABASE_URL = os.environ["DATABASE_URL"] YOUTUBE_VIDEO = "youtube#video" BASE_URL = ( "https://www.googleapis.com/youtube/v3/search?key={key}" "&channelId={channel}&part=snippet,id&order=date&maxResults=20" ) engine = create_engine(DATABASE_URL, echo=False) def get_session(): with Session(engine) as session: yield session def create_db_and_tables(): SQLModel.metadata.create_all(engine) def get_videos_from_channel(channel: str = YT_CHANNEL) -> list[dict]: base_url = BASE_URL.format(key=YOUTUBE_API_KEY, channel=channel) next_page, url = None, base_url videos = [] while True: if next_page is not None: url = base_url + f"&pageToken={next_page}" response = requests.get(url).json() for vid in response["items"]: if vid["id"]["kind"] != "youtube#video": continue videos.append(vid) if "nextPageToken" not in response: break next_page = response["nextPageToken"] return videos def insert_youtube_videos(session: Session, videos: list[dict]) -> None: num_inserted = 0 for video in videos: video_id = video["id"]["videoId"] title = video["snippet"]["title"] description = video["snippet"]["description"] thumb = video["snippet"]["thumbnails"]["medium"]["url"] published = video["snippet"]["publishTime"] statement = select(YouTube).where(YouTube.video_id == video_id) results = session.exec(statement) if results.first() is not None: continue youtube = YouTube( video_id=video_id, title=title, description=description, thumb=thumb, published=parse(published), ) session.add(youtube) num_inserted += 1 session.commit() statement = select(YouTube) results = session.exec(statement) total_records = len(results.all()) print(f"Total records: {total_records} (newly inserted: {num_inserted})") if __name__ == "__main__": create_db_and_tables() videos = get_videos_from_channel() with Session(engine) as session: insert_youtube_videos(session, videos)
[ "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.select" ]
[((191, 204), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (202, 204), False, 'from dotenv import load_dotenv\n'), ((522, 561), 'sqlmodel.create_engine', 'create_engine', (['DATABASE_URL'], {'echo': '(False)'}), '(DATABASE_URL, echo=False)\n', (535, 561), False, 'from sqlmodel import Session, select, SQLModel, create_engine\n'), ((676, 712), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (704, 712), False, 'from sqlmodel import Session, select, SQLModel, create_engine\n'), ((2206, 2221), 'sqlmodel.select', 'select', (['YouTube'], {}), '(YouTube)\n', (2212, 2221), False, 'from sqlmodel import Session, select, SQLModel, create_engine\n'), ((592, 607), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (599, 607), False, 'from sqlmodel import Session, select, SQLModel, create_engine\n'), ((2481, 2496), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2488, 2496), False, 'from sqlmodel import Session, select, SQLModel, create_engine\n'), ((1062, 1079), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (1074, 1079), False, 'import requests\n'), ((1760, 1775), 'sqlmodel.select', 'select', (['YouTube'], {}), '(YouTube)\n', (1766, 1775), False, 'from sqlmodel import Session, select, SQLModel, create_engine\n'), ((2083, 2099), 'dateutil.parser.parse', 'parse', (['published'], {}), '(published)\n', (2088, 2099), False, 'from dateutil.parser import parse\n')]
""" The Dirichlet, periodic and linear combination boundary condition classes, as well as the initial condition class. """ from __future__ import absolute_import import numpy as nm from sfepy.base.base import basestr, Container, Struct from sfepy.discrete.functions import Function import six def get_condition_value(val, functions, kind, name): """ Check a boundary/initial condition value type and return the value or corresponding function. """ if type(val) == str: if functions is not None: try: fun = functions[val] except IndexError: raise ValueError('unknown function %s given for %s %s!' % (val, kind, name)) else: raise ValueError('no functions given for %s %s!' % (kind, name)) elif (isinstance(val, Function) or nm.isscalar(val) or isinstance(val, nm.ndarray)): fun = val else: raise ValueError('unknown value type for %s %s!' % (kind, name)) return fun def _get_region(name, regions, bc_name): try: region = regions[name] except IndexError: msg = "no region '%s' used in condition %s!" % (name, bc_name) raise IndexError(msg) return region class Conditions(Container): """ Container for various conditions. """ @staticmethod def from_conf(conf, regions): conds = [] for key, cc in six.iteritems(conf): times = cc.get('times', None) if 'ebc' in key: region = _get_region(cc.region, regions, cc.name) cond = EssentialBC(cc.name, region, cc.dofs, key=key, times=times) elif 'epbc' in key: rs = [_get_region(ii, regions, cc.name) for ii in cc.region] cond = PeriodicBC(cc.name, rs, cc.dofs, cc.match, key=key, times=times) elif 'lcbc' in key: if isinstance(cc.region, basestr): rs = [_get_region(cc.region, regions, cc.name), None] else: rs = [_get_region(ii, regions, cc.name) for ii in cc.region] cond = LinearCombinationBC(cc.name, rs, cc.dofs, cc.dof_map_fun, cc.kind, key=key, times=times, arguments=cc.get('arguments', None)) elif 'ic' in key: region = _get_region(cc.region, regions, cc.name) cond = InitialCondition(cc.name, region, cc.dofs, key=key) else: raise ValueError('unknown condition type! (%s)' % key) conds.append(cond) obj = Conditions(conds) return obj def group_by_variables(self, groups=None): """ Group boundary conditions of each variable. Each condition is a group is a single condition. Parameters ---------- groups : dict, optional If present, update the `groups` dictionary. Returns ------- out : dict The dictionary with variable names as keys and lists of single condition instances as values. """ if groups is None: out = {} else: out = groups for cond in self: for single_cond in cond.iter_single(): vname = single_cond.dofs[0].split('.')[0] out.setdefault(vname, Conditions()).append(single_cond) return out def canonize_dof_names(self, dofs): """ Canonize the DOF names using the full list of DOFs of a variable. """ for cond in self: cond.canonize_dof_names(dofs) def sort(self): """ Sort boundary conditions by their key. """ self._objs.sort(key=lambda a: a.key) self.update() def zero_dofs(self): """ Set all boundary condition values to zero, if applicable. """ for cond in self: if isinstance(cond, EssentialBC): cond.zero_dofs() def _canonize(dofs, all_dofs): """ Helper function. """ vname, dd = dofs.split('.') if dd == 'all': cdofs = all_dofs elif dd[0] == '[': cdofs = [vname + '.' + ii.strip() for ii in dd[1:-1].split(',')] else: cdofs = [dofs] return cdofs class Condition(Struct): """ Common boundary condition methods. """ def __init__(self, name, **kwargs): Struct.__init__(self, name=name, **kwargs) self.is_single = False def iter_single(self): """ Create a single condition instance for each item in self.dofs and yield it. """ for dofs, val in six.iteritems(self.dofs): single_cond = self.copy(name=self.name) single_cond.is_single = True single_cond.dofs = [dofs, val] yield single_cond def canonize_dof_names(self, dofs): """ Canonize the DOF names using the full list of DOFs of a variable. Assumes single condition instance. """ self.dofs[0] = _canonize(self.dofs[0], dofs) class EssentialBC(Condition): """ Essential boundary condidion. Parameters ---------- name : str The boundary condition name. region : Region instance The region where the boundary condition is applied. dofs : dict The boundary condition specification defining the constrained DOFs and their values. key : str, optional The sorting key. times : list or str, optional The list of time intervals or a function returning True at time steps, when the condition applies. """ def __init__(self, name, region, dofs, key='', times=None): Condition.__init__(self, name=name, region=region, dofs=dofs, key=key, times=times) def zero_dofs(self): """ Set all essential boundary condition values to zero. """ if self.is_single: self.dofs[1] = 0.0 else: new_dofs = {} for key in six.iterkeys(self.dofs): new_dofs[key] = 0.0 self.dofs = new_dofs class PeriodicBC(Condition): """ Periodic boundary condidion. Parameters ---------- name : str The boundary condition name. regions : list of two Region instances The master region and the slave region where the DOFs should match. dofs : dict The boundary condition specification defining the DOFs in the master region and the corresponding DOFs in the slave region. match : str The name of function for matching corresponding nodes in the two regions. key : str, optional The sorting key. times : list or str, optional The list of time intervals or a function returning True at time steps, when the condition applies. """ def __init__(self, name, regions, dofs, match, key='', times=None): Condition.__init__(self, name=name, regions=regions, dofs=dofs, match=match, key=key, times=times) def canonize_dof_names(self, dofs): """ Canonize the DOF names using the full list of DOFs of a variable. Assumes single condition instance. """ self.dofs[0] = _canonize(self.dofs[0], dofs) self.dofs[1] = _canonize(self.dofs[1], dofs) class LinearCombinationBC(Condition): """ Linear combination boundary condidion. Parameters ---------- name : str The boundary condition name. regions : list of two Region instances The constrained (master) DOFs region and the new (slave) DOFs region. The latter can be None if new DOFs are not field variable DOFs. dofs : dict The boundary condition specification defining the constrained DOFs and the new DOFs (can be None). dof_map_fun : str The name of function for mapping the constrained DOFs to new DOFs (can be None). kind : str The linear combination condition kind. key : str, optional The sorting key. times : list or str, optional The list of time intervals or a function returning True at time steps, when the condition applies. arguments: tuple, optional Additional arguments, depending on the condition kind. """ def __init__(self, name, regions, dofs, dof_map_fun, kind, key='', times=None, arguments=None): Condition.__init__(self, name=name, regions=regions, dofs=dofs, dof_map_fun=dof_map_fun, kind=kind, key=key, times=times, arguments=arguments) def get_var_names(self): """ Get names of variables corresponding to the constrained and new DOFs. """ names = [self.dofs[0].split('.')[0]] if self.dofs[1] is not None: names.append(self.dofs[1].split('.')[0]) return names def canonize_dof_names(self, dofs0, dofs1=None): """ Canonize the DOF names using the full list of DOFs of a variable. Assumes single condition instance. """ self.dofs[0] = _canonize(self.dofs[0], dofs0) if self.dofs[1] is not None: self.dofs[1] = _canonize(self.dofs[1], dofs1) class InitialCondition(Condition): """ Initial condidion. Parameters ---------- name : str The initial condition name. region : Region instance The region where the initial condition is applied. dofs : dict The initial condition specification defining the constrained DOFs and their values. key : str, optional The sorting key. """ def __init__(self, name, region, dofs, key=''): Condition.__init__(self, name=name, region=region, dofs=dofs, key=key)
[ "sfepy.base.base.Struct.__init__" ]
[((1475, 1494), 'six.iteritems', 'six.iteritems', (['conf'], {}), '(conf)\n', (1488, 1494), False, 'import six\n'), ((4772, 4814), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'name': 'name'}), '(self, name=name, **kwargs)\n', (4787, 4814), False, 'from sfepy.base.base import basestr, Container, Struct\n'), ((5015, 5039), 'six.iteritems', 'six.iteritems', (['self.dofs'], {}), '(self.dofs)\n', (5028, 5039), False, 'import six\n'), ((869, 885), 'numpy.isscalar', 'nm.isscalar', (['val'], {}), '(val)\n', (880, 885), True, 'import numpy as nm\n'), ((6435, 6458), 'six.iterkeys', 'six.iterkeys', (['self.dofs'], {}), '(self.dofs)\n', (6447, 6458), False, 'import six\n')]
r""" Poisson equation. This example demonstrates parametric study capabilities of Application classes. In particular (written in the strong form): .. math:: c \Delta t = f \mbox{ in } \Omega, t = 2 \mbox{ on } \Gamma_1 \;, t = -2 \mbox{ on } \Gamma_2 \;, f = 1 \mbox{ in } \Omega_1 \;, f = 0 \mbox{ otherwise,} where :math:`\Omega` is a square domain, :math:`\Omega_1 \in \Omega` is a circular domain. Now let's see what happens if :math:`\Omega_1` diameter changes. Run:: $ ./simple.py <this file> and then look in 'output/r_omega1' directory, try for example:: $ ./postproc.py output/r_omega1/circles_in_square*.vtk Remark: this simple case could be achieved also by defining :math:`\Omega_1` by a time-dependent function and solve the static problem as a time-dependent problem. However, the approach below is much more general. Find :math:`t` such that: .. math:: \int_{\Omega} c \nabla s \cdot \nabla t = 0 \;, \quad \forall s \;. """ from __future__ import absolute_import import os import numpy as nm from sfepy import data_dir from sfepy.base.base import output # Mesh. filename_mesh = data_dir + '/meshes/2d/special/circles_in_square.vtk' # Options. The value of 'parametric_hook' is the function that does the # parametric study. options = { 'nls' : 'newton', # Nonlinear solver 'ls' : 'ls', # Linear solver 'parametric_hook' : 'vary_omega1_size', 'output_dir' : 'output/r_omega1', } # Domain and subdomains. default_diameter = 0.25 regions = { 'Omega' : 'all', 'Gamma_1' : ('vertices in (x < -0.999)', 'facet'), 'Gamma_2' : ('vertices in (x > 0.999)', 'facet'), 'Omega_1' : 'vertices by select_circ', } # FE field defines the FE approximation: 2_3_P1 = 2D, P1 on triangles. field_1 = { 'name' : 'temperature', 'dtype' : 'real', 'shape' : (1,), 'region' : 'Omega', 'approx_order' : 1, } # Unknown and test functions (FE sense). variables = { 't' : ('unknown field', 'temperature', 0), 's' : ('test field', 'temperature', 't'), } # Dirichlet boundary conditions. ebcs = { 't1' : ('Gamma_1', {'t.0' : 2.0}), 't2' : ('Gamma_2', {'t.0' : -2.0}), } # Material coefficient c and source term value f. material_1 = { 'name' : 'coef', 'values' : { 'val' : 1.0, } } material_2 = { 'name' : 'source', 'values' : { 'val' : 10.0, } } # Numerical quadrature and the equation. integral_1 = { 'name' : 'i', 'order' : 2, } equations = { 'Poisson' : """dw_laplace.i.Omega( coef.val, s, t ) = dw_volume_lvf.i.Omega_1( source.val, s )""" } # Solvers. solver_0 = { 'name' : 'ls', 'kind' : 'ls.scipy_direct', } solver_1 = { 'name' : 'newton', 'kind' : 'nls.newton', 'i_max' : 1, 'eps_a' : 1e-10, 'eps_r' : 1.0, 'macheps' : 1e-16, 'lin_red' : 1e-2, # Linear system error < (eps_a * lin_red). 'ls_red' : 0.1, 'ls_red_warp' : 0.001, 'ls_on' : 1.1, 'ls_min' : 1e-5, 'check' : 0, 'delta' : 1e-6, } functions = { 'select_circ': (lambda coors, domain=None: select_circ(coors[:,0], coors[:,1], 0, default_diameter),), } # Functions. def select_circ( x, y, z, diameter ): """Select circular subdomain of a given diameter.""" r = nm.sqrt( x**2 + y**2 ) out = nm.where(r < diameter)[0] n = out.shape[0] if n <= 3: raise ValueError( 'too few vertices selected! (%d)' % n ) return out def vary_omega1_size( problem ): """Vary size of \Omega1. Saves also the regions into options['output_dir']. Input: problem: Problem instance Return: a generator object: 1. creates new (modified) problem 2. yields the new (modified) problem and output container 3. use the output container for some logging 4. yields None (to signal next iteration to Application) """ from sfepy.discrete import Problem from sfepy.solvers.ts import get_print_info output.prefix = 'vary_omega1_size:' diameters = nm.linspace( 0.1, 0.6, 7 ) + 0.001 ofn_trunk, output_format = problem.ofn_trunk, problem.output_format output_dir = problem.output_dir join = os.path.join conf = problem.conf cf = conf.get_raw( 'functions' ) n_digit, aux, d_format = get_print_info( len( diameters ) + 1 ) for ii, diameter in enumerate( diameters ): output( 'iteration %d: diameter %3.2f' % (ii, diameter) ) cf['select_circ'] = (lambda coors, domain=None: select_circ(coors[:,0], coors[:,1], 0, diameter),) conf.edit('functions', cf) problem = Problem.from_conf(conf) problem.save_regions( join( output_dir, ('regions_' + d_format) % ii ), ['Omega_1'] ) region = problem.domain.regions['Omega_1'] if not region.has_cells(): raise ValueError('region %s has no cells!' % region.name) ofn_trunk = ofn_trunk + '_' + (d_format % ii) problem.setup_output(output_filename_trunk=ofn_trunk, output_dir=output_dir, output_format=output_format) out = [] yield problem, out out_problem, state = out[-1] filename = join( output_dir, ('log_%s.txt' % d_format) % ii ) fd = open( filename, 'w' ) log_item = '$r(\Omega_1)$: %f\n' % diameter fd.write( log_item ) fd.write( 'solution:\n' ) nm.savetxt(fd, state()) fd.close() yield None
[ "sfepy.base.base.output", "sfepy.discrete.Problem.from_conf" ]
[((3347, 3371), 'numpy.sqrt', 'nm.sqrt', (['(x ** 2 + y ** 2)'], {}), '(x ** 2 + y ** 2)\n', (3354, 3371), True, 'import numpy as nm\n'), ((3381, 3403), 'numpy.where', 'nm.where', (['(r < diameter)'], {}), '(r < diameter)\n', (3389, 3403), True, 'import numpy as nm\n'), ((4097, 4121), 'numpy.linspace', 'nm.linspace', (['(0.1)', '(0.6)', '(7)'], {}), '(0.1, 0.6, 7)\n', (4108, 4121), True, 'import numpy as nm\n'), ((4450, 4505), 'sfepy.base.base.output', 'output', (["('iteration %d: diameter %3.2f' % (ii, diameter))"], {}), "('iteration %d: diameter %3.2f' % (ii, diameter))\n", (4456, 4505), False, 'from sfepy.base.base import output\n'), ((4699, 4722), 'sfepy.discrete.Problem.from_conf', 'Problem.from_conf', (['conf'], {}), '(conf)\n', (4716, 4722), False, 'from sfepy.discrete import Problem\n')]
""" Classes holding information on global DOFs and mapping of all DOFs - equations (active DOFs). Helper functions for the equation mapping. """ import numpy as nm import scipy.sparse as sp from sfepy.base.base import assert_, Struct, basestr from sfepy.discrete.functions import Function from sfepy.discrete.conditions import get_condition_value, EssentialBC, \ PeriodicBC, DGPeriodicBC, DGEssentialBC def expand_nodes_to_dofs(nods, n_dof_per_node): """ Expand DOF node indices into DOFs given a constant number of DOFs per node. """ dofs = nm.repeat(nods, n_dof_per_node) dofs.shape = (nods.shape[0], n_dof_per_node) idof = nm.arange(n_dof_per_node, dtype=nm.int32) dofs = n_dof_per_node * dofs + idof return dofs def expand_nodes_to_equations(nods, dof_names, all_dof_names): """ Expand vector of node indices to equations (DOF indices) based on the DOF-per-node count. DOF names must be already canonized. Returns ------- eq : array The equations/DOF indices in the node-by-node order. """ dpn = len(all_dof_names) nc = len(dof_names) eq = nm.empty(len(nods) * nc, dtype=nm.int32) for ii, dof in enumerate(dof_names): idof = all_dof_names.index(dof) eq[ii::nc] = dpn * nods + idof return eq def resolve_chains(master_slave, chains): """ Resolve EPBC chains - e.g. in corner nodes. """ for chain in chains: slave = chain[-1] master_slave[chain[:-1]] = slave + 1 master_slave[slave] = - chain[0] - 1 # Any of masters... def group_chains(chain_list): """ Group EPBC chains. """ chains = [] while len(chain_list): chain = set(chain_list.pop(0)) ## print ':', chain ii = 0 while ii < len(chain_list): c1 = sorted(chain_list[ii]) ## print '--', ii, c1, chain is0 = c1[0] in chain is1 = c1[1] in chain if is0 and is1: chain_list.pop(ii) elif is0 or is1: chain.update(c1) chain_list.pop(ii) ii = 0 else: ii += 1 ## print ii, chain, chain_list ## print '->', chain ## print chain_list chains.append(list(chain)) ## print 'EPBC chain groups:', chains aux = {} for chain in chains: aux.setdefault(len(chain), [0])[0] += 1 ## print 'EPBC chain counts:', aux return chains class DofInfo(Struct): """ Global DOF information, i.e. ordering of DOFs of the state (unknown) variables in the global state vector. """ def __init__(self, name): Struct.__init__(self, name=name) self.n_var = 0 self.var_names = [] self.n_dof = {} self.ptr = [0] self.indx = {} self.details = {} def _update_after_append(self, name): self.ptr.append(self.ptr[-1] + self.n_dof[name]) ii = self.n_var self.indx[name] = slice(int(self.ptr[ii]), int(self.ptr[ii+1])) self.n_var += 1 def append_variable(self, var, active=False): """ Append DOFs of the given variable. Parameters ---------- var : Variable instance The variable to append. active : bool, optional When True, only active (non-constrained) DOFs are considered. """ name = var.name if name in self.var_names: raise ValueError('variable %s already present!' % name) self.var_names.append(name) self.n_dof[name], self.details[name] = var.get_dof_info(active=active) self._update_after_append(name) def append_raw(self, name, n_dof): """ Append raw DOFs. Parameters ---------- name : str The name of variable the DOFs correspond to. n_dof : int The number of DOFs. """ if name in self.var_names: raise ValueError('variable %s already present!' % name) self.var_names.append(name) self.n_dof[name], self.details[name] = n_dof, None self._update_after_append(name) def update(self, name, n_dof): """ Set the number of DOFs of the given variable. Parameters ---------- name : str The name of variable the DOFs correspond to. n_dof : int The number of DOFs. """ if not name in self.var_names: raise ValueError('variable %s is not present!' % name) ii = self.var_names.index(name) delta = n_dof - self.n_dof[name] self.n_dof[name] = n_dof for iv, nn in enumerate(self.var_names[ii:]): self.ptr[ii+iv+1] += delta self.indx[nn] = slice(self.ptr[ii+iv], self.ptr[ii+iv+1]) def get_info(self, var_name): """ Return information on DOFs of the given variable. Parameters ---------- var_name : str The name of the variable. """ return Struct(name='%s_dof_info' % var_name, var_name=var_name, n_dof=self.n_dof[var_name], indx=self.indx[var_name], details=self.details[var_name]) def get_subset_info(self, var_names): """ Return global DOF information for selected variables only. Silently ignores non-existing variable names. Parameters ---------- var_names : list The names of the selected variables. """ di = DofInfo(self.name + ':subset') for var_name in var_names: if var_name not in self.var_names: continue di.append_raw(var_name, self.n_dof[var_name]) return di def get_n_dof_total(self): """ Return the total number of DOFs of all state variables. """ return self.ptr[-1] def is_active_bc(bc, ts=None, functions=None): """ Check whether the given boundary condition is active in the current time. Returns ------- active : bool True if the condition `bc` is active. """ if (bc.times is None) or (ts is None): active = True elif isinstance(bc.times, list): for tt in bc.times: if tt[0] <= ts.time < tt[1]: active = True break else: active = False else: if isinstance(bc.times, basestr): if functions is not None: fun = functions[bc.times] else: raise ValueError('no functions given for bc %s!' % bc.name) elif isinstance(bc.times, Function): fun = bc.times else: raise ValueError('unknown times type! (%s)' % type(bc.times)) active = fun(ts) return active class EquationMap(Struct): """ Map all DOFs to equations for active DOFs. """ def __init__(self, name, dof_names, var_di): Struct.__init__(self, name=name, dof_names=dof_names, var_di=var_di) self.dpn = len(self.dof_names) self.eq = nm.arange(var_di.n_dof, dtype=nm.int32) self.n_dg_ebc = 0 self.dg_ebc_names = {} self.dg_ebc = {} self.dg_ebc_val = {} self.n_dg_epbc = 0 self.dg_epbc_names = [] self.dg_epbc = [] def _init_empty(self, field): self.val_ebc = nm.empty((0,), dtype=field.dtype) if field.get('unused_dofs') is None: self.eqi = nm.arange(self.var_di.n_dof, dtype=nm.int32) else: self._mark_unused(field) self.eqi = nm.compress(self.eq >= 0, self.eq) self.eq[self.eqi] = nm.arange(self.eqi.shape[0], dtype=nm.int32) self.eq_ebc = nm.empty((0,), dtype=nm.int32) self.master = nm.empty((0,), dtype=nm.int32) self.slave = nm.empty((0,), dtype=nm.int32) self.n_eq = self.eqi.shape[0] self.n_ebc = self.eq_ebc.shape[0] self.n_epbc = self.master.shape[0] def _mark_unused(self, field): unused_dofs = field.get('unused_dofs') if unused_dofs is not None: unused = expand_nodes_to_equations(field.unused_dofs, self.dof_names, self.dof_names) self.eq[unused] = -3 def map_equations(self, bcs, field, ts, functions, problem=None, warn=False): """ Create the mapping of active DOFs from/to all DOFs. Parameters ---------- bcs : Conditions instance The Dirichlet or periodic boundary conditions (single condition instances). The dof names in the conditions must already be canonized. field : Field instance The field of the variable holding the DOFs. ts : TimeStepper instance The time stepper. functions : Functions instance The registered functions. problem : Problem instance, optional The problem that can be passed to user functions as a context. warn : bool, optional If True, warn about BC on non-existent nodes. Returns ------- active_bcs : set The set of boundary conditions active in the current time. Notes ----- - Periodic bc: master and slave DOFs must belong to the same field (variables can differ, though). """ if bcs is None: self._init_empty(field) return set() eq_ebc = nm.zeros((self.var_di.n_dof,), dtype=nm.int32) val_ebc = nm.zeros((self.var_di.n_dof,), dtype=field.dtype) master_slave = nm.zeros((self.var_di.n_dof,), dtype=nm.int32) chains = [] active_bcs = set() for bc in bcs: # Skip conditions that are not active in the current time. if not is_active_bc(bc, ts=ts, functions=functions): continue active_bcs.add(bc.key) if isinstance(bc, DGEssentialBC): ntype = "DGEBC" region = bc.region elif isinstance(bc, DGPeriodicBC): ntype = "DGEPBC" region = bc.regions[0] elif isinstance(bc, EssentialBC): ntype = 'EBC' region = bc.region elif isinstance(bc, PeriodicBC): ntype = 'EPBC' region = bc.regions[0] if warn: clean_msg = ('warning: ignoring nonexistent %s node (%s) in ' % (ntype, self.var_di.var_name)) else: clean_msg = None # Get master region nodes. master_nod_list = field.get_dofs_in_region(region) if len(master_nod_list) == 0: continue if ntype == 'EBC': # EBC. dofs, val = bc.dofs ## # Evaluate EBC values. fun = get_condition_value(val, functions, 'EBC', bc.name) if isinstance(fun, Function): aux = fun fun = lambda coors: aux(ts, coors, bc=bc, problem=problem) nods, vv = field.set_dofs(fun, region, len(dofs), clean_msg) eq = expand_nodes_to_equations(nods, dofs, self.dof_names) # Duplicates removed here... eq_ebc[eq] = 1 if vv is not None: val_ebc[eq] = nm.ravel(vv) elif ntype == "DGEBC": dofs, val = bc.dofs ## # Evaluate EBC values. fun = get_condition_value(val, functions, 'EBC', bc.name) if isinstance(fun, Function): aux = fun fun = lambda coors: aux(ts, coors, bc=bc, problem=problem) values = field.get_bc_facet_values(fun, region, diff=bc.diff) bc2bfi = field.get_bc_facet_idx(region) self.dg_ebc_val.setdefault(bc.diff, []).append(values) self.dg_ebc.setdefault(bc.diff, []).append(bc2bfi) self.n_dg_ebc += 1 elif ntype == "DGEPBC": # ensure matching boundaries? master_bc2bfi = field.get_bc_facet_idx(region) slave_bc2bfi = field.get_bc_facet_idx(bc.regions[1]) self.dg_epbc.append((master_bc2bfi, slave_bc2bfi)) self.n_dg_epbc += 1 else: # EPBC. region = bc.regions[1] slave_nod_list = field.get_dofs_in_region(region) nmaster = nm.unique(master_nod_list) # Treat fields not covering the whole domain. if nmaster[0] == -1: nmaster = nmaster[1:] nslave = nm.unique(slave_nod_list) # Treat fields not covering the whole domain. if nslave[0] == -1: nslave = nslave[1:] ## print nmaster + 1 ## print nslave + 1 if nmaster.shape != nslave.shape: msg = 'EPBC list lengths do not match!\n(%s,\n %s)' %\ (nmaster, nslave) raise ValueError(msg) if (nmaster.shape[0] == 0) and (nslave.shape[0] == 0): continue mcoor = field.get_coor(nmaster) scoor = field.get_coor(nslave) fun = get_condition_value(bc.match, functions, 'EPBC', bc.name) if isinstance(fun, Function): i1, i2 = fun(mcoor, scoor) else: i1, i2 = fun ## print nm.c_[mcoor[i1], scoor[i2]] ## print nm.c_[nmaster[i1], nslave[i2]] + 1 meq = expand_nodes_to_equations(nmaster[i1], bc.dofs[0], self.dof_names) seq = expand_nodes_to_equations(nslave[i2], bc.dofs[1], self.dof_names) m_assigned = nm.where(master_slave[meq] != 0)[0] s_assigned = nm.where(master_slave[seq] != 0)[0] if m_assigned.size or s_assigned.size: # Chain EPBC. aux = master_slave[meq[m_assigned]] sgn = nm.sign(aux) om_chain = zip(meq[m_assigned], (aux - sgn) * sgn) chains.extend(om_chain) aux = master_slave[seq[s_assigned]] sgn = nm.sign(aux) os_chain = zip(seq[s_assigned], (aux - sgn) * sgn) chains.extend(os_chain) m_chain = zip(meq[m_assigned], seq[m_assigned]) chains.extend(m_chain) msd = nm.setdiff1d(s_assigned, m_assigned) s_chain = zip(meq[msd], seq[msd]) chains.extend(s_chain) msa = nm.union1d(m_assigned, s_assigned) ii = nm.setdiff1d(nm.arange(meq.size), msa) master_slave[meq[ii]] = seq[ii] + 1 master_slave[seq[ii]] = - meq[ii] - 1 else: master_slave[meq] = seq + 1 master_slave[seq] = - meq - 1 chains = group_chains(chains) resolve_chains(master_slave, chains) self.master = nm.nonzero(master_slave > 0)[0] self.slave = master_slave[self.master] - 1 # Propagate EBCs via PBCs. mask = eq_ebc[self.master] > 0 im0 = self.master[mask] im1 = self.slave[mask] mask = eq_ebc[self.slave] > 0 is0 = self.slave[mask] is1 = self.master[mask] val_ebc[im1] = val_ebc[im0] eq_ebc[im1] = eq_ebc[im0] val_ebc[is1] = val_ebc[is0] eq_ebc[is1] = eq_ebc[is0] self.eq_ebc = nm.nonzero(eq_ebc > 0)[0] self.val_ebc = val_ebc[self.eq_ebc] assert_((self.eq_ebc.shape == self.val_ebc.shape)) self.eq[self.eq_ebc] = -2 self.eq[self.master] = -1 self._mark_unused(field) self.eqi = self.eq[self.eq >= 0] self.eq[self.eqi] = nm.arange(self.eqi.shape[0], dtype=nm.int32) self.eq[self.master] = self.eq[self.slave] self.n_eq = self.eqi.shape[0] self.n_ebc = self.eq_ebc.shape[0] self.n_epbc = self.master.shape[0] return active_bcs def get_operator(self): """ Get the matrix operator :math:`R` corresponding to the equation mapping, such that the restricted matrix :math:`A_r` can be obtained from the full matrix :math:`A` by :math:`A_r = R^T A R`. All the matrices are w.r.t. a single variables that uses this mapping. Returns ------- mtx : coo_matrix The matrix :math:`R`. """ # EBC. rows = self.eqi cols = nm.arange(self.n_eq, dtype=nm.int32) # EPBC. ic = self.eq[self.slave] ii = ic >= 0 rows = nm.r_[rows, self.master[ii]] cols = nm.r_[cols, ic[ii]] ones = nm.ones(rows.shape[0], dtype=nm.float64) mtx = sp.coo_matrix((ones, (rows, cols)), shape=(self.eq.shape[0], self.n_eq)) return mtx
[ "sfepy.base.base.Struct", "sfepy.discrete.conditions.get_condition_value", "sfepy.base.base.Struct.__init__", "sfepy.base.base.assert_" ]
[((570, 601), 'numpy.repeat', 'nm.repeat', (['nods', 'n_dof_per_node'], {}), '(nods, n_dof_per_node)\n', (579, 601), True, 'import numpy as nm\n'), ((663, 704), 'numpy.arange', 'nm.arange', (['n_dof_per_node'], {'dtype': 'nm.int32'}), '(n_dof_per_node, dtype=nm.int32)\n', (672, 704), True, 'import numpy as nm\n'), ((2711, 2743), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'name': 'name'}), '(self, name=name)\n', (2726, 2743), False, 'from sfepy.base.base import assert_, Struct, basestr\n'), ((5124, 5271), 'sfepy.base.base.Struct', 'Struct', ([], {'name': "('%s_dof_info' % var_name)", 'var_name': 'var_name', 'n_dof': 'self.n_dof[var_name]', 'indx': 'self.indx[var_name]', 'details': 'self.details[var_name]'}), "(name='%s_dof_info' % var_name, var_name=var_name, n_dof=self.n_dof[\n var_name], indx=self.indx[var_name], details=self.details[var_name])\n", (5130, 5271), False, 'from sfepy.base.base import assert_, Struct, basestr\n'), ((7147, 7215), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'name': 'name', 'dof_names': 'dof_names', 'var_di': 'var_di'}), '(self, name=name, dof_names=dof_names, var_di=var_di)\n', (7162, 7215), False, 'from sfepy.base.base import assert_, Struct, basestr\n'), ((7274, 7313), 'numpy.arange', 'nm.arange', (['var_di.n_dof'], {'dtype': 'nm.int32'}), '(var_di.n_dof, dtype=nm.int32)\n', (7283, 7313), True, 'import numpy as nm\n'), ((7570, 7603), 'numpy.empty', 'nm.empty', (['(0,)'], {'dtype': 'field.dtype'}), '((0,), dtype=field.dtype)\n', (7578, 7603), True, 'import numpy as nm\n'), ((7928, 7958), 'numpy.empty', 'nm.empty', (['(0,)'], {'dtype': 'nm.int32'}), '((0,), dtype=nm.int32)\n', (7936, 7958), True, 'import numpy as nm\n'), ((7982, 8012), 'numpy.empty', 'nm.empty', (['(0,)'], {'dtype': 'nm.int32'}), '((0,), dtype=nm.int32)\n', (7990, 8012), True, 'import numpy as nm\n'), ((8034, 8064), 'numpy.empty', 'nm.empty', (['(0,)'], {'dtype': 'nm.int32'}), '((0,), dtype=nm.int32)\n', (8042, 8064), True, 'import numpy as nm\n'), ((9733, 9779), 'numpy.zeros', 'nm.zeros', (['(self.var_di.n_dof,)'], {'dtype': 'nm.int32'}), '((self.var_di.n_dof,), dtype=nm.int32)\n', (9741, 9779), True, 'import numpy as nm\n'), ((9798, 9847), 'numpy.zeros', 'nm.zeros', (['(self.var_di.n_dof,)'], {'dtype': 'field.dtype'}), '((self.var_di.n_dof,), dtype=field.dtype)\n', (9806, 9847), True, 'import numpy as nm\n'), ((9871, 9917), 'numpy.zeros', 'nm.zeros', (['(self.var_di.n_dof,)'], {'dtype': 'nm.int32'}), '((self.var_di.n_dof,), dtype=nm.int32)\n', (9879, 9917), True, 'import numpy as nm\n'), ((16298, 16346), 'sfepy.base.base.assert_', 'assert_', (['(self.eq_ebc.shape == self.val_ebc.shape)'], {}), '(self.eq_ebc.shape == self.val_ebc.shape)\n', (16305, 16346), False, 'from sfepy.base.base import assert_, Struct, basestr\n'), ((16522, 16566), 'numpy.arange', 'nm.arange', (['self.eqi.shape[0]'], {'dtype': 'nm.int32'}), '(self.eqi.shape[0], dtype=nm.int32)\n', (16531, 16566), True, 'import numpy as nm\n'), ((17268, 17304), 'numpy.arange', 'nm.arange', (['self.n_eq'], {'dtype': 'nm.int32'}), '(self.n_eq, dtype=nm.int32)\n', (17277, 17304), True, 'import numpy as nm\n'), ((17471, 17511), 'numpy.ones', 'nm.ones', (['rows.shape[0]'], {'dtype': 'nm.float64'}), '(rows.shape[0], dtype=nm.float64)\n', (17478, 17511), True, 'import numpy as nm\n'), ((17526, 17598), 'scipy.sparse.coo_matrix', 'sp.coo_matrix', (['(ones, (rows, cols))'], {'shape': '(self.eq.shape[0], self.n_eq)'}), '((ones, (rows, cols)), shape=(self.eq.shape[0], self.n_eq))\n', (17539, 17598), True, 'import scipy.sparse as sp\n'), ((7673, 7717), 'numpy.arange', 'nm.arange', (['self.var_di.n_dof'], {'dtype': 'nm.int32'}), '(self.var_di.n_dof, dtype=nm.int32)\n', (7682, 7717), True, 'import numpy as nm\n'), ((7793, 7827), 'numpy.compress', 'nm.compress', (['(self.eq >= 0)', 'self.eq'], {}), '(self.eq >= 0, self.eq)\n', (7804, 7827), True, 'import numpy as nm\n'), ((7860, 7904), 'numpy.arange', 'nm.arange', (['self.eqi.shape[0]'], {'dtype': 'nm.int32'}), '(self.eqi.shape[0], dtype=nm.int32)\n', (7869, 7904), True, 'import numpy as nm\n'), ((15735, 15763), 'numpy.nonzero', 'nm.nonzero', (['(master_slave > 0)'], {}), '(master_slave > 0)\n', (15745, 15763), True, 'import numpy as nm\n'), ((16220, 16242), 'numpy.nonzero', 'nm.nonzero', (['(eq_ebc > 0)'], {}), '(eq_ebc > 0)\n', (16230, 16242), True, 'import numpy as nm\n'), ((11182, 11233), 'sfepy.discrete.conditions.get_condition_value', 'get_condition_value', (['val', 'functions', '"""EBC"""', 'bc.name'], {}), "(val, functions, 'EBC', bc.name)\n", (11201, 11233), False, 'from sfepy.discrete.conditions import get_condition_value, EssentialBC, PeriodicBC, DGPeriodicBC, DGEssentialBC\n'), ((11712, 11724), 'numpy.ravel', 'nm.ravel', (['vv'], {}), '(vv)\n', (11720, 11724), True, 'import numpy as nm\n'), ((11877, 11928), 'sfepy.discrete.conditions.get_condition_value', 'get_condition_value', (['val', 'functions', '"""EBC"""', 'bc.name'], {}), "(val, functions, 'EBC', bc.name)\n", (11896, 11928), False, 'from sfepy.discrete.conditions import get_condition_value, EssentialBC, PeriodicBC, DGPeriodicBC, DGEssentialBC\n'), ((12915, 12941), 'numpy.unique', 'nm.unique', (['master_nod_list'], {}), '(master_nod_list)\n', (12924, 12941), True, 'import numpy as nm\n'), ((13109, 13134), 'numpy.unique', 'nm.unique', (['slave_nod_list'], {}), '(slave_nod_list)\n', (13118, 13134), True, 'import numpy as nm\n'), ((13778, 13835), 'sfepy.discrete.conditions.get_condition_value', 'get_condition_value', (['bc.match', 'functions', '"""EPBC"""', 'bc.name'], {}), "(bc.match, functions, 'EPBC', bc.name)\n", (13797, 13835), False, 'from sfepy.discrete.conditions import get_condition_value, EssentialBC, PeriodicBC, DGPeriodicBC, DGEssentialBC\n'), ((14403, 14435), 'numpy.where', 'nm.where', (['(master_slave[meq] != 0)'], {}), '(master_slave[meq] != 0)\n', (14411, 14435), True, 'import numpy as nm\n'), ((14468, 14500), 'numpy.where', 'nm.where', (['(master_slave[seq] != 0)'], {}), '(master_slave[seq] != 0)\n', (14476, 14500), True, 'import numpy as nm\n'), ((14655, 14667), 'numpy.sign', 'nm.sign', (['aux'], {}), '(aux)\n', (14662, 14667), True, 'import numpy as nm\n'), ((14866, 14878), 'numpy.sign', 'nm.sign', (['aux'], {}), '(aux)\n', (14873, 14878), True, 'import numpy as nm\n'), ((15133, 15169), 'numpy.setdiff1d', 'nm.setdiff1d', (['s_assigned', 'm_assigned'], {}), '(s_assigned, m_assigned)\n', (15145, 15169), True, 'import numpy as nm\n'), ((15294, 15328), 'numpy.union1d', 'nm.union1d', (['m_assigned', 's_assigned'], {}), '(m_assigned, s_assigned)\n', (15304, 15328), True, 'import numpy as nm\n'), ((15367, 15386), 'numpy.arange', 'nm.arange', (['meq.size'], {}), '(meq.size)\n', (15376, 15386), True, 'import numpy as nm\n')]
import typing as t from sqlalchemy.orm import RelationshipProperty, selectinload from sqlmodel import select def get_schema_context(info): schema_context = info.context["auto_schema"] return schema_context def get_model_for_type(info, type_): schema_context = get_schema_context(info) model = schema_context["type_to_model"][type_] return model def get_strawberry_fields_for_type(info, type_): schema_context = get_schema_context(info) strawberry_fields = schema_context["type_to_type_definition"][type_].fields return strawberry_fields def get_mapper_for_column(info, column): return column.property.mapper def get_type_for_column(info, column): schema_context = get_schema_context(info) return schema_context["mapper_to_type"][get_mapper_for_column(info, column)] def get_graphql_python_name_map_for_type(info, type_): """Create a mapping from graphql field names to python attribute names""" strawberry_fields = get_strawberry_fields_for_type(info, type_) name_map = { f.get_graphql_name(info.schema.config.auto_camel_case): f.python_name for f in strawberry_fields } return name_map def get_selected_field_columns(info, type_, selected_fields, model=None): model = get_model_for_type(info, type_) if model is None else model name_map = get_graphql_python_name_map_for_type(info, type_) selected_field_columns = [ (s, getattr(model, name_map[s.name])) for s in selected_fields ] return selected_field_columns def get_selected_scalar_non_scalar_field_columns( info, type_, selected_fields, model=None ): selected_field_columns = get_selected_field_columns( info, type_, selected_fields, model ) scalar_field_columns = [ fc for fc in selected_field_columns if not isinstance(fc[1].property, RelationshipProperty) ] non_scalar_field_columns = [ c for c in selected_field_columns if isinstance(c[1].property, RelationshipProperty) ] return scalar_field_columns, non_scalar_field_columns def do_nested_select(info, type_, query, selected_field, column, parent_model): selected_fields = [s for s in selected_field.selections] model = get_model_for_type(info, type_) ( scalar_field_columns, non_scalar_field_columns, ) = get_selected_scalar_non_scalar_field_columns( info, type_, selected_fields, model ) # TODO: selectinload is good for one to many relationships because it does # not create cartesian product issues. # https://docs.sqlalchemy.org/en/14/orm/loading_relationships.html#what-kind-of-loading-to-use # however we probably want joined loading for many to one relationships # and we can set innerjoin to true if the relationship is nonnullable # https://docs.sqlalchemy.org/en/14/orm/loading_relationships.html#joined-eager-loading # one issue with selectinload is it will not work with nested relationships # that have compositie primary keys. this shows up on sql server # https://docs.sqlalchemy.org/en/14/orm/loading_relationships.html#select-in-loading subquery = selectinload(column) query = query.options(subquery) # TODO: this nested select is untested and probably doesn't work we want to # use chained loading to specify futher levels # https://docs.sqlalchemy.org/en/14/orm/loading_relationships.html#relationship-loading-with-loader-options if non_scalar_field_columns: for field_column in non_scalar_field_columns: field, column = field_column column_type = get_type_for_column(info, column) do_nested_select(info, column_type, subquery, field, column, model) return query def eq_filter(column, value): return column == value def neq_filter(column, value): return column != value def lt_filter(column, value): return column < value def lte_filter(column, value): return column <= value def gt_filter(column, value): return column > value def gte_filter(column, value): return column >= value def contains_filter(column, value): return column.contains(value) # TODO: write more filters filter_map = { "eq": eq_filter, "neq": neq_filter, "lt": lt_filter, "lte": lte_filter, "gt": gt_filter, "gte": gte_filter, "contains": contains_filter, } def do_filter(info, type_, query, column, filter): from api.strawberry_sqlalchemy.schema_generation import ( NonScalarComparison, ScalarComparison, ) scalar = isinstance(filter, ScalarComparison) non_scalar = isinstance(filter, NonScalarComparison) if scalar: for filter_key in filter.__dict__.keys(): value = getattr(filter, filter_key) if value is not None: filter_func = filter_map[filter_key] query = query.where(filter_func(column, value)) elif non_scalar: # TODO: implement non scalar filter processing raise NotImplementedError("Non scalar filters are not yet implemented.") return query def do_where(info, type_, query, where_clause): from api.strawberry_sqlalchemy.schema_generation import ( NonScalarComparison, ScalarComparison, ) if where_clause is None: return query isinstance(where_clause, ScalarComparison) non_scalar = isinstance(where_clause, NonScalarComparison) model = get_model_for_type(info, type_) name_map = get_graphql_python_name_map_for_type(info, type_) if non_scalar: for name in where_clause.__dict__.keys(): filter_ = getattr(where_clause, name) if filter_ is not None: column = ( None if name not in name_map else getattr(model, name_map[name]) ) query = do_filter(info, type_, query, column, filter_) return query def create_all_type_resolver(type_: type): """create a resolver for all instances of a type. Supports various filters""" from api.strawberry_sqlalchemy.schema_generation import ( create_non_scalar_comparison_expression, create_non_scalar_order_by_expression, create_non_scalar_select_columns_enum, ) def all_type_resolver( self, info, where: t.Optional[create_non_scalar_comparison_expression(type_)] = None, limit: t.Optional[int] = None, offset: t.Optional[int] = None, orderBy: t.Optional[create_non_scalar_order_by_expression(type_)] = None, distinctOn: t.Optional[ t.List[create_non_scalar_select_columns_enum(type_)] ] = None, ) -> t.List[type_]: # handle the case where we are querying a many attribute # in a one to many relationship # the many attribute uses an all_type_query resolver so that the user # can supply filters. but strawberry.field.get_result tries to # load the nested attribute using the resolver. # because we are using eager loading we actually just want to access # the attribute on the parent using get_attr(model, python_name) # we don't want to generate a nested query # TODO: to check that we are not at the root we check that the prev # path is not None. Not sure if this is always true! if info.path.prev is not None: return getattr(self, info.python_name) model = get_model_for_type(info, type_) db = info.context["db"] selected_fields = [s for s in info.selected_fields[0].selections] ( scalar_field_columns, non_scalar_field_columns, ) = get_selected_scalar_non_scalar_field_columns(info, type_, selected_fields) query = select(model) query = do_where(info, type_, query, where) if non_scalar_field_columns: for field_column in non_scalar_field_columns: field, column = field_column column_type = get_type_for_column(info, column) query = do_nested_select(info, column_type, query, field, column, model) rows = db.exec(query).all() return rows return all_type_resolver
[ "sqlmodel.select" ]
[((3185, 3205), 'sqlalchemy.orm.selectinload', 'selectinload', (['column'], {}), '(column)\n', (3197, 3205), False, 'from sqlalchemy.orm import RelationshipProperty, selectinload\n'), ((7813, 7826), 'sqlmodel.select', 'select', (['model'], {}), '(model)\n', (7819, 7826), False, 'from sqlmodel import select\n'), ((6373, 6419), 'api.strawberry_sqlalchemy.schema_generation.create_non_scalar_comparison_expression', 'create_non_scalar_comparison_expression', (['type_'], {}), '(type_)\n', (6412, 6419), False, 'from api.strawberry_sqlalchemy.schema_generation import create_non_scalar_comparison_expression, create_non_scalar_order_by_expression, create_non_scalar_select_columns_enum\n'), ((6536, 6580), 'api.strawberry_sqlalchemy.schema_generation.create_non_scalar_order_by_expression', 'create_non_scalar_order_by_expression', (['type_'], {}), '(type_)\n', (6573, 6580), False, 'from api.strawberry_sqlalchemy.schema_generation import create_non_scalar_comparison_expression, create_non_scalar_order_by_expression, create_non_scalar_select_columns_enum\n'), ((6641, 6685), 'api.strawberry_sqlalchemy.schema_generation.create_non_scalar_select_columns_enum', 'create_non_scalar_select_columns_enum', (['type_'], {}), '(type_)\n', (6678, 6685), False, 'from api.strawberry_sqlalchemy.schema_generation import create_non_scalar_comparison_expression, create_non_scalar_order_by_expression, create_non_scalar_select_columns_enum\n')]
""" Functions for building queries, from nodes or SQL. """ import ast import datetime import operator import re from typing import Any, Callable, Dict, List, Literal, Optional, Set, Tuple, cast from dateutil.parser import parse from sqlalchemy.engine.url import make_url from sqlalchemy.schema import Column as SqlaColumn from sqlalchemy.sql.elements import BinaryExpression from sqlalchemy.sql.expression import ClauseElement from sqlmodel import Session, select from sqloxide import parse_sql from datajunction.constants import DEFAULT_DIMENSION_COLUMN from datajunction.errors import DJError, DJInvalidInputException, ErrorCode from datajunction.models.node import Node, NodeType from datajunction.models.query import QueryCreate from datajunction.sql.dag import ( get_database_for_nodes, get_dimensions, get_referenced_columns_from_sql, get_referenced_columns_from_tree, ) from datajunction.sql.parse import ( find_nodes_by_key, find_nodes_by_key_with_parent, get_expression_from_projection, ) from datajunction.sql.transpile import get_query, get_select_for_node from datajunction.typing import ( Expression, Identifier, Join, Projection, Relation, Select, ) from datajunction.utils import get_session FILTER_RE = re.compile(r"([\w\./_]+)(<=|<|>=|>|!=|=)(.+)") FilterOperator = Literal[">", ">=", "<", "<=", "=", "!="] COMPARISONS: Dict[FilterOperator, Callable[[Any, Any], bool]] = { ">": operator.gt, ">=": operator.ge, "<": operator.lt, "<=": operator.le, "=": operator.eq, "!=": operator.ne, } def parse_filter(filter_: str) -> Tuple[str, FilterOperator, str]: """ Parse a filter into name, op, value. """ match = FILTER_RE.match(filter_) if not match: raise DJInvalidInputException( message=f'The filter "{filter_}" is invalid', errors=[ DJError( code=ErrorCode.INVALID_FILTER_PATTERN, message=( f'The filter "{filter_}" is not a valid filter. Filters should ' "consist of a dimension name, follow by a valid operator " "(<=|<|>=|>|!=|=), followed by a value. If the value is a " "string or date/time it should be enclosed in single quotes." ), debug={"context": {"filter": filter_}}, ), ], ) name, operator_, value = match.groups() operator_ = cast(FilterOperator, operator_) return name, operator_, value def get_filter(columns: Dict[str, SqlaColumn], filter_: str) -> BinaryExpression: """ Build a SQLAlchemy filter. """ name, operator_, value = parse_filter(filter_) if name not in columns: raise Exception(f"Invalid column name: {name}") column = columns[name] comparison = COMPARISONS[operator_] if column.type.python_type in [datetime.date, datetime.datetime]: try: value = str(parse(value)) except Exception as ex: raise Exception(f"Invalid date or datetime value: {value}") from ex else: try: value = ast.literal_eval(value) except Exception as ex: raise Exception(f"Invalid value: {value}") from ex return comparison(column, value) def get_dimensions_from_filters(filters: List[str]) -> Set[str]: """ Extract dimensions from filters passed to the metric API. """ return {parse_filter(filter_)[0] for filter_ in filters} def get_query_for_node( # pylint: disable=too-many-locals session: Session, node: Node, groupbys: List[str], filters: List[str], database_id: Optional[int] = None, ) -> QueryCreate: """ Return a DJ QueryCreate object from a given node. """ # check that groupbys and filters are valid dimensions requested_dimensions = set(groupbys) | get_dimensions_from_filters(filters) valid_dimensions = set(get_dimensions(node)) if not requested_dimensions <= valid_dimensions: invalid = sorted(requested_dimensions - valid_dimensions) plural = "s" if len(invalid) > 1 else "" raise Exception(f"Invalid dimension{plural}: {', '.join(invalid)}") # which columns are needed from the parents; this is used to determine the database # where the query will run referenced_columns = get_referenced_columns_from_sql(node.expression, node.parents) # extract all referenced dimensions so we can join the node with them dimensions: Dict[str, Node] = {} for dimension in requested_dimensions: name, column = dimension.rsplit(".", 1) if ( name not in {parent.name for parent in node.parents} and name not in dimensions ): dimensions[name] = session.exec(select(Node).where(Node.name == name)).one() referenced_columns[name].add(column) # find database nodes = [node] nodes.extend(dimensions.values()) database = get_database_for_nodes(session, nodes, referenced_columns, database_id) # base query node_select = get_select_for_node(node, database) source = node_select.froms[0] # join with dimensions for dimension in dimensions.values(): subquery = get_select_for_node( dimension, database, referenced_columns[dimension.name], ).alias(dimension.name) condition = find_on_clause(node, source, dimension, subquery) node_select = node_select.select_from(source.join(subquery, condition)) columns = { f"{column.table.name}.{column.name}": column for from_ in node_select.froms for column in from_.columns } # filter node_select = node_select.filter( *[get_filter(columns, filter_) for filter_ in filters] ) # groupby node_select = node_select.group_by(*[columns[groupby] for groupby in groupbys]) # add groupbys to projection as well for groupby in groupbys: node_select.append_column(columns[groupby]) dialect = make_url(database.URI).get_dialect() sql = str( node_select.compile(dialect=dialect(), compile_kwargs={"literal_binds": True}), ) return QueryCreate(database_id=database.id, submitted_query=sql) def find_on_clause( node: Node, node_select: Select, dimension: Node, subquery: Select, ) -> ClauseElement: """ Return the on clause for a node/dimension selects. """ for parent in node.parents: for column in parent.columns: if column.dimension == dimension: dimension_column = column.dimension_column or DEFAULT_DIMENSION_COLUMN return ( node_select.columns[column.name] # type: ignore == subquery.columns[dimension_column] # type: ignore ) raise Exception(f"Node {node.name} has no columns with dimension {dimension.name}") # pylint: disable=too-many-branches, too-many-locals, too-many-statements def get_query_for_sql(sql: str) -> QueryCreate: """ Return a query given a SQL expression querying the repo. Eg: SELECT "core.users.gender", "core.num_comments" FROM metrics WHERE "core.comments.user_id" > 1 GROUP BY "core.users.gender" This works by converting metrics (``core.num_comments``) into their selection definition (``COUNT(*)``), updating the sources to include the metrics parents (including joining with dimensions), and updating column references in the ``WHERE``, ``GROUP BY``, etc. """ session = next(get_session()) tree = parse_sql(sql, dialect="ansi") query_select = tree[0]["Query"]["body"]["Select"] # fetch all metric and dimension nodes nodes = {node.name: node for node in session.exec(select(Node))} # extract metrics and dimensions from the query identifiers = { identifier["value"] for identifier in find_nodes_by_key(query_select, "Identifier") } for compound_identifier in find_nodes_by_key(query_select, "CompoundIdentifier"): identifiers.add(".".join(part["value"] for part in compound_identifier)) requested_metrics: Set[Node] = set() requested_dimensions: Set[Node] = set() for identifier in identifiers: if identifier in nodes and nodes[identifier].type == NodeType.METRIC: requested_metrics.add(nodes[identifier]) continue if "." not in identifier: raise Exception(f"Invalid dimension: {identifier}") name, column = identifier.rsplit(".", 1) if name not in nodes: raise Exception(f"Invalid dimension: {identifier}") node = nodes[name] if node.type != NodeType.DIMENSION: continue column_names = {column.name for column in node.columns} if column not in column_names: raise Exception(f"Invalid dimension: {identifier}") requested_dimensions.add(node) # update ``FROM``/``JOIN`` based on requests metrics and dimensions parents = process_metrics(query_select, requested_metrics, requested_dimensions) # update metric references in the projection projection = query_select["projection"] metric_names = {metric.name for metric in requested_metrics} for expression, parent in list( find_nodes_by_key_with_parent(projection, "UnnamedExpr"), ): replace_metric_identifier(expression, parent, nodes, metric_names) for expression_with_alias, parent in list( find_nodes_by_key_with_parent(projection, "ExprWithAlias"), ): alias = expression_with_alias["alias"] expression = expression_with_alias["expr"] replace_metric_identifier(expression, parent, nodes, metric_names, alias) # update metric references in ``ORDER BY`` and ``HAVING`` for part in (tree[0]["Query"]["order_by"], query_select["having"]): for identifier, parent in list( find_nodes_by_key_with_parent(part, "Identifier"), ): name = identifier["value"] if name not in nodes: if "." in name and name.rsplit(".", 1)[0] in nodes: # not a metric, but a column reference continue raise Exception(f"Invalid identifier: {name}") node = nodes[name] metric_tree = parse_sql(node.expression, dialect="ansi") parent.pop("Identifier") parent.update( get_expression_from_projection( metric_tree[0]["Query"]["body"]["Select"]["projection"][0], ), ) # replace dimension references parts = [ query_select[part] for part in ("projection", "selection", "group_by", "sort_by") ] parts.append(tree[0]["Query"]["order_by"]) for part in parts: for identifier, parent in list( find_nodes_by_key_with_parent(part, "Identifier"), ): if identifier["value"] not in identifiers: continue name, column = identifier["value"].rsplit(".", 1) parent.pop("Identifier") parent["CompoundIdentifier"] = [ {"quote_style": '"', "value": name}, {"quote_style": '"', "value": column}, ] parents.extend(requested_dimensions) referenced_columns = get_referenced_columns_from_tree(tree, parents) database = get_database_for_nodes(session, parents, referenced_columns) dialect = make_url(database.URI).get_dialect() query = get_query(None, parents, tree, database, dialect.name) sql = str(query.compile(dialect=dialect(), compile_kwargs={"literal_binds": True})) return QueryCreate(database_id=database.id, submitted_query=sql) def process_metrics( query_select: Select, requested_metrics: Set[Node], requested_dimensions: Set[Node], ) -> List[Node]: """ Process metrics in the query, updating ``FROM`` and adding any joins. Modifies ``query_select`` inplace and Returns the parents. """ if not requested_metrics: if not requested_dimensions: return [] if len(requested_dimensions) > 1: raise Exception( "Cannot query from multiple dimensions when no metric is specified", ) dimension = list(requested_dimensions)[0] query_select["from"] = [ { "joins": [], "relation": { "Table": { "alias": None, "args": [], "name": [{"quote_style": '"', "value": dimension.name}], "with_hints": [], }, }, }, ] return [dimension] # check that there is a metric with the superset of parents from all metrics main_metric = sorted( requested_metrics, key=lambda metric: (len(metric.parents), metric.name), reverse=True, )[0] for metric in requested_metrics: if not set(metric.parents) <= set(main_metric.parents): raise Exception( f"Metrics {metric.name} and {main_metric.name} have non-shared parents", ) # replace the ``from`` part of the parse tree with the ``from`` from the metric that # has all the necessary parents metric_tree = parse_sql(main_metric.expression, dialect="ansi") query_select["from"] = metric_tree[0]["Query"]["body"]["Select"]["from"] # join to any dimensions for dimension in requested_dimensions: query_select["from"][0]["joins"].append( get_dimension_join(main_metric, dimension), ) return main_metric.parents def replace_metric_identifier( expression: Expression, parent: Projection, nodes: Dict[str, Node], metric_names: Set[str], alias: Optional[Identifier] = None, ) -> None: """ Replace any metric reference in ``expression`` with its SQL. """ if "CompoundIdentifier" in expression: expression["Identifier"] = { "quote_style": None, "value": ".".join( part["value"] for part in expression.pop("CompoundIdentifier") ), } elif "Identifier" not in expression: return name = expression["Identifier"]["value"] if name not in metric_names: return # if this is an unnamed expression remove the key from the parent, since it will be # replaced with an expression with alias parent.pop("UnnamedExpr", None) node = nodes[name] metric_tree = parse_sql(node.expression, dialect="ansi") parent["ExprWithAlias"] = { "alias": alias or {"quote_style": '"', "value": node.name}, "expr": get_expression_from_projection( metric_tree[0]["Query"]["body"]["Select"]["projection"][0], ), } def get_join_columns(node: Node, dimension: Node) -> Tuple[str, str, str]: """ Return the columns to perform a join between a node and a dimension. """ for parent in node.parents: for column in parent.columns: if column.dimension == dimension: return ( parent.name, column.name, column.dimension_column or DEFAULT_DIMENSION_COLUMN, ) raise Exception(f"Node {node.name} has no columns with dimension {dimension.name}") def get_dimension_join(node: Node, dimension: Node) -> Join: """ Return the join between a node and a dimension. """ parent_name, node_column, dimension_column = get_join_columns(node, dimension) relation: Relation = { "Table": { "alias": None, "args": [], "name": [{"quote_style": None, "value": dimension.name}], "with_hints": [], }, } return { "join_operator": { "Inner": { "On": { "BinaryOp": { "left": { "CompoundIdentifier": [ {"quote_style": None, "value": parent_name}, {"quote_style": None, "value": node_column}, ], }, "op": "Eq", "right": { "CompoundIdentifier": [ {"quote_style": None, "value": dimension.name}, {"quote_style": None, "value": dimension_column}, ], }, }, }, "Using": [], }, }, "relation": relation, }
[ "sqlmodel.select" ]
[((1275, 1322), 're.compile', 're.compile', (['"""([\\\\w\\\\./_]+)(<=|<|>=|>|!=|=)(.+)"""'], {}), "('([\\\\w\\\\./_]+)(<=|<|>=|>|!=|=)(.+)')\n", (1285, 1322), False, 'import re\n'), ((2526, 2557), 'typing.cast', 'cast', (['FilterOperator', 'operator_'], {}), '(FilterOperator, operator_)\n', (2530, 2557), False, 'from typing import Any, Callable, Dict, List, Literal, Optional, Set, Tuple, cast\n'), ((4418, 4480), 'datajunction.sql.dag.get_referenced_columns_from_sql', 'get_referenced_columns_from_sql', (['node.expression', 'node.parents'], {}), '(node.expression, node.parents)\n', (4449, 4480), False, 'from datajunction.sql.dag import get_database_for_nodes, get_dimensions, get_referenced_columns_from_sql, get_referenced_columns_from_tree\n'), ((5043, 5114), 'datajunction.sql.dag.get_database_for_nodes', 'get_database_for_nodes', (['session', 'nodes', 'referenced_columns', 'database_id'], {}), '(session, nodes, referenced_columns, database_id)\n', (5065, 5114), False, 'from datajunction.sql.dag import get_database_for_nodes, get_dimensions, get_referenced_columns_from_sql, get_referenced_columns_from_tree\n'), ((5151, 5186), 'datajunction.sql.transpile.get_select_for_node', 'get_select_for_node', (['node', 'database'], {}), '(node, database)\n', (5170, 5186), False, 'from datajunction.sql.transpile import get_query, get_select_for_node\n'), ((6273, 6330), 'datajunction.models.query.QueryCreate', 'QueryCreate', ([], {'database_id': 'database.id', 'submitted_query': 'sql'}), '(database_id=database.id, submitted_query=sql)\n', (6284, 6330), False, 'from datajunction.models.query import QueryCreate\n'), ((7722, 7752), 'sqloxide.parse_sql', 'parse_sql', (['sql'], {'dialect': '"""ansi"""'}), "(sql, dialect='ansi')\n", (7731, 7752), False, 'from sqloxide import parse_sql\n'), ((8130, 8183), 'datajunction.sql.parse.find_nodes_by_key', 'find_nodes_by_key', (['query_select', '"""CompoundIdentifier"""'], {}), "(query_select, 'CompoundIdentifier')\n", (8147, 8183), False, 'from datajunction.sql.parse import find_nodes_by_key, find_nodes_by_key_with_parent, get_expression_from_projection\n'), ((11505, 11552), 'datajunction.sql.dag.get_referenced_columns_from_tree', 'get_referenced_columns_from_tree', (['tree', 'parents'], {}), '(tree, parents)\n', (11537, 11552), False, 'from datajunction.sql.dag import get_database_for_nodes, get_dimensions, get_referenced_columns_from_sql, get_referenced_columns_from_tree\n'), ((11569, 11629), 'datajunction.sql.dag.get_database_for_nodes', 'get_database_for_nodes', (['session', 'parents', 'referenced_columns'], {}), '(session, parents, referenced_columns)\n', (11591, 11629), False, 'from datajunction.sql.dag import get_database_for_nodes, get_dimensions, get_referenced_columns_from_sql, get_referenced_columns_from_tree\n'), ((11693, 11747), 'datajunction.sql.transpile.get_query', 'get_query', (['None', 'parents', 'tree', 'database', 'dialect.name'], {}), '(None, parents, tree, database, dialect.name)\n', (11702, 11747), False, 'from datajunction.sql.transpile import get_query, get_select_for_node\n'), ((11848, 11905), 'datajunction.models.query.QueryCreate', 'QueryCreate', ([], {'database_id': 'database.id', 'submitted_query': 'sql'}), '(database_id=database.id, submitted_query=sql)\n', (11859, 11905), False, 'from datajunction.models.query import QueryCreate\n'), ((13543, 13592), 'sqloxide.parse_sql', 'parse_sql', (['main_metric.expression'], {'dialect': '"""ansi"""'}), "(main_metric.expression, dialect='ansi')\n", (13552, 13592), False, 'from sqloxide import parse_sql\n'), ((14773, 14815), 'sqloxide.parse_sql', 'parse_sql', (['node.expression'], {'dialect': '"""ansi"""'}), "(node.expression, dialect='ansi')\n", (14782, 14815), False, 'from sqloxide import parse_sql\n'), ((4007, 4027), 'datajunction.sql.dag.get_dimensions', 'get_dimensions', (['node'], {}), '(node)\n', (4021, 4027), False, 'from datajunction.sql.dag import get_database_for_nodes, get_dimensions, get_referenced_columns_from_sql, get_referenced_columns_from_tree\n'), ((7695, 7708), 'datajunction.utils.get_session', 'get_session', ([], {}), '()\n', (7706, 7708), False, 'from datajunction.utils import get_session\n'), ((9444, 9500), 'datajunction.sql.parse.find_nodes_by_key_with_parent', 'find_nodes_by_key_with_parent', (['projection', '"""UnnamedExpr"""'], {}), "(projection, 'UnnamedExpr')\n", (9473, 9500), False, 'from datajunction.sql.parse import find_nodes_by_key, find_nodes_by_key_with_parent, get_expression_from_projection\n'), ((9639, 9697), 'datajunction.sql.parse.find_nodes_by_key_with_parent', 'find_nodes_by_key_with_parent', (['projection', '"""ExprWithAlias"""'], {}), "(projection, 'ExprWithAlias')\n", (9668, 9697), False, 'from datajunction.sql.parse import find_nodes_by_key, find_nodes_by_key_with_parent, get_expression_from_projection\n'), ((14932, 15027), 'datajunction.sql.parse.get_expression_from_projection', 'get_expression_from_projection', (["metric_tree[0]['Query']['body']['Select']['projection'][0]"], {}), "(metric_tree[0]['Query']['body']['Select'][\n 'projection'][0])\n", (14962, 15027), False, 'from datajunction.sql.parse import find_nodes_by_key, find_nodes_by_key_with_parent, get_expression_from_projection\n'), ((3203, 3226), 'ast.literal_eval', 'ast.literal_eval', (['value'], {}), '(value)\n', (3219, 3226), False, 'import ast\n'), ((6115, 6137), 'sqlalchemy.engine.url.make_url', 'make_url', (['database.URI'], {}), '(database.URI)\n', (6123, 6137), False, 'from sqlalchemy.engine.url import make_url\n'), ((8047, 8092), 'datajunction.sql.parse.find_nodes_by_key', 'find_nodes_by_key', (['query_select', '"""Identifier"""'], {}), "(query_select, 'Identifier')\n", (8064, 8092), False, 'from datajunction.sql.parse import find_nodes_by_key, find_nodes_by_key_with_parent, get_expression_from_projection\n'), ((10073, 10122), 'datajunction.sql.parse.find_nodes_by_key_with_parent', 'find_nodes_by_key_with_parent', (['part', '"""Identifier"""'], {}), "(part, 'Identifier')\n", (10102, 10122), False, 'from datajunction.sql.parse import find_nodes_by_key, find_nodes_by_key_with_parent, get_expression_from_projection\n'), ((10485, 10527), 'sqloxide.parse_sql', 'parse_sql', (['node.expression'], {'dialect': '"""ansi"""'}), "(node.expression, dialect='ansi')\n", (10494, 10527), False, 'from sqloxide import parse_sql\n'), ((11029, 11078), 'datajunction.sql.parse.find_nodes_by_key_with_parent', 'find_nodes_by_key_with_parent', (['part', '"""Identifier"""'], {}), "(part, 'Identifier')\n", (11058, 11078), False, 'from datajunction.sql.parse import find_nodes_by_key, find_nodes_by_key_with_parent, get_expression_from_projection\n'), ((11644, 11666), 'sqlalchemy.engine.url.make_url', 'make_url', (['database.URI'], {}), '(database.URI)\n', (11652, 11666), False, 'from sqlalchemy.engine.url import make_url\n'), ((3034, 3046), 'dateutil.parser.parse', 'parse', (['value'], {}), '(value)\n', (3039, 3046), False, 'from dateutil.parser import parse\n'), ((5310, 5386), 'datajunction.sql.transpile.get_select_for_node', 'get_select_for_node', (['dimension', 'database', 'referenced_columns[dimension.name]'], {}), '(dimension, database, referenced_columns[dimension.name])\n', (5329, 5386), False, 'from datajunction.sql.transpile import get_query, get_select_for_node\n'), ((7905, 7917), 'sqlmodel.select', 'select', (['Node'], {}), '(Node)\n', (7911, 7917), False, 'from sqlmodel import Session, select\n'), ((10608, 10703), 'datajunction.sql.parse.get_expression_from_projection', 'get_expression_from_projection', (["metric_tree[0]['Query']['body']['Select']['projection'][0]"], {}), "(metric_tree[0]['Query']['body']['Select'][\n 'projection'][0])\n", (10638, 10703), False, 'from datajunction.sql.parse import find_nodes_by_key, find_nodes_by_key_with_parent, get_expression_from_projection\n'), ((1898, 2240), 'datajunction.errors.DJError', 'DJError', ([], {'code': 'ErrorCode.INVALID_FILTER_PATTERN', 'message': 'f"""The filter "{filter_}" is not a valid filter. Filters should consist of a dimension name, follow by a valid operator (<=|<|>=|>|!=|=), followed by a value. If the value is a string or date/time it should be enclosed in single quotes."""', 'debug': "{'context': {'filter': filter_}}"}), '(code=ErrorCode.INVALID_FILTER_PATTERN, message=\n f\'The filter "{filter_}" is not a valid filter. Filters should consist of a dimension name, follow by a valid operator (<=|<|>=|>|!=|=), followed by a value. If the value is a string or date/time it should be enclosed in single quotes.\'\n , debug={\'context\': {\'filter\': filter_}})\n', (1905, 2240), False, 'from datajunction.errors import DJError, DJInvalidInputException, ErrorCode\n'), ((4856, 4868), 'sqlmodel.select', 'select', (['Node'], {}), '(Node)\n', (4862, 4868), False, 'from sqlmodel import Session, select\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io from tempfile import mkstemp import numpy as np import pytest import megengine.core.tensor.megbrain_graph as G import megengine.functional as F import megengine.optimizer as optim import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, tensor from megengine.autodiff import GradManager from megengine.core._trace_option import set_symbolic_shape from megengine.core.ops import builtin as ops from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.utils import isscalar from megengine.functional import exp, log from megengine.jit import exclude_from_trace, trace from megengine.module import Module from megengine.random import normal, uniform def test_trace(): for symbolic in [False, True]: @trace(symbolic=symbolic) def f(x): return -x x = tensor([1]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) def test_output_copy_trace(): class Simple(Module): def __init__(self): super().__init__() self.a = Parameter([1.0], dtype=np.float32) def forward(self, x): x = x * self.a # will result into a copy of output in grad x = F.exp(x) return x net = Simple() gm = GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) data = tensor(np.arange(4).reshape(2, 2), dtype="float32") @trace(symbolic=False) def train_f1(d): with gm: loss = net(d) gm.backward(loss) opt.step().clear_grad() return loss @trace(symbolic=True) def train_f2(d): with gm: loss = net(d) gm.backward(loss) opt.step().clear_grad() return loss for i in range(2): y1 = train_f1(data).numpy() y2 = train_f2(data).numpy() np.testing.assert_equal(y1, y2) def test_exclude_from_trace(): for symbolic in [False, True]: @trace(symbolic=symbolic) def f(x): x = -x with exclude_from_trace(): if i % 2: x = -x x = -x return x x = tensor([1]) for i in range(3): y = f(x).numpy() np.testing.assert_equal(f(x).numpy(), y) def test_print_in_trace(): for symbolic in [False]: # cannot read value in symbolic mode @trace(symbolic=symbolic) def f(x): nonlocal buf x = -x buf = x.numpy() x = -x return x buf = None x = tensor([1]) for i in range(3): y = f(x).numpy() z = buf buf = None np.testing.assert_equal(f(x).numpy(), y) np.testing.assert_equal(z, buf) def test_dump(): @trace(symbolic=True, capture_as_const=True) def f(a, b): return a + b a = tensor([2]) b = tensor([4]) y = f(a, b).numpy() for i in range(3): np.testing.assert_equal(f(a, b).numpy(), y) file = io.BytesIO() dump_info = f.dump(file) assert dump_info.nr_opr == 3 np.testing.assert_equal(dump_info.inputs, ["arg_0", "arg_1"]) np.testing.assert_equal(dump_info.outputs, ["ADD(arg_0,arg_1)[4]"]) file.seek(0) result = cgtools.load_and_inference(file, [a, b]) np.testing.assert_equal(result[0], y) def test_capture_dump(): a = tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): return x * a x = tensor([3]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) file = io.BytesIO() f.dump(file) file.seek(0) result = cgtools.load_and_inference(file, [x]) np.testing.assert_equal(result[0], y) def test_dump_volatile(): p = tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): return x * p x = tensor([3]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) file = io.BytesIO() f.dump(file, optimize_for_inference=False) file.seek(0) cg, _, outputs = G.load_graph(file) (out,) = outputs assert ( cgtools.get_owner_opr_type(cgtools.get_owner_opr_inputs(out)[1]) == "ImmutableTensor" ) def test_trace_profiler(): for symbolic in [False, True]: @trace(symbolic=symbolic, profiling=True) def f(x): return -x x = tensor([1]) y = f(x).numpy() f(x) f(x) # XXX: has to run twice out = f.get_profile() assert out.get("profiler") @pytest.mark.skip(reason="force opt_level=0 when building graph") def test_goptions(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): # directly return x / x will not trigger gopt # since there's no way to tell the two x are the same y = 2.0 * x return y / y @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): y = 2.0 * x return y / y d = tensor(0.0) assert not np.isfinite(f(d).numpy()) np.testing.assert_equal(g(d).numpy().item(), 1.0) @pytest.mark.skip(reason="force opt_level=0 when building graph") def test_goptions_log_sum_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x, y): return log(exp(x) + exp(y)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x, y): return log(exp(x) + exp(y)) val = 1.0e4 d = tensor(val) o = tensor(0.0) assert not np.isfinite(f(d, o).numpy()) np.testing.assert_almost_equal(g(d, o), val) @pytest.mark.skip(reason="could not use opt_level=0 with dump") def test_goptions_log_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): return log(exp(x)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): return log(exp(x)) f(tensor(1.0)) _, out = mkstemp() f.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_1 = cgtools.get_oprs_seq(outputs) g(tensor(1.0)) g.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_2 = cgtools.get_oprs_seq(outputs) assert len(oprs_1) - len(oprs_2) == 2 def test_optimize_for_inference(): @trace(symbolic=True, capture_as_const=True) def f(x): return exp(x) _, out = mkstemp() f(tensor(5.0)) f.dump(out, enable_io16xc32=True) res = G.load_graph(out) computing_input = res.output_vars_list[0].owner.inputs[0] assert computing_input.dtype == np.float16 def test_optimize_for_inference_broadcast(): a = tensor(np.ones(1, dtype=np.float32)) @trace(capture_as_const=True, symbolic_shape=True) def f(): return a._broadcast(tensor([1, 10], dtype=np.int32)) f() f.dump(io.BytesIO()) def test_trace_cvt_bool(): x = tensor([0], dtype=np.int32) @trace(symbolic=True) def f(x): a = x.shape b = a[0] assert isscalar(b) return b == 0 for i in range(3): np.testing.assert_equal(f(x).numpy(), False) def test_trace_reshape(): for symbolic in [False, True]: x1 = tensor(np.random.randn(2, 10, 10)) x2 = tensor(np.random.randn(4, 10, 10)) x3 = tensor(np.random.randn(8, 10, 10)) @trace(symbolic=symbolic, capture_as_const=True) def f(x): y = x.reshape(x.shape[0], 100) return y f(x1) f(x2) f(x3) def test_trace_topk(): x = tensor([5, 2, 7, 1, 0, 3, 2]) @trace(symbolic=True) def f(x): y = F.topk(x, 3) np.testing.assert_equal(y[0].shape.numpy(), np.array([3,])) return y for i in range(3): f(x) def test_trace_warp_perspective(): inp_shape = (1, 1, 4, 4) x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) @trace(symbolic=True) def f(x, M): out = F.warp_perspective(x, M, (2, 2)) np.testing.assert_equal(out.shape.numpy(), np.array([1, 1, 2, 2])) return out for i in range(1): f(x, M) def test_raise_on_trace(): step_count = 0 catch_count = 0 bad_step = 10 class CatchMe(Exception): pass a = tensor([1, 2, 3, 4]) b = tensor([5, 6, 7, 8]) c = tensor([9, 0, 1, 2]) @trace def add_abc(a, b, c): ps = a + b result = ps + c if step_count == bad_step: raise CatchMe("catch me") return result for i in range(100): try: d = add_abc(a, b, c) except CatchMe as e: catch_count += 1 else: np.testing.assert_equal(d.numpy(), (a + b + c).numpy()) step_count += 1 assert catch_count == 1 def test_trace_broadcast(): for symbolic in [False, True]: x1 = tensor(np.random.randn(3, 1, 1)) x2 = tensor(np.random.randn(1, 4, 1)) x3 = tensor(np.random.randn(1, 1, 5)) @trace(symbolic=symbolic, capture_as_const=True) def f(x): y = F.broadcast_to(x, (3, 4, 5)) return y f(x1) f(x2) f(x3) def test_trace_nms(): def make_inputs(n): boxes = np.zeros((n, 4)) boxes[:, :2] = np.random.rand(n, 2) * 100 boxes[:, 2:] = np.random.rand(n, 2) * 100 + 100 scores = np.random.rand(n) return tensor(boxes), tensor(scores) @trace(symbolic=False) def f(boxes, scores): # with tracing, max_output must be specified results = F.nn.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) # without tracing, max output can be inferred inside nms with exclude_from_trace(): _ = F.nn.nms(boxes, scores=scores, iou_thresh=0.5) return results f(*make_inputs(10)) f(*make_inputs(20)) f(*make_inputs(30)) def test_trace_valid_broadcast(): x1 = tensor(np.random.randn(1, 1)) x2 = tensor(np.random.randn(1, 2)) shape = (tensor([2]), tensor([2])) @trace(symbolic=False) def f(x, shape): y = F.broadcast_to(x, shape) return y f(x1, shape) f(x2, shape) def test_clip(): x = tensor(np.random.randn(10, 10)) @trace(symbolic=True) def f(x, lower, upper): y = F.clip(x, lower, upper) return y for i in range(3): f(x, tensor([0]), tensor([1])) # test returning noncontiguous tensor from trace def test_slice(): @trace def f(x): return x[:, 1::2] x = F.arange(8).reshape(2, 4) f(x) y = f(x) np.testing.assert_array_equal(y.numpy(), x.numpy()[:, 1::2]) y + y def test_random(): def run_test(op): for symbolic_shape in [True, False]: @trace(symbolic=True, symbolic_shape=symbolic_shape) def f(): out = op(size=[10, 10]) out_shape = out.shape assert out_shape is not None if not isinstance(out_shape, tuple): assert out.shape.numpy() is not None return out for _ in range(3): f() run_test(uniform) run_test(normal)
[ "megengine.utils.comp_graph_tools.load_and_inference", "megengine.functional.arange", "megengine.autodiff.GradManager", "megengine.jit.trace", "megengine.functional.clip", "megengine.core.tensor.utils.isscalar", "megengine.utils.comp_graph_tools.get_owner_opr_inputs", "megengine.tensor", "megengine.functional.nn.nms", "megengine.core.tensor.megbrain_graph.load_graph", "megengine.functional.topk", "megengine.functional.exp", "megengine.functional.broadcast_to", "megengine.jit.exclude_from_trace", "megengine.Parameter", "megengine.utils.comp_graph_tools.get_oprs_seq", "megengine.functional.warp_perspective" ]
[((5110, 5174), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""force opt_level=0 when building graph"""'}), "(reason='force opt_level=0 when building graph')\n", (5126, 5174), False, 'import pytest\n'), ((5666, 5730), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""force opt_level=0 when building graph"""'}), "(reason='force opt_level=0 when building graph')\n", (5682, 5730), False, 'import pytest\n'), ((6148, 6210), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""could not use opt_level=0 with dump"""'}), "(reason='could not use opt_level=0 with dump')\n", (6164, 6210), False, 'import pytest\n'), ((1871, 1892), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (1876, 1892), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((2049, 2069), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (2054, 2069), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((3305, 3348), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (3310, 3348), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((3396, 3407), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (3402, 3407), False, 'from megengine import Parameter, tensor\n'), ((3416, 3427), 'megengine.tensor', 'tensor', (['[4]'], {}), '([4])\n', (3422, 3427), False, 'from megengine import Parameter, tensor\n'), ((3540, 3552), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (3550, 3552), False, 'import io\n'), ((3619, 3680), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['dump_info.inputs', "['arg_0', 'arg_1']"], {}), "(dump_info.inputs, ['arg_0', 'arg_1'])\n", (3642, 3680), True, 'import numpy as np\n'), ((3685, 3752), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['dump_info.outputs', "['ADD(arg_0,arg_1)[4]']"], {}), "(dump_info.outputs, ['ADD(arg_0,arg_1)[4]'])\n", (3708, 3752), True, 'import numpy as np\n'), ((3783, 3823), 'megengine.utils.comp_graph_tools.load_and_inference', 'cgtools.load_and_inference', (['file', '[a, b]'], {}), '(file, [a, b])\n', (3809, 3823), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((3828, 3865), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['result[0]', 'y'], {}), '(result[0], y)\n', (3851, 3865), True, 'import numpy as np\n'), ((3901, 3912), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (3907, 3912), False, 'from megengine import Parameter, tensor\n'), ((3919, 3962), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (3924, 3962), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4007, 4018), 'megengine.tensor', 'tensor', (['[3]'], {}), '([3])\n', (4013, 4018), False, 'from megengine import Parameter, tensor\n'), ((4125, 4137), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (4135, 4137), False, 'import io\n'), ((4185, 4222), 'megengine.utils.comp_graph_tools.load_and_inference', 'cgtools.load_and_inference', (['file', '[x]'], {}), '(file, [x])\n', (4211, 4222), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((4227, 4264), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['result[0]', 'y'], {}), '(result[0], y)\n', (4250, 4264), True, 'import numpy as np\n'), ((4301, 4312), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (4307, 4312), False, 'from megengine import Parameter, tensor\n'), ((4319, 4362), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (4324, 4362), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4407, 4418), 'megengine.tensor', 'tensor', (['[3]'], {}), '([3])\n', (4413, 4418), False, 'from megengine import Parameter, tensor\n'), ((4525, 4537), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (4535, 4537), False, 'import io\n'), ((4623, 4641), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['file'], {}), '(file)\n', (4635, 4641), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((5201, 5257), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (5206, 5257), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5435, 5491), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (5440, 5491), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5556, 5567), 'megengine.tensor', 'tensor', (['(0.0)'], {}), '(0.0)\n', (5562, 5567), False, 'from megengine import Parameter, tensor\n'), ((5769, 5825), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (5774, 5825), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5885, 5941), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (5890, 5941), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6020, 6031), 'megengine.tensor', 'tensor', (['val'], {}), '(val)\n', (6026, 6031), False, 'from megengine import Parameter, tensor\n'), ((6040, 6051), 'megengine.tensor', 'tensor', (['(0.0)'], {}), '(0.0)\n', (6046, 6051), False, 'from megengine import Parameter, tensor\n'), ((6245, 6301), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (6250, 6301), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6349, 6405), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (6354, 6405), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6480, 6489), 'tempfile.mkstemp', 'mkstemp', ([], {}), '()\n', (6487, 6489), False, 'from tempfile import mkstemp\n'), ((6554, 6571), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (6566, 6571), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((6585, 6614), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {}), '(outputs)\n', (6605, 6614), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((6699, 6716), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (6711, 6716), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((6730, 6759), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {}), '(outputs)\n', (6750, 6759), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((6845, 6888), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (6850, 6888), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6939, 6948), 'tempfile.mkstemp', 'mkstemp', ([], {}), '()\n', (6946, 6948), False, 'from tempfile import mkstemp\n'), ((7017, 7034), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (7029, 7034), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((7242, 7291), 'megengine.jit.trace', 'trace', ([], {'capture_as_const': '(True)', 'symbolic_shape': '(True)'}), '(capture_as_const=True, symbolic_shape=True)\n', (7247, 7291), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7437, 7464), 'megengine.tensor', 'tensor', (['[0]'], {'dtype': 'np.int32'}), '([0], dtype=np.int32)\n', (7443, 7464), False, 'from megengine import Parameter, tensor\n'), ((7471, 7491), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (7476, 7491), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8092, 8121), 'megengine.tensor', 'tensor', (['[5, 2, 7, 1, 0, 3, 2]'], {}), '([5, 2, 7, 1, 0, 3, 2])\n', (8098, 8121), False, 'from megengine import Parameter, tensor\n'), ((8128, 8148), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (8133, 8148), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8622, 8642), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (8627, 8642), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8980, 9000), 'megengine.tensor', 'tensor', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (8986, 9000), False, 'from megengine import Parameter, tensor\n'), ((9009, 9029), 'megengine.tensor', 'tensor', (['[5, 6, 7, 8]'], {}), '([5, 6, 7, 8])\n', (9015, 9029), False, 'from megengine import Parameter, tensor\n'), ((9038, 9058), 'megengine.tensor', 'tensor', (['[9, 0, 1, 2]'], {}), '([9, 0, 1, 2])\n', (9044, 9058), False, 'from megengine import Parameter, tensor\n'), ((10163, 10184), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (10168, 10184), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((10762, 10783), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (10767, 10783), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((10959, 10979), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (10964, 10979), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((1146, 1170), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (1151, 1170), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((1224, 1235), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (1230, 1235), False, 'from megengine import Parameter, tensor\n'), ((2450, 2474), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2455, 2474), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((2657, 2668), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (2663, 2668), False, 'from megengine import Parameter, tensor\n'), ((2885, 2909), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2890, 2909), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((3072, 3083), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (3078, 3083), False, 'from megengine import Parameter, tensor\n'), ((4858, 4898), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic', 'profiling': '(True)'}), '(symbolic=symbolic, profiling=True)\n', (4863, 4898), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4952, 4963), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (4958, 4963), False, 'from megengine import Parameter, tensor\n'), ((6454, 6465), 'megengine.tensor', 'tensor', (['(1.0)'], {}), '(1.0)\n', (6460, 6465), False, 'from megengine import Parameter, tensor\n'), ((6622, 6633), 'megengine.tensor', 'tensor', (['(1.0)'], {}), '(1.0)\n', (6628, 6633), False, 'from megengine import Parameter, tensor\n'), ((6918, 6924), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (6921, 6924), False, 'from megengine.functional import exp, log\n'), ((6955, 6966), 'megengine.tensor', 'tensor', (['(5.0)'], {}), '(5.0)\n', (6961, 6966), False, 'from megengine import Parameter, tensor\n'), ((7206, 7234), 'numpy.ones', 'np.ones', (['(1)'], {'dtype': 'np.float32'}), '(1, dtype=np.float32)\n', (7213, 7234), True, 'import numpy as np\n'), ((7386, 7398), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (7396, 7398), False, 'import io\n'), ((7558, 7569), 'megengine.core.tensor.utils.isscalar', 'isscalar', (['b'], {}), '(b)\n', (7566, 7569), False, 'from megengine.core.tensor.utils import isscalar\n'), ((7886, 7933), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic', 'capture_as_const': '(True)'}), '(symbolic=symbolic, capture_as_const=True)\n', (7891, 7933), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8175, 8187), 'megengine.functional.topk', 'F.topk', (['x', '(3)'], {}), '(x, 3)\n', (8181, 8187), True, 'import megengine.functional as F\n'), ((8674, 8706), 'megengine.functional.warp_perspective', 'F.warp_perspective', (['x', 'M', '(2, 2)'], {}), '(x, M, (2, 2))\n', (8692, 8706), True, 'import megengine.functional as F\n'), ((9713, 9760), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic', 'capture_as_const': '(True)'}), '(symbolic=symbolic, capture_as_const=True)\n', (9718, 9760), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((9952, 9968), 'numpy.zeros', 'np.zeros', (['(n, 4)'], {}), '((n, 4))\n', (9960, 9968), True, 'import numpy as np\n'), ((10093, 10110), 'numpy.random.rand', 'np.random.rand', (['n'], {}), '(n)\n', (10107, 10110), True, 'import numpy as np\n'), ((10282, 10343), 'megengine.functional.nn.nms', 'F.nn.nms', (['boxes'], {'scores': 'scores', 'iou_thresh': '(0.5)', 'max_output': '(20)'}), '(boxes, scores=scores, iou_thresh=0.5, max_output=20)\n', (10290, 10343), True, 'import megengine.functional as F\n'), ((10655, 10676), 'numpy.random.randn', 'np.random.randn', (['(1)', '(1)'], {}), '(1, 1)\n', (10670, 10676), True, 'import numpy as np\n'), ((10694, 10715), 'numpy.random.randn', 'np.random.randn', (['(1)', '(2)'], {}), '(1, 2)\n', (10709, 10715), True, 'import numpy as np\n'), ((10730, 10741), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (10736, 10741), False, 'from megengine import Parameter, tensor\n'), ((10743, 10754), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (10749, 10754), False, 'from megengine import Parameter, tensor\n'), ((10817, 10841), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', 'shape'], {}), '(x, shape)\n', (10831, 10841), True, 'import megengine.functional as F\n'), ((10928, 10951), 'numpy.random.randn', 'np.random.randn', (['(10)', '(10)'], {}), '(10, 10)\n', (10943, 10951), True, 'import numpy as np\n'), ((11020, 11043), 'megengine.functional.clip', 'F.clip', (['x', 'lower', 'upper'], {}), '(x, lower, upper)\n', (11026, 11043), True, 'import megengine.functional as F\n'), ((1480, 1514), 'megengine.Parameter', 'Parameter', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (1489, 1514), False, 'from megengine import Parameter, tensor\n'), ((1645, 1653), 'megengine.functional.exp', 'F.exp', (['x'], {}), '(x)\n', (1650, 1653), True, 'import megengine.functional as F\n'), ((1705, 1718), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (1716, 1718), False, 'from megengine.autodiff import GradManager\n'), ((2340, 2371), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['y1', 'y2'], {}), '(y1, y2)\n', (2363, 2371), True, 'import numpy as np\n'), ((3249, 3280), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['z', 'buf'], {}), '(z, buf)\n', (3272, 3280), True, 'import numpy as np\n'), ((6335, 6341), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (6338, 6341), False, 'from megengine.functional import exp, log\n'), ((6439, 6445), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (6442, 6445), False, 'from megengine.functional import exp, log\n'), ((7333, 7364), 'megengine.tensor', 'tensor', (['[1, 10]'], {'dtype': 'np.int32'}), '([1, 10], dtype=np.int32)\n', (7339, 7364), False, 'from megengine import Parameter, tensor\n'), ((7752, 7778), 'numpy.random.randn', 'np.random.randn', (['(2)', '(10)', '(10)'], {}), '(2, 10, 10)\n', (7767, 7778), True, 'import numpy as np\n'), ((7800, 7826), 'numpy.random.randn', 'np.random.randn', (['(4)', '(10)', '(10)'], {}), '(4, 10, 10)\n', (7815, 7826), True, 'import numpy as np\n'), ((7848, 7874), 'numpy.random.randn', 'np.random.randn', (['(8)', '(10)', '(10)'], {}), '(8, 10, 10)\n', (7863, 7874), True, 'import numpy as np\n'), ((8240, 8253), 'numpy.array', 'np.array', (['[3]'], {}), '([3])\n', (8248, 8253), True, 'import numpy as np\n'), ((8758, 8780), 'numpy.array', 'np.array', (['[1, 1, 2, 2]'], {}), '([1, 1, 2, 2])\n', (8766, 8780), True, 'import numpy as np\n'), ((9585, 9609), 'numpy.random.randn', 'np.random.randn', (['(3)', '(1)', '(1)'], {}), '(3, 1, 1)\n', (9600, 9609), True, 'import numpy as np\n'), ((9631, 9655), 'numpy.random.randn', 'np.random.randn', (['(1)', '(4)', '(1)'], {}), '(1, 4, 1)\n', (9646, 9655), True, 'import numpy as np\n'), ((9677, 9701), 'numpy.random.randn', 'np.random.randn', (['(1)', '(1)', '(5)'], {}), '(1, 1, 5)\n', (9692, 9701), True, 'import numpy as np\n'), ((9795, 9823), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', '(3, 4, 5)'], {}), '(x, (3, 4, 5))\n', (9809, 9823), True, 'import megengine.functional as F\n'), ((9992, 10012), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (10006, 10012), True, 'import numpy as np\n'), ((10127, 10140), 'megengine.tensor', 'tensor', (['boxes'], {}), '(boxes)\n', (10133, 10140), False, 'from megengine import Parameter, tensor\n'), ((10142, 10156), 'megengine.tensor', 'tensor', (['scores'], {}), '(scores)\n', (10148, 10156), False, 'from megengine import Parameter, tensor\n'), ((10422, 10442), 'megengine.jit.exclude_from_trace', 'exclude_from_trace', ([], {}), '()\n', (10440, 10442), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((10460, 10506), 'megengine.functional.nn.nms', 'F.nn.nms', (['boxes'], {'scores': 'scores', 'iou_thresh': '(0.5)'}), '(boxes, scores=scores, iou_thresh=0.5)\n', (10468, 10506), True, 'import megengine.functional as F\n'), ((11098, 11109), 'megengine.tensor', 'tensor', (['[0]'], {}), '([0])\n', (11104, 11109), False, 'from megengine import Parameter, tensor\n'), ((11111, 11122), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (11117, 11122), False, 'from megengine import Parameter, tensor\n'), ((11253, 11264), 'megengine.functional.arange', 'F.arange', (['(8)'], {}), '(8)\n', (11261, 11264), True, 'import megengine.functional as F\n'), ((11478, 11529), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'symbolic_shape': 'symbolic_shape'}), '(symbolic=True, symbolic_shape=symbolic_shape)\n', (11483, 11529), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((1820, 1832), 'numpy.arange', 'np.arange', (['(4)'], {}), '(4)\n', (1829, 1832), True, 'import numpy as np\n'), ((2529, 2549), 'megengine.jit.exclude_from_trace', 'exclude_from_trace', ([], {}), '()\n', (2547, 2549), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4711, 4744), 'megengine.utils.comp_graph_tools.get_owner_opr_inputs', 'cgtools.get_owner_opr_inputs', (['out'], {}), '(out)\n', (4739, 4744), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((5862, 5868), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (5865, 5868), False, 'from megengine.functional import exp, log\n'), ((5871, 5877), 'megengine.functional.exp', 'exp', (['y'], {}), '(y)\n', (5874, 5877), False, 'from megengine.functional import exp, log\n'), ((5978, 5984), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (5981, 5984), False, 'from megengine.functional import exp, log\n'), ((5987, 5993), 'megengine.functional.exp', 'exp', (['y'], {}), '(y)\n', (5990, 5993), False, 'from megengine.functional import exp, log\n'), ((8391, 8422), 'numpy.arange', 'np.arange', (['(16)'], {'dtype': 'np.float32'}), '(16, dtype=np.float32)\n', (8400, 8422), True, 'import numpy as np\n'), ((8491, 8570), 'numpy.array', 'np.array', (['[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]]'], {'dtype': 'np.float32'}), '([[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32)\n', (8499, 8570), True, 'import numpy as np\n'), ((10042, 10062), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (10056, 10062), True, 'import numpy as np\n')]
import sys sys.path.append('.') import time import megengine as mge from model.RIFE import Model model = Model() model.eval() I0 = mge.random(1, 3, 480, 640) I1 = mge.random(1, 3, 480, 640) for i in range(100): pred = model.inference(I0, I1) mge._full_sync() time_stamp = time.time() for i in range(100): pred = model.inference(I0, I1) mge._full_sync() print((time.time() - time_stamp) / 100)
[ "megengine.random", "megengine._full_sync" ]
[((11, 31), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (26, 31), False, 'import sys\n'), ((106, 113), 'model.RIFE.Model', 'Model', ([], {}), '()\n', (111, 113), False, 'from model.RIFE import Model\n'), ((133, 159), 'megengine.random', 'mge.random', (['(1)', '(3)', '(480)', '(640)'], {}), '(1, 3, 480, 640)\n', (143, 159), True, 'import megengine as mge\n'), ((165, 191), 'megengine.random', 'mge.random', (['(1)', '(3)', '(480)', '(640)'], {}), '(1, 3, 480, 640)\n', (175, 191), True, 'import megengine as mge\n'), ((248, 264), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (262, 264), True, 'import megengine as mge\n'), ((278, 289), 'time.time', 'time.time', ([], {}), '()\n', (287, 289), False, 'import time\n'), ((346, 362), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (360, 362), True, 'import megengine as mge\n'), ((370, 381), 'time.time', 'time.time', ([], {}), '()\n', (379, 381), False, 'import time\n')]
""" Classes of variables for equations/terms. """ from __future__ import print_function from __future__ import absolute_import from collections import deque import numpy as nm from sfepy.base.base import (real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists) from sfepy.base.timing import Timer import sfepy.linalg as la from sfepy.discrete.functions import Function from sfepy.discrete.conditions import get_condition_value from sfepy.discrete.integrals import Integral from sfepy.discrete.common.dof_info import (DofInfo, EquationMap, expand_nodes_to_equations, is_active_bc) from sfepy.discrete.fem.lcbc_operators import LCBCOperators from sfepy.discrete.common.mappings import get_physical_qps from sfepy.discrete.evaluate_variable import eval_real, eval_complex import six from six.moves import range is_state = 0 is_virtual = 1 is_parameter = 2 is_field = 10 def create_adof_conns(conn_info, var_indx=None, active_only=True, verbose=True): """ Create active DOF connectivities for all variables referenced in `conn_info`. If a variable has not the equation mapping, a trivial mapping is assumed and connectivity with all DOFs active is created. DOF connectivity key is a tuple ``(primary variable name, region name, type, is_trace flag)``. Notes ----- If `active_only` is False, the DOF connectivities contain all DOFs, with the E(P)BC-constrained ones stored as `-1 - <DOF number>`, so that the full connectivities can be reconstructed for the matrix graph creation. """ var_indx = get_default(var_indx, {}) def _create(var, econn): offset = var_indx.get(var.name, slice(0, 0)).start if var.eq_map is None: eq = nm.arange(var.n_dof, dtype=nm.int32) else: if isinstance(var, DGFieldVariable): eq = nm.arange(var.n_dof, dtype=nm.int32) else: if active_only: eq = var.eq_map.eq else: eq = nm.arange(var.n_dof, dtype=nm.int32) eq[var.eq_map.eq_ebc] = -1 - (var.eq_map.eq_ebc + offset) eq[var.eq_map.master] = eq[var.eq_map.slave] adc = create_adof_conn(eq, econn, var.n_components, offset) return adc def _assign(adof_conns, info, region, var, field, is_trace): key = (var.name, region.name, info.dc_type.type, is_trace) if not key in adof_conns: econn = field.get_econn(info.dc_type, region, is_trace=is_trace) if econn is None: return adof_conns[key] = _create(var, econn) if info.is_trace: key = (var.name, region.name, info.dc_type.type, False) if not key in adof_conns: econn = field.get_econn(info.dc_type, region, is_trace=False) adof_conns[key] = _create(var, econn) if verbose: output('setting up dof connectivities...') timer = Timer(start=True) adof_conns = {} for key, ii, info in iter_dict_of_lists(conn_info, return_keys=True): if info.primary is not None: var = info.primary field = var.get_field() field.setup_extra_data(info.ps_tg, info, info.is_trace) region = info.get_region() _assign(adof_conns, info, region, var, field, info.is_trace) if info.has_virtual and not info.is_trace: var = info.virtual field = var.get_field() field.setup_extra_data(info.v_tg, info, False) aux = var.get_primary() var = aux if aux is not None else var region = info.get_region(can_trace=False) _assign(adof_conns, info, region, var, field, False) if verbose: output('...done in %.2f s' % timer.stop()) return adof_conns def create_adof_conn(eq, conn, dpn, offset): """ Given a node connectivity, number of DOFs per node and equation mapping, create the active dof connectivity. Locally (in a connectivity row), the DOFs are stored DOF-by-DOF (u_0 in all local nodes, u_1 in all local nodes, ...). Globally (in a state vector), the DOFs are stored node-by-node (u_0, u_1, ..., u_X in node 0, u_0, u_1, ..., u_X in node 1, ...). """ if dpn == 1: aux = nm.take(eq, conn) adc = aux + nm.asarray(offset * (aux >= 0), dtype=nm.int32) else: n_el, n_ep = conn.shape adc = nm.empty((n_el, n_ep * dpn), dtype=conn.dtype) ii = 0 for idof in range(dpn): aux = nm.take(eq, dpn * conn + idof) adc[:, ii : ii + n_ep] = aux + nm.asarray(offset * (aux >= 0), dtype=nm.int32) ii += n_ep return adc def expand_basis(basis, dpn): """ Expand basis for variables with several components (DOFs per node), in a way compatible with :func:`create_adof_conn()`, according to `dpn` (DOF-per-node count). """ n_c, n_bf = basis.shape[-2:] ebasis = nm.zeros(basis.shape[:2] + (dpn, n_bf * dpn), dtype=nm.float64) for ic in range(n_c): for ir in range(dpn): ebasis[..., n_c*ir+ic, ir*n_bf:(ir+1)*n_bf] = basis[..., ic, :] return ebasis class Variables(Container): """ Container holding instances of Variable. """ @staticmethod def from_conf(conf, fields): """ This method resets the variable counters for automatic order! """ Variable.reset() obj = Variables() for key, val in six.iteritems(conf): var = Variable.from_conf(key, val, fields) obj[var.name] = var obj.setup_dtype() obj.setup_ordering() return obj def __init__(self, variables=None): Container.__init__(self, OneTypeList(Variable), state=set(), virtual=set(), parameter=set(), has_virtual_dcs=False, has_lcbc=False, has_lcbc_rhs=False, has_eq_map=False, ordered_state=[], ordered_virtual=[]) if variables is not None: for var in variables: self[var.name] = var self.setup_ordering() self.setup_dtype() self.adof_conns = {} def __setitem__(self, ii, var): Container.__setitem__(self, ii, var) if var.is_state(): self.state.add(var.name) elif var.is_virtual(): self.virtual.add(var.name) elif var.is_parameter(): self.parameter.add(var.name) var._variables = self self.setup_ordering() self.setup_dof_info() def setup_dtype(self): """ Setup data types of state variables - all have to be of the same data type, one of nm.float64 or nm.complex128. """ dtypes = {nm.complex128 : 0, nm.float64 : 0} for var in self.iter_state(ordered=False): dtypes[var.dtype] += 1 if dtypes[nm.float64] and dtypes[nm.complex128]: raise ValueError("All variables must have the same dtype!") elif dtypes[nm.float64]: self.dtype = nm.float64 elif dtypes[nm.complex128]: self.dtype = nm.complex128 else: self.dtype = None def link_duals(self): """ Link state variables with corresponding virtual variables, and assign link to self to each variable instance. Usually, when solving a PDE in the weak form, each state variable has a corresponding virtual variable. """ for ii in self.state: self[ii].dual_var_name = None for ii in self.virtual: vvar = self[ii] try: self[vvar.primary_var_name].dual_var_name = vvar.name except IndexError: pass def get_dual_names(self): """ Get names of pairs of dual variables. Returns ------- duals : dict The dual names as virtual name : state name pairs. """ duals = {} for name in self.virtual: duals[name] = self[name].primary_var_name return duals def setup_ordering(self): """ Setup ordering of variables. """ self.link_duals() orders = [] for var in self: try: orders.append(var._order) except: pass orders.sort() self.ordered_state = [None] * len(self.state) for var in self.iter_state(ordered=False): ii = orders.index(var._order) self.ordered_state[ii] = var.name self.ordered_virtual = [None] * len(self.virtual) ii = 0 for var in self.iter_state(ordered=False): if var.dual_var_name is not None: self.ordered_virtual[ii] = var.dual_var_name ii += 1 def has_virtuals(self): return len(self.virtual) > 0 def setup_dof_info(self, make_virtual=False): """ Setup global DOF information. """ self.di = DofInfo('state_dof_info') for var_name in self.ordered_state: self.di.append_variable(self[var_name]) if make_virtual: self.vdi = DofInfo('virtual_dof_info') for var_name in self.ordered_virtual: self.vdi.append_variable(self[var_name]) else: self.vdi = self.di def setup_lcbc_operators(self, lcbcs, ts=None, functions=None): """ Prepare linear combination BC operator matrix and right-hand side vector. """ from sfepy.discrete.common.region import are_disjoint if lcbcs is None: self.lcdi = self.adi return self.lcbcs = lcbcs if (ts is None) or ((ts is not None) and (ts.step == 0)): regs = [] var_names = [] for bcs in self.lcbcs: for bc in bcs.iter_single(): vns = bc.get_var_names() regs.append(bc.regions[0]) var_names.append(vns[0]) if bc.regions[1] is not None: regs.append(bc.regions[1]) var_names.append(vns[1]) for i0 in range(len(regs) - 1): for i1 in range(i0 + 1, len(regs)): if ((var_names[i0] == var_names[i1]) and not are_disjoint(regs[i0], regs[i1])): raise ValueError('regions %s and %s are not disjoint!' % (regs[i0].name, regs[i1].name)) ops = LCBCOperators('lcbcs', self, functions=functions) for bcs in self.lcbcs: for bc in bcs.iter_single(): vns = bc.get_var_names() dofs = [self[vn].dofs for vn in vns if vn is not None] bc.canonize_dof_names(*dofs) if not is_active_bc(bc, ts=ts, functions=functions): continue output('lcbc:', bc.name) ops.add_from_bc(bc, ts) aux = ops.make_global_operator(self.adi) self.mtx_lcbc, self.vec_lcbc, self.lcdi = aux self.has_lcbc = self.mtx_lcbc is not None self.has_lcbc_rhs = self.vec_lcbc is not None def get_lcbc_operator(self): if self.has_lcbc: return self.mtx_lcbc else: raise ValueError('no LCBC defined!') def equation_mapping(self, ebcs, epbcs, ts, functions, problem=None, active_only=True): """ Create the mapping of active DOFs from/to all DOFs for all state variables. Parameters ---------- ebcs : Conditions instance The essential (Dirichlet) boundary conditions. epbcs : Conditions instance The periodic boundary conditions. ts : TimeStepper instance The time stepper. functions : Functions instance The user functions for boundary conditions. problem : Problem instance, optional The problem that can be passed to user functions as a context. active_only : bool If True, the active DOF info ``self.adi`` uses the reduced (active DOFs only) numbering. Otherwise it is the same as ``self.di``. Returns ------- active_bcs : set The set of boundary conditions active in the current time. """ self.ebcs = ebcs self.epbcs = epbcs ## # Assing EBC, PBC to variables and regions. if ebcs is not None: self.bc_of_vars = self.ebcs.group_by_variables() else: self.bc_of_vars = {} if epbcs is not None: self.bc_of_vars = self.epbcs.group_by_variables(self.bc_of_vars) ## # List EBC nodes/dofs for each variable. active_bcs = set() for var_name in self.di.var_names: var = self[var_name] bcs = self.bc_of_vars.get(var.name, None) var_di = self.di.get_info(var_name) active = var.equation_mapping(bcs, var_di, ts, functions, problem=problem) active_bcs.update(active) if self.has_virtual_dcs: vvar = self[var.dual_var_name] vvar_di = self.vdi.get_info(var_name) active = vvar.equation_mapping(bcs, vvar_di, ts, functions, problem=problem) active_bcs.update(active) self.adi = DofInfo('active_state_dof_info') for var_name in self.ordered_state: self.adi.append_variable(self[var_name], active=active_only) if self.has_virtual_dcs: self.avdi = DofInfo('active_virtual_dof_info') for var_name in self.ordered_virtual: self.avdi.append_variable(self[var_name], active=active_only) else: self.avdi = self.adi self.has_eq_map = True return active_bcs def get_matrix_shape(self): if not self.has_eq_map: raise ValueError('call equation_mapping() first!') return (self.avdi.ptr[-1], self.adi.ptr[-1]) def setup_initial_conditions(self, ics, functions): self.ics = ics self.ic_of_vars = self.ics.group_by_variables() for var_name in self.di.var_names: var = self[var_name] ics = self.ic_of_vars.get(var.name, None) if ics is None: continue var.setup_initial_conditions(ics, self.di, functions) for var_name in self.parameter: var = self[var_name] if hasattr(var, 'special') and ('ic' in var.special): setter, sargs, skwargs = var._get_setter('ic', functions) var.set_data(setter(*sargs, **skwargs)) output('IC data of %s set by %s()' % (var.name, setter.name)) def set_adof_conns(self, adof_conns): """ Set all active DOF connectivities to `self` as well as relevant sub-dicts to the individual variables. """ self.adof_conns = adof_conns for var in self: var.adof_conns = {} for key, val in six.iteritems(adof_conns): if key[0] in self.names: var = self[key[0]] var.adof_conns[key] = val var = var.get_dual() if var is not None: var.adof_conns[key] = val def create_state_vector(self): vec = nm.zeros((self.di.ptr[-1],), dtype=self.dtype) return vec def create_stripped_state_vector(self): vec = nm.zeros((self.adi.ptr[-1],), dtype=self.dtype) return vec def apply_ebc(self, vec, force_values=None): """ Apply essential (Dirichlet) and periodic boundary conditions defined for the state variables to vector `vec`. """ for var in self.iter_state(): var.apply_ebc(vec, self.di.indx[var.name].start, force_values) def apply_ic(self, vec, force_values=None): """ Apply initial conditions defined for the state variables to vector `vec`. """ for var in self.iter_state(): var.apply_ic(vec, self.di.indx[var.name].start, force_values) def strip_state_vector(self, vec, follow_epbc=False, svec=None): """ Get the reduced DOF vector, with EBC and PBC DOFs removed. Notes ----- If 'follow_epbc' is True, values of EPBC master dofs are not simply thrown away, but added to the corresponding slave dofs, just like when assembling. For vectors with state (unknown) variables it should be set to False, for assembled vectors it should be set to True. """ if svec is None: svec = nm.empty((self.adi.ptr[-1],), dtype=self.dtype) for var in self.iter_state(): aindx = self.adi.indx[var.name] svec[aindx] = var.get_reduced(vec, self.di.indx[var.name].start, follow_epbc) return svec def make_full_vec(self, svec, force_value=None, vec=None): """ Make a full DOF vector satisfying E(P)BCs from a reduced DOF vector. Parameters ---------- svec : array The reduced DOF vector. force_value : float, optional Passing a `force_value` overrides the EBC values. vec : array, optional If given, the buffer for storing the result (zeroed). Returns ------- vec : array The full DOF vector. """ self.check_vector_size(svec, stripped=True) if self.has_lcbc: if self.has_lcbc_rhs: svec = self.mtx_lcbc * svec + self.vec_lcbc else: svec = self.mtx_lcbc * svec if vec is None: vec = self.create_state_vector() for var in self.iter_state(): indx = self.di.indx[var.name] aindx = self.adi.indx[var.name] var.get_full(svec, aindx.start, force_value, vec, indx.start) return vec def has_ebc(self, vec, force_values=None): for var_name in self.di.var_names: eq_map = self[var_name].eq_map i0 = self.di.indx[var_name].start ii = i0 + eq_map.eq_ebc if force_values is None: if not nm.allclose(vec[ii], eq_map.val_ebc): return False else: if isinstance(force_values, dict): if not nm.allclose(vec[ii], force_values[var_name]): return False else: if not nm.allclose(vec[ii], force_values): return False # EPBC. if not nm.allclose(vec[i0+eq_map.master], vec[i0+eq_map.slave]): return False return True def get_indx(self, var_name, stripped=False, allow_dual=False): var = self[var_name] if not var.is_state(): if allow_dual and var.is_virtual(): var_name = var.primary_var_name else: msg = '%s is not a state part' % var_name raise IndexError(msg) if stripped: return self.adi.indx[var_name] else: return self.di.indx[var_name] def check_vector_size(self, vec, stripped=False): """ Check whether the shape of the DOF vector corresponds to the total number of DOFs of the state variables. Parameters ---------- vec : array The vector of DOF values. stripped : bool If True, the size of the DOF vector should be reduced, i.e. without DOFs fixed by boundary conditions. """ if not stripped: n_dof = self.di.get_n_dof_total() if vec.size != n_dof: msg = 'incompatible data size!' \ ' (%d (variables) == %d (DOF vector))' \ % (n_dof, vec.size) raise ValueError(msg) else: if self.has_lcbc: n_dof = self.lcdi.get_n_dof_total() else: n_dof = self.adi.get_n_dof_total() if vec.size != n_dof: msg = 'incompatible data size!' \ ' (%d (active variables) == %d (reduced DOF vector))' \ % (n_dof, vec.size) raise ValueError(msg) def get_state_part_view(self, state, var_name, stripped=False): self.check_vector_size(state, stripped=stripped) return state[self.get_indx(var_name, stripped)] def set_state_part(self, state, part, var_name, stripped=False): self.check_vector_size(state, stripped=stripped) state[self.get_indx(var_name, stripped)] = part def get_state_parts(self, vec=None): """ Return parts of a state vector corresponding to individual state variables. Parameters ---------- vec : array, optional The state vector. If not given, then the data stored in the variables are returned instead. Returns ------- out : dict The dictionary of the state parts. """ if vec is not None: self.check_vector_size(vec) out = {} for var in self.iter_state(): if vec is None: out[var.name] = var() else: out[var.name] = vec[self.di.indx[var.name]] return out def set_data(self, data, step=0, ignore_unknown=False, preserve_caches=False): """ Set data (vectors of DOF values) of variables. Parameters ---------- data : array The state vector or dictionary of {variable_name : data vector}. step : int, optional The time history step, 0 (default) = current. ignore_unknown : bool, optional Ignore unknown variable names if `data` is a dict. preserve_caches : bool If True, do not invalidate evaluate caches of variables. """ if data is None: return if isinstance(data, dict): for key, val in six.iteritems(data): try: var = self[key] except (ValueError, IndexError): if ignore_unknown: pass else: raise KeyError('unknown variable! (%s)' % key) else: var.set_data(val, step=step, preserve_caches=preserve_caches) elif isinstance(data, nm.ndarray): self.check_vector_size(data) for ii in self.state: var = self[ii] var.set_data(data, self.di.indx[var.name], step=step, preserve_caches=preserve_caches) else: raise ValueError('unknown data class! (%s)' % data.__class__) def set_from_state(self, var_names, state, var_names_state): """ Set variables with names in `var_names` from state variables with names in `var_names_state` using DOF values in the state vector `state`. """ self.check_vector_size(state) if isinstance(var_names, basestr): var_names = [var_names] var_names_state = [var_names_state] for ii, var_name in enumerate(var_names): var_name_state = var_names_state[ii] if self[var_name_state].is_state(): self[var_name].set_data(state, self.di.indx[var_name_state]) else: msg = '%s is not a state part' % var_name_state raise IndexError(msg) def state_to_output(self, vec, fill_value=None, var_info=None, extend=True, linearization=None): """ Convert a state vector to a dictionary of output data usable by Mesh.write(). """ di = self.di if var_info is None: self.check_vector_size(vec) var_info = {} for name in di.var_names: var_info[name] = (False, name) out = {} for key, indx in six.iteritems(di.indx): var = self[key] if key not in list(var_info.keys()): continue is_part, name = var_info[key] if is_part: aux = vec else: aux = vec[indx] out.update(var.create_output(aux, key=name, extend=extend, fill_value=fill_value, linearization=linearization)) return out def iter_state(self, ordered=True): if ordered: for ii in self.ordered_state: yield self[ii] else: for ii in self.state: yield self[ii] def init_history(self): for var in self.iter_state(): var.init_history() def time_update(self, ts, functions, verbose=True): if verbose: output('updating variables...') for var in self: var.time_update(ts, functions) if verbose: output('...done') def advance(self, ts): for var in self.iter_state(): var.advance(ts) class Variable(Struct): _count = 0 _orders = [] _all_var_names = set() @staticmethod def reset(): Variable._count = 0 Variable._orders = [] Variable._all_var_names = set() @staticmethod def from_conf(key, conf, fields): aux = conf.kind.split() if len(aux) == 2: kind, family = aux elif len(aux) == 3: kind, family = aux[0], '_'.join(aux[1:]) else: raise ValueError('variable kind is 2 or 3 words! (%s)' % conf.kind) history = conf.get('history', None) if history is not None: try: history = int(history) assert_(history >= 0) except (ValueError, TypeError): raise ValueError('history must be integer >= 0! (got "%s")' % history) order = conf.get('order', None) if order is not None: order = int(order) primary_var_name = conf.get('dual', None) if primary_var_name is None: if hasattr(conf, 'like'): primary_var_name = get_default(conf.like, '(set-to-None)') else: primary_var_name = None special = conf.get('special', None) if family == 'field': try: fld = fields[conf.field] except IndexError: msg = 'field "%s" does not exist!' % conf.field raise KeyError(msg) if "DG" in fld.family_name: obj = DGFieldVariable(conf.name, kind, fld, order, primary_var_name, special=special, key=key, history=history) else: obj = FieldVariable(conf.name, kind, fld, order, primary_var_name, special=special, key=key, history=history) else: raise ValueError('unknown variable family! (%s)' % family) return obj def __init__(self, name, kind, order=None, primary_var_name=None, special=None, flags=None, **kwargs): Struct.__init__(self, name=name, **kwargs) self.flags = set() if flags is not None: for flag in flags: self.flags.add(flag) self.indx = slice(None) self.n_dof = None self.step = 0 self.dt = 1.0 self.initial_condition = None self.dual_var_name = None self.eq_map = None if self.is_virtual(): self.data = None else: self.data = deque() self.data.append(None) self._set_kind(kind, order, primary_var_name, special=special) Variable._all_var_names.add(name) def _set_kind(self, kind, order, primary_var_name, special=None): if kind == 'unknown': self.flags.add(is_state) if order is not None: if order in Variable._orders: raise ValueError('order %d already used!' % order) else: self._order = order Variable._orders.append(order) else: self._order = Variable._count Variable._orders.append(self._order) Variable._count += 1 self.dof_name = self.name elif kind == 'test': if primary_var_name == self.name: raise ValueError('primary variable for %s cannot be %s!' % (self.name, primary_var_name)) self.flags.add(is_virtual) msg = 'test variable %s: related unknown missing' % self.name self.primary_var_name = get_default(primary_var_name, None, msg) self.dof_name = self.primary_var_name elif kind == 'parameter': self.flags.add(is_parameter) msg = 'parameter variable %s: related unknown missing' % self.name self.primary_var_name = get_default(primary_var_name, None, msg) if self.primary_var_name == '(set-to-None)': self.primary_var_name = None self.dof_name = self.name else: self.dof_name = self.primary_var_name if special is not None: self.special = special else: raise NotImplementedError('unknown variable kind: %s' % kind) self.kind = kind def _setup_dofs(self, n_nod, n_components, val_shape): """ Setup number of DOFs and DOF names. """ self.n_nod = n_nod self.n_components = n_components self.val_shape = val_shape self.n_dof = self.n_nod * self.n_components self.dofs = [self.dof_name + ('.%d' % ii) for ii in range(self.n_components)] def get_primary(self): """ Get the corresponding primary variable. Returns ------- var : Variable instance The primary variable, or `self` for state variables or if `primary_var_name` is None, or None if no other variables are defined. """ if self.is_state(): var = self elif self.primary_var_name is not None: if ((self._variables is not None) and (self.primary_var_name in self._variables.names)): var = self._variables[self.primary_var_name] else: var = None else: var = self return var def get_dual(self): """ Get the dual variable. Returns ------- var : Variable instance The primary variable for non-state variables, or the dual variable for state variables. """ if self.is_state(): if ((self._variables is not None) and (self.dual_var_name in self._variables.names)): var = self._variables[self.dual_var_name] else: var = None else: if ((self._variables is not None) and (self.primary_var_name in self._variables.names)): var = self._variables[self.primary_var_name] else: var = None return var def is_state(self): return is_state in self.flags def is_virtual(self): return is_virtual in self.flags def is_parameter(self): return is_parameter in self.flags def is_state_or_parameter(self): return (is_state in self.flags) or (is_parameter in self.flags) def is_kind(self, kind): return eval('self.is_%s()' % kind) def is_real(self): return self.dtype in real_types def is_complex(self): return self.dtype in complex_types def is_finite(self, step=0, derivative=None, dt=None): return nm.isfinite(self(step=step, derivative=derivative, dt=dt)).all() def get_primary_name(self): if self.is_state(): name = self.name else: name = self.primary_var_name return name def init_history(self): """Initialize data of variables with history.""" if self.history is None: return self.data = deque((self.history + 1) * [None]) self.step = 0 def time_update(self, ts, functions): """Implemented in subclasses.""" pass def advance(self, ts): """ Advance in time the DOF state history. A copy of the DOF vector is made to prevent history modification. """ if self.history is None: return self.step = ts.step + 1 if self.history > 0: # Copy the current step data to the history data, shift history, # initialize if needed. The current step data are left intact. # Note: cannot use self.data.rotate() due to data sharing with # State. for ii in range(self.history, 0, -1): if self.data[ii] is None: self.data[ii] = nm.empty_like(self.data[0]) self.data[ii][:] = self.data[ii - 1] # Advance evaluate cache. for step_cache in six.itervalues(self.evaluate_cache): steps = sorted(step_cache.keys()) for step in steps: if step is None: # Special caches with possible custom advance() # function. for key, val in six.iteritems(step_cache[step]): if hasattr(val, '__advance__'): val.__advance__(ts, val) elif -step < self.history: step_cache[step-1] = step_cache[step] if len(steps) and (steps[0] is not None): step_cache.pop(steps[-1]) def init_data(self, step=0): """ Initialize the dof vector data of time step `step` to zeros. """ if self.is_state_or_parameter(): data = nm.zeros((self.n_dof,), dtype=self.dtype) self.set_data(data, step=step) def set_constant(self, val): """ Set the variable to a constant value. """ data = nm.empty((self.n_dof,), dtype=self.dtype) data.fill(val) self.set_data(data) def set_data(self, data=None, indx=None, step=0, preserve_caches=False): """ Set data (vector of DOF values) of the variable. Parameters ---------- data : array The vector of DOF values. indx : int, optional If given, `data[indx]` is used. step : int, optional The time history step, 0 (default) = current. preserve_caches : bool If True, do not invalidate evaluate caches of the variable. """ data = data.ravel() if indx is None: indx = slice(0, len(data)) else: indx = slice(int(indx.start), int(indx.stop)) n_data_dof = indx.stop - indx.start if self.n_dof != n_data_dof: msg = 'incompatible data shape! (%d (variable) == %d (data))' \ % (self.n_dof, n_data_dof) raise ValueError(msg) elif (step > 0) or (-step >= len(self.data)): raise ValueError('step %d out of range! ([%d, 0])' % (step, -(len(self.data) - 1))) else: self.data[step] = data self.indx = indx if not preserve_caches: self.invalidate_evaluate_cache(step=step) def __call__(self, step=0, derivative=None, dt=None): """ Return vector of degrees of freedom of the variable. Parameters ---------- step : int, default 0 The time step (0 means current, -1 previous, ...). derivative : None or 'dt' If not None, return time derivative of the DOF vector, approximated by the backward finite difference. Returns ------- vec : array The DOF vector. If `derivative` is None: a view of the data vector, otherwise: required derivative of the DOF vector at time step given by `step`. Notes ----- If the previous time step is requested in step 0, the step 0 DOF vector is returned instead. """ if derivative is None: if (self.step == 0) and (step == -1): data = self.data[0] else: data = self.data[-step] if data is None: raise ValueError('data of variable are not set! (%s, step %d)' \ % (self.name, step)) return data[self.indx] else: if self.history is None: msg = 'set history type of variable %s to use derivatives!'\ % self.name raise ValueError(msg) dt = get_default(dt, self.dt) return (self(step=step) - self(step=step-1)) / dt def get_initial_condition(self): if self.initial_condition is None: return 0.0 else: return self.initial_condition class FieldVariable(Variable): """ A finite element field variable. field .. field description of variable (borrowed) """ def __init__(self, name, kind, field, order=None, primary_var_name=None, special=None, flags=None, history=None, **kwargs): Variable.__init__(self, name, kind, order, primary_var_name, special, flags, history=history, **kwargs) self._set_field(field) self.has_field = True self.has_bc = True self._variables = None self.clear_evaluate_cache() def _set_field(self, field): """ Set field of the variable. Takes reference to a Field instance. Sets dtype according to field.dtype. Sets `dim` attribute to spatial dimension. """ self.is_surface = field.is_surface self.field = field self._setup_dofs(field.n_nod, field.n_components, field.val_shape) self.flags.add(is_field) self.dtype = field.dtype self.dim = field.domain.shape.dim def _get_setter(self, kind, functions, **kwargs): """ Get the setter function of the variable and its arguments depending in the setter kind. """ if not (hasattr(self, 'special') and (kind in self.special)): return setter_name = self.special[kind] setter = functions[setter_name] region = self.field.region nod_list = self.field.get_dofs_in_region(region) nods = nm.unique(nod_list) coors = self.field.get_coor(nods) if kind == 'setter': sargs = (kwargs.get('ts'), coors) elif kind == 'ic': sargs = (coors, ) skwargs = {'region' : region} return setter, sargs, skwargs def get_field(self): return self.field def get_mapping(self, region, integral, integration, get_saved=False, return_key=False): """ Get the reference element mapping of the underlying field. See Also -------- sfepy.discrete.common.fields.Field.get_mapping """ if region is None: region = self.field.region out = self.field.get_mapping(region, integral, integration, get_saved=get_saved, return_key=return_key) return out def get_dof_conn(self, dc_type, is_trace=False, trace_region=None): """ Get active dof connectivity of a variable. Notes ----- The primary and dual variables must have the same Region. """ if self.is_virtual(): var = self.get_primary() # No primary variable can occur in single term evaluations. var_name = var.name if var is not None else self.name else: var_name = self.name if not is_trace: region_name = dc_type.region_name else: aux = self.field.domain.regions[dc_type.region_name] region = aux.get_mirror_region(trace_region) region_name = region.name key = (var_name, region_name, dc_type.type, is_trace) dc = self.adof_conns[key] return dc def get_dof_info(self, active=False): details = Struct(name='field_var_dof_details', n_nod=self.n_nod, dpn=self.n_components) if active: n_dof = self.n_adof else: n_dof = self.n_dof return n_dof, details def time_update(self, ts, functions): """ Store time step, set variable data for variables with the setter function. """ if ts is not None: self.dt = ts.dt if hasattr(self, 'special') and ('setter' in self.special): setter, sargs, skwargs = self._get_setter('setter', functions, ts=ts) self.set_data(setter(*sargs, **skwargs)) output('data of %s set by %s()' % (self.name, setter.name)) def set_from_qp(self, data_qp, integral, step=0): """ Set DOFs of variable using values in quadrature points corresponding to the given integral. """ data_vertex = self.field.average_qp_to_vertices(data_qp, integral) # Field nodes values. data = self.field.interp_v_vals_to_n_vals(data_vertex) data = data.ravel() self.indx = slice(0, len(data)) self.data[step] = data def set_from_mesh_vertices(self, data): """ Set the variable using values at the mesh vertices. """ ndata = self.field.interp_v_vals_to_n_vals(data) self.set_data(ndata) def set_from_function(self, fun, step=0): """ Set the variable data (the vector of DOF values) using a function of space coordinates. Parameters ---------- fun : callable The function of coordinates returning DOF values of shape `(n_coor, n_components)`. step : int, optional The time history step, 0 (default) = current. """ _, vv = self.field.set_dofs(fun, self.field.region, self.n_components) self.set_data(vv.ravel(), step=step) def equation_mapping(self, bcs, var_di, ts, functions, problem=None, warn=False): """ Create the mapping of active DOFs from/to all DOFs. Sets n_adof. Returns ------- active_bcs : set The set of boundary conditions active in the current time. """ self.eq_map = EquationMap('eq_map', self.dofs, var_di) if bcs is not None: bcs.canonize_dof_names(self.dofs) bcs.sort() active_bcs = self.eq_map.map_equations(bcs, self.field, ts, functions, problem=problem, warn=warn) self.n_adof = self.eq_map.n_eq return active_bcs def setup_initial_conditions(self, ics, di, functions, warn=False): """ Setup of initial conditions. """ ics.canonize_dof_names(self.dofs) ics.sort() self.initial_condition = nm.zeros((di.n_dof[self.name],), dtype=self.dtype) for ic in ics: region = ic.region dofs, val = ic.dofs if warn: clean_msg = ('warning: ignoring nonexistent' \ ' IC node (%s) in ' % self.name) else: clean_msg = None nod_list = self.field.get_dofs_in_region(region) if len(nod_list) == 0: continue fun = get_condition_value(val, functions, 'IC', ic.name) if isinstance(fun, Function): aux = fun fun = lambda coors: aux(coors, ic=ic) nods, vv = self.field.set_dofs(fun, region, len(dofs), clean_msg) eq = expand_nodes_to_equations(nods, dofs, self.dofs) self.initial_condition[eq] = nm.ravel(vv) def get_data_shape(self, integral, integration='volume', region_name=None): """ Get element data dimensions for given approximation. Parameters ---------- integral : Integral instance The integral describing used numerical quadrature. integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom' The term integration type. region_name : str The name of the region of the integral. Returns ------- data_shape : 5 ints The `(n_el, n_qp, dim, n_en, n_comp)` for volume shape kind, `(n_fa, n_qp, dim, n_fn, n_comp)` for surface shape kind and `(n_nod, 0, 0, 1, n_comp)` for point shape kind. Notes ----- - `n_el`, `n_fa` = number of elements/facets - `n_qp` = number of quadrature points per element/facet - `dim` = spatial dimension - `n_en`, `n_fn` = number of element/facet nodes - `n_comp` = number of variable components in a point/node - `n_nod` = number of element nodes """ aux = self.field.get_data_shape(integral, integration=integration, region_name=region_name) data_shape = aux + (self.n_components,) return data_shape def clear_evaluate_cache(self): """ Clear current evaluate cache. """ self.evaluate_cache = {} def invalidate_evaluate_cache(self, step=0): """ Invalidate variable data in evaluate cache for time step given by `step` (0 is current, -1 previous, ...). This should be done, for example, prior to every nonlinear solver iteration. """ for step_cache in six.itervalues(self.evaluate_cache): for key in list(step_cache.keys()): if key == step: # Given time step to clear. step_cache.pop(key) def evaluate(self, mode='val', region=None, integral=None, integration=None, step=0, time_derivative=None, is_trace=False, trace_region=None, dt=None, bf=None): """ Evaluate various quantities related to the variable according to `mode` in quadrature points defined by `integral`. The evaluated data are cached in the variable instance in `evaluate_cache` attribute. Parameters ---------- mode : one of 'val', 'grad', 'div', 'cauchy_strain' The evaluation mode. region : Region instance, optional The region where the evaluation occurs. If None, the underlying field region is used. integral : Integral instance, optional The integral defining quadrature points in which the evaluation occurs. If None, the first order volume integral is created. Must not be None for surface integrations. integration : 'volume', 'surface', 'surface_extra', or 'point' The term integration type. If None, it is derived from `integral`. step : int, default 0 The time step (0 means current, -1 previous, ...). time_derivative : None or 'dt' If not None, return time derivative of the data, approximated by the backward finite difference. is_trace : bool, default False Indicate evaluation of trace of the variable on a boundary region. dt : float, optional The time step to be used if `derivative` is `'dt'`. If None, the `dt` attribute of the variable is used. bf : Base function, optional The base function to be used in 'val' mode. Returns ------- out : array The 4-dimensional array of shape `(n_el, n_qp, n_row, n_col)` with the requested data, where `n_row`, `n_col` depend on `mode`. """ if integration == 'custom': msg = 'cannot use FieldVariable.evaluate() with custom integration!' raise ValueError(msg) step_cache = self.evaluate_cache.setdefault(mode, {}) cache = step_cache.setdefault(step, {}) field = self.field if region is None: region = field.region if is_trace: region = region.get_mirror_region(trace_region) if (region is not field.region) and not region.is_empty: assert_(field.region.contains(region)) if integral is None: integral = Integral('aux_1', 1) if integration is None: integration = 'volume' if region.can_cells else 'surface' geo, _, key = field.get_mapping(region, integral, integration, return_key=True) key += (time_derivative, is_trace) if key in cache: out = cache[key] else: vec = self(step=step, derivative=time_derivative, dt=dt) ct = integration if integration == 'surface_extra': ct = 'volume' conn = field.get_econn(ct, region, is_trace, integration) shape = self.get_data_shape(integral, integration, region.name) if self.dtype == nm.float64: out = eval_real(vec, conn, geo, mode, shape, bf) else: out = eval_complex(vec, conn, geo, mode, shape, bf) cache[key] = out return out def get_state_in_region(self, region, reshape=True, step=0): """ Get DOFs of the variable in the given region. Parameters ---------- region : Region The selected region. reshape : bool If True, reshape the DOF vector to a 2D array with the individual components as columns. Otherwise a 1D DOF array of the form [all DOFs in region node 0, all DOFs in region node 1, ...] is returned. step : int, default 0 The time step (0 means current, -1 previous, ...). Returns ------- out : array The selected DOFs. """ nods = self.field.get_dofs_in_region(region, merge=True) eq = nm.empty((len(nods) * self.n_components,), dtype=nm.int32) for idof in range(self.n_components): eq[idof::self.n_components] = self.n_components * nods \ + idof + self.indx.start out = self.data[step][eq] if reshape: out.shape = (len(nods), self.n_components) return out def apply_ebc(self, vec, offset=0, force_values=None): """ Apply essential (Dirichlet) and periodic boundary conditions to vector `vec`, starting at `offset`. """ eq_map = self.eq_map ii = offset + eq_map.eq_ebc # EBC, if force_values is None: vec[ii] = eq_map.val_ebc else: if isinstance(force_values, dict): vec[ii] = force_values[self.name] else: vec[ii] = force_values # EPBC. vec[offset+eq_map.master] = vec[offset+eq_map.slave] def apply_ic(self, vec, offset=0, force_values=None): """ Apply initial conditions conditions to vector `vec`, starting at `offset`. """ ii = slice(offset, offset + self.n_dof) if force_values is None: vec[ii] = self.get_initial_condition() else: if isinstance(force_values, dict): vec[ii] = force_values[self.name] else: vec[ii] = force_values def get_reduced(self, vec, offset=0, follow_epbc=False): """ Get the reduced DOF vector, with EBC and PBC DOFs removed. Notes ----- The full vector starts in `vec` at `offset`. If 'follow_epbc' is True, values of EPBC master DOFs are not simply thrown away, but added to the corresponding slave DOFs, just like when assembling. For vectors with state (unknown) variables it should be set to False, for assembled vectors it should be set to True. """ eq_map = self.eq_map ii = offset + eq_map.eqi r_vec = vec[ii] if follow_epbc: master = offset + eq_map.master slave = eq_map.eq[eq_map.slave] ii = slave >= 0 la.assemble1d(r_vec, slave[ii], vec[master[ii]]) return r_vec def get_full(self, r_vec, r_offset=0, force_value=None, vec=None, offset=0): """ Get the full DOF vector satisfying E(P)BCs from a reduced DOF vector. Notes ----- The reduced vector starts in `r_vec` at `r_offset`. Passing a `force_value` overrides the EBC values. Optionally, `vec` argument can be provided to store the full vector (in place) starting at `offset`. """ if vec is None: vec = nm.empty(self.n_dof, dtype=r_vec.dtype) else: vec = vec[offset:offset+self.n_dof] eq_map = self.eq_map r_vec = r_vec[r_offset:r_offset+eq_map.n_eq] # EBC. vec[eq_map.eq_ebc] = get_default(force_value, eq_map.val_ebc) # Reduced vector values. vec[eq_map.eqi] = r_vec # EPBC. vec[eq_map.master] = vec[eq_map.slave] unused_dofs = self.field.get('unused_dofs') if unused_dofs is not None: vec[:] = self.field.restore_substituted(vec) return vec def create_output(self, vec=None, key=None, extend=True, fill_value=None, linearization=None): """ Convert the DOF vector to a dictionary of output data usable by Mesh.write(). Parameters ---------- vec : array, optional An alternative DOF vector to be used instead of the variable DOF vector. key : str, optional The key to be used in the output dictionary instead of the variable name. extend : bool Extend the DOF values to cover the whole domain. fill_value : float or complex The value used to fill the missing DOF values if `extend` is True. linearization : Struct or None The linearization configuration for higher order approximations. """ linearization = get_default(linearization, Struct(kind='strip')) if vec is None: vec = self() key = get_default(key, self.name) aux = nm.reshape(vec, (self.n_dof // self.n_components, self.n_components)) out = self.field.create_output(aux, self.name, dof_names=self.dofs, key=key, extend=extend, fill_value=fill_value, linearization=linearization) return out def get_element_diameters(self, cells, mode, square=False): """Get diameters of selected elements.""" field = self.field domain = field.domain cells = nm.array(cells) diameters = nm.empty((cells.shape[0],), dtype=nm.float64) integral = Integral('i_tmp', 1) vg, _ = field.get_mapping(field.region, integral, 'volume') diameters = domain.get_element_diameters(cells, vg, mode, square=square) return diameters def save_as_mesh(self, filename): """ Save the field mesh and the variable values into a file for visualization. Only the vertex values are stored. """ mesh = self.field.create_mesh(extra_nodes=False) vec = self() n_nod, n_dof, dpn = mesh.n_nod, self.n_dof, self.n_components aux = nm.reshape(vec, (n_dof // dpn, dpn)) ext = self.field.extend_dofs(aux, 0.0) out = {} if self.field.approx_order != 0: out[self.name] = Struct(name='output_data', mode='vertex', data=ext, var_name=self.name, dofs=self.dofs) else: ext.shape = (ext.shape[0], 1, ext.shape[1], 1) out[self.name] = Struct(name='output_data', mode='cell', data=ext, var_name=self.name, dofs=self.dofs) mesh.write(filename, io='auto', out=out) def has_same_mesh(self, other): """ Returns ------- flag : int The flag can be either 'different' (different meshes), 'deformed' (slightly deformed same mesh), or 'same' (same). """ f1 = self.field f2 = other.field c1 = f1.get_coor() c2 = f2.get_coor() if c1.shape != c2.shape: flag = 'different' else: eps = 10.0 * nm.finfo(nm.float64).eps if nm.allclose(c1, c2, rtol=eps, atol=0.0): flag = 'same' elif nm.allclose(c1, c2, rtol=0.1, atol=0.0): flag = 'deformed' else: flag = 'different' return flag def get_interp_coors(self, strategy='interpolation', interp_term=None): """ Get the physical coordinates to interpolate into, based on the strategy used. """ if strategy == 'interpolation': coors = self.field.get_coor() elif strategy == 'projection': region = self.field.region integral = Integral(term=interp_term) coors = get_physical_qps(region, integral) else: raise ValueError('unknown interpolation strategy! (%s)' % strategy) return coors def evaluate_at(self, coors, mode='val', strategy='general', close_limit=0.1, get_cells_fun=None, cache=None, ret_cells=False, ret_status=False, ret_ref_coors=False, verbose=False): """ Evaluate the variable in the given physical coordinates. Convenience wrapper around :func:`Field.evaluate_at() <sfepy.discrete.common.fields.Field.evaluate_at()>`, see its docstring for more details. """ source_vals = self().reshape((self.n_nod, self.n_components)) out = self.field.evaluate_at(coors, source_vals, mode=mode, strategy=strategy, close_limit=close_limit, get_cells_fun=get_cells_fun, cache=cache, ret_cells=ret_cells, ret_status=ret_status, ret_ref_coors=ret_ref_coors, verbose=verbose) return out def set_from_other(self, other, strategy='projection', close_limit=0.1): """ Set the variable using another variable. Undefined values (e.g. outside the other mesh) are set to numpy.nan, or extrapolated. Parameters ---------- strategy : 'projection' or 'interpolation' The strategy to set the values: the L^2 orthogonal projection (not implemented!), or a direct interpolation to the nodes (nodal elements only!) Notes ----- If the other variable uses the same field mesh, the coefficients are set directly. """ flag_same_mesh = self.has_same_mesh(other) if flag_same_mesh == 'same': self.set_data(other()) return if strategy == 'interpolation': coors = self.get_interp_coors(strategy) elif strategy == 'projection': ## interp_term = Term() # TODO ## coors = self.get_interp_coors(strategy, interp_term) pass else: raise ValueError('unknown interpolation strategy! (%s)' % strategy) vals = other.evaluate_at(coors, strategy='general', close_limit=close_limit) if strategy == 'interpolation': self.set_data(vals) elif strategy == 'projection': raise NotImplementedError('unsupported strategy! (%s)' % strategy) else: raise ValueError('unknown interpolation strategy! (%s)' % strategy) class DGFieldVariable(FieldVariable): """ Fieald variable specificaly intended for use with DGFields, bypasses application of EBC and EPBC as this is done in DGField. Is instance checked in create_adof_conns. """ def __init__(self, name, kind, field, order=None, primary_var_name=None, special=None, flags=None, history=None, **kwargs): FieldVariable.__init__(self, name, kind, field, order=order, primary_var_name=primary_var_name, special=special, flags=flags, history=history, **kwargs) from sfepy.discrete.dg.fields import DGField if isinstance(field, DGField): pass else: raise ValueError("Attempted to use DGFieldVariable with non DGField!") def apply_ebc(self, vec, offset=0, force_values=None): pass def get_full(self, r_vec, r_offset=0, force_value=None, vec=None, offset=0): """ Get the full DOF vector satisfying E(P)BCs from a reduced DOF vector. Notes ----- The reduced vector starts in `r_vec` at `r_offset`. Passing a `force_value` overrides the EBC values. Optionally, `vec` argument can be provided to store the full vector (in place) starting at `offset`. """ if vec is None: vec = nm.empty(self.n_dof, dtype=r_vec.dtype) else: vec = vec[offset:offset+self.n_dof] eq_map = self.eq_map r_vec = r_vec[r_offset:r_offset+eq_map.n_eq] # overide to hotfix second application of EBCs # # EBC. # vec[eq_map.eq_ebc] = get_default(force_value, eq_map.val_ebc) # Reduced vector values, for DG this is full vector as eq_map.eq # contains all dofs, cf. create_adof_conns vec[eq_map.eqi] = r_vec # EPBC. # vec[eq_map.master] = vec[eq_map.slave] unused_dofs = self.field.get('unused_dofs') if unused_dofs is not None: vec[:] = self.field.restore_substituted(vec) return vec
[ "sfepy.discrete.conditions.get_condition_value", "sfepy.discrete.common.dof_info.is_active_bc", "sfepy.base.base.assert_", "sfepy.discrete.common.dof_info.DofInfo", "sfepy.discrete.integrals.Integral", "sfepy.linalg.assemble1d", "sfepy.discrete.evaluate_variable.eval_complex", "sfepy.discrete.common.mappings.get_physical_qps", "sfepy.base.base.Struct", "sfepy.base.base.iter_dict_of_lists", "sfepy.discrete.common.dof_info.expand_nodes_to_equations", "sfepy.discrete.fem.lcbc_operators.LCBCOperators", "sfepy.base.base.Container.__setitem__", "sfepy.base.base.get_default", "sfepy.base.timing.Timer", "sfepy.base.base.Struct.__init__", "sfepy.base.base.OneTypeList", "sfepy.discrete.evaluate_variable.eval_real", "sfepy.discrete.common.dof_info.EquationMap", "sfepy.discrete.common.region.are_disjoint", "sfepy.base.base.output" ]
[((1762, 1787), 'sfepy.base.base.get_default', 'get_default', (['var_indx', '{}'], {}), '(var_indx, {})\n', (1773, 1787), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((3236, 3283), 'sfepy.base.base.iter_dict_of_lists', 'iter_dict_of_lists', (['conn_info'], {'return_keys': '(True)'}), '(conn_info, return_keys=True)\n', (3254, 3283), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((5260, 5323), 'numpy.zeros', 'nm.zeros', (['(basis.shape[:2] + (dpn, n_bf * dpn))'], {'dtype': 'nm.float64'}), '(basis.shape[:2] + (dpn, n_bf * dpn), dtype=nm.float64)\n', (5268, 5323), True, 'import numpy as nm\n'), ((5338, 5348), 'six.moves.range', 'range', (['n_c'], {}), '(n_c)\n', (5343, 5348), False, 'from six.moves import range\n'), ((3112, 3154), 'sfepy.base.base.output', 'output', (['"""setting up dof connectivities..."""'], {}), "('setting up dof connectivities...')\n", (3118, 3154), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((3171, 3188), 'sfepy.base.timing.Timer', 'Timer', ([], {'start': '(True)'}), '(start=True)\n', (3176, 3188), False, 'from sfepy.base.timing import Timer\n'), ((4523, 4540), 'numpy.take', 'nm.take', (['eq', 'conn'], {}), '(eq, conn)\n', (4530, 4540), True, 'import numpy as nm\n'), ((4666, 4712), 'numpy.empty', 'nm.empty', (['(n_el, n_ep * dpn)'], {'dtype': 'conn.dtype'}), '((n_el, n_ep * dpn), dtype=conn.dtype)\n', (4674, 4712), True, 'import numpy as nm\n'), ((4748, 4758), 'six.moves.range', 'range', (['dpn'], {}), '(dpn)\n', (4753, 4758), False, 'from six.moves import range\n'), ((5368, 5378), 'six.moves.range', 'range', (['dpn'], {}), '(dpn)\n', (5373, 5378), False, 'from six.moves import range\n'), ((5787, 5806), 'six.iteritems', 'six.iteritems', (['conf'], {}), '(conf)\n', (5800, 5806), False, 'import six\n'), ((6716, 6752), 'sfepy.base.base.Container.__setitem__', 'Container.__setitem__', (['self', 'ii', 'var'], {}), '(self, ii, var)\n', (6737, 6752), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((9545, 9570), 'sfepy.discrete.common.dof_info.DofInfo', 'DofInfo', (['"""state_dof_info"""'], {}), "('state_dof_info')\n", (9552, 9570), False, 'from sfepy.discrete.common.dof_info import DofInfo, EquationMap, expand_nodes_to_equations, is_active_bc\n'), ((11122, 11171), 'sfepy.discrete.fem.lcbc_operators.LCBCOperators', 'LCBCOperators', (['"""lcbcs"""', 'self'], {'functions': 'functions'}), "('lcbcs', self, functions=functions)\n", (11135, 11171), False, 'from sfepy.discrete.fem.lcbc_operators import LCBCOperators\n'), ((14125, 14157), 'sfepy.discrete.common.dof_info.DofInfo', 'DofInfo', (['"""active_state_dof_info"""'], {}), "('active_state_dof_info')\n", (14132, 14157), False, 'from sfepy.discrete.common.dof_info import DofInfo, EquationMap, expand_nodes_to_equations, is_active_bc\n'), ((15812, 15837), 'six.iteritems', 'six.iteritems', (['adof_conns'], {}), '(adof_conns)\n', (15825, 15837), False, 'import six\n'), ((16123, 16169), 'numpy.zeros', 'nm.zeros', (['(self.di.ptr[-1],)'], {'dtype': 'self.dtype'}), '((self.di.ptr[-1],), dtype=self.dtype)\n', (16131, 16169), True, 'import numpy as nm\n'), ((16248, 16295), 'numpy.zeros', 'nm.zeros', (['(self.adi.ptr[-1],)'], {'dtype': 'self.dtype'}), '((self.adi.ptr[-1],), dtype=self.dtype)\n', (16256, 16295), True, 'import numpy as nm\n'), ((25060, 25082), 'six.iteritems', 'six.iteritems', (['di.indx'], {}), '(di.indx)\n', (25073, 25082), False, 'import six\n'), ((28314, 28356), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'name': 'name'}), '(self, name=name, **kwargs)\n', (28329, 28356), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((33468, 33502), 'collections.deque', 'deque', (['((self.history + 1) * [None])'], {}), '((self.history + 1) * [None])\n', (33473, 33502), False, 'from collections import deque\n'), ((35488, 35529), 'numpy.empty', 'nm.empty', (['(self.n_dof,)'], {'dtype': 'self.dtype'}), '((self.n_dof,), dtype=self.dtype)\n', (35496, 35529), True, 'import numpy as nm\n'), ((40050, 40069), 'numpy.unique', 'nm.unique', (['nod_list'], {}), '(nod_list)\n', (40059, 40069), True, 'import numpy as nm\n'), ((41864, 41941), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""field_var_dof_details"""', 'n_nod': 'self.n_nod', 'dpn': 'self.n_components'}), "(name='field_var_dof_details', n_nod=self.n_nod, dpn=self.n_components)\n", (41870, 41941), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((44260, 44300), 'sfepy.discrete.common.dof_info.EquationMap', 'EquationMap', (['"""eq_map"""', 'self.dofs', 'var_di'], {}), "('eq_map', self.dofs, var_di)\n", (44271, 44300), False, 'from sfepy.discrete.common.dof_info import DofInfo, EquationMap, expand_nodes_to_equations, is_active_bc\n'), ((44848, 44898), 'numpy.zeros', 'nm.zeros', (['(di.n_dof[self.name],)'], {'dtype': 'self.dtype'}), '((di.n_dof[self.name],), dtype=self.dtype)\n', (44856, 44898), True, 'import numpy as nm\n'), ((47525, 47560), 'six.itervalues', 'six.itervalues', (['self.evaluate_cache'], {}), '(self.evaluate_cache)\n', (47539, 47560), False, 'import six\n'), ((52103, 52127), 'six.moves.range', 'range', (['self.n_components'], {}), '(self.n_components)\n', (52108, 52127), False, 'from six.moves import range\n'), ((55064, 55104), 'sfepy.base.base.get_default', 'get_default', (['force_value', 'eq_map.val_ebc'], {}), '(force_value, eq_map.val_ebc)\n', (55075, 55104), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((56386, 56413), 'sfepy.base.base.get_default', 'get_default', (['key', 'self.name'], {}), '(key, self.name)\n', (56397, 56413), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((56429, 56498), 'numpy.reshape', 'nm.reshape', (['vec', '(self.n_dof // self.n_components, self.n_components)'], {}), '(vec, (self.n_dof // self.n_components, self.n_components))\n', (56439, 56498), True, 'import numpy as nm\n'), ((57003, 57018), 'numpy.array', 'nm.array', (['cells'], {}), '(cells)\n', (57011, 57018), True, 'import numpy as nm\n'), ((57040, 57085), 'numpy.empty', 'nm.empty', (['(cells.shape[0],)'], {'dtype': 'nm.float64'}), '((cells.shape[0],), dtype=nm.float64)\n', (57048, 57085), True, 'import numpy as nm\n'), ((57106, 57126), 'sfepy.discrete.integrals.Integral', 'Integral', (['"""i_tmp"""', '(1)'], {}), "('i_tmp', 1)\n", (57114, 57126), False, 'from sfepy.discrete.integrals import Integral\n'), ((57656, 57692), 'numpy.reshape', 'nm.reshape', (['vec', '(n_dof // dpn, dpn)'], {}), '(vec, (n_dof // dpn, dpn))\n', (57666, 57692), True, 'import numpy as nm\n'), ((1925, 1961), 'numpy.arange', 'nm.arange', (['var.n_dof'], {'dtype': 'nm.int32'}), '(var.n_dof, dtype=nm.int32)\n', (1934, 1961), True, 'import numpy as nm\n'), ((4561, 4608), 'numpy.asarray', 'nm.asarray', (['(offset * (aux >= 0))'], {'dtype': 'nm.int32'}), '(offset * (aux >= 0), dtype=nm.int32)\n', (4571, 4608), True, 'import numpy as nm\n'), ((4778, 4808), 'numpy.take', 'nm.take', (['eq', '(dpn * conn + idof)'], {}), '(eq, dpn * conn + idof)\n', (4785, 4808), True, 'import numpy as nm\n'), ((6046, 6067), 'sfepy.base.base.OneTypeList', 'OneTypeList', (['Variable'], {}), '(Variable)\n', (6057, 6067), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((9716, 9743), 'sfepy.discrete.common.dof_info.DofInfo', 'DofInfo', (['"""virtual_dof_info"""'], {}), "('virtual_dof_info')\n", (9723, 9743), False, 'from sfepy.discrete.common.dof_info import DofInfo, EquationMap, expand_nodes_to_equations, is_active_bc\n'), ((14333, 14367), 'sfepy.discrete.common.dof_info.DofInfo', 'DofInfo', (['"""active_virtual_dof_info"""'], {}), "('active_virtual_dof_info')\n", (14340, 14367), False, 'from sfepy.discrete.common.dof_info import DofInfo, EquationMap, expand_nodes_to_equations, is_active_bc\n'), ((17438, 17485), 'numpy.empty', 'nm.empty', (['(self.adi.ptr[-1],)'], {'dtype': 'self.dtype'}), '((self.adi.ptr[-1],), dtype=self.dtype)\n', (17446, 17485), True, 'import numpy as nm\n'), ((23008, 23027), 'six.iteritems', 'six.iteritems', (['data'], {}), '(data)\n', (23021, 23027), False, 'import six\n'), ((25944, 25975), 'sfepy.base.base.output', 'output', (['"""updating variables..."""'], {}), "('updating variables...')\n", (25950, 25975), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((26078, 26095), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (26084, 26095), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((28784, 28791), 'collections.deque', 'deque', ([], {}), '()\n', (28789, 28791), False, 'from collections import deque\n'), ((34168, 34194), 'six.moves.range', 'range', (['self.history', '(0)', '(-1)'], {}), '(self.history, 0, -1)\n', (34173, 34194), False, 'from six.moves import range\n'), ((34425, 34460), 'six.itervalues', 'six.itervalues', (['self.evaluate_cache'], {}), '(self.evaluate_cache)\n', (34439, 34460), False, 'import six\n'), ((35284, 35325), 'numpy.zeros', 'nm.zeros', (['(self.n_dof,)'], {'dtype': 'self.dtype'}), '((self.n_dof,), dtype=self.dtype)\n', (35292, 35325), True, 'import numpy as nm\n'), ((38274, 38298), 'sfepy.base.base.get_default', 'get_default', (['dt', 'self.dt'], {}), '(dt, self.dt)\n', (38285, 38298), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((42604, 42663), 'sfepy.base.base.output', 'output', (["('data of %s set by %s()' % (self.name, setter.name))"], {}), "('data of %s set by %s()' % (self.name, setter.name))\n", (42610, 42663), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((45366, 45416), 'sfepy.discrete.conditions.get_condition_value', 'get_condition_value', (['val', 'functions', '"""IC"""', 'ic.name'], {}), "(val, functions, 'IC', ic.name)\n", (45385, 45416), False, 'from sfepy.discrete.conditions import get_condition_value\n'), ((45635, 45683), 'sfepy.discrete.common.dof_info.expand_nodes_to_equations', 'expand_nodes_to_equations', (['nods', 'dofs', 'self.dofs'], {}), '(nods, dofs, self.dofs)\n', (45660, 45683), False, 'from sfepy.discrete.common.dof_info import DofInfo, EquationMap, expand_nodes_to_equations, is_active_bc\n'), ((45726, 45738), 'numpy.ravel', 'nm.ravel', (['vv'], {}), '(vv)\n', (45734, 45738), True, 'import numpy as nm\n'), ((50338, 50358), 'sfepy.discrete.integrals.Integral', 'Integral', (['"""aux_1"""', '(1)'], {}), "('aux_1', 1)\n", (50346, 50358), False, 'from sfepy.discrete.integrals import Integral\n'), ((54247, 54295), 'sfepy.linalg.assemble1d', 'la.assemble1d', (['r_vec', 'slave[ii]', 'vec[master[ii]]'], {}), '(r_vec, slave[ii], vec[master[ii]])\n', (54260, 54295), True, 'import sfepy.linalg as la\n'), ((54833, 54872), 'numpy.empty', 'nm.empty', (['self.n_dof'], {'dtype': 'r_vec.dtype'}), '(self.n_dof, dtype=r_vec.dtype)\n', (54841, 54872), True, 'import numpy as nm\n'), ((56299, 56319), 'sfepy.base.base.Struct', 'Struct', ([], {'kind': '"""strip"""'}), "(kind='strip')\n", (56305, 56319), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((57829, 57920), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'data': 'ext', 'var_name': 'self.name', 'dofs': 'self.dofs'}), "(name='output_data', mode='vertex', data=ext, var_name=self.name,\n dofs=self.dofs)\n", (57835, 57920), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((58091, 58181), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'ext', 'var_name': 'self.name', 'dofs': 'self.dofs'}), "(name='output_data', mode='cell', data=ext, var_name=self.name, dofs=\n self.dofs)\n", (58097, 58181), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((58800, 58839), 'numpy.allclose', 'nm.allclose', (['c1', 'c2'], {'rtol': 'eps', 'atol': '(0.0)'}), '(c1, c2, rtol=eps, atol=0.0)\n', (58811, 58839), True, 'import numpy as nm\n'), ((63766, 63805), 'numpy.empty', 'nm.empty', (['self.n_dof'], {'dtype': 'r_vec.dtype'}), '(self.n_dof, dtype=r_vec.dtype)\n', (63774, 63805), True, 'import numpy as nm\n'), ((2047, 2083), 'numpy.arange', 'nm.arange', (['var.n_dof'], {'dtype': 'nm.int32'}), '(var.n_dof, dtype=nm.int32)\n', (2056, 2083), True, 'import numpy as nm\n'), ((4852, 4899), 'numpy.asarray', 'nm.asarray', (['(offset * (aux >= 0))'], {'dtype': 'nm.int32'}), '(offset * (aux >= 0), dtype=nm.int32)\n', (4862, 4899), True, 'import numpy as nm\n'), ((11518, 11542), 'sfepy.base.base.output', 'output', (['"""lcbc:"""', 'bc.name'], {}), "('lcbc:', bc.name)\n", (11524, 11542), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((15444, 15505), 'sfepy.base.base.output', 'output', (["('IC data of %s set by %s()' % (var.name, setter.name))"], {}), "('IC data of %s set by %s()' % (var.name, setter.name))\n", (15450, 15505), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((19482, 19542), 'numpy.allclose', 'nm.allclose', (['vec[i0 + eq_map.master]', 'vec[i0 + eq_map.slave]'], {}), '(vec[i0 + eq_map.master], vec[i0 + eq_map.slave])\n', (19493, 19542), True, 'import numpy as nm\n'), ((26880, 26901), 'sfepy.base.base.assert_', 'assert_', (['(history >= 0)'], {}), '(history >= 0)\n', (26887, 26901), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((27330, 27369), 'sfepy.base.base.get_default', 'get_default', (['conf.like', '"""(set-to-None)"""'], {}), "(conf.like, '(set-to-None)')\n", (27341, 27369), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((29898, 29938), 'sfepy.base.base.get_default', 'get_default', (['primary_var_name', 'None', 'msg'], {}), '(primary_var_name, None, msg)\n', (29909, 29938), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((30996, 31020), 'six.moves.range', 'range', (['self.n_components'], {}), '(self.n_components)\n', (31001, 31020), False, 'from six.moves import range\n'), ((51090, 51132), 'sfepy.discrete.evaluate_variable.eval_real', 'eval_real', (['vec', 'conn', 'geo', 'mode', 'shape', 'bf'], {}), '(vec, conn, geo, mode, shape, bf)\n', (51099, 51132), False, 'from sfepy.discrete.evaluate_variable import eval_real, eval_complex\n'), ((51174, 51219), 'sfepy.discrete.evaluate_variable.eval_complex', 'eval_complex', (['vec', 'conn', 'geo', 'mode', 'shape', 'bf'], {}), '(vec, conn, geo, mode, shape, bf)\n', (51186, 51219), False, 'from sfepy.discrete.evaluate_variable import eval_real, eval_complex\n'), ((58889, 58928), 'numpy.allclose', 'nm.allclose', (['c1', 'c2'], {'rtol': '(0.1)', 'atol': '(0.0)'}), '(c1, c2, rtol=0.1, atol=0.0)\n', (58900, 58928), True, 'import numpy as nm\n'), ((59418, 59444), 'sfepy.discrete.integrals.Integral', 'Integral', ([], {'term': 'interp_term'}), '(term=interp_term)\n', (59426, 59444), False, 'from sfepy.discrete.integrals import Integral\n'), ((59465, 59499), 'sfepy.discrete.common.mappings.get_physical_qps', 'get_physical_qps', (['region', 'integral'], {}), '(region, integral)\n', (59481, 59499), False, 'from sfepy.discrete.common.mappings import get_physical_qps\n'), ((2220, 2256), 'numpy.arange', 'nm.arange', (['var.n_dof'], {'dtype': 'nm.int32'}), '(var.n_dof, dtype=nm.int32)\n', (2229, 2256), True, 'import numpy as nm\n'), ((11426, 11470), 'sfepy.discrete.common.dof_info.is_active_bc', 'is_active_bc', (['bc'], {'ts': 'ts', 'functions': 'functions'}), '(bc, ts=ts, functions=functions)\n', (11438, 11470), False, 'from sfepy.discrete.common.dof_info import DofInfo, EquationMap, expand_nodes_to_equations, is_active_bc\n'), ((19071, 19107), 'numpy.allclose', 'nm.allclose', (['vec[ii]', 'eq_map.val_ebc'], {}), '(vec[ii], eq_map.val_ebc)\n', (19082, 19107), True, 'import numpy as nm\n'), ((30180, 30220), 'sfepy.base.base.get_default', 'get_default', (['primary_var_name', 'None', 'msg'], {}), '(primary_var_name, None, msg)\n', (30191, 30220), False, 'from sfepy.base.base import real_types, complex_types, assert_, get_default, output, OneTypeList, Container, Struct, basestr, iter_dict_of_lists\n'), ((34274, 34301), 'numpy.empty_like', 'nm.empty_like', (['self.data[0]'], {}), '(self.data[0])\n', (34287, 34301), True, 'import numpy as nm\n'), ((58759, 58779), 'numpy.finfo', 'nm.finfo', (['nm.float64'], {}), '(nm.float64)\n', (58767, 58779), True, 'import numpy as nm\n'), ((19238, 19282), 'numpy.allclose', 'nm.allclose', (['vec[ii]', 'force_values[var_name]'], {}), '(vec[ii], force_values[var_name])\n', (19249, 19282), True, 'import numpy as nm\n'), ((19370, 19404), 'numpy.allclose', 'nm.allclose', (['vec[ii]', 'force_values'], {}), '(vec[ii], force_values)\n', (19381, 19404), True, 'import numpy as nm\n'), ((34732, 34763), 'six.iteritems', 'six.iteritems', (['step_cache[step]'], {}), '(step_cache[step])\n', (34745, 34763), False, 'import six\n'), ((10918, 10950), 'sfepy.discrete.common.region.are_disjoint', 'are_disjoint', (['regs[i0]', 'regs[i1]'], {}), '(regs[i0], regs[i1])\n', (10930, 10950), False, 'from sfepy.discrete.common.region import are_disjoint\n')]
"""empty message Revision ID: de316f0831f9 Revises: 6<PASSWORD>1e462e9 Create Date: 2021-11-19 23:38:39.754126 """ import sqlalchemy as sa import sqlmodel from alembic import op from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "de316f0831f9" down_revision = "60f151e462e9" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### sale_type = postgresql.ENUM( "SALE_IN_PIX", "SALE_IN_DEBT", "SALE_IN_CREDIT", "SALE_IN_MONEY", "SALE_IN_TRANSFER", "SALE_IN_BILLET", "SALE_OTHERS", name="saletype", ) sale_type.create(op.get_bind()) op.add_column( "orders", sa.Column( "sale_type", sa.Enum( "SALE_IN_PIX", "SALE_IN_DEBT", "SALE_IN_CREDIT", "SALE_IN_MONEY", "SALE_IN_TRANSFER", "SALE_IN_BILLET", "SALE_OTHERS", name="saletype", ), nullable=True, ), ) op.drop_index("ix_balance_operation", table_name="balance") op.drop_index("ix_balance_type", table_name="balance") op.drop_column("balance", "type") op.alter_column("clients", "email", existing_type=sa.VARCHAR(), nullable=False) op.alter_column("clients", "phone", existing_type=sa.VARCHAR(), nullable=False) op.alter_column("clients", "owner_id", existing_type=postgresql.UUID(), nullable=False) op.alter_column("orders", "owner_id", existing_type=postgresql.UUID(), nullable=False) op.add_column("clients", sa.Column("zip_code", sqlmodel.sql.sqltypes.AutoString(), nullable=True)) op.add_column("clients", sa.Column("address", sqlmodel.sql.sqltypes.AutoString(), nullable=True)) op.add_column("order_details", sa.Column("value", sa.Float(), nullable=True)) op.drop_column("order_details", "sell_value") op.drop_column("order_details", "cost") op.drop_index("ix_fiscal_note_items_fiscal_note_id", table_name="fiscal_note_items") op.drop_index("ix_fiscal_note_items_item_id", table_name="fiscal_note_items") op.drop_index("ix_fiscal_note_items_owner_id", table_name="fiscal_note_items") op.drop_index("ix_fiscal_note_items_sugested_sell_value", table_name="fiscal_note_items") op.drop_table("fiscal_note_items") op.drop_index("ix_fiscal_notes_owner_id", table_name="fiscal_notes") op.drop_index("ix_fiscal_notes_purchase_date", table_name="fiscal_notes") op.drop_table("fiscal_notes") op.drop_index("ix_users_email", table_name="users") op.create_index(op.f("ix_users_email"), "users", ["email"], unique=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column("orders", "owner_id", existing_type=postgresql.UUID(), nullable=True) op.drop_column("orders", "sale_type") op.alter_column("clients", "owner_id", existing_type=postgresql.UUID(), nullable=True) op.alter_column("clients", "phone", existing_type=sa.VARCHAR(), nullable=True) op.alter_column("clients", "email", existing_type=sa.VARCHAR(), nullable=True) op.add_column( "balance", sa.Column("type", postgresql.ENUM("DEBT", "CREDIT", name="balancetype"), autoincrement=False, nullable=True), ) op.create_index("ix_balance_type", "balance", ["type"], unique=False) op.create_index("ix_balance_operation", "balance", ["operation"], unique=False) op.drop_column("clients", "address") op.drop_column("clients", "zip_code") op.add_column( "order_details", sa.Column("cost", postgresql.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=False), ) op.add_column( "order_details", sa.Column("sell_value", postgresql.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=False), ) op.drop_column("order_details", "value") op.drop_index(op.f("ix_users_email"), table_name="users") op.create_index("ix_users_email", "users", ["email"], unique=False) op.create_table( "fiscal_notes", sa.Column("id", postgresql.UUID(), autoincrement=False, nullable=False), sa.Column("description", sa.VARCHAR(), autoincrement=False, nullable=False), sa.Column("purchase_date", sa.DATE(), autoincrement=False, nullable=False), sa.Column("owner_id", postgresql.UUID(), autoincrement=False, nullable=True), sa.Column("file_id", sa.VARCHAR(), autoincrement=False, nullable=False), sa.ForeignKeyConstraint(["file_id"], ["files.bucket_key"], name="fiscal_notes_file_id_fkey"), sa.ForeignKeyConstraint(["owner_id"], ["users.id"], name="fiscal_notes_owner_id_fkey"), sa.PrimaryKeyConstraint("id", name="fiscal_notes_pkey"), postgresql_ignore_search_path=False, ) op.create_index("ix_fiscal_notes_purchase_date", "fiscal_notes", ["purchase_date"], unique=False) op.create_index("ix_fiscal_notes_owner_id", "fiscal_notes", ["owner_id"], unique=False) op.create_table( "fiscal_note_items", sa.Column("id", postgresql.UUID(), autoincrement=False, nullable=False), sa.Column("buy_value", postgresql.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=False), sa.Column( "sugested_sell_value", postgresql.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=False ), sa.Column("owner_id", postgresql.UUID(), autoincrement=False, nullable=False), sa.Column("fiscal_note_id", postgresql.UUID(), autoincrement=False, nullable=False), sa.Column("item_id", postgresql.UUID(), autoincrement=False, nullable=False), sa.Column("file_id", sa.VARCHAR(), autoincrement=False, nullable=False), sa.ForeignKeyConstraint(["file_id"], ["files.bucket_key"], name="fiscal_note_items_file_id_fkey"), sa.ForeignKeyConstraint(["fiscal_note_id"], ["fiscal_notes.id"], name="fiscal_note_items_fiscal_note_id_fkey"), sa.ForeignKeyConstraint(["item_id"], ["items.id"], name="fiscal_note_items_item_id_fkey"), sa.ForeignKeyConstraint(["owner_id"], ["users.id"], name="fiscal_note_items_owner_id_fkey"), sa.PrimaryKeyConstraint("id", name="fiscal_note_items_pkey"), ) op.create_index( "ix_fiscal_note_items_sugested_sell_value", "fiscal_note_items", ["sugested_sell_value"], unique=False ) op.create_index("ix_fiscal_note_items_owner_id", "fiscal_note_items", ["owner_id"], unique=False) op.create_index("ix_fiscal_note_items_item_id", "fiscal_note_items", ["item_id"], unique=False) op.create_index("ix_fiscal_note_items_fiscal_note_id", "fiscal_note_items", ["fiscal_note_id"], unique=False) # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((461, 620), 'sqlalchemy.dialects.postgresql.ENUM', 'postgresql.ENUM', (['"""SALE_IN_PIX"""', '"""SALE_IN_DEBT"""', '"""SALE_IN_CREDIT"""', '"""SALE_IN_MONEY"""', '"""SALE_IN_TRANSFER"""', '"""SALE_IN_BILLET"""', '"""SALE_OTHERS"""'], {'name': '"""saletype"""'}), "('SALE_IN_PIX', 'SALE_IN_DEBT', 'SALE_IN_CREDIT',\n 'SALE_IN_MONEY', 'SALE_IN_TRANSFER', 'SALE_IN_BILLET', 'SALE_OTHERS',\n name='saletype')\n", (476, 620), False, 'from sqlalchemy.dialects import postgresql\n'), ((1150, 1209), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_balance_operation"""'], {'table_name': '"""balance"""'}), "('ix_balance_operation', table_name='balance')\n", (1163, 1209), False, 'from alembic import op\n'), ((1214, 1268), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_balance_type"""'], {'table_name': '"""balance"""'}), "('ix_balance_type', table_name='balance')\n", (1227, 1268), False, 'from alembic import op\n'), ((1273, 1306), 'alembic.op.drop_column', 'op.drop_column', (['"""balance"""', '"""type"""'], {}), "('balance', 'type')\n", (1287, 1306), False, 'from alembic import op\n'), ((1950, 1995), 'alembic.op.drop_column', 'op.drop_column', (['"""order_details"""', '"""sell_value"""'], {}), "('order_details', 'sell_value')\n", (1964, 1995), False, 'from alembic import op\n'), ((2000, 2039), 'alembic.op.drop_column', 'op.drop_column', (['"""order_details"""', '"""cost"""'], {}), "('order_details', 'cost')\n", (2014, 2039), False, 'from alembic import op\n'), ((2045, 2134), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_fiscal_note_items_fiscal_note_id"""'], {'table_name': '"""fiscal_note_items"""'}), "('ix_fiscal_note_items_fiscal_note_id', table_name=\n 'fiscal_note_items')\n", (2058, 2134), False, 'from alembic import op\n'), ((2134, 2211), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_fiscal_note_items_item_id"""'], {'table_name': '"""fiscal_note_items"""'}), "('ix_fiscal_note_items_item_id', table_name='fiscal_note_items')\n", (2147, 2211), False, 'from alembic import op\n'), ((2216, 2294), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_fiscal_note_items_owner_id"""'], {'table_name': '"""fiscal_note_items"""'}), "('ix_fiscal_note_items_owner_id', table_name='fiscal_note_items')\n", (2229, 2294), False, 'from alembic import op\n'), ((2299, 2393), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_fiscal_note_items_sugested_sell_value"""'], {'table_name': '"""fiscal_note_items"""'}), "('ix_fiscal_note_items_sugested_sell_value', table_name=\n 'fiscal_note_items')\n", (2312, 2393), False, 'from alembic import op\n'), ((2393, 2427), 'alembic.op.drop_table', 'op.drop_table', (['"""fiscal_note_items"""'], {}), "('fiscal_note_items')\n", (2406, 2427), False, 'from alembic import op\n'), ((2432, 2500), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_fiscal_notes_owner_id"""'], {'table_name': '"""fiscal_notes"""'}), "('ix_fiscal_notes_owner_id', table_name='fiscal_notes')\n", (2445, 2500), False, 'from alembic import op\n'), ((2505, 2578), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_fiscal_notes_purchase_date"""'], {'table_name': '"""fiscal_notes"""'}), "('ix_fiscal_notes_purchase_date', table_name='fiscal_notes')\n", (2518, 2578), False, 'from alembic import op\n'), ((2583, 2612), 'alembic.op.drop_table', 'op.drop_table', (['"""fiscal_notes"""'], {}), "('fiscal_notes')\n", (2596, 2612), False, 'from alembic import op\n'), ((2617, 2668), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_users_email"""'], {'table_name': '"""users"""'}), "('ix_users_email', table_name='users')\n", (2630, 2668), False, 'from alembic import op\n'), ((2961, 2998), 'alembic.op.drop_column', 'op.drop_column', (['"""orders"""', '"""sale_type"""'], {}), "('orders', 'sale_type')\n", (2975, 2998), False, 'from alembic import op\n'), ((3422, 3491), 'alembic.op.create_index', 'op.create_index', (['"""ix_balance_type"""', '"""balance"""', "['type']"], {'unique': '(False)'}), "('ix_balance_type', 'balance', ['type'], unique=False)\n", (3437, 3491), False, 'from alembic import op\n'), ((3496, 3575), 'alembic.op.create_index', 'op.create_index', (['"""ix_balance_operation"""', '"""balance"""', "['operation']"], {'unique': '(False)'}), "('ix_balance_operation', 'balance', ['operation'], unique=False)\n", (3511, 3575), False, 'from alembic import op\n'), ((3580, 3616), 'alembic.op.drop_column', 'op.drop_column', (['"""clients"""', '"""address"""'], {}), "('clients', 'address')\n", (3594, 3616), False, 'from alembic import op\n'), ((3621, 3658), 'alembic.op.drop_column', 'op.drop_column', (['"""clients"""', '"""zip_code"""'], {}), "('clients', 'zip_code')\n", (3635, 3658), False, 'from alembic import op\n'), ((3983, 4023), 'alembic.op.drop_column', 'op.drop_column', (['"""order_details"""', '"""value"""'], {}), "('order_details', 'value')\n", (3997, 4023), False, 'from alembic import op\n'), ((4091, 4158), 'alembic.op.create_index', 'op.create_index', (['"""ix_users_email"""', '"""users"""', "['email']"], {'unique': '(False)'}), "('ix_users_email', 'users', ['email'], unique=False)\n", (4106, 4158), False, 'from alembic import op\n'), ((4939, 5041), 'alembic.op.create_index', 'op.create_index', (['"""ix_fiscal_notes_purchase_date"""', '"""fiscal_notes"""', "['purchase_date']"], {'unique': '(False)'}), "('ix_fiscal_notes_purchase_date', 'fiscal_notes', [\n 'purchase_date'], unique=False)\n", (4954, 5041), False, 'from alembic import op\n'), ((5041, 5132), 'alembic.op.create_index', 'op.create_index', (['"""ix_fiscal_notes_owner_id"""', '"""fiscal_notes"""', "['owner_id']"], {'unique': '(False)'}), "('ix_fiscal_notes_owner_id', 'fiscal_notes', ['owner_id'],\n unique=False)\n", (5056, 5132), False, 'from alembic import op\n'), ((6370, 6493), 'alembic.op.create_index', 'op.create_index', (['"""ix_fiscal_note_items_sugested_sell_value"""', '"""fiscal_note_items"""', "['sugested_sell_value']"], {'unique': '(False)'}), "('ix_fiscal_note_items_sugested_sell_value',\n 'fiscal_note_items', ['sugested_sell_value'], unique=False)\n", (6385, 6493), False, 'from alembic import op\n'), ((6508, 6610), 'alembic.op.create_index', 'op.create_index', (['"""ix_fiscal_note_items_owner_id"""', '"""fiscal_note_items"""', "['owner_id']"], {'unique': '(False)'}), "('ix_fiscal_note_items_owner_id', 'fiscal_note_items', [\n 'owner_id'], unique=False)\n", (6523, 6610), False, 'from alembic import op\n'), ((6610, 6710), 'alembic.op.create_index', 'op.create_index', (['"""ix_fiscal_note_items_item_id"""', '"""fiscal_note_items"""', "['item_id']"], {'unique': '(False)'}), "('ix_fiscal_note_items_item_id', 'fiscal_note_items', [\n 'item_id'], unique=False)\n", (6625, 6710), False, 'from alembic import op\n'), ((6710, 6823), 'alembic.op.create_index', 'op.create_index', (['"""ix_fiscal_note_items_fiscal_note_id"""', '"""fiscal_note_items"""', "['fiscal_note_id']"], {'unique': '(False)'}), "('ix_fiscal_note_items_fiscal_note_id', 'fiscal_note_items',\n ['fiscal_note_id'], unique=False)\n", (6725, 6823), False, 'from alembic import op\n'), ((705, 718), 'alembic.op.get_bind', 'op.get_bind', ([], {}), '()\n', (716, 718), False, 'from alembic import op\n'), ((2689, 2711), 'alembic.op.f', 'op.f', (['"""ix_users_email"""'], {}), "('ix_users_email')\n", (2693, 2711), False, 'from alembic import op\n'), ((4043, 4065), 'alembic.op.f', 'op.f', (['"""ix_users_email"""'], {}), "('ix_users_email')\n", (4047, 4065), False, 'from alembic import op\n'), ((4629, 4726), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['file_id']", "['files.bucket_key']"], {'name': '"""fiscal_notes_file_id_fkey"""'}), "(['file_id'], ['files.bucket_key'], name=\n 'fiscal_notes_file_id_fkey')\n", (4652, 4726), True, 'import sqlalchemy as sa\n'), ((4731, 4822), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['owner_id']", "['users.id']"], {'name': '"""fiscal_notes_owner_id_fkey"""'}), "(['owner_id'], ['users.id'], name=\n 'fiscal_notes_owner_id_fkey')\n", (4754, 4822), True, 'import sqlalchemy as sa\n'), ((4827, 4882), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {'name': '"""fiscal_notes_pkey"""'}), "('id', name='fiscal_notes_pkey')\n", (4850, 4882), True, 'import sqlalchemy as sa\n'), ((5871, 5973), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['file_id']", "['files.bucket_key']"], {'name': '"""fiscal_note_items_file_id_fkey"""'}), "(['file_id'], ['files.bucket_key'], name=\n 'fiscal_note_items_file_id_fkey')\n", (5894, 5973), True, 'import sqlalchemy as sa\n'), ((5978, 6093), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['fiscal_note_id']", "['fiscal_notes.id']"], {'name': '"""fiscal_note_items_fiscal_note_id_fkey"""'}), "(['fiscal_note_id'], ['fiscal_notes.id'], name=\n 'fiscal_note_items_fiscal_note_id_fkey')\n", (6001, 6093), True, 'import sqlalchemy as sa\n'), ((6098, 6192), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['item_id']", "['items.id']"], {'name': '"""fiscal_note_items_item_id_fkey"""'}), "(['item_id'], ['items.id'], name=\n 'fiscal_note_items_item_id_fkey')\n", (6121, 6192), True, 'import sqlalchemy as sa\n'), ((6197, 6293), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['owner_id']", "['users.id']"], {'name': '"""fiscal_note_items_owner_id_fkey"""'}), "(['owner_id'], ['users.id'], name=\n 'fiscal_note_items_owner_id_fkey')\n", (6220, 6293), True, 'import sqlalchemy as sa\n'), ((6298, 6358), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {'name': '"""fiscal_note_items_pkey"""'}), "('id', name='fiscal_note_items_pkey')\n", (6321, 6358), True, 'import sqlalchemy as sa\n'), ((813, 960), 'sqlalchemy.Enum', 'sa.Enum', (['"""SALE_IN_PIX"""', '"""SALE_IN_DEBT"""', '"""SALE_IN_CREDIT"""', '"""SALE_IN_MONEY"""', '"""SALE_IN_TRANSFER"""', '"""SALE_IN_BILLET"""', '"""SALE_OTHERS"""'], {'name': '"""saletype"""'}), "('SALE_IN_PIX', 'SALE_IN_DEBT', 'SALE_IN_CREDIT', 'SALE_IN_MONEY',\n 'SALE_IN_TRANSFER', 'SALE_IN_BILLET', 'SALE_OTHERS', name='saletype')\n", (820, 960), True, 'import sqlalchemy as sa\n'), ((1361, 1373), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {}), '()\n', (1371, 1373), True, 'import sqlalchemy as sa\n'), ((1445, 1457), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {}), '()\n', (1455, 1457), True, 'import sqlalchemy as sa\n'), ((1532, 1549), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (1547, 1549), False, 'from sqlalchemy.dialects import postgresql\n'), ((1624, 1641), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (1639, 1641), False, 'from sqlalchemy.dialects import postgresql\n'), ((1710, 1744), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1742, 1744), False, 'import sqlmodel\n'), ((1812, 1846), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1844, 1846), False, 'import sqlmodel\n'), ((1918, 1928), 'sqlalchemy.Float', 'sa.Float', ([], {}), '()\n', (1926, 1928), True, 'import sqlalchemy as sa\n'), ((2923, 2940), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (2938, 2940), False, 'from sqlalchemy.dialects import postgresql\n'), ((3056, 3073), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (3071, 3073), False, 'from sqlalchemy.dialects import postgresql\n'), ((3144, 3156), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {}), '()\n', (3154, 3156), True, 'import sqlalchemy as sa\n'), ((3227, 3239), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {}), '()\n', (3237, 3239), True, 'import sqlalchemy as sa\n'), ((3320, 3373), 'sqlalchemy.dialects.postgresql.ENUM', 'postgresql.ENUM', (['"""DEBT"""', '"""CREDIT"""'], {'name': '"""balancetype"""'}), "('DEBT', 'CREDIT', name='balancetype')\n", (3335, 3373), False, 'from sqlalchemy.dialects import postgresql\n'), ((3729, 3770), 'sqlalchemy.dialects.postgresql.DOUBLE_PRECISION', 'postgresql.DOUBLE_PRECISION', ([], {'precision': '(53)'}), '(precision=53)\n', (3756, 3770), False, 'from sqlalchemy.dialects import postgresql\n'), ((3892, 3933), 'sqlalchemy.dialects.postgresql.DOUBLE_PRECISION', 'postgresql.DOUBLE_PRECISION', ([], {'precision': '(53)'}), '(precision=53)\n', (3919, 3933), False, 'from sqlalchemy.dialects import postgresql\n'), ((4228, 4245), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (4243, 4245), False, 'from sqlalchemy.dialects import postgresql\n'), ((4318, 4330), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {}), '()\n', (4328, 4330), True, 'import sqlalchemy as sa\n'), ((4405, 4414), 'sqlalchemy.DATE', 'sa.DATE', ([], {}), '()\n', (4412, 4414), True, 'import sqlalchemy as sa\n'), ((4484, 4501), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (4499, 4501), False, 'from sqlalchemy.dialects import postgresql\n'), ((4569, 4581), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {}), '()\n', (4579, 4581), True, 'import sqlalchemy as sa\n'), ((5203, 5220), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (5218, 5220), False, 'from sqlalchemy.dialects import postgresql\n'), ((5291, 5332), 'sqlalchemy.dialects.postgresql.DOUBLE_PRECISION', 'postgresql.DOUBLE_PRECISION', ([], {'precision': '(53)'}), '(precision=53)\n', (5318, 5332), False, 'from sqlalchemy.dialects import postgresql\n'), ((5426, 5467), 'sqlalchemy.dialects.postgresql.DOUBLE_PRECISION', 'postgresql.DOUBLE_PRECISION', ([], {'precision': '(53)'}), '(precision=53)\n', (5453, 5467), False, 'from sqlalchemy.dialects import postgresql\n'), ((5546, 5563), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (5561, 5563), False, 'from sqlalchemy.dialects import postgresql\n'), ((5639, 5656), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (5654, 5656), False, 'from sqlalchemy.dialects import postgresql\n'), ((5725, 5742), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (5740, 5742), False, 'from sqlalchemy.dialects import postgresql\n'), ((5811, 5823), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {}), '()\n', (5821, 5823), True, 'import sqlalchemy as sa\n')]
from __future__ import absolute_import import numpy as nm import numpy.linalg as nla from sfepy.base.base import find_subclasses, assert_, Struct from sfepy.linalg import combine, insert_strided_axis from six.moves import range from functools import reduce # Requires fixed vertex numbering! vertex_maps = {3 : [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1]], 2 : [[0, 0], [1, 0], [1, 1], [0, 1]], 1 : [[0], [1]]} def transform_basis(transform, bf): """ Transform a basis `bf` using `transform` array of matrices. """ if bf.ndim == 3: nbf = nm.einsum('cij,qdj->cqdi', transform, bf) else: nbf = nm.einsum('cij,oqdj->cqdi', transform, bf) return nbf class LagrangeNodes(Struct): """Helper class for defining nodes of Lagrange elements.""" @staticmethod def append_edges(nodes, nts, iseq, nt, edges, order): delta = 1.0 / float(order) for ii, edge in enumerate(edges): n1 = nodes[edge[0],:].copy() n2 = nodes[edge[1],:].copy() for ie in range(order - 1): c2 = ie + 1 c1 = order - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_faces(nodes, nts, iseq, nt, faces, order): delta = 1.0 / float(order) for ii, face in enumerate(faces): n1 = nodes[face[0],:].copy() n2 = nodes[face[1],:].copy() n3 = nodes[face[2],:].copy() for i1 in range(order - 2): for i2 in range(order - 2 - i1): c3 = i1 + 1 c2 = i2 + 1 c1 = order - c3 - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2 + c3 * n3)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_bubbles(nodes, nts, iseq, nt, order): delta = 1.0 / float(order) n1 = nodes[0,:].copy() n2 = nodes[1,:].copy() n3 = nodes[2,:].copy() n4 = nodes[3,:].copy() for i1 in range(order - 3): for i2 in range(order - 3): for i3 in range(order - 3 - i1 - i2): c4 = i1 + 1 c3 = i2 + 1 c2 = i3 + 1 c1 = order - c4 - c3 - c2 nts[iseq] = [nt, 0] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2 + c3 * n3 + c4 * n4)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_edges(nodes, nts, iseq, nt, edges, ao): delta = 1.0 / float(ao) for ii, edge in enumerate(edges): n1 = nodes[edge[0],:].copy() n2 = nodes[edge[1],:].copy() for ie in range(ao - 1): c2 = ie + 1 c1 = ao - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_faces(nodes, nts, iseq, nt, faces, ao): delta = 1.0 / (float(ao) ** 2) for ii, face in enumerate( faces ): n1 = nodes[face[0],:].copy() n2 = nodes[face[1],:].copy() n3 = nodes[face[2],:].copy() n4 = nodes[face[3],:].copy() for i1 in range(ao - 1): for i2 in range(ao - 1): c4 = i1 + 1 c3 = i2 + 1 c2 = ao - c4 c1 = ao - c3 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * c2 * n1 + c2 * c3 * n2 + c3 * c4 * n3 + c4 * c1 * n4)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_bubbles(nodes, nts, iseq, nt, ao): delta = 1.0 / (float(ao) ** 3) n1 = nodes[0,:].copy() n2 = nodes[1,:].copy() n3 = nodes[2,:].copy() n4 = nodes[3,:].copy() n5 = nodes[4,:].copy() n6 = nodes[5,:].copy() n7 = nodes[6,:].copy() n8 = nodes[7,:].copy() for i1 in range(ao - 1): for i2 in range(ao - 1): for i3 in range(ao - 1): c6 = i1 + 1 c5 = i2 + 1 c4 = i3 + 1 c3 = ao - c6 c2 = ao - c5 c1 = ao - c4 nts[iseq] = [nt, 0] aux = [int(round(tmp)) for tmp in delta * (c1 * c2 * c3 * n1 + c4 * c2 * c3 * n2 + c5 * c4 * c3 * n3 + c1 * c3 * c5 * n4 + c1 * c2 * c6 * n5 + c4 * c2 * c6 * n6 + c5 * c4 * c6 * n7 + c1 * c6 * c5 * n8)] nodes[iseq,:] = aux iseq += 1 return iseq class NodeDescription(Struct): """ Describe FE nodes defined on different parts of a reference element. """ def _describe_facets(self, ii): nts = self.node_types[ii] ik = nm.where(nts[1:,1] > nts[:-1,1])[0] if len(ik) == 0: ifacets = None n_dof = 0 else: ii = ii.astype(nm.int32) ik = nm.r_[0, ik + 1, nts.shape[0]] ifacets = [ii[ik[ir] : ik[ir+1]] for ir in range(len(ik) - 1)] n_dof = len(ifacets[0]) return ifacets, n_dof def _describe_other(self, ii): if len(ii): return ii, len(ii) else: return None, 0 def _get_facet_nodes(self, ifacets, nodes): if ifacets is None: return None else: return [nodes[ii] for ii in ifacets] def _get_nodes(self, ii, nodes): if ii is None: return None else: return nodes[ii] def __init__(self, node_types, nodes): self.node_types = node_types # Vertex nodes. ii = nm.where(node_types[:,0] == 0)[0] self.vertex, self.n_vertex_nod = self._describe_other(ii) self.vertex_nodes = self._get_nodes(self.vertex, nodes) # Edge nodes. ii = nm.where(node_types[:,0] == 1)[0] self.edge, self.n_edge_nod = self._describe_facets(ii) self.edge_nodes = self._get_facet_nodes(self.edge, nodes) # Face nodes. ii = nm.where(node_types[:,0] == 2)[0] self.face, self.n_face_nod = self._describe_facets(ii) self.face_nodes = self._get_facet_nodes(self.face, nodes) # Bubble nodes. ii = nm.where(node_types[:,0] == 3)[0] self.bubble, self.n_bubble_nod = self._describe_other(ii) self.bubble_nodes = self._get_nodes(self.bubble, nodes) def has_extra_nodes(self): """ Return True if the element has some edge, face or bubble nodes. """ return (self.n_edge_nod + self.n_face_nod + self.n_bubble_nod) > 0 class PolySpace(Struct): """Abstract polynomial space class.""" _all = None keys = { (1, 2) : 'simplex', (2, 3) : 'simplex', (3, 4) : 'simplex', (2, 4) : 'tensor_product', (3, 8) : 'tensor_product', } @staticmethod def any_from_args(name, geometry, order, base='lagrange', force_bubble=False): """ Construct a particular polynomial space classes according to the arguments passed in. """ if name is None: name = PolySpace.suggest_name(geometry, order, base, force_bubble) if PolySpace._all is None: PolySpace._all = find_subclasses(globals(), [PolySpace]) table = PolySpace._all key = '%s_%s' % (base, PolySpace.keys[(geometry.dim, geometry.n_vertex)]) if (geometry.name == '1_2') and (key not in table): key = '%s_%s' % (base, 'tensor_product') if force_bubble: key += '_bubble' return table[key](name, geometry, order) @staticmethod def suggest_name(geometry, order, base='lagrange', force_bubble=False): """ Suggest the polynomial space name given its constructor parameters. """ aux = geometry.get_interpolation_name()[:-1] if force_bubble: return aux + ('%dB' % order) else: return aux + ('%d' % order) def __init__(self, name, geometry, order): self.name = name self.geometry = geometry self.order = order self.bbox = nm.vstack((geometry.coors.min(0), geometry.coors.max(0))) def eval_base(self, coors, diff=0, ori=None, force_axis=False, transform=None, suppress_errors=False, eps=1e-15): """ Evaluate the basis or its first or second derivatives in points given by coordinates. The real work is done in _eval_base() implemented in subclasses. Note that the second derivative code is a work-in-progress and only `coors` and `transform` arguments are used. Parameters ---------- coors : array_like The coordinates of points where the basis is evaluated. See Notes. diff : 0, 1 or 2 If nonzero, return the given derivative. ori : array_like, optional Optional orientation of element facets for per element basis. force_axis : bool If True, force the resulting array shape to have one more axis even when `ori` is None. transform : array_like, optional The basis transform array. suppress_errors : bool If True, do not report points outside the reference domain. eps : float Accuracy for comparing coordinates. Returns ------- base : array The basis (shape (n_coor, 1, n_base)) or its first derivative (shape (n_coor, dim, n_base)) or its second derivative (shape (n_coor, dim, dim, n_base)) evaluated in the given points. An additional axis is pre-pended of length n_cell, if `ori` is given, or of length 1, if `force_axis` is True. Notes ----- If coors.ndim == 3, several point sets are assumed, with equal number of points in each of them. This is the case, for example, of the values of the volume base functions on the element facets. The indexing (of bf_b(g)) is then (ifa,iqp,:,n_ep), so that the facet can be set in C using FMF_SetCell. """ coors = nm.asarray(coors) if not coors.ndim in (2, 3): raise ValueError('coordinates must have 2 or 3 dimensions! (%d)' % coors.ndim) if (coors.ndim == 2): base = self._eval_base(coors, diff=diff, ori=ori, suppress_errors=suppress_errors, eps=eps) if (base.ndim == 3) and force_axis: base = base[None, ...] if not base.flags['C_CONTIGUOUS']: base = nm.ascontiguousarray(base) else: # Several point sets. if diff: bdim = self.geometry.dim else: bdim = 1 base = nm.empty((coors.shape[0], coors.shape[1], bdim, self.n_nod), dtype=nm.float64) for ii, _coors in enumerate(coors): base[ii] = self._eval_base(_coors, diff=diff, ori=ori, suppress_errors=suppress_errors, eps=eps) if transform is not None: base = transform_basis(transform, base) return base def get_mtx_i(self): return self.mtx_i def describe_nodes(self): return NodeDescription(self.nts, self.nodes) class LagrangePolySpace(PolySpace): def create_context(self, cmesh, eps, check_errors, i_max, newton_eps, tdim=None): from sfepy.discrete.fem.extmods.bases import CLagrangeContext ref_coors = self.geometry.coors if cmesh is not None: mesh_coors = cmesh.coors conn = cmesh.get_conn(cmesh.tdim, 0) mesh_conn = conn.indices.reshape(cmesh.n_el, -1).astype(nm.int32) if tdim is None: tdim = cmesh.tdim else: mesh_coors = mesh_conn = None if tdim is None: raise ValueError('supply either cmesh or tdim!') ctx = CLagrangeContext(order=self.order, tdim=tdim, nodes=self.nodes, ref_coors=ref_coors, mesh_coors=mesh_coors, mesh_conn=mesh_conn, mtx_i=self.get_mtx_i(), eps=eps, check_errors=check_errors, i_max=i_max, newton_eps=newton_eps) return ctx def _eval_base(self, coors, diff=0, ori=None, suppress_errors=False, eps=1e-15): """ See :func:`PolySpace.eval_base()`. """ if diff == 2: base = self._eval_hessian(coors) else: base = self.eval_ctx.evaluate(coors, diff=diff, eps=eps, check_errors=not suppress_errors) return base class LagrangeSimplexPolySpace(LagrangePolySpace): """Lagrange polynomial space on a simplex domain.""" name = 'lagrange_simplex' def __init__(self, name, geometry, order, init_context=True): PolySpace.__init__(self, name, geometry, order) n_v = geometry.n_vertex mtx = nm.ones((n_v, n_v), nm.float64) mtx[0:n_v-1,:] = nm.transpose(geometry.coors) self.mtx_i = nm.ascontiguousarray(nla.inv(mtx)) self.rhs = nm.ones((n_v,), nm.float64) self.nodes, self.nts, node_coors = self._define_nodes() self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] if init_context: self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=n_v - 1) else: self.eval_ctx = None def _define_nodes(self): # Factorial. fac = lambda n : reduce(lambda a, b : a * (b + 1), range(n), 1) geometry = self.geometry n_v, dim = geometry.n_vertex, geometry.dim order = self.order n_nod = fac(order + dim) // (fac(order) * fac(dim)) ## print n_nod, gd nodes = nm.zeros((n_nod, n_v), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) if order == 0: nts[0,:] = [3, 0] nodes[0,:] = nm.zeros((n_v,), nm.int32) else: iseq = 0 # Vertex nodes. nts[0:n_v,0] = 0 nts[0:n_v,1] = nm.arange(n_v, dtype = nm.int32) aux = order * nm.identity(n_v, dtype = nm.int32) nodes[iseq:iseq+n_v,:] = aux iseq += n_v if dim == 1: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 3, [[0, 1]], order) elif dim == 2: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_faces(nodes, nts, iseq, 3, [[0, 1, 2]], order) elif dim == 3: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_faces(nodes, nts, iseq, 2, geometry.faces, order) iseq = LagrangeNodes.append_bubbles(nodes, nts, iseq, 3, order) else: raise NotImplementedError ## print nm.concatenate((nts, nodes), 1) # Check orders. orders = nm.sum(nodes, 1) if not nm.all(orders == order): raise AssertionError('wrong orders! (%d == all of %s)' % (order, orders)) # Coordinates of the nodes. if order == 0: tmp = nm.ones((n_nod, n_v), nm.int32) node_coors = nm.dot(tmp, geometry.coors) / n_v else: node_coors = nm.dot(nodes, geometry.coors) / order return nodes, nts, node_coors def _eval_hessian(self, coors): """ Evaluate the second derivatives of the basis. """ def get_bc(coor): rhs = nm.concatenate((coor, [1])) bc = nm.dot(self.mtx_i, rhs) return bc def get_val(bc, node, omit=[]): val = nm.ones(1, nm.float64) for i1 in range(bc.shape[0]): if i1 in omit: continue for i2 in range(node[i1]): val *= (self.order * bc[i1] - i2) / (i2 + 1.0) return val def get_der(bc1, node1, omit=[]): val = nm.zeros(1, nm.float64) for i1 in range(node1): if i1 in omit: continue aux = nm.ones(1, nm.float64) for i2 in range(node1): if (i1 == i2) or (i2 in omit): continue aux *= (self.order * bc1 - i2) / (i2 + 1.0) val += aux * self.order / (i1 + 1.0) return val n_v = self.mtx_i.shape[0] dim = n_v - 1 mi = self.mtx_i[:, :dim] bfgg = nm.zeros((coors.shape[0], dim, dim, self.n_nod), dtype=nm.float64) for ic, coor in enumerate(coors): bc = get_bc(coor) for ii, node in enumerate(self.nodes): for ig1, bc1 in enumerate(bc): # 1. derivative w.r.t. bc1. for ig2, bc2 in enumerate(bc): # 2. derivative w.r.t. bc2. if ig1 == ig2: val = get_val(bc, node, omit=[ig1]) vv = 0.0 for i1 in range(node[ig1]): aux = get_der(bc2, node[ig2], omit=[i1]) vv += aux * self.order / (i1 + 1.0) val *= vv else: val = get_val(bc, node, omit=[ig1, ig2]) val *= get_der(bc1, node[ig1]) val *= get_der(bc2, node[ig2]) bfgg[ic, :, :, ii] += val * mi[ig1] * mi[ig2][:, None] return bfgg class LagrangeSimplexBPolySpace(LagrangeSimplexPolySpace): """Lagrange polynomial space with forced bubble function on a simplex domain.""" name = 'lagrange_simplex_bubble' def __init__(self, name, geometry, order, init_context=True): LagrangeSimplexPolySpace.__init__(self, name, geometry, order, init_context=False) nodes, nts, node_coors = self.nodes, self.nts, self.node_coors shape = [nts.shape[0] + 1, 2] nts = nm.resize(nts, shape) nts[-1,:] = [3, 0] shape = [nodes.shape[0] + 1, nodes.shape[1]] nodes = nm.resize(nodes, shape) # Make a 'hypercubic' (cubic in 2D) node. nodes[-1,:] = 1 n_v = self.geometry.n_vertex tmp = nm.ones((n_v,), nm.int32) node_coors = nm.vstack((node_coors, nm.dot(tmp, self.geometry.coors) / n_v)) self.nodes, self.nts = nodes, nts self.node_coors = nm.ascontiguousarray(node_coors) self.bnode = nodes[-1:,:] self.n_nod = self.nodes.shape[0] if init_context: self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=n_v - 1) else: self.eval_ctx = None def create_context(self, *args, **kwargs): ctx = LagrangePolySpace.create_context(self, *args, **kwargs) ctx.is_bubble = 1 return ctx class LagrangeTensorProductPolySpace(LagrangePolySpace): """Lagrange polynomial space on a tensor product domain.""" name = 'lagrange_tensor_product' def __init__(self, name, geometry, order, init_context=True): PolySpace.__init__(self, name, geometry, order) g1d = Struct(n_vertex = 2, dim = 1, coors = self.bbox[:,0:1].copy()) self.ps1d = LagrangeSimplexPolySpace('P_aux', g1d, order, init_context=False) self.nodes, self.nts, node_coors = self._define_nodes() self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] if init_context: tdim = int(nm.sqrt(geometry.n_vertex)) self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=tdim) else: self.eval_ctx = None def _define_nodes(self): geometry = self.geometry order = self.order n_v, dim = geometry.n_vertex, geometry.dim vertex_map = order * nm.array(vertex_maps[dim], dtype=nm.int32) n_nod = (order + 1) ** dim nodes = nm.zeros((n_nod, 2 * dim), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) if order == 0: nts[0,:] = [3, 0] nodes[0,:] = nm.zeros((n_nod,), nm.int32) else: iseq = 0 # Vertex nodes. nts[0:n_v,0] = 0 nts[0:n_v,1] = nm.arange( n_v, dtype = nm.int32 ) order * nm.identity( n_v, dtype = nm.int32 ) if dim == 3: for ii in range(n_v): i1, i2, i3 = vertex_map[ii] nodes[iseq,:] = [order - i1, i1, order - i2, i2, order - i3, i3] iseq += 1 elif dim == 2: for ii in range(n_v): i1, i2 = vertex_map[ii] nodes[iseq,:] = [order - i1, i1, order - i2, i2] iseq += 1 else: for ii in range(n_v): i1 = vertex_map[ii][0] nodes[iseq,:] = [order - i1, i1] iseq += 1 if dim == 1: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 3, [[0, 1]], order) elif dim == 2: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_tp_faces(nodes, nts, iseq, 3, [[0, 1, 2, 3]], order) elif dim == 3: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_tp_faces(nodes, nts, iseq, 2, geometry.faces, order) iseq = LagrangeNodes.append_tp_bubbles(nodes, nts, iseq, 3, order) else: raise NotImplementedError # Check orders. orders = nm.sum(nodes, 1) if not nm.all(orders == order * dim): raise AssertionError('wrong orders! (%d == all of %s)' % (order * dim, orders)) # Coordinates of the nodes. if order == 0: tmp = nm.ones((n_nod, n_v), nm.int32) node_coors = nm.dot(tmp, geometry.coors) / n_v else: c_min, c_max = self.bbox[:,0] cr = nm.arange(2 * dim) node_coors = (nodes[:,cr[::2]] * c_min + nodes[:,cr[1::2]] * c_max) / order return nodes, nts, node_coors def _eval_base_debug(self, coors, diff=False, ori=None, suppress_errors=False, eps=1e-15): """Python version of eval_base().""" dim = self.geometry.dim ev = self.ps1d.eval_base if diff: base = nm.ones((coors.shape[0], dim, self.n_nod), dtype=nm.float64) for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod for iv in range(dim): if ii == iv: base[:,iv:iv+1,:] *= ev(coors[:,ii:ii+1].copy(), diff=True, suppress_errors=suppress_errors, eps=eps) else: base[:,iv:iv+1,:] *= ev(coors[:,ii:ii+1].copy(), diff=False, suppress_errors=suppress_errors, eps=eps) else: base = nm.ones((coors.shape[0], 1, self.n_nod), dtype=nm.float64) for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod base *= ev(coors[:,ii:ii+1].copy(), diff=diff, suppress_errors=suppress_errors, eps=eps) return base def _eval_hessian(self, coors): """ Evaluate the second derivatives of the basis. """ evh = self.ps1d.eval_base dim = self.geometry.dim bfgg = nm.zeros((coors.shape[0], dim, dim, self.n_nod), dtype=nm.float64) v0s = [] v1s = [] v2s = [] for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod ev = self.ps1d.create_context(None, 0, 1e-15, 100, 1e-8, tdim=1).evaluate v0s.append(ev(coors[:, ii:ii+1].copy())[:, 0, :]) v1s.append(ev(coors[:, ii:ii+1].copy(), diff=1)[:, 0, :]) v2s.append(evh(coors[:, ii:ii+1], diff=2)[:, 0, 0, :]) for ir in range(dim): vv = v2s[ir] # Destroys v2s! for ik in range(dim): if ik == ir: continue vv *= v0s[ik] bfgg[:, ir, ir, :] = vv for ic in range(dim): if ic == ir: continue val = v1s[ir] * v1s[ic] for ik in range(dim): if (ik == ir) or (ik == ic): continue val *= v0s[ik] bfgg[:, ir, ic, :] += val return bfgg def get_mtx_i(self): return self.ps1d.mtx_i class LobattoTensorProductPolySpace(PolySpace): """ Hierarchical polynomial space using Lobatto functions. Each row of the `nodes` attribute defines indices of Lobatto functions that need to be multiplied together to evaluate the corresponding shape function. This defines the ordering of basis functions on the reference element. """ name = 'lobatto_tensor_product' def __init__(self, name, geometry, order): PolySpace.__init__(self, name, geometry, order) aux = self._define_nodes() self.nodes, self.nts, node_coors, self.face_axes, self.sfnodes = aux self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] aux = nm.where(self.nodes > 0, self.nodes, 1) self.node_orders = nm.prod(aux, axis=1) self.edge_indx = nm.where(self.nts[:, 0] == 1)[0] self.face_indx = nm.where(self.nts[:, 0] == 2)[0] self.face_axes_nodes = self._get_face_axes_nodes(self.face_axes) def _get_counts(self): order = self.order dim = self.geometry.dim n_nod = (order + 1) ** dim n_per_edge = (order - 1) n_per_face = (order - 1) ** (dim - 1) n_bubble = (order - 1) ** dim return n_nod, n_per_edge, n_per_face, n_bubble def _define_nodes(self): geometry = self.geometry order = self.order n_v, dim = geometry.n_vertex, geometry.dim n_nod, n_per_edge, n_per_face, n_bubble = self._get_counts() nodes = nm.zeros((n_nod, dim), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) # Vertex nodes. nts[0:n_v, 0] = 0 nts[0:n_v, 1] = nm.arange(n_v, dtype=nm.int32) nodes[0:n_v] = nm.array(vertex_maps[dim], dtype=nm.int32) ii = n_v # Edge nodes. if (dim > 1) and (n_per_edge > 0): ik = nm.arange(2, order + 1, dtype=nm.int32) zo = nm.zeros((n_per_edge, 2), dtype=nm.int32) zo[:, 1] = 1 for ie, edge in enumerate(geometry.edges): n1, n2 = nodes[edge] ifix = nm.where(n1 == n2)[0] irun = nm.where(n1 != n2)[0][0] ic = n1[ifix] nodes[ii:ii + n_per_edge, ifix] = zo[:, ic] nodes[ii:ii + n_per_edge, irun] = ik nts[ii:ii + n_per_edge] = [[1, ie]] ii += n_per_edge # 3D face nodes. face_axes = [] sfnodes = None if (dim == 3) and (n_per_face > 0): n_face = len(geometry.faces) sfnodes = nm.zeros((n_per_face * n_face, dim), nm.int32) ii0 = ii ik = nm.arange(2, order + 1, dtype=nm.int32) zo = nm.zeros((n_per_face, 2), dtype=nm.int32) zo[:, 1] = 1 for ifa, face in enumerate(geometry.faces): ns = nodes[face] diff = nm.diff(ns, axis=0) asum = nm.abs(diff).sum(axis=0) ifix = nm.where(asum == 0)[0][0] ic = ns[0, ifix] irun1 = nm.where(asum == 2)[0][0] irun2 = nm.where(asum == 1)[0][0] iy, ix = nm.meshgrid(ik, ik) nodes[ii:ii + n_per_face, ifix] = zo[:, ic] nodes[ii:ii + n_per_face, irun1] = ix.ravel() nodes[ii:ii + n_per_face, irun2] = iy.ravel() nts[ii:ii + n_per_face] = [[2, ifa]] ij = ii - ii0 sfnodes[ij:ij + n_per_face, ifix] = zo[:, ic] sfnodes[ij:ij + n_per_face, irun1] = iy.ravel() sfnodes[ij:ij + n_per_face, irun2] = ix.ravel() face_axes.append([irun1, irun2]) ii += n_per_face face_axes = nm.array(face_axes) # Bubble nodes. if n_bubble > 0: ik = nm.arange(2, order + 1, dtype=nm.int32) nodes[ii:] = nm.array([aux for aux in combine([ik] * dim)]) nts[ii:ii + n_bubble] = [[3, 0]] ii += n_bubble assert_(ii == n_nod) # Coordinates of the "nodes". All nodes on a facet have the same # coordinates - the centre of the facet. c_min, c_max = self.bbox[:, 0] node_coors = nm.zeros(nodes.shape, dtype=nm.float64) node_coors[:n_v] = nodes[:n_v] if (dim > 1) and (n_per_edge > 0): ie = nm.where(nts[:, 0] == 1)[0] node_coors[ie] = node_coors[geometry.edges[nts[ie, 1]]].mean(1) if (dim == 3) and (n_per_face > 0): ifa = nm.where(nts[:, 0] == 2)[0] node_coors[ifa] = node_coors[geometry.faces[nts[ifa, 1]]].mean(1) if n_bubble > 0: ib = nm.where(nts[:, 0] == 3)[0] node_coors[ib] = node_coors[geometry.conn].mean(0) return nodes, nts, node_coors, face_axes, sfnodes def _get_face_axes_nodes(self, face_axes): if not len(face_axes): return None nodes = self.nodes[self.face_indx] n_per_face = self._get_counts()[2] anodes = nm.tile(nodes[:n_per_face, face_axes[0]], (6, 1)) return anodes def _eval_base(self, coors, diff=False, ori=None, suppress_errors=False, eps=1e-15): """ See PolySpace.eval_base(). """ from .extmods.lobatto_bases import eval_lobatto_tensor_product as ev c_min, c_max = self.bbox[:, 0] base = ev(coors, self.nodes, c_min, c_max, self.order, diff) if ori is not None: ebase = nm.tile(base, (ori.shape[0], 1, 1, 1)) if self.edge_indx.shape[0]: # Orient edge functions. ie, ii = nm.where(ori[:, self.edge_indx] == 1) ii = self.edge_indx[ii] ebase[ie, :, :, ii] *= -1.0 if self.face_indx.shape[0]: # Orient face functions. fori = ori[:, self.face_indx] # ... normal axis order ie, ii = nm.where((fori == 1) | (fori == 2)) ii = self.face_indx[ii] ebase[ie, :, :, ii] *= -1.0 # ... swapped axis order sbase = ev(coors, self.sfnodes, c_min, c_max, self.order, diff) sbase = insert_strided_axis(sbase, 0, ori.shape[0]) # ...overwrite with swapped axes basis. ie, ii = nm.where(fori >= 4) ii2 = self.face_indx[ii] ebase[ie, :, :, ii2] = sbase[ie, :, :, ii] # ...deal with orientation. ie, ii = nm.where((fori == 5) | (fori == 6)) ii = self.face_indx[ii] ebase[ie, :, :, ii] *= -1.0 base = ebase return base
[ "sfepy.linalg.combine", "sfepy.base.base.assert_", "sfepy.linalg.insert_strided_axis" ]
[((859, 900), 'numpy.einsum', 'nm.einsum', (['"""cij,qdj->cqdi"""', 'transform', 'bf'], {}), "('cij,qdj->cqdi', transform, bf)\n", (868, 900), True, 'import numpy as nm\n'), ((926, 968), 'numpy.einsum', 'nm.einsum', (['"""cij,oqdj->cqdi"""', 'transform', 'bf'], {}), "('cij,oqdj->cqdi', transform, bf)\n", (935, 968), True, 'import numpy as nm\n'), ((2587, 2603), 'six.moves.range', 'range', (['(order - 3)'], {}), '(order - 3)\n', (2592, 2603), False, 'from six.moves import range\n'), ((4855, 4868), 'six.moves.range', 'range', (['(ao - 1)'], {}), '(ao - 1)\n', (4860, 4868), False, 'from six.moves import range\n'), ((11384, 11401), 'numpy.asarray', 'nm.asarray', (['coors'], {}), '(coors)\n', (11394, 11401), True, 'import numpy as nm\n'), ((14715, 14746), 'numpy.ones', 'nm.ones', (['(n_v, n_v)', 'nm.float64'], {}), '((n_v, n_v), nm.float64)\n', (14722, 14746), True, 'import numpy as nm\n'), ((14772, 14800), 'numpy.transpose', 'nm.transpose', (['geometry.coors'], {}), '(geometry.coors)\n', (14784, 14800), True, 'import numpy as nm\n'), ((14876, 14903), 'numpy.ones', 'nm.ones', (['(n_v,)', 'nm.float64'], {}), '((n_v,), nm.float64)\n', (14883, 14903), True, 'import numpy as nm\n'), ((14995, 15027), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['node_coors'], {}), '(node_coors)\n', (15015, 15027), True, 'import numpy as nm\n'), ((15619, 15651), 'numpy.zeros', 'nm.zeros', (['(n_nod, n_v)', 'nm.int32'], {}), '((n_nod, n_v), nm.int32)\n', (15627, 15651), True, 'import numpy as nm\n'), ((15666, 15696), 'numpy.zeros', 'nm.zeros', (['(n_nod, 2)', 'nm.int32'], {}), '((n_nod, 2), nm.int32)\n', (15674, 15696), True, 'import numpy as nm\n'), ((17158, 17174), 'numpy.sum', 'nm.sum', (['nodes', '(1)'], {}), '(nodes, 1)\n', (17164, 17174), True, 'import numpy as nm\n'), ((18725, 18791), 'numpy.zeros', 'nm.zeros', (['(coors.shape[0], dim, dim, self.n_nod)'], {'dtype': 'nm.float64'}), '((coors.shape[0], dim, dim, self.n_nod), dtype=nm.float64)\n', (18733, 18791), True, 'import numpy as nm\n'), ((20302, 20323), 'numpy.resize', 'nm.resize', (['nts', 'shape'], {}), '(nts, shape)\n', (20311, 20323), True, 'import numpy as nm\n'), ((20421, 20444), 'numpy.resize', 'nm.resize', (['nodes', 'shape'], {}), '(nodes, shape)\n', (20430, 20444), True, 'import numpy as nm\n'), ((20571, 20596), 'numpy.ones', 'nm.ones', (['(n_v,)', 'nm.int32'], {}), '((n_v,), nm.int32)\n', (20578, 20596), True, 'import numpy as nm\n'), ((20784, 20816), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['node_coors'], {}), '(node_coors)\n', (20804, 20816), True, 'import numpy as nm\n'), ((21893, 21925), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['node_coors'], {}), '(node_coors)\n', (21913, 21925), True, 'import numpy as nm\n'), ((22493, 22529), 'numpy.zeros', 'nm.zeros', (['(n_nod, 2 * dim)', 'nm.int32'], {}), '((n_nod, 2 * dim), nm.int32)\n', (22501, 22529), True, 'import numpy as nm\n'), ((22544, 22574), 'numpy.zeros', 'nm.zeros', (['(n_nod, 2)', 'nm.int32'], {}), '((n_nod, 2), nm.int32)\n', (22552, 22574), True, 'import numpy as nm\n'), ((24650, 24666), 'numpy.sum', 'nm.sum', (['nodes', '(1)'], {}), '(nodes, 1)\n', (24656, 24666), True, 'import numpy as nm\n'), ((27068, 27134), 'numpy.zeros', 'nm.zeros', (['(coors.shape[0], dim, dim, self.n_nod)'], {'dtype': 'nm.float64'}), '((coors.shape[0], dim, dim, self.n_nod), dtype=nm.float64)\n', (27076, 27134), True, 'import numpy as nm\n'), ((27229, 27239), 'six.moves.range', 'range', (['dim'], {}), '(dim)\n', (27234, 27239), False, 'from six.moves import range\n'), ((27692, 27702), 'six.moves.range', 'range', (['dim'], {}), '(dim)\n', (27697, 27702), False, 'from six.moves import range\n'), ((28893, 28925), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['node_coors'], {}), '(node_coors)\n', (28913, 28925), True, 'import numpy as nm\n'), ((28982, 29021), 'numpy.where', 'nm.where', (['(self.nodes > 0)', 'self.nodes', '(1)'], {}), '(self.nodes > 0, self.nodes, 1)\n', (28990, 29021), True, 'import numpy as nm\n'), ((29049, 29069), 'numpy.prod', 'nm.prod', (['aux'], {'axis': '(1)'}), '(aux, axis=1)\n', (29056, 29069), True, 'import numpy as nm\n'), ((29785, 29817), 'numpy.zeros', 'nm.zeros', (['(n_nod, dim)', 'nm.int32'], {}), '((n_nod, dim), nm.int32)\n', (29793, 29817), True, 'import numpy as nm\n'), ((29832, 29862), 'numpy.zeros', 'nm.zeros', (['(n_nod, 2)', 'nm.int32'], {}), '((n_nod, 2), nm.int32)\n', (29840, 29862), True, 'import numpy as nm\n'), ((29938, 29968), 'numpy.arange', 'nm.arange', (['n_v'], {'dtype': 'nm.int32'}), '(n_v, dtype=nm.int32)\n', (29947, 29968), True, 'import numpy as nm\n'), ((29992, 30034), 'numpy.array', 'nm.array', (['vertex_maps[dim]'], {'dtype': 'nm.int32'}), '(vertex_maps[dim], dtype=nm.int32)\n', (30000, 30034), True, 'import numpy as nm\n'), ((32036, 32055), 'numpy.array', 'nm.array', (['face_axes'], {}), '(face_axes)\n', (32044, 32055), True, 'import numpy as nm\n'), ((32316, 32336), 'sfepy.base.base.assert_', 'assert_', (['(ii == n_nod)'], {}), '(ii == n_nod)\n', (32323, 32336), False, 'from sfepy.base.base import find_subclasses, assert_, Struct\n'), ((32521, 32560), 'numpy.zeros', 'nm.zeros', (['nodes.shape'], {'dtype': 'nm.float64'}), '(nodes.shape, dtype=nm.float64)\n', (32529, 32560), True, 'import numpy as nm\n'), ((33322, 33371), 'numpy.tile', 'nm.tile', (['nodes[:n_per_face, face_axes[0]]', '(6, 1)'], {}), '(nodes[:n_per_face, face_axes[0]], (6, 1))\n', (33329, 33371), True, 'import numpy as nm\n'), ((1338, 1354), 'six.moves.range', 'range', (['(order - 1)'], {}), '(order - 1)\n', (1343, 1354), False, 'from six.moves import range\n'), ((1914, 1930), 'six.moves.range', 'range', (['(order - 2)'], {}), '(order - 2)\n', (1919, 1930), False, 'from six.moves import range\n'), ((2627, 2643), 'six.moves.range', 'range', (['(order - 3)'], {}), '(order - 3)\n', (2632, 2643), False, 'from six.moves import range\n'), ((3356, 3369), 'six.moves.range', 'range', (['(ao - 1)'], {}), '(ao - 1)\n', (3361, 3369), False, 'from six.moves import range\n'), ((3972, 3985), 'six.moves.range', 'range', (['(ao - 1)'], {}), '(ao - 1)\n', (3977, 3985), False, 'from six.moves import range\n'), ((4892, 4905), 'six.moves.range', 'range', (['(ao - 1)'], {}), '(ao - 1)\n', (4897, 4905), False, 'from six.moves import range\n'), ((5845, 5879), 'numpy.where', 'nm.where', (['(nts[1:, 1] > nts[:-1, 1])'], {}), '(nts[1:, 1] > nts[:-1, 1])\n', (5853, 5879), True, 'import numpy as nm\n'), ((6741, 6772), 'numpy.where', 'nm.where', (['(node_types[:, 0] == 0)'], {}), '(node_types[:, 0] == 0)\n', (6749, 6772), True, 'import numpy as nm\n'), ((6941, 6972), 'numpy.where', 'nm.where', (['(node_types[:, 0] == 1)'], {}), '(node_types[:, 0] == 1)\n', (6949, 6972), True, 'import numpy as nm\n'), ((7140, 7171), 'numpy.where', 'nm.where', (['(node_types[:, 0] == 2)'], {}), '(node_types[:, 0] == 2)\n', (7148, 7171), True, 'import numpy as nm\n'), ((7341, 7372), 'numpy.where', 'nm.where', (['(node_types[:, 0] == 3)'], {}), '(node_types[:, 0] == 3)\n', (7349, 7372), True, 'import numpy as nm\n'), ((12112, 12190), 'numpy.empty', 'nm.empty', (['(coors.shape[0], coors.shape[1], bdim, self.n_nod)'], {'dtype': 'nm.float64'}), '((coors.shape[0], coors.shape[1], bdim, self.n_nod), dtype=nm.float64)\n', (12120, 12190), True, 'import numpy as nm\n'), ((14843, 14855), 'numpy.linalg.inv', 'nla.inv', (['mtx'], {}), '(mtx)\n', (14850, 14855), True, 'import numpy.linalg as nla\n'), ((15776, 15802), 'numpy.zeros', 'nm.zeros', (['(n_v,)', 'nm.int32'], {}), '((n_v,), nm.int32)\n', (15784, 15802), True, 'import numpy as nm\n'), ((15924, 15954), 'numpy.arange', 'nm.arange', (['n_v'], {'dtype': 'nm.int32'}), '(n_v, dtype=nm.int32)\n', (15933, 15954), True, 'import numpy as nm\n'), ((17190, 17213), 'numpy.all', 'nm.all', (['(orders == order)'], {}), '(orders == order)\n', (17196, 17213), True, 'import numpy as nm\n'), ((17412, 17443), 'numpy.ones', 'nm.ones', (['(n_nod, n_v)', 'nm.int32'], {}), '((n_nod, n_v), nm.int32)\n', (17419, 17443), True, 'import numpy as nm\n'), ((17779, 17806), 'numpy.concatenate', 'nm.concatenate', (['(coor, [1])'], {}), '((coor, [1]))\n', (17793, 17806), True, 'import numpy as nm\n'), ((17824, 17847), 'numpy.dot', 'nm.dot', (['self.mtx_i', 'rhs'], {}), '(self.mtx_i, rhs)\n', (17830, 17847), True, 'import numpy as nm\n'), ((17930, 17952), 'numpy.ones', 'nm.ones', (['(1)', 'nm.float64'], {}), '(1, nm.float64)\n', (17937, 17952), True, 'import numpy as nm\n'), ((17975, 17993), 'six.moves.range', 'range', (['bc.shape[0]'], {}), '(bc.shape[0])\n', (17980, 17993), False, 'from six.moves import range\n'), ((18231, 18254), 'numpy.zeros', 'nm.zeros', (['(1)', 'nm.float64'], {}), '(1, nm.float64)\n', (18239, 18254), True, 'import numpy as nm\n'), ((18277, 18289), 'six.moves.range', 'range', (['node1'], {}), '(node1)\n', (18282, 18289), False, 'from six.moves import range\n'), ((22398, 22440), 'numpy.array', 'nm.array', (['vertex_maps[dim]'], {'dtype': 'nm.int32'}), '(vertex_maps[dim], dtype=nm.int32)\n', (22406, 22440), True, 'import numpy as nm\n'), ((22654, 22682), 'numpy.zeros', 'nm.zeros', (['(n_nod,)', 'nm.int32'], {}), '((n_nod,), nm.int32)\n', (22662, 22682), True, 'import numpy as nm\n'), ((22804, 22834), 'numpy.arange', 'nm.arange', (['n_v'], {'dtype': 'nm.int32'}), '(n_v, dtype=nm.int32)\n', (22813, 22834), True, 'import numpy as nm\n'), ((24682, 24711), 'numpy.all', 'nm.all', (['(orders == order * dim)'], {}), '(orders == order * dim)\n', (24688, 24711), True, 'import numpy as nm\n'), ((24916, 24947), 'numpy.ones', 'nm.ones', (['(n_nod, n_v)', 'nm.int32'], {}), '((n_nod, n_v), nm.int32)\n', (24923, 24947), True, 'import numpy as nm\n'), ((25094, 25112), 'numpy.arange', 'nm.arange', (['(2 * dim)'], {}), '(2 * dim)\n', (25103, 25112), True, 'import numpy as nm\n'), ((25543, 25603), 'numpy.ones', 'nm.ones', (['(coors.shape[0], dim, self.n_nod)'], {'dtype': 'nm.float64'}), '((coors.shape[0], dim, self.n_nod), dtype=nm.float64)\n', (25550, 25603), True, 'import numpy as nm\n'), ((25627, 25637), 'six.moves.range', 'range', (['dim'], {}), '(dim)\n', (25632, 25637), False, 'from six.moves import range\n'), ((26441, 26499), 'numpy.ones', 'nm.ones', (['(coors.shape[0], 1, self.n_nod)'], {'dtype': 'nm.float64'}), '((coors.shape[0], 1, self.n_nod), dtype=nm.float64)\n', (26448, 26499), True, 'import numpy as nm\n'), ((26523, 26533), 'six.moves.range', 'range', (['dim'], {}), '(dim)\n', (26528, 26533), False, 'from six.moves import range\n'), ((27767, 27777), 'six.moves.range', 'range', (['dim'], {}), '(dim)\n', (27772, 27777), False, 'from six.moves import range\n'), ((27907, 27917), 'six.moves.range', 'range', (['dim'], {}), '(dim)\n', (27912, 27917), False, 'from six.moves import range\n'), ((29095, 29124), 'numpy.where', 'nm.where', (['(self.nts[:, 0] == 1)'], {}), '(self.nts[:, 0] == 1)\n', (29103, 29124), True, 'import numpy as nm\n'), ((29153, 29182), 'numpy.where', 'nm.where', (['(self.nts[:, 0] == 2)'], {}), '(self.nts[:, 0] == 2)\n', (29161, 29182), True, 'import numpy as nm\n'), ((30135, 30174), 'numpy.arange', 'nm.arange', (['(2)', '(order + 1)'], {'dtype': 'nm.int32'}), '(2, order + 1, dtype=nm.int32)\n', (30144, 30174), True, 'import numpy as nm\n'), ((30192, 30233), 'numpy.zeros', 'nm.zeros', (['(n_per_edge, 2)'], {'dtype': 'nm.int32'}), '((n_per_edge, 2), dtype=nm.int32)\n', (30200, 30233), True, 'import numpy as nm\n'), ((30852, 30898), 'numpy.zeros', 'nm.zeros', (['(n_per_face * n_face, dim)', 'nm.int32'], {}), '((n_per_face * n_face, dim), nm.int32)\n', (30860, 30898), True, 'import numpy as nm\n'), ((30938, 30977), 'numpy.arange', 'nm.arange', (['(2)', '(order + 1)'], {'dtype': 'nm.int32'}), '(2, order + 1, dtype=nm.int32)\n', (30947, 30977), True, 'import numpy as nm\n'), ((30995, 31036), 'numpy.zeros', 'nm.zeros', (['(n_per_face, 2)'], {'dtype': 'nm.int32'}), '((n_per_face, 2), dtype=nm.int32)\n', (31003, 31036), True, 'import numpy as nm\n'), ((32123, 32162), 'numpy.arange', 'nm.arange', (['(2)', '(order + 1)'], {'dtype': 'nm.int32'}), '(2, order + 1, dtype=nm.int32)\n', (32132, 32162), True, 'import numpy as nm\n'), ((33798, 33836), 'numpy.tile', 'nm.tile', (['base', '(ori.shape[0], 1, 1, 1)'], {}), '(base, (ori.shape[0], 1, 1, 1))\n', (33805, 33836), True, 'import numpy as nm\n'), ((1958, 1979), 'six.moves.range', 'range', (['(order - 2 - i1)'], {}), '(order - 2 - i1)\n', (1963, 1979), False, 'from six.moves import range\n'), ((2671, 2697), 'six.moves.range', 'range', (['(order - 3 - i1 - i2)'], {}), '(order - 3 - i1 - i2)\n', (2676, 2697), False, 'from six.moves import range\n'), ((4013, 4026), 'six.moves.range', 'range', (['(ao - 1)'], {}), '(ao - 1)\n', (4018, 4026), False, 'from six.moves import range\n'), ((4933, 4946), 'six.moves.range', 'range', (['(ao - 1)'], {}), '(ao - 1)\n', (4938, 4946), False, 'from six.moves import range\n'), ((11923, 11949), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['base'], {}), '(base)\n', (11943, 11949), True, 'import numpy as nm\n'), ((15390, 15398), 'six.moves.range', 'range', (['n'], {}), '(n)\n', (15395, 15398), False, 'from six.moves import range\n'), ((15983, 16015), 'numpy.identity', 'nm.identity', (['n_v'], {'dtype': 'nm.int32'}), '(n_v, dtype=nm.int32)\n', (15994, 16015), True, 'import numpy as nm\n'), ((17469, 17496), 'numpy.dot', 'nm.dot', (['tmp', 'geometry.coors'], {}), '(tmp, geometry.coors)\n', (17475, 17496), True, 'import numpy as nm\n'), ((17543, 17572), 'numpy.dot', 'nm.dot', (['nodes', 'geometry.coors'], {}), '(nodes, geometry.coors)\n', (17549, 17572), True, 'import numpy as nm\n'), ((18062, 18077), 'six.moves.range', 'range', (['node[i1]'], {}), '(node[i1])\n', (18067, 18077), False, 'from six.moves import range\n'), ((18354, 18376), 'numpy.ones', 'nm.ones', (['(1)', 'nm.float64'], {}), '(1, nm.float64)\n', (18361, 18376), True, 'import numpy as nm\n'), ((18403, 18415), 'six.moves.range', 'range', (['node1'], {}), '(node1)\n', (18408, 18415), False, 'from six.moves import range\n'), ((22016, 22042), 'numpy.sqrt', 'nm.sqrt', (['geometry.n_vertex'], {}), '(geometry.n_vertex)\n', (22023, 22042), True, 'import numpy as nm\n'), ((22859, 22891), 'numpy.identity', 'nm.identity', (['n_v'], {'dtype': 'nm.int32'}), '(n_v, dtype=nm.int32)\n', (22870, 22891), True, 'import numpy as nm\n'), ((22947, 22957), 'six.moves.range', 'range', (['n_v'], {}), '(n_v)\n', (22952, 22957), False, 'from six.moves import range\n'), ((24973, 25000), 'numpy.dot', 'nm.dot', (['tmp', 'geometry.coors'], {}), '(tmp, geometry.coors)\n', (24979, 25000), True, 'import numpy as nm\n'), ((25778, 25788), 'six.moves.range', 'range', (['dim'], {}), '(dim)\n', (25783, 25788), False, 'from six.moves import range\n'), ((28023, 28033), 'six.moves.range', 'range', (['dim'], {}), '(dim)\n', (28028, 28033), False, 'from six.moves import range\n'), ((31176, 31195), 'numpy.diff', 'nm.diff', (['ns'], {'axis': '(0)'}), '(ns, axis=0)\n', (31183, 31195), True, 'import numpy as nm\n'), ((31452, 31471), 'numpy.meshgrid', 'nm.meshgrid', (['ik', 'ik'], {}), '(ik, ik)\n', (31463, 31471), True, 'import numpy as nm\n'), ((32661, 32685), 'numpy.where', 'nm.where', (['(nts[:, 0] == 1)'], {}), '(nts[:, 0] == 1)\n', (32669, 32685), True, 'import numpy as nm\n'), ((32828, 32852), 'numpy.where', 'nm.where', (['(nts[:, 0] == 2)'], {}), '(nts[:, 0] == 2)\n', (32836, 32852), True, 'import numpy as nm\n'), ((32977, 33001), 'numpy.where', 'nm.where', (['(nts[:, 0] == 3)'], {}), '(nts[:, 0] == 3)\n', (32985, 33001), True, 'import numpy as nm\n'), ((33944, 33981), 'numpy.where', 'nm.where', (['(ori[:, self.edge_indx] == 1)'], {}), '(ori[:, self.edge_indx] == 1)\n', (33952, 33981), True, 'import numpy as nm\n'), ((34260, 34295), 'numpy.where', 'nm.where', (['((fori == 1) | (fori == 2))'], {}), '((fori == 1) | (fori == 2))\n', (34268, 34295), True, 'import numpy as nm\n'), ((34526, 34569), 'sfepy.linalg.insert_strided_axis', 'insert_strided_axis', (['sbase', '(0)', 'ori.shape[0]'], {}), '(sbase, 0, ori.shape[0])\n', (34545, 34569), False, 'from sfepy.linalg import combine, insert_strided_axis\n'), ((34652, 34671), 'numpy.where', 'nm.where', (['(fori >= 4)'], {}), '(fori >= 4)\n', (34660, 34671), True, 'import numpy as nm\n'), ((34842, 34877), 'numpy.where', 'nm.where', (['((fori == 5) | (fori == 6))'], {}), '((fori == 5) | (fori == 6))\n', (34850, 34877), True, 'import numpy as nm\n'), ((20674, 20706), 'numpy.dot', 'nm.dot', (['tmp', 'self.geometry.coors'], {}), '(tmp, self.geometry.coors)\n', (20680, 20706), True, 'import numpy as nm\n'), ((23249, 23259), 'six.moves.range', 'range', (['n_v'], {}), '(n_v)\n', (23254, 23259), False, 'from six.moves import range\n'), ((23448, 23458), 'six.moves.range', 'range', (['n_v'], {}), '(n_v)\n', (23453, 23458), False, 'from six.moves import range\n'), ((30374, 30392), 'numpy.where', 'nm.where', (['(n1 == n2)'], {}), '(n1 == n2)\n', (30382, 30392), True, 'import numpy as nm\n'), ((30419, 30437), 'numpy.where', 'nm.where', (['(n1 != n2)'], {}), '(n1 != n2)\n', (30427, 30437), True, 'import numpy as nm\n'), ((31219, 31231), 'numpy.abs', 'nm.abs', (['diff'], {}), '(diff)\n', (31225, 31231), True, 'import numpy as nm\n'), ((31267, 31286), 'numpy.where', 'nm.where', (['(asum == 0)'], {}), '(asum == 0)\n', (31275, 31286), True, 'import numpy as nm\n'), ((31350, 31369), 'numpy.where', 'nm.where', (['(asum == 2)'], {}), '(asum == 2)\n', (31358, 31369), True, 'import numpy as nm\n'), ((31400, 31419), 'numpy.where', 'nm.where', (['(asum == 1)'], {}), '(asum == 1)\n', (31408, 31419), True, 'import numpy as nm\n'), ((32213, 32232), 'sfepy.linalg.combine', 'combine', (['([ik] * dim)'], {}), '([ik] * dim)\n', (32220, 32232), False, 'from sfepy.linalg import combine, insert_strided_axis\n'), ((19274, 19290), 'six.moves.range', 'range', (['node[ig1]'], {}), '(node[ig1])\n', (19279, 19290), False, 'from six.moves import range\n')]
from __future__ import absolute_import import numpy as nm import sfepy.linalg as la from sfepy.discrete.integrals import Integral from sfepy.discrete import PolySpace from six.moves import range def prepare_remap(indices, n_full): """ Prepare vector for remapping range `[0, n_full]` to its subset given by `indices`. """ remap = nm.empty((n_full,), dtype=nm.int32) remap.fill(-1) remap[indices] = nm.arange(indices.shape[0], dtype=nm.int32) return remap def invert_remap(remap): """ Return the inverse of `remap`, i.e. a mapping from a sub-range indices to a full range, see :func:`prepare_remap()`. """ if remap is not None: inverse = nm.where(remap >= 0)[0].astype(nm.int32) else: inverse = None return inverse def prepare_translate(old_indices, new_indices): """ Prepare vector for translating `old_indices` to `new_indices`. Returns ------- translate : array The translation vector. Then `new_ar = translate[old_ar]`. """ old_indices = nm.asarray(old_indices) new_indices = nm.asarray(new_indices) translate = nm.zeros(old_indices.max() + 1, dtype=new_indices.dtype) translate[old_indices] = new_indices return translate def compute_nodal_normals(nodes, region, field, return_imap=False): """ Nodal normals are computed by simple averaging of element normals of elements every node is contained in. """ dim = region.dim field.domain.create_surface_group(region) field.setup_surface_data(region) # Custom integral with quadrature points in nodes. ps = PolySpace.any_from_args('', field.gel.surface_facet, field.approx_order) qp_coors = ps.node_coors # Unit normals -> weights = ones. qp_weights = nm.ones(qp_coors.shape[0], dtype=nm.float64) integral = Integral('aux', coors=qp_coors, weights=qp_weights) normals = nm.zeros((nodes.shape[0], dim), dtype=nm.float64) mask = nm.zeros((nodes.max() + 1,), dtype=nm.int32) imap = nm.empty_like(mask) imap.fill(nodes.shape[0]) # out-of-range index for normals. imap[nodes] = nm.arange(nodes.shape[0], dtype=nm.int32) cmap, _ = field.get_mapping(region, integral, 'surface') e_normals = cmap.normal[..., 0] sd = field.surface_data[region.name] econn = sd.get_connectivity() mask[econn] += 1 # normals[imap[econn]] += e_normals im = imap[econn] for ii, en in enumerate(e_normals): normals[im[ii]] += en # All nodes must have a normal. if not nm.all(mask[nodes] > 0): raise ValueError('region %s has not complete faces!' % region.name) norm = la.norm_l2_along_axis(normals)[:, nm.newaxis] if (norm < 1e-15).any(): raise ValueError('zero nodal normal! (a node in volume?)') normals /= norm if return_imap: return normals, imap else: return normals def _get_edge_path(graph, seed, mask, cycle=False): """ Get a path in an edge graph starting with seed. The mask is incremented by one at positions of the path vertices. """ if mask[seed]: return [] path = [seed] mask[seed] = 1 row = graph[seed].indices nv = len(row) while nv: if nv == 2: if mask[row[0]]: if mask[row[1]]: if cycle: path.append(seed) break else: vert = row[1] else: vert = row[0] elif mask[row[0]]: break else: vert = row[0] path.append(vert) mask[vert] = 1 row = graph[vert].indices nv = len(row) path = nm.array(path, dtype=nm.int32) return path def get_edge_paths(graph, mask): """ Get all edge paths in a graph with non-masked vertices. The mask is updated. """ nodes = nm.unique(graph.indices) npv = nm.diff(graph.indptr) if npv.max() > 2: raise ValueError('more than 2 edges sharing a vertex!') seeds = nm.where(npv == 1)[0] # 1. get paths. paths = [] for seed in seeds: path = _get_edge_path(graph, seed, mask) if len(path): paths.append(path) # 2. get possible remaing cycles. while 1: ii = nm.where(mask[nodes] == 0)[0] if not len(ii): break path = _get_edge_path(graph, nodes[ii[0]], mask, cycle=True) if len(path): paths.append(path) return paths def compute_nodal_edge_dirs(nodes, region, field, return_imap=False): """ Nodal edge directions are computed by simple averaging of direction vectors of edges a node is contained in. Edges are assumed to be straight and a node must be on a single edge (a border node) or shared by exactly two edges. """ coors = region.domain.mesh.coors dim = coors.shape[1] graph = region.get_edge_graph() imap = prepare_remap(nodes, nodes.max() + 1) mask = nm.zeros_like(imap) try: paths = get_edge_paths(graph, mask) except ValueError: raise ValueError('more than 2 edges sharing a vertex in region %s!' % region.name) # All nodes must have an edge direction. if not nm.all(mask[nodes]): raise ValueError('region %s has not complete edges!' % region.name) edge_dirs = nm.zeros((nodes.shape[0], dim), dtype=nm.float64) for path in paths: pcoors = coors[path] edirs = nm.diff(pcoors, axis=0) la.normalize_vectors(edirs, eps=1e-12) im = imap[nm.c_[path[:-1], path[1:]]] for ii, edir in enumerate(edirs): edge_dirs[im[ii]] += edir la.normalize_vectors(edge_dirs, eps=1e-12) if return_imap: return edge_dirs, imap else: return edge_dirs def get_min_value(dofs): """ Get a reasonable minimal value of DOFs suitable for extending over a whole domain. """ if dofs.shape[1] > 1: # Vector. val = 0.0 else: # Scalar. val = dofs.min() return val def extend_cell_data(data, domain, rname, val=None, is_surface=False, average_surface=True): """ Extend cell data defined in a region to the whole domain. Parameters ---------- data : array The data defined in the region. domain : FEDomain instance The FE domain. rname : str The region name. val : float, optional The value for filling cells not covered by the region. If not given, the smallest value in data is used. is_surface : bool If True, the data are defined on a surface region. In that case the values are averaged or summed into the cells containing the region surface faces (a cell can have several faces of the surface), see `average_surface`. average_surface : bool If True, the data defined on a surface region are averaged, otherwise the data are summed. Returns ------- edata : array The data extended to all domain elements. """ n_el = domain.shape.n_el if data.shape[0] == n_el: return data if val is None: if data.shape[2] > 1: # Vector. val = nm.amin(nm.abs(data)) else: # Scalar. val = nm.amin(data) edata = nm.empty((n_el,) + data.shape[1:], dtype=data.dtype) edata.fill(val) region = domain.regions[rname] if not is_surface: edata[region.get_cells()] = data else: cells = region.get_cells(true_cells_only=False) ucells = nm.unique(cells) if len(cells) != len(region.facets): raise ValueError('region %s has an inner face!' % region.name) if average_surface: avg = nm.bincount(cells, minlength=n_el)[ucells] else: avg = 1.0 for ic in range(data.shape[2]): if nm.isrealobj(data): evals = nm.bincount(cells, weights=data[:, 0, ic, 0], minlength=n_el)[ucells] else: evals = (nm.bincount(cells, weights=data[:, 0, ic, 0].real, minlength=n_el)[ucells] + 1j * nm.bincount(cells, weights=data[:, 0, ic, 0].imag, minlength=n_el)[ucells]) edata[ucells, 0, ic, 0] = evals / avg return edata def refine_mesh(filename, level): """ Uniformly refine `level`-times a mesh given by `filename`. The refined mesh is saved to a file with name constructed from base name of `filename` and `level`-times appended `'_r'` suffix. Parameters ---------- filename : str The mesh file name. level : int The refinement level. """ import os from sfepy.base.base import output from sfepy.discrete.fem import Mesh, FEDomain if level > 0: mesh = Mesh.from_file(filename) domain = FEDomain(mesh.name, mesh) for ii in range(level): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) suffix = os.path.splitext(filename)[1] filename = domain.name + suffix domain.mesh.write(filename, io='auto') return filename
[ "sfepy.discrete.integrals.Integral", "sfepy.linalg.normalize_vectors", "sfepy.discrete.PolySpace.any_from_args", "sfepy.linalg.norm_l2_along_axis", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.fem.FEDomain", "sfepy.base.base.output" ]
[((352, 387), 'numpy.empty', 'nm.empty', (['(n_full,)'], {'dtype': 'nm.int32'}), '((n_full,), dtype=nm.int32)\n', (360, 387), True, 'import numpy as nm\n'), ((428, 471), 'numpy.arange', 'nm.arange', (['indices.shape[0]'], {'dtype': 'nm.int32'}), '(indices.shape[0], dtype=nm.int32)\n', (437, 471), True, 'import numpy as nm\n'), ((1061, 1084), 'numpy.asarray', 'nm.asarray', (['old_indices'], {}), '(old_indices)\n', (1071, 1084), True, 'import numpy as nm\n'), ((1103, 1126), 'numpy.asarray', 'nm.asarray', (['new_indices'], {}), '(new_indices)\n', (1113, 1126), True, 'import numpy as nm\n'), ((1633, 1705), 'sfepy.discrete.PolySpace.any_from_args', 'PolySpace.any_from_args', (['""""""', 'field.gel.surface_facet', 'field.approx_order'], {}), "('', field.gel.surface_facet, field.approx_order)\n", (1656, 1705), False, 'from sfepy.discrete import PolySpace\n'), ((1823, 1867), 'numpy.ones', 'nm.ones', (['qp_coors.shape[0]'], {'dtype': 'nm.float64'}), '(qp_coors.shape[0], dtype=nm.float64)\n', (1830, 1867), True, 'import numpy as nm\n'), ((1884, 1935), 'sfepy.discrete.integrals.Integral', 'Integral', (['"""aux"""'], {'coors': 'qp_coors', 'weights': 'qp_weights'}), "('aux', coors=qp_coors, weights=qp_weights)\n", (1892, 1935), False, 'from sfepy.discrete.integrals import Integral\n'), ((1951, 2000), 'numpy.zeros', 'nm.zeros', (['(nodes.shape[0], dim)'], {'dtype': 'nm.float64'}), '((nodes.shape[0], dim), dtype=nm.float64)\n', (1959, 2000), True, 'import numpy as nm\n'), ((2068, 2087), 'numpy.empty_like', 'nm.empty_like', (['mask'], {}), '(mask)\n', (2081, 2087), True, 'import numpy as nm\n'), ((2170, 2211), 'numpy.arange', 'nm.arange', (['nodes.shape[0]'], {'dtype': 'nm.int32'}), '(nodes.shape[0], dtype=nm.int32)\n', (2179, 2211), True, 'import numpy as nm\n'), ((3767, 3797), 'numpy.array', 'nm.array', (['path'], {'dtype': 'nm.int32'}), '(path, dtype=nm.int32)\n', (3775, 3797), True, 'import numpy as nm\n'), ((3962, 3986), 'numpy.unique', 'nm.unique', (['graph.indices'], {}), '(graph.indices)\n', (3971, 3986), True, 'import numpy as nm\n'), ((3997, 4018), 'numpy.diff', 'nm.diff', (['graph.indptr'], {}), '(graph.indptr)\n', (4004, 4018), True, 'import numpy as nm\n'), ((5069, 5088), 'numpy.zeros_like', 'nm.zeros_like', (['imap'], {}), '(imap)\n', (5082, 5088), True, 'import numpy as nm\n'), ((5454, 5503), 'numpy.zeros', 'nm.zeros', (['(nodes.shape[0], dim)'], {'dtype': 'nm.float64'}), '((nodes.shape[0], dim), dtype=nm.float64)\n', (5462, 5503), True, 'import numpy as nm\n'), ((5776, 5818), 'sfepy.linalg.normalize_vectors', 'la.normalize_vectors', (['edge_dirs'], {'eps': '(1e-12)'}), '(edge_dirs, eps=1e-12)\n', (5796, 5818), True, 'import sfepy.linalg as la\n'), ((7421, 7473), 'numpy.empty', 'nm.empty', (['((n_el,) + data.shape[1:])'], {'dtype': 'data.dtype'}), '((n_el,) + data.shape[1:], dtype=data.dtype)\n', (7429, 7473), True, 'import numpy as nm\n'), ((2587, 2610), 'numpy.all', 'nm.all', (['(mask[nodes] > 0)'], {}), '(mask[nodes] > 0)\n', (2593, 2610), True, 'import numpy as nm\n'), ((2700, 2730), 'sfepy.linalg.norm_l2_along_axis', 'la.norm_l2_along_axis', (['normals'], {}), '(normals)\n', (2721, 2730), True, 'import sfepy.linalg as la\n'), ((4119, 4137), 'numpy.where', 'nm.where', (['(npv == 1)'], {}), '(npv == 1)\n', (4127, 4137), True, 'import numpy as nm\n'), ((5340, 5359), 'numpy.all', 'nm.all', (['mask[nodes]'], {}), '(mask[nodes])\n', (5346, 5359), True, 'import numpy as nm\n'), ((5573, 5596), 'numpy.diff', 'nm.diff', (['pcoors'], {'axis': '(0)'}), '(pcoors, axis=0)\n', (5580, 5596), True, 'import numpy as nm\n'), ((5605, 5643), 'sfepy.linalg.normalize_vectors', 'la.normalize_vectors', (['edirs'], {'eps': '(1e-12)'}), '(edirs, eps=1e-12)\n', (5625, 5643), True, 'import sfepy.linalg as la\n'), ((7679, 7695), 'numpy.unique', 'nm.unique', (['cells'], {}), '(cells)\n', (7688, 7695), True, 'import numpy as nm\n'), ((7992, 8012), 'six.moves.range', 'range', (['data.shape[2]'], {}), '(data.shape[2])\n', (7997, 8012), False, 'from six.moves import range\n'), ((9087, 9111), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['filename'], {}), '(filename)\n', (9101, 9111), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((9129, 9154), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['mesh.name', 'mesh'], {}), '(mesh.name, mesh)\n', (9137, 9154), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((9173, 9185), 'six.moves.range', 'range', (['level'], {}), '(level)\n', (9178, 9185), False, 'from six.moves import range\n'), ((4367, 4393), 'numpy.where', 'nm.where', (['(mask[nodes] == 0)'], {}), '(mask[nodes] == 0)\n', (4375, 4393), True, 'import numpy as nm\n'), ((7394, 7407), 'numpy.amin', 'nm.amin', (['data'], {}), '(data)\n', (7401, 7407), True, 'import numpy as nm\n'), ((8029, 8047), 'numpy.isrealobj', 'nm.isrealobj', (['data'], {}), '(data)\n', (8041, 8047), True, 'import numpy as nm\n'), ((9199, 9226), 'sfepy.base.base.output', 'output', (["('refine %d...' % ii)"], {}), "('refine %d...' % ii)\n", (9205, 9226), False, 'from sfepy.base.base import output\n'), ((9276, 9352), 'sfepy.base.base.output', 'output', (["('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el))"], {}), "('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el))\n", (9282, 9352), False, 'from sfepy.base.base import output\n'), ((9390, 9416), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (9406, 9416), False, 'import os\n'), ((7338, 7350), 'numpy.abs', 'nm.abs', (['data'], {}), '(data)\n', (7344, 7350), True, 'import numpy as nm\n'), ((7893, 7927), 'numpy.bincount', 'nm.bincount', (['cells'], {'minlength': 'n_el'}), '(cells, minlength=n_el)\n', (7904, 7927), True, 'import numpy as nm\n'), ((701, 721), 'numpy.where', 'nm.where', (['(remap >= 0)'], {}), '(remap >= 0)\n', (709, 721), True, 'import numpy as nm\n'), ((8073, 8134), 'numpy.bincount', 'nm.bincount', (['cells'], {'weights': 'data[:, 0, ic, 0]', 'minlength': 'n_el'}), '(cells, weights=data[:, 0, ic, 0], minlength=n_el)\n', (8084, 8134), True, 'import numpy as nm\n'), ((8223, 8289), 'numpy.bincount', 'nm.bincount', (['cells'], {'weights': 'data[:, 0, ic, 0].real', 'minlength': 'n_el'}), '(cells, weights=data[:, 0, ic, 0].real, minlength=n_el)\n', (8234, 8289), True, 'import numpy as nm\n'), ((8392, 8458), 'numpy.bincount', 'nm.bincount', (['cells'], {'weights': 'data[:, 0, ic, 0].imag', 'minlength': 'n_el'}), '(cells, weights=data[:, 0, ic, 0].imag, minlength=n_el)\n', (8403, 8458), True, 'import numpy as nm\n')]
""" dayong.operations ~~~~~~~~~~~~~~~~~ Data model operations which include retrieval and update commands. """ from typing import Any import tanjun from sqlalchemy.ext.asyncio import AsyncEngine, create_async_engine from sqlmodel import SQLModel, select from sqlmodel.engine.result import ScalarResult from sqlmodel.ext.asyncio.session import AsyncSession from dayong.abc import Database from dayong.core.configs import DayongConfig, DayongDynamicLoader class DatabaseImpl(Database): """Implementaion of a database connection for transacting and interacting with database tables —those that derive from SQLModel. """ _conn: AsyncEngine @staticmethod async def update(instance: Any, update: Any) -> Any: """Overwrite value of class attribute. Args: instance (Any): A Class instance. update (Any): A dictionary containing the attributes to be overwritten. Returns: Any: A class instance with updated attribute values. """ for key, value in update.items(): setattr(instance, key, value) return instance async def connect( self, config: DayongConfig = tanjun.injected(type=DayongConfig) ) -> None: self._conn = create_async_engine( config.database_uri if config.database_uri else DayongDynamicLoader().load().database_uri ) async def create_table(self) -> None: async with self._conn.begin() as conn: await conn.run_sync(SQLModel.metadata.create_all) async def add_row(self, table_model: SQLModel) -> None: async with AsyncSession(self._conn) as session: session.add(table_model) await session.commit() async def remove_row(self, table_model: SQLModel, attribute: str) -> None: model = type(table_model) async with AsyncSession(self._conn) as session: # Temp ignore incompatible type passed to `exec()`. See: # https://github.com/tiangolo/sqlmodel/issues/54 # https://github.com/tiangolo/sqlmodel/pull/58 row: ScalarResult[Any] = await session.exec( select(model).where( getattr(model, attribute) == getattr(table_model, attribute) ) # type: ignore ) await session.delete(row.one()) await session.commit() async def get_row(self, table_model: SQLModel, attribute: str) -> ScalarResult[Any]: model = type(table_model) async with AsyncSession(self._conn) as session: # Temp ignore incompatible type passed to `exec()`. See: # https://github.com/tiangolo/sqlmodel/issues/54 # https://github.com/tiangolo/sqlmodel/pull/58 row: ScalarResult[Any] = await session.exec( select(model).where( getattr(model, attribute) == getattr(table_model, attribute) ) # type: ignore ) return row async def get_all_row(self, table_model: type[SQLModel]) -> ScalarResult[Any]: async with AsyncSession(self._conn) as session: return await session.exec(select(table_model)) # type: ignore async def update_row(self, table_model: SQLModel, attribute: str) -> None: model = type(table_model) table = table_model.__dict__ async with AsyncSession(self._conn) as session: row: ScalarResult[Any] = await session.exec( select(model).where( getattr(model, attribute) == getattr(table_model, attribute) ) # type: ignore ) task = row.one() task = await self.update(task, table) session.add(task) await session.commit() await session.refresh(task)
[ "sqlmodel.ext.asyncio.session.AsyncSession", "sqlmodel.select" ]
[((1190, 1224), 'tanjun.injected', 'tanjun.injected', ([], {'type': 'DayongConfig'}), '(type=DayongConfig)\n', (1205, 1224), False, 'import tanjun\n'), ((1650, 1674), 'sqlmodel.ext.asyncio.session.AsyncSession', 'AsyncSession', (['self._conn'], {}), '(self._conn)\n', (1662, 1674), False, 'from sqlmodel.ext.asyncio.session import AsyncSession\n'), ((1892, 1916), 'sqlmodel.ext.asyncio.session.AsyncSession', 'AsyncSession', (['self._conn'], {}), '(self._conn)\n', (1904, 1916), False, 'from sqlmodel.ext.asyncio.session import AsyncSession\n'), ((2563, 2587), 'sqlmodel.ext.asyncio.session.AsyncSession', 'AsyncSession', (['self._conn'], {}), '(self._conn)\n', (2575, 2587), False, 'from sqlmodel.ext.asyncio.session import AsyncSession\n'), ((3134, 3158), 'sqlmodel.ext.asyncio.session.AsyncSession', 'AsyncSession', (['self._conn'], {}), '(self._conn)\n', (3146, 3158), False, 'from sqlmodel.ext.asyncio.session import AsyncSession\n'), ((3417, 3441), 'sqlmodel.ext.asyncio.session.AsyncSession', 'AsyncSession', (['self._conn'], {}), '(self._conn)\n', (3429, 3441), False, 'from sqlmodel.ext.asyncio.session import AsyncSession\n'), ((3209, 3228), 'sqlmodel.select', 'select', (['table_model'], {}), '(table_model)\n', (3215, 3228), False, 'from sqlmodel import SQLModel, select\n'), ((1366, 1387), 'dayong.core.configs.DayongDynamicLoader', 'DayongDynamicLoader', ([], {}), '()\n', (1385, 1387), False, 'from dayong.core.configs import DayongConfig, DayongDynamicLoader\n'), ((2191, 2204), 'sqlmodel.select', 'select', (['model'], {}), '(model)\n', (2197, 2204), False, 'from sqlmodel import SQLModel, select\n'), ((2862, 2875), 'sqlmodel.select', 'select', (['model'], {}), '(model)\n', (2868, 2875), False, 'from sqlmodel import SQLModel, select\n'), ((3527, 3540), 'sqlmodel.select', 'select', (['model'], {}), '(model)\n', (3533, 3540), False, 'from sqlmodel import SQLModel, select\n')]
from typing import TYPE_CHECKING, List, Optional from uuid import UUID from sqlalchemy import event from sqlalchemy.ext.orderinglist import ordering_list from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint from sqlmodel import Field, Relationship from sqlmodel.sql.sqltypes import GUID from joj.horse.models.base import DomainURLORMModel, url_pre_save from joj.horse.models.link_tables import ProblemProblemSetLink from joj.horse.schemas.base import Operation from joj.horse.schemas.problem_set import ProblemSetDetail from joj.horse.utils.errors import BizError, ErrorCode if TYPE_CHECKING: from joj.horse.models import Domain, Problem, Record, User class ProblemSet(DomainURLORMModel, ProblemSetDetail, table=True): # type: ignore[call-arg] __tablename__ = "problem_sets" __table_args__ = (UniqueConstraint("domain_id", "url"),) domain_id: UUID = Field( sa_column=Column( GUID, ForeignKey("domains.id", ondelete="CASCADE"), nullable=False ) ) domain: "Domain" = Relationship(back_populates="problem_sets") owner_id: Optional[UUID] = Field( sa_column=Column( GUID, ForeignKey("users.id", ondelete="SET NULL"), nullable=True, ) ) owner: Optional["User"] = Relationship(back_populates="owned_problem_sets") # problems_link: List["Problem"] = Relationship( # back_populates="problem_problem_set_links", # # link_model=ProblemProblemSetLink, # sa_relationship_kwargs={ # "secondary": ProblemProblemSetLink, # "order_by": "ProblemProblemSetLink.position", # "collection_class": ordering_list("position"), # }, # ) # maintain the order of many to many relationship problem_problem_set_links: List[ProblemProblemSetLink] = Relationship( back_populates="problem_set", sa_relationship_kwargs={ "order_by": "ProblemProblemSetLink.position", "collection_class": ordering_list("position"), }, ) problems: List["Problem"] = Relationship( back_populates="problem_sets", link_model=ProblemProblemSetLink, sa_relationship_kwargs={ "order_by": "ProblemProblemSetLink.position", }, ) records: List["Record"] = Relationship(back_populates="problem_set") async def operate_problem( self, problem: "Problem", operation: Operation, position: Optional[int] = None ) -> None: assert problem.domain_id == self.domain_id link = await ProblemProblemSetLink.get_or_none( problem_set_id=self.id, problem_id=problem.id ) if operation == Operation.Create: if link is not None: raise BizError(ErrorCode.IntegrityError, "problem already added") link = ProblemProblemSetLink(problem_set_id=self.id, problem_id=problem.id) else: if link is None: raise BizError(ErrorCode.IntegrityError, "problem not added") if operation == Operation.Read: return if operation in (Operation.Update, Operation.Delete): self.problem_problem_set_links.remove(link) if operation in (Operation.Create, Operation.Update): if position is None: self.problem_problem_set_links.append(link) else: self.problem_problem_set_links.insert(position, link) if operation == Operation.Delete: await link.delete_model(commit=False) await self.save_model() event.listen(ProblemSet, "before_insert", url_pre_save) event.listen(ProblemSet, "before_update", url_pre_save)
[ "sqlmodel.Relationship" ]
[((3592, 3647), 'sqlalchemy.event.listen', 'event.listen', (['ProblemSet', '"""before_insert"""', 'url_pre_save'], {}), "(ProblemSet, 'before_insert', url_pre_save)\n", (3604, 3647), False, 'from sqlalchemy import event\n'), ((3648, 3703), 'sqlalchemy.event.listen', 'event.listen', (['ProblemSet', '"""before_update"""', 'url_pre_save'], {}), "(ProblemSet, 'before_update', url_pre_save)\n", (3660, 3703), False, 'from sqlalchemy import event\n'), ((1038, 1081), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problem_sets"""'}), "(back_populates='problem_sets')\n", (1050, 1081), False, 'from sqlmodel import Field, Relationship\n'), ((1295, 1344), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""owned_problem_sets"""'}), "(back_populates='owned_problem_sets')\n", (1307, 1344), False, 'from sqlmodel import Field, Relationship\n'), ((2094, 2251), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problem_sets"""', 'link_model': 'ProblemProblemSetLink', 'sa_relationship_kwargs': "{'order_by': 'ProblemProblemSetLink.position'}"}), "(back_populates='problem_sets', link_model=\n ProblemProblemSetLink, sa_relationship_kwargs={'order_by':\n 'ProblemProblemSetLink.position'})\n", (2106, 2251), False, 'from sqlmodel import Field, Relationship\n'), ((2327, 2369), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problem_set"""'}), "(back_populates='problem_set')\n", (2339, 2369), False, 'from sqlmodel import Field, Relationship\n'), ((825, 861), 'sqlalchemy.schema.UniqueConstraint', 'UniqueConstraint', (['"""domain_id"""', '"""url"""'], {}), "('domain_id', 'url')\n", (841, 861), False, 'from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint\n'), ((2576, 2661), 'joj.horse.models.link_tables.ProblemProblemSetLink.get_or_none', 'ProblemProblemSetLink.get_or_none', ([], {'problem_set_id': 'self.id', 'problem_id': 'problem.id'}), '(problem_set_id=self.id, problem_id=problem.id\n )\n', (2609, 2661), False, 'from joj.horse.models.link_tables import ProblemProblemSetLink\n'), ((2855, 2923), 'joj.horse.models.link_tables.ProblemProblemSetLink', 'ProblemProblemSetLink', ([], {'problem_set_id': 'self.id', 'problem_id': 'problem.id'}), '(problem_set_id=self.id, problem_id=problem.id)\n', (2876, 2923), False, 'from joj.horse.models.link_tables import ProblemProblemSetLink\n'), ((938, 982), 'sqlalchemy.schema.ForeignKey', 'ForeignKey', (['"""domains.id"""'], {'ondelete': '"""CASCADE"""'}), "('domains.id', ondelete='CASCADE')\n", (948, 982), False, 'from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint\n'), ((1177, 1220), 'sqlalchemy.schema.ForeignKey', 'ForeignKey', (['"""users.id"""'], {'ondelete': '"""SET NULL"""'}), "('users.id', ondelete='SET NULL')\n", (1187, 1220), False, 'from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint\n'), ((2017, 2042), 'sqlalchemy.ext.orderinglist.ordering_list', 'ordering_list', (['"""position"""'], {}), "('position')\n", (2030, 2042), False, 'from sqlalchemy.ext.orderinglist import ordering_list\n'), ((2776, 2835), 'joj.horse.utils.errors.BizError', 'BizError', (['ErrorCode.IntegrityError', '"""problem already added"""'], {}), "(ErrorCode.IntegrityError, 'problem already added')\n", (2784, 2835), False, 'from joj.horse.utils.errors import BizError, ErrorCode\n'), ((2989, 3044), 'joj.horse.utils.errors.BizError', 'BizError', (['ErrorCode.IntegrityError', '"""problem not added"""'], {}), "(ErrorCode.IntegrityError, 'problem not added')\n", (2997, 3044), False, 'from joj.horse.utils.errors import BizError, ErrorCode\n')]
"""Criação dos bancos de dados""" from sqlmodel import SQLModel from mitmirror.infra.entities import * from .database_config import engine def create_db(): """Criando bancos de dados""" base = SQLModel.metadata.create_all(engine) return base
[ "sqlmodel.SQLModel.metadata.create_all" ]
[((204, 240), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (232, 240), False, 'from sqlmodel import SQLModel\n')]
#!/usr/bin/env python # -*-coding=utf-8-*- from megengine.logger import get_logger logger = get_logger(__name__) try: from tensorboardX import SummaryWriter from tensorboardX.proto.attr_value_pb2 import AttrValue from tensorboardX.proto.graph_pb2 import GraphDef from tensorboardX.proto.node_def_pb2 import NodeDef from tensorboardX.proto.plugin_text_pb2 import TextPluginData from tensorboardX.proto.step_stats_pb2 import ( DeviceStepStats, RunMetadata, StepStats, ) from tensorboardX.proto.summary_pb2 import Summary, SummaryMetadata from tensorboardX.proto.tensor_pb2 import TensorProto from tensorboardX.proto.tensor_shape_pb2 import TensorShapeProto from tensorboardX.proto.versions_pb2 import VersionDef except ImportError: logger.error( "TensorBoard and TensorboardX are required for visualize.", exc_info=True, ) def tensor_shape_proto(shape): """Creates an object matching https://github.com/tensorflow/tensorboard/blob/master/tensorboard/compat/proto/tensor_shape.proto """ return TensorShapeProto(dim=[TensorShapeProto.Dim(size=d) for d in shape]) def attr_value_proto(shape, dtype, attr): """Creates a dict of objects matching https://github.com/tensorflow/tensorboard/blob/master/tensorboard/compat/proto/attr_value.proto specifically designed for a NodeDef. The values have been reverse engineered from standard TensorBoard logged data. """ attr_proto = {} if shape is not None: shapeproto = tensor_shape_proto(shape) attr_proto["_output_shapes"] = AttrValue( list=AttrValue.ListValue(shape=[shapeproto]) ) if dtype is not None: attr_proto["dtype"] = AttrValue(s=dtype.encode(encoding="utf-8")) if attr is not None: for key in attr.keys(): attr_proto[key] = AttrValue(s=attr[key].encode(encoding="utf-8")) return attr_proto def node_proto( name, op="UnSpecified", input=None, outputshape=None, dtype=None, attributes={} ): """Creates an object matching https://github.com/tensorflow/tensorboard/blob/master/tensorboard/compat/proto/node_def.proto """ if input is None: input = [] if not isinstance(input, list): input = [input] return NodeDef( name=name.encode(encoding="utf_8"), op=op, input=input, attr=attr_value_proto(outputshape, dtype, attributes), ) def node( name, op="UnSpecified", input=None, outputshape=None, dtype=None, attributes={} ): return node_proto(name, op, input, outputshape, dtype, attributes) def graph(node_list): graph_def = GraphDef(node=node_list, versions=VersionDef(producer=22)) stepstats = RunMetadata( step_stats=StepStats(dev_stats=[DeviceStepStats(device="/device:CPU:0")]) ) return graph_def, stepstats def text(tag, text): plugin_data = SummaryMetadata.PluginData( plugin_name="text", content=TextPluginData(version=0).SerializeToString() ) smd = SummaryMetadata(plugin_data=plugin_data) string_val = [] for item in text: string_val.append(item.encode(encoding="utf_8")) tensor = TensorProto( dtype="DT_STRING", string_val=string_val, tensor_shape=TensorShapeProto(dim=[TensorShapeProto.Dim(size=len(text))]), ) return Summary(value=[Summary.Value(tag=tag, metadata=smd, tensor=tensor)]) class NodeRaw: def __init__(self, name, op, input, outputshape, dtype, attributes): self.name = name self.op = op self.input = input self.outputshape = outputshape self.dtype = dtype self.attributes = attributes class SummaryWriterExtend(SummaryWriter): def __init__( self, logdir=None, comment="", purge_step=None, max_queue=10, flush_secs=120, filename_suffix="", write_to_disk=True, log_dir=None, **kwargs ): self.node_raw_dict = {} super().__init__( logdir, comment, purge_step, max_queue, flush_secs, filename_suffix, write_to_disk, log_dir, **kwargs, ) def add_text(self, tag, text_string_list, global_step=None, walltime=None): """Add text data to summary. Args: tag (string): Data identifier text_string_list (string list): String to save global_step (int): Global step value to record walltime (float): Optional override default walltime (time.time()) seconds after epoch of event Examples:: # text can be divided into three levels by tag and global_step from writer import SummaryWriterExtend writer = SummaryWriterExtend() writer.add_text('level1.0/level2.0', ['text0'], 0) writer.add_text('level1.0/level2.0', ['text1'], 1) writer.add_text('level1.0/level2.1', ['text2']) writer.add_text('level1.1', ['text3']) """ self._get_file_writer().add_summary( text(tag, text_string_list), global_step, walltime ) def add_node_raw( self, name, op="UnSpecified", input=[], outputshape=None, dtype=None, attributes={}, ): """Add node raw datas that can help build graph.After add all nodes, call add_graph_by_node_raw_list() to build graph and add graph data to summary. Args: name (string): opr name. op (string): opr class name. input (string list): input opr name. outputshape (list): output shape. dtype (string): output data dtype. attributes (dict): attributes info. Examples:: from writer import SummaryWriterExtend writer = SummaryWriterExtend() writer.add_node_raw('node1', 'opr1', outputshape=[6, 2, 3], dtype="float32", attributes={ "peak_size": "12MB", "mmory_alloc": "2MB, percent: 16.7%"}) writer.add_node_raw('node2', 'opr2', outputshape=[6, 2, 3], dtype="float32", input="node1", attributes={ "peak_size": "12MB", "mmory_alloc": "2MB, percent: 16.7%"}) writer.add_graph_by_node_raw_list() """ # self.node_raw_list.append( # node(name, op, input, outputshape, dtype, attributes)) self.node_raw_dict[name] = NodeRaw( name, op, input, outputshape, dtype, dict(attributes) ) def add_node_raw_name_suffix(self, name, suffix): """Give node name suffix in order to finding this node by 'search nodes' Args: name (string): opr name. suffix (string): nam suffix. """ old_name = self.node_raw_dict[name].name new_name = old_name + suffix # self.node_raw_dict[new_name] = self.node_raw_dict.pop(name) self.node_raw_dict[name].name = new_name for node_name, node in self.node_raw_dict.items(): node.input = [new_name if x == old_name else x for x in node.input] def add_node_raw_attributes(self, name, attributes): """ Args: name (string): opr name. attributes (dict): attributes info that need to be added. """ for key, value in attributes.items(): self.node_raw_dict[name].attributes[key] = value def add_graph_by_node_raw_list(self): """Build graph and add graph data to summary.""" node_raw_list = [] for key, value in self.node_raw_dict.items(): node_raw_list.append( node( value.name, value.op, value.input, value.outputshape, value.dtype, value.attributes, ) ) self._get_file_writer().add_graph(graph(node_raw_list))
[ "megengine.logger.get_logger" ]
[((94, 114), 'megengine.logger.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (104, 114), False, 'from megengine.logger import get_logger\n'), ((3050, 3090), 'tensorboardX.proto.summary_pb2.SummaryMetadata', 'SummaryMetadata', ([], {'plugin_data': 'plugin_data'}), '(plugin_data=plugin_data)\n', (3065, 3090), False, 'from tensorboardX.proto.summary_pb2 import Summary, SummaryMetadata\n'), ((2709, 2732), 'tensorboardX.proto.versions_pb2.VersionDef', 'VersionDef', ([], {'producer': '(22)'}), '(producer=22)\n', (2719, 2732), False, 'from tensorboardX.proto.versions_pb2 import VersionDef\n'), ((1118, 1146), 'tensorboardX.proto.tensor_shape_pb2.TensorShapeProto.Dim', 'TensorShapeProto.Dim', ([], {'size': 'd'}), '(size=d)\n', (1138, 1146), False, 'from tensorboardX.proto.tensor_shape_pb2 import TensorShapeProto\n'), ((1642, 1681), 'tensorboardX.proto.attr_value_pb2.AttrValue.ListValue', 'AttrValue.ListValue', ([], {'shape': '[shapeproto]'}), '(shape=[shapeproto])\n', (1661, 1681), False, 'from tensorboardX.proto.attr_value_pb2 import AttrValue\n'), ((3390, 3441), 'tensorboardX.proto.summary_pb2.Summary.Value', 'Summary.Value', ([], {'tag': 'tag', 'metadata': 'smd', 'tensor': 'tensor'}), '(tag=tag, metadata=smd, tensor=tensor)\n', (3403, 3441), False, 'from tensorboardX.proto.summary_pb2 import Summary, SummaryMetadata\n'), ((2988, 3013), 'tensorboardX.proto.plugin_text_pb2.TextPluginData', 'TextPluginData', ([], {'version': '(0)'}), '(version=0)\n', (3002, 3013), False, 'from tensorboardX.proto.plugin_text_pb2 import TextPluginData\n'), ((2803, 2842), 'tensorboardX.proto.step_stats_pb2.DeviceStepStats', 'DeviceStepStats', ([], {'device': '"""/device:CPU:0"""'}), "(device='/device:CPU:0')\n", (2818, 2842), False, 'from tensorboardX.proto.step_stats_pb2 import DeviceStepStats, RunMetadata, StepStats\n')]
from sqlite3.dbapi2 import Timestamp, adapt from typing import Optional from sqlmodel import Field, SQLModel from pydantic import validator from datetime import datetime, date class Rate(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) user_id: int = Field(foreign_key="user.id") client_id: int = Field(foreign_key="client.id") valid_from: date valid_to: date amount: float # currency: EUR created_at: datetime updated_at: datetime is_active: bool
[ "sqlmodel.Field" ]
[((236, 273), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (241, 273), False, 'from sqlmodel import Field, SQLModel\n'), ((293, 321), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""user.id"""'}), "(foreign_key='user.id')\n", (298, 321), False, 'from sqlmodel import Field, SQLModel\n'), ((343, 373), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""client.id"""'}), "(foreign_key='client.id')\n", (348, 373), False, 'from sqlmodel import Field, SQLModel\n')]
# -*- coding: utf-8 -*- from typing import List from database import engine from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from models import Device, Project, Task, TaskWithProject from sqlmodel import Session, SQLModel, select # init fastapi app: FastAPI = FastAPI() # init CORS app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_methods=["*"]) # mount api endpoint api: FastAPI = FastAPI(title="Scitizen") app.mount("/api", api) @app.on_event("startup") def on_startup() -> None: """Setup event on app. It is used to create the database and the tables. """ SQLModel.metadata.create_all(engine) @api.post("/devices/{device_uuid}", response_model=Device) def upsert_device(device_uuid: str, device: Device) -> Device: """Upsert a device. It is used to create a device in the database if it does not already exists, else it is used to update the existing one. Args: device_uuid: The uuid of the device to upsert. device: The device data. Returns: The upserted device. """ with Session(engine) as session: # check if the device exists statement = select(Device).where(Device.uuid == device_uuid) result = session.exec(statement).first() # if not, create it if result is None: result = device # sync the data for key, value in device.dict(exclude_unset=True).items(): setattr(result, key, value) # persist the data to the database session.add(result) session.commit() session.refresh(result) return result @api.get("/devices/{device_uuid}", response_model=Device) def select_device(device_uuid: str): """Select a device. It is used to get a device data from the database. Args: device_uuid: The uuid of the device to get the data from. Returns: The device data. """ with Session(engine) as session: statement = select(Device).where(Device.uuid == device_uuid) result = session.exec(statement).first() return result @api.get("/devices", response_model=List[Device]) def select_devices(): """Select all devices. It is used to get all devices data from the database. Returns: All devices data. """ with Session(engine) as session: statement = select(Device) results = session.exec(statement).all() return results @api.post("/projects/{project_uuid}", response_model=Project) def upsert_project(project_uuid: str, project: Project) -> Project: """Upsert a project. It is used to create a project in the database if it does not already exists, else it is used to update the existing one. Args: project_uuid: The uuid of the project to upsert. project: The project data. Returns: The upserted project. """ with Session(engine) as session: # check if the project exists statement = select(Project).where(Project.uuid == project_uuid) result = session.exec(statement).first() # if not, create it if result is None: result = project # sync the data for key, value in project.dict(exclude_unset=True).items(): setattr(result, key, value) # persist the data to the database session.add(result) session.commit() session.refresh(result) return result @api.get("/projects/{project_uuid}", response_model=Project) def select_project(project_uuid: str): """Select a project. It is used to get a project data from the database. Args: project_uuid: The uuid of the project to get the data from. Returns: The project data. """ with Session(engine) as session: statement = select(Project).where(Project.uuid == project_uuid) result = session.exec(statement).first() return result @api.get("/projects", response_model=List[Project]) def select_projects(): """Select all projects. It is used to get all projects data from the database. Returns: All projects data. """ with Session(engine) as session: statement = select(Project) results = session.exec(statement).all() return results @api.post("/tasks/{task_uuid}", response_model=Task) def upsert_task(task_uuid: str, task: Task) -> Task: """Upsert a task. It is used to create a task in the database if it does not already exists, else it is used to update the existing one. Args: task_uuid: The uuid of the task to upsert. task: The task data. Returns: The upserted task. """ with Session(engine) as session: # check if the task exists statement = select(Task).where(Task.uuid == task_uuid) result = session.exec(statement).first() # if not, create it if result is None: result = task # sync the data for key, value in task.dict(exclude_unset=True).items(): setattr(result, key, value) # persist the data to the database session.add(result) session.commit() session.refresh(result) return result @api.get("/tasks/{task_uuid}", response_model=TaskWithProject) def select_task(task_uuid: str): """Select a task. It is used to get a task data from the database. Args: task_uuid: The uuid of the task to get the data from. Returns: The task data. """ with Session(engine) as session: statement = select(Task, Project).join(Project).where(Task.uuid == task_uuid) task, project = session.exec(statement).first() # type: ignore result = TaskWithProject() for key, value in task.dict().items(): setattr(result, key, value) result.project = project return result @api.get("/tasks", response_model=List[TaskWithProject]) def select_tasks(): """Select all tasks. It is used to get all tasks data from the database. Returns: All tasks data. """ with Session(engine) as session: statement = select(Task, Project).join(Project) results = session.exec(statement).all() tasks = [] for task, project in results: result = TaskWithProject() for key, value in task.dict().items(): setattr(result, key, value) result.project = project tasks.append(result) return tasks @api.put("/tasks/clean") def clean_tasks(): """Clean all tasks. It is used to run maintenance queries on the database in order to keep consistent data on tasks. """ with Session(engine) as session: with open("./data/clean_failed_tasks.sql", "r", encoding="utf-8") as stream: statement = stream.read() session.exec(statement) with open("./data/clean_succeeded_tasks.sql", "r", encoding="utf-8") as stream: statement = stream.read() session.exec(statement) session.commit()
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.select" ]
[((293, 302), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (300, 302), False, 'from fastapi import FastAPI\n'), ((430, 455), 'fastapi.FastAPI', 'FastAPI', ([], {'title': '"""Scitizen"""'}), "(title='Scitizen')\n", (437, 455), False, 'from fastapi import FastAPI\n'), ((627, 663), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (655, 663), False, 'from sqlmodel import Session, SQLModel, select\n'), ((1112, 1127), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1119, 1127), False, 'from sqlmodel import Session, SQLModel, select\n'), ((1978, 1993), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1985, 1993), False, 'from sqlmodel import Session, SQLModel, select\n'), ((2362, 2377), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2369, 2377), False, 'from sqlmodel import Session, SQLModel, select\n'), ((2410, 2424), 'sqlmodel.select', 'select', (['Device'], {}), '(Device)\n', (2416, 2424), False, 'from sqlmodel import Session, SQLModel, select\n'), ((2959, 2974), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2966, 2974), False, 'from sqlmodel import Session, SQLModel, select\n'), ((3841, 3856), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (3848, 3856), False, 'from sqlmodel import Session, SQLModel, select\n'), ((4234, 4249), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (4241, 4249), False, 'from sqlmodel import Session, SQLModel, select\n'), ((4282, 4297), 'sqlmodel.select', 'select', (['Project'], {}), '(Project)\n', (4288, 4297), False, 'from sqlmodel import Session, SQLModel, select\n'), ((4787, 4802), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (4794, 4802), False, 'from sqlmodel import Session, SQLModel, select\n'), ((5632, 5647), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (5639, 5647), False, 'from sqlmodel import Session, SQLModel, select\n'), ((5835, 5852), 'models.TaskWithProject', 'TaskWithProject', ([], {}), '()\n', (5850, 5852), False, 'from models import Device, Project, Task, TaskWithProject\n'), ((6210, 6225), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (6217, 6225), False, 'from sqlmodel import Session, SQLModel, select\n'), ((6818, 6833), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (6825, 6833), False, 'from sqlmodel import Session, SQLModel, select\n'), ((6420, 6437), 'models.TaskWithProject', 'TaskWithProject', ([], {}), '()\n', (6435, 6437), False, 'from models import Device, Project, Task, TaskWithProject\n'), ((1197, 1211), 'sqlmodel.select', 'select', (['Device'], {}), '(Device)\n', (1203, 1211), False, 'from sqlmodel import Session, SQLModel, select\n'), ((2026, 2040), 'sqlmodel.select', 'select', (['Device'], {}), '(Device)\n', (2032, 2040), False, 'from sqlmodel import Session, SQLModel, select\n'), ((3045, 3060), 'sqlmodel.select', 'select', (['Project'], {}), '(Project)\n', (3051, 3060), False, 'from sqlmodel import Session, SQLModel, select\n'), ((3889, 3904), 'sqlmodel.select', 'select', (['Project'], {}), '(Project)\n', (3895, 3904), False, 'from sqlmodel import Session, SQLModel, select\n'), ((4870, 4882), 'sqlmodel.select', 'select', (['Task'], {}), '(Task)\n', (4876, 4882), False, 'from sqlmodel import Session, SQLModel, select\n'), ((6258, 6279), 'sqlmodel.select', 'select', (['Task', 'Project'], {}), '(Task, Project)\n', (6264, 6279), False, 'from sqlmodel import Session, SQLModel, select\n'), ((5680, 5701), 'sqlmodel.select', 'select', (['Task', 'Project'], {}), '(Task, Project)\n', (5686, 5701), False, 'from sqlmodel import Session, SQLModel, select\n')]
#! /usr/bin/env python3 # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import logging import re from collections import namedtuple import numpy as np from tqdm import tqdm import megengine as mge from megengine.core.tensor.dtype import is_quantize from megengine.logger import _imperative_rt_logger, get_logger, set_mgb_log_level from megengine.utils.module_stats import ( enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats, ) from megengine.utils.network import Network logger = get_logger(__name__) def visualize( model_path: str, log_path: str, input: np.ndarray = None, inp_dict: dict = None, cal_params: bool = True, cal_flops: bool = True, cal_activations: bool = True, logging_to_stdout: bool = True, bar_length_max: int = 20, ): r"""Load megengine dumped model and visualize graph structure with tensorboard log files. Can also record and print model's statistics like :func:`~.module_stats` Args: model_path: dir path for megengine dumped model. log_path: dir path for tensorboard graph log. input: user defined input data for running model and calculating stats, alternative with inp_dict, used when the model has only one input. inp_dict: input dict for running model and calculating stats, alternative with input, used when the model has more than one input. When both input and inp_dict are None, a random input will be used. cal_params: whether calculate and record params size. cal_flops: whether calculate and record op flops. cal_activations: whether calculate and record op activations. logging_to_stdout: whether print all calculated statistic details. bar_length_max: size of bar indicating max flops or parameter size in net stats. model_path: str: log_path: str: input: np.ndarray: inp_dict: dict: cal_params: bool: cal_flops: bool: cal_activations: bool: logging_to_stdout: bool: bar_length_max: int: """ if log_path: try: from tensorboard.compat.proto.attr_value_pb2 import AttrValue from tensorboard.compat.proto.config_pb2 import RunMetadata from tensorboard.compat.proto.graph_pb2 import GraphDef from tensorboard.compat.proto.node_def_pb2 import NodeDef from tensorboard.compat.proto.step_stats_pb2 import ( AllocatorMemoryUsed, DeviceStepStats, NodeExecStats, StepStats, ) from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto from tensorboard.compat.proto.versions_pb2 import VersionDef from tensorboardX import SummaryWriter except ImportError: logger.error( "TensorBoard and TensorboardX are required for visualize.", exc_info=True, ) return enable_receptive_field() graph = Network.load(model_path) graph.reset_batch_size(1) has_input = False if input is not None or inp_dict is not None: has_input = True repl_dict = {} inp_vars = graph.input_vars if inp_dict is not None: assert len(inp_dict) == len( inp_vars ), "Inputs are not sufficient for calculation." for v in inp_vars: new_input = graph.make_const(inp_dict[v.name], name=v.name) repl_dict[v] = new_input else: assert len(inp_vars) == 1, "The graph needs more than one input." inp_var = inp_vars[0] repl_dict[inp_var] = graph.make_const(input, name=inp_var.name) graph.replace_vars(repl_dict=repl_dict) graph._compile() def process_name(name): # nodes that start with point or contain float const will lead to display bug if not re.match(r"^[+-]?\d*\.\d*", name): name = name.replace(".", "/") return name.encode(encoding="utf-8") summary = [["item", "value"]] node_list = [] flops_list = [] params_list = [] activations_list = [] total_stats = namedtuple( "total_stats", ["param_size", "param_dims", "flops", "act_size", "act_dims"] ) stats_details = namedtuple("module_stats", ["params", "flops", "activations"]) for node in tqdm(graph.all_oprs): if hasattr(node, "output_idx"): node_oup = node.outputs[node.output_idx] else: if len(node.outputs) != 1: logger.warning( "OpNode {} has more than one output and not has 'output_idx' attr.".format( node ) ) node_oup = node.outputs[0] inp_list = [process_name(var.owner.name) for var in node.inputs] if log_path: # detail format see tensorboard/compat/proto/attr_value.proto attr = { "_output_shapes": AttrValue( list=AttrValue.ListValue( shape=[ TensorShapeProto( dim=[ TensorShapeProto.Dim(size=d) for d in node_oup.shape ] ) ] ) ), "params": AttrValue(s=str(node.params).encode(encoding="utf-8")), "dtype": AttrValue(s=str(node_oup.dtype).encode(encoding="utf-8")), } if cal_flops: flops_stats = get_op_stats(node, node.inputs, node.outputs) if flops_stats is not None: # add op flops attr if log_path and hasattr(flops_stats, "flops_num"): attr["flops"] = AttrValue( s=sizeof_fmt(flops_stats["flops"]).encode(encoding="utf-8") ) flops_stats["name"] = node.name flops_stats["class_name"] = node.type flops_list.append(flops_stats) if cal_activations: acts = get_activation_stats(node_oup, has_input=has_input) acts["name"] = node.name acts["class_name"] = node.type activations_list.append(acts) if cal_params: if node.type == "ImmutableTensor": param_stats = get_param_stats(node_oup) # add tensor size attr if log_path: attr["size"] = AttrValue( s=sizeof_fmt(param_stats["size"]).encode(encoding="utf-8") ) param_stats["name"] = node.name params_list.append(param_stats) if log_path: node_list.append( NodeDef( name=process_name(node.name), op=node.type, input=inp_list, attr=attr, ) ) # summary extra_info = { "#ops": len(graph.all_oprs), "#params": len(params_list), } ( total_flops, total_param_dims, total_param_size, total_act_dims, total_act_size, ) = (0, 0, 0, 0, 0) if cal_params: total_param_dims, total_param_size, params_list = sum_param_stats( params_list, bar_length_max ) extra_info["total_param_dims"] = sizeof_fmt(total_param_dims, suffix="") extra_info["total_param_size"] = sizeof_fmt(total_param_size) if logging_to_stdout: print_param_stats(params_list) if cal_flops: total_flops, flops_list = sum_op_stats(flops_list, bar_length_max) extra_info["total_flops"] = sizeof_fmt(total_flops, suffix="OPs") if logging_to_stdout: print_op_stats(flops_list) if cal_activations: total_act_dims, total_act_size, activations_list = sum_activations_stats( activations_list, bar_length_max ) extra_info["total_act_dims"] = sizeof_fmt(total_act_dims, suffix="") extra_info["total_act_size"] = sizeof_fmt(total_act_size) if logging_to_stdout: print_activations_stats(activations_list, has_input=has_input) if cal_flops and cal_params: extra_info["flops/param_size"] = "{:3.3f}".format( total_flops / total_param_size ) if log_path: graph_def = GraphDef(node=node_list, versions=VersionDef(producer=22)) device = "/device:CPU:0" stepstats = RunMetadata( step_stats=StepStats(dev_stats=[DeviceStepStats(device=device)]) ) writer = SummaryWriter(log_path) writer._get_file_writer().add_graph((graph_def, stepstats)) print_summary(**extra_info) return ( total_stats( param_size=total_param_size, param_dims=total_param_dims, flops=total_flops, act_size=total_act_size, act_dims=total_act_dims, ), stats_details( params=params_list, flops=flops_list, activations=activations_list ), ) def main(): parser = argparse.ArgumentParser( description="load a megengine dumped model and export log file for tensorboard visualization.", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("model_path", help="dumped model path.") parser.add_argument("--log_path", help="tensorboard log path.") parser.add_argument( "--load_input_data", help="load input data from pickle file; it should be a numpy array or a dict of numpy array", ) parser.add_argument( "--bar_length_max", type=int, default=20, help="size of bar indicating max flops or parameter size in net stats.", ) parser.add_argument( "--cal_params", action="store_true", help="whether calculate and record params size.", ) parser.add_argument( "--cal_flops", action="store_true", help="whether calculate and record op flops.", ) parser.add_argument( "--cal_activations", action="store_true", help="whether calculate and record op activations.", ) parser.add_argument( "--logging_to_stdout", action="store_true", help="whether print all calculated statistic details.", ) parser.add_argument( "--all", action="store_true", help="whether print all stats. Tensorboard logs will be placed in './log' if not specified.", ) args = parser.parse_args() if args.load_input_data: logger.info("load data from {}".format(args.load_input_data)) data = mge.load(args.load_input_data) if isinstance(data, dict): for v in data.values(): assert isinstance( v, np.ndarray ), "data should provide ndarray; got {} instead".format(v) args.inp_dict = data elif isinstance(data, np.ndarray): args.input = data else: logger.error("input data should be a numpy array or a dict of numpy array") if args.all: args.cal_params = True args.cal_flops = True args.cal_activations = True args.logging_to_stdout = True if not args.log_path: args.log_path = "./log" kwargs = vars(args) kwargs.pop("all") kwargs.pop("load_input_data") visualize(**kwargs) if __name__ == "__main__": main()
[ "megengine.utils.module_stats.sum_op_stats", "megengine.logger.get_logger", "megengine.utils.module_stats.print_param_stats", "megengine.utils.module_stats.sum_param_stats", "megengine.utils.module_stats.get_param_stats", "megengine.utils.module_stats.print_op_stats", "megengine.utils.network.Network.load", "megengine.utils.module_stats.get_op_stats", "megengine.utils.module_stats.sum_activations_stats", "megengine.utils.module_stats.sizeof_fmt", "megengine.utils.module_stats.get_activation_stats", "megengine.utils.module_stats.print_summary", "megengine.load", "megengine.utils.module_stats.print_activations_stats", "megengine.utils.module_stats.enable_receptive_field" ]
[((1019, 1039), 'megengine.logger.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (1029, 1039), False, 'from megengine.logger import _imperative_rt_logger, get_logger, set_mgb_log_level\n'), ((3458, 3482), 'megengine.utils.module_stats.enable_receptive_field', 'enable_receptive_field', ([], {}), '()\n', (3480, 3482), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((3496, 3520), 'megengine.utils.network.Network.load', 'Network.load', (['model_path'], {}), '(model_path)\n', (3508, 3520), False, 'from megengine.utils.network import Network\n'), ((4678, 4770), 'collections.namedtuple', 'namedtuple', (['"""total_stats"""', "['param_size', 'param_dims', 'flops', 'act_size', 'act_dims']"], {}), "('total_stats', ['param_size', 'param_dims', 'flops', 'act_size',\n 'act_dims'])\n", (4688, 4770), False, 'from collections import namedtuple\n'), ((4801, 4863), 'collections.namedtuple', 'namedtuple', (['"""module_stats"""', "['params', 'flops', 'activations']"], {}), "('module_stats', ['params', 'flops', 'activations'])\n", (4811, 4863), False, 'from collections import namedtuple\n'), ((4881, 4901), 'tqdm.tqdm', 'tqdm', (['graph.all_oprs'], {}), '(graph.all_oprs)\n', (4885, 4901), False, 'from tqdm import tqdm\n'), ((9338, 9365), 'megengine.utils.module_stats.print_summary', 'print_summary', ([], {}), '(**extra_info)\n', (9351, 9365), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((9745, 9930), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""load a megengine dumped model and export log file for tensorboard visualization."""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(description=\n 'load a megengine dumped model and export log file for tensorboard visualization.'\n , formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n", (9768, 9930), False, 'import argparse\n'), ((7889, 7933), 'megengine.utils.module_stats.sum_param_stats', 'sum_param_stats', (['params_list', 'bar_length_max'], {}), '(params_list, bar_length_max)\n', (7904, 7933), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((7997, 8036), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['total_param_dims'], {'suffix': '""""""'}), "(total_param_dims, suffix='')\n", (8007, 8036), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8078, 8106), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['total_param_size'], {}), '(total_param_size)\n', (8088, 8106), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8233, 8273), 'megengine.utils.module_stats.sum_op_stats', 'sum_op_stats', (['flops_list', 'bar_length_max'], {}), '(flops_list, bar_length_max)\n', (8245, 8273), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8310, 8347), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['total_flops'], {'suffix': '"""OPs"""'}), "(total_flops, suffix='OPs')\n", (8320, 8347), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8501, 8556), 'megengine.utils.module_stats.sum_activations_stats', 'sum_activations_stats', (['activations_list', 'bar_length_max'], {}), '(activations_list, bar_length_max)\n', (8522, 8556), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8618, 8655), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['total_act_dims'], {'suffix': '""""""'}), "(total_act_dims, suffix='')\n", (8628, 8655), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8695, 8721), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['total_act_size'], {}), '(total_act_size)\n', (8705, 8721), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((9241, 9264), 'tensorboardX.SummaryWriter', 'SummaryWriter', (['log_path'], {}), '(log_path)\n', (9254, 9264), False, 'from tensorboardX import SummaryWriter\n'), ((11326, 11356), 'megengine.load', 'mge.load', (['args.load_input_data'], {}), '(args.load_input_data)\n', (11334, 11356), True, 'import megengine as mge\n'), ((4417, 4452), 're.match', 're.match', (['"""^[+-]?\\\\d*\\\\.\\\\d*"""', 'name'], {}), "('^[+-]?\\\\d*\\\\.\\\\d*', name)\n", (4425, 4452), False, 'import re\n'), ((6131, 6176), 'megengine.utils.module_stats.get_op_stats', 'get_op_stats', (['node', 'node.inputs', 'node.outputs'], {}), '(node, node.inputs, node.outputs)\n', (6143, 6176), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((6670, 6721), 'megengine.utils.module_stats.get_activation_stats', 'get_activation_stats', (['node_oup'], {'has_input': 'has_input'}), '(node_oup, has_input=has_input)\n', (6690, 6721), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8149, 8179), 'megengine.utils.module_stats.print_param_stats', 'print_param_stats', (['params_list'], {}), '(params_list)\n', (8166, 8179), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8390, 8416), 'megengine.utils.module_stats.print_op_stats', 'print_op_stats', (['flops_list'], {}), '(flops_list)\n', (8404, 8416), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8764, 8826), 'megengine.utils.module_stats.print_activations_stats', 'print_activations_stats', (['activations_list'], {'has_input': 'has_input'}), '(activations_list, has_input=has_input)\n', (8787, 8826), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((6945, 6970), 'megengine.utils.module_stats.get_param_stats', 'get_param_stats', (['node_oup'], {}), '(node_oup)\n', (6960, 6970), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((9045, 9068), 'tensorboard.compat.proto.versions_pb2.VersionDef', 'VersionDef', ([], {'producer': '(22)'}), '(producer=22)\n', (9055, 9068), False, 'from tensorboard.compat.proto.versions_pb2 import VersionDef\n'), ((9181, 9211), 'tensorboard.compat.proto.step_stats_pb2.DeviceStepStats', 'DeviceStepStats', ([], {'device': 'device'}), '(device=device)\n', (9196, 9211), False, 'from tensorboard.compat.proto.step_stats_pb2 import AllocatorMemoryUsed, DeviceStepStats, NodeExecStats, StepStats\n'), ((6393, 6425), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (["flops_stats['flops']"], {}), "(flops_stats['flops'])\n", (6403, 6425), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((7111, 7142), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (["param_stats['size']"], {}), "(param_stats['size'])\n", (7121, 7142), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((5718, 5746), 'tensorboard.compat.proto.tensor_shape_pb2.TensorShapeProto.Dim', 'TensorShapeProto.Dim', ([], {'size': 'd'}), '(size=d)\n', (5738, 5746), False, 'from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto\n')]
""" Global interpolation functions. """ import time import numpy as nm from sfepy.base.base import output, get_default_attr from sfepy.discrete.fem.mesh import make_inverse_connectivity from sfepy.discrete.fem.extmods.bases import find_ref_coors def get_ref_coors(field, coors, strategy='kdtree', close_limit=0.1, cache=None, verbose=True): """ Get reference element coordinates and elements corresponding to given physical coordinates. Parameters ---------- field : Field instance The field defining the approximation. coors : array The physical coordinates. strategy : str, optional The strategy for finding the elements that contain the coordinates. Only 'kdtree' is supported for the moment. close_limit : float, optional The maximum limit distance of a point from the closest element allowed for extrapolation. cache : Struct, optional To speed up a sequence of evaluations, the field mesh, the inverse connectivity of the field mesh and the KDTree instance can be cached as `cache.mesh`, `cache.offsets`, `cache.iconn` and `cache.kdtree`. Optionally, the cache can also contain the reference element coordinates as `cache.ref_coors`, `cache.cells` and `cache.status`, if the evaluation occurs in the same coordinates repeatedly. In that case the KDTree related data are ignored. verbose : bool If False, reduce verbosity. Returns ------- ref_coors : array The reference coordinates. cells : array The cell indices corresponding to the reference coordinates. status : array The status: 0 is success, 1 is extrapolation within `close_limit`, 2 is extrapolation outside `close_limit`, 3 is failure. """ ref_coors = get_default_attr(cache, 'ref_coors', None) if ref_coors is None: mesh = get_default_attr(cache, 'mesh', None) if mesh is None: mesh = field.create_mesh(extra_nodes=False) scoors = mesh.coors output('reference field: %d vertices' % scoors.shape[0], verbose=verbose) iconn = get_default_attr(cache, 'iconn', None) if iconn is None: offsets, iconn = make_inverse_connectivity(mesh.conns, mesh.n_nod, ret_offsets=True) ii = nm.where(offsets[1:] == offsets[:-1])[0] if len(ii): raise ValueError('some vertices not in any element! (%s)' % ii) else: offsets = cache.offsets if strategy == 'kdtree': kdtree = get_default_attr(cache, 'kdtree', None) if kdtree is None: from scipy.spatial import cKDTree as KDTree tt = time.clock() kdtree = KDTree(scoors) output('kdtree: %f s' % (time.clock()-tt), verbose=verbose) tt = time.clock() ics = kdtree.query(coors)[1] output('kdtree query: %f s' % (time.clock()-tt), verbose=verbose) tt = time.clock() ics = nm.asarray(ics, dtype=nm.int32) vertex_coorss, nodess, mtx_is = [], [], [] conns = [] for ig, ap in field.aps.iteritems(): ps = ap.interp.gel.interp.poly_spaces['v'] vertex_coorss.append(ps.geometry.coors) nodess.append(ps.nodes) mtx_is.append(ps.get_mtx_i()) conns.append(mesh.conns[ig].copy()) # Get reference element coordinates corresponding to # destination coordinates. ref_coors = nm.empty_like(coors) cells = nm.empty((coors.shape[0], 2), dtype=nm.int32) status = nm.empty((coors.shape[0],), dtype=nm.int32) find_ref_coors(ref_coors, cells, status, coors, ics, offsets, iconn, scoors, conns, vertex_coorss, nodess, mtx_is, 1, close_limit, 1e-15, 100, 1e-8) output('ref. coordinates: %f s' % (time.clock()-tt), verbose=verbose) elif strategy == 'crawl': raise NotImplementedError else: raise ValueError('unknown search strategy! (%s)' % strategy) else: ref_coors = cache.ref_coors cells = cache.cells status = cache.status return ref_coors, cells, status
[ "sfepy.base.base.output", "sfepy.discrete.fem.extmods.bases.find_ref_coors", "sfepy.base.base.get_default_attr", "sfepy.discrete.fem.mesh.make_inverse_connectivity" ]
[((1856, 1898), 'sfepy.base.base.get_default_attr', 'get_default_attr', (['cache', '"""ref_coors"""', 'None'], {}), "(cache, 'ref_coors', None)\n", (1872, 1898), False, 'from sfepy.base.base import output, get_default_attr\n'), ((1940, 1977), 'sfepy.base.base.get_default_attr', 'get_default_attr', (['cache', '"""mesh"""', 'None'], {}), "(cache, 'mesh', None)\n", (1956, 1977), False, 'from sfepy.base.base import output, get_default_attr\n'), ((2096, 2169), 'sfepy.base.base.output', 'output', (["('reference field: %d vertices' % scoors.shape[0])"], {'verbose': 'verbose'}), "('reference field: %d vertices' % scoors.shape[0], verbose=verbose)\n", (2102, 2169), False, 'from sfepy.base.base import output, get_default_attr\n'), ((2202, 2240), 'sfepy.base.base.get_default_attr', 'get_default_attr', (['cache', '"""iconn"""', 'None'], {}), "(cache, 'iconn', None)\n", (2218, 2240), False, 'from sfepy.base.base import output, get_default_attr\n'), ((2296, 2363), 'sfepy.discrete.fem.mesh.make_inverse_connectivity', 'make_inverse_connectivity', (['mesh.conns', 'mesh.n_nod'], {'ret_offsets': '(True)'}), '(mesh.conns, mesh.n_nod, ret_offsets=True)\n', (2321, 2363), False, 'from sfepy.discrete.fem.mesh import make_inverse_connectivity\n'), ((2776, 2815), 'sfepy.base.base.get_default_attr', 'get_default_attr', (['cache', '"""kdtree"""', 'None'], {}), "(cache, 'kdtree', None)\n", (2792, 2815), False, 'from sfepy.base.base import output, get_default_attr\n'), ((3076, 3088), 'time.clock', 'time.clock', ([], {}), '()\n', (3086, 3088), False, 'import time\n'), ((3226, 3238), 'time.clock', 'time.clock', ([], {}), '()\n', (3236, 3238), False, 'import time\n'), ((3257, 3288), 'numpy.asarray', 'nm.asarray', (['ics'], {'dtype': 'nm.int32'}), '(ics, dtype=nm.int32)\n', (3267, 3288), True, 'import numpy as nm\n'), ((3801, 3821), 'numpy.empty_like', 'nm.empty_like', (['coors'], {}), '(coors)\n', (3814, 3821), True, 'import numpy as nm\n'), ((3842, 3887), 'numpy.empty', 'nm.empty', (['(coors.shape[0], 2)'], {'dtype': 'nm.int32'}), '((coors.shape[0], 2), dtype=nm.int32)\n', (3850, 3887), True, 'import numpy as nm\n'), ((3909, 3952), 'numpy.empty', 'nm.empty', (['(coors.shape[0],)'], {'dtype': 'nm.int32'}), '((coors.shape[0],), dtype=nm.int32)\n', (3917, 3952), True, 'import numpy as nm\n'), ((3966, 4119), 'sfepy.discrete.fem.extmods.bases.find_ref_coors', 'find_ref_coors', (['ref_coors', 'cells', 'status', 'coors', 'ics', 'offsets', 'iconn', 'scoors', 'conns', 'vertex_coorss', 'nodess', 'mtx_is', '(1)', 'close_limit', '(1e-15)', '(100)', '(1e-08)'], {}), '(ref_coors, cells, status, coors, ics, offsets, iconn, scoors,\n conns, vertex_coorss, nodess, mtx_is, 1, close_limit, 1e-15, 100, 1e-08)\n', (3980, 4119), False, 'from sfepy.discrete.fem.extmods.bases import find_ref_coors\n'), ((2492, 2529), 'numpy.where', 'nm.where', (['(offsets[1:] == offsets[:-1])'], {}), '(offsets[1:] == offsets[:-1])\n', (2500, 2529), True, 'import numpy as nm\n'), ((2929, 2941), 'time.clock', 'time.clock', ([], {}), '()\n', (2939, 2941), False, 'import time\n'), ((2967, 2981), 'scipy.spatial.cKDTree', 'KDTree', (['scoors'], {}), '(scoors)\n', (2973, 2981), True, 'from scipy.spatial import cKDTree as KDTree\n'), ((3173, 3185), 'time.clock', 'time.clock', ([], {}), '()\n', (3183, 3185), False, 'import time\n'), ((4258, 4270), 'time.clock', 'time.clock', ([], {}), '()\n', (4268, 4270), False, 'import time\n'), ((3023, 3035), 'time.clock', 'time.clock', ([], {}), '()\n', (3033, 3035), False, 'import time\n')]
from http import HTTPStatus from typing import List from fastapi import APIRouter, Depends, Query, Response from sqlalchemy.ext.asyncio import AsyncSession from sqlalchemy.future import select from sqlmodel import func, select from icon_governance.db import get_session from icon_governance.models.delegations import Delegation router = APIRouter() @router.get("/governance/delegations/{address}") async def get_delegations( response: Response, address: str, skip: int = Query(0), limit: int = Query(100, gt=0, lt=101), session: AsyncSession = Depends(get_session), ) -> List[Delegation]: """Return list of delegations.""" query = ( select(Delegation) .where(Delegation.address == address) .offset(skip) .limit(limit) .order_by(Delegation.value.desc()) ) result = await session.execute(query) delegations = result.scalars().all() # Check if exists if len(delegations) == 0: return Response(status_code=HTTPStatus.NO_CONTENT.value) # Return the count in header query_count = select([func.count(Delegation.address)]).where(Delegation.address == address) result_count = await session.execute(query_count) total_count = str(result_count.scalars().all()[0]) response.headers["x-total-count"] = total_count return delegations @router.get("/governance/votes/{address}") async def get_delegations( address: str, response: Response, skip: int = Query(0), limit: int = Query(100, gt=0, lt=101), session: AsyncSession = Depends(get_session), ) -> List[Delegation]: """Return list of votes.""" query = ( select(Delegation) .where(Delegation.prep_address == address) .offset(skip) .limit(limit) .order_by(Delegation.value.desc()) ) result = await session.execute(query) delegations = result.scalars().all() # Check if exists if len(delegations) == 0: return Response(status_code=HTTPStatus.NO_CONTENT.value) # Return the count in header query_count = select([func.count(Delegation.address)]).where(Delegation.prep_address == address) result_count = await session.execute(query_count) total_count = str(result_count.scalars().all()[0]) response.headers["x-total-count"] = total_count return delegations
[ "sqlmodel.func.count", "sqlmodel.select" ]
[((340, 351), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (349, 351), False, 'from fastapi import APIRouter, Depends, Query, Response\n'), ((488, 496), 'fastapi.Query', 'Query', (['(0)'], {}), '(0)\n', (493, 496), False, 'from fastapi import APIRouter, Depends, Query, Response\n'), ((515, 539), 'fastapi.Query', 'Query', (['(100)'], {'gt': '(0)', 'lt': '(101)'}), '(100, gt=0, lt=101)\n', (520, 539), False, 'from fastapi import APIRouter, Depends, Query, Response\n'), ((569, 589), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (576, 589), False, 'from fastapi import APIRouter, Depends, Query, Response\n'), ((1479, 1487), 'fastapi.Query', 'Query', (['(0)'], {}), '(0)\n', (1484, 1487), False, 'from fastapi import APIRouter, Depends, Query, Response\n'), ((1506, 1530), 'fastapi.Query', 'Query', (['(100)'], {'gt': '(0)', 'lt': '(101)'}), '(100, gt=0, lt=101)\n', (1511, 1530), False, 'from fastapi import APIRouter, Depends, Query, Response\n'), ((1560, 1580), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1567, 1580), False, 'from fastapi import APIRouter, Depends, Query, Response\n'), ((801, 824), 'icon_governance.models.delegations.Delegation.value.desc', 'Delegation.value.desc', ([], {}), '()\n', (822, 824), False, 'from icon_governance.models.delegations import Delegation\n'), ((984, 1033), 'fastapi.Response', 'Response', ([], {'status_code': 'HTTPStatus.NO_CONTENT.value'}), '(status_code=HTTPStatus.NO_CONTENT.value)\n', (992, 1033), False, 'from fastapi import APIRouter, Depends, Query, Response\n'), ((1791, 1814), 'icon_governance.models.delegations.Delegation.value.desc', 'Delegation.value.desc', ([], {}), '()\n', (1812, 1814), False, 'from icon_governance.models.delegations import Delegation\n'), ((1974, 2023), 'fastapi.Response', 'Response', ([], {'status_code': 'HTTPStatus.NO_CONTENT.value'}), '(status_code=HTTPStatus.NO_CONTENT.value)\n', (1982, 2023), False, 'from fastapi import APIRouter, Depends, Query, Response\n'), ((1094, 1124), 'sqlmodel.func.count', 'func.count', (['Delegation.address'], {}), '(Delegation.address)\n', (1104, 1124), False, 'from sqlmodel import func, select\n'), ((2084, 2114), 'sqlmodel.func.count', 'func.count', (['Delegation.address'], {}), '(Delegation.address)\n', (2094, 2114), False, 'from sqlmodel import func, select\n'), ((674, 692), 'sqlmodel.select', 'select', (['Delegation'], {}), '(Delegation)\n', (680, 692), False, 'from sqlmodel import func, select\n'), ((1659, 1677), 'sqlmodel.select', 'select', (['Delegation'], {}), '(Delegation)\n', (1665, 1677), False, 'from sqlmodel import func, select\n')]
#!/usr/bin/env python """ Plot quadrature points for the given geometry and integration order. """ from __future__ import absolute_import, print_function import sys sys.path.append('.') from argparse import ArgumentParser import sfepy.postprocess.plot_quadrature as pq helps = { 'geometry' : 'reference element geometry, one of "2_3", "2_4", "3_4", "3_8"' ' [default: %(default)s]', 'order' : 'quadrature order [default: %(default)s]', 'boundary' : 'plot boundary quadrature points', 'min_radius' : 'min. radius of points corresponding to the min. weight' ' [default: %(default)s]', 'max_radius' : 'max. radius of points corresponding to the max. weight' ' [default: %(default)s]', 'show_colorbar' : 'show colorbar for quadrature weights', 'show_labels' : 'label quadrature points', 'print_qp' : 'print quadrature points and weights', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=helps['geometry']) parser.add_argument('-n', '--order', metavar='order', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-b', '--boundary', action='store_true', dest='boundary', default=False, help=helps['boundary']) parser.add_argument('-r', '--min-radius', metavar='float', type=float, action='store', dest='min_radius', default=10, help=helps['min_radius']) parser.add_argument('-R', '--max-radius', metavar='float', type=float, action='store', dest='max_radius', default=50, help=helps['max_radius']) parser.add_argument('-c', '--show-colorbar', action='store_true', dest='show_colorbar', default=False, help=helps['show_colorbar']) parser.add_argument('-l', '---show-labels', action='store_true', dest='show_labels', default=False, help=helps['show_labels']) parser.add_argument('-p', '--print-qp', action='store_true', dest='print_qp', default=False, help=helps['print_qp']) options = parser.parse_args() aux = pq.plot_quadrature(None, options.geometry, options.order, boundary=options.boundary, min_radius=options.min_radius, max_radius=options.max_radius, show_colorbar=options.show_colorbar, show_labels=options.show_labels) if options.print_qp: ax, coors, weights = aux for ic, coor in enumerate(coors): print(ic, coor, weights[ic]) pq.plt.show() if __name__ == '__main__': main()
[ "sfepy.postprocess.plot_quadrature.plt.show", "sfepy.postprocess.plot_quadrature.plot_quadrature" ]
[((165, 185), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (180, 185), False, 'import sys\n'), ((943, 978), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '__doc__'}), '(description=__doc__)\n', (957, 978), False, 'from argparse import ArgumentParser\n'), ((2550, 2775), 'sfepy.postprocess.plot_quadrature.plot_quadrature', 'pq.plot_quadrature', (['None', 'options.geometry', 'options.order'], {'boundary': 'options.boundary', 'min_radius': 'options.min_radius', 'max_radius': 'options.max_radius', 'show_colorbar': 'options.show_colorbar', 'show_labels': 'options.show_labels'}), '(None, options.geometry, options.order, boundary=options.\n boundary, min_radius=options.min_radius, max_radius=options.max_radius,\n show_colorbar=options.show_colorbar, show_labels=options.show_labels)\n', (2568, 2775), True, 'import sfepy.postprocess.plot_quadrature as pq\n'), ((3059, 3072), 'sfepy.postprocess.plot_quadrature.plt.show', 'pq.plt.show', ([], {}), '()\n', (3070, 3072), True, 'import sfepy.postprocess.plot_quadrature as pq\n')]
import megengine as mge import megengine.module as M import pytest from basecls.models.snet import SNV2Block, SNV2XceptionBlock @pytest.mark.parametrize("w_in", [32, 48]) @pytest.mark.parametrize("w_out", [64]) @pytest.mark.parametrize("w_mid", [32, 24]) @pytest.mark.parametrize("stride", [1, 2]) @pytest.mark.parametrize("kernel", [3, 5]) @pytest.mark.parametrize("se_r", [0.0, 0.25]) @pytest.mark.parametrize("drop_path_prob", [0.0, 0.1]) @pytest.mark.parametrize("norm_name", ["BN"]) @pytest.mark.parametrize("act_name", ["relu"]) def test_block( w_in: int, w_out: int, w_mid: int, *, kernel: int, stride: int, norm_name: str, act_name: str, se_r: float, drop_path_prob: float, ): m = SNV2Block( w_in, w_out, w_mid, kernel=kernel, stride=stride, norm_name=norm_name, act_name=act_name, se_r=se_r, drop_path_prob=drop_path_prob, ) assert isinstance(m, M.Module) m(mge.random.normal(size=(2, w_in * 2 // stride, 8, 8))) @pytest.mark.parametrize("w_in", [32]) @pytest.mark.parametrize("w_out", [64]) @pytest.mark.parametrize("w_mid", [32]) @pytest.mark.parametrize("stride", [1, 2]) @pytest.mark.parametrize("kernel", [7, "x"]) @pytest.mark.parametrize("se_r", [0.25]) @pytest.mark.parametrize("drop_path_prob", [0.1]) @pytest.mark.parametrize("norm_name", ["BN"]) @pytest.mark.parametrize("act_name", ["relu"]) def test_x_block( w_in: int, w_out: int, w_mid: int, *, kernel: int, stride: int, norm_name: str, act_name: str, se_r: float, drop_path_prob: float, ): m = SNV2XceptionBlock( w_in, w_out, w_mid, kernel=kernel, stride=stride, norm_name=norm_name, act_name=act_name, se_r=se_r, drop_path_prob=drop_path_prob, ) assert isinstance(m, M.Module) m(mge.random.normal(size=(2, w_in * 2 // stride, 8, 8)))
[ "megengine.random.normal" ]
[((132, 173), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[32, 48]'], {}), "('w_in', [32, 48])\n", (155, 173), False, 'import pytest\n'), ((175, 213), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_out"""', '[64]'], {}), "('w_out', [64])\n", (198, 213), False, 'import pytest\n'), ((215, 257), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_mid"""', '[32, 24]'], {}), "('w_mid', [32, 24])\n", (238, 257), False, 'import pytest\n'), ((259, 300), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""stride"""', '[1, 2]'], {}), "('stride', [1, 2])\n", (282, 300), False, 'import pytest\n'), ((302, 343), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""kernel"""', '[3, 5]'], {}), "('kernel', [3, 5])\n", (325, 343), False, 'import pytest\n'), ((345, 389), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""se_r"""', '[0.0, 0.25]'], {}), "('se_r', [0.0, 0.25])\n", (368, 389), False, 'import pytest\n'), ((391, 444), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""drop_path_prob"""', '[0.0, 0.1]'], {}), "('drop_path_prob', [0.0, 0.1])\n", (414, 444), False, 'import pytest\n'), ((446, 490), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""norm_name"""', "['BN']"], {}), "('norm_name', ['BN'])\n", (469, 490), False, 'import pytest\n'), ((492, 537), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""act_name"""', "['relu']"], {}), "('act_name', ['relu'])\n", (515, 537), False, 'import pytest\n'), ((1057, 1094), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[32]'], {}), "('w_in', [32])\n", (1080, 1094), False, 'import pytest\n'), ((1096, 1134), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_out"""', '[64]'], {}), "('w_out', [64])\n", (1119, 1134), False, 'import pytest\n'), ((1136, 1174), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_mid"""', '[32]'], {}), "('w_mid', [32])\n", (1159, 1174), False, 'import pytest\n'), ((1176, 1217), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""stride"""', '[1, 2]'], {}), "('stride', [1, 2])\n", (1199, 1217), False, 'import pytest\n'), ((1219, 1262), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""kernel"""', "[7, 'x']"], {}), "('kernel', [7, 'x'])\n", (1242, 1262), False, 'import pytest\n'), ((1264, 1303), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""se_r"""', '[0.25]'], {}), "('se_r', [0.25])\n", (1287, 1303), False, 'import pytest\n'), ((1305, 1353), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""drop_path_prob"""', '[0.1]'], {}), "('drop_path_prob', [0.1])\n", (1328, 1353), False, 'import pytest\n'), ((1355, 1399), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""norm_name"""', "['BN']"], {}), "('norm_name', ['BN'])\n", (1378, 1399), False, 'import pytest\n'), ((1401, 1446), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""act_name"""', "['relu']"], {}), "('act_name', ['relu'])\n", (1424, 1446), False, 'import pytest\n'), ((736, 882), 'basecls.models.snet.SNV2Block', 'SNV2Block', (['w_in', 'w_out', 'w_mid'], {'kernel': 'kernel', 'stride': 'stride', 'norm_name': 'norm_name', 'act_name': 'act_name', 'se_r': 'se_r', 'drop_path_prob': 'drop_path_prob'}), '(w_in, w_out, w_mid, kernel=kernel, stride=stride, norm_name=\n norm_name, act_name=act_name, se_r=se_r, drop_path_prob=drop_path_prob)\n', (745, 882), False, 'from basecls.models.snet import SNV2Block, SNV2XceptionBlock\n'), ((1647, 1805), 'basecls.models.snet.SNV2XceptionBlock', 'SNV2XceptionBlock', (['w_in', 'w_out', 'w_mid'], {'kernel': 'kernel', 'stride': 'stride', 'norm_name': 'norm_name', 'act_name': 'act_name', 'se_r': 'se_r', 'drop_path_prob': 'drop_path_prob'}), '(w_in, w_out, w_mid, kernel=kernel, stride=stride,\n norm_name=norm_name, act_name=act_name, se_r=se_r, drop_path_prob=\n drop_path_prob)\n', (1664, 1805), False, 'from basecls.models.snet import SNV2Block, SNV2XceptionBlock\n'), ((999, 1052), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, w_in * 2 // stride, 8, 8)'}), '(size=(2, w_in * 2 // stride, 8, 8))\n', (1016, 1052), True, 'import megengine as mge\n'), ((1918, 1971), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, w_in * 2 // stride, 8, 8)'}), '(size=(2, w_in * 2 // stride, 8, 8))\n', (1935, 1971), True, 'import megengine as mge\n')]
"""Implementing balance and fiscal_note_items tables Revision ID: 6099ed2a58e0 Revises: <KEY> Create Date: 2021-10-11 14:52:44.126077 """ import sqlalchemy as sa import sqlmodel from alembic import op from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "6099ed2a58e0" down_revision = "<KEY>" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "balance", sa.Column("id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("value", sa.Float(), nullable=False), sa.Column("type", sa.Enum("DEBT", "CREDIT", name="balancetype"), nullable=False), sa.Column( "operation", sa.Enum( "PAYMENT_OF_EMPLOYEES", "PAYMENT_OF_SUPPLIERS", "ANOTHER_PAYMENTS", "SALE_IN_PIX", "SALE_IN_DEBT", "SALE_IN_CREDIT", "SALE_IN_MONEY", name="operationtype", ), nullable=False, ), sa.Column("description", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("created_at", sa.DateTime(), nullable=True), sa.Column("owner_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.ForeignKeyConstraint( ["owner_id"], ["users.id"], ), sa.PrimaryKeyConstraint("id"), ) op.create_index(op.f("ix_balance_created_at"), "balance", ["created_at"], unique=False) op.create_index(op.f("ix_balance_operation"), "balance", ["operation"], unique=False) op.create_index(op.f("ix_balance_owner_id"), "balance", ["owner_id"], unique=False) op.create_index(op.f("ix_balance_type"), "balance", ["type"], unique=False) op.create_table( "fiscal_note_items", sa.Column("id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("buy_value", sa.Float(), nullable=False), sa.Column("sugested_sell_value", sa.Float(), nullable=False), sa.Column("owner_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("fiscal_note_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("item_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("file_id", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.ForeignKeyConstraint( ["file_id"], ["files.bucket_key"], ), sa.ForeignKeyConstraint( ["fiscal_note_id"], ["fiscal_notes.id"], ), sa.ForeignKeyConstraint( ["item_id"], ["items.id"], ), sa.ForeignKeyConstraint( ["owner_id"], ["users.id"], ), sa.PrimaryKeyConstraint("id"), ) op.create_index(op.f("ix_fiscal_note_items_fiscal_note_id"), "fiscal_note_items", ["fiscal_note_id"], unique=False) op.create_index(op.f("ix_fiscal_note_items_item_id"), "fiscal_note_items", ["item_id"], unique=False) op.create_index(op.f("ix_fiscal_note_items_owner_id"), "fiscal_note_items", ["owner_id"], unique=False) op.create_index( op.f("ix_fiscal_note_items_sugested_sell_value"), "fiscal_note_items", ["sugested_sell_value"], unique=False ) op.create_index(op.f("ix_clients_owner_id"), "clients", ["owner_id"], unique=False) op.create_index(op.f("ix_fiscal_notes_owner_id"), "fiscal_notes", ["owner_id"], unique=False) op.alter_column("items", "cost", existing_type=postgresql.DOUBLE_PRECISION(precision=53), nullable=True) op.create_index(op.f("ix_items_amount"), "items", ["amount"], unique=False) op.alter_column("order_details", "order_id", existing_type=postgresql.UUID(), nullable=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f("ix_users_password_hash"), table_name="users") op.drop_index(op.f("ix_users_name"), table_name="users") op.drop_index(op.f("ix_orders_description"), table_name="orders") op.drop_index(op.f("ix_order_details_sell_value"), table_name="order_details") op.drop_index(op.f("ix_order_details_item_name"), table_name="order_details") op.drop_index(op.f("ix_order_details_cost"), table_name="order_details") op.alter_column("order_details", "order_id", existing_type=postgresql.UUID(), nullable=False) op.drop_index(op.f("ix_items_value"), table_name="items") op.drop_index(op.f("ix_items_cost"), table_name="items") op.drop_index(op.f("ix_items_amount"), table_name="items") op.alter_column("items", "cost", existing_type=postgresql.DOUBLE_PRECISION(precision=53), nullable=False) op.drop_index(op.f("ix_fiscal_notes_owner_id"), table_name="fiscal_notes") op.drop_index(op.f("ix_fiscal_notes_file_id"), table_name="fiscal_notes") op.drop_index(op.f("ix_fiscal_notes_description"), table_name="fiscal_notes") op.drop_index(op.f("ix_files_uploaded_at"), table_name="files") op.drop_index(op.f("ix_clients_phone"), table_name="clients") op.drop_index(op.f("ix_clients_owner_id"), table_name="clients") op.drop_index(op.f("ix_clients_created_at"), table_name="clients") op.drop_index(op.f("ix_fiscal_note_items_sugested_sell_value"), table_name="fiscal_note_items") op.drop_index(op.f("ix_fiscal_note_items_owner_id"), table_name="fiscal_note_items") op.drop_index(op.f("ix_fiscal_note_items_item_id"), table_name="fiscal_note_items") op.drop_index(op.f("ix_fiscal_note_items_fiscal_note_id"), table_name="fiscal_note_items") op.drop_index(op.f("ix_fiscal_note_items_file_id"), table_name="fiscal_note_items") op.drop_index(op.f("ix_fiscal_note_items_buy_value"), table_name="fiscal_note_items") op.drop_table("fiscal_note_items") op.drop_index(op.f("ix_balance_value"), table_name="balance") op.drop_index(op.f("ix_balance_type"), table_name="balance") op.drop_index(op.f("ix_balance_owner_id"), table_name="balance") op.drop_index(op.f("ix_balance_operation"), table_name="balance") op.drop_index(op.f("ix_balance_description"), table_name="balance") op.drop_index(op.f("ix_balance_created_at"), table_name="balance") op.drop_table("balance") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString", "sqlmodel.sql.sqltypes.GUID" ]
[((5828, 5862), 'alembic.op.drop_table', 'op.drop_table', (['"""fiscal_note_items"""'], {}), "('fiscal_note_items')\n", (5841, 5862), False, 'from alembic import op\n'), ((6280, 6304), 'alembic.op.drop_table', 'op.drop_table', (['"""balance"""'], {}), "('balance')\n", (6293, 6304), False, 'from alembic import op\n'), ((1354, 1405), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['owner_id']", "['users.id']"], {}), "(['owner_id'], ['users.id'])\n", (1377, 1405), True, 'import sqlalchemy as sa\n'), ((1450, 1479), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1473, 1479), True, 'import sqlalchemy as sa\n'), ((1507, 1536), 'alembic.op.f', 'op.f', (['"""ix_balance_created_at"""'], {}), "('ix_balance_created_at')\n", (1511, 1536), False, 'from alembic import op\n'), ((1599, 1627), 'alembic.op.f', 'op.f', (['"""ix_balance_operation"""'], {}), "('ix_balance_operation')\n", (1603, 1627), False, 'from alembic import op\n'), ((1689, 1716), 'alembic.op.f', 'op.f', (['"""ix_balance_owner_id"""'], {}), "('ix_balance_owner_id')\n", (1693, 1716), False, 'from alembic import op\n'), ((1777, 1800), 'alembic.op.f', 'op.f', (['"""ix_balance_type"""'], {}), "('ix_balance_type')\n", (1781, 1800), False, 'from alembic import op\n'), ((2414, 2472), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['file_id']", "['files.bucket_key']"], {}), "(['file_id'], ['files.bucket_key'])\n", (2437, 2472), True, 'import sqlalchemy as sa\n'), ((2517, 2581), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['fiscal_note_id']", "['fiscal_notes.id']"], {}), "(['fiscal_note_id'], ['fiscal_notes.id'])\n", (2540, 2581), True, 'import sqlalchemy as sa\n'), ((2626, 2676), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['item_id']", "['items.id']"], {}), "(['item_id'], ['items.id'])\n", (2649, 2676), True, 'import sqlalchemy as sa\n'), ((2721, 2772), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['owner_id']", "['users.id']"], {}), "(['owner_id'], ['users.id'])\n", (2744, 2772), True, 'import sqlalchemy as sa\n'), ((2817, 2846), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (2840, 2846), True, 'import sqlalchemy as sa\n'), ((2874, 2917), 'alembic.op.f', 'op.f', (['"""ix_fiscal_note_items_fiscal_note_id"""'], {}), "('ix_fiscal_note_items_fiscal_note_id')\n", (2878, 2917), False, 'from alembic import op\n'), ((2994, 3030), 'alembic.op.f', 'op.f', (['"""ix_fiscal_note_items_item_id"""'], {}), "('ix_fiscal_note_items_item_id')\n", (2998, 3030), False, 'from alembic import op\n'), ((3100, 3137), 'alembic.op.f', 'op.f', (['"""ix_fiscal_note_items_owner_id"""'], {}), "('ix_fiscal_note_items_owner_id')\n", (3104, 3137), False, 'from alembic import op\n'), ((3217, 3265), 'alembic.op.f', 'op.f', (['"""ix_fiscal_note_items_sugested_sell_value"""'], {}), "('ix_fiscal_note_items_sugested_sell_value')\n", (3221, 3265), False, 'from alembic import op\n'), ((3352, 3379), 'alembic.op.f', 'op.f', (['"""ix_clients_owner_id"""'], {}), "('ix_clients_owner_id')\n", (3356, 3379), False, 'from alembic import op\n'), ((3440, 3472), 'alembic.op.f', 'op.f', (['"""ix_fiscal_notes_owner_id"""'], {}), "('ix_fiscal_notes_owner_id')\n", (3444, 3472), False, 'from alembic import op\n'), ((3647, 3670), 'alembic.op.f', 'op.f', (['"""ix_items_amount"""'], {}), "('ix_items_amount')\n", (3651, 3670), False, 'from alembic import op\n'), ((3942, 3972), 'alembic.op.f', 'op.f', (['"""ix_users_password_hash"""'], {}), "('ix_users_password_hash')\n", (3946, 3972), False, 'from alembic import op\n'), ((4012, 4033), 'alembic.op.f', 'op.f', (['"""ix_users_name"""'], {}), "('ix_users_name')\n", (4016, 4033), False, 'from alembic import op\n'), ((4073, 4102), 'alembic.op.f', 'op.f', (['"""ix_orders_description"""'], {}), "('ix_orders_description')\n", (4077, 4102), False, 'from alembic import op\n'), ((4143, 4178), 'alembic.op.f', 'op.f', (['"""ix_order_details_sell_value"""'], {}), "('ix_order_details_sell_value')\n", (4147, 4178), False, 'from alembic import op\n'), ((4226, 4260), 'alembic.op.f', 'op.f', (['"""ix_order_details_item_name"""'], {}), "('ix_order_details_item_name')\n", (4230, 4260), False, 'from alembic import op\n'), ((4308, 4337), 'alembic.op.f', 'op.f', (['"""ix_order_details_cost"""'], {}), "('ix_order_details_cost')\n", (4312, 4337), False, 'from alembic import op\n'), ((4483, 4505), 'alembic.op.f', 'op.f', (['"""ix_items_value"""'], {}), "('ix_items_value')\n", (4487, 4505), False, 'from alembic import op\n'), ((4545, 4566), 'alembic.op.f', 'op.f', (['"""ix_items_cost"""'], {}), "('ix_items_cost')\n", (4549, 4566), False, 'from alembic import op\n'), ((4606, 4629), 'alembic.op.f', 'op.f', (['"""ix_items_amount"""'], {}), "('ix_items_amount')\n", (4610, 4629), False, 'from alembic import op\n'), ((4779, 4811), 'alembic.op.f', 'op.f', (['"""ix_fiscal_notes_owner_id"""'], {}), "('ix_fiscal_notes_owner_id')\n", (4783, 4811), False, 'from alembic import op\n'), ((4858, 4889), 'alembic.op.f', 'op.f', (['"""ix_fiscal_notes_file_id"""'], {}), "('ix_fiscal_notes_file_id')\n", (4862, 4889), False, 'from alembic import op\n'), ((4936, 4971), 'alembic.op.f', 'op.f', (['"""ix_fiscal_notes_description"""'], {}), "('ix_fiscal_notes_description')\n", (4940, 4971), False, 'from alembic import op\n'), ((5018, 5046), 'alembic.op.f', 'op.f', (['"""ix_files_uploaded_at"""'], {}), "('ix_files_uploaded_at')\n", (5022, 5046), False, 'from alembic import op\n'), ((5086, 5110), 'alembic.op.f', 'op.f', (['"""ix_clients_phone"""'], {}), "('ix_clients_phone')\n", (5090, 5110), False, 'from alembic import op\n'), ((5152, 5179), 'alembic.op.f', 'op.f', (['"""ix_clients_owner_id"""'], {}), "('ix_clients_owner_id')\n", (5156, 5179), False, 'from alembic import op\n'), ((5221, 5250), 'alembic.op.f', 'op.f', (['"""ix_clients_created_at"""'], {}), "('ix_clients_created_at')\n", (5225, 5250), False, 'from alembic import op\n'), ((5292, 5340), 'alembic.op.f', 'op.f', (['"""ix_fiscal_note_items_sugested_sell_value"""'], {}), "('ix_fiscal_note_items_sugested_sell_value')\n", (5296, 5340), False, 'from alembic import op\n'), ((5392, 5429), 'alembic.op.f', 'op.f', (['"""ix_fiscal_note_items_owner_id"""'], {}), "('ix_fiscal_note_items_owner_id')\n", (5396, 5429), False, 'from alembic import op\n'), ((5481, 5517), 'alembic.op.f', 'op.f', (['"""ix_fiscal_note_items_item_id"""'], {}), "('ix_fiscal_note_items_item_id')\n", (5485, 5517), False, 'from alembic import op\n'), ((5569, 5612), 'alembic.op.f', 'op.f', (['"""ix_fiscal_note_items_fiscal_note_id"""'], {}), "('ix_fiscal_note_items_fiscal_note_id')\n", (5573, 5612), False, 'from alembic import op\n'), ((5664, 5700), 'alembic.op.f', 'op.f', (['"""ix_fiscal_note_items_file_id"""'], {}), "('ix_fiscal_note_items_file_id')\n", (5668, 5700), False, 'from alembic import op\n'), ((5752, 5790), 'alembic.op.f', 'op.f', (['"""ix_fiscal_note_items_buy_value"""'], {}), "('ix_fiscal_note_items_buy_value')\n", (5756, 5790), False, 'from alembic import op\n'), ((5881, 5905), 'alembic.op.f', 'op.f', (['"""ix_balance_value"""'], {}), "('ix_balance_value')\n", (5885, 5905), False, 'from alembic import op\n'), ((5947, 5970), 'alembic.op.f', 'op.f', (['"""ix_balance_type"""'], {}), "('ix_balance_type')\n", (5951, 5970), False, 'from alembic import op\n'), ((6012, 6039), 'alembic.op.f', 'op.f', (['"""ix_balance_owner_id"""'], {}), "('ix_balance_owner_id')\n", (6016, 6039), False, 'from alembic import op\n'), ((6081, 6109), 'alembic.op.f', 'op.f', (['"""ix_balance_operation"""'], {}), "('ix_balance_operation')\n", (6085, 6109), False, 'from alembic import op\n'), ((6151, 6181), 'alembic.op.f', 'op.f', (['"""ix_balance_description"""'], {}), "('ix_balance_description')\n", (6155, 6181), False, 'from alembic import op\n'), ((6223, 6252), 'alembic.op.f', 'op.f', (['"""ix_balance_created_at"""'], {}), "('ix_balance_created_at')\n", (6227, 6252), False, 'from alembic import op\n'), ((524, 552), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (550, 552), False, 'import sqlmodel\n'), ((598, 608), 'sqlalchemy.Float', 'sa.Float', ([], {}), '()\n', (606, 608), True, 'import sqlalchemy as sa\n'), ((653, 698), 'sqlalchemy.Enum', 'sa.Enum', (['"""DEBT"""', '"""CREDIT"""'], {'name': '"""balancetype"""'}), "('DEBT', 'CREDIT', name='balancetype')\n", (660, 698), True, 'import sqlalchemy as sa\n'), ((773, 945), 'sqlalchemy.Enum', 'sa.Enum', (['"""PAYMENT_OF_EMPLOYEES"""', '"""PAYMENT_OF_SUPPLIERS"""', '"""ANOTHER_PAYMENTS"""', '"""SALE_IN_PIX"""', '"""SALE_IN_DEBT"""', '"""SALE_IN_CREDIT"""', '"""SALE_IN_MONEY"""'], {'name': '"""operationtype"""'}), "('PAYMENT_OF_EMPLOYEES', 'PAYMENT_OF_SUPPLIERS', 'ANOTHER_PAYMENTS',\n 'SALE_IN_PIX', 'SALE_IN_DEBT', 'SALE_IN_CREDIT', 'SALE_IN_MONEY', name=\n 'operationtype')\n", (780, 945), True, 'import sqlalchemy as sa\n'), ((1153, 1187), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1185, 1187), False, 'import sqlmodel\n'), ((1238, 1251), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1249, 1251), True, 'import sqlalchemy as sa\n'), ((1299, 1327), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (1325, 1327), False, 'import sqlmodel\n'), ((1911, 1939), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (1937, 1939), False, 'import sqlmodel\n'), ((1989, 1999), 'sqlalchemy.Float', 'sa.Float', ([], {}), '()\n', (1997, 1999), True, 'import sqlalchemy as sa\n'), ((2059, 2069), 'sqlalchemy.Float', 'sa.Float', ([], {}), '()\n', (2067, 2069), True, 'import sqlalchemy as sa\n'), ((2118, 2146), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (2144, 2146), False, 'import sqlmodel\n'), ((2201, 2229), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (2227, 2229), False, 'import sqlmodel\n'), ((2277, 2305), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (2303, 2305), False, 'import sqlmodel\n'), ((2353, 2387), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2385, 2387), False, 'import sqlmodel\n'), ((3569, 3610), 'sqlalchemy.dialects.postgresql.DOUBLE_PRECISION', 'postgresql.DOUBLE_PRECISION', ([], {'precision': '(53)'}), '(precision=53)\n', (3596, 3610), False, 'from sqlalchemy.dialects import postgresql\n'), ((3770, 3787), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (3785, 3787), False, 'from sqlalchemy.dialects import postgresql\n'), ((4430, 4447), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {}), '()\n', (4445, 4447), False, 'from sqlalchemy.dialects import postgresql\n'), ((4702, 4743), 'sqlalchemy.dialects.postgresql.DOUBLE_PRECISION', 'postgresql.DOUBLE_PRECISION', ([], {'precision': '(53)'}), '(precision=53)\n', (4729, 4743), False, 'from sqlalchemy.dialects import postgresql\n')]
# This example implements 2nd-level homogenization of Biot-Darcy-Brinkman model of flow in deformable # double porous media. # The mathematical model is described in: # #<NAME>., <NAME>., <NAME>. #The Biot-Darcy-Brinkman model of flow in deformable double porous media; homogenization and numerical modelling. # Computers and Mathematics with applications, 78(9):3044-3066, 2019, # https://doi.org/10.1016/j.camwa.2019.04.004 # # Run calculation of homogenized coefficients: # # ./homogen.py example_perfusion_BDB/perf_BDB_mes.py # # The results are stored in `example_perfusion_BDB/results/meso` directory. # import numpy as nm from sfepy import data_dir import os.path as osp from sfepy.discrete.fem.mesh import Mesh import sfepy.discrete.fem.periodic as per from sfepy.mechanics.tensors import dim2sym from sfepy.homogenization.utils import define_box_regions import sfepy.homogenization.coefs_base as cb from sfepy.homogenization.micmac import get_homog_coefs_linear data_dir = 'example_perfusion_BDB' def coefs2qp(coefs, nqp): out = {} for k, v in coefs.items(): if type(v) not in [nm.ndarray, float]: continue if type(v) is nm.ndarray: if len(v.shape) >= 3: out[k] = v out[k] = nm.tile(v, (nqp, 1, 1)) return out def get_periodic_bc(var_tab, dim=3, dim_tab=None): if dim_tab is None: dim_tab = {'x': ['left', 'right'], 'z': ['bottom', 'top'], 'y': ['near', 'far']} periodic = {} epbcs = {} for ivar, reg in var_tab: periodic['per_%s' % ivar] = pers = [] for idim in 'xyz'[0:dim]: key = 'per_%s_%s' % (ivar, idim) regs = ['%s_%s' % (reg, ii) for ii in dim_tab[idim]] epbcs[key] = (regs, {'%s.all' % ivar: '%s.all' % ivar}, 'match_%s_plane' % idim) pers.append(key) return epbcs, periodic # get homogenized coefficients, recalculate them if necessary def get_homog(coors, mode, pb,micro_filename, **kwargs): if not (mode == 'qp'): return nqp = coors.shape[0] coefs_filename = 'coefs_micro' coefs_filename = osp.join(pb.conf.options.get('output_dir', '.'), coefs_filename) + '.h5' coefs = get_homog_coefs_linear(0, 0, None, micro_filename=micro_filename,coefs_filename = coefs_filename ) coefs['B'] = coefs['B'][:, nm.newaxis] for k in coefs.keys(): v = coefs[k] if type(v) is nm.ndarray: if len(v.shape) == 0: coefs[k] = v.reshape((1, 1)) elif len(v.shape) == 1: coefs[k] = v[:, nm.newaxis] elif isinstance(v, float): coefs[k] = nm.array([[v]]) out = coefs2qp(coefs, nqp) return out def define(filename_mesh=None): eta = 3.6e-3 if filename_mesh is None: filename_mesh = osp.join(data_dir, 'meso_perf_puc.vtk') mesh = Mesh.from_file(filename_mesh) poroela_micro_file = osp.join(data_dir, 'perf_BDB_mic.py') dim = 3 sym = (dim + 1) * dim // 2 sym_eye = 'nm.array([1,1,0])' if dim == 2 else 'nm.array([1,1,1,0,0,0])' bbox = mesh.get_bounding_box() regions = define_box_regions(mesh.dim, bbox[0], bbox[1], eps=1e-3) regions.update({ 'Z': 'all', 'Gamma_Z': ('vertices of surface', 'facet'), # matrix 'Zm': 'cells of group 1', 'Zm_left': ('r.Zm *v r.Left', 'vertex'), 'Zm_right': ('r.Zm *v r.Right', 'vertex'), 'Zm_bottom': ('r.Zm *v r.Bottom', 'vertex'), 'Zm_top': ('r.Zm *v r.Top', 'vertex'), 'Gamma_Zm': ('r.Zm *v r.Zc', 'facet', 'Zm'), # canal 'Zc': 'cells of group 2', 'Zc0': ('r.Zc -v r.Gamma_Zc', 'vertex'), 'Zc_left': ('r.Zc0 *v r.Left', 'vertex'), 'Zc_right': ('r.Zc0 *v r.Right', 'vertex'), 'Zc_bottom': ('r.Zc0 *v r.Bottom', 'vertex'), 'Zc_top': ('r.Zc0 *v r.Top', 'vertex'), 'Gamma_Zc': ('r.Zm *v r.Zc', 'facet', 'Zc'), "Surface": ("vertices of surface", "facet"), 'Center_c': ('vertex 5346', 'vertex'), # canal center }) if dim == 3: regions.update({ 'Zm_far': ('r.Zm *v r.Far', 'vertex'), 'Zm_near': ('r.Zm *v r.Near', 'vertex'), 'Zc_far': ('r.Zc0 *v r.Far', 'vertex'), 'Zc_near': ('r.Zc0 *v r.Near', 'vertex'), }) fields = { 'one': ('real', 'scalar', 'Z', 1), 'displacement': ('real', 'vector', 'Zm', 1), 'pressure_m': ('real', 'scalar', 'Zm', 1), 'pressure_c': ('real', 'scalar', 'Zc', 1), 'displacement_c': ('real', 'vector', 'Zc', 1), 'velocity': ('real', 'vector', 'Zc', 2), } variables = { # displacement 'u': ('unknown field', 'displacement', 0), 'v': ('test field', 'displacement', 'u'), 'Pi_u': ('parameter field', 'displacement', 'u'), 'U1': ('parameter field', 'displacement', '(set-to-None)'), 'U2': ('parameter field', 'displacement', '(set-to-None)'), 'uc': ('unknown field', 'displacement_c', 4), 'vc': ('test field', 'displacement_c', 'uc'), # velocity 'w': ('unknown field', 'velocity', 1), 'z': ('test field', 'velocity', 'w'), 'Pi_w': ('parameter field', 'velocity', 'w'), 'W1': ('parameter field', 'velocity', '(set-to-None)'), 'W2': ('parameter field', 'velocity', '(set-to-None)'), # pressure 'pm': ('unknown field', 'pressure_m', 2), 'qm': ('test field', 'pressure_m', 'pm'), 'Pm1': ('parameter field', 'pressure_m', '(set-to-None)'), 'Pm2': ('parameter field', 'pressure_m', '(set-to-None)'), 'Pi_pm': ('parameter field', 'pressure_m', 'pm'), 'pc': ('unknown field', 'pressure_c', 3), 'qc': ('test field', 'pressure_c', 'pc'), 'Pc1': ('parameter field', 'pressure_c', '(set-to-None)'), 'Pc2': ('parameter field', 'pressure_c', '(set-to-None)'), # one 'one': ('parameter field', 'one', '(set-to-None)'), } functions = { 'match_x_plane': (per.match_x_plane,), 'match_y_plane': (per.match_y_plane,), 'match_z_plane': (per.match_z_plane,), 'get_homog': (lambda ts, coors, mode=None, problem=None, **kwargs:\ get_homog(coors, mode, problem, poroela_micro_file, **kwargs),), } materials = { 'hmatrix': 'get_homog', 'fluid': ({ 'eta_c': eta* nm.eye(dim2sym(dim)), },), 'mat': ({ 'k1': nm.array([[1, 0, 0]]).T, 'k2': nm.array([[0, 1, 0]]).T, 'k3': nm.array([[0, 0, 1]]).T, },), } ebcs = { 'fixed_u': ('Corners', {'um.all': 0.0}), 'fixed_pm': ('Corners', {'p.0': 0.0}), 'fixed_w': ('Center_c', {'w.all': 0.0}), } epbcs, periodic = get_periodic_bc([('u', 'Zm'), ('pm', 'Zm'), ('pc', 'Zc'), ('w', 'Zc')]) all_periodic = periodic['per_w'] + periodic['per_pc'] integrals = { 'i': 4, } options = { 'coefs': 'coefs', 'coefs_filename': 'coefs_meso', 'requirements': 'requirements', 'volume': { 'variables': ['u', 'pc'], 'expression': 'd_volume.i.Zm(u) + d_volume.i.Zc(pc)', }, 'output_dir': data_dir + '/results/meso', 'file_per_var': True, 'save_format': 'vtk', # Global setting. 'dump_format': 'h5', # Global setting. 'absolute_mesh_path': True, 'multiprocessing': False, 'ls': 'ls', 'nls': 'ns_m15', 'output_prefix': 'meso:', } solvers = { 'ls': ('ls.mumps', {}), 'ls_s': ('ls.schur_mumps', {'schur_variables': ['pc'], 'fallback': 'ls'}), 'ns': ('nls.newton', { 'i_max': 1, 'eps_a': 1e-14, 'eps_r': 1e-3, 'problem': 'nonlinear'}), 'ns_em15': ('nls.newton', { 'i_max': 1, 'eps_a': 1e-15, 'eps_r': 1e-3, 'problem': 'nonlinear'}), 'ns_em12': ('nls.newton', { 'i_max': 1, 'eps_a': 1e-12, 'eps_r': 1e-3, 'problem': 'nonlinear'}), 'ns_em9': ('nls.newton', { 'i_max': 1, 'eps_a': 1e-9, 'eps_r': 1e-3, 'problem': 'nonlinear'}), 'ns_em6': ('nls.newton', { 'i_max': 1, 'eps_a': 1e-4, 'eps_r': 1e-3, 'problem': 'nonlinear'}), } #Definition of homogenized coefficients, see (33)-(35) coefs = { 'A': { 'requires': ['pis_u', 'corrs_omega_ij'], 'expression': 'dw_lin_elastic.i.Zm(hmatrix.A, U1, U2)', 'set_variables': [('U1', ('corrs_omega_ij', 'pis_u'), 'u'), ('U2', ('corrs_omega_ij', 'pis_u'), 'u')], 'class': cb.CoefSymSym, }, 'B_aux1': { 'status': 'auxiliary', 'requires': ['corrs_omega_ij'], 'expression': '- dw_surface_ltr.i.Gamma_Zm(U1)', # !!! - 'set_variables': [('U1', 'corrs_omega_ij', 'u')], 'class': cb.CoefSym, }, 'B_aux2': { 'status': 'auxiliary', 'requires': ['corrs_omega_ij', 'pis_u', 'corr_one'], 'expression': 'dw_biot.i.Zm(hmatrix.B, U1, one)', 'set_variables': [('U1', ('corrs_omega_ij', 'pis_u'), 'u'), ('one', 'corr_one', 'one')], 'class': cb.CoefSym, }, 'B': { 'requires': ['c.B_aux1', 'c.B_aux2', 'c.vol_c'], 'expression': 'c.B_aux1 + c.B_aux2 + c.vol_c* %s' % sym_eye, 'class': cb.CoefEval, }, 'H': { 'requires': ['corrs_phi_k'], 'expression': 'dw_diffusion.i.Zm(hmatrix.K, Pm1, Pm2)', 'set_variables': [('Pm1', 'corrs_phi_k', 'pm'), ('Pm2', 'corrs_phi_k', 'pm')], 'class': cb.CoefDimDim, }, 'K': { 'requires': ['corrs_pi_k', 'pis_pm'], 'expression': 'dw_diffusion.i.Zm(hmatrix.K, Pm1, Pm2)', 'set_variables': [('Pm1', ('corrs_pi_k', 'pis_pm'), 'pm'), ('Pm2', ('corrs_pi_k', 'pis_pm'), 'pm')], 'class': cb.CoefDimDim, }, 'Q': { 'requires': ['corrs_phi_k', 'pis_pm'], 'expression': 'dw_diffusion.i.Zm(hmatrix.K, Pm1, Pm2)', 'set_variables': [('Pm1', 'pis_pm', 'pm'), ('Pm2', 'corrs_phi_k', 'pm')], 'class': cb.CoefDimDim, }, 'P': { 'requires': ['c.Q', 'c.vol'], 'expression': 'c.vol["fraction_Zc"] * nm.eye(%d) - c.Q' % dim, 'class': cb.CoefEval, }, 'PT': { 'requires': ['c.P'], 'expression': 'c.P.T', 'class': cb.CoefEval, }, 'M_aux1': { 'status': 'auxiliary', 'requires': [], 'expression': 'ev_volume_integrate_mat.i.Zm(hmatrix.M, one)', 'set_variables': [], 'class': cb.CoefOne, }, 'M_aux2': { 'status': 'auxiliary', 'requires': ['corrs_omega_p', 'corr_one'], 'expression': 'dw_biot.i.Zm(hmatrix.B, U1, one)', 'set_variables': [('U1', 'corrs_omega_p', 'u'), ('one', 'corr_one', 'one')], 'class': cb.CoefOne, }, 'M_aux3': { 'status': 'auxiliary', 'requires': ['corrs_omega_p'], 'expression': ' dw_surface_ltr.i.Gamma_Zm(U1)', 'set_variables': [('U1', 'corrs_omega_p', 'u')], 'class': cb.CoefOne, }, 'M': { 'requires': ['c.M_aux1', 'c.M_aux2', 'c.M_aux3'], 'expression': 'c.M_aux1 + c.M_aux2 -c.M_aux3 ', 'class': cb.CoefEval, }, 'S': { 'requires': ['corrs_psi_ij', 'pis_w'], 'expression': 'dw_lin_elastic.i.Zc(fluid.eta_c, W1, W2)', 'set_variables': [('W1', ('corrs_psi_ij', 'pis_w'), 'w'), ('W2', ('corrs_psi_ij', 'pis_w'), 'w')], 'class': cb.CoefSymSym, }, 'vol': { 'regions': ['Zm', 'Zc'], 'expression': 'd_volume.i.%s(one)', 'class': cb.VolumeFractions, }, 'surf_vol': { 'regions': ['Zm', 'Zc'], 'expression': 'd_surface.i.%s(one)', 'class': cb.VolumeFractions, }, 'surf_c': { 'requires': ['c.surf_vol'], 'expression': 'c.surf_vol["fraction_Zc"]', 'class': cb.CoefEval, }, 'vol_c': { 'requires': ['c.vol'], 'expression': 'c.vol["fraction_Zc"]', 'class': cb.CoefEval, }, 'filenames': {}, } #Definition of mesoscopic corrector problems requirements = { 'corr_one': { 'variable': 'one', 'expression': "nm.ones((problem.fields['one'].n_vertex_dof, 1), dtype=nm.float64)", 'class': cb.CorrEval, }, 'pis_u': { 'variables': ['u'], 'class': cb.ShapeDimDim, 'save_name': 'corrs_pis_u', 'dump_variables': ['u'], }, 'pis_pm': { 'variables': ['pm'], 'class': cb.ShapeDim, }, 'pis_w': { 'variables': ['w'], 'class': cb.ShapeDimDim, }, # Corrector problem, see (31)_1 'corrs_omega_ij': { 'requires': ['pis_u'], 'ebcs': ['fixed_u'], 'epbcs': periodic['per_u'], 'is_linear': True, 'equations': { 'balance_of_forces': """dw_lin_elastic.i.Zm(hmatrix.A, v, u) = - dw_lin_elastic.i.Zm(hmatrix.A, v, Pi_u)""" }, 'set_variables': [('Pi_u', 'pis_u', 'u')], 'class': cb.CorrDimDim, 'save_name': 'corrs_omega_ij', 'dump_variables': ['u'], 'solvers': {'ls': 'ls', 'nls': 'ns_em6'}, 'is_linear': True, }, # Corrector problem, see (31)_2 'corrs_omega_p': { 'requires': ['corr_one'], 'ebcs': ['fixed_u'], 'epbcs': periodic['per_u'], 'equations': { 'balance_of_forces': """dw_lin_elastic.i.Zm(hmatrix.A, v, u) = dw_biot.i.Zm(hmatrix.B, v, one) - dw_surface_ltr.i.Gamma_Zm(v)""", }, 'set_variables': [('one', 'corr_one', 'one')], 'class': cb.CorrOne, 'save_name': 'corrs_omega_p', 'dump_variables': ['u'], 'solvers': {'ls': 'ls', 'nls': 'ns_em9'}, }, # Corrector problem, see (31)_3 'corrs_pi_k': { 'requires': ['pis_pm'], 'ebcs': [], # ['fixed_pm'], 'epbcs': periodic['per_pm'], 'is_linear': True, 'equations': { 'eq': """dw_diffusion.i.Zm(hmatrix.K, qm, pm) = - dw_diffusion.i.Zm(hmatrix.K, qm, Pi_pm)""", }, 'set_variables': [('Pi_pm', 'pis_pm', 'pm')], 'class': cb.CorrDim, 'save_name': 'corrs_pi_k', 'dump_variables': ['pm'], 'solvers': {'ls': 'ls', 'nls': 'ns_em12'}, }, # Corrector problem, see (31)_4 'corrs_phi_k': { 'requires': [], 'ebcs': [], 'epbcs': periodic['per_pm'], 'equations': { 'eq': """dw_diffusion.i.Zm(hmatrix.K, qm, pm) = - dw_surface_ndot.i.Gamma_Zm(mat.k%d, qm)""", }, 'class': cb.CorrEqPar, 'eq_pars': [(ii + 1) for ii in range(dim)], 'save_name': 'corrs_phi_k', 'dump_variables': ['pm'], 'solvers': {'ls': 'ls', 'nls': 'ns_em9'}, }, # Corrector problem, see (32) 'corrs_psi_ij': { 'requires': ['pis_w'], 'ebcs': ['fixed_w'], 'epbcs': periodic['per_w'] + periodic['per_pc'], 'equations': { 'eq1': """2*dw_lin_elastic.i.Zc(fluid.eta_c, z, w) - dw_stokes.i.Zc(z, pc) = - 2*dw_lin_elastic.i.Zc(fluid.eta_c, z, Pi_w)""", 'eq2': """dw_stokes.i.Zc(w, qc) = - dw_stokes.i.Zc(Pi_w, qc)""" }, 'set_variables': [('Pi_w', 'pis_w', 'w')], 'class': cb.CorrDimDim, 'save_name': 'corrs_psi_ij', 'dump_variables': ['w', 'pc'], 'solvers': {'ls': 'ls', 'nls': 'ns_em15'}, # 'solvers': {'ls': 'ls_s', 'nls': 'ns_em15'}, 'is_linear': True, }, } return locals()
[ "sfepy.mechanics.tensors.dim2sym", "sfepy.homogenization.utils.define_box_regions", "sfepy.homogenization.micmac.get_homog_coefs_linear", "sfepy.discrete.fem.mesh.Mesh.from_file" ]
[((2373, 2473), 'sfepy.homogenization.micmac.get_homog_coefs_linear', 'get_homog_coefs_linear', (['(0)', '(0)', 'None'], {'micro_filename': 'micro_filename', 'coefs_filename': 'coefs_filename'}), '(0, 0, None, micro_filename=micro_filename,\n coefs_filename=coefs_filename)\n', (2395, 2473), False, 'from sfepy.homogenization.micmac import get_homog_coefs_linear\n'), ((3096, 3125), 'sfepy.discrete.fem.mesh.Mesh.from_file', 'Mesh.from_file', (['filename_mesh'], {}), '(filename_mesh)\n', (3110, 3125), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((3154, 3191), 'os.path.join', 'osp.join', (['data_dir', '"""perf_BDB_mic.py"""'], {}), "(data_dir, 'perf_BDB_mic.py')\n", (3162, 3191), True, 'import os.path as osp\n'), ((3368, 3425), 'sfepy.homogenization.utils.define_box_regions', 'define_box_regions', (['mesh.dim', 'bbox[0]', 'bbox[1]'], {'eps': '(0.001)'}), '(mesh.dim, bbox[0], bbox[1], eps=0.001)\n', (3386, 3425), False, 'from sfepy.homogenization.utils import define_box_regions\n'), ((1305, 1328), 'numpy.tile', 'nm.tile', (['v', '(nqp, 1, 1)'], {}), '(v, (nqp, 1, 1))\n', (1312, 1328), True, 'import numpy as nm\n'), ((3042, 3081), 'os.path.join', 'osp.join', (['data_dir', '"""meso_perf_puc.vtk"""'], {}), "(data_dir, 'meso_perf_puc.vtk')\n", (3050, 3081), True, 'import os.path as osp\n'), ((2863, 2878), 'numpy.array', 'nm.array', (['[[v]]'], {}), '([[v]])\n', (2871, 2878), True, 'import numpy as nm\n'), ((6856, 6877), 'numpy.array', 'nm.array', (['[[1, 0, 0]]'], {}), '([[1, 0, 0]])\n', (6864, 6877), True, 'import numpy as nm\n'), ((6908, 6929), 'numpy.array', 'nm.array', (['[[0, 1, 0]]'], {}), '([[0, 1, 0]])\n', (6916, 6929), True, 'import numpy as nm\n'), ((6960, 6981), 'numpy.array', 'nm.array', (['[[0, 0, 1]]'], {}), '([[0, 0, 1]])\n', (6968, 6981), True, 'import numpy as nm\n'), ((6771, 6783), 'sfepy.mechanics.tensors.dim2sym', 'dim2sym', (['dim'], {}), '(dim)\n', (6778, 6783), False, 'from sfepy.mechanics.tensors import dim2sym\n')]
import os import sys import time from collections import OrderedDict from time import strftime, gmtime from tensorboardX import SummaryWriter from dataset import AsrDataset, DataLoader, AsrCollator from models.transformer import Model import hparams as hp import argparse import megengine as mge import megengine.module as M import megengine.functional as F from megengine.functional import clip, concat, minimum, norm from megengine.core._imperative_rt.core2 import pop_scope, push_scope from typing import Iterable, Union from megengine.tensor import Tensor import megengine.distributed as dist from megengine.data import SequentialSampler, RandomSampler, DataLoader from criterions.label_smoothing_loss import LabelSmoothingLoss from megengine.utils.network import Network as Net import megengine.autodiff as autodiff import megengine.data as data import megengine import multiprocessing logging = megengine.logger.get_logger() def clip_grad_norm( tensors: Union[Tensor, Iterable[Tensor]], max_norm: float, ord: float = 2.0, ): push_scope("clip_grad_norm") if isinstance(tensors, Tensor): tensors = [tensors] tensors = [t for t in tensors if t.grad is not None] norm_ = [norm(t.grad.flatten(), ord=ord) for t in tensors] if len(norm_) > 1: norm_ = norm(concat(norm_), ord=ord) else: norm_ = norm_[0] scale = max_norm / (norm_ + 1e-6) scale = minimum(scale, 1) for tensor in tensors: tensor.grad._reset(tensor.grad * scale) pop_scope("clip_grad_norm") return norm_ class exponential_ma: def __init__(self, ratio): self.value = 0 self.weight = 0 self.ratio = ratio def update(self, x): self.value = self.value * self.ratio + (1 - self.ratio) * x self.weight = self.weight * self.ratio + (1 - self.ratio) def get_value(self): if self.weight < 1e-8: return 0 return self.value / self.weight def update_train_log(monitor_vars_name, ma_dict, losses, ttrain, tdata): for n in monitor_vars_name: for ma in ma_dict["losses"]: ma[n].update(losses[n]) for ma in ma_dict["ttrain"]: ma.update(ttrain) for ma in ma_dict["tdata"]: ma.update(tdata) def print_train_log(sess, epoch, minibatch, ma_dict, minibatch_per_epoch): ma_output = "[{}] e:{}, {}/{} ".format( strftime("%Y-%m-%d %H:%M:%S", gmtime()), epoch, minibatch, minibatch_per_epoch ) print(ma_output, file=sys.stderr) line = " {:31}:".format("speed") for ma in ma_dict["ttrain"]: line += "{:10.2g}".format(1 / ma.get_value()) print(line, file=sys.stderr) line = " {:31}".format("dp/tot") for ma1, ma2 in zip(ma_dict["ttrain"], ma_dict["tdata"]): line += "{:10.2g}".format(ma2.get_value() / ma1.get_value()) print(line, file=sys.stderr) for k in sess.loss_names: line = " {:31}".format(k) for ma in ma_dict["losses"]: line += "{:10.2E}".format(ma[k].get_value()) print(line, file=sys.stderr) line = " {:31}: {}".format("lr", sess.get_learning_rate()) print(line, file=sys.stderr) sys.stderr.flush() def adjust_learning_rate(optimizer, step_num, warmup_step=4000): lr = ( hp.lr * warmup_step ** 0.5 * min(step_num * warmup_step ** -1.5, step_num ** -0.5) ) for param_group in optimizer.param_groups: param_group["lr"] = lr def set_grad(net, min, max): for param in net.parameters(): param.grad = mge.random.uniform(min, max, param.shape) param.grad_backup = F.copy(param.grad) class Session: def __init__(self, args): with open(os.path.join(hp.dataset_root, "vocab.txt")) as f: self.vocab = [w.strip() for w in f.readlines()] self.vocab = ["<pad>"] + self.vocab print(f"Vocab Size: {len(self.vocab)}") self.model = Model(hp.num_mels, len(self.vocab)) world_size = args.world_size * args.ngpus if world_size > 1: dist.bcast_list_(self.model.parameters(), dist.WORLD) # Autodiff gradient manager self.gm = autodiff.GradManager().attach( self.model.parameters(), callbacks=dist.make_allreduce_cb("SUM") if world_size > 1 else None, ) self.global_step = 0 self.optimizer = mge.optimizer.Adam(self.model.parameters(), lr=hp.lr) # load pretrain model if args.continue_path: ckpt = mge.load(args.continue_path) if "model" in ckpt: state_dict = ckpt["model"] self.model.load_state_dict(state_dict, strict=False) self.loss_names = ["total"] self.criterion = LabelSmoothingLoss(len(self.vocab), 0, hp.lsm_weight) def get_learning_rate(self): lr = self.optimizer.param_groups[0]["lr"] return lr def get_current_losses(self): losses = OrderedDict() for name in self.loss_names: losses[name] = float(getattr(self, "loss_" + name)) return losses def optimize_parameters(self, data): """Calculate losses, gradients, and update network weights; called in every training iteration""" text_input, text_output, mel, pos_text, pos_mel, text_length, mel_length = data with self.gm: hs_pad, hs_mask, pred_pad, pred_mask = self.model.forward( mel, mel_length, text_input, text_length ) self.loss_total = self.criterion(pred_pad, text_output) self.gm.backward(self.loss_total) clip_grad_norm(self.model.parameters(), 1.0) self.optimizer.step().clear_grad() def main(): os.makedirs(hp.checkpoint_path, exist_ok=True) parser = argparse.ArgumentParser() parser.add_argument("--continue_path") parser.add_argument( "-n", "--ngpus", default=None, type=int, help="number of GPUs per node (default: None, use all available GPUs)", ) parser.add_argument( "--save", metavar="DIR", default="output", help="path to save checkpoint and log", ) parser.add_argument( "--epochs", default=90, type=int, help="number of total epochs to run (default: 90)", ) parser.add_argument("-j", "--workers", default=2, type=int) parser.add_argument( "-p", "--print-freq", default=20, type=int, metavar="N", help="print frequency (default: 10)", ) parser.add_argument("--dist-addr", default="localhost") parser.add_argument("--dist-port", default=23456, type=int) parser.add_argument("--world-size", default=1, type=int) parser.add_argument("--rank", default=0, type=int) args = parser.parse_args() # create server if is master if args.rank <= 0: server = dist.Server( port=args.dist_port ) # pylint: disable=unused-variable # noqa: F841 # get device count with multiprocessing.Pool(1) as pool: ngpus_per_node, _ = pool.map(megengine.get_device_count, ["gpu", "cpu"]) if args.ngpus: ngpus_per_node = args.ngpus # launch processes procs = [] for local_rank in range(ngpus_per_node): p = multiprocessing.Process( target=worker, kwargs=dict( rank=args.rank * ngpus_per_node + local_rank, world_size=args.world_size * ngpus_per_node, ngpus_per_node=ngpus_per_node, args=args, ), ) p.start() procs.append(p) # join processes for p in procs: p.join() def worker(rank, world_size, ngpus_per_node, args): # pylint: disable=too-many-statements if rank == 0: os.makedirs(os.path.join(args.save, "asr"), exist_ok=True) megengine.logger.set_log_file(os.path.join(args.save, "asr", "log.txt")) # init process group if world_size > 1: dist.init_process_group( master_ip=args.dist_addr, port=args.dist_port, world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend="nccl", ) logging.info( "init process group rank %d / %d", dist.get_rank(), dist.get_world_size() ) # build dataset train_dataloader = build_dataset(args) train_queue = iter(train_dataloader) steps_per_epoch = 164905 // (world_size * hp.batch_size) sess = Session(args) ma_rates = [1 - 0.01 ** x for x in range(3)] ma_dict = { "losses": [ {k: exponential_ma(rate) for k in sess.loss_names} for rate in ma_rates ], "ttrain": [exponential_ma(rate) for rate in ma_rates], "tdata": [exponential_ma(rate) for rate in ma_rates], } for epoch in range(1, (hp.epochs + 1) * steps_per_epoch): t_minibatch_start = time.time() sess.global_step += 1 if sess.global_step < 400000: adjust_learning_rate(sess.optimizer, sess.global_step) tdata = time.time() - t_minibatch_start data = next(train_queue) sess.optimize_parameters(data) losses = sess.get_current_losses() ttrain = time.time() - t_minibatch_start # print(ttrain, tdata) update_train_log(sess.loss_names, ma_dict, losses, ttrain, tdata) if sess.global_step % hp.log_interval == 0 and rank == 0: print_train_log(sess, epoch, epoch, ma_dict, hp.epochs * steps_per_epoch) if sess.global_step % hp.save_interval == 0 and rank == 0: print("*******************************************") mge.save( {"model": sess.model.state_dict(), "global_step": sess.global_step}, os.path.join( hp.checkpoint_path, "checkpoint_%d.pkl" % sess.global_step ), ) print("*******************************************") if sess.global_step > hp.max_steps: exit(1) def build_dataset(args): dataset = AsrDataset() train_sampler = data.Infinite( RandomSampler(dataset=dataset, batch_size=hp.batch_size) ) dataloader = DataLoader( dataset=dataset, sampler=train_sampler, collator=AsrCollator() ) return dataloader if __name__ == "__main__": main()
[ "megengine.core._imperative_rt.core2.push_scope", "megengine.autodiff.GradManager", "megengine.logger.get_logger", "megengine.functional.minimum", "megengine.random.uniform", "megengine.distributed.init_process_group", "megengine.distributed.make_allreduce_cb", "megengine.functional.concat", "megengine.distributed.Server", "megengine.functional.copy", "megengine.load", "megengine.distributed.get_rank", "megengine.data.RandomSampler", "megengine.distributed.get_world_size", "megengine.core._imperative_rt.core2.pop_scope" ]
[((902, 931), 'megengine.logger.get_logger', 'megengine.logger.get_logger', ([], {}), '()\n', (929, 931), False, 'import megengine\n'), ((1050, 1078), 'megengine.core._imperative_rt.core2.push_scope', 'push_scope', (['"""clip_grad_norm"""'], {}), "('clip_grad_norm')\n", (1060, 1078), False, 'from megengine.core._imperative_rt.core2 import pop_scope, push_scope\n'), ((1416, 1433), 'megengine.functional.minimum', 'minimum', (['scale', '(1)'], {}), '(scale, 1)\n', (1423, 1433), False, 'from megengine.functional import clip, concat, minimum, norm\n'), ((1513, 1540), 'megengine.core._imperative_rt.core2.pop_scope', 'pop_scope', (['"""clip_grad_norm"""'], {}), "('clip_grad_norm')\n", (1522, 1540), False, 'from megengine.core._imperative_rt.core2 import pop_scope, push_scope\n'), ((3181, 3199), 'sys.stderr.flush', 'sys.stderr.flush', ([], {}), '()\n', (3197, 3199), False, 'import sys\n'), ((5731, 5777), 'os.makedirs', 'os.makedirs', (['hp.checkpoint_path'], {'exist_ok': '(True)'}), '(hp.checkpoint_path, exist_ok=True)\n', (5742, 5777), False, 'import os\n'), ((5791, 5816), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (5814, 5816), False, 'import argparse\n'), ((10157, 10169), 'dataset.AsrDataset', 'AsrDataset', ([], {}), '()\n', (10167, 10169), False, 'from dataset import AsrDataset, DataLoader, AsrCollator\n'), ((3556, 3597), 'megengine.random.uniform', 'mge.random.uniform', (['min', 'max', 'param.shape'], {}), '(min, max, param.shape)\n', (3574, 3597), True, 'import megengine as mge\n'), ((3626, 3644), 'megengine.functional.copy', 'F.copy', (['param.grad'], {}), '(param.grad)\n', (3632, 3644), True, 'import megengine.functional as F\n'), ((4966, 4979), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (4977, 4979), False, 'from collections import OrderedDict\n'), ((6925, 6957), 'megengine.distributed.Server', 'dist.Server', ([], {'port': 'args.dist_port'}), '(port=args.dist_port)\n', (6936, 6957), True, 'import megengine.distributed as dist\n'), ((7062, 7085), 'multiprocessing.Pool', 'multiprocessing.Pool', (['(1)'], {}), '(1)\n', (7082, 7085), False, 'import multiprocessing\n'), ((8045, 8204), 'megengine.distributed.init_process_group', 'dist.init_process_group', ([], {'master_ip': 'args.dist_addr', 'port': 'args.dist_port', 'world_size': 'world_size', 'rank': 'rank', 'device': '(rank % ngpus_per_node)', 'backend': '"""nccl"""'}), "(master_ip=args.dist_addr, port=args.dist_port,\n world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend\n ='nccl')\n", (8068, 8204), True, 'import megengine.distributed as dist\n'), ((8989, 9000), 'time.time', 'time.time', ([], {}), '()\n', (8998, 9000), False, 'import time\n'), ((10213, 10269), 'megengine.data.RandomSampler', 'RandomSampler', ([], {'dataset': 'dataset', 'batch_size': 'hp.batch_size'}), '(dataset=dataset, batch_size=hp.batch_size)\n', (10226, 10269), False, 'from megengine.data import SequentialSampler, RandomSampler, DataLoader\n'), ((1307, 1320), 'megengine.functional.concat', 'concat', (['norm_'], {}), '(norm_)\n', (1313, 1320), False, 'from megengine.functional import clip, concat, minimum, norm\n'), ((2420, 2428), 'time.gmtime', 'gmtime', ([], {}), '()\n', (2426, 2428), False, 'from time import strftime, gmtime\n'), ((4523, 4551), 'megengine.load', 'mge.load', (['args.continue_path'], {}), '(args.continue_path)\n', (4531, 4551), True, 'import megengine as mge\n'), ((7861, 7891), 'os.path.join', 'os.path.join', (['args.save', '"""asr"""'], {}), "(args.save, 'asr')\n", (7873, 7891), False, 'import os\n'), ((7946, 7987), 'os.path.join', 'os.path.join', (['args.save', '"""asr"""', '"""log.txt"""'], {}), "(args.save, 'asr', 'log.txt')\n", (7958, 7987), False, 'import os\n'), ((8348, 8363), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (8361, 8363), True, 'import megengine.distributed as dist\n'), ((8365, 8386), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (8384, 8386), True, 'import megengine.distributed as dist\n'), ((9152, 9163), 'time.time', 'time.time', ([], {}), '()\n', (9161, 9163), False, 'import time\n'), ((9316, 9327), 'time.time', 'time.time', ([], {}), '()\n', (9325, 9327), False, 'import time\n'), ((10362, 10375), 'dataset.AsrCollator', 'AsrCollator', ([], {}), '()\n', (10373, 10375), False, 'from dataset import AsrDataset, DataLoader, AsrCollator\n'), ((3710, 3752), 'os.path.join', 'os.path.join', (['hp.dataset_root', '"""vocab.txt"""'], {}), "(hp.dataset_root, 'vocab.txt')\n", (3722, 3752), False, 'import os\n'), ((4175, 4197), 'megengine.autodiff.GradManager', 'autodiff.GradManager', ([], {}), '()\n', (4195, 4197), True, 'import megengine.autodiff as autodiff\n'), ((9860, 9932), 'os.path.join', 'os.path.join', (['hp.checkpoint_path', "('checkpoint_%d.pkl' % sess.global_step)"], {}), "(hp.checkpoint_path, 'checkpoint_%d.pkl' % sess.global_step)\n", (9872, 9932), False, 'import os\n'), ((4265, 4294), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""SUM"""'], {}), "('SUM')\n", (4287, 4294), True, 'import megengine.distributed as dist\n')]
# -*- coding: utf-8 r""" Homogenization of the Darcy flow in a thin porous layer. The reference cell is composed of the matrix representing the dual porosity and of two disconnected channels representing the primary porosity, see paper [1]. [1] <NAME>, <NAME>: Modeling Tissue Perfusion Using a Homogenized Model with Layer-wise Decomposition. IFAC Proceedings Volumes 45(2), 2012, pages 1029-1034. https://doi.org/10.3182/20120215-3-AT-3016.00182 """ from __future__ import absolute_import from sfepy.discrete.fem.periodic import match_x_plane, match_y_plane import sfepy.homogenization.coefs_base as cb import numpy as nm from sfepy import data_dir import six from six.moves import range def get_mats(pk, ph, pe, dim): m1 = nm.eye(dim, dtype=nm.float64) * pk m1[-1, -1] = pk / ph m2 = nm.eye(dim, dtype=nm.float64) * pk m2[-1, -1] = pk / ph ** 2 return m1, m2 def recovery_perf(pb, corrs, macro): from sfepy.homogenization.recovery import compute_p_from_macro from sfepy.base.base import Struct slev = '' micro_nnod = pb.domain.mesh.n_nod centre_Y = nm.sum(pb.domain.mesh.coors, axis=0) / micro_nnod nodes_Y = {} channels = {} for k in six.iterkeys(macro): if 'press' in k: channels[k[-1]] = 1 channels = list(channels.keys()) varnames = ['pM'] for ch in channels: nodes_Y[ch] = pb.domain.regions['Y' + ch].vertices varnames.append('p' + ch) pvars = pb.create_variables(varnames) press = {} # matrix press['M'] = \ corrs['corrs_%s_gamma_p' % pb_def['name']]['pM'] * macro['g_p'] + \ corrs['corrs_%s_gamma_m' % pb_def['name']]['pM'] * macro['g_m'] out = {} # channels for ch in channels: press_mac = macro['press' + ch][0, 0] press_mac_grad = macro['pressg' + ch] nnod = corrs['corrs_%s_pi%s' % (pb_def['name'], ch)]\ ['p%s_0' % ch].shape[0] press_mic = nm.zeros((nnod, 1)) for key, val in \ six.iteritems(corrs['corrs_%s_pi%s' % (pb_def['name'], ch)]): kk = int(key[-1]) press_mic += val * press_mac_grad[kk, 0] for key in six.iterkeys(corrs): if ('_gamma_' + ch in key): kk = int(key[-1]) - 1 press_mic += corrs[key]['p' + ch] * macro['g' + ch][kk] press_mic += \ compute_p_from_macro(press_mac_grad[nm.newaxis,nm.newaxis, :, :], micro_coors[nodes_Y[ch]], 0, centre=centre_Y, extdim=-1).reshape((nnod, 1)) press[ch] = press_mac + eps0 * press_mic out[slev + 'p' + ch] = Struct(name='output_data', mode='vertex', data=press[ch], var_name='p' + ch, dofs=None) pvars['p' + ch].set_data(press_mic) dvel = pb.evaluate('ev_diffusion_velocity.iV.Y%s(mat1%s.k, p%s)' % (ch, ch, ch), var_dict={'p' + ch: pvars['p' + ch]}, mode='el_avg') out[slev + 'w' + ch] = Struct(name='output_data', mode='cell', data=dvel, var_name='w' + ch, dofs=None) press['M'] += corrs['corrs_%s_eta%s' % (pb_def['name'], ch)]['pM']\ * press_mac pvars['pM'].set_data(press['M']) dvel = pb.evaluate('%e * ev_diffusion_velocity.iV.YM(mat1M.k, pM)' % eps0, var_dict={'pM': pvars['pM']}, mode='el_avg') out[slev + 'pM'] = Struct(name='output_data', mode='vertex', dat=press['M'], var_name='pM', dofs=None) out[slev + 'wM'] = Struct(name='output_data', mode='cell', data=dvel, var_name='wM', dofs=None) return out geoms = { '2_4': ['2_4_Q1', '2', 5], '3_8': ['3_8_Q1', '4', 5], '3_4': ['3_4_P1', '3', 3], } pb_def = { 'name': '3d_2ch', 'mesh_filename': data_dir + '/meshes/3d/perfusion_micro3d.mesh', 'dim': 3, 'geom': geoms['3_4'], 'eps0': 1.0e-2, 'param_h': 1.0, 'param_kappa_m': 0.1, 'matrix_mat_el_grp': 3, 'channels': { 'A': { 'mat_el_grp': 1, 'fix_nd_grp': (4, 1), 'io_nd_grp': [1, 2, 3], 'param_kappa_ch': 1.0, }, 'B': { 'mat_el_grp': 2, 'fix_nd_grp': (14, 11), 'io_nd_grp': [11, 12, 13], 'param_kappa_ch': 2.0, }, }, } filename_mesh = pb_def['mesh_filename'] eps0 = pb_def['eps0'] param_h = pb_def['param_h'] # integrals integrals = { 'iV': 2, 'iS': 2, } functions = { 'match_x_plane': (match_x_plane,), 'match_y_plane': (match_y_plane,), } aux = [] for ch, val in six.iteritems(pb_def['channels']): aux.append('r.bYM' + ch) # basic regions regions = { 'Y': 'all', 'YM': 'cells of group %d' % pb_def['matrix_mat_el_grp'], # periodic boundaries 'Pl': ('vertices in (x < 0.001)', 'facet'), 'Pr': ('vertices in (x > 0.999)', 'facet'), 'PlYM': ('r.Pl *v r.YM', 'facet'), 'PrYM': ('r.Pr *v r.YM', 'facet'), 'bYMp': ('r.bYp *v r.YM', 'facet', 'YM'), 'bYMm': ('r.bYm *v r.YM', 'facet', 'YM'), 'bYMpm': ('r.bYMp +v r.bYMm', 'facet', 'YM'), } # matrix/channel boundaries regions.update({ 'bYMchs': (' +v '.join(aux), 'facet', 'YM'), 'YMmchs': 'r.YM -v r.bYMchs', }) # boundary conditions Gamma+/- ebcs = { 'gamma_pm_bYMchs': ('bYMchs', {'pM.0': 0.0}), 'gamma_pm_YMmchs': ('YMmchs', {'pM.0': 1.0}), } # periodic boundary conditions - matrix, X-direction epbcs = {'periodic_xYM': (['PlYM', 'PrYM'], {'pM.0': 'pM.0'}, 'match_x_plane')} lcbcs = {} all_periodicYM = ['periodic_%sYM' % ii for ii in ['x', 'y'][:pb_def['dim']-1]] all_periodicY = {} if pb_def['dim'] == 2: regions.update({ 'bYm': ('vertices in (y < 0.001)', 'facet'), 'bYp': ('vertices in (y > 0.999)', 'facet'), }) if pb_def['dim'] == 3: regions.update({ 'Pn': ('vertices in (y < 0.001)', 'facet'), 'Pf': ('vertices in (y > 0.999)', 'facet'), 'PnYM': ('r.Pn *v r.YM', 'facet'), 'PfYM': ('r.Pf *v r.YM', 'facet'), 'bYm': ('vertices in (z < 0.001)', 'facet'), 'bYp': ('vertices in (z > 0.999)', 'facet'), }) # periodic boundary conditions - matrix, Y-direction epbcs.update({ 'periodic_yYM': (['PnYM', 'PfYM'], {'pM.0': 'pM.0'}, 'match_y_plane'), }) reg_io = {} ebcs_eta = {} ebcs_gamma = {} # generate regions, ebcs, epbcs for ch, val in six.iteritems(pb_def['channels']): all_periodicY[ch] = ['periodic_%sY%s' % (ii, ch) for ii in ['x', 'y'][:pb_def['dim']-1]] # channels: YA, fixedYA, bYMA (matrix/channel boundaries) regions.update({ 'Y' + ch: 'cells of group %d' % val['mat_el_grp'], 'bYM' + ch: ('r.YM *v r.Y' + ch, 'facet', 'YM'), 'PlY' + ch: ('r.Pl *v r.Y' + ch, 'facet'), 'PrY' + ch: ('r.Pr *v r.Y' + ch, 'facet'), }) if 'fix_nd_grp' in val: regions.update({ 'fixedY' + ch: ('vertices of group %d' % val['fix_nd_grp'][0], 'vertex'), }) ebcs_eta[ch] = [] for ch2, val2 in six.iteritems(pb_def['channels']): aux = 'eta%s_bYM%s' % (ch, ch2) if ch2 == ch: ebcs.update({aux: ('bYM' + ch2, {'pM.0': 1.0})}) else: ebcs.update({aux: ('bYM' + ch2, {'pM.0': 0.0})}) ebcs_eta[ch].append(aux) # boundary conditions # periodic boundary conditions - channels, X-direction epbcs.update({ 'periodic_xY' + ch: (['PlY' + ch, 'PrY' + ch], {'p%s.0' % ch: 'p%s.0' % ch}, 'match_x_plane'), }) if pb_def['dim'] == 3: regions.update({ 'PnY' + ch: ('r.Pn *v r.Y' + ch, 'facet'), 'PfY' + ch: ('r.Pf *v r.Y' + ch, 'facet'), }) # periodic boundary conditions - channels, Y-direction epbcs.update({ 'periodic_yY' + ch: (['PnY' + ch, 'PfY' + ch], {'p%s.0' % ch: 'p%s.0' % ch}, 'match_y_plane'), }) reg_io[ch] = [] aux_bY = [] # channel: inputs/outputs for i_io in range(len(val['io_nd_grp'])): io = '%s_%d' % (ch, i_io+1) # regions aux = val['io_nd_grp'][i_io] if 'fix_nd_grp' in val and val['fix_nd_grp'][1] == aux: regions.update({ 'bY%s' % io: ('vertices of group %d +v r.fixedY%s' % (aux, ch), 'facet', 'Y%s' % ch), }) else: regions.update({ 'bY%s' % io: ('vertices of group %d' % aux, 'facet', 'Y%s' % ch), }) aux_bY.append('r.bY%s' % io) reg_io[ch].append('bY%s' % io) regions.update({ 'bY' + ch: (' +v '.join(aux_bY), 'facet', 'Y' + ch), }) # channel: inputs/outputs for i_io in range(len(val['io_nd_grp'])): io = '%s_%d' % (ch, i_io + 1) ion = '%s_n%d' % (ch, i_io + 1) regions.update({ 'bY%s' % ion: ('r.bY%s -v r.bY%s' % (ch, io), 'facet', 'Y%s' % ch), }) # boundary conditions aux = 'fix_p%s_bY%s' % (ch, ion) ebcs.update({ aux: ('bY%s' % ion, {'p%s.0' % ch: 0.0}), }) lcbcs.update({ 'imv' + ch: ('Y' + ch, {'ls%s.all' % ch: None}, None, 'integral_mean_value') }) matk1, matk2 = get_mats(pb_def['param_kappa_m'], param_h, eps0, pb_def['dim']) materials = { 'mat1M': ({'k': matk1},), 'mat2M': ({'k': matk2},), } fields = { 'corrector_M': ('real', 'scalar', 'YM', 1), 'vel_M': ('real', 'vector', 'YM', 1), 'vol_all': ('real', 'scalar', 'Y', 1), } variables = { 'pM': ('unknown field', 'corrector_M'), 'qM': ('test field', 'corrector_M', 'pM'), 'Pi_M': ('parameter field', 'corrector_M', '(set-to-None)'), 'corr_M': ('parameter field', 'corrector_M', '(set-to-None)'), 'corr1_M': ('parameter field', 'corrector_M', '(set-to-None)'), 'corr2_M': ('parameter field', 'corrector_M', '(set-to-None)'), 'wM': ('parameter field', 'vel_M', '(set-to-None)'), 'vol_all': ('parameter field', 'vol_all', '(set-to-None)'), } # generate regions for channel inputs/outputs for ch, val in six.iteritems(pb_def['channels']): matk1, matk2 = get_mats(val['param_kappa_ch'], param_h, eps0, pb_def['dim']) materials.update({ 'mat1' + ch: ({'k': matk1},), 'mat2' + ch: ({'k': matk2},), }) fields.update({ 'corrector_' + ch: ('real', 'scalar', 'Y' + ch, 1), 'vel_' + ch: ('real', 'vector', 'Y' + ch, 1), }) variables.update({ 'p' + ch: ('unknown field', 'corrector_' + ch), 'q' + ch: ('test field', 'corrector_' + ch, 'p' + ch), 'Pi_' + ch: ('parameter field', 'corrector_' + ch, '(set-to-None)'), 'corr1_' + ch: ('parameter field', 'corrector_' + ch, '(set-to-None)'), 'corr2_' + ch: ('parameter field', 'corrector_' + ch, '(set-to-None)'), 'w' + ch: ('unknown field', 'vel_' + ch), # lagrange mutltipliers - integral mean value 'ls' + ch: ('unknown field', 'corrector_' + ch), 'lv' + ch: ('test field', 'corrector_' + ch, 'ls' + ch), }) options = { 'coefs': 'coefs', 'requirements': 'requirements', 'ls': 'ls', # linear solver to use 'volumes': { 'total': { 'variables': ['vol_all'], 'expression': """ev_volume.iV.Y(vol_all)""", }, 'one': { 'value': 1.0, } }, 'output_dir': './output', 'file_per_var': True, 'coefs_filename': 'coefs_perf_' + pb_def['name'], 'coefs_info': {'eps0': eps0}, 'recovery_hook': 'recovery_perf', 'multiprocessing': False, } for ipm in ['p', 'm']: options['volumes'].update({ 'bYM' + ipm: { 'variables': ['pM'], 'expression': "ev_volume.iS.bYM%s(pM)" % ipm, }, 'bY' + ipm: { 'variables': ['vol_all'], 'expression': "ev_volume.iS.bY%s(vol_all)" % ipm, } }) for ch in six.iterkeys(reg_io): for ireg in reg_io[ch]: options['volumes'].update({ ireg: { 'variables': ['p' + ch], 'expression': "ev_volume.iS.%s(p%s)" % (ireg, ch), } }) coefs = { 'vol_bYMpm': { 'regions': ['bYMp', 'bYMm'], 'expression': 'ev_volume.iS.%s(pM)', 'class': cb.VolumeFractions, }, 'filenames': {}, } requirements = { 'corrs_one_YM': { 'variable': ['pM'], 'ebcs': ['gamma_pm_YMmchs', 'gamma_pm_bYMchs'], 'epbcs': [], 'save_name': 'corrs_one_YM', 'class': cb.CorrSetBCS, }, } for ipm in ['p', 'm']: requirements.update({ 'corrs_gamma_' + ipm: { 'requires': [], 'ebcs': ['gamma_pm_bYMchs'], 'epbcs': all_periodicYM, 'equations': { 'eq_gamma_pm': """dw_diffusion.iV.YM(mat2M.k, qM, pM) = %e * dw_integrate.iS.bYM%s(qM)""" % (1.0/param_h, ipm), }, 'class': cb.CorrOne, 'save_name': 'corrs_%s_gamma_%s' % (pb_def['name'], ipm), }, }) for ipm2 in ['p', 'm']: coefs.update({ 'H' + ipm + ipm2: { # test+ 'requires': ['corrs_gamma_' + ipm], 'set_variables': [('corr_M', 'corrs_gamma_' + ipm, 'pM')], 'expression': 'ev_integrate.iS.bYM%s(corr_M)' % ipm2, 'set_volume': 'bYp', 'class': cb.CoefOne, }, }) def get_channel(keys, bn): for ii in keys: if bn in ii: return ii[(ii.rfind(bn) + len(bn)):] return None def set_corrpis(variables, ir, ic, mode, **kwargs): ch = get_channel(list(kwargs.keys()), 'pis_') pis = kwargs['pis_' + ch] corrs_pi = kwargs['corrs_pi' + ch] if mode == 'row': val = pis.states[ir]['p' + ch] + corrs_pi.states[ir]['p' + ch] variables['corr1_' + ch].set_data(val) elif mode == 'col': val = pis.states[ic]['p' + ch] + corrs_pi.states[ic]['p' + ch] variables['corr2_' + ch].set_data(val) def set_corr_S(variables, ir, *args, **kwargs): ch = get_channel(list(kwargs.keys()), 'pis_') io = get_channel(list(kwargs.keys()), 'corrs_gamma_') pis = kwargs['pis_' + ch] corrs_gamma = kwargs['corrs_gamma_' + io] pi = pis.states[ir]['p' + ch] val = corrs_gamma.state['p' + ch] variables['corr1_' + ch].set_data(pi) variables['corr2_' + ch].set_data(val) def set_corr_cc(variables, ir, *args, **kwargs): ch = get_channel(list(kwargs.keys()), 'pis_') pis = kwargs['pis_' + ch] corrs_pi = kwargs['corrs_pi' + ch] pi = pis.states[ir]['p' + ch] pi = pi - nm.mean(pi) val = pi + corrs_pi.states[ir]['p' + ch] variables['corr1_' + ch].set_data(val) for ch, val in six.iteritems(pb_def['channels']): coefs.update({ 'G' + ch: { # test+ 'requires': ['corrs_one' + ch, 'corrs_eta' + ch], 'set_variables': [('corr1_M', 'corrs_one' + ch, 'pM'), ('corr2_M', 'corrs_eta' + ch, 'pM')], 'expression': 'dw_diffusion.iV.YM(mat2M.k, corr1_M, corr2_M)', 'class': cb.CoefOne, }, 'K' + ch: { # test+ 'requires': ['pis_' + ch, 'corrs_pi' + ch], 'set_variables': set_corrpis, 'expression': 'dw_diffusion.iV.Y%s(mat2%s.k, corr1_%s, corr2_%s)'\ % ((ch,) * 4), 'dim': pb_def['dim'] - 1, 'class': cb.CoefDimDim, }, }) requirements.update({ 'pis_' + ch: { 'variables': ['p' + ch], 'class': cb.ShapeDim, }, 'corrs_one' + ch: { 'variable': ['pM'], 'ebcs': ebcs_eta[ch], 'epbcs': [], 'save_name': 'corrs_%s_one%s' % (pb_def['name'], ch), 'class': cb.CorrSetBCS, }, 'corrs_eta' + ch: { 'ebcs': ebcs_eta[ch], 'epbcs': all_periodicYM, 'equations': { 'eq_eta': 'dw_diffusion.iV.YM(mat2M.k, qM, pM) = 0', }, 'class': cb.CorrOne, 'save_name': 'corrs_%s_eta%s' % (pb_def['name'], ch), }, 'corrs_pi' + ch: { 'requires': ['pis_' + ch], 'set_variables': [('Pi_' + ch, 'pis_' + ch, 'p' + ch)], 'ebcs': [], 'epbcs': all_periodicY[ch], 'lcbcs': ['imv' + ch], 'equations': { 'eq_pi': """dw_diffusion.iV.Y%s(mat2%s.k, q%s, p%s) + dw_dot.iV.Y%s(q%s, ls%s) = - dw_diffusion.iV.Y%s(mat2%s.k, q%s, Pi_%s)""" % ((ch,) * 11), 'eq_imv': 'dw_dot.iV.Y%s(lv%s, p%s) = 0' % ((ch,) * 3), }, 'dim': pb_def['dim'] - 1, 'class': cb.CorrDim, 'save_name': 'corrs_%s_pi%s' % (pb_def['name'], ch), }, }) for ipm in ['p', 'm']: coefs.update({ 'E' + ipm + ch: { # test+ 'requires': ['corrs_eta' + ch], 'set_variables': [('corr_M', 'corrs_eta' + ch, 'pM')], 'expression': 'ev_integrate.iS.bYM%s(corr_M)' % ipm, 'set_volume': 'bYp', 'class': cb.CoefOne, }, 'F' + ipm + ch: { # test+ 'requires': ['corrs_one' + ch, 'corrs_gamma_' + ipm], 'set_variables': [('corr1_M', 'corrs_one' + ch, 'pM'), ('corr2_M', 'corrs_gamma_' + ipm, 'pM')], 'expression': """dw_diffusion.iV.YM(mat2M.k, corr1_M, corr2_M) - %e * ev_integrate.iS.bYM%s(corr1_M)"""\ % (1.0/param_h, ipm), 'class': cb.CoefOne, }, }) for i_io in range(len(val['io_nd_grp'])): io = '%s_%d' % (ch, i_io + 1) coefs.update({ 'S' + io: { # [Rohan1] (4.28), test+ 'requires': ['corrs_gamma_' + io, 'pis_' + ch], 'set_variables': set_corr_S, 'expression': 'dw_diffusion.iV.Y%s(mat2%s.k,corr1_%s,corr2_%s)' % ((ch,) * 4), 'dim': pb_def['dim'] - 1, 'class': cb.CoefDim, }, 'P' + io: { # test+ 'requires': ['pis_' + ch, 'corrs_pi' + ch], 'set_variables': set_corr_cc, 'expression': 'ev_integrate.iS.bY%s(corr1_%s)'\ % (io, ch), 'set_volume': 'bYp', 'dim': pb_def['dim'] - 1, 'class': cb.CoefDim, }, 'S_test' + io: { 'requires': ['corrs_pi' + ch], 'set_variables': [('corr1_' + ch, 'corrs_pi' + ch, 'p' + ch)], 'expression': '%e * ev_integrate.iS.bY%s(corr1_%s)'\ % (1.0 / param_h, io, ch), 'dim': pb_def['dim'] - 1, 'class': cb.CoefDim, }, }) requirements.update({ 'corrs_gamma_' + io: { 'requires': [], 'variables': ['p' + ch, 'q' + ch], 'ebcs': [], 'epbcs': all_periodicY[ch], 'lcbcs': ['imv' + ch], 'equations': { 'eq_gamma': """dw_diffusion.iV.Y%s(mat2%s.k, q%s, p%s) + dw_dot.iV.Y%s(q%s, ls%s) = %e * dw_integrate.iS.bY%s(q%s)""" % ((ch,) * 7 + (1.0/param_h, io, ch)), 'eq_imv': 'dw_dot.iV.Y%s(lv%s, p%s) = 0' % ((ch,) * 3), }, 'class': cb.CorrOne, 'save_name': 'corrs_%s_gamma_%s' % (pb_def['name'], io), }, }) for i_io2 in range(len(val['io_nd_grp'])): io2 = '%s_%d' % (ch, i_io2 + 1) io12 = '%s_%d' % (io, i_io2 + 1) coefs.update({ 'R' + io12: { # test+ 'requires': ['corrs_gamma_' + io2], 'set_variables': [('corr1_' + ch, 'corrs_gamma_' + io2, 'p' + ch)], 'expression': 'ev_integrate.iS.bY%s(corr1_%s)'\ % (io, ch), 'set_volume': 'bYp', 'class': cb.CoefOne, }, }) solvers = { 'ls': ('ls.scipy_direct', {}), 'newton': ('nls.newton', { 'i_max': 1, }) }
[ "sfepy.homogenization.recovery.compute_p_from_macro", "sfepy.base.base.Struct" ]
[((5156, 5189), 'six.iteritems', 'six.iteritems', (["pb_def['channels']"], {}), "(pb_def['channels'])\n", (5169, 5189), False, 'import six\n'), ((6949, 6982), 'six.iteritems', 'six.iteritems', (["pb_def['channels']"], {}), "(pb_def['channels'])\n", (6962, 6982), False, 'import six\n'), ((10860, 10893), 'six.iteritems', 'six.iteritems', (["pb_def['channels']"], {}), "(pb_def['channels'])\n", (10873, 10893), False, 'import six\n'), ((12725, 12745), 'six.iterkeys', 'six.iterkeys', (['reg_io'], {}), '(reg_io)\n', (12737, 12745), False, 'import six\n'), ((15620, 15653), 'six.iteritems', 'six.iteritems', (["pb_def['channels']"], {}), "(pb_def['channels'])\n", (15633, 15653), False, 'import six\n'), ((1200, 1219), 'six.iterkeys', 'six.iterkeys', (['macro'], {}), '(macro)\n', (1212, 1219), False, 'import six\n'), ((3753, 3840), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'dat': "press['M']", 'var_name': '"""pM"""', 'dofs': 'None'}), "(name='output_data', mode='vertex', dat=press['M'], var_name='pM',\n dofs=None)\n", (3759, 3840), False, 'from sfepy.base.base import Struct\n'), ((3981, 4057), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'dvel', 'var_name': '"""wM"""', 'dofs': 'None'}), "(name='output_data', mode='cell', data=dvel, var_name='wM', dofs=None)\n", (3987, 4057), False, 'from sfepy.base.base import Struct\n'), ((7635, 7668), 'six.iteritems', 'six.iteritems', (["pb_def['channels']"], {}), "(pb_def['channels'])\n", (7648, 7668), False, 'import six\n'), ((733, 762), 'numpy.eye', 'nm.eye', (['dim'], {'dtype': 'nm.float64'}), '(dim, dtype=nm.float64)\n', (739, 762), True, 'import numpy as nm\n'), ((802, 831), 'numpy.eye', 'nm.eye', (['dim'], {'dtype': 'nm.float64'}), '(dim, dtype=nm.float64)\n', (808, 831), True, 'import numpy as nm\n'), ((1101, 1137), 'numpy.sum', 'nm.sum', (['pb.domain.mesh.coors'], {'axis': '(0)'}), '(pb.domain.mesh.coors, axis=0)\n', (1107, 1137), True, 'import numpy as nm\n'), ((1958, 1977), 'numpy.zeros', 'nm.zeros', (['(nnod, 1)'], {}), '((nnod, 1))\n', (1966, 1977), True, 'import numpy as nm\n'), ((2014, 2074), 'six.iteritems', 'six.iteritems', (["corrs['corrs_%s_pi%s' % (pb_def['name'], ch)]"], {}), "(corrs['corrs_%s_pi%s' % (pb_def['name'], ch)])\n", (2027, 2074), False, 'import six\n'), ((2179, 2198), 'six.iterkeys', 'six.iterkeys', (['corrs'], {}), '(corrs)\n', (2191, 2198), False, 'import six\n'), ((2670, 2761), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'data': 'press[ch]', 'var_name': "('p' + ch)", 'dofs': 'None'}), "(name='output_data', mode='vertex', data=press[ch], var_name='p' + ch,\n dofs=None)\n", (2676, 2761), False, 'from sfepy.base.base import Struct\n'), ((3210, 3295), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'dvel', 'var_name': "('w' + ch)", 'dofs': 'None'}), "(name='output_data', mode='cell', data=dvel, var_name='w' + ch, dofs=None\n )\n", (3216, 3295), False, 'from sfepy.base.base import Struct\n'), ((15503, 15514), 'numpy.mean', 'nm.mean', (['pi'], {}), '(pi)\n', (15510, 15514), True, 'import numpy as nm\n'), ((2384, 2511), 'sfepy.homogenization.recovery.compute_p_from_macro', 'compute_p_from_macro', (['press_mac_grad[nm.newaxis, nm.newaxis, :, :]', 'micro_coors[nodes_Y[ch]]', '(0)'], {'centre': 'centre_Y', 'extdim': '(-1)'}), '(press_mac_grad[nm.newaxis, nm.newaxis, :, :],\n micro_coors[nodes_Y[ch]], 0, centre=centre_Y, extdim=-1)\n', (2404, 2511), False, 'from sfepy.homogenization.recovery import compute_p_from_macro\n')]
"""empty message Revision ID: 2d614148ea4b Revises: Create Date: 2022-03-17 22:29:00.613962 """ from alembic import op import sqlalchemy as sa import sqlalchemy_utils import sqlmodel # added from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = '2d614148ea4b' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('role', sa.Column('name', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('description', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('id', sa.Integer(), nullable=False), sa.Column('updated_at', sa.DateTime(), nullable=True), sa.Column('created_at', sa.DateTime(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('user', sa.Column('first_name', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('last_name', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('email', sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column('is_active', sa.Boolean(), nullable=True), sa.Column('is_superuser', sa.Boolean(), nullable=True), sa.Column('birthdate', sa.DateTime(), nullable=True), sa.Column('phone', sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column('state', sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column('country', sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column('address', sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('updated_at', sa.DateTime(), nullable=True), sa.Column('id', sa.Integer(), nullable=False), sa.Column('hashed_password', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('role_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['role_id'], ['role.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=True) op.create_index(op.f('ix_user_hashed_password'), 'user', ['hashed_password'], unique=False) op.create_table('textinference', sa.Column('result', postgresql.JSON(astext_type=sa.Text()), nullable=True), sa.Column('text', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('id', sa.Integer(), nullable=False), sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('updated_at', sa.DateTime(), nullable=True), sa.Column('created_by_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['created_by_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_textinference_text'), 'textinference', ['text'], unique=False) op.create_table('zeroshotinference', sa.Column('candidate_labels', postgresql.JSON(astext_type=sa.Text()), nullable=True), sa.Column('result', postgresql.JSON(astext_type=sa.Text()), nullable=True), sa.Column('text', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('id', sa.Integer(), nullable=False), sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('updated_at', sa.DateTime(), nullable=True), sa.Column('created_by_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['created_by_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_zeroshotinference_text'), 'zeroshotinference', ['text'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_zeroshotinference_text'), table_name='zeroshotinference') op.drop_table('zeroshotinference') op.drop_index(op.f('ix_textinference_text'), table_name='textinference') op.drop_table('textinference') op.drop_index(op.f('ix_user_hashed_password'), table_name='user') op.drop_index(op.f('ix_user_email'), table_name='user') op.drop_table('user') op.drop_table('role') # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((3708, 3742), 'alembic.op.drop_table', 'op.drop_table', (['"""zeroshotinference"""'], {}), "('zeroshotinference')\n", (3721, 3742), False, 'from alembic import op\n'), ((3824, 3854), 'alembic.op.drop_table', 'op.drop_table', (['"""textinference"""'], {}), "('textinference')\n", (3837, 3854), False, 'from alembic import op\n'), ((3989, 4010), 'alembic.op.drop_table', 'op.drop_table', (['"""user"""'], {}), "('user')\n", (4002, 4010), False, 'from alembic import op\n'), ((4015, 4036), 'alembic.op.drop_table', 'op.drop_table', (['"""role"""'], {}), "('role')\n", (4028, 4036), False, 'from alembic import op\n'), ((806, 835), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (829, 835), True, 'import sqlalchemy as sa\n'), ((1899, 1948), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['role_id']", "['role.id']"], {}), "(['role_id'], ['role.id'])\n", (1922, 1948), True, 'import sqlalchemy as sa\n'), ((1956, 1985), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1979, 1985), True, 'import sqlalchemy as sa\n'), ((2012, 2033), 'alembic.op.f', 'op.f', (['"""ix_user_email"""'], {}), "('ix_user_email')\n", (2016, 2033), False, 'from alembic import op\n'), ((2087, 2118), 'alembic.op.f', 'op.f', (['"""ix_user_hashed_password"""'], {}), "('ix_user_hashed_password')\n", (2091, 2118), False, 'from alembic import op\n'), ((2589, 2644), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['created_by_id']", "['user.id']"], {}), "(['created_by_id'], ['user.id'])\n", (2612, 2644), True, 'import sqlalchemy as sa\n'), ((2652, 2681), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (2675, 2681), True, 'import sqlalchemy as sa\n'), ((2708, 2737), 'alembic.op.f', 'op.f', (['"""ix_textinference_text"""'], {}), "('ix_textinference_text')\n", (2712, 2737), False, 'from alembic import op\n'), ((3300, 3355), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['created_by_id']", "['user.id']"], {}), "(['created_by_id'], ['user.id'])\n", (3323, 3355), True, 'import sqlalchemy as sa\n'), ((3363, 3392), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (3386, 3392), True, 'import sqlalchemy as sa\n'), ((3419, 3452), 'alembic.op.f', 'op.f', (['"""ix_zeroshotinference_text"""'], {}), "('ix_zeroshotinference_text')\n", (3423, 3452), False, 'from alembic import op\n'), ((3637, 3670), 'alembic.op.f', 'op.f', (['"""ix_zeroshotinference_text"""'], {}), "('ix_zeroshotinference_text')\n", (3641, 3670), False, 'from alembic import op\n'), ((3761, 3790), 'alembic.op.f', 'op.f', (['"""ix_textinference_text"""'], {}), "('ix_textinference_text')\n", (3765, 3790), False, 'from alembic import op\n'), ((3873, 3904), 'alembic.op.f', 'op.f', (['"""ix_user_hashed_password"""'], {}), "('ix_user_hashed_password')\n", (3877, 3904), False, 'from alembic import op\n'), ((3943, 3964), 'alembic.op.f', 'op.f', (['"""ix_user_email"""'], {}), "('ix_user_email')\n", (3947, 3964), False, 'from alembic import op\n'), ((498, 532), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (530, 532), False, 'import sqlmodel\n'), ((580, 614), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (612, 614), False, 'import sqlmodel\n'), ((653, 665), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (663, 665), True, 'import sqlalchemy as sa\n'), ((712, 725), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (723, 725), True, 'import sqlalchemy as sa\n'), ((771, 784), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (782, 784), True, 'import sqlalchemy as sa\n'), ((898, 932), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (930, 932), False, 'import sqlmodel\n'), ((978, 1012), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1010, 1012), False, 'import sqlmodel\n'), ((1054, 1088), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1086, 1088), False, 'import sqlmodel\n'), ((1133, 1145), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (1143, 1145), True, 'import sqlalchemy as sa\n'), ((1193, 1205), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (1203, 1205), True, 'import sqlalchemy as sa\n'), ((1250, 1263), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1261, 1263), True, 'import sqlalchemy as sa\n'), ((1304, 1338), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1336, 1338), False, 'import sqlmodel\n'), ((1379, 1413), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1411, 1413), False, 'import sqlmodel\n'), ((1456, 1490), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1488, 1490), False, 'import sqlmodel\n'), ((1533, 1567), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1565, 1567), False, 'import sqlmodel\n'), ((1613, 1626), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1624, 1626), True, 'import sqlalchemy as sa\n'), ((1672, 1685), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1683, 1685), True, 'import sqlalchemy as sa\n'), ((1723, 1735), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1733, 1735), True, 'import sqlalchemy as sa\n'), ((1787, 1821), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1819, 1821), False, 'import sqlmodel\n'), ((1865, 1877), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1875, 1877), True, 'import sqlalchemy as sa\n'), ((2302, 2336), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2334, 2336), False, 'import sqlmodel\n'), ((2375, 2387), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (2385, 2387), True, 'import sqlalchemy as sa\n'), ((2434, 2447), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (2445, 2447), True, 'import sqlalchemy as sa\n'), ((2493, 2506), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (2504, 2506), True, 'import sqlalchemy as sa\n'), ((2555, 2567), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (2565, 2567), True, 'import sqlalchemy as sa\n'), ((3013, 3047), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (3045, 3047), False, 'import sqlmodel\n'), ((3086, 3098), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (3096, 3098), True, 'import sqlalchemy as sa\n'), ((3145, 3158), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (3156, 3158), True, 'import sqlalchemy as sa\n'), ((3204, 3217), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (3215, 3217), True, 'import sqlalchemy as sa\n'), ((3266, 3278), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (3276, 3278), True, 'import sqlalchemy as sa\n'), ((2252, 2261), 'sqlalchemy.Text', 'sa.Text', ([], {}), '()\n', (2259, 2261), True, 'import sqlalchemy as sa\n'), ((2883, 2892), 'sqlalchemy.Text', 'sa.Text', ([], {}), '()\n', (2890, 2892), True, 'import sqlalchemy as sa\n'), ((2963, 2972), 'sqlalchemy.Text', 'sa.Text', ([], {}), '()\n', (2970, 2972), True, 'import sqlalchemy as sa\n')]
""" Computational domain for isogeometric analysis. """ import os.path as op import numpy as nm from sfepy.base.base import Struct from sfepy.discrete.common.domain import Domain import sfepy.discrete.iga as iga import sfepy.discrete.iga.io as io from sfepy.discrete.iga.extmods.igac import eval_in_tp_coors class NurbsPatch(Struct): """ Single NURBS patch data. """ def __init__(self, knots, degrees, cps, weights, cs, conn): Struct.__init__(self, name='nurbs', knots=knots, degrees=degrees, cps=cps, weights=weights, cs=cs, conn=conn) self.n_els = [len(ii) for ii in cs] self.dim = len(self.n_els) def _get_ref_coors_1d(self, pars, axis): uk = nm.unique(self.knots[axis]) indices = nm.searchsorted(uk[1:], pars) ref_coors = nm.empty_like(pars) for ii in xrange(len(uk) - 1): ispan = nm.where(indices == ii)[0] pp = pars[ispan] ref_coors[ispan] = (pp - uk[ii]) / (uk[ii+1] - uk[ii]) return uk, indices, ref_coors def __call__(self, u=None, v=None, w=None, field=None): """ Igakit-like interface for NURBS evaluation. """ pars = [u] if v is not None: pars += [v] if w is not None: pars += [w] indices = [] rcs = [] for ia, par in enumerate(pars): uk, indx, rc = self._get_ref_coors_1d(par, ia) indices.append(indx.astype(nm.uint32)) rcs.append(rc) out = eval_in_tp_coors(field, indices, rcs, self.cps, self.weights, self.degrees, self.cs, self.conn) return out def evaluate(self, field, u=None, v=None, w=None): """ Igakit-like interface for NURBS evaluation. """ return self(u, v, w, field) class IGDomain(Domain): """ Bezier extraction based NURBS domain for isogeometric analysis. """ @staticmethod def from_file(filename): """ filename : str The name of the IGA domain file. """ (knots, degrees, cps, weights, cs, conn, bcps, bweights, bconn, regions) = io.read_iga_data(filename) nurbs = NurbsPatch(knots, degrees, cps, weights, cs, conn) bmesh = Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn) name = op.splitext(filename)[0] domain = IGDomain(name, nurbs=nurbs, bmesh=bmesh, regions=regions) return domain def __init__(self, name, nurbs, bmesh, regions=None, **kwargs): """ Create an IGA domain. Parameters ---------- name : str The domain name. """ Domain.__init__(self, name, nurbs=nurbs, bmesh=bmesh, regions=regions, **kwargs) from sfepy.discrete.fem.geometry_element import create_geometry_elements from sfepy.discrete.fem import Mesh from sfepy.discrete.fem.extmods.cmesh import CMesh from sfepy.discrete.fem.utils import prepare_remap ac = nm.ascontiguousarray self.nurbs.cs = [ac(nm.array(cc, dtype=nm.float64)[:, None, ...]) for cc in self.nurbs.cs] self.nurbs.degrees = self.nurbs.degrees.astype(nm.int32) self.facets = iga.get_bezier_element_entities(nurbs.degrees) tconn = iga.get_bezier_topology(bmesh.conn, nurbs.degrees) itc = nm.unique(tconn) remap = prepare_remap(itc, bmesh.conn.max() + 1) ltcoors = bmesh.cps[itc] ltconn = remap[tconn] n_nod, dim = ltcoors.shape n_el = ltconn.shape[0] self.shape = Struct(n_nod=n_nod, dim=dim, tdim=0, n_el=n_el, n_gr=1) desc = '%d_%d' % (dim, 2**dim) mat_id = nm.zeros(ltconn.shape[0], dtype=nm.int32) self.mesh = Mesh.from_data(self.name + '_topo', ltcoors, None, [ltconn], [mat_id], [desc]) self.cmesh = CMesh.from_mesh(self.mesh) gels = create_geometry_elements() self.cmesh.set_local_entities(gels) self.cmesh.setup_entities() self.shape.tdim = self.cmesh.tdim self.gel = gels[desc] if regions is not None: self.vertex_set_bcs = {} for key, val in self.regions.iteritems(): self.vertex_set_bcs[key] = remap[val] self.cell_offsets = {0 : 0} self.reset_regions()
[ "sfepy.discrete.iga.io.read_iga_data", "sfepy.discrete.fem.Mesh.from_data", "sfepy.base.base.Struct", "sfepy.discrete.common.domain.Domain.__init__", "sfepy.discrete.iga.get_bezier_element_entities", "sfepy.discrete.fem.geometry_element.create_geometry_elements", "sfepy.discrete.fem.extmods.cmesh.CMesh.from_mesh", "sfepy.discrete.iga.extmods.igac.eval_in_tp_coors", "sfepy.base.base.Struct.__init__", "sfepy.discrete.iga.get_bezier_topology" ]
[((472, 585), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'name': '"""nurbs"""', 'knots': 'knots', 'degrees': 'degrees', 'cps': 'cps', 'weights': 'weights', 'cs': 'cs', 'conn': 'conn'}), "(self, name='nurbs', knots=knots, degrees=degrees, cps=cps,\n weights=weights, cs=cs, conn=conn)\n", (487, 585), False, 'from sfepy.base.base import Struct\n'), ((744, 771), 'numpy.unique', 'nm.unique', (['self.knots[axis]'], {}), '(self.knots[axis])\n', (753, 771), True, 'import numpy as nm\n'), ((790, 819), 'numpy.searchsorted', 'nm.searchsorted', (['uk[1:]', 'pars'], {}), '(uk[1:], pars)\n', (805, 819), True, 'import numpy as nm\n'), ((840, 859), 'numpy.empty_like', 'nm.empty_like', (['pars'], {}), '(pars)\n', (853, 859), True, 'import numpy as nm\n'), ((1544, 1643), 'sfepy.discrete.iga.extmods.igac.eval_in_tp_coors', 'eval_in_tp_coors', (['field', 'indices', 'rcs', 'self.cps', 'self.weights', 'self.degrees', 'self.cs', 'self.conn'], {}), '(field, indices, rcs, self.cps, self.weights, self.degrees,\n self.cs, self.conn)\n', (1560, 1643), False, 'from sfepy.discrete.iga.extmods.igac import eval_in_tp_coors\n'), ((2262, 2288), 'sfepy.discrete.iga.io.read_iga_data', 'io.read_iga_data', (['filename'], {}), '(filename)\n', (2278, 2288), True, 'import sfepy.discrete.iga.io as io\n'), ((2373, 2433), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""bmesh"""', 'cps': 'bcps', 'weights': 'bweights', 'conn': 'bconn'}), "(name='bmesh', cps=bcps, weights=bweights, conn=bconn)\n", (2379, 2433), False, 'from sfepy.base.base import Struct\n'), ((2790, 2875), 'sfepy.discrete.common.domain.Domain.__init__', 'Domain.__init__', (['self', 'name'], {'nurbs': 'nurbs', 'bmesh': 'bmesh', 'regions': 'regions'}), '(self, name, nurbs=nurbs, bmesh=bmesh, regions=regions, **kwargs\n )\n', (2805, 2875), False, 'from sfepy.discrete.common.domain import Domain\n'), ((3386, 3432), 'sfepy.discrete.iga.get_bezier_element_entities', 'iga.get_bezier_element_entities', (['nurbs.degrees'], {}), '(nurbs.degrees)\n', (3417, 3432), True, 'import sfepy.discrete.iga as iga\n'), ((3450, 3500), 'sfepy.discrete.iga.get_bezier_topology', 'iga.get_bezier_topology', (['bmesh.conn', 'nurbs.degrees'], {}), '(bmesh.conn, nurbs.degrees)\n', (3473, 3500), True, 'import sfepy.discrete.iga as iga\n'), ((3515, 3531), 'numpy.unique', 'nm.unique', (['tconn'], {}), '(tconn)\n', (3524, 3531), True, 'import numpy as nm\n'), ((3742, 3797), 'sfepy.base.base.Struct', 'Struct', ([], {'n_nod': 'n_nod', 'dim': 'dim', 'tdim': '(0)', 'n_el': 'n_el', 'n_gr': '(1)'}), '(n_nod=n_nod, dim=dim, tdim=0, n_el=n_el, n_gr=1)\n', (3748, 3797), False, 'from sfepy.base.base import Struct\n'), ((3855, 3896), 'numpy.zeros', 'nm.zeros', (['ltconn.shape[0]'], {'dtype': 'nm.int32'}), '(ltconn.shape[0], dtype=nm.int32)\n', (3863, 3896), True, 'import numpy as nm\n'), ((3917, 3995), 'sfepy.discrete.fem.Mesh.from_data', 'Mesh.from_data', (["(self.name + '_topo')", 'ltcoors', 'None', '[ltconn]', '[mat_id]', '[desc]'], {}), "(self.name + '_topo', ltcoors, None, [ltconn], [mat_id], [desc])\n", (3931, 3995), False, 'from sfepy.discrete.fem import Mesh\n'), ((4053, 4079), 'sfepy.discrete.fem.extmods.cmesh.CMesh.from_mesh', 'CMesh.from_mesh', (['self.mesh'], {}), '(self.mesh)\n', (4068, 4079), False, 'from sfepy.discrete.fem.extmods.cmesh import CMesh\n'), ((4095, 4121), 'sfepy.discrete.fem.geometry_element.create_geometry_elements', 'create_geometry_elements', ([], {}), '()\n', (4119, 4121), False, 'from sfepy.discrete.fem.geometry_element import create_geometry_elements\n'), ((2450, 2471), 'os.path.splitext', 'op.splitext', (['filename'], {}), '(filename)\n', (2461, 2471), True, 'import os.path as op\n'), ((919, 942), 'numpy.where', 'nm.where', (['(indices == ii)'], {}), '(indices == ii)\n', (927, 942), True, 'import numpy as nm\n'), ((3201, 3231), 'numpy.array', 'nm.array', (['cc'], {'dtype': 'nm.float64'}), '(cc, dtype=nm.float64)\n', (3209, 3231), True, 'import numpy as nm\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import megengine as mge import megengine.module as M import numpy as np import pytest import torch import torch.nn as nn from basecls.configs import BaseConfig from basecls.layers import BinaryCrossEntropy, CrossEntropy, build_loss @pytest.mark.parametrize("name", [CrossEntropy, "BinaryCrossEntropy", "CrossEntropy"]) def test_build_loss(name): cfg = BaseConfig(loss=dict(name=name)) m = build_loss(cfg) assert isinstance(m, M.Module) def test_bce(): x = np.random.rand(2, 8, 4).astype("float32") y = np.random.rand(2, 8, 4).astype("float32") ml = BinaryCrossEntropy()(mge.Tensor(x), mge.Tensor(y)).numpy() tl = nn.BCEWithLogitsLoss()(torch.tensor(x), torch.tensor(y)).numpy() np.testing.assert_allclose(ml, tl, rtol=1e-4, atol=1e-6) def test_ce(): K = 4 x = np.random.rand(2, 8, K).astype("float32") y = np.random.randint(K, size=(2, 8)).astype("int32") oy = np.eye(K, dtype="int32")[y] ml = CrossEntropy(axis=2)(mge.Tensor(x), mge.Tensor(y)).numpy() tl = nn.CrossEntropyLoss()( torch.tensor(x).reshape(-1, K), torch.tensor(y).flatten().long() ).numpy() np.testing.assert_allclose(ml, tl, rtol=1e-4, atol=1e-6) # one hot ol = CrossEntropy(axis=2)(mge.Tensor(x), mge.Tensor(oy)).numpy() np.testing.assert_allclose(ml, ol, rtol=1e-4, atol=1e-6) # label smoothing ml = CrossEntropy(axis=2, label_smooth=0.1)(mge.Tensor(x), mge.Tensor(y)).numpy() ol = CrossEntropy(axis=2, label_smooth=0.1)(mge.Tensor(x), mge.Tensor(oy)).numpy() np.testing.assert_allclose(ml, ol, rtol=1e-4, atol=1e-6)
[ "megengine.Tensor" ]
[((318, 407), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""name"""', "[CrossEntropy, 'BinaryCrossEntropy', 'CrossEntropy']"], {}), "('name', [CrossEntropy, 'BinaryCrossEntropy',\n 'CrossEntropy'])\n", (341, 407), False, 'import pytest\n'), ((483, 498), 'basecls.layers.build_loss', 'build_loss', (['cfg'], {}), '(cfg)\n', (493, 498), False, 'from basecls.layers import BinaryCrossEntropy, CrossEntropy, build_loss\n'), ((799, 858), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['ml', 'tl'], {'rtol': '(0.0001)', 'atol': '(1e-06)'}), '(ml, tl, rtol=0.0001, atol=1e-06)\n', (825, 858), True, 'import numpy as np\n'), ((1221, 1280), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['ml', 'tl'], {'rtol': '(0.0001)', 'atol': '(1e-06)'}), '(ml, tl, rtol=0.0001, atol=1e-06)\n', (1247, 1280), True, 'import numpy as np\n'), ((1366, 1425), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['ml', 'ol'], {'rtol': '(0.0001)', 'atol': '(1e-06)'}), '(ml, ol, rtol=0.0001, atol=1e-06)\n', (1392, 1425), True, 'import numpy as np\n'), ((1623, 1682), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['ml', 'ol'], {'rtol': '(0.0001)', 'atol': '(1e-06)'}), '(ml, ol, rtol=0.0001, atol=1e-06)\n', (1649, 1682), True, 'import numpy as np\n'), ((1001, 1025), 'numpy.eye', 'np.eye', (['K'], {'dtype': '"""int32"""'}), "(K, dtype='int32')\n", (1007, 1025), True, 'import numpy as np\n'), ((560, 583), 'numpy.random.rand', 'np.random.rand', (['(2)', '(8)', '(4)'], {}), '(2, 8, 4)\n', (574, 583), True, 'import numpy as np\n'), ((610, 633), 'numpy.random.rand', 'np.random.rand', (['(2)', '(8)', '(4)'], {}), '(2, 8, 4)\n', (624, 633), True, 'import numpy as np\n'), ((892, 915), 'numpy.random.rand', 'np.random.rand', (['(2)', '(8)', 'K'], {}), '(2, 8, K)\n', (906, 915), True, 'import numpy as np\n'), ((942, 975), 'numpy.random.randint', 'np.random.randint', (['K'], {'size': '(2, 8)'}), '(K, size=(2, 8))\n', (959, 975), True, 'import numpy as np\n'), ((662, 682), 'basecls.layers.BinaryCrossEntropy', 'BinaryCrossEntropy', ([], {}), '()\n', (680, 682), False, 'from basecls.layers import BinaryCrossEntropy, CrossEntropy, build_loss\n'), ((683, 696), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (693, 696), True, 'import megengine as mge\n'), ((698, 711), 'megengine.Tensor', 'mge.Tensor', (['y'], {}), '(y)\n', (708, 711), True, 'import megengine as mge\n'), ((730, 752), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {}), '()\n', (750, 752), True, 'import torch.nn as nn\n'), ((753, 768), 'torch.tensor', 'torch.tensor', (['x'], {}), '(x)\n', (765, 768), False, 'import torch\n'), ((770, 785), 'torch.tensor', 'torch.tensor', (['y'], {}), '(y)\n', (782, 785), False, 'import torch\n'), ((1039, 1059), 'basecls.layers.CrossEntropy', 'CrossEntropy', ([], {'axis': '(2)'}), '(axis=2)\n', (1051, 1059), False, 'from basecls.layers import BinaryCrossEntropy, CrossEntropy, build_loss\n'), ((1060, 1073), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1070, 1073), True, 'import megengine as mge\n'), ((1075, 1088), 'megengine.Tensor', 'mge.Tensor', (['y'], {}), '(y)\n', (1085, 1088), True, 'import megengine as mge\n'), ((1107, 1128), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1126, 1128), True, 'import torch.nn as nn\n'), ((1302, 1322), 'basecls.layers.CrossEntropy', 'CrossEntropy', ([], {'axis': '(2)'}), '(axis=2)\n', (1314, 1322), False, 'from basecls.layers import BinaryCrossEntropy, CrossEntropy, build_loss\n'), ((1323, 1336), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1333, 1336), True, 'import megengine as mge\n'), ((1338, 1352), 'megengine.Tensor', 'mge.Tensor', (['oy'], {}), '(oy)\n', (1348, 1352), True, 'import megengine as mge\n'), ((1455, 1493), 'basecls.layers.CrossEntropy', 'CrossEntropy', ([], {'axis': '(2)', 'label_smooth': '(0.1)'}), '(axis=2, label_smooth=0.1)\n', (1467, 1493), False, 'from basecls.layers import BinaryCrossEntropy, CrossEntropy, build_loss\n'), ((1494, 1507), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1504, 1507), True, 'import megengine as mge\n'), ((1509, 1522), 'megengine.Tensor', 'mge.Tensor', (['y'], {}), '(y)\n', (1519, 1522), True, 'import megengine as mge\n'), ((1541, 1579), 'basecls.layers.CrossEntropy', 'CrossEntropy', ([], {'axis': '(2)', 'label_smooth': '(0.1)'}), '(axis=2, label_smooth=0.1)\n', (1553, 1579), False, 'from basecls.layers import BinaryCrossEntropy, CrossEntropy, build_loss\n'), ((1580, 1593), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1590, 1593), True, 'import megengine as mge\n'), ((1595, 1609), 'megengine.Tensor', 'mge.Tensor', (['oy'], {}), '(oy)\n', (1605, 1609), True, 'import megengine as mge\n'), ((1138, 1153), 'torch.tensor', 'torch.tensor', (['x'], {}), '(x)\n', (1150, 1153), False, 'import torch\n'), ((1170, 1185), 'torch.tensor', 'torch.tensor', (['y'], {}), '(y)\n', (1182, 1185), False, 'import torch\n')]
#!/usr/bin/env python from __future__ import print_function from __future__ import absolute_import from argparse import ArgumentParser import numpy as nm import sys sys.path.append('.') from sfepy.base.base import IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.postprocess.viewer import Viewer from sfepy.mechanics.matcoefs import stiffness_from_lame def shift_u_fun(ts, coors, bc=None, problem=None, shift=0.0): """ Define a displacement depending on the y coordinate. """ val = shift * coors[:,1]**2 return val helps = { 'show' : 'show the results figure', } def main(): from sfepy import data_dir parser = ArgumentParser() parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh') domain = FEDomain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:,0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'vertices in x < %.10f' % (min_x + eps), 'facet') gamma2 = domain.create_region('Gamma2', 'vertices in x > %.10f' % (max_x - eps), 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0)) f = Material('f', val=[[0.02], [0.01]]) integral = Integral('i', order=3) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0}) bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01}) shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls) pb.save_regions_as_groups('regions') pb.time_update(ebcs=Conditions([fix_u, shift_u])) vec = pb.solve() print(nls_status) pb.save_state('linear_elasticity.vtk', vec) if options.show: view = Viewer('linear_elasticity.vtk') view(vector_mode='warp_norm', rel_scaling=2, is_scalar_bar=True, is_wireframe=True) if __name__ == '__main__': main()
[ "sfepy.discrete.conditions.EssentialBC", "sfepy.discrete.Integral", "sfepy.postprocess.viewer.Viewer", "sfepy.solvers.ls.ScipyDirect", "sfepy.discrete.Equations", "sfepy.discrete.fem.Field.from_args", "sfepy.discrete.Equation", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.fem.FEDomain", "sfepy.discrete.Function", "sfepy.mechanics.matcoefs.stiffness_from_lame", "sfepy.terms.Term.new", "sfepy.discrete.conditions.Conditions", "sfepy.discrete.FieldVariable", "sfepy.discrete.Material", "sfepy.discrete.Problem", "sfepy.base.base.IndexedStruct", "sfepy.solvers.nls.Newton" ]
[((166, 186), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (181, 186), False, 'import sys\n'), ((980, 996), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (994, 996), False, 'from argparse import ArgumentParser\n'), ((1275, 1333), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (["(data_dir + '/meshes/2d/rectangle_tri.mesh')"], {}), "(data_dir + '/meshes/2d/rectangle_tri.mesh')\n", (1289, 1333), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1347, 1371), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (1355, 1371), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1847, 1913), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fu"""', 'nm.float64', '"""vector"""', 'omega'], {'approx_order': '(2)'}), "('fu', nm.float64, 'vector', omega, approx_order=2)\n", (1862, 1913), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1951, 1987), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""u"""', '"""unknown"""', 'field'], {}), "('u', 'unknown', field)\n", (1964, 1987), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((1996, 2051), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""v"""', '"""test"""', 'field'], {'primary_var_name': '"""u"""'}), "('v', 'test', field, primary_var_name='u')\n", (2009, 2051), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2130, 2165), 'sfepy.discrete.Material', 'Material', (['"""f"""'], {'val': '[[0.02], [0.01]]'}), "('f', val=[[0.02], [0.01]])\n", (2138, 2165), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2182, 2204), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(3)'}), "('i', order=3)\n", (2190, 2204), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2215, 2284), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_lin_elastic(m.D, v, u)"""', 'integral', 'omega'], {'m': 'm', 'v': 'v', 'u': 'u'}), "('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)\n", (2223, 2284), False, 'from sfepy.terms import Term\n'), ((2312, 2374), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_volume_lvf(f.val, v)"""', 'integral', 'omega'], {'f': 'f', 'v': 'v'}), "('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)\n", (2320, 2374), False, 'from sfepy.terms import Term\n'), ((2384, 2412), 'sfepy.discrete.Equation', 'Equation', (['"""balance"""', '(t1 + t2)'], {}), "('balance', t1 + t2)\n", (2392, 2412), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2423, 2438), 'sfepy.discrete.Equations', 'Equations', (['[eq]'], {}), '([eq])\n', (2432, 2438), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2452, 2496), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_u"""', 'gamma1', "{'u.all': 0.0}"], {}), "('fix_u', gamma1, {'u.all': 0.0})\n", (2463, 2496), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((2512, 2576), 'sfepy.discrete.Function', 'Function', (['"""shift_u_fun"""', 'shift_u_fun'], {'extra_args': "{'shift': 0.01}"}), "('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01})\n", (2520, 2576), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2614, 2661), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""shift_u"""', 'gamma2', "{'u.0': bc_fun}"], {}), "('shift_u', gamma2, {'u.0': bc_fun})\n", (2625, 2661), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((2673, 2688), 'sfepy.solvers.ls.ScipyDirect', 'ScipyDirect', (['{}'], {}), '({})\n', (2684, 2688), False, 'from sfepy.solvers.ls import ScipyDirect\n'), ((2707, 2722), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (2720, 2722), False, 'from sfepy.base.base import IndexedStruct\n'), ((2733, 2777), 'sfepy.solvers.nls.Newton', 'Newton', (['{}'], {'lin_solver': 'ls', 'status': 'nls_status'}), '({}, lin_solver=ls, status=nls_status)\n', (2739, 2777), False, 'from sfepy.solvers.nls import Newton\n'), ((2788, 2840), 'sfepy.discrete.Problem', 'Problem', (['"""elasticity"""'], {'equations': 'eqs', 'nls': 'nls', 'ls': 'ls'}), "('elasticity', equations=eqs, nls=nls, ls=ls)\n", (2795, 2840), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((3067, 3098), 'sfepy.postprocess.viewer.Viewer', 'Viewer', (['"""linear_elasticity.vtk"""'], {}), "('linear_elasticity.vtk')\n", (3073, 3098), False, 'from sfepy.postprocess.viewer import Viewer\n'), ((2077, 2120), 'sfepy.mechanics.matcoefs.stiffness_from_lame', 'stiffness_from_lame', ([], {'dim': '(2)', 'lam': '(1.0)', 'mu': '(1.0)'}), '(dim=2, lam=1.0, mu=1.0)\n', (2096, 2120), False, 'from sfepy.mechanics.matcoefs import stiffness_from_lame\n'), ((2907, 2935), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[fix_u, shift_u]'], {}), '([fix_u, shift_u])\n', (2917, 2935), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n')]
from typing import Optional from sqlmodel import Field, SQLModel, create_engine class Student(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) first_name: str last_name: str email: str # dob: sqlite_url = "sqlite:///school.db" engine = create_engine(sqlite_url) SQLModel.metadata.create_all(engine)
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field", "sqlmodel.create_engine" ]
[((294, 319), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {}), '(sqlite_url)\n', (307, 319), False, 'from sqlmodel import Field, SQLModel, create_engine\n'), ((320, 356), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (348, 356), False, 'from sqlmodel import Field, SQLModel, create_engine\n'), ((144, 181), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (149, 181), False, 'from sqlmodel import Field, SQLModel, create_engine\n')]
from sqlmodel import Session, func, text, SQLModel, select from typing import Any, List, Literal, Optional, Type, TypeVar, Generic ReadType = TypeVar("ReadType", bound=SQLModel) CreateType = TypeVar("CreateType", bound=SQLModel) UpdateType = TypeVar("UpdateType", bound=SQLModel) class BaseRepository(Generic[ReadType, CreateType, UpdateType]): entity: Type[ReadType] def __init__(self, db: Session): self.db = db def get_entity(self, *args: Any, **kwargs: Any) -> Optional[ReadType]: result = self.db.exec( select(self.entity) .filter(*args) .filter_by(**kwargs) ) return result.first() def get_entities(self, *args: Any, offset: int = 0, limit: int = 100, order_by: str = 'id', order: Literal['desc', 'asc'] = 'asc', **kwargs: Any) -> List[ReadType]: result = self.db.exec( select(self.entity) .filter(*args) .filter_by(**kwargs) .offset(offset) .limit(limit) .order_by(text(f"{order_by} {order}")) ) return result.all() def count_entities(self) -> int: return self.db.query(func.count(self.entity.id)).scalar() def create_entity(self, entity: CreateType) -> ReadType: entity = self.entity.from_orm(entity) self.db.add(entity) self.db.commit() self.db.refresh(entity) return entity def create_entities(self, entities: List[CreateType]) -> ReadType: entities_input = [] for entity in entities: entity = self.entity.from_orm(entity) entities_input.append(entity) self.db.add_all(entities_input) self.db.commit() entities_output = [] for entity in entities: self.db.refresh(entity) entities_output.append(entity) return entities_output def delete_entity(self, *args, **kwargs) -> bool: try: entity = self.get_entity(*args, **kwargs) if entity is None: return False self.db.delete(entity) self.db.commit() return True except Exception: return False def delete_entities(self, *args, **kwargs) -> bool: try: entities = self.get_entities(*args, **kwargs) if entities is None: return False for entity in entities: self.db.delete(entity) self.db.commit() return True except Exception: return False def update_entity(self, data: UpdateType, *args, **kwargs) -> ReadType: entity = self.get_entity(*args, **kwargs) if entity is None: return None data = data.dict(exclude_unset=True) for key, value in data.items(): setattr(entity, key, value) self.db.add(entity) self.db.commit() self.db.refresh(entity) return entity def update_entities(self, data: UpdateType, *args, **kwargs) -> ReadType: entities = self.get_entities(*args, **kwargs) if entities is None: return None data = data.dict(exclude_unset=True) for entity in entities: for key, value in data.items(): setattr(entity, key, value) self.db.add(entity) self.db.commit() for entity in entities: self.db.refresh(entity) return entities def update_entity_changes(self, entity: ReadType) -> ReadType: self.db.add(entity) self.db.commit() self.db.refresh(entity) return entity
[ "sqlmodel.func.count", "sqlmodel.text", "sqlmodel.select" ]
[((143, 178), 'typing.TypeVar', 'TypeVar', (['"""ReadType"""'], {'bound': 'SQLModel'}), "('ReadType', bound=SQLModel)\n", (150, 178), False, 'from typing import Any, List, Literal, Optional, Type, TypeVar, Generic\n'), ((192, 229), 'typing.TypeVar', 'TypeVar', (['"""CreateType"""'], {'bound': 'SQLModel'}), "('CreateType', bound=SQLModel)\n", (199, 229), False, 'from typing import Any, List, Literal, Optional, Type, TypeVar, Generic\n'), ((243, 280), 'typing.TypeVar', 'TypeVar', (['"""UpdateType"""'], {'bound': 'SQLModel'}), "('UpdateType', bound=SQLModel)\n", (250, 280), False, 'from typing import Any, List, Literal, Optional, Type, TypeVar, Generic\n'), ((1043, 1070), 'sqlmodel.text', 'text', (['f"""{order_by} {order}"""'], {}), "(f'{order_by} {order}')\n", (1047, 1070), False, 'from sqlmodel import Session, func, text, SQLModel, select\n'), ((1178, 1204), 'sqlmodel.func.count', 'func.count', (['self.entity.id'], {}), '(self.entity.id)\n', (1188, 1204), False, 'from sqlmodel import Session, func, text, SQLModel, select\n'), ((553, 572), 'sqlmodel.select', 'select', (['self.entity'], {}), '(self.entity)\n', (559, 572), False, 'from sqlmodel import Session, func, text, SQLModel, select\n'), ((887, 906), 'sqlmodel.select', 'select', (['self.entity'], {}), '(self.entity)\n', (893, 906), False, 'from sqlmodel import Session, func, text, SQLModel, select\n')]
from sqlmodel import Session, select from database import UserRead, PostCreate, UserCreate, User, Post from typing import Union from datetime import datetime def create_object( session: Session, model: Union[User, Post], request_data: Union[UserCreate, PostCreate], user: UserRead = None, isPost: bool = False, ) -> dict: if isPost: setattr(request_data, "author_name", user.name) db_object = model.from_orm(request_data) if isPost: setattr(db_object, "updated_at", datetime.utcnow()) setattr(db_object, "created_at", datetime.utcnow()) session.add(db_object) session.commit() session.refresh(db_object) return db_object def get_objects( session: Session, model: Union[User, Post], offset: int, limit: int ) -> list: objects = session.exec(select(model).offset(offset).limit(limit)).all() return objects def get_object( session: Session, model: Union[User, Post], criteria: Union[int, str], isUser: bool = False, ) -> Union[User, Post]: if isUser: statement = select(model).where(model.email == criteria) results = session.exec(statement) user = results.first() if not user: raise Exception("User not found") return user post = session.get(Post, criteria) return post def patch_object( session: Session, old_object: Union[User, Post], request_data: dict, isPost: bool = False, ) -> Union[User, Post]: for key, value in request_data.items(): setattr(old_object, key, value) if isPost: setattr(old_object, "updated_at", datetime.utcnow()) session.add(old_object) session.commit() session.refresh(old_object) return old_object def delete_object(session: Session, object_: Union[User, Post]) -> dict: session.delete(object_) session.commit() return {"ok": True}
[ "sqlmodel.select" ]
[((574, 591), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (589, 591), False, 'from datetime import datetime\n'), ((518, 535), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (533, 535), False, 'from datetime import datetime\n'), ((1628, 1645), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (1643, 1645), False, 'from datetime import datetime\n'), ((1076, 1089), 'sqlmodel.select', 'select', (['model'], {}), '(model)\n', (1082, 1089), False, 'from sqlmodel import Session, select\n'), ((822, 835), 'sqlmodel.select', 'select', (['model'], {}), '(model)\n', (828, 835), False, 'from sqlmodel import Session, select\n')]
import hypothesis.strategies as st from hypothesis import given from hypothesis.strategies import DataObject from sqlmodel import Session, select from fastapi_server.models.user import User from fastapi_server.test.base_test import BaseTest class TestDatabase(BaseTest): def test_user_add_single(self, method_session_fixture: Session): session = method_session_fixture assert isinstance(session, Session) username = 'asd' email = '<EMAIL>' password = '<PASSWORD>' assert session.exec(select(User)).all() == [] session.add( User( username=username, email=email, password_hashed=password, is_admin=False, is_disabled=False, is_verified=False, ) ) session.commit() assert session.exec(select(User)).all() != [] @given(data=st.data()) def test_user_add_multiple(self, data: DataObject): username = data.draw(st.from_regex('[a-zA-Z0-9]{1,20}', fullmatch=True)) email = data.draw(st.from_regex('[a-zA-Z]{1,20}@gmailcom', fullmatch=True)) password = data.draw(st.from_regex('[a-zA-Z0-9]{1,20}', fullmatch=True)) with self.example_session_context() as session: assert session.exec(select(User)).all() == [] session.add( User( username=username, email=email, password_hashed=password, is_admin=False, is_disabled=False, is_verified=False, ) ) session.commit() assert session.exec(select(User)).all() != []
[ "sqlmodel.select" ]
[((599, 720), 'fastapi_server.models.user.User', 'User', ([], {'username': 'username', 'email': 'email', 'password_hashed': 'password', 'is_admin': '(False)', 'is_disabled': '(False)', 'is_verified': '(False)'}), '(username=username, email=email, password_hashed=password, is_admin=\n False, is_disabled=False, is_verified=False)\n', (603, 720), False, 'from fastapi_server.models.user import User\n'), ((1029, 1079), 'hypothesis.strategies.from_regex', 'st.from_regex', (['"""[a-zA-Z0-9]{1,20}"""'], {'fullmatch': '(True)'}), "('[a-zA-Z0-9]{1,20}', fullmatch=True)\n", (1042, 1079), True, 'import hypothesis.strategies as st\n'), ((1107, 1163), 'hypothesis.strategies.from_regex', 'st.from_regex', (['"""[a-zA-Z]{1,20}@gmailcom"""'], {'fullmatch': '(True)'}), "('[a-zA-Z]{1,20}@gmailcom', fullmatch=True)\n", (1120, 1163), True, 'import hypothesis.strategies as st\n'), ((1194, 1244), 'hypothesis.strategies.from_regex', 'st.from_regex', (['"""[a-zA-Z0-9]{1,20}"""'], {'fullmatch': '(True)'}), "('[a-zA-Z0-9]{1,20}', fullmatch=True)\n", (1207, 1244), True, 'import hypothesis.strategies as st\n'), ((933, 942), 'hypothesis.strategies.data', 'st.data', ([], {}), '()\n', (940, 942), True, 'import hypothesis.strategies as st\n'), ((1401, 1522), 'fastapi_server.models.user.User', 'User', ([], {'username': 'username', 'email': 'email', 'password_hashed': 'password', 'is_admin': '(False)', 'is_disabled': '(False)', 'is_verified': '(False)'}), '(username=username, email=email, password_hashed=password, is_admin=\n False, is_disabled=False, is_verified=False)\n', (1405, 1522), False, 'from fastapi_server.models.user import User\n'), ((540, 552), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (546, 552), False, 'from sqlmodel import Session, select\n'), ((890, 902), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (896, 902), False, 'from sqlmodel import Session, select\n'), ((1334, 1346), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (1340, 1346), False, 'from sqlmodel import Session, select\n'), ((1732, 1744), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (1738, 1744), False, 'from sqlmodel import Session, select\n')]
import os import asyncio import subprocess import contextlib import contextvars from typing import * import wait4it import sqlmodel from sqlmodel import Session from aioify import aioify from twitterscraper.models.domain import TwitterProfile, TwitterTweet, JobHistoric from twitterscraper.utils import Singleton class Repository(Singleton): # https://sqlmodel.tiangolo.com/ get: Callable[..., "Repository"] _session_contextvar: contextvars.ContextVar[Optional[Session]] def __init__(self, uri: str): self._engine = sqlmodel.create_engine(uri) self._session_contextvar = contextvars.ContextVar("session", default=None) # TODO implement pool_pre_ping & pool_recycle_time # Fix for https://github.com/tiangolo/sqlmodel/issues/189#issuecomment-1025190094 from sqlmodel.sql.expression import Select, SelectOfScalar SelectOfScalar.inherit_cache = True # type: ignore Select.inherit_cache = True # type: ignore def _new_session(self) -> Session: session = Session(bind=self._engine) self._session_contextvar.set(session) return session def _get_context_session(self) -> Optional[Session]: return self._session_contextvar.get() def _clear_context_session(self): self._session_contextvar.set(None) @contextlib.contextmanager def session(self) -> Session: """Contextmanager that wraps code behind a database transaction (session). Any error during the execution rolls back the transaction, so any data saved is not persisted.""" session = self._get_context_session() if session is not None: # Another session() contextmanager is already running; let it handle the commit/rollback yield session return session = self._new_session() print("New session") try: yield session print("Session Commit") session.commit() except Exception as ex: print("Session Rollback") session.rollback() raise ex finally: print("Session Close") session.close() self._clear_context_session() @contextlib.asynccontextmanager async def session_async(self) -> Session: """Contextmanager that wraps code behind a database transaction (session). Any error during the execution rolls back the transaction, so any data saved is not persisted.""" session = self._get_context_session() if session is not None: # Another session() contextmanager is already running; let it handle the commit/rollback yield session return session = self._new_session() print("New session") try: yield session print("Session Commit") await aioify(session.commit)() except Exception as ex: print("Session Rollback") await aioify(session.rollback)() raise ex finally: print("Session Close") await aioify(session.close)() self._clear_context_session() def save_object(self, obj: sqlmodel.SQLModel, flush: bool = False): """Save or update any SQLModel object instance""" with self.session() as session: session.add(obj) if flush: session.flush([obj]) async def save_object_async(self, *obj: sqlmodel.SQLModel, flush: bool = False): # return await aioify(self.save_object)(obj, flush) async with self.session_async() as session: await asyncio.gather(*[aioify(session.add)(_obj) for _obj in obj]) if flush: await aioify(session.flush)(obj) def delete_object(self, obj: sqlmodel.SQLModel, flush: bool = False): with self.session() as session: session.delete(obj) if flush: session.flush([obj]) async def delete_object_async(self, obj: sqlmodel.SQLModel, flush: bool = False): async with self.session_async() as session: await aioify(session.delete)(obj) if flush: await aioify(session.flush)([obj]) def list_profiles(self) -> List[TwitterProfile]: with self.session() as session: query = sqlmodel.select(TwitterProfile) return session.exec(query).all() async def list_profiles_async(self, filter_active_profiles: Optional[bool] = None) -> List[TwitterProfile]: async with self.session_async() as session: query = sqlmodel.select(TwitterProfile) if filter_active_profiles is not None: query = query.where(TwitterProfile.active == filter_active_profiles) result = await aioify(session.exec)(query) return await aioify(result.all)() def get_profile_by_userid(self, userid: str) -> TwitterProfile: # TODO Deprecate with self.session() as session: query = sqlmodel.select(TwitterProfile).where(TwitterProfile.userid == userid) return session.exec(query).one() async def get_profile_by_userid_async(self, userid: str) -> TwitterProfile: # TODO Deprecate async with self.session_async() as session: query = sqlmodel.select(TwitterProfile).where(TwitterProfile.userid == userid) result = await aioify(session.exec)(query) return await aioify(result.one)() async def get_profile_by(self, userid: Optional[str] = None, username: Optional[str] = None) -> TwitterProfile: async with self.session_async() as session: query = sqlmodel.select(TwitterProfile) if userid: query = query.where(TwitterProfile.userid == userid) if username: query = query.where(TwitterProfile.username == username) result = await aioify(session.exec)(query) return await aioify(result.one)() # noinspection PyComparisonWithNone async def tweets_iterator( self, batch_size: int, userid: Optional[str] = None, username: Optional[str] = None, from_ts: Optional[int] = None, to_ts: Optional[int] = None, filter_active_profiles: Optional[bool] = None, filter_active_tweets: Optional[bool] = None, tweets_ids: Optional[List[str]] = None, ) -> AsyncIterable[List[TwitterTweet]]: # TODO Deprecate, iterator seems like no longer needed # TODO Any way for making the generator async? async with self.session_async() as session: query = sqlmodel.select(TwitterTweet).join(TwitterProfile) if filter_active_profiles is not None: query = query.where(TwitterProfile.active == filter_active_profiles) if filter_active_tweets is True: query = query.where(TwitterTweet.deletion_detected_timestamp == None) elif filter_active_tweets is False: query = query.where(TwitterTweet.deletion_detected_timestamp != None) if userid is not None: query = query.where(TwitterProfile.userid == userid) if username is not None: query = query.where(TwitterProfile.username == username) if from_ts is not None: query = query.where(TwitterTweet.timestamp >= from_ts) if to_ts is not None: query = query.where(TwitterTweet.timestamp < to_ts) if tweets_ids is not None: # noinspection PyUnresolvedReferences query = query.filter(TwitterTweet.tweet_id.in_(tweets_ids)) query = query.execution_options(stream_results=True) result = session.exec(query) for partition in result.partitions(batch_size): yield partition async def get_tweets( self, **kwargs ) -> List[TwitterTweet]: tweets = list() async for tweets_batch in self.tweets_iterator(batch_size=50, **kwargs): tweets.extend(tweets_batch) return tweets async def get_job_historic(self, job_id: str) -> Optional[JobHistoric]: async with self.session_async() as session: query = sqlmodel.select(JobHistoric).where(JobHistoric.job_id == job_id) return session.exec(query).one_or_none() # TODO remove "with self.session..." from everything, since we're returning ORM models, it's always needed on the outside async def close(self): # TODO implement print("Closing Repository...") print("Closed Repository") @staticmethod def run_migrations(): subprocess.check_output(("alembic", "upgrade", "head"), cwd=os.getcwd()) @staticmethod def generate_migration(name: str): subprocess.check_output(("alembic", "revision", "--autogenerate", "-m", name)) def tcp_wait(self): # TODO configurable timeout url = self._engine.url print("Waiting for TCP port", url) wait4it.wait_for(host=url.host, port=url.port, timeout=5) print("TCP port ready", url) async def tcp_wait_async(self): await aioify(self.tcp_wait)()
[ "sqlmodel.Session", "sqlmodel.create_engine", "sqlmodel.select" ]
[((545, 572), 'sqlmodel.create_engine', 'sqlmodel.create_engine', (['uri'], {}), '(uri)\n', (567, 572), False, 'import sqlmodel\n'), ((608, 655), 'contextvars.ContextVar', 'contextvars.ContextVar', (['"""session"""'], {'default': 'None'}), "('session', default=None)\n", (630, 655), False, 'import contextvars\n'), ((1043, 1069), 'sqlmodel.Session', 'Session', ([], {'bind': 'self._engine'}), '(bind=self._engine)\n', (1050, 1069), False, 'from sqlmodel import Session\n'), ((8932, 9010), 'subprocess.check_output', 'subprocess.check_output', (["('alembic', 'revision', '--autogenerate', '-m', name)"], {}), "(('alembic', 'revision', '--autogenerate', '-m', name))\n", (8955, 9010), False, 'import subprocess\n'), ((9154, 9211), 'wait4it.wait_for', 'wait4it.wait_for', ([], {'host': 'url.host', 'port': 'url.port', 'timeout': '(5)'}), '(host=url.host, port=url.port, timeout=5)\n', (9170, 9211), False, 'import wait4it\n'), ((4359, 4390), 'sqlmodel.select', 'sqlmodel.select', (['TwitterProfile'], {}), '(TwitterProfile)\n', (4374, 4390), False, 'import sqlmodel\n'), ((4621, 4652), 'sqlmodel.select', 'sqlmodel.select', (['TwitterProfile'], {}), '(TwitterProfile)\n', (4636, 4652), False, 'import sqlmodel\n'), ((5700, 5731), 'sqlmodel.select', 'sqlmodel.select', (['TwitterProfile'], {}), '(TwitterProfile)\n', (5715, 5731), False, 'import sqlmodel\n'), ((8853, 8864), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (8862, 8864), False, 'import os\n'), ((9300, 9321), 'aioify.aioify', 'aioify', (['self.tcp_wait'], {}), '(self.tcp_wait)\n', (9306, 9321), False, 'from aioify import aioify\n'), ((2877, 2899), 'aioify.aioify', 'aioify', (['session.commit'], {}), '(session.commit)\n', (2883, 2899), False, 'from aioify import aioify\n'), ((3108, 3129), 'aioify.aioify', 'aioify', (['session.close'], {}), '(session.close)\n', (3114, 3129), False, 'from aioify import aioify\n'), ((4144, 4166), 'aioify.aioify', 'aioify', (['session.delete'], {}), '(session.delete)\n', (4150, 4166), False, 'from aioify import aioify\n'), ((4817, 4837), 'aioify.aioify', 'aioify', (['session.exec'], {}), '(session.exec)\n', (4823, 4837), False, 'from aioify import aioify\n'), ((4870, 4888), 'aioify.aioify', 'aioify', (['result.all'], {}), '(result.all)\n', (4876, 4888), False, 'from aioify import aioify\n'), ((5045, 5076), 'sqlmodel.select', 'sqlmodel.select', (['TwitterProfile'], {}), '(TwitterProfile)\n', (5060, 5076), False, 'import sqlmodel\n'), ((5339, 5370), 'sqlmodel.select', 'sqlmodel.select', (['TwitterProfile'], {}), '(TwitterProfile)\n', (5354, 5370), False, 'import sqlmodel\n'), ((5437, 5457), 'aioify.aioify', 'aioify', (['session.exec'], {}), '(session.exec)\n', (5443, 5457), False, 'from aioify import aioify\n'), ((5490, 5508), 'aioify.aioify', 'aioify', (['result.one'], {}), '(result.one)\n', (5496, 5508), False, 'from aioify import aioify\n'), ((5949, 5969), 'aioify.aioify', 'aioify', (['session.exec'], {}), '(session.exec)\n', (5955, 5969), False, 'from aioify import aioify\n'), ((6002, 6020), 'aioify.aioify', 'aioify', (['result.one'], {}), '(result.one)\n', (6008, 6020), False, 'from aioify import aioify\n'), ((6714, 6743), 'sqlmodel.select', 'sqlmodel.select', (['TwitterTweet'], {}), '(TwitterTweet)\n', (6729, 6743), False, 'import sqlmodel\n'), ((7719, 7756), 'twitterscraper.models.domain.TwitterTweet.tweet_id.in_', 'TwitterTweet.tweet_id.in_', (['tweets_ids'], {}), '(tweets_ids)\n', (7744, 7756), False, 'from twitterscraper.models.domain import TwitterProfile, TwitterTweet, JobHistoric\n'), ((8368, 8396), 'sqlmodel.select', 'sqlmodel.select', (['JobHistoric'], {}), '(JobHistoric)\n', (8383, 8396), False, 'import sqlmodel\n'), ((2990, 3014), 'aioify.aioify', 'aioify', (['session.rollback'], {}), '(session.rollback)\n', (2996, 3014), False, 'from aioify import aioify\n'), ((3754, 3775), 'aioify.aioify', 'aioify', (['session.flush'], {}), '(session.flush)\n', (3760, 3775), False, 'from aioify import aioify\n'), ((4216, 4237), 'aioify.aioify', 'aioify', (['session.flush'], {}), '(session.flush)\n', (4222, 4237), False, 'from aioify import aioify\n'), ((3666, 3685), 'aioify.aioify', 'aioify', (['session.add'], {}), '(session.add)\n', (3672, 3685), False, 'from aioify import aioify\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Function, Grad from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward class TQT_numpy: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_tqt(): g = [] def cb(grad): g.append(grad) x = np.random.normal(size=(1, 2, 3, 4)) s = np.random.rand(1) + 1 g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32") n = TQT_numpy(-127, 127) y_np = n.forward(x, s) g_x_np, g_s_np = n.backward(g_y) x = mge.tensor(x, dtype="float32") s = mge.tensor(s, dtype="float32") g_y = mge.tensor(g_y, dtype="float32") grad = Grad().wrt(x, s, callback=cb) y = tqt_forward(-127, 127, x, s) grad(y, g_y) g_x, g_s = g np.testing.assert_allclose(y.numpy(), y_np, atol=1e-6) np.testing.assert_allclose(g_x.numpy(), g_x_np, atol=1e-6) np.testing.assert_allclose(g_s.numpy(), g_s_np, atol=1e-6) def _save_to(self, name="grad"): def callback(grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x, callback=_save_to(x)) y = fake_quant_tensor(x, qmin, qmax, q_dict) grad(y, tensor(F.ones_like(x))) x1 = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x1, callback=_save_to(x1)) y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax) grad(y1, tensor(F.ones_like(x1))) assert np.allclose(x.grad.numpy(), x1.grad.numpy()) assert make_shape_tuple(x.grad.shape) == make_shape_tuple(x1.grad.shape) zero_point = tensor([1.0], dtype=np.float32) scale = tensor([4.0], dtype=np.float32) run(zero_point, scale) zero_point = tensor(1.0 * np.ones((1, 32, 1, 1)), dtype=np.float32) scale = tensor(4.0 * np.ones((1, 32, 1, 1)), dtype=np.float32) run(zero_point, scale)
[ "megengine.tensor", "megengine.quantization.utils.tqt_forward", "megengine.quantization.utils.fake_quant_tensor", "megengine.core.tensor.utils.make_shape_tuple", "megengine.core.autodiff.grad.Grad" ]
[((2219, 2254), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, 2, 3, 4)'}), '(size=(1, 2, 3, 4))\n', (2235, 2254), True, 'import numpy as np\n'), ((2295, 2339), 'numpy.ones', 'np.ones', ([], {'shape': '(1, 2, 3, 4)', 'dtype': '"""float32"""'}), "(shape=(1, 2, 3, 4), dtype='float32')\n", (2302, 2339), True, 'import numpy as np\n'), ((2443, 2473), 'megengine.tensor', 'mge.tensor', (['x'], {'dtype': '"""float32"""'}), "(x, dtype='float32')\n", (2453, 2473), True, 'import megengine as mge\n'), ((2482, 2512), 'megengine.tensor', 'mge.tensor', (['s'], {'dtype': '"""float32"""'}), "(s, dtype='float32')\n", (2492, 2512), True, 'import megengine as mge\n'), ((2523, 2555), 'megengine.tensor', 'mge.tensor', (['g_y'], {'dtype': '"""float32"""'}), "(g_y, dtype='float32')\n", (2533, 2555), True, 'import megengine as mge\n'), ((2605, 2633), 'megengine.quantization.utils.tqt_forward', 'tqt_forward', (['(-127)', '(127)', 'x', 's'], {}), '(-127, 127, x, s)\n', (2616, 2633), False, 'from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward\n'), ((4522, 4553), 'megengine.tensor', 'tensor', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (4528, 4553), False, 'from megengine import tensor\n'), ((4566, 4597), 'megengine.tensor', 'tensor', (['[4.0]'], {'dtype': 'np.float32'}), '([4.0], dtype=np.float32)\n', (4572, 4597), False, 'from megengine import tensor\n'), ((1141, 1162), 'numpy.round', 'np.round', (['inp_clipped'], {}), '(inp_clipped)\n', (1149, 1162), True, 'import numpy as np\n'), ((1573, 1594), 'numpy.abs', 'np.abs', (['(mask_clip - 1)'], {}), '(mask_clip - 1)\n', (1579, 1594), True, 'import numpy as np\n'), ((2263, 2280), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (2277, 2280), True, 'import numpy as np\n'), ((3569, 3632), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-512.0)', 'high': '(512.0)', 'size': '(1, 32, 32, 32)'}), '(low=-512.0, high=512.0, size=(1, 32, 32, 32))\n', (3586, 3632), True, 'import numpy as np\n'), ((3647, 3681), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (3653, 3681), False, 'from megengine import tensor\n'), ((3867, 3891), 'numpy.allclose', 'np.allclose', (['oup', 'oup_gt'], {}), '(oup, oup_gt)\n', (3878, 3891), True, 'import numpy as np\n'), ((3970, 4004), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (3976, 4004), False, 'from megengine import tensor\n'), ((4068, 4108), 'megengine.quantization.utils.fake_quant_tensor', 'fake_quant_tensor', (['x', 'qmin', 'qmax', 'q_dict'], {}), '(x, qmin, qmax, q_dict)\n', (4085, 4108), False, 'from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward\n'), ((4163, 4197), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (4169, 4197), False, 'from megengine import tensor\n'), ((1052, 1091), 'numpy.minimum', 'np.minimum', (['inp_scaled', 'self.upperbound'], {}), '(inp_scaled, self.upperbound)\n', (1062, 1091), True, 'import numpy as np\n'), ((2051, 2060), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (2057, 2060), True, 'import numpy as np\n'), ((2567, 2573), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (2571, 2573), False, 'from megengine.core.autodiff.grad import Function, Grad\n'), ((4438, 4468), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['x.grad.shape'], {}), '(x.grad.shape)\n', (4454, 4468), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((4472, 4503), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['x1.grad.shape'], {}), '(x1.grad.shape)\n', (4488, 4503), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((4656, 4678), 'numpy.ones', 'np.ones', (['(1, 32, 1, 1)'], {}), '((1, 32, 1, 1))\n', (4663, 4678), True, 'import numpy as np\n'), ((4723, 4745), 'numpy.ones', 'np.ones', (['(1, 32, 1, 1)'], {}), '((1, 32, 1, 1))\n', (4730, 4745), True, 'import numpy as np\n'), ((3719, 3761), 'megengine.quantization.utils.fake_quant_tensor', 'fake_quant_tensor', (['inp', 'qmin', 'qmax', 'q_dict'], {}), '(inp, qmin, qmax, q_dict)\n', (3736, 3761), False, 'from megengine.quantization.utils import QuantMode, fake_quant_tensor, tqt_forward\n'), ((4020, 4026), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4024, 4026), False, 'from megengine.core.autodiff.grad import Function, Grad\n'), ((4213, 4219), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4217, 4219), False, 'from megengine.core.autodiff.grad import Function, Grad\n')]
from datetime import datetime from typing import Optional from fastapi import APIRouter from sqlmodel import Field, SQLModel router = APIRouter() class Disease(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class DiseaseGroup(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class DiseaseGroupMap(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) disease_group_id: int disease_id: int class PatientDisease(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) patient_id: int doctor_id: Optional[int] = None cleft: bool craniofacial: bool syndronic: bool non: bool comorbidity: bool created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class PatientDiseaseList(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) patient_disease_id: int disease_id: int detail: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class PatientDiseaseCleft(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) patient_disease_id: int cleft_type: str cleft_lateral: str cleft_side: str cleft_complete: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class PatientDiseaseCraniofacial(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) patient_disease_id: int micrognathia_detail: str craniofacial_cleft_right: int craniofacial_cleft_medial: int craniofacial_cleft_left: int feem_nasofrontal: bool feem_nasofrontal_side: str feem_nasoethmoidal: bool feem_nasoethmoidal_side: str feem_mix: bool feem_mix_side: str feem_mix_detail: str craniofacial_microsomia_side: str craniofacial_microsomia_detail: str microtia_side: str microtia_detail: str craniosynostosis_detail: str frontonasal_dysplasia_detail: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class PatientDiseaseOther(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) patient_disease_id: int disease_group_id: int name: str detail: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None
[ "sqlmodel.Field" ]
[((136, 147), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (145, 147), False, 'from fastapi import APIRouter\n'), ((211, 248), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (216, 248), False, 'from sqlmodel import Field, SQLModel\n'), ((331, 368), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (336, 368), False, 'from sqlmodel import Field, SQLModel\n'), ((454, 491), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (459, 491), False, 'from sqlmodel import Field, SQLModel\n'), ((608, 645), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (613, 645), False, 'from sqlmodel import Field, SQLModel\n'), ((978, 1015), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (983, 1015), False, 'from sqlmodel import Field, SQLModel\n'), ((1262, 1299), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1267, 1299), False, 'from sqlmodel import Field, SQLModel\n'), ((1604, 1641), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1609, 1641), False, 'from sqlmodel import Field, SQLModel\n'), ((2367, 2404), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (2372, 2404), False, 'from sqlmodel import Field, SQLModel\n')]
import os import pathlib from datetime import datetime, date, time from decimal import Decimal from typing import Optional, List from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile from fastapi.encoders import jsonable_encoder from sqlmodel import Field, SQLModel from ..db import get_session from sqlalchemy import select from sqlalchemy.ext.asyncio import AsyncSession router = APIRouter() cert_path = '/uploads/user/{user_id}/cert/' avatar_path = '/uploads/user/{user_id}/avatar/' class User(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) state: str # Statue: pending, active, inactive id_type_id: int id_number: str = None email = str email_verified_at: Optional[datetime] = None password: str remember_token: str hospital_id: Optional[int] = None hospital_node_id: Optional[int] = None discipline_id: int first_name_thai: str last_name_thai: str first_name_english: str last_name_english: str nickname: str birth_date: date gender: str academic_degree: str is_thai_address: bool address_house_number: str address_moo: str address_soi: str address_road: str address_tambon_id: Optional[int] = None address_amphoe_id: Optional[int] = None address_province_id: Optional[int] = None address_other: str latitude: Decimal longitude: Decimal potential: str avatar_path: str document_path: str policy_accept: bool created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class UserPhone(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) user_id: int number: str detail: str receive_sms: bool created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class UserFeedback(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) user_id: int feedback_type_id: Optional[int] = None detail: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class UserNotification(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) user_id: int name: str detail: str is_read: bool created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class UserRole(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) user_id: int role_id: int created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class UserSource(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str created_at: datetime created_by: int class UserLog(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) user_id: int class Doctor(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) user_id: int hospital_id: int discipline_id: int prefix: str first_name: str last_name: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class DoctorProcedureMap(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) doctor_id: int procedure_id: int created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class Discipline(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) discipline_group_id: int name: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class DisciplineGroup(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class Role(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class RoleModuleFunctionMap(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) role_id: int module_function_id: int created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None @router.post("/user", response_model=User) async def create_user(user: User, session: AsyncSession = Depends(get_session)): # Add user session.add(user) await session.commit() await session.refresh(user) return user @router.get("/user", response_model=List[User]) async def get_users(session: AsyncSession = Depends(get_session)): # Select all users statement = select(User) result = await session.execute(statement) users = result.scalars().all() return users @router.post("/user/check_id/{id_type_id}/{id_number}", response_model=bool) async def check_id_available(id_type_id: int, id_number: str, session: AsyncSession = Depends(get_session)): # Check id existence users = await session.execute(select(User).where(User.id_type_id == id_type_id).where(User.id_number == id_number)) if users is None: return True return False @router.get("/user/pending_num", response_model=int) async def get_pending_user_num(session: AsyncSession = Depends(get_session)): # Get user with pending status users = await session.execute(select(User).where(User.state == "pending")) return len(users.scalars().all()) @router.get("/user/{user_id}", response_model=User) async def get_user(user_id: int, session: AsyncSession = Depends(get_session)): # Get user with id users = await session.execute(select(User).where(User.id == user_id)) user = users.scalars().first() return user @router.put("/user/{user_id}", response_model=User) async def update_user(user_id: int, user: User, session: AsyncSession = Depends(get_session)): # Get user with id statement = select(User).where(User.id == user_id) users = await session.execute(statement) # Update detail user_old = users.one() model = User(**user_old) update_data = user.dict(exclude_unset=True) updated_user = model.copy(update=update_data) user_old = jsonable_encoder(updated_user) # Commit to database await session.commit() return user_old @router.delete("/user/{user_id}") async def delete_user(user_id: int, session: AsyncSession = Depends(get_session)): # Check user existence statement = select(User).where(User.id == user_id) user = await session.execute(statement) # Not found error if not user: raise HTTPException(status_code=404, detail='User not found') user = user.scalars().one() # Delete await session.delete(user) await session.commit() return status.HTTP_200_OK @router.post("/user/{user_id}/document") async def upload_document(user_id: int, document: UploadFile = File(...), session: AsyncSession = Depends(get_session)): # File name file_dir = os.getcwd() + cert_path.format(user_id=user_id) file_path = file_dir + document.filename # Make directory if not exist try: if not os.path.exists(file_dir): pathlib.Path(file_dir).mkdir(parents=True, exist_ok=True) except Exception as e: print(e) # Write file with open(file_path, 'wb') as f: f.write(document.file.read()) f.close() # Update user document path statement = select(User).where(User.id == user_id) users = await session.execute(statement) user_old = users.scalars().one() user_old.document_path = file_path await session.commit() return {'document_path': file_path} @router.post("/user/{user_id}/accept") async def accept_policy(session: AsyncSession = Depends(get_session)): return None @router.post("/user/{user_id}/reset") async def reset_password(session: AsyncSession = Depends(get_session)): return None @router.post("/user/{user_id}/avatar") async def upload_avatar(session: AsyncSession = Depends(get_session)): return None @router.delete("/user/{user_id}/avatar") async def delete_avatar(session: AsyncSession = Depends(get_session)): return None @router.post("/user/{user_id}/role") async def set_role(session: AsyncSession = Depends(get_session)): return None @router.post("/user/feedback") async def create_user_feedback(session: AsyncSession = Depends(get_session)): return None @router.get("/user/feedback") async def get_user_feedbacks(session: AsyncSession = Depends(get_session)): return None @router.get("/user/feedback/{feedback_id}") async def get_user_feedback(session: AsyncSession = Depends(get_session)): return None @router.put("/user/feedback/{feedback_id}") async def update_user_feedback(session: AsyncSession = Depends(get_session)): return None @router.post("/user/doctor") async def create_doctor(session: AsyncSession = Depends(get_session)): return None @router.get("/user/doctor") async def get_doctors(session: AsyncSession = Depends(get_session)): return None @router.get("/user/doctor/{doctor_id}") async def get_doctor(session: AsyncSession = Depends(get_session)): return None @router.put("/user/doctor/{doctor_id}") async def update_doctor(session: AsyncSession = Depends(get_session)): return None @router.delete("/user/doctor/{doctor_id}") async def delete_doctor(session: AsyncSession = Depends(get_session)): return None
[ "sqlmodel.Field" ]
[((412, 423), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (421, 423), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((577, 614), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (582, 614), False, 'from sqlmodel import Field, SQLModel\n'), ((1689, 1726), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1694, 1726), False, 'from sqlmodel import Field, SQLModel\n'), ((1973, 2010), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1978, 2010), False, 'from sqlmodel import Field, SQLModel\n'), ((2266, 2303), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (2271, 2303), False, 'from sqlmodel import Field, SQLModel\n'), ((2540, 2577), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (2545, 2577), False, 'from sqlmodel import Field, SQLModel\n'), ((2785, 2822), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (2790, 2822), False, 'from sqlmodel import Field, SQLModel\n'), ((2945, 2982), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (2950, 2982), False, 'from sqlmodel import Field, SQLModel\n'), ((3062, 3099), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (3067, 3099), False, 'from sqlmodel import Field, SQLModel\n'), ((3397, 3434), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (3402, 3434), False, 'from sqlmodel import Field, SQLModel\n'), ((3649, 3686), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (3654, 3686), False, 'from sqlmodel import Field, SQLModel\n'), ((3908, 3945), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (3913, 3945), False, 'from sqlmodel import Field, SQLModel\n'), ((4127, 4164), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (4132, 4164), False, 'from sqlmodel import Field, SQLModel\n'), ((4363, 4400), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (4368, 4400), False, 'from sqlmodel import Field, SQLModel\n'), ((4656, 4676), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (4663, 4676), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((4886, 4906), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (4893, 4906), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((4948, 4960), 'sqlalchemy.select', 'select', (['User'], {}), '(User)\n', (4954, 4960), False, 'from sqlalchemy import select\n'), ((5224, 5244), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (5231, 5244), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((5561, 5581), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (5568, 5581), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((5847, 5867), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (5854, 5867), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((6144, 6164), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (6151, 6164), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((6480, 6510), 'fastapi.encoders.jsonable_encoder', 'jsonable_encoder', (['updated_user'], {}), '(updated_user)\n', (6496, 6510), False, 'from fastapi.encoders import jsonable_encoder\n'), ((6681, 6701), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (6688, 6701), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((7182, 7191), 'fastapi.File', 'File', (['...'], {}), '(...)\n', (7186, 7191), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((7217, 7237), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (7224, 7237), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((8042, 8062), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (8049, 8062), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((8170, 8190), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (8177, 8190), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((8298, 8318), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (8305, 8318), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((8428, 8448), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (8435, 8448), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((8549, 8569), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (8556, 8569), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((8676, 8696), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (8683, 8696), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((8800, 8820), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (8807, 8820), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((8937, 8957), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (8944, 8957), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((9077, 9097), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (9084, 9097), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((9195, 9215), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (9202, 9215), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((9310, 9330), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (9317, 9330), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((9436, 9456), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (9443, 9456), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((9565, 9585), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (9572, 9585), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((9697, 9717), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (9704, 9717), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((6884, 6939), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""User not found"""'}), "(status_code=404, detail='User not found')\n", (6897, 6939), False, 'from fastapi import APIRouter, Depends, HTTPException, status, File, UploadFile\n'), ((7272, 7283), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (7281, 7283), False, 'import os\n'), ((6206, 6218), 'sqlalchemy.select', 'select', (['User'], {}), '(User)\n', (6212, 6218), False, 'from sqlalchemy import select\n'), ((6747, 6759), 'sqlalchemy.select', 'select', (['User'], {}), '(User)\n', (6753, 6759), False, 'from sqlalchemy import select\n'), ((7424, 7448), 'os.path.exists', 'os.path.exists', (['file_dir'], {}), '(file_dir)\n', (7438, 7448), False, 'import os\n'), ((7724, 7736), 'sqlalchemy.select', 'select', (['User'], {}), '(User)\n', (7730, 7736), False, 'from sqlalchemy import select\n'), ((5653, 5665), 'sqlalchemy.select', 'select', (['User'], {}), '(User)\n', (5659, 5665), False, 'from sqlalchemy import select\n'), ((5927, 5939), 'sqlalchemy.select', 'select', (['User'], {}), '(User)\n', (5933, 5939), False, 'from sqlalchemy import select\n'), ((7462, 7484), 'pathlib.Path', 'pathlib.Path', (['file_dir'], {}), '(file_dir)\n', (7474, 7484), False, 'import pathlib\n'), ((5306, 5318), 'sqlalchemy.select', 'select', (['User'], {}), '(User)\n', (5312, 5318), False, 'from sqlalchemy import select\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from megengine.autodiff import GradManager from megengine.distributed.helper import get_device_count_by_fork from megengine.jit import trace def test_basic(): x = mge.tensor([1.0, 3.0, 5.0]).reshape(1, 3) w = mge.tensor([2.0, 4.0, 6.0]).reshape(3, 1) b = mge.tensor(-1.0) gm = GradManager().attach([w, b]) gm.record() p = F.matmul(x, w) y = p + b gm.backward(y) gm.release() # is not necessary np.testing.assert_equal(w.grad.numpy(), [[1], [3], [5]]) np.testing.assert_equal(b.grad.numpy(), [1]) w.grad = None b.grad = None with gm: p = F.matmul(x, w) y = p + b gm.backward(y) np.testing.assert_equal(w.grad.numpy(), [[1], [3], [5]]) np.testing.assert_equal(b.grad.numpy(), [1]) def test_attach_in_with_block(): a = mge.Parameter([1.0]) gm = GradManager() with gm: b = a * 3 gm.attach(b) c = b + 1 gm.backward(c) assert int(b.grad.numpy()) == 1 def test_attach_temporary(): w = mge.Parameter(2.0) gm = GradManager() gm.attach(w) def cb(x, g): assert x is ref() cb.called = True for i in range(3): with gm: cb.called = False x = mge.Tensor(i, dtype="float32") gm.attach(x, callbacks=cb) ref = weakref.ref(x) y = x * w gm.backward(y) assert cb.called del x assert ref() is None # NOTE: does not guarantee timely release when recording # for i in range(3): # with gm: # x = mge.Tensor(i, dtype='float32') # gm.attach(x) # ref = weakref.ref(x) # y = x * w # del x # assert ref() is None # gm.backward(y) def test_no_dependency(): x = mge.tensor(3) w = mge.Parameter(1.0) w_no_dep = mge.Parameter(1.0) gm = GradManager() gm.attach(w) gm.attach(w_no_dep) with gm: out1 = x * w out2 = w_no_dep * out1 gm.backward(out1.sum()) assert w.grad is not None assert w_no_dep.grad is None def test_regression_1762(): x = F.ones((10, 10, 3, 3)) conv = M.Conv2d(10, 10, kernel_size=3, padding=1) t_shape = (1, 10, 1, 1) weight = mge.Parameter(np.ones(t_shape, dtype=np.float32)) bias = mge.Parameter(np.zeros(t_shape, dtype=np.float32)) gm = GradManager() gm.attach(list(conv.parameters()) + [weight, bias]) with gm: out1 = conv(x) out2 = F.batch_norm(out1, None, None, weight, bias, training=True,) # Weird error only occur when this action is placed after BN # Op type is not relevant loss = out1 + 1 gm.backward(loss) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_remote_grad(): @dist.launcher def worker(): rank = dist.get_rank() size = dist.get_world_size() x = mge.tensor(np.random.randn(1, rank * 2 + 2), dtype=np.float32) m = M.Linear(rank * 2 + 2, rank * 2 + 4) gm = GradManager().attach(m.parameters()) opt = optim.SGD(m.parameters(), 1e-3, momentum=0.9) def train_func(x): with gm: if rank != 0: x = dist.functional.remote_recv( rank - 1, shape=(1, rank * 2 + 2), dtype=np.float32 ) y = m(x) if rank != size - 1: dist.functional.remote_send(y, dest_rank=rank + 1) gm.backward() else: y = y.mean() gm.backward(y) opt.step().clear_grad() train_funcs = [ train_func, trace(symbolic=False)(train_func), trace(symbolic=True)(train_func), ] for func in train_funcs: for i in range(3): func(x) worker()
[ "megengine.distributed.functional.remote_recv", "megengine.functional.ones", "megengine.module.Conv2d", "megengine.distributed.get_rank", "megengine.functional.batch_norm", "megengine.distributed.get_world_size", "megengine.Parameter", "megengine.jit.trace", "megengine.functional.matmul", "megengine.tensor", "megengine.distributed.functional.remote_send", "megengine.distributed.helper.get_device_count_by_fork", "megengine.module.Linear", "megengine.autodiff.GradManager", "megengine.Tensor" ]
[((847, 863), 'megengine.tensor', 'mge.tensor', (['(-1.0)'], {}), '(-1.0)\n', (857, 863), True, 'import megengine as mge\n'), ((928, 942), 'megengine.functional.matmul', 'F.matmul', (['x', 'w'], {}), '(x, w)\n', (936, 942), True, 'import megengine.functional as F\n'), ((1396, 1416), 'megengine.Parameter', 'mge.Parameter', (['[1.0]'], {}), '([1.0])\n', (1409, 1416), True, 'import megengine as mge\n'), ((1426, 1439), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (1437, 1439), False, 'from megengine.autodiff import GradManager\n'), ((1608, 1626), 'megengine.Parameter', 'mge.Parameter', (['(2.0)'], {}), '(2.0)\n', (1621, 1626), True, 'import megengine as mge\n'), ((1636, 1649), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (1647, 1649), False, 'from megengine.autodiff import GradManager\n'), ((2409, 2422), 'megengine.tensor', 'mge.tensor', (['(3)'], {}), '(3)\n', (2419, 2422), True, 'import megengine as mge\n'), ((2432, 2450), 'megengine.Parameter', 'mge.Parameter', (['(1.0)'], {}), '(1.0)\n', (2445, 2450), True, 'import megengine as mge\n'), ((2466, 2484), 'megengine.Parameter', 'mge.Parameter', (['(1.0)'], {}), '(1.0)\n', (2479, 2484), True, 'import megengine as mge\n'), ((2494, 2507), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (2505, 2507), False, 'from megengine.autodiff import GradManager\n'), ((2749, 2771), 'megengine.functional.ones', 'F.ones', (['(10, 10, 3, 3)'], {}), '((10, 10, 3, 3))\n', (2755, 2771), True, 'import megengine.functional as F\n'), ((2784, 2826), 'megengine.module.Conv2d', 'M.Conv2d', (['(10)', '(10)'], {'kernel_size': '(3)', 'padding': '(1)'}), '(10, 10, kernel_size=3, padding=1)\n', (2792, 2826), True, 'import megengine.module as M\n'), ((2991, 3004), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (3002, 3004), False, 'from megengine.autodiff import GradManager\n'), ((1186, 1200), 'megengine.functional.matmul', 'F.matmul', (['x', 'w'], {}), '(x, w)\n', (1194, 1200), True, 'import megengine.functional as F\n'), ((2883, 2917), 'numpy.ones', 'np.ones', (['t_shape'], {'dtype': 'np.float32'}), '(t_shape, dtype=np.float32)\n', (2890, 2917), True, 'import numpy as np\n'), ((2944, 2979), 'numpy.zeros', 'np.zeros', (['t_shape'], {'dtype': 'np.float32'}), '(t_shape, dtype=np.float32)\n', (2952, 2979), True, 'import numpy as np\n'), ((3114, 3173), 'megengine.functional.batch_norm', 'F.batch_norm', (['out1', 'None', 'None', 'weight', 'bias'], {'training': '(True)'}), '(out1, None, None, weight, bias, training=True)\n', (3126, 3173), True, 'import megengine.functional as F\n'), ((3731, 3746), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3744, 3746), True, 'import megengine.distributed as dist\n'), ((3762, 3783), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3781, 3783), True, 'import megengine.distributed as dist\n'), ((3871, 3907), 'megengine.module.Linear', 'M.Linear', (['(rank * 2 + 2)', '(rank * 2 + 4)'], {}), '(rank * 2 + 2, rank * 2 + 4)\n', (3879, 3907), True, 'import megengine.module as M\n'), ((3356, 3373), 'platform.system', 'platform.system', ([], {}), '()\n', (3371, 3373), False, 'import platform\n'), ((3456, 3473), 'platform.system', 'platform.system', ([], {}), '()\n', (3471, 3473), False, 'import platform\n'), ((3553, 3584), 'megengine.distributed.helper.get_device_count_by_fork', 'get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (3577, 3584), False, 'from megengine.distributed.helper import get_device_count_by_fork\n'), ((747, 774), 'megengine.tensor', 'mge.tensor', (['[1.0, 3.0, 5.0]'], {}), '([1.0, 3.0, 5.0])\n', (757, 774), True, 'import megengine as mge\n'), ((797, 824), 'megengine.tensor', 'mge.tensor', (['[2.0, 4.0, 6.0]'], {}), '([2.0, 4.0, 6.0])\n', (807, 824), True, 'import megengine as mge\n'), ((874, 887), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (885, 887), False, 'from megengine.autodiff import GradManager\n'), ((1824, 1854), 'megengine.Tensor', 'mge.Tensor', (['i'], {'dtype': '"""float32"""'}), "(i, dtype='float32')\n", (1834, 1854), True, 'import megengine as mge\n'), ((1912, 1926), 'weakref.ref', 'weakref.ref', (['x'], {}), '(x)\n', (1923, 1926), False, 'import weakref\n'), ((3807, 3839), 'numpy.random.randn', 'np.random.randn', (['(1)', '(rank * 2 + 2)'], {}), '(1, rank * 2 + 2)\n', (3822, 3839), True, 'import numpy as np\n'), ((3921, 3934), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (3932, 3934), False, 'from megengine.autodiff import GradManager\n'), ((4606, 4627), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (4611, 4627), False, 'from megengine.jit import trace\n'), ((4653, 4673), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (4658, 4673), False, 'from megengine.jit import trace\n'), ((4121, 4206), 'megengine.distributed.functional.remote_recv', 'dist.functional.remote_recv', (['(rank - 1)'], {'shape': '(1, rank * 2 + 2)', 'dtype': 'np.float32'}), '(rank - 1, shape=(1, rank * 2 + 2), dtype=np.float32\n )\n', (4148, 4206), True, 'import megengine.distributed as dist\n'), ((4330, 4380), 'megengine.distributed.functional.remote_send', 'dist.functional.remote_send', (['y'], {'dest_rank': '(rank + 1)'}), '(y, dest_rank=rank + 1)\n', (4357, 4380), True, 'import megengine.distributed as dist\n')]
# Copyright (c) 2020 <NAME> # This code is licensed under MIT license # (https://github.com/kwotsin/mimicry/blob/master/LICENSE) # ------------------------------------------------------------------------------ # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved. # ------------------------------------------------------------------------------ """ Implementation of Base GAN models. """ import megengine import megengine.functional as F import megengine.module as M import megengine.random as R import numpy as np from . import losses from .basemodel import BaseModel class BaseGenerator(BaseModel): r""" Base class for a generic unconditional generator model. Attributes: nz (int): Noise dimension for upsampling. ngf (int): Variable controlling generator feature map sizes. bottom_width (int): Starting width for upsampling generator output to an image. loss_type (str): Name of loss to use for GAN loss. """ def __init__(self, nz, ngf, bottom_width, loss_type, **kwargs): super().__init__(**kwargs) self.nz = nz self.ngf = ngf self.bottom_width = bottom_width self.loss_type = loss_type def _train_step_implementation( self, real_batch, netD=None, optG=None): # Produce fake images fake_images = self._infer_step_implementation(real_batch) # Compute output logit of D thinking image real output = netD(fake_images) # Compute loss errG = self.compute_gan_loss(output=output) optG.zero_grad() optG.backward(errG) optG.step() return errG def _infer_step_implementation(self, batch): # Get only batch size from real batch batch_size = batch.shape[0] noise = R.gaussian(shape=[batch_size, self.nz]) fake_images = self.forward(noise) return fake_images def compute_gan_loss(self, output): if self.loss_type == "ns": errG = losses.ns_loss_gen(output) elif self.loss_type == "wasserstein": errG = losses.wasserstein_loss_gen(output) else: raise ValueError("Invalid loss_type {} selected.".format( self.loss_type)) return errG def generate_images(self, num_images): """Generate images of shape [`num_images`, C, H, W]. Depending on the final activation function, pixel values are NOT guarenteed to be within [0, 1]. """ return self.infer_step(np.empty(num_images, dtype="float32")) class BaseDiscriminator(BaseModel): r""" Base class for a generic unconditional discriminator model. Attributes: ndf (int): Variable controlling discriminator feature map sizes. loss_type (str): Name of loss to use for GAN loss. """ def __init__(self, ndf, loss_type, **kwargs): super().__init__(**kwargs) self.ndf = ndf self.loss_type = loss_type def _train_step_implementation( self, real_batch, netG=None, optD=None): # Produce logits for real images output_real = self._infer_step_implementation(real_batch) # Produce fake images fake_images = netG._infer_step_implementation(real_batch) fake_images = F.zero_grad(fake_images) # Produce logits for fake images output_fake = self._infer_step_implementation(fake_images) # Compute loss for D errD = self.compute_gan_loss(output_real=output_real, output_fake=output_fake) D_x, D_Gz = self.compute_probs(output_real=output_real, output_fake=output_fake) # Backprop and update gradients optD.zero_grad() optD.backward(errD) optD.step() return errD, D_x, D_Gz def _infer_step_implementation(self, batch): return self.forward(batch) def compute_gan_loss(self, output_real, output_fake): r""" Computes GAN loss for discriminator. Args: output_real (Tensor): A batch of output logits of shape (N, 1) from real images. output_fake (Tensor): A batch of output logits of shape (N, 1) from fake images. Returns: errD (Tensor): A batch of GAN losses for the discriminator. """ # Compute loss for D if self.loss_type == "gan" or self.loss_type == "ns": errD = losses.minimax_loss_dis(output_fake=output_fake, output_real=output_real) elif self.loss_type == "wasserstein": errD = losses.wasserstein_loss_dis(output_fake=output_fake, output_real=output_real) else: raise ValueError("Invalid loss_type selected.") return errD def compute_probs(self, output_real, output_fake): r""" Computes probabilities from real/fake images logits. Args: output_real (Tensor): A batch of output logits of shape (N, 1) from real images. output_fake (Tensor): A batch of output logits of shape (N, 1) from fake images. Returns: tuple: Average probabilities of real/fake image considered as real for the batch. """ D_x = F.sigmoid(output_real).mean() D_Gz = F.sigmoid(output_fake).mean() return D_x, D_Gz
[ "megengine.random.gaussian", "megengine.functional.zero_grad", "megengine.functional.sigmoid" ]
[((2259, 2298), 'megengine.random.gaussian', 'R.gaussian', ([], {'shape': '[batch_size, self.nz]'}), '(shape=[batch_size, self.nz])\n', (2269, 2298), True, 'import megengine.random as R\n'), ((3780, 3804), 'megengine.functional.zero_grad', 'F.zero_grad', (['fake_images'], {}), '(fake_images)\n', (3791, 3804), True, 'import megengine.functional as F\n'), ((2994, 3031), 'numpy.empty', 'np.empty', (['num_images'], {'dtype': '"""float32"""'}), "(num_images, dtype='float32')\n", (3002, 3031), True, 'import numpy as np\n'), ((5829, 5851), 'megengine.functional.sigmoid', 'F.sigmoid', (['output_real'], {}), '(output_real)\n', (5838, 5851), True, 'import megengine.functional as F\n'), ((5874, 5896), 'megengine.functional.sigmoid', 'F.sigmoid', (['output_fake'], {}), '(output_fake)\n', (5883, 5896), True, 'import megengine.functional as F\n')]
"""add application resume Revision ID: 07061a7c250f Revises: 378a9b9a491b Create Date: 2022-04-26 08:00:47.428979+00:00 """ import sqlalchemy as sa import sqlmodel from alembic import op # revision identifiers, used by Alembic. revision = "07061a7c250f" down_revision = "378a9b9a491b" branch_labels = None depends_on = None def upgrade(): op.add_column( "applications", sa.Column("resume", sqlmodel.sql.sqltypes.AutoString(), nullable=True), ) def downgrade(): op.drop_column("applications", "resume")
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((496, 536), 'alembic.op.drop_column', 'op.drop_column', (['"""applications"""', '"""resume"""'], {}), "('applications', 'resume')\n", (510, 536), False, 'from alembic import op\n'), ((415, 449), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (447, 449), False, 'import sqlmodel\n')]
from sqlalchemy import inspect from sqlalchemy.engine.reflection import Inspector from sqlmodel import create_engine def test_tutorial001(clear_sqlmodel): from docs_src.tutorial.connect.create_tables import tutorial001 as mod mod.sqlite_url = "sqlite://" mod.engine = create_engine(mod.sqlite_url) mod.main() insp: Inspector = inspect(mod.engine) assert insp.has_table(str(mod.Hero.__tablename__)) assert insp.has_table(str(mod.Team.__tablename__))
[ "sqlmodel.create_engine" ]
[((283, 312), 'sqlmodel.create_engine', 'create_engine', (['mod.sqlite_url'], {}), '(mod.sqlite_url)\n', (296, 312), False, 'from sqlmodel import create_engine\n'), ((317, 327), 'docs_src.tutorial.connect.create_tables.tutorial001.main', 'mod.main', ([], {}), '()\n', (325, 327), True, 'from docs_src.tutorial.connect.create_tables import tutorial001 as mod\n'), ((350, 369), 'sqlalchemy.inspect', 'inspect', (['mod.engine'], {}), '(mod.engine)\n', (357, 369), False, 'from sqlalchemy import inspect\n')]
from typing import Optional from sqlmodel import Field, SQLModel from datetime import datetime, date class Rate(SQLModel, table=True): """Create an SQLModel for rates""" id: Optional[int] = Field(default=None, primary_key=True) user_id: int = Field(foreign_key="app_db.appuser.id") client_id: int = Field(foreign_key="app_db.client.id") valid_from: date valid_to: date amount: float # currency: EUR created_at: datetime updated_at: datetime is_active: bool __table_args__ = {"schema": "app_db"}
[ "sqlmodel.Field" ]
[((201, 238), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (206, 238), False, 'from sqlmodel import Field, SQLModel\n'), ((258, 296), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""app_db.appuser.id"""'}), "(foreign_key='app_db.appuser.id')\n", (263, 296), False, 'from sqlmodel import Field, SQLModel\n'), ((318, 355), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""app_db.client.id"""'}), "(foreign_key='app_db.client.id')\n", (323, 355), False, 'from sqlmodel import Field, SQLModel\n')]
# -*- coding: utf-8 -*- # Copyright 2018-2019 Open-MMLab. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # --------------------------------------------------------------------- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved. # --------------------------------------------------------------------- from abc import ABCMeta, abstractmethod import megengine.functional as F import numpy as np from megengine.core import tensor, Tensor class BaseAnchorGenerator(metaclass=ABCMeta): """base class for anchor generator. """ def __init__(self): pass @abstractmethod def get_anchors_by_feature(self) -> Tensor: pass class DefaultAnchorGenerator(BaseAnchorGenerator): """default retinanet anchor generator. This class generate anchors by feature map in level. Args: base_size (int): anchor base size. anchor_scales (np.ndarray): anchor scales based on stride. The practical anchor scale is anchor_scale * stride anchor_ratios(np.ndarray): anchor aspect ratios. offset (float): center point offset.default is 0. """ def __init__( self, base_size=8, anchor_scales: np.ndarray = np.array([2, 3, 4]), anchor_ratios: np.ndarray = np.array([0.5, 1, 2]), offset: float = 0, ): super().__init__() self.base_size = base_size self.anchor_scales = anchor_scales self.anchor_ratios = anchor_ratios self.offset = offset def _whctrs(self, anchor): """convert anchor box into (w, h, ctr_x, ctr_y) """ w = anchor[:, 2] - anchor[:, 0] + 1 h = anchor[:, 3] - anchor[:, 1] + 1 x_ctr = anchor[:, 0] + 0.5 * (w - 1) y_ctr = anchor[:, 1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr def get_plane_anchors(self, anchor_scales: np.ndarray): """get anchors per location on feature map. The anchor number is anchor_scales x anchor_ratios """ base_anchor = tensor([0, 0, self.base_size - 1, self.base_size - 1]) base_anchor = F.add_axis(base_anchor, 0) w, h, x_ctr, y_ctr = self._whctrs(base_anchor) # ratio enumerate size = w * h size_ratios = size / self.anchor_ratios ws = size_ratios.sqrt().round() hs = (ws * self.anchor_ratios).round() # scale enumerate anchor_scales = anchor_scales[None, ...] ws = F.add_axis(ws, 1) hs = F.add_axis(hs, 1) ws = (ws * anchor_scales).reshape(-1, 1) hs = (hs * anchor_scales).reshape(-1, 1) anchors = F.concat( [ x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1), ], axis=1, ) return anchors.astype(np.float32) def get_center_offsets(self, featmap, stride): f_shp = featmap.shape fm_height, fm_width = f_shp[-2], f_shp[-1] shift_x = F.linspace(0, fm_width - 1, fm_width) * stride shift_y = F.linspace(0, fm_height - 1, fm_height) * stride # make the mesh grid of shift_x and shift_y mesh_shape = (fm_height, fm_width) broad_shift_x = shift_x.reshape(-1, shift_x.shape[0]).broadcast(*mesh_shape) broad_shift_y = shift_y.reshape(shift_y.shape[0], -1).broadcast(*mesh_shape) flatten_shift_x = F.add_axis(broad_shift_x.reshape(-1), 1) flatten_shift_y = F.add_axis(broad_shift_y.reshape(-1), 1) centers = F.concat( [flatten_shift_x, flatten_shift_y, flatten_shift_x, flatten_shift_y,], axis=1, ) if self.offset > 0: centers = centers + self.offset * stride return centers def get_anchors_by_feature(self, featmap, stride): # shifts shape: [A, 4] shifts = self.get_center_offsets(featmap, stride) # plane_anchors shape: [B, 4], e.g. B=9 plane_anchors = self.get_plane_anchors(self.anchor_scales * stride) all_anchors = F.add_axis(plane_anchors, 0) + F.add_axis(shifts, 1) all_anchors = all_anchors.reshape(-1, 4) return all_anchors def __call__(self, featmap, stride): return self.get_anchors_by_feature(featmap, stride)
[ "megengine.functional.linspace", "megengine.core.tensor", "megengine.functional.add_axis", "megengine.functional.concat" ]
[((2161, 2180), 'numpy.array', 'np.array', (['[2, 3, 4]'], {}), '([2, 3, 4])\n', (2169, 2180), True, 'import numpy as np\n'), ((2218, 2239), 'numpy.array', 'np.array', (['[0.5, 1, 2]'], {}), '([0.5, 1, 2])\n', (2226, 2239), True, 'import numpy as np\n'), ((2971, 3025), 'megengine.core.tensor', 'tensor', (['[0, 0, self.base_size - 1, self.base_size - 1]'], {}), '([0, 0, self.base_size - 1, self.base_size - 1])\n', (2977, 3025), False, 'from megengine.core import tensor, Tensor\n'), ((3048, 3074), 'megengine.functional.add_axis', 'F.add_axis', (['base_anchor', '(0)'], {}), '(base_anchor, 0)\n', (3058, 3074), True, 'import megengine.functional as F\n'), ((3402, 3419), 'megengine.functional.add_axis', 'F.add_axis', (['ws', '(1)'], {}), '(ws, 1)\n', (3412, 3419), True, 'import megengine.functional as F\n'), ((3433, 3450), 'megengine.functional.add_axis', 'F.add_axis', (['hs', '(1)'], {}), '(hs, 1)\n', (3443, 3450), True, 'import megengine.functional as F\n'), ((3568, 3686), 'megengine.functional.concat', 'F.concat', (['[x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), \n y_ctr + 0.5 * (hs - 1)]'], {'axis': '(1)'}), '([x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws -\n 1), y_ctr + 0.5 * (hs - 1)], axis=1)\n', (3576, 3686), True, 'import megengine.functional as F\n'), ((4526, 4616), 'megengine.functional.concat', 'F.concat', (['[flatten_shift_x, flatten_shift_y, flatten_shift_x, flatten_shift_y]'], {'axis': '(1)'}), '([flatten_shift_x, flatten_shift_y, flatten_shift_x,\n flatten_shift_y], axis=1)\n', (4534, 4616), True, 'import megengine.functional as F\n'), ((3992, 4029), 'megengine.functional.linspace', 'F.linspace', (['(0)', '(fm_width - 1)', 'fm_width'], {}), '(0, fm_width - 1, fm_width)\n', (4002, 4029), True, 'import megengine.functional as F\n'), ((4057, 4096), 'megengine.functional.linspace', 'F.linspace', (['(0)', '(fm_height - 1)', 'fm_height'], {}), '(0, fm_height - 1, fm_height)\n', (4067, 4096), True, 'import megengine.functional as F\n'), ((5045, 5073), 'megengine.functional.add_axis', 'F.add_axis', (['plane_anchors', '(0)'], {}), '(plane_anchors, 0)\n', (5055, 5073), True, 'import megengine.functional as F\n'), ((5076, 5097), 'megengine.functional.add_axis', 'F.add_axis', (['shifts', '(1)'], {}), '(shifts, 1)\n', (5086, 5097), True, 'import megengine.functional as F\n')]
"""initial Revision ID: ef<PASSWORD> Revises: Create Date: 2022-03-03 15:21:30.974400 """ from alembic import op import sqlalchemy as sa import sqlmodel from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "ef<PASSWORD>" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "sandbox", sa.Column( "id", postgresql.UUID(as_uuid=True), server_default=sa.text("gen_random_uuid()"), nullable=False, ), sa.Column( "created_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column("tag", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.PrimaryKeyConstraint("id"), ) op.create_table( "job_applicant", sa.Column( "id", postgresql.UUID(as_uuid=True), server_default=sa.text("gen_random_uuid()"), nullable=False, ), sa.Column( "created_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column("name", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("sandbox_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("degree", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("date", sa.DateTime(), nullable=True), sa.Column( "invitation_state", sqlmodel.sql.sqltypes.AutoString(), nullable=True ), sa.Column("connection_id", sqlmodel.sql.sqltypes.GUID(), nullable=True), sa.Column("wallet_id", sqlmodel.sql.sqltypes.GUID(), nullable=True), sa.Column("alias", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.ForeignKeyConstraint( ["sandbox_id"], ["sandbox.id"], ), sa.PrimaryKeyConstraint("id"), sa.UniqueConstraint("name", "sandbox_id"), ) op.create_index( op.f("ix_job_applicant_name"), "job_applicant", ["name"], unique=False ) op.create_table( "line_of_business", sa.Column( "id", postgresql.UUID(as_uuid=True), server_default=sa.text("gen_random_uuid()"), nullable=False, ), sa.Column( "created_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column("name", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("webhook_url", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("sandbox_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("traction_issue_enabled", sa.Boolean(), nullable=False), sa.Column("public_did", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("cred_def_id", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("wallet_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("wallet_key", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.ForeignKeyConstraint( ["sandbox_id"], ["sandbox.id"], ), sa.PrimaryKeyConstraint("id"), ) op.create_table( "student", sa.Column( "id", postgresql.UUID(as_uuid=True), server_default=sa.text("gen_random_uuid()"), nullable=False, ), sa.Column( "created_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column("name", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("sandbox_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("degree", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("age", sa.Integer(), nullable=True), sa.Column("student_id", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("date", sa.DateTime(), nullable=True), sa.Column( "invitation_state", sqlmodel.sql.sqltypes.AutoString(), nullable=True ), sa.Column("connection_id", sqlmodel.sql.sqltypes.GUID(), nullable=True), sa.Column("wallet_id", sqlmodel.sql.sqltypes.GUID(), nullable=True), sa.Column("alias", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.ForeignKeyConstraint( ["sandbox_id"], ["sandbox.id"], ), sa.PrimaryKeyConstraint("id"), sa.UniqueConstraint("name", "sandbox_id"), ) op.create_index(op.f("ix_student_name"), "student", ["name"], unique=False) op.create_table( "out_of_band", sa.Column( "id", postgresql.UUID(as_uuid=True), server_default=sa.text("gen_random_uuid()"), nullable=False, ), sa.Column( "created_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column("msg", postgresql.JSON(astext_type=sa.Text()), nullable=True), sa.Column("msg_type", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("sender_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("recipient_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("sandbox_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("action", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.ForeignKeyConstraint( ["recipient_id"], ["line_of_business.id"], ), sa.ForeignKeyConstraint( ["sandbox_id"], ["sandbox.id"], ), sa.ForeignKeyConstraint( ["sender_id"], ["line_of_business.id"], ), sa.PrimaryKeyConstraint("id"), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("out_of_band") op.drop_index(op.f("ix_student_name"), table_name="student") op.drop_table("student") op.drop_table("line_of_business") op.drop_index(op.f("ix_job_applicant_name"), table_name="job_applicant") op.drop_table("job_applicant") op.drop_table("sandbox") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.GUID", "sqlmodel.sql.sqltypes.AutoString" ]
[((7044, 7072), 'alembic.op.drop_table', 'op.drop_table', (['"""out_of_band"""'], {}), "('out_of_band')\n", (7057, 7072), False, 'from alembic import op\n'), ((7142, 7166), 'alembic.op.drop_table', 'op.drop_table', (['"""student"""'], {}), "('student')\n", (7155, 7166), False, 'from alembic import op\n'), ((7171, 7204), 'alembic.op.drop_table', 'op.drop_table', (['"""line_of_business"""'], {}), "('line_of_business')\n", (7184, 7204), False, 'from alembic import op\n'), ((7286, 7316), 'alembic.op.drop_table', 'op.drop_table', (['"""job_applicant"""'], {}), "('job_applicant')\n", (7299, 7316), False, 'from alembic import op\n'), ((7321, 7345), 'alembic.op.drop_table', 'op.drop_table', (['"""sandbox"""'], {}), "('sandbox')\n", (7334, 7345), False, 'from alembic import op\n'), ((1040, 1069), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1063, 1069), True, 'import sqlalchemy as sa\n'), ((2281, 2336), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['sandbox_id']", "['sandbox.id']"], {}), "(['sandbox_id'], ['sandbox.id'])\n", (2304, 2336), True, 'import sqlalchemy as sa\n'), ((2381, 2410), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (2404, 2410), True, 'import sqlalchemy as sa\n'), ((2420, 2461), 'sqlalchemy.UniqueConstraint', 'sa.UniqueConstraint', (['"""name"""', '"""sandbox_id"""'], {}), "('name', 'sandbox_id')\n", (2439, 2461), True, 'import sqlalchemy as sa\n'), ((2498, 2527), 'alembic.op.f', 'op.f', (['"""ix_job_applicant_name"""'], {}), "('ix_job_applicant_name')\n", (2502, 2527), False, 'from alembic import op\n'), ((3782, 3837), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['sandbox_id']", "['sandbox.id']"], {}), "(['sandbox_id'], ['sandbox.id'])\n", (3805, 3837), True, 'import sqlalchemy as sa\n'), ((3882, 3911), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (3905, 3911), True, 'import sqlalchemy as sa\n'), ((5256, 5311), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['sandbox_id']", "['sandbox.id']"], {}), "(['sandbox_id'], ['sandbox.id'])\n", (5279, 5311), True, 'import sqlalchemy as sa\n'), ((5356, 5385), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (5379, 5385), True, 'import sqlalchemy as sa\n'), ((5395, 5436), 'sqlalchemy.UniqueConstraint', 'sa.UniqueConstraint', (['"""name"""', '"""sandbox_id"""'], {}), "('name', 'sandbox_id')\n", (5414, 5436), True, 'import sqlalchemy as sa\n'), ((5464, 5487), 'alembic.op.f', 'op.f', (['"""ix_student_name"""'], {}), "('ix_student_name')\n", (5468, 5487), False, 'from alembic import op\n'), ((6564, 6630), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['recipient_id']", "['line_of_business.id']"], {}), "(['recipient_id'], ['line_of_business.id'])\n", (6587, 6630), True, 'import sqlalchemy as sa\n'), ((6675, 6730), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['sandbox_id']", "['sandbox.id']"], {}), "(['sandbox_id'], ['sandbox.id'])\n", (6698, 6730), True, 'import sqlalchemy as sa\n'), ((6775, 6838), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['sender_id']", "['line_of_business.id']"], {}), "(['sender_id'], ['line_of_business.id'])\n", (6798, 6838), True, 'import sqlalchemy as sa\n'), ((6883, 6912), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (6906, 6912), True, 'import sqlalchemy as sa\n'), ((7091, 7114), 'alembic.op.f', 'op.f', (['"""ix_student_name"""'], {}), "('ix_student_name')\n", (7095, 7114), False, 'from alembic import op\n'), ((7223, 7252), 'alembic.op.f', 'op.f', (['"""ix_job_applicant_name"""'], {}), "('ix_job_applicant_name')\n", (7227, 7252), False, 'from alembic import op\n'), ((498, 527), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (513, 527), False, 'from sqlalchemy.dialects import postgresql\n'), ((682, 704), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (702, 704), False, 'from sqlalchemy.dialects import postgresql\n'), ((847, 869), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (867, 869), False, 'from sqlalchemy.dialects import postgresql\n'), ((980, 1014), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1012, 1014), False, 'import sqlmodel\n'), ((1172, 1201), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (1187, 1201), False, 'from sqlalchemy.dialects import postgresql\n'), ((1356, 1378), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (1376, 1378), False, 'from sqlalchemy.dialects import postgresql\n'), ((1521, 1543), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (1541, 1543), False, 'from sqlalchemy.dialects import postgresql\n'), ((1655, 1689), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1687, 1689), False, 'import sqlmodel\n'), ((1740, 1768), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (1766, 1768), False, 'import sqlmodel\n'), ((1815, 1849), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1847, 1849), False, 'import sqlmodel\n'), ((1893, 1906), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1904, 1906), True, 'import sqlalchemy as sa\n'), ((1975, 2009), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2007, 2009), False, 'import sqlmodel\n'), ((2071, 2099), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (2097, 2099), False, 'import sqlmodel\n'), ((2148, 2176), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (2174, 2176), False, 'import sqlmodel\n'), ((2221, 2255), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2253, 2255), False, 'import sqlmodel\n'), ((2673, 2702), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (2688, 2702), False, 'from sqlalchemy.dialects import postgresql\n'), ((2857, 2879), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (2877, 2879), False, 'from sqlalchemy.dialects import postgresql\n'), ((3022, 3044), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (3042, 3044), False, 'from sqlalchemy.dialects import postgresql\n'), ((3156, 3190), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (3188, 3190), False, 'import sqlmodel\n'), ((3242, 3276), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (3274, 3276), False, 'import sqlmodel\n'), ((3326, 3354), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (3352, 3354), False, 'import sqlmodel\n'), ((3417, 3429), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (3427, 3429), True, 'import sqlalchemy as sa\n'), ((3480, 3514), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (3512, 3514), False, 'import sqlmodel\n'), ((3565, 3599), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (3597, 3599), False, 'import sqlmodel\n'), ((3648, 3676), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (3674, 3676), False, 'import sqlmodel\n'), ((3727, 3755), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (3753, 3755), False, 'import sqlmodel\n'), ((4008, 4037), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (4023, 4037), False, 'from sqlalchemy.dialects import postgresql\n'), ((4192, 4214), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (4212, 4214), False, 'from sqlalchemy.dialects import postgresql\n'), ((4357, 4379), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (4377, 4379), False, 'from sqlalchemy.dialects import postgresql\n'), ((4491, 4525), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (4523, 4525), False, 'import sqlmodel\n'), ((4576, 4604), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (4602, 4604), False, 'import sqlmodel\n'), ((4651, 4685), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (4683, 4685), False, 'import sqlmodel\n'), ((4728, 4740), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (4738, 4740), True, 'import sqlalchemy as sa\n'), ((4790, 4824), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (4822, 4824), False, 'import sqlmodel\n'), ((4868, 4881), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (4879, 4881), True, 'import sqlalchemy as sa\n'), ((4950, 4984), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (4982, 4984), False, 'import sqlmodel\n'), ((5046, 5074), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (5072, 5074), False, 'import sqlmodel\n'), ((5123, 5151), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (5149, 5151), False, 'import sqlmodel\n'), ((5196, 5230), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (5228, 5230), False, 'import sqlmodel\n'), ((5617, 5646), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (5632, 5646), False, 'from sqlalchemy.dialects import postgresql\n'), ((5801, 5823), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (5821, 5823), False, 'from sqlalchemy.dialects import postgresql\n'), ((5966, 5988), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (5986, 5988), False, 'from sqlalchemy.dialects import postgresql\n'), ((6185, 6219), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (6217, 6219), False, 'import sqlmodel\n'), ((6269, 6297), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (6295, 6297), False, 'import sqlmodel\n'), ((6350, 6378), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (6376, 6378), False, 'import sqlmodel\n'), ((6429, 6457), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (6455, 6457), False, 'import sqlmodel\n'), ((6504, 6538), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (6536, 6538), False, 'import sqlmodel\n'), ((556, 584), 'sqlalchemy.text', 'sa.text', (['"""gen_random_uuid()"""'], {}), "('gen_random_uuid()')\n", (563, 584), True, 'import sqlalchemy as sa\n'), ((733, 749), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (740, 749), True, 'import sqlalchemy as sa\n'), ((898, 914), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (905, 914), True, 'import sqlalchemy as sa\n'), ((1230, 1258), 'sqlalchemy.text', 'sa.text', (['"""gen_random_uuid()"""'], {}), "('gen_random_uuid()')\n", (1237, 1258), True, 'import sqlalchemy as sa\n'), ((1407, 1423), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (1414, 1423), True, 'import sqlalchemy as sa\n'), ((1572, 1588), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (1579, 1588), True, 'import sqlalchemy as sa\n'), ((2731, 2759), 'sqlalchemy.text', 'sa.text', (['"""gen_random_uuid()"""'], {}), "('gen_random_uuid()')\n", (2738, 2759), True, 'import sqlalchemy as sa\n'), ((2908, 2924), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (2915, 2924), True, 'import sqlalchemy as sa\n'), ((3073, 3089), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (3080, 3089), True, 'import sqlalchemy as sa\n'), ((4066, 4094), 'sqlalchemy.text', 'sa.text', (['"""gen_random_uuid()"""'], {}), "('gen_random_uuid()')\n", (4073, 4094), True, 'import sqlalchemy as sa\n'), ((4243, 4259), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (4250, 4259), True, 'import sqlalchemy as sa\n'), ((4408, 4424), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (4415, 4424), True, 'import sqlalchemy as sa\n'), ((5675, 5703), 'sqlalchemy.text', 'sa.text', (['"""gen_random_uuid()"""'], {}), "('gen_random_uuid()')\n", (5682, 5703), True, 'import sqlalchemy as sa\n'), ((5852, 5868), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (5859, 5868), True, 'import sqlalchemy as sa\n'), ((6017, 6033), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (6024, 6033), True, 'import sqlalchemy as sa\n'), ((6127, 6136), 'sqlalchemy.Text', 'sa.Text', ([], {}), '()\n', (6134, 6136), True, 'import sqlalchemy as sa\n')]
from datetime import datetime from typing import List, Optional from pydantic import BaseModel from pydantic.networks import HttpUrl from sqlmodel import Field, SQLModel PageType = str class Ecoindex(SQLModel): grade: Optional[str] = Field( default=None, title="Ecoindex grade", description="Is the corresponding ecoindex grade of the page (from A to G)", ) score: Optional[float] = Field( default=None, title="Ecoindex score", description="Is the corresponding ecoindex score of the page (0 to 100)", ge=0, le=100, ) ges: Optional[float] = Field( default=None, title="Ecoindex GES equivalent", description="Is the equivalent of greenhouse gases emission (in `gCO2e`) of the page", ge=0, ) water: Optional[float] = Field( default=None, title="Ecoindex Water equivalent", description="Is the equivalent water consumption (in `cl`) of the page", ge=0, ) class Page(BaseModel): logs: List outer_html: str nodes: List class PageMetrics(SQLModel): size: float = Field( default=..., title="Page size", description="Is the size of the page and of the downloaded elements of the page in KB", ge=0, ) nodes: int = Field( default=..., title="Page nodes", description="Is the number of the DOM elements in the page", ge=0, ) requests: int = Field( default=..., title="Page requests", description="Is the number of external requests made by the page", ge=0, ) class WindowSize(BaseModel): height: int = Field( default=..., title="Window height", description="Height of the simulated window in pixel", ) width: int = Field( default=..., title="Window width", description="Width of the simulated window in pixel", ) def __str__(self) -> str: return f"{self.width},{self.height}" class WebPage(SQLModel): width: Optional[int] = Field( default=None, title="Page Width", description="Width of the simulated window in pixel", ) height: Optional[int] = Field( default=None, title="Page Height", description="Height of the simulated window in pixel", ) url: Optional[HttpUrl] = Field( default=None, title="Page url", description="Url of the analysed page" ) class Result(Ecoindex, PageMetrics, WebPage): date: Optional[datetime] = Field( default=None, title="Analysis datetime", description="Date of the analysis" ) page_type: Optional[PageType] = Field( default=None, title="Page type", description="Is the type of the page, based ton the [opengraph type tag](https://ogp.me/#types)", )
[ "sqlmodel.Field" ]
[((242, 367), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'title': '"""Ecoindex grade"""', 'description': '"""Is the corresponding ecoindex grade of the page (from A to G)"""'}), "(default=None, title='Ecoindex grade', description=\n 'Is the corresponding ecoindex grade of the page (from A to G)')\n", (247, 367), False, 'from sqlmodel import Field, SQLModel\n'), ((423, 559), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'title': '"""Ecoindex score"""', 'description': '"""Is the corresponding ecoindex score of the page (0 to 100)"""', 'ge': '(0)', 'le': '(100)'}), "(default=None, title='Ecoindex score', description=\n 'Is the corresponding ecoindex score of the page (0 to 100)', ge=0, le=100)\n", (428, 559), False, 'from sqlmodel import Field, SQLModel\n'), ((629, 783), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'title': '"""Ecoindex GES equivalent"""', 'description': '"""Is the equivalent of greenhouse gases emission (in `gCO2e`) of the page"""', 'ge': '(0)'}), "(default=None, title='Ecoindex GES equivalent', description=\n 'Is the equivalent of greenhouse gases emission (in `gCO2e`) of the page',\n ge=0)\n", (634, 783), False, 'from sqlmodel import Field, SQLModel\n'), ((843, 981), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'title': '"""Ecoindex Water equivalent"""', 'description': '"""Is the equivalent water consumption (in `cl`) of the page"""', 'ge': '(0)'}), "(default=None, title='Ecoindex Water equivalent', description=\n 'Is the equivalent water consumption (in `cl`) of the page', ge=0)\n", (848, 981), False, 'from sqlmodel import Field, SQLModel\n'), ((1141, 1281), 'sqlmodel.Field', 'Field', ([], {'default': '...', 'title': '"""Page size"""', 'description': '"""Is the size of the page and of the downloaded elements of the page in KB"""', 'ge': '(0)'}), "(default=..., title='Page size', description=\n 'Is the size of the page and of the downloaded elements of the page in KB',\n ge=0)\n", (1146, 1281), False, 'from sqlmodel import Field, SQLModel\n'), ((1329, 1439), 'sqlmodel.Field', 'Field', ([], {'default': '...', 'title': '"""Page nodes"""', 'description': '"""Is the number of the DOM elements in the page"""', 'ge': '(0)'}), "(default=..., title='Page nodes', description=\n 'Is the number of the DOM elements in the page', ge=0)\n", (1334, 1439), False, 'from sqlmodel import Field, SQLModel\n'), ((1494, 1613), 'sqlmodel.Field', 'Field', ([], {'default': '...', 'title': '"""Page requests"""', 'description': '"""Is the number of external requests made by the page"""', 'ge': '(0)'}), "(default=..., title='Page requests', description=\n 'Is the number of external requests made by the page', ge=0)\n", (1499, 1613), False, 'from sqlmodel import Field, SQLModel\n'), ((1697, 1798), 'sqlmodel.Field', 'Field', ([], {'default': '...', 'title': '"""Window height"""', 'description': '"""Height of the simulated window in pixel"""'}), "(default=..., title='Window height', description=\n 'Height of the simulated window in pixel')\n", (1702, 1798), False, 'from sqlmodel import Field, SQLModel\n'), ((1842, 1941), 'sqlmodel.Field', 'Field', ([], {'default': '...', 'title': '"""Window width"""', 'description': '"""Width of the simulated window in pixel"""'}), "(default=..., title='Window width', description=\n 'Width of the simulated window in pixel')\n", (1847, 1941), False, 'from sqlmodel import Field, SQLModel\n'), ((2098, 2196), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'title': '"""Page Width"""', 'description': '"""Width of the simulated window in pixel"""'}), "(default=None, title='Page Width', description=\n 'Width of the simulated window in pixel')\n", (2103, 2196), False, 'from sqlmodel import Field, SQLModel\n'), ((2251, 2351), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'title': '"""Page Height"""', 'description': '"""Height of the simulated window in pixel"""'}), "(default=None, title='Page Height', description=\n 'Height of the simulated window in pixel')\n", (2256, 2351), False, 'from sqlmodel import Field, SQLModel\n'), ((2407, 2484), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'title': '"""Page url"""', 'description': '"""Url of the analysed page"""'}), "(default=None, title='Page url', description='Url of the analysed page')\n", (2412, 2484), False, 'from sqlmodel import Field, SQLModel\n'), ((2578, 2665), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'title': '"""Analysis datetime"""', 'description': '"""Date of the analysis"""'}), "(default=None, title='Analysis datetime', description=\n 'Date of the analysis')\n", (2583, 2665), False, 'from sqlmodel import Field, SQLModel\n'), ((2711, 2857), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'title': '"""Page type"""', 'description': '"""Is the type of the page, based ton the [opengraph type tag](https://ogp.me/#types)"""'}), "(default=None, title='Page type', description=\n 'Is the type of the page, based ton the [opengraph type tag](https://ogp.me/#types)'\n )\n", (2716, 2857), False, 'from sqlmodel import Field, SQLModel\n')]
from typing import Optional, List from sqlmodel import ( SQLModel, Field, create_engine, Relationship ) engine = create_engine('sqlite:///database.db') class Person(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) nome: str idade: int livros: List['Livro'] = Relationship(back_populates='person') class Livro(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) titulo: str pessoa_id: Optional[int] = Field(default=None, foreign_key='person.id') pessoa: Optional[Person] = Relationship(back_populates='livros') SQLModel.metadata.create_all(engine)
[ "sqlmodel.Relationship", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.create_engine", "sqlmodel.Field" ]
[((131, 169), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///database.db"""'], {}), "('sqlite:///database.db')\n", (144, 169), False, 'from sqlmodel import SQLModel, Field, create_engine, Relationship\n'), ((629, 665), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (657, 665), False, 'from sqlmodel import SQLModel, Field, create_engine, Relationship\n'), ((232, 269), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (237, 269), False, 'from sqlmodel import SQLModel, Field, create_engine, Relationship\n'), ((328, 365), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""person"""'}), "(back_populates='person')\n", (340, 365), False, 'from sqlmodel import SQLModel, Field, create_engine, Relationship\n'), ((427, 464), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (432, 464), False, 'from sqlmodel import SQLModel, Field, create_engine, Relationship\n'), ((513, 557), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""person.id"""'}), "(default=None, foreign_key='person.id')\n", (518, 557), False, 'from sqlmodel import SQLModel, Field, create_engine, Relationship\n'), ((589, 626), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""livros"""'}), "(back_populates='livros')\n", (601, 626), False, 'from sqlmodel import SQLModel, Field, create_engine, Relationship\n')]
from __future__ import annotations import inspect from functools import wraps from typing import Any, Callable, Dict, List, Literal, Type, TypeVar from fastapi.encoders import jsonable_encoder from sqlalchemy.orm import Query, noload, raiseload, selectinload, subqueryload from sqlalchemy.sql.elements import BinaryExpression from sqlmodel import SQLModel, select from sqlmodel.ext.asyncio.session import AsyncSession Self = TypeVar("Self", bound="Base") LoadStrategy = Literal["subquery", "selectin", "raise", "raise_on_sql", "noload"] load_strategy_map: Dict[LoadStrategy, Callable[..., Any]] = { "subquery": subqueryload, "selectin": selectinload, "raise": raiseload, "raise_on_sql": raiseload, "noload": noload, } class InvalidTable(RuntimeError): """Raised when calling a method coupled to SQLAlchemy operations. It should be called only by SQLModel objects that are tables. """ def is_table(cls: Type[Self]) -> bool: base_is_table = False for base in cls.__bases__: config = getattr(base, "__config__") if config and getattr(config, "table", False): base_is_table = True break return getattr(cls.__config__, "table", False) and not base_is_table def validate_table(func): @wraps(func) def wrapper(self, *args, **kwargs): cls = self if inspect.isclass(self) else self.__class__ if not is_table(cls): raise InvalidTable( f'"{cls.__name__}" is not a table. ' "Add the class parameter `table=True` or don't use with this object." ) return func(self, *args, **kwargs) return wrapper def _prepare_query( cls: Type[Self], load_strategy: Dict[str, LoadStrategy] | None ) -> Query: load_strategy = load_strategy or {} query = select(cls) for key, strategy in load_strategy.items(): query = query.options(load_strategy_map[strategy](key)) return query class Base(SQLModel): @classmethod @validate_table async def get( cls: Type[Self], session: AsyncSession, *args: BinaryExpression, load_strategy: Dict[str, LoadStrategy] = None, **kwargs: Any, ) -> Self: query = _prepare_query(cls, load_strategy) result = await session.execute(query.filter(*args).filter_by(**kwargs)) return result.scalars().first() @classmethod @validate_table async def get_multi( cls: Type[Self], session: AsyncSession, *args: BinaryExpression, load_strategy: Dict[str, LoadStrategy] = None, offset: int = 0, limit: int = 100, **kwargs: Any, ) -> List[Self]: query = _prepare_query(cls, load_strategy) result = await session.execute( query.filter(*args).filter_by(**kwargs).offset(offset).limit(limit) ) return result.scalars().all() @classmethod @validate_table async def create(cls: Type[Self], session: AsyncSession, **kwargs: Any) -> Self: db_obj = cls(**kwargs) session.add(db_obj) await session.commit() return db_obj @validate_table async def update(self: Self, session: AsyncSession, **kwargs: Any) -> Self: obj_data = jsonable_encoder(self) for field in obj_data: if field in kwargs: setattr(self, field, kwargs[field]) session.add(self) await session.commit() await session.refresh(self) return self @classmethod @validate_table async def delete( cls: Type[Self], session: AsyncSession, *args: BinaryExpression, **kwargs: Any ) -> Self: db_obj = await cls.get(session, *args, **kwargs) await session.delete(db_obj) await session.commit() return db_obj
[ "sqlmodel.select" ]
[((428, 457), 'typing.TypeVar', 'TypeVar', (['"""Self"""'], {'bound': '"""Base"""'}), "('Self', bound='Base')\n", (435, 457), False, 'from typing import Any, Callable, Dict, List, Literal, Type, TypeVar\n'), ((1277, 1288), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (1282, 1288), False, 'from functools import wraps\n'), ((1824, 1835), 'sqlmodel.select', 'select', (['cls'], {}), '(cls)\n', (1830, 1835), False, 'from sqlmodel import SQLModel, select\n'), ((3274, 3296), 'fastapi.encoders.jsonable_encoder', 'jsonable_encoder', (['self'], {}), '(self)\n', (3290, 3296), False, 'from fastapi.encoders import jsonable_encoder\n'), ((1351, 1372), 'inspect.isclass', 'inspect.isclass', (['self'], {}), '(self)\n', (1366, 1372), False, 'import inspect\n')]
"""initial3 Revision ID: 01b6c8ce3965 Revises: <PASSWORD> Create Date: 2021-11-01 04:29:57.210756 """ from alembic import op import sqlalchemy as sa import sqlmodel # revision identifiers, used by Alembic. revision = '01b6c8ce3965' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('images', sa.Column('size_x', sa.Float(), nullable=False)) op.add_column('images', sa.Column('size_y', sa.Float(), nullable=False)) op.create_index(op.f('ix_images_size_x'), 'images', ['size_x'], unique=False) op.create_index(op.f('ix_images_size_y'), 'images', ['size_y'], unique=False) op.add_column('listings', sa.Column('url', sqlmodel.sql.sqltypes.AutoString(), nullable=False)) op.create_index(op.f('ix_listings_url'), 'listings', ['url'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_listings_url'), table_name='listings') op.drop_column('listings', 'url') op.drop_index(op.f('ix_images_size_y'), table_name='images') op.drop_index(op.f('ix_images_size_x'), table_name='images') op.drop_column('images', 'size_y') op.drop_column('images', 'size_x') # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((1075, 1108), 'alembic.op.drop_column', 'op.drop_column', (['"""listings"""', '"""url"""'], {}), "('listings', 'url')\n", (1089, 1108), False, 'from alembic import op\n'), ((1243, 1277), 'alembic.op.drop_column', 'op.drop_column', (['"""images"""', '"""size_y"""'], {}), "('images', 'size_y')\n", (1257, 1277), False, 'from alembic import op\n'), ((1282, 1316), 'alembic.op.drop_column', 'op.drop_column', (['"""images"""', '"""size_x"""'], {}), "('images', 'size_x')\n", (1296, 1316), False, 'from alembic import op\n'), ((561, 585), 'alembic.op.f', 'op.f', (['"""ix_images_size_x"""'], {}), "('ix_images_size_x')\n", (565, 585), False, 'from alembic import op\n'), ((643, 667), 'alembic.op.f', 'op.f', (['"""ix_images_size_y"""'], {}), "('ix_images_size_y')\n", (647, 667), False, 'from alembic import op\n'), ((825, 848), 'alembic.op.f', 'op.f', (['"""ix_listings_url"""'], {}), "('ix_listings_url')\n", (829, 848), False, 'from alembic import op\n'), ((1023, 1046), 'alembic.op.f', 'op.f', (['"""ix_listings_url"""'], {}), "('ix_listings_url')\n", (1027, 1046), False, 'from alembic import op\n'), ((1127, 1151), 'alembic.op.f', 'op.f', (['"""ix_images_size_y"""'], {}), "('ix_images_size_y')\n", (1131, 1151), False, 'from alembic import op\n'), ((1192, 1216), 'alembic.op.f', 'op.f', (['"""ix_images_size_x"""'], {}), "('ix_images_size_x')\n", (1196, 1216), False, 'from alembic import op\n'), ((435, 445), 'sqlalchemy.Float', 'sa.Float', ([], {}), '()\n', (443, 445), True, 'import sqlalchemy as sa\n'), ((512, 522), 'sqlalchemy.Float', 'sa.Float', ([], {}), '()\n', (520, 522), True, 'import sqlalchemy as sa\n'), ((752, 786), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (784, 786), False, 'import sqlmodel\n')]
import megengine as mge import megengine.module as nn import megengine.functional as F from model.module import Encoder, Fusion, Decoder, Regression from common import se3, quaternion import math class OMNet(nn.Module): def __init__(self, params): super(OMNet, self).__init__() self.num_iter = params.titer self.encoder = [Encoder() for _ in range(self.num_iter)] self.fusion = [Fusion() for _ in range(self.num_iter)] self.decoder = [Decoder() for _ in range(self.num_iter)] self.regression = [Regression() for _ in range(self.num_iter)] self.overlap_dist = params.overlap_dist for m in self.modules(): if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear): nn.init.msra_normal_(m.weight, a=math.sqrt(5)) if m.bias is not None: fan_in, _ = nn.init.calculate_fan_in_and_fan_out(m.weight) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(m.bias, -bound, bound) # elif isinstance(m, nn.BatchNorm1d): # nn.init.ones_(m.weight) # nn.init.zeros_(m.bias) def generate_overlap_mask(self, points_src, points_ref, mask_src, mask_ref, transform_gt): points_src[F.logical_not(mask_src.astype("bool")), :] = 50.0 points_ref[F.logical_not(mask_ref.astype("bool")), :] = 100.0 points_src = se3.mge_transform(transform_gt, points_src) points_src = F.expand_dims(points_src, axis=2) points_ref = F.expand_dims(points_ref, axis=1) dist_matrix = F.sqrt(F.sum(F.square(points_src - points_ref), axis=-1)) # (B, N, N) dist_s2r = F.min(dist_matrix, axis=2) dist_r2s = F.min(dist_matrix, axis=1) overlap_src_mask = dist_s2r < self.overlap_dist # (B, N) overlap_ref_mask = dist_r2s < self.overlap_dist # (B, N) return overlap_src_mask, overlap_ref_mask def forward(self, data_batch): endpoints = {} xyz_src = data_batch["points_src"] xyz_ref = data_batch["points_ref"] transform_gt = data_batch["transform_gt"] pose_gt = data_batch["pose_gt"] # init endpoints all_src_cls_pair = [] all_ref_cls_pair = [] all_transform_pair = [] all_pose_pair = [] all_xyz_src_t = [xyz_src] # init params B, src_N, _ = xyz_src.shape _, ref_N, _ = xyz_ref.shape init_quat = F.tile(mge.tensor([1, 0, 0, 0], dtype="float32"), (B, 1)) # (B, 4) init_translate = F.tile(mge.tensor([0, 0, 0], dtype="float32"), (B, 1)) # (B, 3) pose_pred = F.concat((init_quat, init_translate), axis=1) # (B, 7) # rename xyz_src xyz_src_iter = F.copy(xyz_src, device=xyz_src.device) for i in range(self.num_iter): # deley mask if i < 2: src_pred_mask = F.ones((B, src_N), dtype=xyz_src.dtype) ref_pred_mask = F.ones((B, ref_N), dtype=xyz_ref.dtype) # encoder src_encoder_feats, src_glob_feat = self.encoder[i](xyz_src_iter.transpose(0, 2, 1).detach(), F.expand_dims(src_pred_mask, axis=1)) ref_encoder_feats, ref_glob_feat = self.encoder[i](xyz_ref.transpose(0, 2, 1).detach(), F.expand_dims(ref_pred_mask, axis=1)) # fusion src_concat_feat = F.concat( (src_encoder_feats[0], F.repeat(src_glob_feat, src_N, axis=2), F.repeat(ref_glob_feat, src_N, axis=2)), axis=1) ref_concat_feat = F.concat( (ref_encoder_feats[0], F.repeat(ref_glob_feat, ref_N, axis=2), F.repeat(src_glob_feat, ref_N, axis=2)), axis=1) _, src_fused_feat = self.fusion[i](src_concat_feat, F.expand_dims(src_pred_mask, axis=1)) _, ref_fused_feat = self.fusion[i](ref_concat_feat, F.expand_dims(ref_pred_mask, axis=1)) # decoder src_decoder_feats, src_cls_pred = self.decoder[i](src_fused_feat) ref_decoder_feats, ref_cls_pred = self.decoder[i](ref_fused_feat) # regression src_feat = F.concat(src_decoder_feats, axis=1) * F.expand_dims(src_pred_mask, axis=1) ref_feat = F.concat(ref_decoder_feats, axis=1) * F.expand_dims(ref_pred_mask, axis=1) concat_feat = F.concat((src_fused_feat, src_feat, ref_fused_feat, ref_feat), axis=1) concat_feat = F.max(concat_feat, axis=-1) pose_pred_iter = self.regression[i](concat_feat) # (B, 7) xyz_src_iter = quaternion.mge_quat_transform(pose_pred_iter, xyz_src_iter.detach()) pose_pred = quaternion.mge_transform_pose(pose_pred.detach(), pose_pred_iter) transform_pred = quaternion.mge_quat2mat(pose_pred) # compute overlap and cls gt overlap_src_mask, overlap_ref_mask = self.generate_overlap_mask(F.copy(xyz_src, device=xyz_src.device), F.copy(xyz_ref, device=xyz_ref.device), src_pred_mask, ref_pred_mask, transform_gt) # overlap_src_mask, overlap_ref_mask = self.generate_overlap_mask(xyz_src, xyz_ref, src_pred_mask, ref_pred_mask, transform_gt) src_cls_gt = F.ones((B, src_N)) * overlap_src_mask ref_cls_gt = F.ones((B, ref_N)) * overlap_ref_mask src_pred_mask = F.argmax(src_cls_pred, axis=1) ref_pred_mask = F.argmax(ref_cls_pred, axis=1) # add endpoints all_src_cls_pair.append([src_cls_gt, src_cls_pred]) all_ref_cls_pair.append([ref_cls_gt, ref_cls_pred]) all_transform_pair.append([transform_gt, transform_pred]) all_pose_pair.append([pose_gt, pose_pred]) all_xyz_src_t.append(xyz_src_iter) endpoints["all_src_cls_pair"] = all_src_cls_pair endpoints["all_ref_cls_pair"] = all_ref_cls_pair endpoints["all_transform_pair"] = all_transform_pair endpoints["all_pose_pair"] = all_pose_pair endpoints["transform_pair"] = [transform_gt, transform_pred] endpoints["pose_pair"] = [pose_gt, pose_pred] endpoints["all_xyz_src_t"] = all_xyz_src_t return endpoints def fetch_net(params): if params.net_type == "omnet": net = OMNet(params) else: raise NotImplementedError return net
[ "megengine.functional.repeat", "megengine.module.init.calculate_fan_in_and_fan_out", "megengine.functional.ones", "megengine.functional.expand_dims", "megengine.functional.concat", "megengine.functional.max", "megengine.functional.min", "megengine.functional.argmax", "megengine.tensor", "megengine.functional.copy", "megengine.module.init.uniform_", "megengine.functional.square" ]
[((1424, 1467), 'common.se3.mge_transform', 'se3.mge_transform', (['transform_gt', 'points_src'], {}), '(transform_gt, points_src)\n', (1441, 1467), False, 'from common import se3, quaternion\n'), ((1489, 1522), 'megengine.functional.expand_dims', 'F.expand_dims', (['points_src'], {'axis': '(2)'}), '(points_src, axis=2)\n', (1502, 1522), True, 'import megengine.functional as F\n'), ((1544, 1577), 'megengine.functional.expand_dims', 'F.expand_dims', (['points_ref'], {'axis': '(1)'}), '(points_ref, axis=1)\n', (1557, 1577), True, 'import megengine.functional as F\n'), ((1690, 1716), 'megengine.functional.min', 'F.min', (['dist_matrix'], {'axis': '(2)'}), '(dist_matrix, axis=2)\n', (1695, 1716), True, 'import megengine.functional as F\n'), ((1736, 1762), 'megengine.functional.min', 'F.min', (['dist_matrix'], {'axis': '(1)'}), '(dist_matrix, axis=1)\n', (1741, 1762), True, 'import megengine.functional as F\n'), ((2653, 2698), 'megengine.functional.concat', 'F.concat', (['(init_quat, init_translate)'], {'axis': '(1)'}), '((init_quat, init_translate), axis=1)\n', (2661, 2698), True, 'import megengine.functional as F\n'), ((2758, 2796), 'megengine.functional.copy', 'F.copy', (['xyz_src'], {'device': 'xyz_src.device'}), '(xyz_src, device=xyz_src.device)\n', (2764, 2796), True, 'import megengine.functional as F\n'), ((353, 362), 'model.module.Encoder', 'Encoder', ([], {}), '()\n', (360, 362), False, 'from model.module import Encoder, Fusion, Decoder, Regression\n'), ((417, 425), 'model.module.Fusion', 'Fusion', ([], {}), '()\n', (423, 425), False, 'from model.module import Encoder, Fusion, Decoder, Regression\n'), ((481, 490), 'model.module.Decoder', 'Decoder', ([], {}), '()\n', (488, 490), False, 'from model.module import Encoder, Fusion, Decoder, Regression\n'), ((549, 561), 'model.module.Regression', 'Regression', ([], {}), '()\n', (559, 561), False, 'from model.module import Encoder, Fusion, Decoder, Regression\n'), ((2482, 2523), 'megengine.tensor', 'mge.tensor', (['[1, 0, 0, 0]'], {'dtype': '"""float32"""'}), "([1, 0, 0, 0], dtype='float32')\n", (2492, 2523), True, 'import megengine as mge\n'), ((2575, 2613), 'megengine.tensor', 'mge.tensor', (['[0, 0, 0]'], {'dtype': '"""float32"""'}), "([0, 0, 0], dtype='float32')\n", (2585, 2613), True, 'import megengine as mge\n'), ((4439, 4509), 'megengine.functional.concat', 'F.concat', (['(src_fused_feat, src_feat, ref_fused_feat, ref_feat)'], {'axis': '(1)'}), '((src_fused_feat, src_feat, ref_fused_feat, ref_feat), axis=1)\n', (4447, 4509), True, 'import megengine.functional as F\n'), ((4536, 4563), 'megengine.functional.max', 'F.max', (['concat_feat'], {'axis': '(-1)'}), '(concat_feat, axis=-1)\n', (4541, 4563), True, 'import megengine.functional as F\n'), ((4850, 4884), 'common.quaternion.mge_quat2mat', 'quaternion.mge_quat2mat', (['pose_pred'], {}), '(pose_pred)\n', (4873, 4884), False, 'from common import se3, quaternion\n'), ((5573, 5603), 'megengine.functional.argmax', 'F.argmax', (['src_cls_pred'], {'axis': '(1)'}), '(src_cls_pred, axis=1)\n', (5581, 5603), True, 'import megengine.functional as F\n'), ((5632, 5662), 'megengine.functional.argmax', 'F.argmax', (['ref_cls_pred'], {'axis': '(1)'}), '(ref_cls_pred, axis=1)\n', (5640, 5662), True, 'import megengine.functional as F\n'), ((1613, 1646), 'megengine.functional.square', 'F.square', (['(points_src - points_ref)'], {}), '(points_src - points_ref)\n', (1621, 1646), True, 'import megengine.functional as F\n'), ((2916, 2955), 'megengine.functional.ones', 'F.ones', (['(B, src_N)'], {'dtype': 'xyz_src.dtype'}), '((B, src_N), dtype=xyz_src.dtype)\n', (2922, 2955), True, 'import megengine.functional as F\n'), ((2988, 3027), 'megengine.functional.ones', 'F.ones', (['(B, ref_N)'], {'dtype': 'xyz_ref.dtype'}), '((B, ref_N), dtype=xyz_ref.dtype)\n', (2994, 3027), True, 'import megengine.functional as F\n'), ((3156, 3192), 'megengine.functional.expand_dims', 'F.expand_dims', (['src_pred_mask'], {'axis': '(1)'}), '(src_pred_mask, axis=1)\n', (3169, 3192), True, 'import megengine.functional as F\n'), ((3413, 3449), 'megengine.functional.expand_dims', 'F.expand_dims', (['ref_pred_mask'], {'axis': '(1)'}), '(ref_pred_mask, axis=1)\n', (3426, 3449), True, 'import megengine.functional as F\n'), ((3872, 3908), 'megengine.functional.expand_dims', 'F.expand_dims', (['src_pred_mask'], {'axis': '(1)'}), '(src_pred_mask, axis=1)\n', (3885, 3908), True, 'import megengine.functional as F\n'), ((3974, 4010), 'megengine.functional.expand_dims', 'F.expand_dims', (['ref_pred_mask'], {'axis': '(1)'}), '(ref_pred_mask, axis=1)\n', (3987, 4010), True, 'import megengine.functional as F\n'), ((4240, 4275), 'megengine.functional.concat', 'F.concat', (['src_decoder_feats'], {'axis': '(1)'}), '(src_decoder_feats, axis=1)\n', (4248, 4275), True, 'import megengine.functional as F\n'), ((4278, 4314), 'megengine.functional.expand_dims', 'F.expand_dims', (['src_pred_mask'], {'axis': '(1)'}), '(src_pred_mask, axis=1)\n', (4291, 4314), True, 'import megengine.functional as F\n'), ((4338, 4373), 'megengine.functional.concat', 'F.concat', (['ref_decoder_feats'], {'axis': '(1)'}), '(ref_decoder_feats, axis=1)\n', (4346, 4373), True, 'import megengine.functional as F\n'), ((4376, 4412), 'megengine.functional.expand_dims', 'F.expand_dims', (['ref_pred_mask'], {'axis': '(1)'}), '(ref_pred_mask, axis=1)\n', (4389, 4412), True, 'import megengine.functional as F\n'), ((5003, 5041), 'megengine.functional.copy', 'F.copy', (['xyz_src'], {'device': 'xyz_src.device'}), '(xyz_src, device=xyz_src.device)\n', (5009, 5041), True, 'import megengine.functional as F\n'), ((5119, 5157), 'megengine.functional.copy', 'F.copy', (['xyz_ref'], {'device': 'xyz_ref.device'}), '(xyz_ref, device=xyz_ref.device)\n', (5125, 5157), True, 'import megengine.functional as F\n'), ((5444, 5462), 'megengine.functional.ones', 'F.ones', (['(B, src_N)'], {}), '((B, src_N))\n', (5450, 5462), True, 'import megengine.functional as F\n'), ((5507, 5525), 'megengine.functional.ones', 'F.ones', (['(B, ref_N)'], {}), '((B, ref_N))\n', (5513, 5525), True, 'import megengine.functional as F\n'), ((878, 924), 'megengine.module.init.calculate_fan_in_and_fan_out', 'nn.init.calculate_fan_in_and_fan_out', (['m.weight'], {}), '(m.weight)\n', (914, 924), True, 'import megengine.module as nn\n'), ((995, 1034), 'megengine.module.init.uniform_', 'nn.init.uniform_', (['m.bias', '(-bound)', 'bound'], {}), '(m.bias, -bound, bound)\n', (1011, 1034), True, 'import megengine.module as nn\n'), ((3551, 3589), 'megengine.functional.repeat', 'F.repeat', (['src_glob_feat', 'src_N'], {'axis': '(2)'}), '(src_glob_feat, src_N, axis=2)\n', (3559, 3589), True, 'import megengine.functional as F\n'), ((3591, 3629), 'megengine.functional.repeat', 'F.repeat', (['ref_glob_feat', 'src_N'], {'axis': '(2)'}), '(ref_glob_feat, src_N, axis=2)\n', (3599, 3629), True, 'import megengine.functional as F\n'), ((3719, 3757), 'megengine.functional.repeat', 'F.repeat', (['ref_glob_feat', 'ref_N'], {'axis': '(2)'}), '(ref_glob_feat, ref_N, axis=2)\n', (3727, 3757), True, 'import megengine.functional as F\n'), ((3759, 3797), 'megengine.functional.repeat', 'F.repeat', (['src_glob_feat', 'ref_N'], {'axis': '(2)'}), '(src_glob_feat, ref_N, axis=2)\n', (3767, 3797), True, 'import megengine.functional as F\n'), ((793, 805), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (802, 805), False, 'import math\n'), ((957, 974), 'math.sqrt', 'math.sqrt', (['fan_in'], {}), '(fan_in)\n', (966, 974), False, 'import math\n')]
import os from venv import create from sqlmodel import SQLModel, create_engine from .base_variables import APPNAME,DEBUG from utils import print_warning import sys if DEBUG: PG_HOST: str = os.getenv("PGHOST", "localhost") PG_USER: str = os.getenv("PGUSER", "postgres") PG_PASSWORD: str = os.getenv("PGPASSWORD", "<PASSWORD>") PG_PORT: str = os.getenv("PGPORT", "5432") PG_DATABASE:str = os.getenv("PGDATABASE", APPNAME) DATABASE_URL:str = os.getenv("DATABASE_URL", f"postgresql://{PG_USER}:{PG_PASSWORD}@{PG_HOST}:{PG_PORT}/{PG_DATABASE}") else: DATABASE_URL = os.getenv("DATABASE_URL", "") if not DATABASE_URL: print_warning( ( "You are not setting the DATABASE_URL in your environment!", ) ) sys.exit("[ERROR] Default DATABASE_URL is not set\n") print(DATABASE_URL) dbengine = create_engine(DATABASE_URL)
[ "sqlmodel.create_engine" ]
[((847, 874), 'sqlmodel.create_engine', 'create_engine', (['DATABASE_URL'], {}), '(DATABASE_URL)\n', (860, 874), False, 'from sqlmodel import SQLModel, create_engine\n'), ((193, 225), 'os.getenv', 'os.getenv', (['"""PGHOST"""', '"""localhost"""'], {}), "('PGHOST', 'localhost')\n", (202, 225), False, 'import os\n'), ((245, 276), 'os.getenv', 'os.getenv', (['"""PGUSER"""', '"""postgres"""'], {}), "('PGUSER', 'postgres')\n", (254, 276), False, 'import os\n'), ((300, 337), 'os.getenv', 'os.getenv', (['"""PGPASSWORD"""', '"""<PASSWORD>"""'], {}), "('PGPASSWORD', '<PASSWORD>')\n", (309, 337), False, 'import os\n'), ((357, 384), 'os.getenv', 'os.getenv', (['"""PGPORT"""', '"""5432"""'], {}), "('PGPORT', '5432')\n", (366, 384), False, 'import os\n'), ((407, 439), 'os.getenv', 'os.getenv', (['"""PGDATABASE"""', 'APPNAME'], {}), "('PGDATABASE', APPNAME)\n", (416, 439), False, 'import os\n'), ((463, 567), 'os.getenv', 'os.getenv', (['"""DATABASE_URL"""', 'f"""postgresql://{PG_USER}:{PG_PASSWORD}@{PG_HOST}:{PG_PORT}/{PG_DATABASE}"""'], {}), "('DATABASE_URL',\n f'postgresql://{PG_USER}:{PG_PASSWORD}@{PG_HOST}:{PG_PORT}/{PG_DATABASE}')\n", (472, 567), False, 'import os\n'), ((589, 618), 'os.getenv', 'os.getenv', (['"""DATABASE_URL"""', '""""""'], {}), "('DATABASE_URL', '')\n", (598, 618), False, 'import os\n'), ((644, 721), 'utils.print_warning', 'print_warning', (["('You are not setting the DATABASE_URL in your environment!',)"], {}), "(('You are not setting the DATABASE_URL in your environment!',))\n", (657, 721), False, 'from utils import print_warning\n'), ((762, 815), 'sys.exit', 'sys.exit', (['"""[ERROR] Default DATABASE_URL is not set\n"""'], {}), "('[ERROR] Default DATABASE_URL is not set\\n')\n", (770, 815), False, 'import sys\n')]
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if dist.is_distributed(): loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() return loss def test_generator_batch(image, *, netG): # image: [1,100,3,180,320] B,T,_,h,w = image.shape biup = get_bilinear(image) netG.eval() forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] return res + biup epoch_dict = {} def adjust_learning_rate(optimizer, epoch): if epoch>=8 and epoch % 1 == 0 and epoch_dict.get(epoch, None) is None: epoch_dict[epoch] = True for param_group in optimizer.param_groups: param_group["lr"] = param_group["lr"] * 0.8 print("adjust lr! , now lr: {}".format(param_group["lr"])) # TODO 可以再写一个父类,抽象一些公共方法,当大于1个模型时,代码重复了,如getimdid和test step @MODELS.register_module() class BidirectionalRestorer(BaseModel): allowed_metrics = {'PSNR': psnr, 'SSIM': ssim} def __init__(self, generator, pixel_loss, train_cfg=None, eval_cfg=None, pretrained=None, Fidelity_loss=None): super(BidirectionalRestorer, self).__init__() self.train_cfg = train_cfg self.eval_cfg = eval_cfg # generator self.generator = build_backbone(generator) # loss self.pixel_loss = build_loss(pixel_loss) if Fidelity_loss: self.Fidelity_loss = build_loss(Fidelity_loss) else: self.Fidelity_loss = None # load pretrained self.init_weights(pretrained) def init_weights(self, pretrained=None): self.generator.init_weights(pretrained) def train_step(self, batchdata, now_epoch, now_iter): LR_tensor = mge.tensor(batchdata['lq'], dtype="float32") HR_tensor = mge.tensor(batchdata['gt'], dtype="float32") loss = train_generator_batch(LR_tensor, HR_tensor, gm=self.gms['generator'], netG=self.generator, netloss=self.pixel_loss) adjust_learning_rate(self.optimizers['generator'], now_epoch) self.optimizers['generator'].step() self.optimizers['generator'].clear_grad() return loss def get_img_id(self, key): shift = self.eval_cfg.get('save_shift', 0) assert isinstance(key, str) L = key.split("/") return int(L[-1][:-4]), str(int(L[-2]) - shift).zfill(3) # id, clip def test_step(self, batchdata, **kwargs): """ possible kwargs: save_image save_path ensemble """ lq = batchdata['lq'] # [B,3,h,w] gt = batchdata.get('gt', None) # if not None: [B,3,4*h,4*w] assert len(batchdata['lq_path']) == 1 # 每个sample所带的lq_path列表长度仅为1, 即自己 lq_paths = batchdata['lq_path'][0] # length 为batch长度 now_start_id, clip = self.get_img_id(lq_paths[0]) now_end_id, _ = self.get_img_id(lq_paths[-1]) assert clip == _ if now_start_id==0: print("first frame: {}".format(lq_paths[0])) self.LR_list = [] self.HR_list = [] # pad lq B ,_ ,origin_H, origin_W = lq.shape lq = img_multi_padding(lq, padding_multi=self.eval_cfg.multi_pad, pad_method = "edge") # edge constant self.LR_list.append(lq) # [1,3,h,w] if gt is not None: for i in range(B): self.HR_list.append(gt[i:i+1, ...]) if now_end_id == 99: print("start to forward all frames....") if self.eval_cfg.gap == 1: # do ensemble (8 times) ensemble_res = [] self.LR_list = np.concatenate(self.LR_list, axis=0) # [100, 3,h,w] for item in tqdm(range(8)): # do not have flip inp = mge.tensor(ensemble_forward(self.LR_list, Type=item), dtype="float32") oup = test_generator_batch(F.expand_dims(inp, axis=0), netG=self.generator) ensemble_res.append(ensemble_back(oup.numpy(), Type=item)) self.HR_G = sum(ensemble_res) / len(ensemble_res) # ensemble_res 结果取平均 elif self.eval_cfg.gap == 2: raise NotImplementedError("not implement gap != 1 now") # self.HR_G_1 = test_generator_batch(F.stack(self.LR_list[::2], axis=1), netG=self.generator) # self.HR_G_2 = test_generator_batch(F.stack(self.LR_list[1::2], axis=1), netG=self.generator) # [B,T,C,H,W] # # 交叉组成HR_G # res = [] # _,T1,_,_,_ = self.HR_G_1.shape # _,T2,_,_,_ = self.HR_G_2.shape # assert T1 == T2 # for i in range(T1): # res.append(self.HR_G_1[:, i, ...]) # res.append(self.HR_G_2[:, i, ...]) # self.HR_G = F.stack(res, axis=1) # [B,T,C,H,W] else: raise NotImplementedError("do not support eval&test gap value") scale = self.generator.upscale_factor # get numpy self.HR_G = img_de_multi_padding(self.HR_G, origin_H=origin_H * scale, origin_W=origin_W * scale) # depad for HR_G [B,T,C,H,W] if kwargs.get('save_image', False): print("saving images to disk ...") save_path = kwargs.get('save_path') B,T,_,_,_ = self.HR_G.shape assert B == 1 assert T == 100 for i in range(T): img = tensor2img(self.HR_G[0, i, ...], min_max=(0, 1)) if (i+1)%10 == 0: imwrite(img, file_path=os.path.join(save_path, "partframes", f"{clip}_{str(i).zfill(8)}.png")) imwrite(img, file_path=os.path.join(save_path, "allframes", f"{clip}_{str(i).zfill(8)}.png")) return now_end_id == 99 def cal_for_eval(self, gathered_outputs, gathered_batchdata): if gathered_outputs: crop_border = self.eval_cfg.crop_border assert len(self.HR_list) == 100 res = [] for i in range(len(self.HR_list)): G = tensor2img(self.HR_G[0, i, ...], min_max=(0, 1)) gt = tensor2img(self.HR_list[i][0], min_max=(0, 1)) eval_result = dict() for metric in self.eval_cfg.metrics: eval_result[metric+"_RGB"] = self.allowed_metrics[metric](G, gt, crop_border) # eval_result[metric+"_Y"] = self.allowed_metrics[metric](G_key_y, gt_y, crop_border) res.append(eval_result) return res else: return []
[ "megengine.tensor", "megengine.functional.nn.interpolate", "megengine.distributed.functional.all_reduce_sum", "megengine.functional.zeros", "megengine.functional.stack", "megengine.functional.expand_dims", "megengine.distributed.is_distributed", "megengine.distributed.get_world_size", "megengine.functional.concat" ]
[((2104, 2148), 'megengine.functional.zeros', 'F.zeros', (['(2 * B, netG.hidden_channels, h, w)'], {}), '((2 * B, netG.hidden_channels, h, w))\n', (2111, 2148), True, 'import megengine.functional as F\n'), ((2722, 2742), 'megengine.functional.stack', 'F.stack', (['res'], {'axis': '(1)'}), '(res, axis=1)\n', (2729, 2742), True, 'import megengine.functional as F\n'), ((975, 1019), 'megengine.functional.zeros', 'F.zeros', (['(2 * B, netG.hidden_channels, h, w)'], {}), '((2 * B, netG.hidden_channels, h, w))\n', (982, 1019), True, 'import megengine.functional as F\n'), ((1645, 1665), 'megengine.functional.stack', 'F.stack', (['res'], {'axis': '(1)'}), '(res, axis=1)\n', (1652, 1665), True, 'import megengine.functional as F\n'), ((1759, 1780), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (1778, 1780), True, 'import megengine.distributed as dist\n'), ((2190, 2252), 'megengine.functional.concat', 'F.concat', (['[image[:, i, ...], image[:, T - i - 1, ...]]'], {'axis': '(0)'}), '([image[:, i, ...], image[:, T - i - 1, ...]], axis=0)\n', (2198, 2252), True, 'import megengine.functional as F\n'), ((4055, 4099), 'megengine.tensor', 'mge.tensor', (["batchdata['lq']"], {'dtype': '"""float32"""'}), "(batchdata['lq'], dtype='float32')\n", (4065, 4099), True, 'import megengine as mge\n'), ((4120, 4164), 'megengine.tensor', 'mge.tensor', (["batchdata['gt']"], {'dtype': '"""float32"""'}), "(batchdata['gt'], dtype='float32')\n", (4130, 4164), True, 'import megengine as mge\n'), ((5499, 5578), 'edit.utils.img_multi_padding', 'img_multi_padding', (['lq'], {'padding_multi': 'self.eval_cfg.multi_pad', 'pad_method': '"""edge"""'}), "(lq, padding_multi=self.eval_cfg.multi_pad, pad_method='edge')\n", (5516, 5578), False, 'from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image\n'), ((665, 704), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['image'], {'scale_factor': '(4)'}), '(image, scale_factor=4)\n', (681, 704), True, 'import megengine.functional as F\n'), ((1069, 1131), 'megengine.functional.concat', 'F.concat', (['[image[:, i, ...], image[:, T - i - 1, ...]]'], {'axis': '(0)'}), '([image[:, i, ...], image[:, T - i - 1, ...]], axis=0)\n', (1077, 1131), True, 'import megengine.functional as F\n'), ((2352, 2414), 'megengine.functional.concat', 'F.concat', (['[image[:, i - 1, ...], image[:, T - i, ...]]'], {'axis': '(0)'}), '([image[:, i - 1, ...], image[:, T - i, ...]], axis=0)\n', (2360, 2414), True, 'import megengine.functional as F\n'), ((7418, 7508), 'edit.utils.img_de_multi_padding', 'img_de_multi_padding', (['self.HR_G'], {'origin_H': '(origin_H * scale)', 'origin_W': '(origin_W * scale)'}), '(self.HR_G, origin_H=origin_H * scale, origin_W=\n origin_W * scale)\n', (7438, 7508), False, 'from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image\n'), ((1247, 1309), 'megengine.functional.concat', 'F.concat', (['[image[:, i - 1, ...], image[:, T - i, ...]]'], {'axis': '(0)'}), '([image[:, i - 1, ...], image[:, T - i, ...]], axis=0)\n', (1255, 1309), True, 'import megengine.functional as F\n'), ((1801, 1837), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['loss'], {}), '(loss)\n', (1831, 1837), True, 'import megengine.distributed as dist\n'), ((1840, 1861), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (1859, 1861), True, 'import megengine.distributed as dist\n'), ((5982, 6018), 'numpy.concatenate', 'np.concatenate', (['self.LR_list'], {'axis': '(0)'}), '(self.LR_list, axis=0)\n', (5996, 6018), True, 'import numpy as np\n'), ((8507, 8555), 'edit.utils.tensor2img', 'tensor2img', (['self.HR_G[0, i, ...]'], {'min_max': '(0, 1)'}), '(self.HR_G[0, i, ...], min_max=(0, 1))\n', (8517, 8555), False, 'from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back\n'), ((8577, 8623), 'edit.utils.tensor2img', 'tensor2img', (['self.HR_list[i][0]'], {'min_max': '(0, 1)'}), '(self.HR_list[i][0], min_max=(0, 1))\n', (8587, 8623), False, 'from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back\n'), ((7854, 7902), 'edit.utils.tensor2img', 'tensor2img', (['self.HR_G[0, i, ...]'], {'min_max': '(0, 1)'}), '(self.HR_G[0, i, ...], min_max=(0, 1))\n', (7864, 7902), False, 'from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back\n'), ((6134, 6175), 'edit.utils.ensemble_forward', 'ensemble_forward', (['self.LR_list'], {'Type': 'item'}), '(self.LR_list, Type=item)\n', (6150, 6175), False, 'from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back\n'), ((6241, 6267), 'megengine.functional.expand_dims', 'F.expand_dims', (['inp'], {'axis': '(0)'}), '(inp, axis=0)\n', (6254, 6267), True, 'import megengine.functional as F\n')]
from sqlmodel import create_engine from pyflarum.database.session import FlarumDatabase from pyflarum.database.flarum.core.users import DB_User ENGINE = create_engine('sqlite:///tests/database/database.db') DATABASE = FlarumDatabase(engine=ENGINE) if __name__ == "__main__": with DATABASE: for user in DATABASE.generic_filter(DB_User, id=1).all(): if user.discussions: print(user.username, ':', sep='') for discussion in user.discussions: print('•', discussion.title) else: print(user.username, '(no discussions)')
[ "sqlmodel.create_engine" ]
[((156, 209), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///tests/database/database.db"""'], {}), "('sqlite:///tests/database/database.db')\n", (169, 209), False, 'from sqlmodel import create_engine\n'), ((221, 250), 'pyflarum.database.session.FlarumDatabase', 'FlarumDatabase', ([], {'engine': 'ENGINE'}), '(engine=ENGINE)\n', (235, 250), False, 'from pyflarum.database.session import FlarumDatabase\n')]
""" dayong.impls ~~~~~~~~~~~~ Implementaion of interfaces and the logic for injecting them. """ import asyncio from typing import Any import tanjun from sqlalchemy.ext.asyncio import AsyncEngine, create_async_engine from sqlmodel import SQLModel, select from sqlmodel.engine.result import ScalarResult from sqlmodel.ext.asyncio.session import AsyncSession from dayong.configs import DayongConfig, DayongConfigLoader from dayong.models import Message class MessageDBImpl: """Implementaion of a database connection for transacting and interacting with message tables, those of which derive from message table models. The data to be selected, retrieved, and modified is determined by the table model object and its type. The type, in this case, is `dayong.models.Message`. """ def __init__(self) -> None: self._conn: AsyncEngine async def connect(self, config: DayongConfig = tanjun.injected(type=DayongConfig)): """Create a database connection. If the `database_uri` is Falsy, the function will reattempt to get the url from the environment variables. Args: config (DayongConfig, optional): [description]. Defaults to tanjun.injected(type=DayongConfig). """ loop = asyncio.get_running_loop() self._conn = await loop.run_in_executor( None, create_async_engine, config.database_uri if config.database_uri else DayongConfigLoader().load(), ) async def create_table(self) -> None: """Create physical message tables for all the message table models stored in `SQLModel.metadata`. """ async with self._conn.begin() as conn: await conn.run_sync(SQLModel.metadata.create_all) async def add_row(self, tabe_model_object: Message) -> None: """Insert a row in the message table. Args: table_model_object (Message): An instance of `dayong.models.Message` or one of its subclasses. """ async with AsyncSession(self._conn) as session: loop = asyncio.get_running_loop() await loop.run_in_executor(None, session.add, tabe_model_object) await session.commit() async def remove_row(self, tabe_model_object: Message) -> None: """Delete a row in the message table. Args: table_model_object (Message): An instance of `dayong.models.Message` or one of its subclasses. """ table_model = type(tabe_model_object) async with AsyncSession(self._conn) as session: # Temp ignore incompatible type passed to `exec()`. See: # https://github.com/tiangolo/sqlmodel/issues/54 # https://github.com/tiangolo/sqlmodel/pull/58 row: ScalarResult[Any] = await session.exec( select(table_model).where( # type: ignore table_model.message_id == tabe_model_object.message_id ) ) await session.delete(row) await session.commit() async def get_row(self, tabe_model_object: Message) -> ScalarResult[Any]: """Fetch a row from the message table. Args: tabe_model_object (Message): An instance of `dayong.models.Message` or one of its subclasses. Returns: ScalarResult: An `ScalarResult` object which contains a scalar value or sequence of scalar values. """ table_model = type(tabe_model_object) async with AsyncSession(self._conn) as session: # Temp ignore incompatible type passed to `exec()`. See: # https://github.com/tiangolo/sqlmodel/issues/54 # https://github.com/tiangolo/sqlmodel/pull/58 row: ScalarResult[Any] = await session.exec( select(table_model).where( # type: ignore table_model.message_id == tabe_model_object.message_id ) ) return row
[ "sqlmodel.ext.asyncio.session.AsyncSession", "sqlmodel.select" ]
[((917, 951), 'tanjun.injected', 'tanjun.injected', ([], {'type': 'DayongConfig'}), '(type=DayongConfig)\n', (932, 951), False, 'import tanjun\n'), ((1285, 1311), 'asyncio.get_running_loop', 'asyncio.get_running_loop', ([], {}), '()\n', (1309, 1311), False, 'import asyncio\n'), ((2066, 2090), 'sqlmodel.ext.asyncio.session.AsyncSession', 'AsyncSession', (['self._conn'], {}), '(self._conn)\n', (2078, 2090), False, 'from sqlmodel.ext.asyncio.session import AsyncSession\n'), ((2122, 2148), 'asyncio.get_running_loop', 'asyncio.get_running_loop', ([], {}), '()\n', (2146, 2148), False, 'import asyncio\n'), ((2587, 2611), 'sqlmodel.ext.asyncio.session.AsyncSession', 'AsyncSession', (['self._conn'], {}), '(self._conn)\n', (2599, 2611), False, 'from sqlmodel.ext.asyncio.session import AsyncSession\n'), ((3590, 3614), 'sqlmodel.ext.asyncio.session.AsyncSession', 'AsyncSession', (['self._conn'], {}), '(self._conn)\n', (3602, 3614), False, 'from sqlmodel.ext.asyncio.session import AsyncSession\n'), ((1472, 1492), 'dayong.configs.DayongConfigLoader', 'DayongConfigLoader', ([], {}), '()\n', (1490, 1492), False, 'from dayong.configs import DayongConfig, DayongConfigLoader\n'), ((2886, 2905), 'sqlmodel.select', 'select', (['table_model'], {}), '(table_model)\n', (2892, 2905), False, 'from sqlmodel import SQLModel, select\n'), ((3889, 3908), 'sqlmodel.select', 'select', (['table_model'], {}), '(table_model)\n', (3895, 3908), False, 'from sqlmodel import SQLModel, select\n')]
from sqlalchemy.engine import Engine from sqlmodel import create_engine, Session, SQLModel from sqlmodel.engine.create import _FutureEngine from typing import Union, Optional from pyemits.common.validation import raise_if_incorrect_type, raise_if_not_all_value_contains, \ raise_if_not_all_element_type_uniform, check_all_element_type_uniform, raise_if_value_not_contains from typing import List class DBConnectionBase: """ References ---------- for users who want to know the differences between Engine, Connection, Session https://stackoverflow.com/questions/34322471/sqlalchemy-engine-connection-and-session-difference """ def __init__(self, db_engine: Union[Engine, _FutureEngine]): self._db_engine = db_engine SQLModel.metadata.create_all(self._db_engine) @classmethod def from_db_user(cls, db_type, db_driver, host, user, password, port, db, charset='utf8', echo=True): engine = create_engine(f"{db_type}+{db_driver}://{user}:{password}@{host}:{port}/{db}", echo=echo) return cls(engine) @classmethod def from_full_db_path(cls, full_db_path, echo=True): engine = create_engine(f"{full_db_path}", echo=echo) return cls(engine) def get_db_engine(self): return self._db_engine def execute(self, sql, always_commit=False, fetch: Optional[Union[int, str]] = None): with Session(self._db_engine) as session: q = session.execute(sql) if always_commit: session.commit() if fetch is not None: raise_if_incorrect_type(fetch, (int, str)) if isinstance(fetch, int): if fetch == 1: return q.fetchone() elif fetch > 1: return q.fetchmany(fetch) elif isinstance(fetch, str): if fetch == 'all': return q.fetchall() raise ValueError return q def get_db_inspector(self): from sqlalchemy import inspect inspector = inspect(self._db_engine) return inspector def get_schemas(self, schemas='all', tables='all'): inspector = self.get_db_inspector() from collections import defaultdict schema_containers = defaultdict(dict) schemas = _validate_schema_names(inspector, schemas) return _get_schemas(inspector, schema_containers, schemas, tables) def get_tables_names(self): inspector = self.get_db_inspector() return inspector.get_table_names() def _get_schemas(inspector, schema_containers, schemas: Union[str, List[str]], tables: Union[str, List[List[str]], List[str]]): schema_list = _validate_schema_names(inspector, schemas) if check_all_element_type_uniform(tables, list): for schema, table in zip(schema_list, tables): table_names = _validate_table_names(inspector, schema, table) for sub_table_names in table_names: schema_containers[schema][sub_table_names] = inspector.get_columns(sub_table_names, schema=schema) return schema_containers elif check_all_element_type_uniform(tables, str) or tables == 'all': for schema in schema_list: table_names = _validate_table_names(inspector, schema, tables) for table_name in table_names: schema_containers[schema][table_name] = inspector.get_columns(table_name, schema=schema) return schema_containers raise ValueError def _validate_schema_names(inspector, schemas: List[str]): if schemas == 'all': return inspector.get_schema_names() if isinstance(schemas, list): raise_if_not_all_value_contains(schemas, inspector.get_schema_names()) return schemas raise ValueError('schemas must be "all" or a list of string') def _validate_table_names(inspector, schema: str, tables: List[str]): if tables == 'all': return inspector.get_table_names(schema=schema) if isinstance(tables, list): if check_all_element_type_uniform(tables, str): raise_if_value_not_contains(tables, inspector.get_table_names(schema=schema)) return tables elif check_all_element_type_uniform(tables, list): for sub_tab in tables: print(sub_tab, inspector.get_table_names(schema=schema)) raise_if_value_not_contains(sub_tab, inspector.get_table_names(schema=schema)) return tables raise ValueError('tables name are not existed in database, pls verify')
[ "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all" ]
[((2815, 2859), 'pyemits.common.validation.check_all_element_type_uniform', 'check_all_element_type_uniform', (['tables', 'list'], {}), '(tables, list)\n', (2845, 2859), False, 'from pyemits.common.validation import raise_if_incorrect_type, raise_if_not_all_value_contains, raise_if_not_all_element_type_uniform, check_all_element_type_uniform, raise_if_value_not_contains\n'), ((767, 812), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['self._db_engine'], {}), '(self._db_engine)\n', (795, 812), False, 'from sqlmodel import create_engine, Session, SQLModel\n'), ((954, 1047), 'sqlmodel.create_engine', 'create_engine', (['f"""{db_type}+{db_driver}://{user}:{password}@{host}:{port}/{db}"""'], {'echo': 'echo'}), "(f'{db_type}+{db_driver}://{user}:{password}@{host}:{port}/{db}',\n echo=echo)\n", (967, 1047), False, 'from sqlmodel import create_engine, Session, SQLModel\n'), ((1163, 1206), 'sqlmodel.create_engine', 'create_engine', (['f"""{full_db_path}"""'], {'echo': 'echo'}), "(f'{full_db_path}', echo=echo)\n", (1176, 1206), False, 'from sqlmodel import create_engine, Session, SQLModel\n'), ((2117, 2141), 'sqlalchemy.inspect', 'inspect', (['self._db_engine'], {}), '(self._db_engine)\n', (2124, 2141), False, 'from sqlalchemy import inspect\n'), ((2341, 2358), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (2352, 2358), False, 'from collections import defaultdict\n'), ((4104, 4147), 'pyemits.common.validation.check_all_element_type_uniform', 'check_all_element_type_uniform', (['tables', 'str'], {}), '(tables, str)\n', (4134, 4147), False, 'from pyemits.common.validation import raise_if_incorrect_type, raise_if_not_all_value_contains, raise_if_not_all_element_type_uniform, check_all_element_type_uniform, raise_if_value_not_contains\n'), ((1400, 1424), 'sqlmodel.Session', 'Session', (['self._db_engine'], {}), '(self._db_engine)\n', (1407, 1424), False, 'from sqlmodel import create_engine, Session, SQLModel\n'), ((3196, 3239), 'pyemits.common.validation.check_all_element_type_uniform', 'check_all_element_type_uniform', (['tables', 'str'], {}), '(tables, str)\n', (3226, 3239), False, 'from pyemits.common.validation import raise_if_incorrect_type, raise_if_not_all_value_contains, raise_if_not_all_element_type_uniform, check_all_element_type_uniform, raise_if_value_not_contains\n'), ((4278, 4322), 'pyemits.common.validation.check_all_element_type_uniform', 'check_all_element_type_uniform', (['tables', 'list'], {}), '(tables, list)\n', (4308, 4322), False, 'from pyemits.common.validation import raise_if_incorrect_type, raise_if_not_all_value_contains, raise_if_not_all_element_type_uniform, check_all_element_type_uniform, raise_if_value_not_contains\n'), ((1588, 1630), 'pyemits.common.validation.raise_if_incorrect_type', 'raise_if_incorrect_type', (['fetch', '(int, str)'], {}), '(fetch, (int, str))\n', (1611, 1630), False, 'from pyemits.common.validation import raise_if_incorrect_type, raise_if_not_all_value_contains, raise_if_not_all_element_type_uniform, check_all_element_type_uniform, raise_if_value_not_contains\n')]
from collections import deque from time import sleep import pytest from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.common.exceptions import WebDriverException from sqlmodel import Session, select from youtube.db import engine from youtube.models import YouTube @pytest.fixture(scope="session") def driver(): driver = webdriver.Chrome() try: driver.get("http://localhost:8000/") yield driver except WebDriverException: raise RuntimeError("Cannot get to localhost:8000, did you start FastAPI?") finally: driver.quit() @pytest.fixture(scope="session") def scroll_to_end(driver): cache_size = 5 num_rows = deque(maxlen=cache_size) i = 0 while True: last_element = driver.find_elements_by_class_name("mui--text-subhead")[-1] actions = webdriver.ActionChains(driver) actions.move_to_element(last_element).perform() i += 1 num_rows.append(len(driver.find_elements_by_tag_name("tr"))) if i > cache_size and num_rows.count(num_rows[-1]) == len(num_rows): print("num rows stable, seems I hit the end of infinite scroll") break def test_number_of_rows_on_page(session, driver, scroll_to_end): with Session(engine) as session: num_row_in_db_table = len(session.exec(select(YouTube)).all()) num_rows_on_page = len(driver.find_elements_by_tag_name("tbody tr")) assert num_rows_on_page == num_row_in_db_table
[ "sqlmodel.Session", "sqlmodel.select" ]
[((311, 342), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (325, 342), False, 'import pytest\n'), ((616, 647), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (630, 647), False, 'import pytest\n'), ((370, 388), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {}), '()\n', (386, 388), False, 'from selenium import webdriver\n'), ((709, 733), 'collections.deque', 'deque', ([], {'maxlen': 'cache_size'}), '(maxlen=cache_size)\n', (714, 733), False, 'from collections import deque\n'), ((862, 892), 'selenium.webdriver.ActionChains', 'webdriver.ActionChains', (['driver'], {}), '(driver)\n', (884, 892), False, 'from selenium import webdriver\n'), ((1283, 1298), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1290, 1298), False, 'from sqlmodel import Session, select\n'), ((1358, 1373), 'sqlmodel.select', 'select', (['YouTube'], {}), '(YouTube)\n', (1364, 1373), False, 'from sqlmodel import Session, select\n')]
import logging from datetime import datetime from typing import List from sqlmodel import Session, select from db import engine from models import Social, User def get_last_social() -> Social: with Session(engine) as session: statement = select(Social).order_by(Social.id.desc()).limit(1) result = session.exec(statement).one_or_none() logging.info(f"SELECT social row: {result}") return result def get_previous_social() -> Social: with Session(engine) as session: statement = select(Social).order_by(Social.id.desc()).offset(1).limit(1) result = session.exec(statement).one_or_none() logging.info(f"SELECT previous social row: {result}") return result def create_social(fb: int, ig: int, tw: int, sp: int, yt: int): dt_now = datetime.now().strftime("%Y%m%d_%H%M%S") logging.info(f"INSERT social row ({dt_now},{fb},{ig},{tw},{sp},{yt})") social_row = Social(dt=dt_now, fb=fb, ig=ig, tw=tw, sp=sp, yt=yt) with Session(engine) as session: session.add(social_row) session.commit() def create_user(telegram_id: int, username: str = None, first_name: str = None, last_name: str = None): logging.info(f"INSERT user: {first_name}") user_row = User(telegram_id=telegram_id, username=username, first_name=first_name, last_name=last_name) with Session(engine) as session: session.add(user_row) session.commit() def get_user(telegram_id: int) -> User: with Session(engine) as session: statement = select(User).where(User.telegram_id == telegram_id) result = session.exec(statement).one_or_none() logging.info(f"SELECT user: {result}") return result def get_all_users() -> List[User]: with Session(engine) as session: statement = select(User) result = session.exec(statement).fetchall() logging.info(f"SELECT all users: {result}") return result
[ "sqlmodel.select", "sqlmodel.Session" ]
[((364, 408), 'logging.info', 'logging.info', (['f"""SELECT social row: {result}"""'], {}), "(f'SELECT social row: {result}')\n", (376, 408), False, 'import logging\n'), ((643, 696), 'logging.info', 'logging.info', (['f"""SELECT previous social row: {result}"""'], {}), "(f'SELECT previous social row: {result}')\n", (655, 696), False, 'import logging\n'), ((839, 909), 'logging.info', 'logging.info', (['f"""INSERT social row ({dt_now},{fb},{ig},{tw},{sp},{yt})"""'], {}), "(f'INSERT social row ({dt_now},{fb},{ig},{tw},{sp},{yt})')\n", (851, 909), False, 'import logging\n'), ((927, 979), 'models.Social', 'Social', ([], {'dt': 'dt_now', 'fb': 'fb', 'ig': 'ig', 'tw': 'tw', 'sp': 'sp', 'yt': 'yt'}), '(dt=dt_now, fb=fb, ig=ig, tw=tw, sp=sp, yt=yt)\n', (933, 979), False, 'from models import Social, User\n'), ((1184, 1226), 'logging.info', 'logging.info', (['f"""INSERT user: {first_name}"""'], {}), "(f'INSERT user: {first_name}')\n", (1196, 1226), False, 'import logging\n'), ((1242, 1338), 'models.User', 'User', ([], {'telegram_id': 'telegram_id', 'username': 'username', 'first_name': 'first_name', 'last_name': 'last_name'}), '(telegram_id=telegram_id, username=username, first_name=first_name,\n last_name=last_name)\n', (1246, 1338), False, 'from models import Social, User\n'), ((1637, 1675), 'logging.info', 'logging.info', (['f"""SELECT user: {result}"""'], {}), "(f'SELECT user: {result}')\n", (1649, 1675), False, 'import logging\n'), ((1857, 1900), 'logging.info', 'logging.info', (['f"""SELECT all users: {result}"""'], {}), "(f'SELECT all users: {result}')\n", (1869, 1900), False, 'import logging\n'), ((206, 221), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (213, 221), False, 'from sqlmodel import Session, select\n'), ((475, 490), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (482, 490), False, 'from sqlmodel import Session, select\n'), ((989, 1004), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (996, 1004), False, 'from sqlmodel import Session, select\n'), ((1344, 1359), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1351, 1359), False, 'from sqlmodel import Session, select\n'), ((1478, 1493), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1485, 1493), False, 'from sqlmodel import Session, select\n'), ((1740, 1755), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1747, 1755), False, 'from sqlmodel import Session, select\n'), ((1788, 1800), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (1794, 1800), False, 'from sqlmodel import Session, select\n'), ((794, 808), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (806, 808), False, 'from datetime import datetime\n'), ((1526, 1538), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (1532, 1538), False, 'from sqlmodel import Session, select\n'), ((278, 294), 'models.Social.id.desc', 'Social.id.desc', ([], {}), '()\n', (292, 294), False, 'from models import Social, User\n'), ((254, 268), 'sqlmodel.select', 'select', (['Social'], {}), '(Social)\n', (260, 268), False, 'from sqlmodel import Session, select\n'), ((547, 563), 'models.Social.id.desc', 'Social.id.desc', ([], {}), '()\n', (561, 563), False, 'from models import Social, User\n'), ((523, 537), 'sqlmodel.select', 'select', (['Social'], {}), '(Social)\n', (529, 537), False, 'from sqlmodel import Session, select\n')]
input_names = {'TL': '../examples/large_deformation/hyperelastic.py', 'UL': '../examples/large_deformation/hyperelastic_ul.py', 'ULM': '../examples/large_deformation/hyperelastic_ul_up.py'} output_name_trunk = 'test_hyperelastic_' from sfepy.base.testing import TestCommon from tests_basic import NLSStatus class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf = conf, options = options) def test_solution(self): from sfepy.base.base import Struct from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.applications import solve_pde, assign_standard_hooks import numpy as nm import os.path as op solutions = {} ok = True for hp, pb_filename in input_names.iteritems(): required, other = get_standard_keywords() input_name = op.join(op.dirname(__file__), pb_filename) test_conf = ProblemConf.from_file(input_name, required, other) name = output_name_trunk + hp solver_options = Struct(output_filename_trunk=name, output_format='vtk', save_ebc=False, save_ebc_nodes=False, save_regions=False, save_regions_as_groups=False, save_field_meshes=False, solve_not=False) assign_standard_hooks(self, test_conf.options.get, test_conf) self.report( 'hyperelastic formulation: %s' % (hp, ) ) status = NLSStatus(conditions=[]) pb, state = solve_pde(test_conf, solver_options, nls_status=status, output_dir=self.options.out_dir, step_hook=self.step_hook, post_process_hook=self.post_process_hook, post_process_hook_final=self.post_process_hook_final) converged = status.condition == 0 ok = ok and converged solutions[hp] = state.get_parts()['u'] self.report('%s solved' % input_name) rerr = 1.0e-3 aerr = nm.linalg.norm(solutions['TL'], ord=None) * rerr self.report('allowed error: rel = %e, abs = %e' % (rerr, aerr)) ok = ok and self.compare_vectors(solutions['TL'], solutions['UL'], label1='TLF', label2='ULF', allowed_error=rerr) ok = ok and self.compare_vectors(solutions['UL'], solutions['ULM'], label1='ULF', label2='ULF_mixed', allowed_error=rerr) return ok
[ "sfepy.base.conf.get_standard_keywords", "sfepy.base.base.Struct", "sfepy.base.conf.ProblemConf.from_file", "sfepy.applications.solve_pde", "sfepy.applications.assign_standard_hooks" ]
[((871, 894), 'sfepy.base.conf.get_standard_keywords', 'get_standard_keywords', ([], {}), '()\n', (892, 894), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((987, 1037), 'sfepy.base.conf.ProblemConf.from_file', 'ProblemConf.from_file', (['input_name', 'required', 'other'], {}), '(input_name, required, other)\n', (1008, 1037), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((1110, 1303), 'sfepy.base.base.Struct', 'Struct', ([], {'output_filename_trunk': 'name', 'output_format': '"""vtk"""', 'save_ebc': '(False)', 'save_ebc_nodes': '(False)', 'save_regions': '(False)', 'save_regions_as_groups': '(False)', 'save_field_meshes': '(False)', 'solve_not': '(False)'}), "(output_filename_trunk=name, output_format='vtk', save_ebc=False,\n save_ebc_nodes=False, save_regions=False, save_regions_as_groups=False,\n save_field_meshes=False, solve_not=False)\n", (1116, 1303), False, 'from sfepy.base.base import Struct\n'), ((1524, 1585), 'sfepy.applications.assign_standard_hooks', 'assign_standard_hooks', (['self', 'test_conf.options.get', 'test_conf'], {}), '(self, test_conf.options.get, test_conf)\n', (1545, 1585), False, 'from sfepy.applications import solve_pde, assign_standard_hooks\n'), ((1676, 1700), 'tests_basic.NLSStatus', 'NLSStatus', ([], {'conditions': '[]'}), '(conditions=[])\n', (1685, 1700), False, 'from tests_basic import NLSStatus\n'), ((1726, 1946), 'sfepy.applications.solve_pde', 'solve_pde', (['test_conf', 'solver_options'], {'nls_status': 'status', 'output_dir': 'self.options.out_dir', 'step_hook': 'self.step_hook', 'post_process_hook': 'self.post_process_hook', 'post_process_hook_final': 'self.post_process_hook_final'}), '(test_conf, solver_options, nls_status=status, output_dir=self.\n options.out_dir, step_hook=self.step_hook, post_process_hook=self.\n post_process_hook, post_process_hook_final=self.post_process_hook_final)\n', (1735, 1946), False, 'from sfepy.applications import solve_pde, assign_standard_hooks\n'), ((2362, 2403), 'numpy.linalg.norm', 'nm.linalg.norm', (["solutions['TL']"], {'ord': 'None'}), "(solutions['TL'], ord=None)\n", (2376, 2403), True, 'import numpy as nm\n'), ((928, 948), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (938, 948), True, 'import os.path as op\n')]
from typing import Optional from uuid import UUID from ecoindex.models import Result from sqlmodel import Field class ApiEcoindex(Result, table=True): id: Optional[UUID] = Field( default=None, description="Analysis ID of type `UUID`", primary_key=True ) host: str = Field( default=..., title="Web page host", description="Host name of the web page" ) version: int = Field( default=1, title="API version", description="Version number of the API used to run the test", )
[ "sqlmodel.Field" ]
[((179, 258), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'description': '"""Analysis ID of type `UUID`"""', 'primary_key': '(True)'}), "(default=None, description='Analysis ID of type `UUID`', primary_key=True)\n", (184, 258), False, 'from sqlmodel import Field\n'), ((289, 376), 'sqlmodel.Field', 'Field', ([], {'default': '...', 'title': '"""Web page host"""', 'description': '"""Host name of the web page"""'}), "(default=..., title='Web page host', description=\n 'Host name of the web page')\n", (294, 376), False, 'from sqlmodel import Field\n'), ((405, 509), 'sqlmodel.Field', 'Field', ([], {'default': '(1)', 'title': '"""API version"""', 'description': '"""Version number of the API used to run the test"""'}), "(default=1, title='API version', description=\n 'Version number of the API used to run the test')\n", (410, 509), False, 'from sqlmodel import Field\n')]
"""add swag tiers Revision ID: <KEY> Revises: 02338256c6aa Create Date: 2022-06-01 05:58:25.373228+00:00 """ import sqlalchemy as sa import sqlmodel from alembic import op # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "02338256c6aa" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "swag_tiers", sa.Column("name", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("description", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("required_attendance", sa.Integer(), nullable=False), sa.Column("id", sa.Integer(), nullable=False), sa.PrimaryKeyConstraint("id"), ) op.add_column( "participants", sa.Column("swag_tier_id", sa.Integer(), nullable=True) ) op.create_foreign_key(None, "participants", "swag_tiers", ["swag_tier_id"], ["id"]) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, "participants", type_="foreignkey") op.drop_column("participants", "swag_tier_id") op.drop_table("swag_tiers") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((876, 963), 'alembic.op.create_foreign_key', 'op.create_foreign_key', (['None', '"""participants"""', '"""swag_tiers"""', "['swag_tier_id']", "['id']"], {}), "(None, 'participants', 'swag_tiers', ['swag_tier_id'],\n ['id'])\n", (897, 963), False, 'from alembic import op\n'), ((1084, 1144), 'alembic.op.drop_constraint', 'op.drop_constraint', (['None', '"""participants"""'], {'type_': '"""foreignkey"""'}), "(None, 'participants', type_='foreignkey')\n", (1102, 1144), False, 'from alembic import op\n'), ((1149, 1195), 'alembic.op.drop_column', 'op.drop_column', (['"""participants"""', '"""swag_tier_id"""'], {}), "('participants', 'swag_tier_id')\n", (1163, 1195), False, 'from alembic import op\n'), ((1200, 1227), 'alembic.op.drop_table', 'op.drop_table', (['"""swag_tiers"""'], {}), "('swag_tiers')\n", (1213, 1227), False, 'from alembic import op\n'), ((731, 760), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (754, 760), True, 'import sqlalchemy as sa\n'), ((457, 491), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (489, 491), False, 'import sqlmodel\n'), ((543, 577), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (575, 577), False, 'import sqlmodel\n'), ((637, 649), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (647, 649), True, 'import sqlalchemy as sa\n'), ((692, 704), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (702, 704), True, 'import sqlalchemy as sa\n'), ((837, 849), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (847, 849), True, 'import sqlalchemy as sa\n')]
r""" Compute homogenized elastic coefficients for a given heterogeneous linear elastic microstructure, see [1] for details or [2] and [3] for a quick explanation. [1] <NAME>, <NAME>: Homogenization in open sets with holes. Journal of Mathematical Analysis and Applications 71(2), 1979, pages 590-607. https://doi.org/10.1016/0022-247X(79)90211-7 [2] <NAME>, <NAME>, <NAME>: Asymptotic homogenisation in linear elasticity. Part I: Mathematical formulation and finite element modelling. Computational Materials Science 45(4), 2009, pages 1073-1080. http://dx.doi.org/10.1016/j.commatsci.2009.02.025 [3] <NAME>, <NAME>, <NAME>: Asymptotic homogenisation in linear elasticity. Part II: Finite element procedures and multiscale applications. Computational Materials Science 45(4), 2009, pages 1081-1096. http://dx.doi.org/10.1016/j.commatsci.2009.01.027 """ from __future__ import absolute_import import sfepy.discrete.fem.periodic as per from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson from sfepy.homogenization.utils import define_box_regions import sfepy.homogenization.coefs_base as cb from sfepy import data_dir from sfepy.base.base import Struct from sfepy.homogenization.recovery import compute_micro_u,\ compute_stress_strain_u, compute_mac_stress_part def recovery_le(pb, corrs, macro): out = {} dim = corrs['corrs_le']['u_00'].shape[1] mic_u = - compute_micro_u(corrs['corrs_le'], macro['strain'], 'u', dim) out['u_mic'] = Struct(name='output_data', mode='vertex', data=mic_u, var_name='u', dofs=None) stress_Y, strain_Y = \ compute_stress_strain_u(pb, 'i', 'Y', 'mat.D', 'u', mic_u) stress_Y += \ compute_mac_stress_part(pb, 'i', 'Y', 'mat.D', 'u', macro['strain']) strain = macro['strain'] + strain_Y out['cauchy_strain'] = Struct(name='output_data', mode='cell', data=strain, dofs=None) out['cauchy_stress'] = Struct(name='output_data', mode='cell', data=stress_Y, dofs=None) return out filename_mesh = data_dir + '/meshes/3d/matrix_fiber.mesh' dim = 3 region_lbn = (0, 0, 0) region_rtf = (1, 1, 1) regions = { 'Y': 'all', 'Ym': 'cells of group 1', 'Yc': 'cells of group 2', } regions.update(define_box_regions(dim, region_lbn, region_rtf)) materials = { 'mat': ({'D': {'Ym': stiffness_from_youngpoisson(dim, 7.0e9, 0.4), 'Yc': stiffness_from_youngpoisson(dim, 70.0e9, 0.2)}},), } fields = { 'corrector': ('real', dim, 'Y', 1), } variables = { 'u': ('unknown field', 'corrector', 0), 'v': ('test field', 'corrector', 'u'), 'Pi': ('parameter field', 'corrector', 'u'), 'Pi1': ('parameter field', 'corrector', '(set-to-None)'), 'Pi2': ('parameter field', 'corrector', '(set-to-None)'), } functions = { 'match_x_plane': (per.match_x_plane,), 'match_y_plane': (per.match_y_plane,), 'match_z_plane': (per.match_z_plane,), } ebcs = { 'fixed_u': ('Corners', {'u.all': 0.0}), } if dim == 3: epbcs = { 'periodic_x': (['Left', 'Right'], {'u.all': 'u.all'}, 'match_x_plane'), 'periodic_y': (['Near', 'Far'], {'u.all': 'u.all'}, 'match_y_plane'), 'periodic_z': (['Top', 'Bottom'], {'u.all': 'u.all'}, 'match_z_plane'), } else: epbcs = { 'periodic_x': (['Left', 'Right'], {'u.all': 'u.all'}, 'match_x_plane'), 'periodic_y': (['Bottom', 'Top'], {'u.all': 'u.all'}, 'match_y_plane'), } all_periodic = ['periodic_%s' % ii for ii in ['x', 'y', 'z'][:dim]] integrals = { 'i': 2, } options = { 'coefs': 'coefs', 'requirements': 'requirements', 'ls': 'ls', # linear solver to use 'volume': {'expression': 'd_volume.i.Y(u)'}, 'output_dir': 'output', 'coefs_filename': 'coefs_le', 'recovery_hook': 'recovery_le', } equation_corrs = { 'balance_of_forces': """dw_lin_elastic.i.Y(mat.D, v, u) = - dw_lin_elastic.i.Y(mat.D, v, Pi)""" } expr_coefs = """dw_lin_elastic.i.Y(mat.D, Pi1, Pi2)""" coefs = { 'D': { 'requires': ['pis', 'corrs_rs'], 'expression': expr_coefs, 'set_variables': [('Pi1', ('pis', 'corrs_rs'), 'u'), ('Pi2', ('pis', 'corrs_rs'), 'u')], 'class': cb.CoefSymSym, }, 'filenames': {}, } requirements = { 'pis': { 'variables': ['u'], 'class': cb.ShapeDimDim, 'save_name': 'corrs_pis', 'dump_variables': ['u'], }, 'corrs_rs': { 'requires': ['pis'], 'ebcs': ['fixed_u'], 'epbcs': all_periodic, 'equations': equation_corrs, 'set_variables': [('Pi', 'pis', 'u')], 'class': cb.CorrDimDim, 'save_name': 'corrs_le', 'dump_variables': ['u'], }, } solvers = { 'ls': ('ls.scipy_direct', {}), 'newton': ('nls.newton', { 'i_max': 1, 'eps_a': 1e-4, }) }
[ "sfepy.base.base.Struct", "sfepy.homogenization.recovery.compute_micro_u", "sfepy.homogenization.utils.define_box_regions", "sfepy.homogenization.recovery.compute_mac_stress_part", "sfepy.homogenization.recovery.compute_stress_strain_u", "sfepy.mechanics.matcoefs.stiffness_from_youngpoisson" ]
[((1476, 1554), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'data': 'mic_u', 'var_name': '"""u"""', 'dofs': 'None'}), "(name='output_data', mode='vertex', data=mic_u, var_name='u', dofs=None)\n", (1482, 1554), False, 'from sfepy.base.base import Struct\n'), ((1643, 1701), 'sfepy.homogenization.recovery.compute_stress_strain_u', 'compute_stress_strain_u', (['pb', '"""i"""', '"""Y"""', '"""mat.D"""', '"""u"""', 'mic_u'], {}), "(pb, 'i', 'Y', 'mat.D', 'u', mic_u)\n", (1666, 1701), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part\n'), ((1728, 1796), 'sfepy.homogenization.recovery.compute_mac_stress_part', 'compute_mac_stress_part', (['pb', '"""i"""', '"""Y"""', '"""mat.D"""', '"""u"""', "macro['strain']"], {}), "(pb, 'i', 'Y', 'mat.D', 'u', macro['strain'])\n", (1751, 1796), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part\n'), ((1866, 1929), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'strain', 'dofs': 'None'}), "(name='output_data', mode='cell', data=strain, dofs=None)\n", (1872, 1929), False, 'from sfepy.base.base import Struct\n'), ((2025, 2090), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'stress_Y', 'dofs': 'None'}), "(name='output_data', mode='cell', data=stress_Y, dofs=None)\n", (2031, 2090), False, 'from sfepy.base.base import Struct\n'), ((2394, 2441), 'sfepy.homogenization.utils.define_box_regions', 'define_box_regions', (['dim', 'region_lbn', 'region_rtf'], {}), '(dim, region_lbn, region_rtf)\n', (2412, 2441), False, 'from sfepy.homogenization.utils import define_box_regions\n'), ((1394, 1455), 'sfepy.homogenization.recovery.compute_micro_u', 'compute_micro_u', (["corrs['corrs_le']", "macro['strain']", '"""u"""', 'dim'], {}), "(corrs['corrs_le'], macro['strain'], 'u', dim)\n", (1409, 1455), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part\n'), ((2483, 2534), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson', 'stiffness_from_youngpoisson', (['dim', '(7000000000.0)', '(0.4)'], {}), '(dim, 7000000000.0, 0.4)\n', (2510, 2534), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson\n'), ((2554, 2606), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson', 'stiffness_from_youngpoisson', (['dim', '(70000000000.0)', '(0.2)'], {}), '(dim, 70000000000.0, 0.2)\n', (2581, 2606), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson\n')]
from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, iter_dict_of_lists, Struct, basestr from sfepy.base.timing import Timer import six def parse_approx_order(approx_order): """ Parse the uniform approximation order value (str or int). """ ao_msg = 'unsupported approximation order! (%s)' force_bubble = False discontinuous = False if approx_order is None: return 'iga', force_bubble, discontinuous elif isinstance(approx_order, basestr): if approx_order.startswith('iga'): return approx_order, force_bubble, discontinuous try: ao = int(approx_order) except ValueError: mode = approx_order[-1].lower() if mode == 'b': ao = int(approx_order[:-1]) force_bubble = True elif mode == 'd': ao = int(approx_order[:-1]) discontinuous = True else: raise ValueError(ao_msg % approx_order) if ao < 0: raise ValueError(ao_msg % approx_order) elif ao == 0: discontinuous = True return ao, force_bubble, discontinuous def parse_shape(shape, dim): if isinstance(shape, basestr): try: shape = {'scalar' : (1,), 'vector' : (dim,)}[shape] except KeyError: raise ValueError('unsupported field shape! (%s)', shape) elif isinstance(shape, six.integer_types): shape = (int(shape),) return shape def setup_extra_data(conn_info): """ Setup extra data required for non-volume integration. """ for key, ii, info in iter_dict_of_lists(conn_info, return_keys=True): for var in info.all_vars: field = var.get_field() if var == info.primary: field.setup_extra_data(info.ps_tg, info, info.is_trace) def fields_from_conf(conf, regions): fields = {} for key, val in six.iteritems(conf): field = Field.from_conf(val, regions) fields[field.name] = field return fields class Field(Struct): """ Base class for fields. """ _all = None @staticmethod def from_args(name, dtype, shape, region, approx_order=1, space='H1', poly_space_base='lagrange'): """ Create a Field subclass instance corresponding to a given space. Parameters ---------- name : str The field name. dtype : numpy.dtype The field data type: float64 or complex128. shape : int/tuple/str The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,) or 3 or (3,)) or 'vector', or a tuple. The field shape determines the shape of the FE base functions and is related to the number of components of variables and to the DOF per node count, depending on the field kind. region : Region The region where the field is defined. approx_order : int/str The FE approximation order, e.g. 0, 1, 2, '1B' (1 with bubble). space : str The function space name. poly_space_base : str The name of polynomial space base. Notes ----- Assumes one cell type for the whole region! """ conf = Struct(name=name, dtype=dtype, shape=shape, region=region.name, approx_order=approx_order, space=space, poly_space_base=poly_space_base) return Field.from_conf(conf, {region.name : region}) @staticmethod def from_conf(conf, regions): """ Create a Field subclass instance based on the configuration. """ if Field._all is None: from sfepy import get_paths from sfepy.base.base import load_classes field_files = [ii for ii in get_paths('sfepy/discrete/fem/fields*.py') if 'fields_base.py' not in ii] field_files += get_paths('sfepy/discrete/iga/fields*.py') field_files += get_paths('sfepy/discrete/structural/fields*.py') Field._all = load_classes(field_files, [Field], ignore_errors=True, name_attr='family_name') table = Field._all space = conf.get('space', 'H1') poly_space_base = conf.get('poly_space_base', 'lagrange') key = space + '_' + poly_space_base approx_order = parse_approx_order(conf.approx_order) ao, force_bubble, discontinuous = approx_order region = regions[conf.region] if region.kind == 'cell': # Volume fields. kind = 'volume' if discontinuous: cls = table[kind + '_' + key + '_discontinuous'] else: cls = table[kind + '_' + key] obj = cls(conf.name, conf.dtype, conf.shape, region, approx_order=approx_order[:2]) else: # Surface fields. kind = 'surface' cls = table[kind + '_' + key] obj = cls(conf.name, conf.dtype, conf.shape, region, approx_order=approx_order[:2]) return obj def _setup_kind(self): name = self.get('family_name', None, 'An abstract Field method called!') aux = name.split('_') self.space = aux[1] self.poly_space_base = aux[2] def clear_mappings(self, clear_all=False): """ Clear current reference mappings. """ self.mappings = {} if clear_all: if hasattr(self, 'mappings0'): self.mappings0.clear() else: self.mappings0 = {} def save_mappings(self): """ Save current reference mappings to `mappings0` attribute. """ import sfepy.base.multiproc as multi if multi.is_remote_dict(self.mappings0): for k, v in six.iteritems(self.mappings): m, _ = self.mappings[k] nv = (m.bf, m.bfg, m.det, m.volume, m.normal) self.mappings0[k] = nv else: self.mappings0 = self.mappings.copy() def get_mapping(self, region, integral, integration, get_saved=False, return_key=False): """ For given region, integral and integration type, get a reference mapping, i.e. jacobians, element volumes and base function derivatives for Volume-type geometries, and jacobians, normals and base function derivatives for Surface-type geometries corresponding to the field approximation. The mappings are cached in the field instance in `mappings` attribute. The mappings can be saved to `mappings0` using `Field.save_mappings`. The saved mapping can be retrieved by passing `get_saved=True`. If the required (saved) mapping is not in cache, a new one is created. Returns ------- geo : CMapping instance The reference mapping. mapping : VolumeMapping or SurfaceMapping instance The mapping. key : tuple The key of the mapping in `mappings` or `mappings0`. """ import sfepy.base.multiproc as multi key = (region.name, integral.order, integration) if get_saved: out = self.mappings0.get(key, None) if multi.is_remote_dict(self.mappings0) and out is not None: m, i = self.create_mapping(region, integral, integration) m.bf[:], m.bfg[:], m.det[:], m.volume[:] = out[0:4] if m.normal is not None: m.normal[:] = m[4] out = m, i else: out = self.mappings.get(key, None) if out is None: out = self.create_mapping(region, integral, integration) self.mappings[key] = out if return_key: out = out + (key,) return out def create_eval_mesh(self): """ Create a mesh for evaluating the field. The default implementation returns None, because this mesh is for most fields the same as the one created by `Field.create_mesh()`. """ def evaluate_at(self, coors, source_vals, mode='val', strategy='general', close_limit=0.1, get_cells_fun=None, cache=None, ret_cells=False, ret_status=False, ret_ref_coors=False, verbose=False): """ Evaluate source DOF values corresponding to the field in the given coordinates using the field interpolation. Parameters ---------- coors : array, shape ``(n_coor, dim)`` The coordinates the source values should be interpolated into. source_vals : array, shape ``(n_nod, n_components)`` The source DOF values corresponding to the field. mode : {'val', 'grad'}, optional The evaluation mode: the field value (default) or the field value gradient. strategy : {'general', 'convex'}, optional The strategy for finding the elements that contain the coordinates. For convex meshes, the 'convex' strategy might be faster than the 'general' one. close_limit : float, optional The maximum limit distance of a point from the closest element allowed for extrapolation. get_cells_fun : callable, optional If given, a function with signature ``get_cells_fun(coors, cmesh, **kwargs)`` returning cells and offsets that potentially contain points with the coordinates `coors`. Applicable only when `strategy` is 'general'. When not given, :func:`get_potential_cells() <sfepy.discrete.common.global_interp.get_potential_cells>` is used. cache : Struct, optional To speed up a sequence of evaluations, the field mesh and other data can be cached. Optionally, the cache can also contain the reference element coordinates as `cache.ref_coors`, `cache.cells` and `cache.status`, if the evaluation occurs in the same coordinates repeatedly. In that case the mesh related data are ignored. See :func:`Field.get_evaluate_cache() <sfepy.discrete.fem.fields_base.FEField.get_evaluate_cache()>`. ret_ref_coors : bool, optional If True, return also the found reference element coordinates. ret_status : bool, optional If True, return also the enclosing cell status for each point. ret_cells : bool, optional If True, return also the cell indices the coordinates are in. verbose : bool If False, reduce verbosity. Returns ------- vals : array The interpolated values with shape ``(n_coor, n_components)`` or gradients with shape ``(n_coor, n_components, dim)`` according to the `mode`. If `ret_status` is False, the values where the status is greater than one are set to ``numpy.nan``. ref_coors : array The found reference element coordinates, if `ret_ref_coors` is True. cells : array The cell indices, if `ret_ref_coors` or `ret_cells` or `ret_status` are True. status : array The status, if `ret_ref_coors` or `ret_status` are True, with the following meaning: 0 is success, 1 is extrapolation within `close_limit`, 2 is extrapolation outside `close_limit`, 3 is failure, 4 is failure due to non-convergence of the Newton iteration in tensor product cells. If close_limit is 0, then for the 'general' strategy the status 5 indicates points outside of the field domain that had no potential cells. """ from sfepy.discrete.common.global_interp import get_ref_coors from sfepy.discrete.common.extmods.crefcoors import evaluate_in_rc from sfepy.base.base import complex_types output('evaluating in %d points...' % coors.shape[0], verbose=verbose) ref_coors, cells, status = get_ref_coors(self, coors, strategy=strategy, close_limit=close_limit, get_cells_fun=get_cells_fun, cache=cache, verbose=verbose) timer = Timer(start=True) # Interpolate to the reference coordinates. source_dtype = nm.float64 if source_vals.dtype in complex_types\ else source_vals.dtype if mode == 'val': vals = nm.empty((coors.shape[0], source_vals.shape[1], 1), dtype=source_dtype) cmode = 0 elif mode == 'grad': vals = nm.empty((coors.shape[0], source_vals.shape[1], coors.shape[1]), dtype=source_dtype) cmode = 1 ctx = self.create_basis_context() if source_vals.dtype in complex_types: valsi = vals.copy() evaluate_in_rc(vals, ref_coors, cells, status, nm.ascontiguousarray(source_vals.real), self.get_econn('volume', self.region), cmode, ctx) evaluate_in_rc(valsi, ref_coors, cells, status, nm.ascontiguousarray(source_vals.imag), self.get_econn('volume', self.region), cmode, ctx) vals = vals + valsi * 1j else: evaluate_in_rc(vals, ref_coors, cells, status, source_vals, self.get_econn('volume', self.region), cmode, ctx) output('interpolation: %f s' % timer.stop(),verbose=verbose) output('...done',verbose=verbose) if mode == 'val': vals.shape = (coors.shape[0], source_vals.shape[1]) if not ret_status: ii = nm.where(status > 1)[0] vals[ii] = nm.nan if ret_ref_coors: return vals, ref_coors, cells, status elif ret_status: return vals, cells, status elif ret_cells: return vals, cells else: return vals
[ "sfepy.get_paths", "sfepy.base.base.Struct", "sfepy.discrete.common.global_interp.get_ref_coors", "sfepy.base.multiproc.is_remote_dict", "sfepy.base.timing.Timer", "sfepy.base.base.iter_dict_of_lists", "sfepy.base.base.load_classes", "sfepy.base.base.output" ]
[((1640, 1687), 'sfepy.base.base.iter_dict_of_lists', 'iter_dict_of_lists', (['conn_info'], {'return_keys': '(True)'}), '(conn_info, return_keys=True)\n', (1658, 1687), False, 'from sfepy.base.base import output, iter_dict_of_lists, Struct, basestr\n'), ((1941, 1960), 'six.iteritems', 'six.iteritems', (['conf'], {}), '(conf)\n', (1954, 1960), False, 'import six\n'), ((3337, 3477), 'sfepy.base.base.Struct', 'Struct', ([], {'name': 'name', 'dtype': 'dtype', 'shape': 'shape', 'region': 'region.name', 'approx_order': 'approx_order', 'space': 'space', 'poly_space_base': 'poly_space_base'}), '(name=name, dtype=dtype, shape=shape, region=region.name,\n approx_order=approx_order, space=space, poly_space_base=poly_space_base)\n', (3343, 3477), False, 'from sfepy.base.base import output, iter_dict_of_lists, Struct, basestr\n'), ((5974, 6010), 'sfepy.base.multiproc.is_remote_dict', 'multi.is_remote_dict', (['self.mappings0'], {}), '(self.mappings0)\n', (5994, 6010), True, 'import sfepy.base.multiproc as multi\n'), ((12248, 12318), 'sfepy.base.base.output', 'output', (["('evaluating in %d points...' % coors.shape[0])"], {'verbose': 'verbose'}), "('evaluating in %d points...' % coors.shape[0], verbose=verbose)\n", (12254, 12318), False, 'from sfepy.base.base import output, iter_dict_of_lists, Struct, basestr\n'), ((12355, 12488), 'sfepy.discrete.common.global_interp.get_ref_coors', 'get_ref_coors', (['self', 'coors'], {'strategy': 'strategy', 'close_limit': 'close_limit', 'get_cells_fun': 'get_cells_fun', 'cache': 'cache', 'verbose': 'verbose'}), '(self, coors, strategy=strategy, close_limit=close_limit,\n get_cells_fun=get_cells_fun, cache=cache, verbose=verbose)\n', (12368, 12488), False, 'from sfepy.discrete.common.global_interp import get_ref_coors\n'), ((12747, 12764), 'sfepy.base.timing.Timer', 'Timer', ([], {'start': '(True)'}), '(start=True)\n', (12752, 12764), False, 'from sfepy.base.timing import Timer\n'), ((14118, 14152), 'sfepy.base.base.output', 'output', (['"""...done"""'], {'verbose': 'verbose'}), "('...done', verbose=verbose)\n", (14124, 14152), False, 'from sfepy.base.base import output, iter_dict_of_lists, Struct, basestr\n'), ((4045, 4087), 'sfepy.get_paths', 'get_paths', (['"""sfepy/discrete/iga/fields*.py"""'], {}), "('sfepy/discrete/iga/fields*.py')\n", (4054, 4087), False, 'from sfepy import get_paths\n'), ((4115, 4164), 'sfepy.get_paths', 'get_paths', (['"""sfepy/discrete/structural/fields*.py"""'], {}), "('sfepy/discrete/structural/fields*.py')\n", (4124, 4164), False, 'from sfepy import get_paths\n'), ((4190, 4269), 'sfepy.base.base.load_classes', 'load_classes', (['field_files', '[Field]'], {'ignore_errors': '(True)', 'name_attr': '"""family_name"""'}), "(field_files, [Field], ignore_errors=True, name_attr='family_name')\n", (4202, 4269), False, 'from sfepy.base.base import load_classes\n'), ((6036, 6064), 'six.iteritems', 'six.iteritems', (['self.mappings'], {}), '(self.mappings)\n', (6049, 6064), False, 'import six\n'), ((12971, 13042), 'numpy.empty', 'nm.empty', (['(coors.shape[0], source_vals.shape[1], 1)'], {'dtype': 'source_dtype'}), '((coors.shape[0], source_vals.shape[1], 1), dtype=source_dtype)\n', (12979, 13042), True, 'import numpy as nm\n'), ((7511, 7547), 'sfepy.base.multiproc.is_remote_dict', 'multi.is_remote_dict', (['self.mappings0'], {}), '(self.mappings0)\n', (7531, 7547), True, 'import sfepy.base.multiproc as multi\n'), ((13142, 13231), 'numpy.empty', 'nm.empty', (['(coors.shape[0], source_vals.shape[1], coors.shape[1])'], {'dtype': 'source_dtype'}), '((coors.shape[0], source_vals.shape[1], coors.shape[1]), dtype=\n source_dtype)\n', (13150, 13231), True, 'import numpy as nm\n'), ((13515, 13553), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['source_vals.real'], {}), '(source_vals.real)\n', (13535, 13553), True, 'import numpy as nm\n'), ((13720, 13758), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['source_vals.imag'], {}), '(source_vals.imag)\n', (13740, 13758), True, 'import numpy as nm\n'), ((14288, 14308), 'numpy.where', 'nm.where', (['(status > 1)'], {}), '(status > 1)\n', (14296, 14308), True, 'import numpy as nm\n'), ((3917, 3959), 'sfepy.get_paths', 'get_paths', (['"""sfepy/discrete/fem/fields*.py"""'], {}), "('sfepy/discrete/fem/fields*.py')\n", (3926, 3959), False, 'from sfepy import get_paths\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step = jit.trace(self.model_step, symbolic=True) def train(self): start_training_info = (1, 1) max_iter = len(self.dataloader) max_training_info = (self.cfg.solver.max_epoch, max_iter) super().train(start_training_info, max_training_info) def before_train(self): super().before_train() def before_epoch(self): super().before_epoch() self.dataloader_iter = iter(self.dataloader) def after_epoch(self): del self.dataloader_iter super().after_epoch() def train_one_iter(self): """Basic logic of training one iteration.""" data_tik = time.perf_counter() data = next(self.dataloader_iter) samples, targets = self.preprocess(data) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution data_tok = time.perf_counter() train_tik = time.perf_counter() losses, accs = self.model_step(samples, targets) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution train_tok = time.perf_counter() # TODO: stats and accs loss_meters = {"loss": losses.item()} stat_meters = {"stat_acc@1": accs[0].item() * 100, "stat_acc@5": accs[1].item() * 100} time_meters = {"train_time": train_tok - train_tik, "data_time": data_tok - data_tik} self.meter.update(**loss_meters, **stat_meters, **time_meters) def model_step(self, samples, targets): optimizer = self.solver.optimizer grad_manager = self.solver.grad_manager grad_scaler = self.solver.grad_scaler with grad_manager: with amp.autocast(enabled=self.cfg.amp.enabled): outputs = self.model(samples) losses = self.loss(outputs, targets) if isinstance(losses, mge.Tensor): total_loss = losses elif isinstance(losses, dict): if "total_loss" in losses: total_loss = losses["total_loss"] else: # only key contains "loss" will be calculated. total_loss = sum([v for k, v in losses.items() if "loss" in k]) losses["total_loss"] = total_loss else: # list or tuple total_loss = sum(losses) total_loss = total_loss / self.cfg.solver.accumulation_steps # this is made compatible with one hot labels if targets.ndim == 2: targets = F.argmax(targets, axis=1) accs = F.metric.topk_accuracy(outputs, targets, (1, 5)) if self.cfg.amp.enabled: grad_scaler.backward(grad_manager, total_loss) else: grad_manager.backward(total_loss) if self.progress.iter % self.cfg.solver.accumulation_steps == 0: self.modify_grad() optimizer.step().clear_grad() self.model_ema_step() return losses, accs def modify_grad(self): grad_cfg = self.cfg.solver.grad_clip # TODO: support advanced params for grad clip in the future params = self.model.parameters() if grad_cfg.name is None: return elif grad_cfg.name == "norm": optim.clip_grad_norm(params, grad_cfg.max_norm) elif grad_cfg.name == "value": optim.clip_grad_value(params, grad_cfg.lower, grad_cfg.upper) else: raise ValueError(f"Grad clip type '{grad_cfg.name}' not supported") def model_ema_step(self): """Implement momentum based Exponential Moving Average (EMA) for model states https://github.com/rwightman/pytorch-image-models/blob/master/timm/utils/model_ema.py Also inspired by Pycls https://github.com/facebookresearch/pycls/pull/138/, which is more flexible and efficient Heuristically, one can use a momentum of 0.9999 as used by Tensorflow and 0.9998 as used by timm, which updates model ema every iter. To be more efficient, one can set ``update_period`` to e.g. 8 or 32 to speed up your training, and decrease your momentum at scale: set ``momentum=0.9978`` from 0.9999 (32 times) when you ``update_period=32``. Also, to make model EMA really work (improve generalization), one should carefully tune the momentum based on various factors, e.g. the learning rate scheduler, the total batch size, the training epochs, e.t.c. To initialize a momentum in Pycls style, one set ``model_ema.alpha = 1e-5`` instead. Momentum will be calculated through ``_calculate_pycls_momentum``. """ if self.ema is None: return ema_cfg = self.cfg.model_ema cur_iter, cur_epoch = self.progress.iter, self.progress.epoch if cur_iter % ema_cfg.update_period == 0: if cur_epoch > (ema_cfg.start_epoch or self.cfg.solver.warmup_epochs): momentum = ( ema_cfg.momentum if ema_cfg.alpha is None else _calculate_pycls_momentum( alpha=ema_cfg.alpha, total_batch_size=self.cfg.batch_size * dist.get_world_size(), max_epoch=self.cfg.solver.max_epoch, update_period=ema_cfg.update_period, ) ) else: # copy model to ema momentum = 0.0 if not hasattr(self, "_ema_states"): self._ema_states = ( list(self.ema.parameters()) + list(self.ema.buffers()), list(self.model.parameters()) + list(self.model.buffers()), ) for e, p in zip(*self._ema_states): # _inplace_add_(e, p, alpha=mge.tensor(momentum), beta=mge.tensor(1 - momentum)) e._reset(e * momentum + p * (1 - momentum)) def _calculate_pycls_momentum( alpha: float, total_batch_size: int, max_epoch: int, update_period: int ): """pycls style momentum calculation which uses a relative model_ema to decouple momentum with other training hyper-parameters e.g. * training epochs * interval to update ema * batch sizes Usually the alpha is a tiny positive floating number, e.g. 1e-4 or 1e-5, with ``max_epoch=100``, ``total_batch_size=1024`` and ``update_period=32``, the ema momentum should be 0.996723175, which has roughly same behavior to the default setting. i.e. ``momentum=0.9999`` together with ``update_period=1`` """ return max(0, 1 - alpha * (total_batch_size / max_epoch * update_period))
[ "megengine.jit.trace", "megengine.distributed.get_world_size", "megengine.optimizer.clip_grad_value", "megengine.amp.autocast", "megengine.optimizer.clip_grad_norm", "megengine.functional.argmax", "megengine._full_sync", "megengine.functional.metric.topk_accuracy" ]
[((666, 695), 'basecls.utils.registers.trainers.register', 'registers.trainers.register', ([], {}), '()\n', (693, 695), False, 'from basecls.utils import registers\n'), ((1698, 1757), 'basecls.layers.Preprocess', 'Preprocess', (['cfg.preprocess.img_mean', 'cfg.preprocess.img_std'], {}), '(cfg.preprocess.img_mean, cfg.preprocess.img_std)\n', (1708, 1757), False, 'from basecls.layers import Preprocess, build_loss\n'), ((1778, 1793), 'basecls.layers.build_loss', 'build_loss', (['cfg'], {}), '(cfg)\n', (1788, 1793), False, 'from basecls.layers import Preprocess, build_loss\n'), ((1815, 1848), 'basecore.utils.MeterBuffer', 'MeterBuffer', (['cfg.log_every_n_iter'], {}), '(cfg.log_every_n_iter)\n', (1826, 1848), False, 'from basecore.utils import MeterBuffer\n'), ((2610, 2629), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2627, 2629), False, 'import time\n'), ((2729, 2745), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (2743, 2745), True, 'import megengine as mge\n'), ((2830, 2849), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2847, 2849), False, 'import time\n'), ((2871, 2890), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2888, 2890), False, 'import time\n'), ((2956, 2972), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (2970, 2972), True, 'import megengine as mge\n'), ((3058, 3077), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (3075, 3077), False, 'import time\n'), ((1616, 1636), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (1629, 1636), False, 'import copy\n'), ((1974, 2015), 'megengine.jit.trace', 'jit.trace', (['self.model_step'], {'symbolic': '(True)'}), '(self.model_step, symbolic=True)\n', (1983, 2015), False, 'from megengine import jit\n'), ((4565, 4613), 'megengine.functional.metric.topk_accuracy', 'F.metric.topk_accuracy', (['outputs', 'targets', '(1, 5)'], {}), '(outputs, targets, (1, 5))\n', (4587, 4613), True, 'import megengine.functional as F\n'), ((3642, 3684), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': 'self.cfg.amp.enabled'}), '(enabled=self.cfg.amp.enabled)\n', (3654, 3684), True, 'import megengine.amp as amp\n'), ((4520, 4545), 'megengine.functional.argmax', 'F.argmax', (['targets'], {'axis': '(1)'}), '(targets, axis=1)\n', (4528, 4545), True, 'import megengine.functional as F\n'), ((5280, 5327), 'megengine.optimizer.clip_grad_norm', 'optim.clip_grad_norm', (['params', 'grad_cfg.max_norm'], {}), '(params, grad_cfg.max_norm)\n', (5300, 5327), True, 'import megengine.optimizer as optim\n'), ((5379, 5440), 'megengine.optimizer.clip_grad_value', 'optim.clip_grad_value', (['params', 'grad_cfg.lower', 'grad_cfg.upper'], {}), '(params, grad_cfg.lower, grad_cfg.upper)\n', (5400, 5440), True, 'import megengine.optimizer as optim\n'), ((7230, 7251), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (7249, 7251), True, 'import megengine.distributed as dist\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result = imperative.make_backward_graph(op, [attr], [True], [True]) backward_graph, save_for_backward_mask, input_has_grad = result assert save_for_backward_mask == [False, True, True], save_for_backward_mask def test_reshape(): x_np = np.random.rand(2, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.reshape(5, 2) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((2, 5), dtype=np.float32), x.grad.numpy()) def test_subtensor(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[1:-1, :2] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[0, 0, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32), x.grad.numpy() ) def test_IndexingMultiAxisVec(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[[0, 2], [0, 2]] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.float32), x.grad.numpy() ) def test_AxisAddRemove(): x_np = np.random.rand(1, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = F.squeeze(F.expand_dims(x, 2), 0) grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 1, 1, 1, 1]], dtype=np.float32), x.grad.numpy() ) def test_Broadcast(): x_np = np.random.rand(3, 3, 1).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = F.broadcast_to(x, (3, 3, 10)) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((3, 3, 1), dtype=np.float32) * 10, x.grad.numpy()) def test_Reduce_sum(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.sum(axis=0) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((3, 3), dtype=np.float32), x.grad.numpy()) def test_Reduce_mean(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.mean(axis=0) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((3, 3), dtype=np.float32) / 3, x.grad.numpy())
[ "megengine.core._imperative_rt.imperative.make_backward_graph", "megengine.functional.distributed.remote_send", "megengine.functional.expand_dims", "megengine.functional.distributed.remote_recv", "megengine.core._imperative_rt.imperative.sync", "megengine.distributed.init_process_group", "megengine.functional.ones_like", "megengine.core.tensor.tensor.apply", "megengine.core.autodiff.grad.Grad", "megengine.distributed.Server", "megengine.core.tensor.tensor_wrapper.TensorWrapper", "megengine.core._imperative_rt.TensorAttr", "megengine.device.set_default_device", "megengine.functional.broadcast_to", "megengine.distributed.get_free_ports", "megengine.device.get_default_device", "megengine.core.ops.builtin.Elemwise" ]
[((3488, 3558), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""high order gradient was not implemented yet"""'}), "(reason='high order gradient was not implemented yet')\n", (3504, 3558), False, 'import pytest\n'), ((1041, 1055), 'megengine.core.ops.builtin.Elemwise', 'Elemwise', (['mode'], {}), '(mode)\n', (1049, 1055), False, 'from megengine.core.ops.builtin import Elemwise\n'), ((1778, 1795), 'megengine.distributed.Server', 'dist.Server', (['port'], {}), '(port)\n', (1789, 1795), True, 'import megengine.distributed as dist\n'), ((2749, 2775), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker0'}), '(target=worker0)\n', (2759, 2775), True, 'import multiprocessing as mp\n'), ((2785, 2811), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker1'}), '(target=worker1)\n', (2795, 2811), True, 'import multiprocessing as mp\n'), ((4085, 4104), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (4098, 4104), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((4636, 4656), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['[0.0]'], {}), '([0.0])\n', (4649, 4656), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((5029, 5048), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (5042, 5048), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((5439, 5458), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (5452, 5458), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((5467, 5486), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['y_np'], {}), '(y_np)\n', (5480, 5486), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((5496, 5516), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['dz_np'], {}), '(dz_np)\n', (5509, 5516), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((5989, 6008), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (6002, 6008), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((6018, 6038), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['dz_np'], {}), '(dz_np)\n', (6031, 6038), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((6377, 6405), 'megengine.core.ops.builtin.Elemwise', 'Elemwise', (['Elemwise.Mode.RELU'], {}), '(Elemwise.Mode.RELU)\n', (6385, 6405), False, 'from megengine.core.ops.builtin import Elemwise\n'), ((6417, 6429), 'megengine.core._imperative_rt.TensorAttr', 'TensorAttr', ([], {}), '()\n', (6427, 6429), False, 'from megengine.core._imperative_rt import TensorAttr, imperative\n'), ((6498, 6556), 'megengine.core._imperative_rt.imperative.make_backward_graph', 'imperative.make_backward_graph', (['op', '[attr]', '[True]', '[True]'], {}), '(op, [attr], [True], [True])\n', (6528, 6556), False, 'from megengine.core._imperative_rt import TensorAttr, imperative\n'), ((6786, 6805), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (6799, 6805), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((7067, 7086), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (7080, 7086), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((7397, 7416), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (7410, 7416), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((7726, 7745), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (7739, 7745), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((8054, 8073), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (8067, 8073), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((8129, 8158), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', '(3, 3, 10)'], {}), '(x, (3, 3, 10))\n', (8143, 8158), True, 'import megengine.functional as F\n'), ((8358, 8377), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (8371, 8377), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((8639, 8658), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (8652, 8658), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((1095, 1111), 'megengine.core.tensor.tensor.apply', 'apply', (['op', '*args'], {}), '(op, *args)\n', (1100, 1111), False, 'from megengine.core.tensor.tensor import Tensor, apply\n'), ((1739, 1761), 'megengine.distributed.get_free_ports', 'dist.get_free_ports', (['(1)'], {}), '(1)\n', (1758, 1761), True, 'import megengine.distributed as dist\n'), ((1824, 1884), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['"""localhost"""', 'port', 'world_size', '(0)', '(0)'], {}), "('localhost', port, world_size, 0, 0)\n", (1847, 1884), True, 'import megengine.distributed as dist\n'), ((1893, 1930), 'megengine.device.set_default_device', 'mge.device.set_default_device', (['"""gpu0"""'], {}), "('gpu0')\n", (1922, 1930), True, 'import megengine as mge\n'), ((1946, 1952), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (1950, 1952), False, 'from megengine.core.autodiff.grad import Grad\n'), ((2087, 2104), 'megengine.functional.distributed.remote_send', 'remote_send', (['x', '(1)'], {}), '(x, 1)\n', (2098, 2104), False, 'from megengine.functional.distributed import remote_recv, remote_send\n'), ((2122, 2168), 'megengine.functional.distributed.remote_recv', 'remote_recv', (['(1)', 'x_np.shape', 'x_np.dtype', '"""gpu0"""'], {}), "(1, x_np.shape, x_np.dtype, 'gpu0')\n", (2133, 2168), False, 'from megengine.functional.distributed import remote_recv, remote_send\n'), ((2347, 2407), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['"""localhost"""', 'port', 'world_size', '(1)', '(1)'], {}), "('localhost', port, world_size, 1, 1)\n", (2370, 2407), True, 'import megengine.distributed as dist\n'), ((2416, 2453), 'megengine.device.set_default_device', 'mge.device.set_default_device', (['"""gpu1"""'], {}), "('gpu1')\n", (2445, 2453), True, 'import megengine as mge\n'), ((2469, 2475), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (2473, 2475), False, 'from megengine.core.autodiff.grad import Grad\n'), ((2494, 2540), 'megengine.functional.distributed.remote_recv', 'remote_recv', (['(0)', 'x_np.shape', 'x_np.dtype', '"""gpu1"""'], {}), "(0, x_np.shape, x_np.dtype, 'gpu1')\n", (2505, 2540), False, 'from megengine.functional.distributed import remote_recv, remote_send\n'), ((2558, 2580), 'megengine.functional.distributed.remote_send', 'remote_send', (['recv_x', '(0)'], {}), '(recv_x, 0)\n', (2569, 2580), False, 'from megengine.functional.distributed import remote_recv, remote_send\n'), ((2660, 2666), 'megengine.core._imperative_rt.imperative.sync', 'sync', ([], {}), '()\n', (2664, 2666), False, 'from megengine.core._imperative_rt.imperative import sync\n'), ((1562, 1579), 'platform.system', 'platform.system', ([], {}), '()\n', (1577, 1579), False, 'import platform\n'), ((3673, 3691), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (3685, 3691), True, 'import numpy as np\n'), ((4393, 4405), 'gc.disable', 'gc.disable', ([], {}), '()\n', (4403, 4405), False, 'import gc\n'), ((5588, 5614), 'weakref.ref', 'weakref.ref', (['x.__wrapped__'], {}), '(x.__wrapped__)\n', (5599, 5614), False, 'import weakref\n'), ((5635, 5661), 'weakref.ref', 'weakref.ref', (['y.__wrapped__'], {}), '(y.__wrapped__)\n', (5646, 5661), False, 'import weakref\n'), ((6107, 6133), 'weakref.ref', 'weakref.ref', (['x.__wrapped__'], {}), '(x.__wrapped__)\n', (6118, 6133), False, 'import weakref\n'), ((6890, 6904), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (6901, 6904), True, 'import megengine.functional as F\n'), ((6934, 6967), 'numpy.ones', 'np.ones', (['(2, 5)'], {'dtype': 'np.float32'}), '((2, 5), dtype=np.float32)\n', (6941, 6967), True, 'import numpy as np\n'), ((7167, 7181), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (7178, 7181), True, 'import megengine.functional as F\n'), ((7220, 7281), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 1, 0], [0, 0, 0]]'], {'dtype': 'np.float32'}), '([[0, 0, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32)\n', (7228, 7281), True, 'import numpy as np\n'), ((7503, 7517), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (7514, 7517), True, 'import megengine.functional as F\n'), ((7556, 7617), 'numpy.array', 'np.array', (['[[1, 0, 0], [0, 0, 0], [0, 0, 1]]'], {'dtype': 'np.float32'}), '([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.float32)\n', (7564, 7617), True, 'import numpy as np\n'), ((7811, 7830), 'megengine.functional.expand_dims', 'F.expand_dims', (['x', '(2)'], {}), '(x, 2)\n', (7824, 7830), True, 'import megengine.functional as F\n'), ((7848, 7862), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (7859, 7862), True, 'import megengine.functional as F\n'), ((7901, 7946), 'numpy.array', 'np.array', (['[[1, 1, 1, 1, 1]]'], {'dtype': 'np.float32'}), '([[1, 1, 1, 1, 1]], dtype=np.float32)\n', (7909, 7946), True, 'import numpy as np\n'), ((8172, 8186), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (8183, 8186), True, 'import megengine.functional as F\n'), ((8460, 8474), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (8471, 8474), True, 'import megengine.functional as F\n'), ((8504, 8537), 'numpy.ones', 'np.ones', (['(3, 3)'], {'dtype': 'np.float32'}), '((3, 3), dtype=np.float32)\n', (8511, 8537), True, 'import numpy as np\n'), ((8742, 8756), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (8753, 8756), True, 'import megengine.functional as F\n'), ((1691, 1709), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (1705, 1709), True, 'import numpy as np\n'), ((2953, 2971), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (2967, 2971), True, 'import numpy as np\n'), ((3026, 3032), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (3030, 3032), False, 'from megengine.core.autodiff.grad import Grad\n'), ((3100, 3118), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (3112, 3118), True, 'import numpy as np\n'), ((3173, 3185), 'numpy.sin', 'np.sin', (['x_np'], {}), '(x_np)\n', (3179, 3185), True, 'import numpy as np\n'), ((3219, 3237), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (3233, 3237), True, 'import numpy as np\n'), ((3292, 3298), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (3296, 3298), False, 'from megengine.core.autodiff.grad import Grad\n'), ((3387, 3405), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (3399, 3405), True, 'import numpy as np\n'), ((3591, 3609), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (3605, 3609), True, 'import numpy as np\n'), ((3705, 3711), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (3709, 3711), False, 'from megengine.core.autodiff.grad import Grad\n'), ((3752, 3758), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (3756, 3758), False, 'from megengine.core.autodiff.grad import Grad\n'), ((3874, 3886), 'numpy.sin', 'np.sin', (['x_np'], {}), '(x_np)\n', (3880, 3886), True, 'import numpy as np\n'), ((3976, 3988), 'numpy.cos', 'np.cos', (['x_np'], {}), '(x_np)\n', (3982, 3988), True, 'import numpy as np\n'), ((4040, 4058), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (4054, 4058), True, 'import numpy as np\n'), ((4117, 4123), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4121, 4123), False, 'from megengine.core.autodiff.grad import Grad\n'), ((4216, 4234), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (4228, 4234), True, 'import numpy as np\n'), ((4615, 4626), 'gc.enable', 'gc.enable', ([], {}), '()\n', (4624, 4626), False, 'import gc\n'), ((4984, 5002), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (4998, 5002), True, 'import numpy as np\n'), ((5061, 5067), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (5065, 5067), False, 'from megengine.core.autodiff.grad import Grad\n'), ((5153, 5171), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (5165, 5171), True, 'import numpy as np\n'), ((5289, 5307), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (5303, 5307), True, 'import numpy as np\n'), ((5337, 5359), 'numpy.random.rand', 'np.random.rand', (['(10)', '(10)'], {}), '(10, 10)\n', (5351, 5359), True, 'import numpy as np\n'), ((5390, 5412), 'numpy.random.rand', 'np.random.rand', (['(10)', '(10)'], {}), '(10, 10)\n', (5404, 5412), True, 'import numpy as np\n'), ((5695, 5701), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (5699, 5701), False, 'from megengine.core.autodiff.grad import Grad\n'), ((6169, 6175), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (6173, 6175), False, 'from megengine.core.autodiff.grad import Grad\n'), ((6739, 6759), 'numpy.random.rand', 'np.random.rand', (['(2)', '(5)'], {}), '(2, 5)\n', (6753, 6759), True, 'import numpy as np\n'), ((6818, 6824), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (6822, 6824), False, 'from megengine.core.autodiff.grad import Grad\n'), ((7020, 7040), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (7034, 7040), True, 'import numpy as np\n'), ((7099, 7105), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (7103, 7105), False, 'from megengine.core.autodiff.grad import Grad\n'), ((7350, 7370), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (7364, 7370), True, 'import numpy as np\n'), ((7429, 7435), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (7433, 7435), False, 'from megengine.core.autodiff.grad import Grad\n'), ((7679, 7699), 'numpy.random.rand', 'np.random.rand', (['(1)', '(5)'], {}), '(1, 5)\n', (7693, 7699), True, 'import numpy as np\n'), ((7758, 7764), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (7762, 7764), False, 'from megengine.core.autodiff.grad import Grad\n'), ((8004, 8027), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)', '(1)'], {}), '(3, 3, 1)\n', (8018, 8027), True, 'import numpy as np\n'), ((8086, 8092), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (8090, 8092), False, 'from megengine.core.autodiff.grad import Grad\n'), ((8216, 8252), 'numpy.ones', 'np.ones', (['(3, 3, 1)'], {'dtype': 'np.float32'}), '((3, 3, 1), dtype=np.float32)\n', (8223, 8252), True, 'import numpy as np\n'), ((8311, 8331), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (8325, 8331), True, 'import numpy as np\n'), ((8390, 8396), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (8394, 8396), False, 'from megengine.core.autodiff.grad import Grad\n'), ((8592, 8612), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (8606, 8612), True, 'import numpy as np\n'), ((8671, 8677), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (8675, 8677), False, 'from megengine.core.autodiff.grad import Grad\n'), ((8786, 8819), 'numpy.ones', 'np.ones', (['(3, 3)'], {'dtype': 'np.float32'}), '((3, 3), dtype=np.float32)\n', (8793, 8819), True, 'import numpy as np\n'), ((1346, 1377), 'megengine.device.get_default_device', 'mge.device.get_default_device', ([], {}), '()\n', (1375, 1377), True, 'import megengine as mge\n'), ((4742, 4748), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4746, 4748), False, 'from megengine.core.autodiff.grad import Grad\n'), ((2227, 2245), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (2239, 2245), True, 'import numpy as np\n'), ((4494, 4510), 'gc.get_objects', 'gc.get_objects', ([], {}), '()\n', (4508, 4510), False, 'import gc\n'), ((4829, 4835), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4833, 4835), False, 'from megengine.core.autodiff.grad import Grad\n'), ((4904, 4910), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4908, 4910), False, 'from megengine.core.autodiff.grad import Grad\n')]
from fastapi import APIRouter, Depends from ..utils import engine, get_session from sqlmodel import Session, select, SQLModel, or_ from sqlalchemy.exc import NoResultFound from ..models.role import Role from datetime import datetime router = APIRouter(prefix="/api/roles", tags=["role"]) session = Session(engine) # Post new role @router.post("/") async def post_role(*, role: Role, session: Session = Depends(get_session)): statement = select(Role).where(Role.id == role.id) try: result = session.exec(statement).one() return False except NoResultFound: session.add(role) session.commit() session.refresh(role) return role # Get list of all roles @router.get("/") async def read_roles(session: Session = Depends(get_session)): statement = select(Role) results = session.exec(statement).all() return results # Get list of active roles @router.get("/active") async def read_roles(session: Session = Depends(get_session)): statement = select(Role).where(Role.is_active == True) results = session.exec(statement).all() return results @router.put("/{role_id}/activate") async def activate_role( role_id: str = None, session: Session = Depends(get_session), ): statement = select(Role).where(Role.id == role_id) role_to_activate = session.exec(statement).one() role_to_activate.is_active = True role_to_activate.updated_at = datetime.now() session.add(role_to_activate) session.commit() session.refresh(role_to_activate) return role_to_activate # Deactivate role @router.put("/{role_id}/deactivate") async def deactivate_role( role_id: str = None, session: Session = Depends(get_session), ): statement = select(Role).where(Role.id == role_id) role_to_deactivate = session.exec(statement).one() role_to_deactivate.is_active = False role_to_deactivate.updated_at = datetime.now() session.add(role_to_deactivate) session.commit() session.refresh(role_to_deactivate) return role_to_deactivate # Update role @router.put("/") async def update_role( id: str = None, new_name: str = None, new_short_name: str = None, is_active: bool = None, session: Session = Depends(get_session), ): statement = select(Role.is_active).where(Role.id == id) result = session.exec(statement).first() if result == True: statement = select(Role).where(Role.id == id) role_to_update = session.exec(statement).one() if new_name != None: role_to_update.name = new_name if new_short_name != None: role_to_update.short_name = new_short_name if is_active != None: role_to_update.is_active = is_active session.add(role_to_update) role_to_update.updated_at = datetime.now() session.commit() session.refresh(role_to_update) return role_to_update else: return False
[ "sqlmodel.Session", "sqlmodel.select" ]
[((243, 288), 'fastapi.APIRouter', 'APIRouter', ([], {'prefix': '"""/api/roles"""', 'tags': "['role']"}), "(prefix='/api/roles', tags=['role'])\n", (252, 288), False, 'from fastapi import APIRouter, Depends\n'), ((299, 314), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (306, 314), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((404, 424), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (411, 424), False, 'from fastapi import APIRouter, Depends\n'), ((769, 789), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (776, 789), False, 'from fastapi import APIRouter, Depends\n'), ((808, 820), 'sqlmodel.select', 'select', (['Role'], {}), '(Role)\n', (814, 820), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((976, 996), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (983, 996), False, 'from fastapi import APIRouter, Depends\n'), ((1231, 1251), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1238, 1251), False, 'from fastapi import APIRouter, Depends\n'), ((1436, 1450), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1448, 1450), False, 'from datetime import datetime\n'), ((1704, 1724), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1711, 1724), False, 'from fastapi import APIRouter, Depends\n'), ((1916, 1930), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1928, 1930), False, 'from datetime import datetime\n'), ((2243, 2263), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2250, 2263), False, 'from fastapi import APIRouter, Depends\n'), ((2818, 2832), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2830, 2832), False, 'from datetime import datetime\n'), ((443, 455), 'sqlmodel.select', 'select', (['Role'], {}), '(Role)\n', (449, 455), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((1015, 1027), 'sqlmodel.select', 'select', (['Role'], {}), '(Role)\n', (1021, 1027), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((1272, 1284), 'sqlmodel.select', 'select', (['Role'], {}), '(Role)\n', (1278, 1284), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((1745, 1757), 'sqlmodel.select', 'select', (['Role'], {}), '(Role)\n', (1751, 1757), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((2284, 2306), 'sqlmodel.select', 'select', (['Role.is_active'], {}), '(Role.is_active)\n', (2290, 2306), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((2416, 2428), 'sqlmodel.select', 'select', (['Role'], {}), '(Role)\n', (2422, 2428), False, 'from sqlmodel import Session, select, SQLModel, or_\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest from megengine import tensor from megengine.test import assertTensorClose def test_reshape_tuple(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(inp.shape) assertTensorClose(out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(4, 4)) def test_reshape_asterisk(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(*inp.shape) assertTensorClose(out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(4, 4)) def test_reshape_shapeof(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(inp.shapeof()) assertTensorClose(out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(4, 4)) def test_reshape_tensor(): out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(tensor([4, 4])) assertTensorClose(out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(4, 4)) def test_reshape_tensor_fused(): out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(tensor([4, 4]), 1) assertTensorClose(out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(4, 4, 1)) def test_reshape_fused(): out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(tensor(2), 2, tensor(4), 1) assertTensorClose( out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(2, 2, 4, 1) ) def test_reshape_wrong_tuple(): out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) with pytest.raises(ValueError): out = out.reshape((2, 2), 4) def test_reshape_wrong_tuple2(): out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) with pytest.raises(AssertionError): out = out.reshape(4, (2, 2)) def test_broadcast_tuple(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 104, dtype=np.int32).reshape(1, 4)) out = out.broadcast(inp.shape) tmp = np.array([[100, 101, 102, 103]], dtype=np.int32) out2 = np.repeat(tmp, 4, axis=0) assertTensorClose(out.numpy(), out2) def test_broadcast_asterisk(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 104, dtype=np.int32).reshape(1, 4)) out = out.broadcast(*inp.shape) tmp = np.array([[100, 101, 102, 103]], dtype=np.int32) out2 = np.repeat(tmp, 4, axis=0) assertTensorClose(out.numpy(), out2) def test_broadcast_shapeof(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 104, dtype=np.int32).reshape(1, 4)) out = out.broadcast(inp.shapeof()) tmp = np.array([[100, 101, 102, 103]], dtype=np.int32) out2 = np.repeat(tmp, 4, axis=0) assertTensorClose(out.numpy(), out2)
[ "megengine.tensor" ]
[((2620, 2668), 'numpy.array', 'np.array', (['[[100, 101, 102, 103]]'], {'dtype': 'np.int32'}), '([[100, 101, 102, 103]], dtype=np.int32)\n', (2628, 2668), True, 'import numpy as np\n'), ((2680, 2705), 'numpy.repeat', 'np.repeat', (['tmp', '(4)'], {'axis': '(0)'}), '(tmp, 4, axis=0)\n', (2689, 2705), True, 'import numpy as np\n'), ((2962, 3010), 'numpy.array', 'np.array', (['[[100, 101, 102, 103]]'], {'dtype': 'np.int32'}), '([[100, 101, 102, 103]], dtype=np.int32)\n', (2970, 3010), True, 'import numpy as np\n'), ((3022, 3047), 'numpy.repeat', 'np.repeat', (['tmp', '(4)'], {'axis': '(0)'}), '(tmp, 4, axis=0)\n', (3031, 3047), True, 'import numpy as np\n'), ((3306, 3354), 'numpy.array', 'np.array', (['[[100, 101, 102, 103]]'], {'dtype': 'np.int32'}), '([[100, 101, 102, 103]], dtype=np.int32)\n', (3314, 3354), True, 'import numpy as np\n'), ((3366, 3391), 'numpy.repeat', 'np.repeat', (['tmp', '(4)'], {'axis': '(0)'}), '(tmp, 4, axis=0)\n', (3375, 3391), True, 'import numpy as np\n'), ((1461, 1475), 'megengine.tensor', 'tensor', (['[4, 4]'], {}), '([4, 4])\n', (1467, 1475), False, 'from megengine import tensor\n'), ((1690, 1704), 'megengine.tensor', 'tensor', (['[4, 4]'], {}), '([4, 4])\n', (1696, 1704), False, 'from megengine import tensor\n'), ((1918, 1927), 'megengine.tensor', 'tensor', (['(2)'], {}), '(2)\n', (1924, 1927), False, 'from megengine import tensor\n'), ((1932, 1941), 'megengine.tensor', 'tensor', (['(4)'], {}), '(4)\n', (1938, 1941), False, 'from megengine import tensor\n'), ((2165, 2190), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2178, 2190), False, 'import pytest\n'), ((2342, 2371), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (2355, 2371), False, 'import pytest\n'), ((530, 562), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (539, 562), True, 'import numpy as np\n'), ((595, 630), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (604, 630), True, 'import numpy as np\n'), ((716, 751), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (725, 751), True, 'import numpy as np\n'), ((815, 847), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (824, 847), True, 'import numpy as np\n'), ((880, 915), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (889, 915), True, 'import numpy as np\n'), ((1002, 1037), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1011, 1037), True, 'import numpy as np\n'), ((1100, 1132), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (1109, 1132), True, 'import numpy as np\n'), ((1165, 1200), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1174, 1200), True, 'import numpy as np\n'), ((1290, 1325), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1299, 1325), True, 'import numpy as np\n'), ((1387, 1422), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1396, 1422), True, 'import numpy as np\n'), ((1513, 1548), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1522, 1548), True, 'import numpy as np\n'), ((1616, 1651), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1625, 1651), True, 'import numpy as np\n'), ((1745, 1780), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1754, 1780), True, 'import numpy as np\n'), ((1844, 1879), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1853, 1879), True, 'import numpy as np\n'), ((1991, 2026), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (2000, 2026), True, 'import numpy as np\n'), ((2104, 2139), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (2113, 2139), True, 'import numpy as np\n'), ((2281, 2316), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (2290, 2316), True, 'import numpy as np\n'), ((2457, 2489), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (2466, 2489), True, 'import numpy as np\n'), ((2522, 2557), 'numpy.arange', 'np.arange', (['(100)', '(104)'], {'dtype': 'np.int32'}), '(100, 104, dtype=np.int32)\n', (2531, 2557), True, 'import numpy as np\n'), ((2798, 2830), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (2807, 2830), True, 'import numpy as np\n'), ((2863, 2898), 'numpy.arange', 'np.arange', (['(100)', '(104)'], {'dtype': 'np.int32'}), '(100, 104, dtype=np.int32)\n', (2872, 2898), True, 'import numpy as np\n'), ((3139, 3171), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (3148, 3171), True, 'import numpy as np\n'), ((3204, 3239), 'numpy.arange', 'np.arange', (['(100)', '(104)'], {'dtype': 'np.int32'}), '(100, 104, dtype=np.int32)\n', (3213, 3239), True, 'import numpy as np\n')]
from sqlmodel import SQLModel from sqlmodel import Field, Relationship from sqlalchemy import String from sqlalchemy.sql.schema import Column from typing import TYPE_CHECKING, Optional, List if TYPE_CHECKING: from app.src.models.product import ProductRead from app.src.models.product import Product class ProductTypeBase(SQLModel): name: str description: str class ProductType(ProductTypeBase, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str = Field(sa_column=Column("name", String, unique=True)) description: Optional[str] = Field(default=None) products: List["Product"] = Relationship(back_populates="product_type") class ProductTypeReadwithProduct(ProductTypeBase): product_type: Optional["ProductRead"] = None class ProductTypeCreate(ProductTypeBase): pass class ProductTypeRead(ProductTypeBase): id: int # Nel modello update tutti gli attributi devono essere opzionali class ProductTypeUpdate(SQLModel): name: Optional[str] = None description: Optional[str] = None
[ "sqlmodel.Field", "sqlmodel.Relationship" ]
[((452, 489), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (457, 489), False, 'from sqlmodel import Field, Relationship\n'), ((592, 611), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (597, 611), False, 'from sqlmodel import Field, Relationship\n'), ((644, 687), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""product_type"""'}), "(back_populates='product_type')\n", (656, 687), False, 'from sqlmodel import Field, Relationship\n'), ((522, 557), 'sqlalchemy.sql.schema.Column', 'Column', (['"""name"""', 'String'], {'unique': '(True)'}), "('name', String, unique=True)\n", (528, 557), False, 'from sqlalchemy.sql.schema import Column\n')]
"""All Models for database are defined here""" from typing import Optional, List from sqlalchemy import Column, ForeignKey, Integer from sqlmodel import Field, SQLModel, Relationship class VrfLink(SQLModel, table=True): """Used for vrf to device link""" vrf_id: Optional[int] = Field(default=None, foreign_key="vrf.id", primary_key=True) device_id: Optional[int] = Field( default=None, foreign_key="device.id", primary_key=True ) class Platform(SQLModel, table=True): """Used to define platforms""" id: Optional[int] = Field(default=None, primary_key=True) platform_name: str = Field(index=True) class Vrf(SQLModel, table=True): """used to define VRFs""" id: Optional[int] = Field(default=None, primary_key=True) vrf_name: str = Field(index=True) devices: List["Device"] = Relationship(back_populates="vrfs", link_model=VrfLink) class Device(SQLModel, table=True): """Used to define a simple device""" id: Optional[int] = Field(default=None, primary_key=True) name: str = Field(index=True) mgmt: str platform_id: Optional[int] = Field( sa_column=Column( Integer, ForeignKey("platform.id", ondelete="SET NULL", onupdate="CASCADE") ) ) vrfs: List["Vrf"] = Relationship(back_populates="devices", link_model=VrfLink)
[ "sqlmodel.Field", "sqlmodel.Relationship" ]
[((288, 347), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""vrf.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='vrf.id', primary_key=True)\n", (293, 347), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((379, 441), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""device.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='device.id', primary_key=True)\n", (384, 441), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((555, 592), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (560, 592), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((618, 635), 'sqlmodel.Field', 'Field', ([], {'index': '(True)'}), '(index=True)\n', (623, 635), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((725, 762), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (730, 762), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((783, 800), 'sqlmodel.Field', 'Field', ([], {'index': '(True)'}), '(index=True)\n', (788, 800), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((831, 886), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""vrfs"""', 'link_model': 'VrfLink'}), "(back_populates='vrfs', link_model=VrfLink)\n", (843, 886), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((990, 1027), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (995, 1027), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((1044, 1061), 'sqlmodel.Field', 'Field', ([], {'index': '(True)'}), '(index=True)\n', (1049, 1061), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((1270, 1328), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""devices"""', 'link_model': 'VrfLink'}), "(back_populates='devices', link_model=VrfLink)\n", (1282, 1328), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((1163, 1229), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""platform.id"""'], {'ondelete': '"""SET NULL"""', 'onupdate': '"""CASCADE"""'}), "('platform.id', ondelete='SET NULL', onupdate='CASCADE')\n", (1173, 1229), False, 'from sqlalchemy import Column, ForeignKey, Integer\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: skip-file import argparse import sys # pylint: disable=import-error import resnet.model as resnet_model # pylint: disable=import-error import shufflenet.model as snet_model import numpy as np import megengine as mge import megengine.functional as F from megengine import jit def dump_static_graph(model, graph_name, shape): model.eval() data = mge.Tensor(np.ones(shape, dtype=np.uint8)) @jit.trace(capture_as_const=True) def pred_func(data): out = data.astype(np.float32) output_h, output_w = 224, 224 # resize print(shape) M = mge.tensor(np.array([[1,0,0], [0,1,0], [0,0,1]], dtype=np.float32)) M_shape = F.concat([data.shape[0],M.shape]) M = F.broadcast_to(M, M_shape) out = F.vision.warp_perspective(out, M, (output_h, output_w), format='NHWC') # mean _mean = mge.Tensor(np.array([103.530, 116.280, 123.675], dtype=np.float32)) out = F.sub(out, _mean) # div _div = mge.Tensor(np.array([57.375, 57.120, 58.395], dtype=np.float32)) out = F.div(out, _div) # dimshuffile out = F.transpose(out, (0,3,1,2)) outputs = model(out) return outputs pred_func(data) pred_func.dump( graph_name, arg_names=["data"], optimize_for_inference=True, enable_fuse_conv_bias_nonlinearity=True, ) def main(): parser = argparse.ArgumentParser(description="MegEngine Classification Dump .mge") parser.add_argument( "-a", "--arch", default="resnet18", help="model architecture (default: resnet18)", ) parser.add_argument( "-s", "--shape", type=int, nargs='+', default="1 3 224 224", help="input shape (default: 1 3 224 224)" ) parser.add_argument( "-o", "--output", type=str, default="model.mge", help="output filename" ) args = parser.parse_args() if 'resnet' in args.arch: model = getattr(resnet_model, args.arch)(pretrained=True) elif 'shufflenet' in args.arch: model = getattr(snet_model, args.arch)(pretrained=True) else: print('unavailable arch {}'.format(args.arch)) sys.exit() print(model) dump_static_graph(model, args.output, tuple(args.shape)) if __name__ == "__main__": main()
[ "megengine.functional.div", "megengine.functional.broadcast_to", "megengine.jit.trace", "megengine.functional.sub", "megengine.functional.vision.warp_perspective", "megengine.functional.concat", "megengine.functional.transpose" ]
[((795, 827), 'megengine.jit.trace', 'jit.trace', ([], {'capture_as_const': '(True)'}), '(capture_as_const=True)\n', (804, 827), False, 'from megengine import jit\n'), ((1815, 1888), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""MegEngine Classification Dump .mge"""'}), "(description='MegEngine Classification Dump .mge')\n", (1838, 1888), False, 'import argparse\n'), ((757, 787), 'numpy.ones', 'np.ones', (['shape'], {'dtype': 'np.uint8'}), '(shape, dtype=np.uint8)\n', (764, 787), True, 'import numpy as np\n'), ((1074, 1108), 'megengine.functional.concat', 'F.concat', (['[data.shape[0], M.shape]'], {}), '([data.shape[0], M.shape])\n', (1082, 1108), True, 'import megengine.functional as F\n'), ((1120, 1146), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['M', 'M_shape'], {}), '(M, M_shape)\n', (1134, 1146), True, 'import megengine.functional as F\n'), ((1161, 1231), 'megengine.functional.vision.warp_perspective', 'F.vision.warp_perspective', (['out', 'M', '(output_h, output_w)'], {'format': '"""NHWC"""'}), "(out, M, (output_h, output_w), format='NHWC')\n", (1186, 1231), True, 'import megengine.functional as F\n'), ((1345, 1362), 'megengine.functional.sub', 'F.sub', (['out', '_mean'], {}), '(out, _mean)\n', (1350, 1362), True, 'import megengine.functional as F\n'), ((1472, 1488), 'megengine.functional.div', 'F.div', (['out', '_div'], {}), '(out, _div)\n', (1477, 1488), True, 'import megengine.functional as F\n'), ((1526, 1556), 'megengine.functional.transpose', 'F.transpose', (['out', '(0, 3, 1, 2)'], {}), '(out, (0, 3, 1, 2))\n', (1537, 1556), True, 'import megengine.functional as F\n'), ((991, 1052), 'numpy.array', 'np.array', (['[[1, 0, 0], [0, 1, 0], [0, 0, 1]]'], {'dtype': 'np.float32'}), '([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float32)\n', (999, 1052), True, 'import numpy as np\n'), ((1274, 1327), 'numpy.array', 'np.array', (['[103.53, 116.28, 123.675]'], {'dtype': 'np.float32'}), '([103.53, 116.28, 123.675], dtype=np.float32)\n', (1282, 1327), True, 'import numpy as np\n'), ((1404, 1455), 'numpy.array', 'np.array', (['[57.375, 57.12, 58.395]'], {'dtype': 'np.float32'}), '([57.375, 57.12, 58.395], dtype=np.float32)\n', (1412, 1455), True, 'import numpy as np\n'), ((2661, 2671), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2669, 2671), False, 'import sys\n')]
from typing import Optional import pytest from sqlmodel import Field, SQLModel, create_engine def test_missing_sql_type(): class CustomType: @classmethod def __get_validators__(cls): yield cls.validate @classmethod def validate(cls, v): return v with pytest.raises(ValueError): class Item(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) item: CustomType
[ "sqlmodel.Field" ]
[((332, 357), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (345, 357), False, 'import pytest\n'), ((433, 470), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (438, 470), False, 'from sqlmodel import Field, SQLModel, create_engine\n')]
import textwrap from typing import List, Optional import pytest from sqlmodel import Field, Relationship, SQLModel import strawberry class City(SQLModel, table=True): id: Optional[int] = Field(primary_key=True, default=None) name: str = Field() population: int = Field() class Manager(SQLModel, table=True): id: Optional[int] = Field(primary_key=True, default=None) name: str = Field() managed_team: "Team" = Relationship(back_populates="manager") class Team(SQLModel, table=True): id: Optional[int] = Field(primary_key=True, default=None) name: str = Field(index=True) headquarters: Optional[str] = Field(default=None) manager_id: int = Field(nullable=False, foreign_key="manager.id") manager: Manager = Relationship(back_populates="managed_team") heroes: List["Hero"] = Relationship(back_populates="team") class Hero(SQLModel, table=True): id: Optional[int] = Field(primary_key=True, default=None) name: str = Field(index=True) secret_name: str age: Optional[int] = Field(default=None, index=True) team_id: Optional[int] = Field(default=None, foreign_key="team.id") team: Optional[Team] = Relationship(back_populates="heroes") @pytest.fixture def clear_types(): for model in (Team, Hero, Manager, City): if hasattr(model, "_strawberry_type"): delattr(model, "_strawberry_type") def test_all_fields(clear_types): @strawberry.experimental.pydantic.type(City, all_fields=True) class CityType: pass @strawberry.type class Query: @strawberry.field def city(self) -> CityType: return CityType(id=1, name="Gotham", population=100000) schema = strawberry.Schema(query=Query) expected_schema = """ type CityType { name: String! population: Int! id: Int } type Query { city: CityType! } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ city { name } }" result = schema.execute_sync(query) assert not result.errors assert result.data["city"]["name"] == "Gotham" def test_basic_type_field_list(clear_types): @strawberry.experimental.pydantic.type(Team, fields=["name", "headquarters"]) class TeamType: pass @strawberry.type class Query: @strawberry.field def team(self) -> TeamType: return TeamType(name="hobbits", headquarters="The Shire") schema = strawberry.Schema(query=Query) expected_schema = """ type Query { team: TeamType! } type TeamType { name: String! headquarters: String } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ team { name } }" result = schema.execute_sync(query) assert not result.errors assert result.data["team"]["name"] == "hobbits" def test_one_to_one_optional(clear_types): @strawberry.experimental.pydantic.type(Team, fields=["name"]) class TeamType: pass @strawberry.experimental.pydantic.type(Hero, fields=["team"]) class HeroType: pass @strawberry.type class Query: @strawberry.field def hero(self) -> HeroType: return HeroType(team=TeamType(name="Skii")) schema = strawberry.Schema(query=Query) expected_schema = """ type HeroType { team: TeamType } type Query { hero: HeroType! } type TeamType { name: String! } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ hero { team { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["hero"]["team"]["name"] == "Skii" def test_one_to_one_required(clear_types): @strawberry.experimental.pydantic.type(Manager, fields=["name"]) class ManagerType: pass @strawberry.experimental.pydantic.type(Team, fields=["manager"]) class TeamType: pass @strawberry.type class Query: @strawberry.field def team(self) -> TeamType: return TeamType(manager=ManagerType(name="Skii")) schema = strawberry.Schema(query=Query) expected_schema = """ type ManagerType { name: String! } type Query { team: TeamType! } type TeamType { manager: ManagerType! } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ team { manager { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["team"]["manager"]["name"] == "Skii" def test_nested_type_unordered(clear_types): @strawberry.experimental.pydantic.type(Hero, fields=["team"]) class HeroType: pass @strawberry.experimental.pydantic.type(Team, fields=["name"]) class TeamType: pass @strawberry.type class Query: @strawberry.field def hero(self) -> HeroType: return HeroType(team=TeamType(name="Skii")) schema = strawberry.Schema(query=Query) expected_schema = """ type HeroType { team: TeamType } type Query { hero: HeroType! } type TeamType { name: String! } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ hero { team { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["hero"]["team"]["name"] == "Skii" def test_one_to_many(clear_types): @strawberry.experimental.pydantic.type(Team, fields=["heroes"]) class TeamType: pass @strawberry.experimental.pydantic.type(Hero, fields=["name"]) class HeroType: pass @strawberry.type class Query: @strawberry.field def team(self) -> TeamType: return TeamType(heroes=[HeroType(name="Skii"), HeroType(name="Chris")]) schema = strawberry.Schema(query=Query) expected_schema = """ type HeroType { name: String! } type Query { team: TeamType! } type TeamType { heroes: [HeroType!]! } """ assert str(schema) == textwrap.dedent(expected_schema).strip() query = "{ team { heroes { name } } }" result = schema.execute_sync(query) assert not result.errors assert result.data["team"]["heroes"][0]["name"] == "Skii" assert result.data["team"]["heroes"][1]["name"] == "Chris"
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((196, 233), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)', 'default': 'None'}), '(primary_key=True, default=None)\n', (201, 233), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((250, 257), 'sqlmodel.Field', 'Field', ([], {}), '()\n', (255, 257), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((280, 287), 'sqlmodel.Field', 'Field', ([], {}), '()\n', (285, 287), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((351, 388), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)', 'default': 'None'}), '(primary_key=True, default=None)\n', (356, 388), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((405, 412), 'sqlmodel.Field', 'Field', ([], {}), '()\n', (410, 412), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((440, 478), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""manager"""'}), "(back_populates='manager')\n", (452, 478), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((539, 576), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)', 'default': 'None'}), '(primary_key=True, default=None)\n', (544, 576), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((593, 610), 'sqlmodel.Field', 'Field', ([], {'index': '(True)'}), '(index=True)\n', (598, 610), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((645, 664), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (650, 664), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((687, 734), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)', 'foreign_key': '"""manager.id"""'}), "(nullable=False, foreign_key='manager.id')\n", (692, 734), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((758, 801), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""managed_team"""'}), "(back_populates='managed_team')\n", (770, 801), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((829, 864), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""team"""'}), "(back_populates='team')\n", (841, 864), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((925, 962), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)', 'default': 'None'}), '(primary_key=True, default=None)\n', (930, 962), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((979, 996), 'sqlmodel.Field', 'Field', ([], {'index': '(True)'}), '(index=True)\n', (984, 996), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((1043, 1074), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'index': '(True)'}), '(default=None, index=True)\n', (1048, 1074), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((1104, 1146), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""team.id"""'}), "(default=None, foreign_key='team.id')\n", (1109, 1146), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((1174, 1211), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""heroes"""'}), "(back_populates='heroes')\n", (1186, 1211), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((1430, 1490), 'strawberry.experimental.pydantic.type', 'strawberry.experimental.pydantic.type', (['City'], {'all_fields': '(True)'}), '(City, all_fields=True)\n', (1467, 1490), False, 'import strawberry\n'), ((1707, 1737), 'strawberry.Schema', 'strawberry.Schema', ([], {'query': 'Query'}), '(query=Query)\n', (1724, 1737), False, 'import strawberry\n'), ((2177, 2253), 'strawberry.experimental.pydantic.type', 'strawberry.experimental.pydantic.type', (['Team'], {'fields': "['name', 'headquarters']"}), "(Team, fields=['name', 'headquarters'])\n", (2214, 2253), False, 'import strawberry\n'), ((2472, 2502), 'strawberry.Schema', 'strawberry.Schema', ([], {'query': 'Query'}), '(query=Query)\n', (2489, 2502), False, 'import strawberry\n'), ((2931, 2991), 'strawberry.experimental.pydantic.type', 'strawberry.experimental.pydantic.type', (['Team'], {'fields': "['name']"}), "(Team, fields=['name'])\n", (2968, 2991), False, 'import strawberry\n'), ((3031, 3091), 'strawberry.experimental.pydantic.type', 'strawberry.experimental.pydantic.type', (['Hero'], {'fields': "['team']"}), "(Hero, fields=['team'])\n", (3068, 3091), False, 'import strawberry\n'), ((3296, 3326), 'strawberry.Schema', 'strawberry.Schema', ([], {'query': 'Query'}), '(query=Query)\n', (3313, 3326), False, 'import strawberry\n'), ((3790, 3853), 'strawberry.experimental.pydantic.type', 'strawberry.experimental.pydantic.type', (['Manager'], {'fields': "['name']"}), "(Manager, fields=['name'])\n", (3827, 3853), False, 'import strawberry\n'), ((3896, 3959), 'strawberry.experimental.pydantic.type', 'strawberry.experimental.pydantic.type', (['Team'], {'fields': "['manager']"}), "(Team, fields=['manager'])\n", (3933, 3959), False, 'import strawberry\n'), ((4170, 4200), 'strawberry.Schema', 'strawberry.Schema', ([], {'query': 'Query'}), '(query=Query)\n', (4187, 4200), False, 'import strawberry\n'), ((4682, 4742), 'strawberry.experimental.pydantic.type', 'strawberry.experimental.pydantic.type', (['Hero'], {'fields': "['team']"}), "(Hero, fields=['team'])\n", (4719, 4742), False, 'import strawberry\n'), ((4782, 4842), 'strawberry.experimental.pydantic.type', 'strawberry.experimental.pydantic.type', (['Team'], {'fields': "['name']"}), "(Team, fields=['name'])\n", (4819, 4842), False, 'import strawberry\n'), ((5047, 5077), 'strawberry.Schema', 'strawberry.Schema', ([], {'query': 'Query'}), '(query=Query)\n', (5064, 5077), False, 'import strawberry\n'), ((5533, 5595), 'strawberry.experimental.pydantic.type', 'strawberry.experimental.pydantic.type', (['Team'], {'fields': "['heroes']"}), "(Team, fields=['heroes'])\n", (5570, 5595), False, 'import strawberry\n'), ((5635, 5695), 'strawberry.experimental.pydantic.type', 'strawberry.experimental.pydantic.type', (['Hero'], {'fields': "['name']"}), "(Hero, fields=['name'])\n", (5672, 5695), False, 'import strawberry\n'), ((5928, 5958), 'strawberry.Schema', 'strawberry.Schema', ([], {'query': 'Query'}), '(query=Query)\n', (5945, 5958), False, 'import strawberry\n'), ((1929, 1961), 'textwrap.dedent', 'textwrap.dedent', (['expected_schema'], {}), '(expected_schema)\n', (1944, 1961), False, 'import textwrap\n'), ((2684, 2716), 'textwrap.dedent', 'textwrap.dedent', (['expected_schema'], {}), '(expected_schema)\n', (2699, 2716), False, 'import textwrap\n'), ((3529, 3561), 'textwrap.dedent', 'textwrap.dedent', (['expected_schema'], {}), '(expected_schema)\n', (3544, 3561), False, 'import textwrap\n'), ((4413, 4445), 'textwrap.dedent', 'textwrap.dedent', (['expected_schema'], {}), '(expected_schema)\n', (4428, 4445), False, 'import textwrap\n'), ((5280, 5312), 'textwrap.dedent', 'textwrap.dedent', (['expected_schema'], {}), '(expected_schema)\n', (5295, 5312), False, 'import textwrap\n'), ((6167, 6199), 'textwrap.dedent', 'textwrap.dedent', (['expected_schema'], {}), '(expected_schema)\n', (6182, 6199), False, 'import textwrap\n')]
import io import numpy as np import megengine.core.tensor.megbrain_graph as G import megengine.utils.comp_graph_tools as cgtools from megengine import tensor from megengine.jit import trace from megengine.utils.network_node import VarNode def _default_compare_fn(x, y): if isinstance(x, np.ndarray): np.testing.assert_allclose(x, y, rtol=1e-6) else: np.testing.assert_allclose(x.numpy(), y, rtol=1e-6) def make_tensor(x, network=None, device=None): if network is not None: if isinstance(x, VarNode): return VarNode(x.var) return network.make_const(x, device=device) else: return tensor(x, device=device) def opr_test( cases, func, compare_fn=_default_compare_fn, ref_fn=None, test_trace=True, network=None, **kwargs ): """ :param cases: the list which have dict element, the list length should be 2 for dynamic shape test. and the dict should have input, and should have output if ref_fn is None. should use list for multiple inputs and outputs for each case. :param func: the function to run opr. :param compare_fn: the function to compare the result and expected, use ``np.testing.assert_allclose`` if None. :param ref_fn: the function to generate expected data, should assign output if None. Examples: .. code-block:: dtype = np.float32 cases = [{"input": [10, 20]}, {"input": [20, 30]}] opr_test(cases, F.eye, ref_fn=lambda n, m: np.eye(n, m).astype(dtype), dtype=dtype) """ def check_results(results, expected): if not isinstance(results, (tuple, list)): results = (results,) for r, e in zip(results, expected): if not isinstance(r, (tensor, VarNode)): r = tensor(r) compare_fn(r, e) def get_param(cases, idx): case = cases[idx] inp = case.get("input", None) outp = case.get("output", None) if inp is None: raise ValueError("the test case should have input") if not isinstance(inp, (tuple, list)): inp = (inp,) if ref_fn is not None and callable(ref_fn): outp = ref_fn(*inp) if outp is None: raise ValueError("the test case should have output or reference function") if not isinstance(outp, (tuple, list)): outp = (outp,) return inp, outp if len(cases) == 0: raise ValueError("should give one case at least") if not callable(func): raise ValueError("the input func should be callable") inp, outp = get_param(cases, 0) inp_tensor = [make_tensor(inpi, network) for inpi in inp] if test_trace and not network: copied_inp = inp_tensor.copy() for symbolic in [False, True]: traced_func = trace(symbolic=symbolic)(func) for _ in range(3): traced_results = traced_func(*copied_inp, **kwargs) check_results(traced_results, outp) dumped_func = trace(symbolic=True, capture_as_const=True)(func) dumped_results = dumped_func(*copied_inp, **kwargs) check_results(dumped_results, outp) file = io.BytesIO() dump_info = dumped_func.dump(file) file.seek(0) # arg_name has pattern arg_xxx, xxx is int value def take_number(arg_name): return int(arg_name.split("_")[-1]) input_names = dump_info[4] inps_np = [i.numpy() for i in copied_inp] input_names.sort(key=take_number) inp_dict = dict(zip(input_names, inps_np)) infer_cg = cgtools.GraphInference(file) # assume #outputs == 1 loaded_results = list(infer_cg.run(inp_dict=inp_dict).values())[0] check_results(loaded_results, outp) results = func(*inp_tensor, **kwargs) check_results(results, outp)
[ "megengine.jit.trace", "megengine.tensor", "megengine.utils.comp_graph_tools.GraphInference", "megengine.utils.network_node.VarNode" ]
[((316, 360), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['x', 'y'], {'rtol': '(1e-06)'}), '(x, y, rtol=1e-06)\n', (342, 360), True, 'import numpy as np\n'), ((653, 677), 'megengine.tensor', 'tensor', (['x'], {'device': 'device'}), '(x, device=device)\n', (659, 677), False, 'from megengine import tensor\n'), ((3295, 3307), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (3305, 3307), False, 'import io\n'), ((3711, 3739), 'megengine.utils.comp_graph_tools.GraphInference', 'cgtools.GraphInference', (['file'], {}), '(file)\n', (3733, 3739), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((561, 575), 'megengine.utils.network_node.VarNode', 'VarNode', (['x.var'], {}), '(x.var)\n', (568, 575), False, 'from megengine.utils.network_node import VarNode\n'), ((3125, 3168), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (3130, 3168), False, 'from megengine.jit import trace\n'), ((1879, 1888), 'megengine.tensor', 'tensor', (['r'], {}), '(r)\n', (1885, 1888), False, 'from megengine import tensor\n'), ((2923, 2947), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2928, 2947), False, 'from megengine.jit import trace\n')]